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a b s t r a c t

An affinity purification-mass spectrometry (AP-MS) method was
employed to identify novel substrates of the SCFβTrCP ubiquitin ligase.
A FLAG-HA tagged version of the F-box protein βTrCP2, the substrate
recognition subunit of SCFβTrCP, was used as bait. βTrCP2 wild type and
the two mutants βTrCP2-R447A and βTrCP2-ΔF were expressed and
purified from HEK293T cells to be able to discriminate between
potential substrates of SCFβTrCP and unspecific binders. Affinity-purified
samples were analyzed by mass spectrometry-based proteomics,
applying ultra-high performance liquid chromatography (UHPLC)
coupled to high-resolution tandem mass spectrometry. The raw mass
spectrometry data have been deposited to the PRIDE partner
repository with the identifiers PXD001088 and PXD001224. The
present dataset is associated with a research resource published in T.
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Specifications Table

Subject area Biology, Biochemistry

More specific
subject area

Interaction proteomics studies of an E3 ubiquitin ligase - SCFβTrCP

Type of data (a.) Raw and processed mass spectrometry data acquired by GeLC–MSMS and LC–MSMS
(b.) Excel data sheets with identified proteins and peptides

How data was
acquired

(a.) SDS-PAGE followed by in-gel trypsin digestion and GeLC–MS with Orbitrap Discovery, Orbitrap XL and
Orbitrap Velos

(b.) In-solution trypsin digestion followed by LC–MSMS with Orbitrap Elite

Data format .raw (raw mass spectrometry data files)
.xlsx (identified peptides and proteins, search parameter with MaxQuant)

Experimental factors Protein samples were reduced with 10 mM DTT, alkylated with 55 mM iodoacetamide, digested using
sequencing-grade modified trypsin.

Experimental
features

FLAG-HA tagged βTrCP wild type was expressed in HEK293T cells and used to immunopurify protein
interactors via tandem affinity purification (TAP). Purified proteins were either analyzed with LC–MSMS
directly or after SDS-PAGE separation (GeLC–MSMS)

Data source location Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht
Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands

Data accessibility The mass spectrometry datasets are publicly available from ProteomeXchange Consortium via the PRIDE
partner repository [2] (http://www.proteomexchange.org) with the dataset identifiers PXD001088 (LC–
MSMS data) and PXD001224 (GeLC–MSMS data)
Results obtained from mass spectrometry post MaxQuant analysis are available as Supplementary
materials with this paper

Value of the data

! AP-MS datasets of protein–protein interactions (PPI) for SCFβTrCP ubiquitin ligase.
! These PPIs are validated by two independent statistical platforms.
! A number of proteins bind only to wild type βTrCP and therefore putative substrates.
! Bioinformatics analysis of phosphodegrons supports these substrate candidates.
! Selected candidates are finally confirmed by biochemical experiments.

1. Experimental design

As shown in Fig. 1, SCFβTrCP is a multi-subunit E3 ubiquitin ligase consisting of Cul1, Rbx1, Skp1, and
the F-box protein βTrCP. In mammals, two paralogs of βTrCP are present, i.e. βTrCP1 and βTrCP2,
however, their biochemical properties appear to be indistinguishable [1]. For our experiments, three
different constructs of βTrCP2, each carrying N-terminal 2xFLAG and 2xHA epitope tags were used for
independent AP-MS experiments. Epitope tags alone, i.e. without any βTrCP2-based fusion protein
(EV), were used as negative control. The three βTrCP2 baits consist of βTrCP2 wild type and two βTrCP2
mutants, i.e. βTrCP2-R447A and βTrCP2-ΔF. The first mutant, βTrCP2-R447A, harbors an Arg to Ala
mutation at position 447 of βTrCP2. This substitution within the WD40 β-propeller domain abrogates
the interaction with and consequently the ubiquitylation of SCFβTrCP substrates [3,4]. The second
mutant, βTrCP2-ΔF, carries a deletion in the F-box motif and acts as a dominant negative mutant [5,6]
since it binds substrates but is unable to interact with Skp1, Cul1, Rbx1 and the E2 enzyme.
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2. Materials and methods

2.1. Cell culture, transfection and drug treatment

HEK293T cells were cultured in Dulbecco's modified Eagle's medium (Invitrogen) with 10% fetal
calf serum (FCS) and 100 U ml"1 penicillin–streptomycin. HEK293T cells were transfected using the
polyethylenimine (PEI) method and, 48 h after transfection, treated with the proteasome inhibitor
MG132 (Peptide Institute, 10 μM) for 5 h.

2.2. DNA constructs

Full-length, human wild type βTrCP2 (isoform C, NP_036432.2) carrying HA and FLAG tags at the
N-terminus was cloned into the EcoRI and NotI sites of pcDNA3 by PCR. The full-length construct was
then used as template to generate the βTrCP2-R447A mutant using the QuickChange site-directed
mutagenesis kit (Stratagene) according to manufacturer's directions.

The following oligonucleotides were used: forward primer:
50-GGGACATGAAGAATTGGTCGCATGCATCCGGTTTGATAACAAG-30

and reverse primer:
50-CTTGTTATCAAACCGGATGCATGCGACCAATTCTTCATGTCCC-30.
All constructs were verified by sequencing.

2.3. βTrCP2 immunopurification

HEK293T cells grown in 15-cm dishes were transfected with pcDNA3-2xFLAG-2xHA-βTrCP2 and
treated with 10 μMMG132 for 5 h. Cells were harvested and subsequently lysed in lysis buffer (50 mM
Tris–HCl pH 7.5, 150 mM NaCl, 1 mM EDTA and 0.5% NP40). βTrCP2 was immunopurified with mouse
anti-FLAG M2 coupled to an agarose resin (Sigma-Aldrich). After washing, proteins were eluted by
competition with FLAG peptide (Sigma-Aldrich). The eluate was then subjected to a second
immunopurification with anti-HA resin (12CA5 monoclonal antibody cross-linked to protein G
Sepharose; Invitrogen).
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Fig. 1. A schematic for SCFβTrCP. SCFβTrCP is a multi-subunit E3 ubiquitin ligase consisting of Cul1, Rbx1, Skp1, and the F-box
protein βTrCP. Cul1 is a scaffold protein that interacts via its N-terminus with the adapter protein Skp1 and its C-terminus with
the RING finger protein Rbx1. Rbx1, in turn binds to a specific ubiquitin conjugating enzyme (E2). Skp1 also interacts with the
F-box domain of βTrCP, which recruits substrates through its WD40 repeats. These WD40 repeats form a β-propeller structure,
which specifically recognizes a diphosphorylated motif with the consensus motif DpSGXX(X)pS, known as a phosphodegron.

R. Magliozzi et al. / Data in Brief 4 (2015) 229–234 231



2.4. Recovery of immunoprecipitated proteins for LC–MSMS

For GeLC–MSMS analysis, immunoprecipitated proteins were eluted from the protein G beads with
Laemmli sample buffer, separated by SDS-PAGE, and stained with Coomassie colloidal blue. Twelve
bands were sliced out from each gel lane which were then reduced, alkylated, and digested according
to a published protocol [7]. For direct LC–MSMS analysis, immunoprecipitated proteins on protein G
beads were resuspended in a spin filter column (Bio-Rad) and washed three times with 200 μl of
phosphate buffer saline to remove residual detergent from the lysis buffer. Proteins bound to the
protein G beads were then eluted off with 100 μl of 0.5% RapiGest reagents (Waters) in 50 mM
ammonium bicarbonate, followed by 100 μl of 8 M urea in 50 mM ammonium bicarbonate (pH 8.0).
Eluted proteins were reduced with 1 mM dithiothreitol (DTT) and alkylated with 5.5 mM
iodoacetamide. For tryptic digestion, proteins were first digested with endoproteinase Lys-C (Wako
Chemicals) in room temperature for 4 h, followed by sequencing-grade modified trypsin (Promega)
overnight, after 4-fold dilution with 50 mM ammonium bicarbonate. Protease digestion was stopped
by addition of trifluoroacetic acid (TFA) and precipitates were removed after centrifugation. Peptides
were desalted using reversed-phase Sep-Pak C18 cartridges (Waters), then dried and stored at "20 1C.

2.5. LC–MSMS

For GeLC–MSMS, we performed nanoflow LC–MSMS with an LTQ-Orbitrap Discovery, Orbitrap XL
and Orbitrap Velos mass spectrometers (Thermo Fisher) coupled to an Agilent 1200 HPLC system
(Agilent Technologies). Digested peptides were dried, reconstituted in 10% FA and delivered to a trap
column (Aqua™ C18, 5 mm (Phenomenex); 20 mm#100-mm inner diameter, packed in house) at 5 ml/
min in 100% solvent A (0.1 M acetic acid in water). Next, peptides eluted from the trap column onto an
analytical column (ReproSil-Pur C18-AQ, 3 mm; Dr. Maisch GmbH; 40 cm#50 mm inner diameter,
packed in house) at 100 nl/min in a 1 h gradient from 0 to 40% solvent B (0.1 M acetic acid in 8:2 (v/v)
acetonitrile/water). The eluent was sprayed via distal coated emitter tips butt-connected to the
analytical column. The mass spectrometer was operated in data-dependent mode, automatically
switching between MS and MSMS. Full-scan MS spectra (from m/z 300 to 1500) were acquired in the
Orbitrap with a resolution of 60,000 at m/z 400 after accumulation to target value of 500,000 in the
linear ion trap. The five most intense ions within a survey scan were selected for collision-induced
fragmentation (CID) in the linear ion trap at a normalized collision energy of 35% after accumulation
to a target value of 10,000.

For direct LC–MSMS, samples were analyzed with Nano-UPLC-MSMS on a Proxeon EASY-nLC 1000
(Thermo Scientific) connected to an LTQ-Orbitrap Elite (Thermo Fisher Scientific). The injected sample
was first trapped with a double-fritted trapping column (Reprosil C18, 3 μm, 2 cm#100 μm, Dr.
Maisch GmbH) before being separated in an analytical column (Agilent Zorbax SB-C18, 1.8 μm,
35 cm#50 μm). Solvent A consists of 0.1 M acetic acid while solvent B is 0.1 M acetic acid in 80%
acetonitrile. Measurement time for each sample took 120 min. Samples are first loaded at a maximum
pressure of 980 bar with 100% solvent A. Subsequently, peptides are chromatographically separated
by a 91 min gradient consisting of 15–40% solvent B at an un-split flow of 100 nL/min; then ramped to
100% B in 3 min and held in 100% B for another 2 min. This is finally followed by a 13-min
equilibration with 100% A. For MS analysis, 1.7 kV was applied to the Nanospray needle. The survey
scan was from 350 to 1500m/z at a resolution of 30,000 and for MSMS, the resolution was set to 7500.
The 10 most intense precursors were selected for subsequent fragmentation using a direct dependent
acquisition. A decision tree method previously described was used [8,9].

2.6. LC–MSMS data analysis

MS raw files were analyzed using MaxQuant (version 1.4.0.8, http://141.61.102.17/maxquant_doku/
doku.php?id=start) with the match between runs and LFQ options selected. Tandem MS spectra, top
8 selected in 100 Da bin, were searched against the UniProt Human database (Version 2013-07, 20,277
entries). Trypsin/P was chosen as the protease, cysteine carbamidomethylation was set as fixed
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modification, and oxidation of methionine and acetylation of the N-terminal as variable modifications.
Peptide tolerance was initially set to 20 ppm for first search and 4.5 ppm after recalibration, while
MSMS tolerance was set to 0.5 Da. All peptide-spectrum matches (PSMs) and proteins were validated
with 1% FDR. Only PSMs with a minimum length of 7 amino acids were kept.

2.7. Post-acquisition data analysis CRAPome and Perseus analysis

The ‘proteingroups.txt’ table generated by MaxQuant was filtered for contaminants and highly
abundant proteins such as keratins, tubulins and ribosomal proteins, reverse hits, number of unique
peptides (40) and number of peptides (41). Subsequently, analysis and filtering using the CRAPome
software suite (www.crapome.org) was performed essentially as described [10]. To discriminate bona
fide protein interactors of βTrCP2 from the background, we set a SAINT score threshold of 0.9.
Subsequently, to identify the putative substrates from this pool of specific interactors, we computed
the ratios (FC ratios) for the FC-B scores between the wild type βTrCP2 or βTrCP2-ΔF against the
βTrCP2-R447A mutant. For the convenience of FC-ratio estimation, missing values in FC-B scores were
imputed with a minimal value of 0.1.

For analysis using the Perseus software suite (http://141.61.102.17/perseus_doku/doku.php?id=start)
for identifying specific interactors of wild type βTrCP2 or βTrCP2-ΔF against that of the βTrCP2-R447A
mutant, t-test-based statistics was applied on LFQ [11]. First, the LFQ values were transformed to
logarithm (log 2), and the resulting Gaussian distribution of the data was used for imputation of missing
values by normal distribution (width¼0.3, shift¼2.5). Statistical outliers were then determined using a
two-tailed t-test followed by multiple testing corrections with a permutation-based false discovery rate
(FDR) method. Detailed results for CRAPome and Perseus analyses have been published and are
available as Supplementary materials [1] and therefore will not be further described here.

3. Data availability

The mass spectrometry datasets are publicly available from ProteomeXchange Consortium via the
PRIDE partner repository (http://www.proteomexchange.org) with the dataset identifiers PXD001224
(GeLC–MSMS data) and PXD001088 (LC–MSMS data). Results obtained from mass spectrometry post
MaxQuant analysis are available as Supplementary materials with this paper. A list of different types
of data made available by this paper is presented as Table 1.

Table 1
A list of different types of data made available by this paper.

Method Sample Separation Replicates No. of RAW
files

No. of.xlsx files

GeLC–MSMS
(PXD001224)

EV SDS-PAGE 3 36 4 zipped Excel files generated by
MaxQuant:

βTRCP-WT SDS-PAGE 3 36 (i.) proteinGroups.xlsx
(ii.) peptide.xlsx
(iii.) summary.xlsx
(iv.) parameters.xlsx

βTRCP-
R447A

SDS-PAGE 3 36

LC–MSMS
(PXD001088)

EV Direct LC–
MSMS

3 3 4 zipped Excel files generated by
MaxQuant:

βTRCP-WT Direct LC–
MSMS

3 3 (i.) proteinGroups.xlsx
(ii.) peptide.xlsx
(iii.) summary.xlsx
(iv.) parameters.xlsx

βTRCP-
R447A

Direct LC–
MSMS

3 3

βTRCP-ΔF Direct LC–
MSMS

3 3
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