UNIVERSITA DEGLI STUDI DI VERONA

DIPARTIMENTO DI INFORMATICA

PH.D. THESIS

Intelligent Agents
for
Active Malware Analysis

Author: Advisor:
Riccardo Sartea Prof. Alessandro Farinelli

May 7, 2020

iii

Abstract

The increasing use of digital infrastructures makes cyber-security a key issue for so-
ciety. In particular, malicious software, i.e., malware, represent one of the biggest
threats nowadays. For this reason, studying the behavior of malware is extremely
important to defend against them. In this context, malware analysis aims at grouping
malicious software with respect to common behaviors or to a predefined set of classes.
In fact, malware can be grouped in families (or types), that are behavioral categories
in which malicious software fall into. The analysis process is critical in order to be
able to build countermeasures empowering defense systems such as antivirus, firewalls
or Intrusion Detection Systems (IDSs). Identifying which category a new malware
belongs to allows to use existing countermeasures to defend against such newly dis-
covered threat. Current approaches for malware analysis heavily rely on Artificial
Intelligence (AI) techniques, since it would be impossible for human security experts
to manually analyze the millions of new malware discovered every day. Many of such
malware are more sophisticated than others, as they require some kind of inputs (or
events) to meet the condition for their activation. Human security experts rely on
their expertise to choose the best sequence of inputs to extract the most information
about a malware. In this perspective, Al approaches based on multi-agent systems can
be a crucial asset as they allow to model the analysis as a process involving interacting
agents, i.e., the analyzer and the malware in this case.

On this background, Active Malware Analysis (AMA) is a methodology that aims
at acquiring knowledge about malware by executing actions on the system. Such
actions are selected to trigger a response in the malicious software. Specifically, the
interaction involves an analyzer agent whose aim is to acquire information on the
malware agent, that instead wants to perform its malicious goals. The main strength
of this approach is the capability of extracting behaviors that would otherwise remain
invisible to a simple passive observation. A key problem for AMA is to design intel-
ligent strategies that allow to select the most informative actions for the analysis, in
contrast to the majority of the existing techniques that perform random or predefined
triggering actions. While there are many works on static analysis (where the source
or binary code of the malware is inspected without executing it) and many others
on dynamic analysis (where the malware runs inside a controlled environment and is
observed), only a few employ AMA and even less use intelligent strategies.

The main contribution of this thesis is to give a novel perspective on AMA mod-
eled as a decision making process between intelligent agents. We propose solutions
aimed at extracting the behaviors of malware agents with advanced AI techniques. In
particular, we devise novel action selection strategies for the analyzer agents that allow
to analyze malware by selecting sequences of triggering actions aimed at maximizing

v

the information acquired. The goal is to create informative models representing the
behaviors of the malware agents observed while interacting with them during the anal-
ysis process. Such models can then be used to effectively compare a malware against
others and to correctly identify the malware family.

More in detail, the contributions can be divided in three major areas

1. Dynamic generation of malware behavioral models: we propose a formalization
for the malware behavioral model based on a composition of multiple Markov
chains and devise a new action selection strategy for the analyzer based on
Monte Carlo tree search. This allows us to dynamically generate the malware
model at runtime while interacting with the malware, without the specific need
of any prior knowledge

2. Long-term behavioral analysis: we propose to use the long-term transition prob-
ability values of moving between states of the Markov chain as features. Ad-
ditionally, we design a transformation procedure for the behavioral models to
enforce the absorbency property of Markov chains, enabling the use of standard
techniques to compute the long-term transition probability

3. Bayesian Active Malware Analysis: we propose a new formalization for AMA
based on Bayesian games, focusing on the decision making strategy for the
analyzer. The formalization is built upon the link between malware families
and the notion of types in Bayesian games. A key point is the design of the
utility function, which reflects the amount of uncertainty on the type of the
malware after the execution of an analyzer action. This allows us to identify the
malware family with fewer triggering actions by devising an algorithm to play
the game with the aim of minimizing the entropy of the analyzer’s belief

All the solutions presented in this thesis have been implemented in a comprehensive
framework for AMA that has been used to analyze a dataset of real Android malware.
Overall, our approaches provide a significant contribution to malware analysis in a
large and significant scale, and offer a new perspective to the synergy between cyber-
security and artificial intelligence.

Contents

1 Introduction
1.1 Malware analysis
1.2 Intelligent active malware analysis
1.3 Contributions of this thesis
1.3.1 Dynamic generation of malware behavioral models
1.3.2 Long-term behavioral analysis
1.3.3 Bayesian Active Malware Analysis
1.3.4 Summary of the contributions
1.4 Organization of the thesis
1.5 Publications
I Background and Related work
2 Background
2.1 Information Theory
2.1.1 Binomial distribution.o
2.1.2 Multinomial distribution
2.1.3 Beta distributiono oo
2.1.4 Dirichlet distribution
2.1.5 Conjugate prior
2.1.6 Entropy
2.1.7 Entropy of beta distribution 0oL
2.1.8 Entropy of Dirichlet distribution
2.1.9 Kullback-Leibler divergence
2.2 Gametheory
2.2.1 Strategicgames
2.2.2 Nash equilibrium L
2.2.3 Extensive gameso
2.2.4 Bayesian games
2.2.5 Repeated games
2.2.6 Stochastic games
2.3 Monte Carlo methods
2.3.1 Multi-armed bandito
2.3.2 Upper confidence bound
2.3.3 Monte Carlo tree search
2.3.4 Upper confidence bound for trees
2.4 Markov chain oL
2.4.1 TIrreducible Markov chain 0oL

2.4.2 Absorbing Markov chain

BTN i IS S SO SO SR S

vi

3 Related Work
3.1 Malware analysis
3.1.1 Static analysis
3.1.2 Dynamic analysis L
3.1.3 Hybrid analysis and feature selection
3.2 Active malware analysis L
3.2.1 Non-intelligent active malware analysis
3.2.2 Intelligent active malware analysis
3.3 Agent Behavioral Modeling 0L

II Behavioral Model and Analysis Framework

4 Behavioral Model
4.1 Behavioral model of the interaction
4.2 Markov chain based malware model
4.2.1 Platform independent model
4.2.2 Malware model design
4.3 Model comparison

5 Analysis Framework
5.1 Android Operating System
5.1.1 Android architecture
5.1.2 Android security oL
5.1.3 Android application
5.2 Android emulation
5.3 Framework architecture 0oL
5.4 Experimental platform
5.5 Triggering actions

III Dynamic Generation of Malware Behavioral Models

6 A Monte Carlo Tree Search Approach to Active Malware Analysis

6.1 SECUR-AMA
6.1.1 Monte Carlo analysis
6.1.2 Monte Carlo tree search implementation

6.2 Analysis pipeline

6.3 Running Example. oo

7 Empirical Evaluation of SECUR-AMA
7.1 Dataset
7.2 Experimental methodology L.
7.3 Results and discussion
7.4 Runtime Performance,
7.5 Conclusions

IV Long-Term Behavioral Analysis

8 Long-Term Analysis of Behavioral Models
8.1 Problem definition oo

65

67

8.2

Long-term behavior extraction
8.2.1 Absorbing transformation

8.2.2 Feature extraction
Empirical Evaluation of the Long-Term Behavioral Analysis
9.1 Classical games
9.1.1 Iterated Prisoner’s Dilemma
9.1.2 Rock Paper Scissors
9.1.3 Repeated lottery game
9.2 Investigating a pathological case: model collapse
9.3 Malware analysis
9.4 Conclusions

V Active Malware Analysis as a Bayesian Game

10 Bayesian Active Malware Analysis

10.1 Problem definition
10.2 Dealing with uncertainty oL,
10.3 BAMA formalization

10.3.1 Prior update
10.3.2 Utility function

10.4 Analyzer strategy

11 Empirical Evaluation of BAMA

11.1 Dataset e
11.2 Empirical evaluation L
11.3 Conclusions

12 Conclusions and Future Work

12.1 Conclusions
12.2 Future Work

Glossary
Acronyms
Bibliography

Index

vii

107

109
109
110
111
112
113
114

117
117
118
123

125
125
126

129
135
137

147

Chapter 1

Introduction

In recent years, the increasing reliance on computer systems and the increasing use
of internet, wireless networks, autonomous systems, as well as the growth of smart
and tiny devices as part of the Internet of Things (IoT), resulted in a corresponding
increase in the number of cyber-security flaws. Automated techniques for malware
analysis are fundamental to help human security experts in studying the huge amount
of new threats discovered every day and that would be otherwise impossible to handle,
e.g, about 150 million of new malware discovered in 2019 only considering Windows
and Macintosh operating systems (AV-Test, 2019). Therefore, Al based tools are a
necessity that allow to speed up the process, providing as an output the family of
the malware analyzed based on the similarity with known malicious software of the
same type. This is a crucial step to take the required countermeasures that avoid (or
limit) the damages caused by malware. Such countermeasures are then implemented
in real time defense systems such as antivirus, firewalls, IDSs, etc. Therefore, all the
information extracted with malware analysis is extremely valuable as it serves as a
basis for cyber-security defenses.

In this thesis we propose automated techniques for AMA to aid with the manual
analysis of an unknown software that may be malicious, i.e., performing interaction
tests with the software while adapting to what the defense system can observe during
such tests. Among the preferred targets of malware there is the Android system,
which is one of the most diffused operating system on the planet empowering billions
of smartphones and IoT devices. Consequently, the majority of new malware released
on a daily basis are aimed at attacking the Android platform (Cheung, 2018). For
this reason we focus on malware analysis for the Android system, as it would benefit
the most from new research at security level. Nonetheless, the majority of techniques
presented in this work can be applied to other systems as well since the theoretical
approaches proposed are platform independent.

1.1 Malware analysis

Malware analysis is a crucial part of cyber-security as it involves acquiring information
about unknown malicious software. Observing and understanding the behaviors of
malware allows to build effective countermeasures to avoid damages to systems and
people relying on them. In particular, one of the goals of malware analysis is to
infer the type of a malicious software with respect to common behaviors or to a
predefined set of types. Indeed, malware can be grouped in families (or types), that
are behavioral categories in which malicious software fall into (Elisan, 2015). The
grouping is fundamental, as if a malware is regarded as being part of a known existing
family, the same countermeasures already developed for the samples belonging to such
a family could probably be used to defend against the new malware. Moreover, new
defense strategies can be developed starting from the existing ones if a malware sample

2 Chapter 1. Introduction

is recognized as similar to those of a certain category. This approach is effective as
recently, the focus in malware design has shifted from the creation of new types of
malicious payloads, i.e., the code slice of a malware aimed at causing harm, to the
engineering of the stealthy system that makes the malware to remain hidden, while
the payload is reused from older deployed malware as is or with minor modifications
(Upchurch and Zhou, 2016).

There are two fundamental approaches to malware analysis: static and dynamic.
Static analysis examines a malware without actually running it. Dynamic analysis
instead executes the malware to observe its behavior within a safe and controlled
environment (a sandbox). A common problem of static methodologies comes from
analyzing malware with encrypted malicious code deployed at runtime or obfuscated.
Since encrypted or obfuscated code is not in a readable form (unless the decryption key
or the transformation applied to obfuscate are known), static code inspection routines
are unable to extract viable information. On the other hand, since the malware does
not need to be run, static analysis is usually faster and can inspect pieces of code
that may not be always executed at runtime. Dynamic analysis instead is capable of
inspecting encrypted or obfuscated code since it focuses on the actions performed on
the system by the malware without looking at the code. Nonetheless, dynamic analysis
suffers from some limitations. For example it is difficult to observe executions of the
program that cover the entire code, i.e., the code coverage problem. However, the code
coverage limitation is much less prominent in Android malware analysis since what
is observed is usually relevant in the overall behavior, as the software are developed
for the specific smartphone usage. Dynamic analysis is also slower than the static one
since it requires to execute a program and wait for interesting behaviors to become
visible.

Actually, until the recent past, the majority of automated dynamic analysis tech-
niques were passive, meaning that no interaction was performed during the analysis
process: the malware was executed and its behavior observed for a fixed amount of
time. However, some malware are more sophisticated and often require inputs in order
to show their malicious behaviors. In these cases, the payload is released only after
a triggering action is performed on the system, and most often different parts of the
payloads are sensitive to different triggers, i.e., multiple triggers are required to ob-
serve all the malicious behaviors of a malware (Moser et al., 2007). Figure 1.1 shows a
possible threat model of a malware that steals messages from an infected smartphone
and forwards them to an external server under the control of the attacker. The ma-
licious behavior is observed only when a new message arrives, otherwise the malware
remains inert and hidden.

Usually, if a malware requires any user inputs to show its payload, a human secu-
rity expert would manually study it in order to perform the triggering actions based
on what he believes to be the most informative, i.e., those actions that allow to acquire
the most information on the malicious behaviors. This process requires intelligence
and is extremely time consuming. In this context, recent work propose the use of AMA
techniques in which autonomous agents powered by Al try to simulate what a human
security expert would do when analyzing malware by actively performing triggering
actions. However, most of the techniques for AMA present no rational target-oriented
strategy to stimulate the malware under analysis: they either reproduce specific ac-
tivation conditions to trigger malicious payloads relying on past samples of real user
behaviors that have been recorded (Suarez-Tangil, Conti, et al., 2014), or perform a
sequence of random triggering actions (Bhandari et al., 2018; A. Martin et al., 2018)
hoping to trigger some interesting reactions.

1.2. Intelligent active malware analysis 3

Computer under control of the attacker

Observer

-~~~
-~
-~
-
-~
~—_
-~
-
-~

Message forwarded
to attacker

Incoming message
Infected smartphone

FIGURE 1.1: Threat model of malware responding to an incoming message as triggering
action

1.2 Intelligent active malware analysis

An intelligent strategy for action selection can make a huge difference in the analysis
result, in particular considering the number of analyzer actions required to reach a
good level of malware identification. Using Figure 1.1 as an example, if the analyzer
successfully triggers the malware simulating an incoming message to the smartphone,
the malicious behavior can be observed. Now, in some cases the malware reacts to
a trigger only with some probability, sometimes slightly changing the execution trace
(although not the final goal of forwarding the message). Therefore it makes sense for
the analyzer to repeat the same trigger enough times to gain a reasonable confidence
about the malware response. When this happens, to continue in performing the
same trigger again does not give the analyzer valuable information anymore, since
she already knows what happens in response. Conversely, selecting another triggering
action could be much more valuable in terms of information gain.

In this perspective, our efforts are aimed at designing novel AMA techniques in
which the malware and the analyzer are modeled as intelligent agents that interact
during the analysis process. This formalization allows to use a broad variety of Al
techniques for multi-agent systems in which intelligent and autonomous entities inter-
act within a complex dynamic environment learning information and adapting their
behavior accordingly. As in standard malware analysis, the goal is to group the mal-
ware with respect to the family they belong to. However, an important point is that
such grouping can be performed by considering the runtime behaviors of the malware
encoded as policies, i.e., a mapping between states and actions. A first attempt to
realize an intelligent strategy for the analysis is presented in (Williamson et al., 2012),
where AMA is formalized as a stochastic game in which the analyzer performs an ac-
tion on the system and the malware responds with a sequence of actions that change
the status of such system. The work of (Williamson et al., 2012) is only a first step
in this direction as it suffers of some limitations, the main one being the requirement

4 Chapter 1. Introduction

of a fixed model manually designed by a human security expert. With our solutions
instead, we go beyond such preliminary work as the malware behavioral models are
dynamically generated at runtime, opening to a wide range of possible methodological
contributions, some of which are investigated in this thesis, while others are left for
future research.

1.3 Contributions of this thesis

The main contribution of this thesis is to give a novel perspective on AMA aimed at
extracting the behaviors of malware agents with advanced Al techniques. In partic-
ular, we devise new AMA approaches based on intelligent decision making strategies
for the analyzer agents in order to select triggering actions that allow to acquire the
highest amount of information possible on the adversary.

1.3.1 Dynamic generation of malware behavioral models

In the first part of the thesis we define a behavioral model for malware that represents
the observed execution traces, composed by sequences of Application Programming
Interface (API) calls, as Markov chains. Therefore, the model does not depend on the
analysis system (except for the operating system that must obviously remain the same
to make a comparison meaningful, e.g., Android), but only on the malicious software
itself. For example, it is possible to compare models generated on an old version of
Android, to models generated on a newer version that has additional functionalities
and components. The models can be compared and grouped so as to apply standard
classification algorithms to identify the respective malware family.

In order to be able to dynamically generate the malware behavioral models at
runtime, we develop a novel Reinforcement Learning (RL) algorithm based on Monte
Carlo Tree Search (MCTS) to implement the strategy for the analyzer. This allows to
compute the value of an analyzer action, with an entropy-based reward, by simulating
the possible responses of the malware in terms of execution traces. Information theory
is useful to decide which action the analyzer should try to acquire the most information
based on the current state of the malware model that is being generated. This allows
to create models that are as informative as possible, hence more distinctive when
multiple malware have to be grouped or compared to each other.

1.3.2 Long-term behavioral analysis

We previously explained why grouping malware of the same type together is important
for the analyzer. As a consequence, sophisticated malware try to prevent analyzers
from gathering information that would allow to perform such grouping either abort-
ing execution (or not releasing the payload) if an emulated environment is detected,
or employing more complex stealthy mechanisms. Malware injection and dynamic
obfuscation are two specific types of stealthy mechanisms: in the first, malware are
inserted in the code of a (usually bigger) benign application, so that the malicious part
represents a small portion of the overall behavior; in the latter the malware performs
random actions or other non-harmful behaviors while releasing the payload, in order
to confuse the analyzer.

Figure 1.2 shows the process of injection performed by a malicious agent. The red
circles can be the malicious behavior that an analyzer wants to identify or the noise
that must be cleared out in order to focus only on the behavior represented by the

1.3. Contributions of this thesis 5

FIGURE 1.2: Example of injection within a behavioral model performed by a malicious agent
on purpose. In the case of malware injection, the analyzer is interested only in the malicious

behavior represented by the red circles, whereas for dynamic obfuscation the analyzer wants
to focus only on the overall behavior, filtering out the red circles

green circles. Notice how the original connections between the green circles on the left-
hand side are still present in the right-hand side, although harder to identify because
of the injection of red circles in between. In this context, we propose a long-term
analysis of the behavioral models that exploits some well known properties of Markov
chains in order to lessen the impact of noise in the classification. Focusing on the long-
term allows to compute the probability of going from every state s; to any other state
s; when the process depicted by the Markov chain reaches a stable configuration (a
fixpoint), regardless of the states that are in between the couple (s;,s;). Our fixpoint
of choice is that of complete absorption of the process, guaranteed to be reached
for any Markov chain holding the absorbency property. However, the behavioral
models we deal with are almost never absorbing since they are generated through
observation of the actions of an agent we have no control on. For this reason, we
devise a transformation algorithm for the Markov chain that enforces the absorbency
property starting from any generic Markov chain and that allows to extract the long-
term features of interest. Although the motivation is mainly to analyze malware
injection or to bypass dynamic obfuscation mechanisms, our approach is designed in
order to be applied to any Markov chain based model, independently of the application
domain or from the generation process. Notice that being able to filter out noise is
useful also for cases where a genuine agent that is executing a difficult task deviates
from her policy by mistake, consequently inserting noise in the behavioral model.

1.3.3 Bayesian Active Malware Analysis

An intelligent analyzer should adapt to what she observes during the analysis process.
In our scenario, we would like to adapt the choice of triggering actions to the type
of malware the agent is facing. As malware families represent different categories
of behavior, it also means that different families usually respond to different set of
triggers. The association between family and triggers is information available a priori
since datasets usually report this, as well as any antivirus report about a malware
sample. In this perspective, we propose a new formalization for AMA as a Bayesian
game that, in contrast to existing techniques, exploits the information about the
malware family (type) at runtime, in the form of a belief that the analyzer agent
maintains on the type of malware she is facing. The aim is to select triggering actions
more effectively by updating the belief accordingly to the malware reaction.
Although Bayesian games have been previously used in the context of security
games (Tambe, 2011; Jain et al., 2008; H. Xu et al., 2016), this is the first time (to
the best of our knowledge) that they are applied to malware analysis, in particular

6 Chapter 1. Introduction

investigating the link between malware family and the notion of types in Bayesian
games.

1.3.4 Summary of the contributions

In summary, the contributions that this thesis makes to the state-of-the-art are the
following:

1. In the context of the dynamic generation of malware behavioral models

e We define a behavioral model based on multiple Markov chains where each
one represents the observation of a behavior in response to a specific an-
alyzer action. This allows the analyzer agent to compute the value of an
action with respect to the malware reaction and consequently compute a
decision making strategy to conduct the analysis

o We develop a RL approach for AMA based on MCTS that can dynamically
generate the malware behavioral model at runtime, i.e., while interacting
with the malware

e We implement an analysis framework (SECUR-AMA) and compare with
different state-of-the-art malware analysis methodologies both static and
dynamic. Results show that our proposed solution favourably compares
with existing techniques in the problem of malware analysis of real samples

2. In the context of long-term behavioral analysis:

e We use the long-term transition probability as a new type of feature to
classify behavioral models

e We define a transformation for Markov chains enforcing the absorbency
property. This allows us to use standard techniques to derive the long-
term transition probability for generic Markov chains without requiring
any specific properties

e We empirically evaluate our approach on behavioral models of real mali-
cious software agents. Results show that our technique provides informa-
tive features suitable to successfully identify known behaviors, allowing to
diminish the effect of noise injected into the behavioral models by mali-
cious software agents. This is an improvement over current state-of-the-art
malware analysis techniques that often struggle to analyze sophisticated
malware employing advanced stealthy mechanisms. We also perform ex-
periments on models of players interacting within classical games in order
to evaluate the applicability of our approach to generic use cases, not nec-
essarily related to malware analysis

3. In the context of a new AMA formalization with Bayesian games:

e We propose Bayesian Active Malware Analysis (BAMA), a novel technique
for dynamic active malware analysis, formalized as a Bayesian game and
built upon the link between malware family and the notion of types in
Bayesian games

e To exploit our formalization we devise a decision making strategy for the
analyzer based on an entropy minimization principle applied to the ana-
lyzer’s belief about the family of the malware that is currently being faced

1.4. Organization of the thesis 7

e We empirically evaluate BAMA comparing with different state-of-the-art
malware analysis techniques, including SECUR-AMA. Results show sig-
nificant improvements in the learning speed and in the best classification
score compared to other methodologies

4. All the solutions presented in the previous points have been implemented in a
comprehensive framework for AMA that has been used to analyze a subset of
the families included in a dataset of real Android malware (F. Wei et al., 2017)

1.4 Organization of the thesis

The thesis is divided in 5 parts: Part I provides background knowledge and related
work necessary to better understand our proposed approaches, while Parts II, III, IV
and V present the contributions of the thesis.

1. In Part I, Chapter 2 provides the main concepts of information theory, game
theory, MCTS as well as key properties and theoretical results related to Markov
chains that we exploit in this work. Chapter 3 discusses the state-of-the-art on
malware analysis and agent behavioral modeling based on observation in order
to position our work with respect to existing literature

2. Part II presents the formal behavioral model based on Markov chains used to
represent agents’ behavior (Chapter 4). The analysis framework implemented to
analyze real Android malware and to generate the respective models is described
in Chapter 5. The concepts and tools presented in Part II are referred through-
out all the thesis since our approaches make extensive use of the behavioral
model formalization and the analysis framework as well

3. Part III details the SECUR-AMA approach to AMA (Chapter 6) and its empir-
ical evaluation with real Android malware comparing to other malware analysis
techniques (Chapter 7)

4. Part IV focuses on the long-term behavioral analysis approach for Markov chain
based models (Chapter 8) and its evaluation both with classical games and with
real Android malware (Chapter 9)

5. In Part V we present BAMA, a new formalization of AMA using Bayesian
games (Chapter 10). The evaluation is conducted in Chapter 11 where we apply
BAMA to the analysis of real Android malware and compare with other malware
analysis techniques, including SECUR-AMA

Finally, Chapter 12 draws conclusions with final consideration and future research
directions.

1.5 Publications

Most of the content presented in this thesis has been published in top-level confer-
ences and journals. In detail, the content of Part II regarding the proposed behavioral
model (Chapter 4) and the analysis framework (Chapter 5) and Part III where we de-
scribe SECUR-AMA (Chapter 6) and its evaluation (Chapter 7) has been published in
(Sartea et al., 2016; Sartea and Farinelli, 2017). The comprehensive approach (Chap-
ters 4, 5, 6, 7) instead has been published in (Sartea, Farinelli, and Murari, 2020). The

Chapter 1. Introduction

content of Part IV regarding the long-term behavioral analysis (Chapter 8) and its
evaluation (Chapter 9) has been published in (Sartea and Farinelli, 2018; Sartea et al.,
2019). The remaining contributions in Part V, where we present BAMA (Chapter 10)
and its evaluation (Chapter 11) have been published in (Sartea, Chalkiadakis, et al.,
2020). The mentioned publications are listed in the following:

1.

Riccardo Sartea, Mila Dalla Preda, Alessandro Farinelli, Roberto Giacobazzi,
and Isabella Mastroeni (2016). “Active Android Malware Analysis: An Ap-
proach Based on Stochastic Games”. In: Proceedings of the 6th Workshop on
Software Security, Protection, and Reverse Engineering. SSPREW ’16. Los
Angeles, California, USA: ACM, 5:1-5:10. 1SBN: 978-1-4503-4841-6. DOI: 10.
1145/3015135.3015140. URL: http://doi.acm.org/10.1145/3015135.
3015140

. Riccardo Sartea and Alessandro Farinelli (2017). “A Monte Carlo Tree Search

approach to Active Malware Analysis”. In: Proceedings of the Twenty-Sizth
International Joint Conference on Artificial Intelligence, IJCAI-17, pp. 3831—
3837. DOI: 10.24963/ijcai.2017/535. URL: https://doi.org/10.24963/
ijcai.2017/535

Riccardo Sartea and Alessandro Farinelli (2018). “Detection of Intelligent Agent
Behaviors Using Markov Chains”. In: Proceedings of the 17th International Con-
ference on Autonomous Agents and MultiAgent Systems. AAMAS ’18. Stock-
holm, Sweden: International Foundation for Autonomous Agents and Multia-
gent Systems, pp. 2064—2066. URL: http://dl.acm.org/citation.cfm?id=
3237383.3238073

. Riccardo Sartea, Alessandro Farinelli, and Matteo Murari (2019). “Agent Be-

havioral Analysis Based on Absorbing Markov Chains”. In: Proceedings of the
18th International Conference on Autonomous Agents and MultiAgent Systems.
AAMAS '19. Montreal QC, Canada: International Foundation for Autonomous
Agents and Multiagent Systems, pp. 647-655. 1SBN: 978-1-4503-6309-9. URL:
http://dl.acm.org/citation.cfm?id=3306127.3331752

Riccardo Sartea, Alessandro Farinelli, and Matteo Murari (2020). “SECUR-
AMA: Active Malware Analysis Based on Monte Carlo Tree Search for Android
Systems”. In: Engineering Applications of Artificial Intelligence 87, p. 103303.
ISSN: 0952-1976. DOI: https://doi.org/10.1016/j . engappai . 2019 .
103303. URL: http://www.sciencedirect.com/science/article/pii/
S50952197619302635

Riccardo Sartea, Georgios Chalkiadakis, Alessandro Farinelli, and Matteo Mu-
rari (2020). “Bayesian Active Malware Analysis”. In: Proceedings of the 19th
International Conference on Autonomous Agents and MultiAgent Systems. AA-
MAS ’20. Accepted for publication. Richland, SC: International Foundation for
Autonomous Agents and Multiagent Systems

https://doi.org/10.1145/3015135.3015140
https://doi.org/10.1145/3015135.3015140
http://doi.acm.org/10.1145/3015135.3015140
http://doi.acm.org/10.1145/3015135.3015140
https://doi.org/10.24963/ijcai.2017/535
https://doi.org/10.24963/ijcai.2017/535
https://doi.org/10.24963/ijcai.2017/535
http://dl.acm.org/citation.cfm?id=3237383.3238073
http://dl.acm.org/citation.cfm?id=3237383.3238073
http://dl.acm.org/citation.cfm?id=3306127.3331752
https://doi.org/https://doi.org/10.1016/j.engappai.2019.103303
https://doi.org/https://doi.org/10.1016/j.engappai.2019.103303
http://www.sciencedirect.com/science/article/pii/S0952197619302635
http://www.sciencedirect.com/science/article/pii/S0952197619302635

Part 1

Background and Related work

11

Chapter 2

Background

In this chapter we formally describe the main concepts used in the methodologies
discussed in this thesis. Section 2.1 details some concepts of information theory that
are useful to define reward functions based on information gathering; Section 2.2
presents different game theoretical models that can be used to represent the interac-
tion between non-cooperating agents; Section 2.3 introduces Monte Carlo methods to
efficiently search within high dimensional domains such as complex games; Section
2.4 explains the model of Markov chain along with some of its important properties
and how to extract them. In particular, the concepts of information theory in Section
2.1 are extensively used to model the utility functions for the analyzer agents in the
SECUR-~-AMA approach described in Part IIT and the BAMA approach described in
Part V. The same parts also leverage on the concepts of game theory in Section 2.2 to
model the interaction between analyzer and malware agents. Monte Carlo methods
and in particular MCTS are employed as decision making strategy for the analyzer in
SECUR-AMA (Part III). Markov chains (Section 2.4) serve as a basis for the malware
behavioral models (explained in Chapter 4) that are used throughout all the thesis,
and as theoretical pillar on which the long-term analysis of Part IV is built on.

2.1 Information Theory

Information theory has useful tools that can be used to deal with decision making
under uncertainty, i.e., how to deal with uncertain outcomes or to measure or quantify
the information carried by a probabilistic event, that is fundamental when working in
complex domains. We start by defining the Gamma - T and Digamma - 1 functions
(Yin et al., 2018) that will in turn be used to define different probability distributions.

Definition 2.1 (Gamma function). For a complex number z with positive real part
the gamma function is defined as

For any positive integer n the gamma function is

I'(n)=(n-1)!
Definition 2.2 (Digamma function). The digamma function is defined as the loga-
rithmic derivative of the gamma function

d

U() = o T(2)

12 Chapter 2. Background

Binomial distributions

FIGURE 2.1: Binomial distribution densities with n = 40

2.1.1 Binomial distribution

The binomial distribution is used to model events with a binary possible outcome,
i.e., success/failure of an event (Kachitvichyanukul and Schmeiser, 1988). A simple
example is the outcome of a coin toss, either head or tail: a fair coin has a uniform
probability distribution between head and tail, i.e., P(Head) = P(Tail) = 1

Definition 2.3 (Binomial distribution). A binomial distribution with parameters n €
N and p € Ryg 1), denoted with Bin(n,p), is the discrete probability distribution of the
number of successes in a sequence of n independent experiments (Bernoulli trials). A
random variable sampled from a binomial distribution x ~ Bin(n,p) has probability
density

I'(n+1)
(k+1DI'(n—k+1)

)n—k

Bin(x | n,p) = & pP(l-p

. T(n+1)
Notice that m

binomial distribution is that an event occurs k times with probability p* while the
other occurs n — k times with probability (1 —p)"~*. Figure 2.1 shows an example of
three different binomial distribution probability densities.

= (Z) is the binomial coefficient. The interpretation of the

2.1.2 Multinomial distribution

The multinomial distribution is a generalization of the binomial distribution of Section
2.3 to events with more than 2 possible outcomes (Ng et al., 2011). A simple example
is that of a die toss: a fair die has a uniform probability distribution among all the
possible 6 outcomes, i.e., P(1) =--- = P(6) = %.

Definition 2.4 (Multinomial distribution). The multinomial distribution Mult(p,n)
where p = (p1,...,pk) with p; > 0 fori = 1,...,k and Z;C:lpi =1, and n > 1,
is a discrete distribution over k dimensional non negative integer vectors x € NF
where Zle z; = n. A random wvariable sampled from a multinomial distribution
x ~ Mult(p,n) has probability density

k
T 1)
[[io D +1) 25

Each entry z; € counts the number of times value ¢ was drawn among the total of
n. Figure 2.2 shows an example of multinomial (trinomial) distribution probability
density.

2.1. Information Theory 13

Multinomial distribution

FIGURE 2.2: Multinomial distribution density with p = (%, %, %) Dimension x3 is not shown,
but can be inferred by the constraint z; + 3 + x3 = 10

An agent that, for example, has to bet on a coin or die toss would necessarily
use the information about the probability distribution associated to such coin or die.
Intuitively, if a fair coin is used, the agent receives maximum expected reward betting
half of the times on tail and the other half on head. However, if a coin is not fair, the
agent needs to handle uncertainty on the probability distribution itself rather than
using specific values assigned to each possible outcome to take her decisions. This
can be achieved leveraging on distributions that, when sampled, give a probability
distribution as result, rather than a single value. Imagine a die factory: every die
produced has an associated probability distribution over its 6 outcomes, but the fac-
tory itself follows a probability distribution (a Dirichlet in this case, see Section 2.1.4)
that governs the shape of the probability distribution of every single die. On average,
the produced dice follow a uniform multinomial probability distribution, but due to
production errors there is some uncertainty involved.

2.1.3 Beta distribution

The beta distribution is a continuous probability distribution that when sampled gives
a binomial distribution as result, i.e., the value p for an event to succeed (Ng et al.,
2011). The probability of the event to not succeed is simply computed as (1 — p).

Definition 2.5 (Beta-distribution). A beta distribution with parameters «, 3 > 0 is
denoted as Beta(a, 8). A random variable 0 < xz < 1 sampled from a beta distribution
x ~ Beta(a,) has probability density

Beta(z | o, f) = B(Olé”@,)xo‘l(l .
where
Bla) - D@IE)
’ I'(a+p)

I' is the Gamma function

Figure 2.3 shows an example of four different beta distribution probability densities.
The expectation over a beta distribution, i.e., the average sampling result, can be
computed considering Definition 2.6.

14 Chapter 2. Background

Beta distributions

3.0 — E=p=02
a=1,=3
2.5 — a=2,=2
a=2,=5
32.0
z
$15
[a]
1.0
0.5
0.0

0.0 0.2 0.4 0.6 0.8 1.0
X

FIGURE 2.3: Beta distribution densities

Definition 2.6 (Expectation of a beta distribution). The expected binomial distribu-
tion parameter p = x obtained by sampling a beta distribution is

a

E(Beta(x | 0.5) = ——

The uniform binomial distribution is obtained (on average) when o = 3.

2.1.4 Dirichlet distribution

The Dirichlet distribution is a generalization of the beta distribution for events with
more than 2 possible outcomes that when sampled results in a multinomial distribution
in output.

Definition 2.7 (Dirichlet distribution). A Dirichlet distribution of order k > 2 with
parameters o = (aq, ..., ax) € (Rso)* is denoted as Dir(a). A k-dimensional ran-
dom variable @ = (01, ...,0k) with 0; > 0 fori=1,...,k and Zle 0; = 1 sampled
from a Dirichlet distribution @ ~ Dir(a) has probability density.

k
. 1 .
DZ?"(B | (X) = ml—‘[ell 1
i=1

where

15, Do S
Bla) = ~==—— and oy = Z Q;
i=1

I" is the Gamma function

There are some technicalities that arise from Definition 2.7: first of all, the support
of a Dirichlet probability density function is actually the (k — 1)-dimensional simplex,
which lives in the k-dimensional space. Hence, the density should be a function of
k — 1 of the k variables, with the k-th equal to 1 minus the sum of the others, so
that the overall sum is equal to 1. To avoid over complicating the definition however,
we write the density as a function of the entire k-dimensional vector; secondly, the
support is actually the open simplex, i.e., x; > 0 for ¢ = 1,..., k, meaning also that
no z; = 1 can exist in the result (Ng et al., 2011). Figure 2.4 shows an example of two
different Dirichlet distribution probability densities. The expectation over a Dirichlet
distribution, i.e., the average sampling result, can be computed with Definition 2.8.

2.1. Information Theory 15

Dirichlet distribution with a =(3, 3, 3) Dirichlet distribution with @ =(2, 5, 15)

-32.4
-28.8
-25.2
-21.6
-18.0
-14.4
-10.8
-7.2
- 3.6
-0.0

(A) Dirichlet distribution with a = (3, 3, 3) (B) Dirichlet distribution with e = (2, 5,15)

-6.48
-5.76
-5.04
-4.32
- 3.60
-2.88
-2.16
- 1.44
-0.72

-0.00

FIGURE 2.4: Examples of Dirichlet distributions with different . Edges of the triangles
represent the values for z1,xo, x3 € Rio,1) where z1 + z2 + 23 =1

Definition 2.8 (Expectation of a Dirichlet distribution). The expected multinomial
distribution x obtained by sampling a Dirichlet distribution is

E(Dir(x | @) = (z1,...,25) where x; = il
ap
The uniform multinomial distribution is obtained (on average) when av = (avq, ..., o)

with a; = o for all ¢,j € [1, k]

2.1.5 Conjugate prior

When performing inference an agent updates her prior probability distribution with
the observation obtained during execution. For example, the agent betting on a coin
toss that uses a prior beta distribution of Beta(2,5), where o = 2 is the parameter
governing the likelihood of event Head and 8 = 5 the one of T'ail, believes that the
outcome of a toss is distributed as P(Head) = 0.2 and P(Tail) = 0.8 (as an average
sampling from Beta(2,5), see Definition 2.6). However, experience can be used to
refine the initial prior belief based on the observation of the outcomes of multiple
tosses of the coin, transforming the prior belief in a posterior belief (usually more
precise). A classical method to perform inference is to apply the Bayes’ theorem (Lee,
2012).

Theorem 2.1 (Bayes’ theorem).
P(H | E)=

where

H is the hypothesis

P(H) is the prior probability on the hypothesis
— E is the evidence (new data coming from observations)

— P(H | E) is the posterior probability of the hypothesis considering the new evi-
dence

— P(E| H) is the likelihood of observing the new evidence E given the hypothesis

16 Chapter 2. Background

— P(FE) is the marginal likelihood, the probability of the new evidence given the
model without considering the hypothesis

There are some prior distributions that are interesting as they are conjugate priors,
meaning that by applying the Bayes’ theorem, the resulting probability distribution
(posterior) is of the same family of the prior. Conjugate priors are convenient from
the algebraic point of view since they give rise to closed-form expressions that allow
to avoid numerical integration. The beta and Dirichlet distributions are conjugate
priors of the binomial and multinomial distributions respectively and they are widely
used to perform Bayesian inference. The application of the Bayes’ theorem results
in an updating process for the new observations in the beta and Dirichlet priors that
is simple and computationally efficient since it only requires to add the counts of
the events observed to the parameters of the corresponding distributions. If the new
observation vector is 0 = (01,...,0x), where o; is the number of times event ¢ has
been observed, the Dirichlet updates its parameters e = (a1 + 01, ..., ax + o). For
the beta distribution the update method is the same, where the observations of the
two possible events update the o and § parameters respectively. For this reason,
parameters of beta and Dirichlet distributions are also called pseudo-counts.

2.1.6 Entropy

Entropy is a measure of the information associated to an event. Intuitively, if an event
is very likely to be observed, the information acquired by observing it is low (there is
no surprise). Conversely, if an event is rare, learning that it will happen in the future
(or that happened in the past) is much more valuable. Shannon’s definition of entropy
is the following

Definition 2.9 (Shannon entropy). For a continuous probability density p(x) the
entropy value is defined as

H(p) = [o) p(o)is

For a discrete variable € = (x1,...,xy,) the entropy value is defined as

H(z) = - Pla;)nP(x)

=1

Entropy stands for the measure of mean uncertainty for an experiment, or as mean
information that can be acquired by performing such experiment. The maximum
entropy (or maximum uncertainty) is achieved when the underlying probability dis-
tribution is uniform, i.e., every event is equally possible, as it means that no informa-
tion is known (Garbaczewski, 2006). Figure 2.5 shows how the entropy for a binomial
distribution changes based on the value of parameter p: maximum entropy is achieved
when p = %, i.e., uninformative distribution. Entropy is often used as a utility func-
tion in scenarios in which an agent has to take decisions to lower the uncertainty
on the environment, e.g., entropy-based exploration for robotics (Otte et al., 2014),
in which a robot moves to portions of the space with higher associated uncertainty
(entropy) in order to refine its knowledge.

There are some differences in the entropy between a discrete or a continuous ran-
dom variable (differential entropy). First of all, differential entropy can assume nega-
tive values, and this is the case both for the beta and Dirichlet distributions (Sections
2.1.7 and 2.1.8). Secondly, in the discrete case, entropy quantifies randomness of a

2.1. Information Theory 17

Entropy of binomial distribution

0.0 0.2 0.4 0.6 0.8 1.0
p

FIGURE 2.5: Entropy of binomial distribution

system in an absolute way, whereas in the continuous case this quantification has only
a relative meaning. Consequently, differential entropy can not represent the absolute
amount of information carried by a system, unless carefully interpreted, however, it
can be used to know which variable has greater or greatest entropy (Sobczyk, 2001).

2.1.7 Entropy of beta distribution

The beta distribution has a closed-form formulation for the entropy which is the
following (Ebrahimi et al., 2011)

Definition 2.10 (Entropy of beta distribution). The (differential) entropy of the beta
distribution Beta(ca,) is

Hp(a, B) =log B(a, B) — (o = D)) — (B = 1)Yp(B) + (a+ = 2)¢p(a +)
¥ is the Digamma function

The entropy of the beta distribution is reflected in the entropy of the binomial distri-
bution that is sampled: the lower (higher) the entropy of the beta distribution, the
lower (higher) the entropy of its expectation (the binomial distribution result of the
average sampling).

2.1.8 Entropy of Dirichlet distribution

The entropy of a Dirichlet distribution is a generalization of the entropy of the beta
distribution (Ebrahimi et al., 2011).

Definition 2.11 (Entropy of Dirichlet distribution). The (differential) entropy of the
Dirichlet distribution Dir(c) of order k is

k
Hp(a) = log B(e) + (ag — k)ip(ao) = > (i — 1)ib(a)

i=1
Y is the Digamma function

Also in this case the entropy of the Dirichlet distribution is reflected in the entropy
of the multinomial distribution that is sampled: the lower (higher) the entropy of the
Dirichlet distribution, the lower (higher) the entropy of its expectation (the multino-
mial distribution result of the average sampling) (Garbaczewski, 2006)

18 Chapter 2. Background

2.1.9 Kullback—Leibler divergence

It may be necessary to measure the “distance” between two probability distributions,
e.g., as loss function to train a data model, to study randomness in continuous time-
series. The Kullback—Leibler divergence is often used as distance measure in such
cases (Kullback and Leibler, 1951).

Definition 2.12 (Kullback-Leibler divergence). The Kullback-Leibler divergence is a
measure of how one probability distribution is different from a second reference prob-
ability distribution

Dgn(P | Q) =~ Px) (Ei;)

zekX

The Kullback-Leibler divergence is always non negative and asymmetric, i.e., D, (P ||
Q) # Dir(Q || P) and measures how much a distribution is different from another in
terms of the quantity of information that is lost when one distribution is approximated
with the other.

2.2 Game theory

Game theory involves the study of mathematical tools used to model interaction
between agents, regarded as decision makers. Such models apply to a wide variety of
domains, e.g., games, cyber-security, social security. The basic assumptions on which
the theory builds upon are that agents pursue well defined exogenous objectives while
being rational and intelligent (Osborne and Rubinstein, 1994).

e Rationality: an agent is rational if she takes decision that maximize her own
intents. More in details, each agent has a utility function that maps every state
of the world to real numbers in order to express the desirability of a state.
A rational agent aims at maximizing such utility function choosing an action
resulting in more desirable states

e [Intelligence: an agent is intelligent if she knows everything about the environ-
ment and she can use such knowledge to reason about a situation to achieve her
objectives

Rationality and intelligence together are employed by agents in the process of selecting
their actions: in the theory of rational choice, an agents chooses the best action that
is at least as good as any other available action according to the agent’s preferences.
In particular, preferences are represented with payoff functions that associate a value
to each action based on the outcome (Myerson, 1997). In the context of game theory,
a game is a model of interaction between agents, referred to as players.

2.2.1 Strategic games

A strategic game is a model that captures interaction between the players by allowing
each one to be affected by the actions of all the others, not only her own actions, and
where every player has preferences about the action profile.

Definition 2.13 (Strategic game). A strategic game with n players is a tuple G =
(N, A, u) where

e N is the set of n players

2.2. Game theory 19

Suspect 2

D C

D |33 0,4

Suspect 1 clao 11

TABLE 2.1: Normal form of the Prisoner’s Dilemma

e A=A x---x A, where A; represents the actions available for player i

o u = (uy,..,upy) is a profile of utility functions with u; : A — R wutility function
for player i

A common interpretation of a strategic game is that it is a model of an event that
occurs only once, each player knows the details of the game and the fact that all
the players are rational. Each player chooses her action once and for all, and the
players choose their actions simultaneously, in the sense that no player is informed,
when choosing her action, of the action chosen by any other player (Osborne and
Rubinstein, 1994).

A well known strategic game is the Prisoner’s Dilemma (Nowak and Sigmund,
1993). Two suspects are held by the police in separate cells and there is enough
evidence to convict each of them of a minor offense, but not enough evidence to
convict either of them of the major crime unless one of them acts as informer against
the other. If they cooperate with each other without saying anything to the police,
each will be convicted of the minor offense and spend one year in prison. If only one
of them tries to cooperate while the other defects instead, the defecting suspect will
be released whereas the other will spend four years in prison. Finally, if both suspects
defect, they will both spend three years in prison. The game formalization is reported
in Definition 2.14

Definition 2.14 (Prisoner’s Dilemma).
e N = {nj,na} the two suspects
o A=Ay x Ay where Ay = Ay = {C,D}. C stands for cooperate and D for defect

o u = (u1,uz) where u1(D,D) = uz(D,D) = 3, uw1(C,C) = uwa(C,C) = 1,
ul(D,C') = 0, UQ(D,C) = 4, ul(C, D) = 4, UQ(C, D) =0

In this example lower payoff values are better as they represent years of conviction.
A compact way to represent a game is through its normal form, such as in Table
2.1, where rows and columns correspond to the possible actions of suspect 1 and 2
respectively, while the values in every cell are the payoffs of suspect 1 and 2 in such
order. The Prisoner’s Dilemma models a situation in which there are gains from
cooperating but also an incentive to defect and “run free”. This game is important as
many situations have the same structure, e.g., joint project, duopoly, and it is often
used as simple example to study concepts such as equilibrium, fairness or others as
there is a large literature of works that analyzed such game (Nowak and Sigmund,
1993; Friedman, 1971; Jurisi¢ et al., 2012).

2.2.2 Nash equilibrium

Although we do not deal with the concept of equilibrium in our work, in this section we
present such concept as it is useful to understand the future research directions arising
from this thesis. As we assume the rationality of the players, i.e., each player chooses

20 Chapter 2. Background

the best available action according to her beliefs and preferences, we may want to study
which actions will be chosen by the players in a strategic game. Indeed, the best action
for any given player usually depends on the other player’s actions. Therefore, when
choosing an action a player must consider what all the other players will choose, i.e.,
a player forms her own belief. The assumption is that a belief is derived from the past
experience playing a game without becoming familiar with the behavior of a specific
opponent. In summary, every player chooses her actions according to the theory of
rational choice, given the belief on the other player’s actions. Importantly, we assume
that such belief is correct (Osborne and Rubinstein, 1994).

Definition 2.15 (Nash equilibrium). A Nash equilibrium is an action profile a* with
the property that no player i can do better by choosing an action different from a;,

gwen that every other player j adheres to a;

If every player has no reason to choose any action different from her component
of the action profile a*, there is no pressure on the action profile to change. In a Nash
equilibrium, players have no incentive to deviate from it (Nash, 1950). In the normal
form of the game of Prisoner’s Dilemma (Table 2.1) it can be seen that the unique
Nash equilibrium is the action profile a* = (D, D) since:

e (D, D): if suspect 1 chooses to defect, suspect 2 is better off choosing to defect
as well in order to spend 3 year in prison instead of 4. The same consideration
stands if suspect 2 chooses to defect. This action profile is a Nash equilibrium
since players have no incentive to deviate from it

e (C,C): if suspect 1 chooses to cooperate with the other one, suspect 2 would
run free if defecting instead of cooperating, thus having an incentive to deviate.
The same consideration stands if suspect 2 chooses to cooperate

e (C,D): if suspect 2 chooses to defect, suspect 1 is better off choosing to defect
as well in order to spend 3 year in prison instead of 4. Suspect 1 than has an
incentive to deviate

e (D,(C): if suspect 1 chooses to defect, suspect 2 is better of choosing to defect
as well in order to spend 3 year in prison instead of 4. Suspect 2 than has an
incentive to deviate

The incentive to be released eliminates the choice of the mutually desirable outcome
(C,C). Indeed, when reasoning about Nash equilibrium, only payoff values are con-
sidered instead of the social aspect, e.g., fairness, or efficiency, e.g., Pareto optimality
(Mock, 2011).

In the Prisoner’s Dilemma, the Nash equilibrium contains the best action for each
player not only if the other one chooses the equilibrium action, but also when choosing
the other one. The action dictated by the Nash equilibrium is then optimal regardless
of the action expected to be played by the opponent. In most games this does not
happen since usually, playing the action from the Nash equilibrium is optimal only if
the opponent plays at the Nash equilibrium as well. Such consideration is fundamental:
if a player bases her belief on the fact the the opponents behave rationally and have
perfect knowledge of the game, such player may incur in losses if the assumptions do
not hold in reality. For instance, an inexperienced player of chess will most likely not
behave as a master player would in a given situation, potentially countering moves
that would have been the best choice against a “perfect” player. Therefore, even
though taking actions based on the Nash equilibrium is a reasonable solution in some

2.2. Game theory 21

cases, it is extremely important to consider if reasoning about equilibria is applicable
and effective for a particular problem.

There may be multiple Nash equilibria for a game, and an equilibrium profile could
be composed of mixed strategies, i.e., probabilistic action choices. The existence of a
Nash equilibrium is guaranteed if mixed strategies are allowed and there are a finite
number of players and actions (Nash, 1950). Computing a Nash equilibrium however
is a hard problem in the general case (Chen et al., 2009), but we do not get into the
details of how to compute it since it is out of the scope of this thesis.

2.2.3 Extensive games

A strategic game dos not consider the sequentiality of decision making. In extensive
games instead, the sequential structure is explicitly considered, allowing players to
change their mind as events unfold instead of selecting a plan of action once and for
all.

Definition 2.16 (Extensive game with perfect information). An extensive game with
perfect information with n players is a tuple

G = (N,H,Z, P,u) where
e N is the set of n players
e H is the set of sequences (histories)

e 7 C H is the set of terminal histories, i.e., the set of all sequences of actions
that may occur

P : H\Z — N is the player function that assigns a player to every non-terminal
history. The player assigned to any history h is the player who takes an action
after h

o u = (uy,...,uy) is a profile of utility functions with u; : Z — R wutility function
for player i

An extensive game models a situation in which every player knows all the actions
chosen before (has perfect information) and does not move simultaneously with other
players (Osborne and Rubinstein, 1994). The entry game of Definition 2.17 is an
example of extensive game: an incumbent faces the possibility of entry by a challenger.
For example, a firm may be considering to enter into an industrial sector currently
occupied by a monopolist. The challenger may enter or not. If she does enter, the
incumbent may either acquiesce or fight.

Definition 2.17 (Entry game). e N = {Challenger, Incumbent}
o H ={0,1In,Out,(In, Acquiesce), (In, Fight)}
o 7 ={O0ut,(In, Acquiesce), (In, Fight)}
e P(0) = Challenger, P(In) = Incumbent

e ui((In, Acquiesce)) = 2, ua((In, Acquiesce)) = 1, ui((In, Fight)) = 0,
uz((In, Fight)) =1, u1(Out) = 1, ua(Out) = 2

A useful illustration of an extensive game uses a tree representation such as the one
of Figure 2.6

22 Chapter 2. Background

Challenger

Out

1,2
Acquiesce Fight
2,1 0,1

FIGURE 2.6: Extensive form of the entry game

Incumbent
Acquiesce Fight
In 2,1 0,1
Challenger Out 12 1.2

TABLE 2.2: Normal form of the entry game in strategic form

The notion of Nash equilibrium can also be applied to extensive games by lever-
aging on the concept of strategy. A player’s strategy specifies the action that player
p chooses for every history h such that P(h) = p, forming a plan of action specifying
how to react to the opponent’s actions. The Nash equilibrium concept for extensive
games with perfect information is similar to that of strategic games: a strategy pro-
file from which no player has an incentive to deviate. In particular, transforming an
extensive game in its strategic form (discarding the representation of sequentiality)
we obtain the normal form of Table 2.2, from which the set of Nash equilibria can
be easily computed and that is guaranteed to coincide with the set of Nash equilibria
of its extensive form! (Osborne and Rubinstein, 1994). The Nash equilibria for the
entry game are two

e (In, Acquiesce): if the challenger enters, the incumbent gets a higher payoff by
acquiescing

e (Out, Fight): if the challenger knows that the incumbent will fight, it is better
for the challenger to stay out (better payoff)

2.2.4 Bayesian games

The underlying assumption for the existence of a Nash equilibrium is that every
player’s belief about the other player’s actions is correct and reliable. However, in
many practical cases such assumption is too strict or even unrealistic. A Bayesian
game is a generalization of the notion of a strategic game where players have incom-
plete information about some aspects of the environment relevant to decision making,
e.g., the exact payoff function of an opponent. In a Bayesian game model, every player
may have different types, each one encoding private information on the player, e.g.,
payoff function. To model a Bayesian game it is useful to add a special player called
nature that randomly chooses a type for each player according to the prior proba-
bility distribution p that is assumed to be known by every player. Such assumption
allows to think about a game with incomplete information as a game with imperfect
information where nature makes the first move, but there is no certainty on the exact

We skip the concept of sub-game perfect equilibrium to avoid getting into many details that are
not used in this thesis

2.2. Game theory 23

type of the other players, only a probability distribution over them (hence imperfect
information) (Harsanyi, 1967).

Definition 2.18 (Bayesian game). A Bayesian game with n players is a tuple
G = (N, A, 0O, u,p) where

e N is the finite set of n players

e A=A x---x A, where A; represents the actions available for player i

® =0; X --- x O, where ©; represents the types available for player ¢

u = (U, ..., un) is a profile of utility functions with
u; : A X @ — R utility function for player i

e p is the common prior over ©

Every player player can be of several types, each one corresponding to a possible payoff
function for that player. A player’s type 6; is only observed by player ¢ and encodes
all relevant information about some important private characteristic of such player.
Utility functions take into account not only player’s actions but also their types.
Bayesian games get their name from the fact that each individual player incorporates
the common prior with her own experience using the Bayes’ theorem.

The entry game of Definition 2.17 can be modeled as a Bayesian game where there
may be two types of incumbents: a tough and a normal one. A challenger entering in
a market against a tough incumbent will receive a lower payoff compared to entering
a market against a normal incumbent. Definition 2.19 details the game and Table 2.3
shows its normal form.

Definition 2.19 (Bayesian entry game).
e N = {challenger,incumbent}
o A=A x Ay where

— Ay = {In,Out}
— Ag = {Acquiesce, Fight}

e ©® =07 x Oy where

— 01 = {0} only one type of challenger
— Oy = {Tough, Normal}

u = (u1,u2) where: uy(Normal, (In, Acquiesce)) = 2,

uz(Normal, (In, Acquiesce)) = 1, ui(Normal, (In, Fight)) = 0,
ua(Normal, (In, Fight)) = 1, ui(Normal,Out) = 1, ug(Normal, Out) = 2,
ui(Tough, (In, Acquiesce)) = 1, ua(Tough, (In, Acquiesce)) =1,

ui(Tough, (In, Fight)) = —1, ua(Tough, (In, Fight)) = 1, ui(Tough, Out) =
1, ua(Tough, Out) = 2

p(Tough) = p(Normal) = 0.5

The computation of the payoff in Bayesian games uses expectation over the re-
wards since uncertainty is involved. For example, assuming that the incumbent
will fight, the expected payoff for an entering challenger is: wui(©q, (In, Fight)) =
p(Tough) - ui(Tough, (In, Fight)) + p(Normal) - ui(Normal, (In, Fight)) = 0.5 -

24 Chapter 2. Background

Incumbent Incumbent
p(Tough) = 0.5 Acquiesce Fight p(Normal) = 0.5 Acquiesce Fight

n 1,1 -1,1 In 2,1 0,1

hall ’ ’ hall ’ ’
Challenger) , 1,2 1o Challenger) , 1,2 1,2

(A) Tough incumbent. p(T'ough) = 0.5 (B) Normal incumbent
TABLE 2.3: Bayesian entry game
Nature
p(Tough) p(Normal) = 0.5
Challenger &--------------------------—~ Challenger
In
Incumbent Incumbent

Acquiesce Acquiesce

11 -1,1 0,1 2,1

FIGURE 2.7: Extensive form of the Bayesian entry game

—140.5-0 = —0.5. The notion of Nash equilibrium can be applied also to Bayesian
games: a Bayesian Nash equilibrium is strategy profile s* (one for each player type)
such that no type has incentive to deviate given the beliefs about the types and
the strategy of the other players. In the Bayesian entry game, the action profile
s* = (In, (Acquiesce, Acquiesce)) is a Bayesian Nash equilibrium since the incum-
bent’s action is always optimal regardless of the challenger’s choice and, given that the
incumbent acquiesces for both of her types, the challenger has no incentive to deviate
since she would receive a lower payoff by staying out: E(In, (Acquiesce, Acquiesce)) =
L1432 =3 > E(Out, (Acquiesce, Acquiesce)) = -1+ 3 -1 = 1. Also s* =
Out, (Acquiesce, Fight)) is a Bayesian Nash equilibrium: E(Out, (Acquiesce, Fight))
114 3-1=1>E(In,(Acquiesce, Fight)) = 3 -1+ 1.0=1

Also Bayesian games can be represented in extensive form (Figure 2.7) by explicitly
modeling the order of decisions taken by players. In particular, nature can be seen as
a player that moves first and uses a fixed mixed strategy with the same probability
distribution of the prior p instead of maximizing a payoff? (Osborne and Rubinstein,
1994).

ol

2.2.5 Repeated games

A sequence of plays of the same game can be modeled by a strategic game only
under the assumption that there is no strategic link between the plays. If this is not
the case, the game can be modeled as a repeated game. The strategic game that is
repeatedly played is called stage game. The basic idea of this theory is that a player
may be deterred from exploiting the short-term payoff under the “threat” of retaliation
by the other players in the following rounds. Suppose that the Prisoner’s Dilemma
(Definition 2.14) is played repeatedly and suspect 1 adopts a retaliation (Friedman,

2The corresponding notion of sub-game perfect equilibrium in Bayesian games is the sequential
equilibrium, a refinement of perfect Bayesian equilibrium that imposes restrictions on strategies and
beliefs

2.2. Game theory 25

1971) strategy in which she chooses C' so long as suspect 2 chooses C, and as soon as
suspect 2 chooses D for the first time, suspect 1 chooses D forever from that point
onward. If suspect 2 always chooses C| resulting in an outcome of (C, C'), the trail of
payoff is (1,1,1,...) for both players. If suspect 2 changes to D at some point, her
trail becomes (...,1,0,3,3,...) that results in a worse trail as long as the horizon is
large enough to affect the overall value. If the horizon is infinite, the utility function
uses a discount factor § € Rjgq) in order to compute finite payoff values for infinite
sequences as the discounted sum for the sequence of the actions played

Zc?t_lui(at) (2.1)
=1

The discounted average is a useful representation of payoffs that allows to compare
the payoff of a single stage with the average payoff of a trail

(1=6)) 6" ui(a) (2.2)
t=1

A repeated game is an extensive game with perfect information and simultaneous
moves where the history is a sequence of action profiles of the stage game. Definition
2.20 explains the components of a repeated game (Osborne and Rubinstein, 1994).

Definition 2.20 (Repeated game). An (infinitely) repeated game with n players is a
tuple F = (G,N,H, Z, A, u) where

e (G is a strategic game to be repeatedly played
o N is the set of n players

H is the set of terminal histories composed by infinite sequences (a',a?,...) of
action profiles in G

e 7 C H is the set of proper sub-histories of every terminal history

e A=A x---x A, where A; represents the actions available for player i after
any history

o u = (uy,...,up) is a profile of utility functions with u; : H — R wutility function
for player i that evaluates each terminal history according to her discounted (§)
average

In the repeated Prisoner’s Dilemma (Definition 2.21), the strategy profile in which
both suspects adopt the retaliation strategy is a Nash equilibrium since the outcome
is (C,C), resulting in a discounted average of 1. If one suspect deviates by selecting
another strategy producing a different outcome, there is one stage (at least) in which
D is chosen. Therefore, in all subsequent stages the other suspect (following the
retaliation strategy) chooses D. Consequently, the trail of payoffs will have a higher
(then worse) discounted average due the fact that (at least) one of the actions will be
D forever (Osborne and Rubinstein, 1994).

Definition 2.21 (Repeated Prisoner’s Dilemma).

e (G is the Prisoner’s Dilemma strategic game

26 Chapter 2. Background

N = {ny1,na} the two suspects

H = ((a1,a2)', (a1,a2)?,...) terminal histories

e 7 C H is the set of proper sub-histories of every terminal history

A= A1 X AQ where A1 = AQ = {C,D}

u = (uq,...,up) s a profile of utility functions with u; : H — R wutility function
for player i that evaluates each terminal history according to her discounted
average according to the utility functions of the Prisoner’s Dilemma strategic
game

2.2.6 Stochastic games

In some cases the repeated interaction between players takes place in different states.
This means that the strategic (stage) game that is repeated may be different in every
state, possibly because of some different conditions such as payoff values, or even
because the entire stage game could change, e.g., from chess to checkers.

Definition 2.22 (Stochastic game). A stochastic game G, with n players, is a tuple
G = (N,S,A,u,T) where:

e N is the finite set of n players
e S is the state space composed by stage games

e A=A x---xA, where A; represents the actions available for player i in state
sesS

o u=(uy,...,uy) where u; : S x A x S" — R is the utility function for player i

e T:SxAxS — Rio,1) s a probabilistic transition function between states of
the game

From Definition 2.22; a stochastic game clearly defines players and their available
action sets, the state space and the transition function from state to state. The utility
function for each player is based on the action performed in a specific state and the
outcome (the state reached after the transition). At each stage the game is in state s,
the n players choose actions A = (ay, ..., a,), the game transitions to state s’ according
to the transition function T and players receive payoffs (r1,...,7,) according to the
utility functions w = (uy, ..., uy). In other words, the joint actions of the players move
the game from one state to another with a probability expressed by the transition
function. Furthermore, each player receives a payoff that is based on the transition
that took place (Mertens and Neyman, 1981).
An example of stochastic game is reported in Definition 2.23

Definition 2.23 (Example of stochastic game). This example of stochastic game is
taken from the Game Theory course of Cardiff University

o N ={ni,na}
o S ={x,y} visible in Table 2.4
o A=Ay x Ay where

— Ai(z) = {a, b}, Ai(y) = {e}

2.2. Game theory 27

-

n2
c d f
a|8,4/0505 53/1,0
"oy 1,5/1,0 2,6/1,0 m e[0,0/01
(B) State y

(A) State x

TABLE 2.4: Example of stochastic game

ng
c d
L a|8+0330,4+0.33u 5+ 0.660,3 +0.66u
L b | 14+0.660,5+0.66u 2+ 0.66v,6 + 0.66u

TABLE 2.5: Stage game of Table 2.4a with ¢ = 0.66

= Ai(x) = {e,d}, Auly) = {/f}

o u = (uy,ug) visible in Table 2.4, first couple of numbers (p,q) in each cell where
p s the payoff for n1 while q the payoff for ng

o T wvisible in Table 2.4 second couple of numbers (I,m) in each cell where [is the
probability of transitioning to state x while m the probability of transitioning to
state y

The concept of Nash equilibrium for stochastic games is a strategy profile * from
which no player has incentive to deviate given that all other players are following the
strategy profile of the Nash equilibrium. In particular, a strategy o for player ¢ is a
probability distribution over the set A; given a state s € S (Markov strategy). Since a
stochastic game is a repeated game, we have to use discounting (as per Section 2.2.5)
in order to compute the payoffs considering the previous stages. A Nash equilibrium
satisfies U;" of Equation 2.3 that is the expected utility of player ¢ when all players
follow the strategy profile of the Nash equilibrium (a*; is the optimal strategy profile
for players different from 7).

Ui (s) = max (Z ui(s, (a;,a*;),s)T(s, (a;,a*;), s)

aiEAi(S) ses

+6> T(s,(ai,a*;),s\Uf (s))

s'esS

(2.3)

For a discount factor § = 0.66, the Nash equilibrium of the game is the strategy profile
o* = (a,d) where the only state considered is x since in y players receive no rewards
and such state is never left (the outgoing probability value is 0). Equation 2.3 gives the
following conditions for Nash equilibrium associated to each strategy profile (imposing

that U (z) is greater than or equal to the utility of the other strategy profiles).
1. (a,¢): v <21 and u < 3

2.

S8

a,d): u>3

(
(

3. (b,c): v>21 and 5 > 6 (unsatisfiable)
(

b,d): 5 <2 (unsatisfiable)

28 Chapter 2. Background

If the future gains of player n; in state = is v and those of player no is u we have the
situation of Table 2.5 and checking the implications of each profile of being a Nash
equilibirium given the previous inequalities we obtain

1. (a,¢): 84+ 0.33v =v = v =12 and 4 4+ 0.33u = v = u = 6. Contradicts
inequality 1

2. (a,d): 34+066u=u=u=9
3. (b, c): unsatisfiable
4. (b,d): unsatisfiable

Therefore strategy profile ¢* = (a,d) is the unique Nash equilibrium® for Markov
strategies (notice that such strategy profile is not the Nash equilibrium for the stage
game z alone).

Stochastic games generalize some concepts explained in previous sections:

e When the length of play is 1, stochastic games generalize normal form games

e When the state space has dimension 1, i.e., there is only one stage game to be
played, stochastic games generalize repeated games

e Actions, payoffs and transitions depend only on the current state. Markov De-
cision Process (MDP) are stochastic games with only 1 player

e We can have Bayesian stochastic games by modeling the player types

2.3 Monte Carlo methods

Monte Carlo methods are a powerful set of tools that can be used to reason within high
dimensional domains where sampling is a more efficient option than precise inference,
e.g., games of Go, poker, other domains with incomplete or imperfect information.
Monte Carlo methods are useful to estimate the Q)-value of an action in terms of its
expected reward with a sampling such as the one proposed in (Gelly and Silver, 2011)

N(s)
1
Q(s,a) = N(s,a) z_; (s, a)z (2.4)
where

— N(s,a) is the number of times action a has been selected from state s

— N(s) is the number of times state s has been visited

z; 1s the result of the i-th simulation from state s

— I;(s,a) is an indicator function equal to 1 if action a was selected from state s
on the i-th simulation, 0 otherwise

When the sampling of actions from a given state is uniform the approach is described
as flat Monte Carlo, which is very effective in games such as Bridge or Scrabble
(Ginsberg, 2001; Sheppard, 2002). However, there are cases in which flat Monte Carlo

3The corresponding notion of sub-game perfect equilibrium in stochastic games is the Markov
perfect equilibrium

2.3. Monte Carlo methods 29

fails (Browne, 2011), requiring to improve the reliability of the estimates by biasing
the action selection process based on past experience. This is often the case when
the underlying reward distributions are unknown, hence requiring a balance between
exploration and exploitation such as in the famous multi-armed bandit problem.

2.3.1 Multi-armed bandit

The multi-armed bandit problem is a class of decision problems in which one needs to
select among K actions (the K arms of a multi-armed bandit slot machine) in order
to maximize the cumulative reward by consistently taking the optimal action. The
action selection is difficult because the underlying reward distributions are unknown,
requiring to estimate potential rewards and to balance exploration of arms with still
uncertain rewards with the exploitation of arms that are known to give high rewards.
This is known as the exploration-exploitation dilemma (Auer et al., 2002). A common
way of approaching the multi-armed bandit problem is to use a policy determining
which arm to play based on past rewards with the aim of minimizing the player’s
regret defined as

K
Ry =p'n—p; Y E[Ti(n)] (2.5)
=1
where

*

— p* is the best possible expected reward

— u; is the expected reward of arm ¢

— K is the number of available arms (actions)

— E[T;(n)] is the expected number of plays for arm 4 in the first n trials

The regret is the expected loss due to not playing the best action. It has been shown
that no policy can achieve a regret growing slower than O(Inn) for many classes of
reward distributions (Lai and Robbins, 1985).

2.3.2 Upper confidence bound

In (Auer et al., 2002), authors define the Upper Confidence Bound (UCB) that any
given arm will be optimal, called UCB1 which has a logarithmic growth of regret with-
out any prior knowledge on the reward distributions. The optimal policy is obtained
by playing the arm ¢ maximizing UCB1.

Definition 2.24 (UCB1).

UCBL =X, 1] 2n

n;
where
— n is the number of plays so far
— n; is the number of times arm ¢ was played

— X is the average reward from arm 1

30 Chapter 2. Background

(A) Selection (B) Expansion (c) Simulation (D) Backpropagation

&
B0l eee dé?beee
BEo @Ee @0 @Eo

© ©

FIGURE 2.8: Schema of Monte Carlo Tree Search with action set {A, B, C}

The left-hand term encourages the exploitation of choices associated to higher re-
wards, while the right-hand term encourages the exploration of the less visited choices,
therefore with more uncertainty associated to their rewards. UCB1 has a simple for-
malization, it is efficient and guaranteed to be within a constant factor of the best
possible bound on the growth of regret. Due to such properties, UCB1 is often used
within a generic search framework known as Monte Carlo Tree Search (Section 2.3.3).

2.3.3 Monte Carlo tree search

MCTS combines the precision of the tree search with the generality of random sam-
pling by taking random samples in the search space and building a search tree accord-
ing to the results (Coulom, 2007). The strength of MCTS is that the search space is
not explored exhaustively, but the focus is on the most promising sub-spaces detected
by using the rewards computed at the end of the simulations conducted. In particu-
lar, state and action spaces are searched by incrementally exploring the environment
using simulation of executions and estimating the rewards of the actions taken into
account. MCTS relies on two fundamental concepts:

e The true value of an action may be approximated using random simulation
e The true values may be used to efficiently adjust the policy in a best-first strategy

MCTS had a great impact on Al, especially in domains that can be represented as
trees of sequential decisions, but where an exhaustive search would be unfeasible
because of the domain size, e.g., games, planning problems. The major breakthrough
that brought MCTS to the attention for its capabilities was the application to the
game Go (Kocsis and Szepesvari, 2006), which is really hard for computers to play
because of high branching factor, deep tree, and lack of known efficient heuristic value
functions for non-terminal board positions.

The core structure of the algorithm is a tree which is initially empty and contains
only the root node. The nodes of the tree represent the possible actions that lead to
a particular state of the domain, while directed links form paths of subsequent states

2.3. Monte Carlo methods 31

obtained by a sequence of actions. MCTS proceeds by repeating 4 basic steps until a
predefined computational limit is reached, e.g., time, memory or iteration constraints
(Guillaume Chaslot et al., 2008):

1. Selection: a tree policy is recursively applied from the root node descending
through the tree until the most promising expandable node is reached (Figure
2.8a). The tree policy estimates the utility value of nodes already contained
within the search tree. This is required in order to select the node with the
highest estimated value to expand

2. Fzpansion: at least one child node is added to the previously selected node
according to the set of available analyzer actions (Figure 2.8b)

3. Simulation: a simulation is conducted from every expanded node by following
a default policy. The default policy is meant to be the routine that manages the
simulation until a stop condition is met, then, estimates a reward accordingly
(Figure 2.8c)

4. Backpropagation: the simulation reward is propagated from the expanded node
up to the root while updating the statistics of the parent nodes traversed during
the previous descent (Figure 2.8d)

Algorithm 2.1 Monte Carlo Tree Search
Require:

Sp - start state

b - computational budget
Ensure: Best action

1: root < MAKENODE(sq)

2: while b not depleted do

3: ng < SELECT(root)

4: ne < EXPAND(n;)

5: 7 <= SIMULATE(n,)

6 BACKPROPAGATE(ne, 7)
7: return BESTCHILD(r00t)

Algorithm 2.1 summarizes the MCTS schema. For each iteration of the procedure,
the tree is descended and expanded with new nodes (lines 3-4). Then, the reward
given by the virtual performance (simulated) of the action-nodes added during the
expansion step is estimated (line 5). Finally, the algorithm updates the statistics of
the nodes traversed during the descent using the reward value (line 6). The algorithm
runs until a predefined computational limit is reached and, at that point, the search
is halted and the best-performing action estimated so far is returned* (line 7).

2.3.4 Upper confidence bound for trees

The success of MCTS depends on how the tree and default policies are implemented:
the latter is almost always designed around the specific application since a simulation

4Usually the most visited child of the root is selected as best node. Other heuristics can be use
however, such as the node with highest average reward (Coulom, 2007; G.M.J.B. Chaslot et al.,
2007).

32 Chapter 2. Background

FIGURE 2.9: MCTS asymmetric growth

has to follow the rules and constraints of the environment, whereas the former can be
agnostic with respect to the domain in many cases. In (Kocsis and Szepesvari, 2006),
authors propose the use of UCB1, as in modeling the selection step as a multi-armed
bandit problem, the value of a node is the expected reward estimated by the simulation
step, therefore corresponding to random variables with unknown distributions. The
selection step descends the levels of the tree choosing the nodes ¢ maximizing the
Upper Confidence Bound for Trees (UCT)

2Ilnn

UCT = X; +2C, (2.6)

n;

where n is the number of times the current node has been visited, Yj is the average
reward of the child node j, n; is the number of times the child node j has been visited,
and C, > 0 is a constant. Not yet visited nodes are assigned the largest possible value
in order to force the procedure to consider them at least once before any node at the
same level is expanded further. This heuristic is widely used in RL literature and
is known as optimism in the face of uncertainty (Szita and Lérincz, 2008). As each
node is visited, the denominator of the exploration term (right-hand side) increases,
consequently decreasing its contribution. Conversely, if another node at the same level
is visited, the numerator increases, increasing the contribution of less visited siblings
as well. The work of (Kocsis and Szepesvari, 2006) also showed two fundamental
properties for UCT:

e the bound on the regret of UCT holds also in the case of non-stationary reward
distributions

e the probability of selecting a sub-optimal action at the root level converges to
zero at a polynomial rate as the number of games simulated grows to infinity.
Therefore, given enough time and memory, UCT allows the process to converge
to minimaz, making MCTS optimal.

One of the reasons for the efficiency of MCTS with UCT in searching within high
dimensional domains can be visualized in Figure 2.9: the tree grows asymmetrically
focusing on the most promising branches instead of performing an exhaustive search.
The tree that is being generated is unbalanced, as the sequences of actions acquiring
higher rewards are those descending through the left side according to the simulations
conducted.

2.4. Markov chain 33

€r:

FIGURE 2.10: Markov chain

2.4 Markov chain

The Markov chain is a “simple” yet powerful formal model to represent fully observable
states of a system with a random variable that changes over time according to some
probability distribution. The definitions, theorems and lemmas of this section, along
with their proofs, can be found in (Kemeny and Snell, 1983).

Definition 2.25 (Markov chain). Let P be a k x k matriz with elements {P;; :
i,j7 = 1,..,k}. A random process (Xo, X1,...) with finite space S = {s1,...,8} is
a Markov chain with transition matriz P if for all n, all i,5 € {1,....,k} and all
00y ey in—1 € {1,...,k} we have

]P)(Xn-i-l = j’XO =10y, X1 = ln—1, Xn = Z) = (2 7)

P(Xn41 =j|Xn=1) =Py .
P;; represents the probability of going from state s; to state s; at the next step. Equa-
tion 2.7 expresses the Markov property, i.e., the conditional probability distribution
of the next state depends only on the current one. Such assumption, even though not
realistic in some cases, is an acceptable approximation in many application domains.
It is useful to represent a Markov chain as graphical model, visualizing states and
transitions in the form of a directed graph. Vertices of the graph are the states of the
Markov chain whereas edges are the transitions with probability values as labels. An
example of Markov chain transition matrix is visible in Equation 2.8 and Figure 2.10
shows the corresponding graphical model.

0 05 05 0
0 0 0 1

P= 0 07 0 0.3 (28)
0o 0 1 0

The evolution of the process represented by a Markov chain can be computed using
Theorem 2.2. In particular, from a starting probability distribution over the states,
we can compute where the process transitions after the next n steps.

Theorem 2.2. Let P be a transition matriz of a Markov chain and let p be the vector
representing its initial distribution. Then the probability that the chain is in state s;
after n steps is the i-th entry of the vector:

p' = pP" (2.9)

34 Chapter 2. Background

For example, using the transition matrix of Equation 2.8 and making the process start
from state sy, Theorem 2.2 tells us that the probability vector for being in a state
after n = 3 steps is

005 05 071"
pr=1[1 0 0 0] 8 0?7 8 é:g —[0 0 065 0.3
0 0 10 0

Starting from s, after 3 steps there is a 0.65 chance of being in state s3 and 0.35 of
being in state sy.

There are different types of Markov chains that depend on their characteristics. In
this work we focus in particular on irreducible (Section 2.4.1) and absorbing Markov
chains (Section 2.4.2) since their properties are useful for our methodologies.

2.4.1 Irreducible Markov chain

Irreducible Markov chains are easily understood thinking in terms of their graphical
model representation, and in particular leveraging the concept of reachability.

Definition 2.26 (Irreducible Markov chain). A set of states is irreducible if it is
possible to go from each state to any other in an arbitrary (finite) number of steps. A
Markov chain is irreducible if it consists of a single irreducible set.

This means that if every state s; € S is connected to any other s; € S by a path in
the graph representation, S is an irreducible set. A Markov chain can contain only
some parts that are irreducible without being irreducible itself>. In Figure 2.10, states
82, 83, 84 form an irreducible Markov sub-chain.

The long-term behavior of a process represented by a Markov chain can be com-
puted for steps n — oo using Theorem 2.2 until the result converges to a fixpoint
(under some conditions detailed below). Such fixpoint is the stationary distribution.

Theorem 2.3 (Stationary distribution). Given a Markov chain P, the vector w such
that wP = 7 is the stationary distribution of P.

The stationary distribution 7 represents the fraction of times a Markov chain will
spend in each state when the number of steps n becomes large, i.e., as n — oo.
The number of steps required for a Markov chain process to reach the stationary
distribution is called mixing time.

Lemma 2.1. For any finite, irreducible Markov chain, 7 is unique.

As per Lemma 2.1, a Markov chain may have different stationary distributions unless
finite and irreducible. In fact, if such properties do not hold, using Theorem 2.2 to
compute the stationary distribution starting from different initial probabilities may
lead to different results. We can retrieve the stationary distribution from the Markov
chain with transition matrix P of Equation 2.8 as it is finite (4 states) and after
the first step, the process remains in an irreducible set (s2, $3,4). In order to apply
Theorem 2.3 we can compute the left eigenvector of P with eigenvalue 1.

5Some works define ergodic Markov chains the way we defined irreducible ones. We instead
consider a Markov chain ergodic if it is aperiodic and positive recurrent, although they are not used
in this work.

2.4. Markov chain 35

FIGURE 2.11: Absorbing Markov chain

0 05 05 0
0 0 0 10

|0 o7 o o3| =7=[0 026 037 0.37]
0 0 10 0

In the long-term, the process is more likely to be in states s3 and s4 than ss. Notice
that it is impossible to end up in state s; after the beginning, since there is no incoming
edge for such state. Indeed, the stationary distribution has components with positive
values only for the irreducible parts of the Markov chain, i.e., only states s, s3, 84 in
this example as state s; is unreachable.

2.4.2 Absorbing Markov chain

Another particular type of Markov chains is represented by absorbing Markov chains,
characterized by two kind of states: transient and absorbing.

Definition 2.27 (Absorbing Markov chain). Given a Markov chain P, a state s; is
absorbing if Py; = 1, otherwise it is transient. A Markov chain is absorbing if at least
one of its states is absorbing and if from every transient state an absorbing one will
be eventually reached.

Figure 2.11 shows an example of absorbing Markov chain where the absorbing states
s5 and sg can be reached by every other state (as by Definition 2.27).

If we deal with an absorbing Markov chain, it is usually preferable to reorder the
states in a canonical transition matrix in order to clearly identify whether they are
transient or absorbing. Such decomposition also comes in handy to easily compute
different properties of an absorbing Markov chain (Theorems 2.4, 2.5, 2.6, and 2.7).

Definition 2.28 (Canonical form of an absorbing Markov chain). If an absorbing
Markov chain P has n transient states and r absorbing states, its transition matrix
can be rewritten as

where:
— Q is an n X n matriz of the transition probability between the transient states

— R is a n x r non-null matriz of the transition probability from the transient to
the absorbing states

36 Chapter 2. Background

— 0 is ar x n null matriz
— I is ar xr identity matrix

The canonical form of the Markov chain depicted in Figure 2.11 is reported in Equation
2.10

0 05 05 0|0 O
0 0 0 1 0 O
0 04 0 03(02 0.1
P=1lo 0 1 o]0 o (2.10)
0O 0 0 O 1 0
L0 0 0 0] 0 1 |
where the decomposition is that of Equation 2.11
0 05 05 O 0 O
0 0 0 1 0 0 0 000 10
Q= 0 04 0 0.3 k= 0.2 0.1 @_[0 0 0 O] I_{O 1] (2.11)
0O 0 1 0 0 O

It is interesting to notice that the evolution of block matrix @ reflects the nature of
transient states: since an absorbing state is reached every time a transient state is
left (in any number of steps), the probability gradually “vanishes” from @ while being
accumulated in the absorbing states. Therefore, after a given number of steps, the
process is absorbed, meaning that the probability of being in any of the absorbing
states is 1 while it is 0 everywhere else. Lemma 2.2 formalizes this behavior.

Lemma 2.2. For any absorbing Markov chain in canonical form we have that Q% — 0
as k — oo.

Lemma 2.2 is useful to derive Theorems 2.4 and 2.6.

Theorem 2.4 (Fundamental Matrix of an absorbing Markov chain). The fundamental
matrix N of an absorbing Markov chain P in canonical form is defined as

N=I+Q'+.+Q"'=) Q"' =(I-Q!
k=0

where I is the identity matrix of the same size of Q. Each entry IV;; represents the
expected number of times that the chain is in a given transient state s; if starting
from the transient state s;°.

Lemma 2.3. The inverse of (I —Q) is guaranteed to exist for every absorbing Markov
chain

Lemma 2.3 gives a theoretical guarantee that allows to always compute the funda-
mental matrix that is the common basis from which to derive Theorems 2.5, 2.6, and
2.7. With the example of Equation 2.11, the fundamental matrix is

-1

0 05 05 0 1 1.83 3.33 2.83
N=|r- 0 0 0 1 _ 0 233 3.33 3.33
0 04 0 0.3 0 1.33 3.33 2.33
0o 0 1 0 0 1.33 3.33 3.33

5There exists a fundamental matrix also for Regular Markov chains.

2.4. Markov chain 37

In this case, state s3 is expected to be visited 3.33 times on average before the process
is absorbed, regardless of the starting state. State s; instead is visited only once and
only when the process starts from s; itself since it is not possible to return to it.

From any starting state, it may be useful to compute how many steps the process
takes before being absorbed.

Theorem 2.5 (Time to absorption).
t=N1

Each entry t; represents the expected number of steps before being absorbed when
starting from transient state s;. 1 is a vector where all components have value 1. The
time to absorption for the Markov chain of Equation 2.11 is

1 1.83 3.33 2.83| |1 8.99
. 0 233 3.33 3.33| (1| _ |8.99
0 1.33 333 233 |1 6.99
0 133 3.33 3.33] |1 7.99

The process is absorbed faster when started from state s3, whether the longest it takes
is about 9 steps when started from s1 or ss.

Another useful quantity on which we build upon to extract the long-term proba-
bility from Markov chain models is the transient states probability.

Theorem 2.6 (Transient states probability).
H=(N-I)N,/

Each entry H;; represents the probability of reaching transient state s; starting from
transient state s; before the process is completely absorbed. IN d;l is the inverse of a
diagonal matrix with the diagonal of IN. Continuing from the example of the Markov
chain in Equation 2.11, the transient states probability is

-1

1 1.83 3.33 2.83 1 0 0 0 0 079 1 0.85
H— 0 233 333 3.33| I, 0 233 0 0 _ |0 057 1 1

0 1.33 3.33 2.33 0 0 333 O 0 057 0.7 0.7

0 1.33 3.33 3.33 0 O 0 333 0 057 1 0.7

State sg is guaranteed to be reached before the process is absorbed when starting from
any state but s3 (where the probability value drops to 0.7).

The last quantity for absorbing Markov chains we are interested in is the absorption
probability, that can be computed with Theorem 2.7.

Theorem 2.7 (Absorption probabilities).
B=NR

Each entry B;; represents the probability of being absorbed from j-th absorbing state
starting from transient state s;. To conclude with our running example

1 1.83 3.33 2.83 0 O 0.66 0.33
B_ 0 233 3.33 3.33 0 0] _ 066 033
0 1.33 3.33 2.33| |02 0.1 0.66 0.33
0 1.33 3.33 3.33 0 O 0.66 0.33

38 Chapter 2. Background

The process is more likely to be absorbed by state s5 rather than sg with probability
values of 0.66 and 0.33 respectively’. The starting transient state has no impact on
the result in this example as all the rows of B are equal.

"The absorbing states of the Markov chain are s5 and sg, but their indices in B are 1 and 2 since
B only contains columns for the absorbing states.

39

Chapter 3

Related Work

This chapter reports a variety of state-of-the-art approaches for malware analysis
and behavioral modeling of recent years. Section 3.1 describes different techniques
for malware analysis grouped in static, dynamic and hybrid; Section 3.2 presents
AMA explaining the fundamental differences from previous techniques and why it is
an important research line; Section 3.3 instead focuses on approaches for behavioral
modeling of agents.

3.1 Malware analysis

Malware, or malicious software, play a part in most computer intrusion and security
incidents. Any software that intentionally causes harm to a user, computer, or network
can be considered a malware, which is defined by its malicious intent of acting against
the requirements of the computer user. Malware do not include software that causes
unintentional harm due to some deficiency.

The first line of defense in cyber-security is threat detection, and common antivirus
or firewalls perform this activity by using some kind of known information, e.g., hash
signatures of binaries, request of critical user permissions. Such prior information
is typically obtained by threat analysis, aiming at achieving a better understanding
of something recognized as a threat. Nowadays, malware analysis is mostly done by
human security experts aided by specific tools, often built ad hoc for each new malware
sample detected into the wild. These tools help to identify how malware penetrate a
system, how they propagate to other systems and what is the payload. This is a time
consuming process, often requiring to manually analyze binary code by executing it
and examining logs. Malware analysis is the art of dissecting a malware to understand
how it works, and consequently, how to identify it and what can be done to defend
against it. This process is critical in order to be able to give a fast response to security
incidents, since the number of malware is already in the order of millions and they
grow at a very fast rate. When analyzing suspected malware, the goal will typically
be to determine exactly what it can do, how to detect it, and how to measure and
contain its damage. In particular, one of the main goals of malware analysis is to
group malicious software with respect to common behaviors or to a predefined set of
classes. Indeed, malware can be grouped in families (or types), that are behavioral
categories in which malicious software fall into (Elisan, 2015). This is different from
malware detection, where the aim is to distinguish harmless from malicious software:
usually, malware analysis is performed after the result of the detection process flags
a software as malicious, so as to identify the specific malware family and possibly use
already known countermeasures to defend against the threat.

Most often, the only element available when performing malware analysis is the
malware executable, which is not in a human readable form. There are two fundamen-
tal approaches to study such executable: static analysis and dynamic analysis. Static

40 Chapter 3. Related Work

analysis examines a malware without actually running it. Dynamic analysis instead
executes the malware to observe its behavior within a safe and controlled environment

(a sandbox) (Sikorski and Honig, 2012).

3.1.1 Static analysis

Static techniques include several approaches such as frameworks for analyzing malware
code producing a possibly approximated representation of the Control Flow Graph
(CFG) for code similarity analysis. The approximation allows to reduce the size of the
feature space introducing different layers of abstraction to handle the computational
complexity of analyzing the CFG with abstract interpretation (Sharif et al., 2008; A.
Lakhotia et al., 2013; Gao et al., 2008). There are also works in which a detection
system mines malicious program logic from known malware by extracting compact
representations of single programming functions to compare across different applica-
tions (Yang et al., 2014). A similar approach instead generates static signatures of
every programming function that can be compared to others (Meng et al., 2016). An-
other branch of research focuses on the Call Graph (CG) of software: Markov chains
of the connections between APIs can be extracted from the CG and the transition
probabilities are then used to binary distinguish a malware from a harmless software,
i.e., without considering the possible families (Mariconti et al., 2017). Alternatively,
the CG is instead labeled with a weighted distance between neighbor APIs and such
feature is used to classify between malware and benign software (Gascon et al., 2013;
M. Zhang et al., 2014). The same goal is pursued in (L. Zhang et al., 2019), where
authors aim at using non standard! static features and apply the widely used n-gram
model (Wressnegger et al., 2013) to eXtensible Markup Language (XML) strings of
the application executable resources.

Among the interesting works on static analysis there is DENDROID (Suarez-
Tangil, Tapiador, et al., 2014), in which authors propose a static method to deter-
mine the distribution of particular structures embedded in Android applications and
exploit such features to train a classifier to recognize the similarity degree between
malware samples and family representatives. More specifically, DENDROID can be
summarized with the following steps: it first decomposes the application under anal-
ysis into its code chunks, i.e., basic elements obtained through the retrieval of the
CFG, each representing a single method of the program; once every sample of the
dataset has been processed in order to gain a corresponding set of code chunks, the
analysis proceeds by mining the code chunks inspiring to known text information re-
trieval methods. This phase requires the construction of a feature vector per sample
where each entry represents a measure that recalls the Term Frequency-Inverse Docu-
ment Frequency (TFIDF) index, each one accounting for a specific code chunk. Once
this sub-task is accomplished for the entire dataset, a K-Nearest Neighbor (K-NN)
classifier (with k£ = 1) is employed to estimate the malware family a sample belongs
to.

The common thread of static analysis techniques is the engineering of feature se-
lection from the binary code without actually executing the program. However, a
problem of static methodologies comes from analyzing malware with encrypted mali-
cious code deployed at runtime or obfuscated. Indeed, encrypted or obfuscated code
is not in a readable form (unless the decryption key or the transformation applied to
obfuscate are known), and for this reason static code inspection routines are unable to
extract viable information. Often the code to run is downloaded at runtime, therefore

!Features that are not commonly used in malware static analysis

3.1. Malware analysis 41

missing from the application binary and it is impossible to analyze at all (without run-
ning the application). Another limitation is related to the “actually executed blocks”
problem: these approaches analyze a given program by building the associated CFG
and then studying its properties, but the CFG (or other information extracted from
the binary code) structure does not indicate the real execution flow of that program
when it runs®. In other words, there is a gap between the code segments appearing in
the compiled program and the statements actually performed at runtime, as these are
a subset of the former. This characteristic represents a limit since, in a classification
task, the feature extraction applied to such models will cause the presence of overflow-
ing useless information in feature vectors, hence creating noise for the training phase
and hence yielding potentially misleading responses. In the face of such limitations,
in this work instead we focus on dynamic analysis techniques (and also because it
naturally adapts to multi-agent approaches we are interested in).

3.1.2 Dynamic analysis

Dynamic techniques are fundamentally different from the static ones as they execute a
program to observe its behavior in order to extract the features. An interesting work
is (Rieck et al., 2011), in which authors leverage on the concept of n-grams as feature
for detection extracted while observing a malware that is running within a sandbox.
In particular, from the list of function calls performed during execution, n-grams are
retrieved and used for classification with the aim of detecting the malware family of
each malicious software analyzed. Even though good results can be achieved with
such technique, a significant issue is the exponential space requirements when n in-
creases. Moreover, since n-grams are an approximation of atomic behaviors embedded
in malware, it is difficult to decide the proper granularity degree of the information
represented through such feature type, i.e., how to select a proper value for n. There
are also dynamic approaches that tweak the clock of a virtual machine by speeding
up or down the execution of a software in order to be able to study malware with long
delays between infection and payload execution (Lin et al., 2018).

Dynamic analysis typically suffers of the opposite problem with respect to static
analysis: it is difficult to observe executions of the program that cover the entire
code, i.e., the code coverage problem. However, the code coverage limitation is much
less prominent in Android malware analysis since what is observed is usually relevant
in the overall behavior, as the software are developed for the specific smartphone
usage. Additionally, anti-emulation mechanisms are often employed by malware to
abort execution if a sandboxed environment is detected instead of a real one. In fact,
there is no reason for a malicious software to release its payload within an emulated
environment, since almost no one employs them for everyday use. Conversely, malware
analyzers, human or Al powered, almost always execute malware inside a controlled
sandbox. This solution is adopted not only to precisely record the observed behavior,
but also to avoid the disruption of real systems that are much more difficult to repair
with respect to an emulator that can easily be reset from a snapshot. Furthermore,
all the mentioned techniques suffer from an important limitation: they are passive,
meaning that no interaction happens between the analyzer and the target program (in
contrast to what a human security expert would usually do). Nonetheless, it has been
assessed that in many cases interaction is fundamental to extract behaviors that are
only exhibited when triggered since malware often try to mask their real intentions
(Moser et al., 2007). Recently, a new type of dynamic analysis giving promising

2Rather it embeds every possible transition from a code section to another

42 Chapter 3. Related Work

3-grams

‘ java.io.File!mkdir - libcore.io.loBridge!open - libcore.io.loBridge!write ‘

libcore.io.loBridge'!open - libcore.io.loBridge!write - libcore.io.loBridge!open

Execution Trace

libcore.io.loBridge!write - libcore.io.loBridge!open - libcore.io.loBridge!read

java.io.File!mkdir ‘ ‘
libcore.io.loBridge!open ‘ libcore.io.loBridge!open - libcore.io.loBridge!read - android.os.SystemProperties!get ‘

libcore.io.loBridge!write
libcore.io.loBridge!open
libcore.io.loBridge!read
android.os.SystemProperties!get
java.io.File!delete
android.os.SystemProperties!get
libcore.io.loBridge!read

libcore.io.loBridge!read - android.os.SystemProperties!get - java.io.File!delete

android.os.SystemProperties!get - java.io.File!delete - android.os.SystemProperties!get

java.io.File!delete - android.os.SystemProperties!get - libcore.io.loBridge!read

(A) Execution trace (B) 3-gram representation
Markov chain
java.io.File!mkdir }?ﬁ libcore.io.loBridge!open }O—A libcore.io.loBridge!write ‘

1.0
0.5

‘ libcore.io.loBridge!read }?ﬁ android.os.SystemProperties!get }0—;{ java.io.File!delete

(¢) Markov chain representation

FI1GURE 3.1: Example of different types of features extracted from an execution trace

results has been proposed: active malware analysis. For this reason we continue the
discussion on dynamic analysis in Section 3.2, explicitly considering active techniques.

3.1.3 Hybrid analysis and feature selection

A combination of static and dynamic analysis features may help mitigating the limita-
tions of each other, and the recent work of (A. Martin et al., 2019) aims at doing this
providing a dataset combining static and dynamic features. Nonetheless, fusing the
information acquired by static and dynamic methods in meaningful features, or using
static analysis to augment dynamic analysis, requires additional research. Static and
dynamic information can also be fused by statically extracting the CG and observing
the APIs performed during the execution, creating hybrid execution traces in order
to exploit the correlation between different syntax but same semantics (Han et al.,
2019). Feature selection is indeed important as attackers may exploit the knowledge
about how a detection tool uses such features to mislead the process. A case study
of this problem is provided in (Calleja et al., 2018), in which authors use evolution-
ary algorithms to perform a search that identifies a minimal number of changes to
the features in order to induce family misclassification. They also analyze multiple
defense models proposing how to strengthen them in order to be more resilient to fea-
ture thwarting attacks. In particular, different anti-virus software focus on different
features, resulting in malware signatures that can be used to identify different families
(classes) of malicious software, e.g., adware, spyware, ransomware, as in the work of
(I. Martin et al., 2019). Finally, notice that the type of features used by static and
dynamic analysis often coincide, e.g., n-gram on APIs observed during execution and
XML string embedded in the executable file, although the process used to extract
them is completely different. Figure 3.1 shows an example of how an execution trace
can be represented with different features, namely 3-grams and a Markov chain.

3.2. Active malware analysis 43

3.2 Active malware analysis

This section presents different techniques for AMA dividing between non-intelligent
analyzers that do not reason about the adversary during the analysis process, and in-
telligent analyzers that employ rational strategies to interact with the malware agents.

3.2.1 Non-intelligent active malware analysis

The goal of AMA is to perform actions in order to trigger a malware into showing be-
haviors that would otherwise remain hidden. If a malware reacts to a triggering action,
it means that the activation condition has been met and a payload is usually deployed.
For example, in (Suarez-Tangil, Conti, et al., 2014), authors build an analyzer that
aims at reproducing specific activation conditions to trigger malicious payloads rely-
ing on stochastic models extracted by past samples of real user behaviors that have
been recorded. In particular they make extensive use of geo-localization based on the
Global Positioning System (GPS). Another interesting approach is (Bhandari et al.,
2018), where random triggers are used in a runtime semantic-aware malware detector
resilient to code injection and capable of deciding whether a software is malicious or
not. In (A. Martin et al., 2018), authors describe a dynamic process to conduct the
analysis of malware, called CANDYMAN, followed by the classifier training phase.
A core aspect of this work is the wide range of supervised algorithms considered
and evaluated, involving almost all classical learning methods and also deep learning
techniques. In summary, CANDYMAN involves the execution of the malware under
analysis in a controlled environment where it can be safely run while observing its be-
havior. All the data collected are then processed in order to construct a Markov chain
model that expresses the malicious dynamics observed during the previous analysis
step. Once this modeling phase is terminated, the features embedded in the resulting
Markov chains are extracted and used for a classification task. CANDYMAN also
applies some approximations on the Markov chains to lower the number of states
composing the Markov chains and, in the feature extraction part, to reduce the fea-
ture space used to subsequently train a classifier. The active procedure proposed in
(A. Martin et al., 2018) is very effective in assessing malware families, however the
triggering policy targets the Graphical User Interface (GUI) with random actions,
hence without employing an intelligent strategy.

3.2.2 Intelligent active malware analysis

All the active techniques mentioned so far present no rational target-oriented strategy
to stimulate the malware under analysis. Therefore future research is required to
devise an approach that can select the triggering actions so to maximize the acquired
information. A first step in such a direction comes from the work of (Williamson
et al., 2012), that proposes to design an autonomous agent with an active role in the
disclosure of malicious intents. The method sees an analyzer being a player aiming
at the acquisition of non-trivial information regarding the opposite player, i.e., the
malware. The process is formalized as a stochastic game (Definition 2.22) called AMA
in which the analyzer performs an action on the system and the malware responds
with a sequence of actions that change the status of such system.

Definition 3.1 (Active malware analysis game). An AMA game is a stochastic game
where:

e G(V,E) is a weighted graph representing the system on which the analysis is
going to be performed, where V' is the set of vertices and E is the set of directed

44 Chapter 3. Related Work

edges connecting the vertices. Fach vertex is a state of core components of
the system, e.g., important flags in the registry, and the edges represent the
transitions in the state of the system that a malware can induce. The weight on
each edge represents the transition probability from the edge source vertex to the
destination one

e v €V 1s the current malware ny vertex position in the graph and the sequence
of those positions through the graph, represent affected system components

e ay = v UNEIGHBOURS(v™) is the strategy space of the malware ny and repre-
sents the changes it can take from its current location

o VI C V is the set of actions that can be played, described by the subset of leaf
nodes of the graph. The analysis agent, ni, may then execute actions on the
system

o a = VH is the strateqy space of the analysis agent ni. The agent can create
new stmulated user activities and remove previous ones. Locations on the graph
are used to represent some fake user activity or data in place, with the preceding
vertices representing state changes before this information is introduced

e S =V x VH is the global state space, given by the possible locations of the
malware, v™, and of the actions, v"

o 7 :.S — as is the fixed, possibly stochastic, but unknown policy of agent na giving
the next action(s) from a specific state

e U :m — R is the reward function for agent nq associated with learning the policy
and preferences of agent ng

0

o v0 = s! will always be the malware starting location in the clean system

o PH s the set of paths from vertex v° to each of the possible actions VH and
each path is defined as a sequence of edges ey, ..., g

The analysis game requires a fixed model manually designed by a security expert
that specifies which components of the systems to monitor for changes by the malware
and which components the analyzer can interact with to trigger a response in the
malware. Such model is represented with a Directed Acyclic Graph (DAG) where
leaf vertices are the possible actions of the analyzer, internal vertices are possible
actions of the malware, and paths in the graph are sequences of actions that the
malware can take to reach a component (leaf vertex) touched by the analyzer. During
the analysis game, the analyzer selects a component of the system to interact with
and observes the malware reaction updating the transition probabilities on the model
graph. At the end of the process, the transition matrix obtained represents the policy
of the malware with respect to the pre-specified model, that is fixed and remains
the same during the analysis of every malware. Authors implement the policy of
the analyzer agent with a procedure called MYOPIC (Algorithm 3.1) where the next
analyzer action to play is chosen with a 1-step look ahead heuristic based on the
entropy of the malware execution patterns. Using the statistics (historical frequency)
on how the malware transitioned between vertices of model, the analyzer action with
highest entropy is selected to be played next. The intuition is that actions with
higher entropy usually retrieve more information. Consequently, the malware policies
extracted by the analyzer are strictly dependent on the quality and level of detail of

3.2. Active malware analysis 45

Algorithm 3.1 MYOPIC
Require:
m - malware model
limit - time limit
Ensure:
7 - policy in the form of transition function T’

1: for all actions a € m do

2 Set probability distribution 7, as uninformative

3 R, + o

4: for t + 1 to limit do > Play until time limit is reached
5: a <— CHOOSEBESTACTION(m) > Get best action using model
6 trace < EXECUTE(a) > Execute action and observe malware
7 R, < m.ENTROPY(a) > Compute reward
8 T, < ADAPT(T,, trace) > Adapt transition function based on observation
9 m.UPDATE(Ty, Rq, a) > Update model

the model employed: since a model represents the behavioral patterns on which to
play the analysis game, the accuracy of its specification impacts whether the analysis
computes meaningful policies. Indeed, if the model does not contain an important
component of the system to observe as a malware possible action, that will be ignored
when performed. Human expertise and manual effort is then fundamental to build
a good model for a meaningful analysis process. The necessity of the model as fixed
input is therefore an important limitation of the work.

In the following we describe a brief example of the reducing entropy heuristic em-
ployed in MYOPIC. The malware model used is visible in Figure 3.2, in which the pos-
sible analyzer actions are 4 and 5 and possible paths are {[1, 2,4, 5], [1, 2,4, 6], [1, 3,4, 5],
[1,3,4,6]}. The edge conditional probability is computed based on the observation of
the malware behavior based on the analyzer action (the historical frequency), assum-
ing an initial uninformative distribution. Specifically, if a malware has visited vertex
v for [times and an edge e € E, has been taken m times, when the action executed
by the analyzer was a, the conditioned probability becomes

14+m
Pr(e|a)= TN (3.1)
A path is defined as a sequence of edges ey, ..., ex and the probability for a malware
of taking a path p € P, when the action executed by the analyzer is a € V¥, can be
computed as
Pr(p|a) = HPr(e | a) (3.2)

ecp

The entropy of a path p € P, when the action executed by the analyzer is a € V' is

computed as
H(p)=—Pr(p|a)lnPr(p|a) (3.3)

Finally, the entropy of analyzer’s action a € VH is

H(a)= Y H(p) (3.4)

peEP

The steps in the example process are

46

Chapter 3. Related Work

FIGURE 3.2: MYOPIC model example

Action Edge Probabilities Path Path Total
UOM 1 19 1.3 24 34 4-5 4-6 | Probability Entropy Entropy
0.5 1 0.2 0.1 0.23
; 0.5 1 0.8 0.4 0.37 L
0.5 1 0.2 0.1 0.23
0.5 1 0.8 0.4 0.37
0.4 1 0.3 0.12 0.25
0.6 1 0.7 0.28 0.36
6 o4 1 0.3 0.18 0.31 1.28
0.6 1 0.7 0.42 0.36

TABLE 3.1: MYOPIC example, step 1

. after having played the game for a few timesteps, the situation is the one of

Table 3.1. The historical frequency says that for analyzer action 5, the malware
is more likely to follow either [1,2,4,6] or [1,3,4,6]. For action 6 instead, the
path followed with highest probability is [1, 3, 4, 6]

. MYOPIC chooses as next action to play, the one giving highest entropy, which

is 6 in this case

. malware reaction is to follow the path [1, 3,4, 6] changing the transition function

values to those visible Table 3.2

. at this point, the entropy associated to action 5 has not changed while that of

action 6 dropped, but without becoming lower than that of action 5. For this
reason, MYOPIC chooses action 5 again

. malware follows again the path [1, 3,4, 6], resulting in transition function values

of Table 3.3

. the situation has changed: now action 5 is the one with lowest entropy, therefore

MYOPIC would continue the game by choosing action 5

Our proposed approaches for AMA differ from (Williamson et al., 2012) as we

avoid the weak point represented by the fixed and pre-specified model by dynamically
generating the malware model at runtime with a RL algorithm based on MCTS.
Specifically, we define a different behavioral model for malware that represents the
observed execution traces, composed by sequences of API calls, as Markov chains.
Therefore, the model does not depend on the analysis system such as in (Williamson et
al., 2012), but only on the malicious software itself. During the generation process, our
analyzer agent selects the best action to play taking into account the possible responses

3.3. Agent Behavioral Modeling 47
Action Edge Probabilities Path Path Total
-2 1-3 24 34 4-5 4-6 | Probability Entropy Entropy
0.5 1 0.2 0.1 0.23
0.5 1 0.8 0.4 0.37
g 0.5 1 0.2 0.1 0.23 12
0.5 1 0.8 0.4 0.37
0.36 1 0.27 0.1 0.23
0.64 1 0.73 0.26 0.35
0 0.36 1 0.27 0.17 0.3 1.23
0.64 1 0.73 0.47 0.35
TABLE 3.2: MYOPIC example, step 2
Action Edge Probabilities Path Path Total
-2 1-3 24 34 4-5 4-6 | Probability Entropy Entropy
0.5 1 0.2 0.1 0.23
0.5 1 0.8 0.4 0.37
g 0.5 1 0.2 0.1 0.23 1.2
0.5 1 0.8 0.4 0.37
0.33 1 0.25 0.08 0.2
0.66 1 0.75 0.25 0.34
6 0.33 1 0.25 0.16 0.3 118
0.66 1 0.75 0.5 0.34

TABLE 3.3: MYOPIC example, step 3

of the malware with multiple steps of simulations with a MCTS. The capability of
dynamically generating the model at runtime makes the analysis more flexible since it
is not tied to a pre-specified input, with a great impact on final classification results
for malware identification.

Broadly, the concept of executing specific actions to perform a better analysis can
be linked to the general framework of active learning, and recently there has been a
specific interest in applying active learning techniques to malware analysis (Nissim et
al., 2014). In that work, authors propose the use of an Support Vector Machine (SVM)
classifier to select which samples (already analyzed) should be fed to the classifier, so
to refine the classification bounds. In this thesis instead, we aim to generate malware
models that can be studied by a human security expert or processed by automated
techniques (with clustering or classification) for comparison. Hence, we focus on the
decision making side of the analysis by devising an intelligent strategy for the analyzer
action selection, differing from active learning approaches where the methodology is
usually tied to the specific choice of classifier in order to improve the classification
bounds, e.g., K-NN and naive Bayes (K. Wei et al., 2015), logistic regression (Y. Guo
and Schuurmans, 2007), linear regression (Yu et al., 2006), SVM (S. Tong and Koller,
2002).

3.3 Agent Behavioral Modeling

The main focus of this thesis is to analyze and generate behavioral models extracted
by observing the effect of the actions performed by a target agent within a fully
observable environment. In this context, Markov chains are particularly suited for

48 Chapter 3. Related Work

the task and have been widely used in literature to model the behavior of agents.
The work of (Whittaker and Thomason, 1994) views reliability analysis of software
programs as a sequence generation and analysis problem, where Markov chains are
used to represent execution patterns. A state of the model contains the values of
the program’s most important variables whereas the transitions consider the effect
of each possible input on a state. To verify a program, the Markov chain structure
of normal execution is used by a testing process that assigns transition probabilities
based on the historical frequency of the tests conducted. If a program behaves as
required, the Markov chain of testing will converge to the same transition function
of the usage Markov chain. In (Sarukkai, 2000), Markov chains are employed to
infer probabilistic link prediction and path analysis in HyperText Transfer Protocol
(HTTP) web navigation. From navigation logs of users on a web site, a Markov chain
is created for each session where states represent web pages (or resources in general)
and transitions® instead represent the links that have been followed in the log to
move between pages. With the application of Theorem 2.2 it is possible to predict the
possible future n+1, ..., n+k pages that a user will visit after the current page n. The
quality of the prediction is strictly tied to the training process, for which a big amount
of training data (user navigation logs) is required; however, the amount of traffic
nowadays is very sustained, making the process of data collection for web navigation
quite easy. Nevertheless, the number of states representing the resources of a web
network may be huge, consequently decreasing the prediction reliability. In order to
circumvent this problem, the work of (Zhu et al., 2002) proposes to compress the
transition matrix by merging states with similar incoming and outgoing transitions.
This approach allows an efficient computation for the prediction of the next probable
states at the cost of precision (to a varying degree depending on the approximation).
The agent behavioral models obtained are often required to be compared (or analyzed
with respect) to each other. In the context of Markov chain models, the works of (Dyer
et al., 2006; Busic et al., 2009) provide methods to compare Markov chains relying
on the mixing time or directly computing the stationary distribution (Theorem 2.3).
However, the existence of a stationary distribution is guaranteed only for Markov
chains with specific properties (see Section 2.4). This limits the applicability of (Dyer
et al., 2006; Busic et al., 2009) to domains in which the stationary distribution can
be computed.

Modeling the behavior of an agent can be a challenging task, especially if such
agent has goals that are in contrast to those of the analyzer or observer. An interest-
ing work in this context is presented in (Hernandez-Leal and Kaisers, 2017), where
authors propose a framework for stochastic games (Definition 2.22) aimed at learn-
ing the policy of multiple unknown adversaries drawn from different populations. In
particular, an agent faces an unknown opponent that changes after every few interac-
tions as selected by a random process from a reference population. The agent does not
know when a new opponent is drawn, and the population is partitioned into different
groups (hence there are different types of opponents). In order to identify the oppo-
nents, authors propose an algorithm that first generates policies, game transitions and
performances (in an offline phase) based on the known information. During an online
phase instead, the game is played choosing one of the policies at disposal with a belief
based approach, and then observing the opponent behavior (in terms of transitions
and rewards). After the online phase, the algorithm updates the policies with the
new acquired information and then plays again. With respect to our reference ap-
plication, i.e., AMA, an important element that is not addressed in (Hernandez-Leal

3Probability values are estimated using the historical frequency

3.3. Agent Behavioral Modeling 49

and Kaisers, 2017) is that an opponent may intentionally perform some random or
completely unrelated actions in order to mask her real policy, injecting noise in the
behavioral model. Consequently, the observer agent can be deceived if she does not
consider such potential deviation during the analysis process.

Part 11

Behavioral Model and Analysis
Framework

o1

93

Chapter 4

Behavioral Model

In this chapter we present the formalization of the behavioral model that will be used
throughout all the thesis. Although the main focus is malware analysis, and conse-
quently malware models, our formalization is generic enough to be applied to any
kind of model that is extracted by the observation of a behavior in response to some
interaction (more on this in Chapter 9). Section 4.1 introduces the Markov chain
as representation of the observed behavior in response to some actions; Section 4.2
presents the specific case of behavioral models for malware where malicious behaviors
are triggered by analyzer actions; Section 4.3 explains how to extract the representa-
tion of the transition function as a policy when comparing different behavioral models.

4.1 Behavioral model of the interaction

In this thesis we deal with an agent that observes the behaviors of another agent after
an interaction between the two takes place. In particular, the action of the first agent
aj triggers a behavior of the second agent as, where a behavior is composed by the
sequence of actions of agent ao that agent a; has observed. In order to model this,
we employ the widely adopted model of the Markov chain. As presented in Section
2.4, Markov chains are a formal model to represent the evolution of a process over
time. In our case, the process is represented by the behavior of agent as that we
want to learn: the states are her possible actions and the transitions represent the
connections between such actions. A path in the resulting Markov chain then will be
a behavior, i.e., sequence of actions, where we always add an Init state from which
every behavior starts for consistency. Given a Markov chain then we can study the
behavior represented by it, however we are interested in the interaction that made
such behavior emerge. In order to do this, we associate every action performed by
agent a1 to the Markov chain representing the behavior of agent as and that was
stimulated by such action. More in detail, we condition the probability values of the
transitions in the Markov chain model with the action of agent a; that triggered that
transition. Figure 4.1 shows an example of the model we just described: notice that
considering only the probability values with label X we obtain the Markov chain of
Figure 4.1a, whereas considering the label Y we obtain the one of Figure 4.1b. Those
Markov chains represent two different behaviors of agent ao that take place when
different actions are performed by agent a1, i.e., X and Y respectively.

4.2 Markov chain based malware model

In the context of malware analysis, the process that we described in Section 4.1 in-
volves an analyzer agent and a malware as interacting intelligent agents. The states
of the Markov chain then become malware actions whereas the labeling on the edges

54 Chapter 4. Behavioral Model

(¢) Behavioral model resulting from the composition of the behaviors depicted in Figures 4.1a and
4.1b

FIGURE 4.1: Example of behavioral model as a result of the observation of multiple behaviors
in response to triggering actions

4.2. Markov chain based malware model 55

that conditions the transition probability values represent the analyzer actions that
triggered the behavior observed in the malware. Figure 4.2 shows an example of the
structure of a malware model, in which the partial model on the top is generated
from scratch after the observation of the malware reaction to a triggering action X.
Next, the model is updated by adding the observation of the reaction to the triggering
action Y. In fact, using the historical frequency of the malware actions observed, we
can update a model with new interactions and subsequent observations. Therefore,
models can be updated anytime in case of necessity, for example if more actions for
the analyzer become available after the initial analysis. The reason why we represent
states of the Markov chain with malware actions is that sequences of such actions
are what constitute different behaviors of the malware: a path in the Markov chain
is a possible execution trace, hence a possible behavior we are interested in model-
ing. Indeed, what we observe of the malware agent are its actions on the system,
and different malware perform different sequences of actions when triggered by the
analyzer. Obviously, since we use a Markov chain, we approximate what could be the
next action of a malware given the last one executed. However, this approximation
is acceptable in our application domain since we work with the probability associated
with a behavior (therefore a sequence in the model, or part of it), rather than sin-
gle specific actions alone. Nonetheless, when information associated to the internal
state of the agent to analyze can be observed, the states of the Markov chain can be
represented with such information instead of the actions performed. A behavior then
becomes a sequence of changes in the internal state of the agent. This is the case
for the experiments conducted in Section 9.1.3, where states of the Markov chain are
represented by the value of the internal accumulated reward for the agent playing a
lottery.

Our aim is to make the behavioral model independent from the system on which
AMA is performed and for this reason the state space of our approach is different
from that of Definition 3.1. As explained in Section 3.2, the state and transition
spaces in the work of (Williamson et al., 2012) correspond to the parts of the system
(on which the analysis is going to be performed) to monitor for changes during the
analysis process. There are two main limitations to this solution: first, if the system
for the analysis changes, so does the model, therefore all the policies extracted have to
be recomputed in order to reflect the changes; second, the identification of the system
resources to monitor and their connections require human effort and expertise. Con-
sequently, we define AMA directly on the Android APIs that compose an execution
trace of the malware, so as to not be bound to the specific underlying system for
the analysis. For example, one could employ this behavioral model also for Windows
malware, where the action set of the malware, i.e., the set possible APIs, will obvi-
ously be different from Android, but the formalization remains exactly the same. The
result of the analysis then will be a different model for every specific malware ana-
lyzed, incorporating the dynamics of the interaction that happened between analyzer
and malware. In particular, a sequence of malware actions in the model becomes an
execution trace of the malicious program, i.e., a behavior.

4.2.1 Platform independent model

It is worth discussing what we mean by platform independent model. Malware tar-
geting different operating systems are engineered in a different way. Moreover, the
specific programming language can cause differences in how malware are written, even
with respect to the same platform. There is however a common feature that is always
present in every implementation of malware code: API calls are performed during the

56 Chapter 4. Behavioral Model

PXi Malware

Action N

Trigger Y: P(Y)1
Trigger X: P(X)1 Malware) 998" X: PX)i Araiware
i i Action 3 Action N

Trigger Y: P(Y)3 Trigger Y: P(Y)j “aMalware
Action M

i

"‘4

FIGURE 4.2: Instance of a malware behavioral model after the observation of the reaction to
the triggering action X (on top) followed by a Y (below)

execution of any software (malicious or not). Now, these APIs are different depending
on the programming language and/or operating system, nevertheless they are always
present and they form sequences that can be represented by Markov chains. In our
case, the programming language does not pose any particular problems as for the An-
droid system all the applications are written in Java, therefore the APIs are consistent
across every application. For other operating systems, e.g., Windows, it may be easier
to observe the malware execution at a different level of abstraction in order to avoid
the differences in API layers between software. Indeed, there are different levels of ab-
straction from which the Markov chain models can be created: instead of representing
states with APIs, the system calls performed at kernel level could be employed, as the
actual implementation of the APIs rely on system calls, e.g., opening a file, input and
output operations etc. This solution makes the observations consistent with respect to
the underlying operating system, even when using different programming languages,
and so APIs. Another example of abstraction is that of (Williamson et al., 2012), pre-
sented in Section 3.2, where components of the underlying systems represent states,
e.g., registry flags, files. The methodologies developed in this thesis are built upon
the Markov chain representation of the models, independently on the actual meaning
of a state, as long as a path in the model can reliably represent the execution flow of
the malware, with respect to the analyzer triggering action, observed while generat-
ing such path. Naturally, the practical usage of our approaches to different operating
systems requires a non indifferent engineering effort to implement the sandboxing en-
vironment, to decide the appropriate abstraction level that is informative enough for
the type of malware that will be analyzed, to implement the analyzer as an agent that
can perform actions on the system of choice, and to tune the various parameters of
the algorithms that we developed. What remains unchanged is the theoretical work
that serves as a basis to our techniques that rely on theoretical frameworks such as
Markov chains and Bayesian or stochastic games and that are not influenced by the
level of abstraction (as long as it is meaningful enough, as previously explained).

4.2.2 Malware model design

We design the malware model in order to store the information collected by the an-
alyzer during the analysis process. As previously explained, such information is rep-
resented by the execution traces observed in response to the analyzer action that
triggered them. Figure 4.3 shows two examples of real Android malware models.
Vertices are labeled with malware API calls, while edges connect two consecutive

4.3. Model comparison o7

sms: 1.0 sms: 0.25

load call: 1.0 open \call: 0.70
Library Socket

sms: 0.4 delete
call: 0.7 \groadcas sms: 1.0 \Message/ sms: 1.0
call: 1.0 call: 1.0

sms: 0.6
call: 0.3

(A) Malware model example A

sms: 1.0
call: 1.0

load
Library

open

sms: 0.2
Socket

call: 0.4

sms: 1.0
1.0

sms: 0.8 abort
call: 0.6 \Broadcas

delete

call: 1.0

(B) Malware model example B

FIGURE 4.3: Example of two malware models based on execution traces as sequences of APIs
conditioned by analyzer actions sms and call

API calls of an execution trace and are labeled with transition probabilities (us-
ing the historical frequency) conditioned by the actions executed by the analyzer.
The labeling is crucial to represent behaviors that are triggered by specific stim-
uli. Considering a single analyzer action by keeping only its label on the edges,
e.g., sms, we obtain a Markov chain (Definition 2.25) representing the behavior
observed in response to such action. Hence, models are compositions of multiple
Markov chains, one for each analyzer action executed on the system during the anal-
ysis. Additionally, if a vertex is labeled with an API call that terminates one or
more malware execution traces, such vertex is marked as terminal (7'). Any path
from the initial vertex to a terminal depicts a possible API execution sequence of the
malware, i.e., a behavior. Looking at Figure 4.3b for example, we can see that if
the analyzer simulates an incoming sms, the malware is more likely to perform the
execution trace composed by loadLibrary,openSocket,delete Message rather than
abortBroadcast, delete M essage.

4.3 Model comparison

Given a malware model it is possible to extract the policy of such malware represented
as the transition function between API calls. For any analyzer action a, let v, be
the number of times vertex v is reached under a, and let e;, be the number of times

58 Chapter 4. Behavioral Model

the outgoing edge e of v (the set of outgoing edges of v is indicated with E,) has been
traversed under a. Then, given a model G = (V, E), we apply Equation 4.1 to retrieve
the conditioned probability value for each tuple (a,v,e) of G:

Ple|a)= L% (4.)

|E1)‘ + Vrq

Whenever v, = 0 or e;, = 0, the resulting probability value will be uninformative,
reflecting the fact that we have no information on how the malware behaves in such
case.

As previously explained, the end goal of AMA is to group malware models based on
shared characteristics and behaviors. The type of countermeasures to employ depends
on the type of malicious software, and in particular, detecting whether a malicious
behavior shares common characteristics with known malware families is extremely
important to take effective countermeasures. Our model formalization enables to
compare and group (possibly) similar malware by extracting their compatible vectorial
representation. First, the model graphs of the malware we want to compare are fused
together by merging vertices based on API call labels. Then, the transition function
of each model is projected on the merged graph using Equation 4.1. This results in a
feature vector for every sample where the features are the probability values associated
to the transitions between model states. Such features can then be used to perform
tasks such as classification and clustering using any standard machine learning tools
and algorithms. To see how the comparison operation works, consider malware models
A and B of Figure 4.3: the comparison procedure would fuse the models obtaining
a merged graph of the same shape of Figure 4.3a, since it includes the one of Figure
4.3b. Notice that in the general case, this will not happen if there are some states
that are not shared between the two models to merge. However, the same process
applies: such states would still appear in the merged model and the computation of
probability values on outgoing edges follows Equation 4.1. Then, the projection of the
transition functions of A and B with Equation 4.1 would result the in the following

sms call
A= [0.6 04 1 028 058 014 1 1 | 03 0.7 1 0.62 0.30 0.08 1 1]
B = [0.2 08 1 020 020 060 1 1 | 04 06 1 0.17 0.17 0.66 1 1]

The behavioral model presented in this chapter is used throughout all the thesis:
in Part IIT the models are dynamically generated at runtime and are used to guide
the analyzer action selection strategy; in Part IV we propose a long-term analysis of
the behavior represented by the models; in Part V, the model is again dynamically
generated by the analyzer at runtime, although the analysis process is completely
different with respect to Part III, i.e., a new formalization.

29

Chapter 5

Analysis Framework

In order to conduct experiments on malware analysis we need a safe environment under
our control for the execution of the malicious software. One of the standard techniques
used in these cases is to employ a sandboxed emulator in which to run malware and
observe their behavior in the controlled environment. Section 5.1 gives a brief overview
of the Android operating system and the structure of Android applications; Section 5.2
introduces the concept of Android operating system emulation; Section 5.3 presents
the analysis framework architecture that we built on the top of the Android operating
system; Section 5.4 details the software tools employed to build the sandbox; Section
5.5 lists all the possible triggering actions available for the analyzer to perform during
the analysis process.

5.1 Android Operating System

Android is an operating system that runs on the Linux kernel. It has been developed
by Google since 2005 and it is released under the open source Apache license. On
May of 2019, Google announced that there are currently 2.5 billion active Android
devices, that are popular with technology companies that require a ready made, low
cost and customizable operating system for high tech devices. Its open nature has
encouraged a large community of developers and enthusiasts to use the open source
code as a foundation for community driven projects, which add new features for
advanced users or bring Android to devices originally shipped with other operating
systems. At the same time, as Android has no centralised update system, most
Android devices fail to receive security updates: research in 2015 concluded that
almost 90% of Android phones in use had known but unpatched security vulnerabilities
due to lack of updates and support. Consequently, Android has become one of the
preferred targets of malware designers (Cheung, 2018).

5.1.1 Android architecture

The main hardware platform for Android is the Advanced RISC Machine (ARM)
architecture and its kernel is based on one of the Linux kernel. On the top of this, there
are the middleware, libraries and APIs written in C, and application software running
on an application framework which includes Java compatible libraries. Applications
are written in Java, but to achieve better runtime performance, the entire bytecode
is compiled into machine code upon application installation.

Android’s standard C library, Bionic, was developed by Google specifically for
Android, as a derivation of the standard C library code. Bionic has been designed
with several major features specific to the Linux kernel and optimized for low frequency
Central Processor Units (CPUs) (Yaghmour, 2013).

60 Chapter 5. Analysis Framework

Stock Android Apps
Launcher2 Phone AlarmClock
Email Settings Camera
Gallery Mms DeskClock Your Apps / Market AppS
Calendar Browser Bluetooth
Calculator Contacts
App
API
android.*
Binder javar
System Services (Apache Harmony)
Power Manager Mount Service Status Bar Manager
Activity Manager Notification Manager Sensor Service
Package Manager Location Manager Window Manager
Battery Service Surface Flinger .
‘ Dalvik / Android Runtime / Zygote |
JNI
Libraries Hardware - -
Bionic/ OpenGL/ WebKit/ .. | | Abstraction Layer Native Daemons Init / Toolbox

Linux Kernel
Wakelocks / Lowmem / Binder / Ashmem / Logger / RAM Console/ ...

FIGURE 5.1: Android operating system architecture

5.1.2 Android security

Android applications run in a sandbox, an isolated area of the system that does
not have access to the rest of the system’s resources, unless access permissions are
explicitly granted by the user when the application is installed. The sandboxing and
permissions system lessens the impact of vulnerabilities and bugs in applications, but
developer confusion and limited documentation has resulted in applications routinely
requesting unnecessary permissions, reducing its effectiveness. Malware designer often
exploit the permission system tricking the standard user in allowing an application
to have unrestricted access to the system, making easier for malicious applications to
release their payload.

Research from security company Trend Micro lists premium service abuse as the
most common type of Android malware, where text messages are sent from infected
phones to premium rate telephone numbers without the consent or even knowledge
of the user. Other malware display unwanted and intrusive adverts on the device, or
send personal information to unauthorised third parties. One of the last and most
dangerous discoveries in Android malware, are those intercepting bank, such as the
ones containing One Time Password (OTP), to steal money (Yaghmour, 2013). Notice
that the malware types just described require user interaction to show the malicious
behaviors: for this reason an analysis based on triggering actions is fundamental to
be able to extract comprehensive information about malware.

5.1.3 Android application

An Android application (app) is distributed as a package with .apk extension and has
the following structure:

e Java bytecode, compiled from Java source code, in a classes.dex file;
e resource files like images, sounds and others;

e .zml files, included the AndroidManifest.zml.

5.1. Android Operating System 61

javac -
Java code Byte code
java .class dx _
L Dalvik exe -
classes.dex aapt
Byte code _J
<xml> L
Other .class files
AndroidManifest.xml .apk
A

Resources

FIGURE 5.2: Android application structure

Android apps are made of loosely tied components. Components of one application
can invoke or use components of others. There is no single entry point to an Android
app, instead, there are predefined events called intents that developers can tie their
components to, thereby enabling their components to be activated on the occurrence
of the corresponding events.

Components

There are four types of components:

e Activities: the main building block of all visual interaction in an Android app;

e Services: Android services are akin to background processes or daemons in the
Unix world;

e Broadcast Receivers: Broadcast receivers are akin to interrupt handlers.
When a key event occurs, a broadcast receiver is triggered to handle that event
on the app’s behalf;

e Content Providers: Content providers are essentially databases. Usually, an
application will include a content provider if it needs to make its data accessible
to other apps.

Intents

Intents are the late binding mechanisms that allow components to interact. An ap-
plication may request to open a web page even if it has not the capability to do so.
Components can be declared as capable of dealing with given intent types using filters
in the manifest file. The system will thereafter match intents to that filter and trigger
the corresponding component at runtime. The intents, together with the components
are what make an application interact with the system and accept input from the
user. Therefore they represent the entry point for most triggered malicious behavior
that an analyzer wants to intercept and observe.

62 Chapter 5. Analysis Framework

Manifest

It informs the system of the application’s components, the capabilities required to
run the app, the minimum level of the API required, any hardware requirements, etc.
The manifest is formatted as an XML file and resides at the top most directory of the
application’s sources as AndroidManifest.xml. It is used by many mobile antivirus to
statically obtain information about possible application behaviours or to generate a
signature.

5.2 Android emulation

Executing a malware, even if purposely, requires a safe environment in which analysis
can be performed without permanent damages. This allows to avoid the disruption of
the physical machine in use or others linked to that since malware can act in many un-
expected ways. A possible solution could be building a completely isolated computer
network as a test platform without internet access, called air gapped network. An
approach like this, lowers the risk of spreading an infection, but is highly limiting: the
majority of malware needs an internet connection to show their complete malicious
potential. Hence, performing an analysis in such an environment gives imprecise and
incomplete results. Moreover, if one or more of the computers get damaged in an
irreparable way (as it is likely to happen), they need to be completely reinstalled and
this is a time consuming task. Drastic consequences are not the only reason a com-
puter operating system must be reverted to a situation back in time, before something
happened. It is often the case that, for studying a malware, it is necessary to run it
multiple times from exactly the same state of components. This is hardy achievable
using normal computers.

A safe environment in which executing malicious software, resolving the problems
presented before, is the sandbox, or rather a security mechanism for separating run-
ning programs. It is often used to execute untested code, or untrusted programs from
unverified third parties, suppliers, untrusted users and untrusted websites. A sandbox
typically provides a tightly controlled set of resources for guest programs to run in,
such as scratch space on disk and memory. Network access, the ability to inspect the
host system or read from input devices are usually disallowed or heavily restricted.
A sandbox is implemented by executing the software in a restricted operating system
environment, thus controlling the resources that a process may use. To build our anal-
ysis framework we make use of an Android emulator, which is a piece of software that
simulates the Android hardware. An emulator does not execute code directly on the
underlying hardware (since it may be different), instead, instructions are intercepted,
translated to a corresponding set of instructions for the target platform, and finally
executed on the hardware. Thus, whenever a sensitive instruction is executed (even
when it is unprivileged), the system emulator is invoked and can take an appropriate
action.

5.3 Framework architecture

The framework we built as a controlled sandbox is composed of three main modules:
the environment manager (the guest machine emulator), the behavioral observation
module and the decision making routine for the analyzer, i.e., triggering action se-
lection. Figure 5.3 depicts the framework architecture reporting the three mentioned
modules. In particular, given an application to analyze, first the emulator is started
and after the boot is completed the application is installed and executed. To avoid

5.4. Experimental platform 63

Set of applications : Behavior observation module

Behavior 4_047 Execution [f_ !
. trace i
Processing E

& Android
"' Sample 1

Guest machine system

“ .
l'l Android

Sample 2 N > N N ;
P —(O O »(O————() Apply trigger
i Startemulator Install APK Execute APK | 0

Analyzer decision making strategy

'ﬁ' Android Selected
Sample N : O trigger
: Selection routine

FIGURE 5.3: Framework architecture

downtime, the analyzer trigger selection operation is executed in parallel with the
setup of the environment operation. At this point, the environment is ready and a
trigger has been selected, hence it can be applied by the analyzer in order to extract
the response as an execution trace. Every module can be easily substituted with an-
other of the same type: for example, the trigger selection depicted in the figure is a
MCTS for the approach described in Chapter 6, whereas it plays a stage of Bayesian
game in the approach drawn in Chapter 10. One could to the same for the guest
machine, which is Android in our case, creating a module to work with Windows or
other operating systems.

5.4 Experimental platform

The experimental platform we built to implement the framework, is composed by a
set of tools based on an emulator acting as a sandbox. The virtual environment is
a Genymotion' emulator mounting an Android 6.0 image. The main tools employed
include Xposed?, a modular framework that can monitor and alter the behavior of
the system and applications hosted within the guest side of the emulator, and Oracle,
an ad-hoc Xposed module we developed to hook API calls performed by the mali-
cious software under analysis. This last component provides also some measures to
neutralize common anti-detection techniques employed by malware to avoid dynamic
analysis if an emulated environment is detected. Oracle is designed to inject itself
in the applications to analyze and intercepts all the parts of such application that
make it interact with the system: activities, services, receivers, providers, intents (as
described in Section 5.1.3).

5.5 'Triggering actions

The action set for the analyzer agent is composed of 17 different actions that mimic
a standard user’s behavior:

"https://www.genymotion. com
’https://repo.xposed.info

https://www.genymotion.com
https://repo.xposed.info

64 Chapter 5. Analysis Framework

1. send SMS 10. install application

2. receive SMS 11. uninstall application

3. make call 12. change GPS position

4. receive call 13. enable GPS

5. add contact 14. disable GPS

6. enable wifi 15. internet navigation from default
7. disable wifi browser

8. activate screen 16. charge battery

9. deactivate screen 17. discharge battery

The choice of these triggering actions is important as they are purposely generic,
i.e., not application specific, and can be applied to a wide variety of applications of
different nature, e.g., games, banking applications, web navigation etc. Moreover,
those actions are commonly performed by the standard user during normal usage of
the smartphone.

The framework presented in this chapter is used in all the empirical evaluations
of our proposed approaches. Specifically, the different techniques that we designed
have been implemented in modules for this framework that has subsequently been
used to analyze a dataset of real Android malware composed of about 1400 samples
partitioned into 24 different families that have been selected from a bigger dataset
(F. Wei et al., 2017). The rationale for the selection process of the malware families
to analyze is explained in Section 7.1.

Part 111

Dynamic Generation of Malware
Behavioral Models

65

67

Chapter 6

A Monte Carlo Tree Search
Approach to Active Malware
Analysis

In this chapter we propose a novel AMA technique based on MCTS that dynamically
generates the malware model at runtime. The partial model generated up to a certain
point of the analysis is also used to guide the reminder of the analysis since it serves
as a basis for the action selection strategy of the analyzer. Section 6.1 presents our
SECUR-AMA framework, an improved AMA approach for Android systems; Section
6.2 details the analysis pipeline with respect to the framework described in Chapter
5; Section 6.3 provides a running example of the SECUR-AMA analysis process with
particular attention to the MCTS execution.

We differ from previous approaches described in 3.2 as they rely on human ex-
pertise to decide which actions should be executed by the analyzer (also in the form
of a manually designed model), or implement automated random action selection
strategies. In this chapter we show that using an intelligent strategy for the analyzer
decision making strategy (such as the one we propose) has a significant impact on the
results in terms of malware identification.

6.1 SECUR-AMA

The SECUR-AMA analysis framework has been published in (Sartea, Farinelli, and
Murari, 2020) as a refinement of the prototype version we previously proposed in
(Sartea and Farinelli, 2017). Following (Williamson et al., 2012), introduced in Section
3.2, we formalize our framework as a stochastic game between an analyzer agent and a
malware, where the former tries to acquire information about the latter by stimulating
it and observing the reaction. This analysis design is justified by works where practical
problems of interest are represented as multi-agent systems (in our context we deal
with the specific case of two-agent systems) in which intelligent and autonomous
entities interact within a complex dynamic environment learning information and
adapting their behavior accordingly. However, as explained in Section 4.2, we consider
the execution trace of API calls as response from the malware instead of monitoring
system resources.

Definition 6.1 (SECUR-AMA game). The analysis game of SECUR-AMA is a

stochastic game with
e N = {ny,ne} where ny is the analyzer and ny is the malware

o A=A x Ay where

68 Chapter 6. A Monte Carlo Tree Search Approach to Active Malware Analysis

— Aj consists of all the possible triggering actions for the analyzer (make a
call, connect to Wik, etc.)

— As consists of all the possible execution traces of the malware
e S is the set of states, each one defined by an instance of malware model
o u = (uy,uz) where uy : S x Ax S — RT is the utility function for the analyzer
e T':Sx AxS — Ry, is a probabilistic transition function

SECUR-AMA is clearly an instance of a stochastic game of Definition 2.22 between
two players: the analyzer nqy and the malware no. The action set A; available to the
analyzer comprises all the possible triggering actions that can be performed on the
system and that could possibly cause a reaction in the adversary (make/receive call,
enable/disable GPS, etc.). The malware action set As instead includes all the possible
execution traces (sequences of API calls) that a malware can exhibit. A state of the
game is defined by an instance of malware model that the analyzer generates during
the analysis process (Section 4.2). The utility function is defined only for the analyzer
(Section 6.1.2) and is based on the entropy gain between the model of current state
s and next one s’: such transition between states is governed by function T' using
the joint actions of the players. While playing SECUR-AMA we do not take into
account rewards for the malware since our focus is to analyze it by extracting the
highest amount of information on the adversarial behaviors, rather than to counter
a malware by minimizing its disruption potential. At the same time, malware are
not aware of the fact that they are playing a game, therefore they do not “compute a
strategy” based on what the analyzer may do in each situation. As such, computing
an equilibrium for the game would not be beneficial for the analyzer. Hence, the
formalization reflects the point of view of the analyzer on the game and the reward
function is designed to guide the information gathering on the malware.

The aim is to learn the malware behavioral model by using the minimum amount
of analyzer actions. Nevertheless, in contrast to (Williamson et al., 2012), where a
fixed and pre-specified model is provided in order to play the analysis game, we do not
have access to such information (the “playground”). Consequently, the main problem
to solve is how to handle the huge action space available to the malicious agent while
planning the most promising analyzer action, as there are many possible sequences
of API calls that can be triggered in response. To tackle the mentioned problems we
decided to leverage on MCTS (Section 2.3.3) as it is a suitable approach to visit big
search spaces and also very flexible depending on how the tree and default policies
are implemented (Browne et al., 2012). We present the analysis technique with a top-
down approach starting with the high-level view of the process and then explaining
the technical details.

6.1.1 Monte Carlo analysis

The Monte Carlo Analysis (MCA) procedure is presented in Algorithm 6.1, where
the malware model is generated incrementally by collecting the information extracted
from the previous responses to the analyzer actions. Initially, the algorithm starts
with an empty, hence uninformative, model (line 1). Next, the analyzer chooses the
best action® to play on the system (in order to stimulate the malware) with a MCTS
that runs multiple simulations using the information contained in the current model
(line 4). Once the resulting choice is returned, it is concretely executed on the system

!The one supposed to obtain the most information possible from the malware.

6.1. SECUR-AMA 69

and the malware response is recorded as a sequence of API calls in a log file (line
5). Parsing the log, the current model is updated both on structure and statistics
as transition probabilities between API calls (line 6). At this point the game moves
to the next state associated to the new malware model. The algorithm ends when
a computational stopping condition is met, usually corresponding to a game length,
thus a fixed number n of analyzer triggering actions. The output is given by the last
model obtained.

Algorithm 6.1 Monte Carlo Analysis
Require:

n - game length
Ensure: Malware model

1: model <+ () > Start with empty model
2: for n times do

3 tmpmodel < model.COPY ()

4 a < MCTS(tmpmodel) > Choose next action
5: trace < EXECUTE(a) > Observe malware reaction
6 model . UPDATE(trace, a)

7

return model

6.1.2 Monte Carlo tree search implementation

As previously mentioned, MCTS is a very flexible algorithm that can be adapted to
many application domains depending on the implementation of the tree and default
policies presented in their generic tasks in Section 2.3.3. In the following we detail
our policy design choices for SECUR-AMA.

Tree policy

The role of the tree policy is to descend the search tree from the root to a leaf node
by following the most promising branch. This allows to generate a tree without per-
forming an exhaustive search, saving precious computational resources. The decision
of which node to select at each level of the descent is modeled as a multi-armed bandit
problem addressing the exploration-exploitation dilemma. In fact, a trade-off between
selecting actions that appear to be promising and actions belonging to sub-spaces not
well sampled yet and that may turn out to be optimal in the future, represents a
suitable solution to our problem. Taking inspiration from the proposal of (Kocsis and
Szepesvari, 2006), we employed UCT, often applied to multi-armed bandit contexts,
to compute an estimate of the optimality value associated to every possible choice.
For details refer to the background Section 2.3.4

Default policy

The default policy is responsible for conducting a simulation from the state of the
game corresponding to an expanded node of the tree to a leaf corresponding to the
termination of the game plus one more step (motivated in Section 6.1.2). The process
simulates multiple interactions between the analyzer agent and the malware, at the
end of which a reward for the former is estimated based on the outcome related to
the conclusion of the game. As the reward is used by the tree policy to focus only
on promising branches of the tree (Equation 2.6), a bad default policy could make

70 Chapter 6. A Monte Carlo Tree Search Approach to Active Malware Analysis

the entire MCTS imprecise or even useless. In our implementation the simulation is
composed as a sequence of iterations where the analyzer selects a triggering action
and the malware responds to it with an execution trace of API calls. This informally
described procedure is reported in Algorithm 6.2 and is part of the MCTS routine
(line 4 of Algorithm 6.1).

Algorithm 6.2 Default Policy
Require:
n - expanded node
tmpmodel - temporary model
Ensure: Resulting model of the simulation

a 4+ n.action
repeat
trace < SIMULATE(a)
tmpmodel .SIMULATE(trace, a)
a < CHOOSEACTION(tmpmodel)
until end of the game
return tmpmodel

There are two crucial operations to perform in the default policy, the first of which
being SIMULATE (line 3) to predict malware responses. Given the number of all pos-
sible execution traces, we devised a simple yet effective simulation strategy: if the
analyzer triggering action a has never been concretely executed by the analyzer on
the system previously in the game, we produce random API sequence for the mal-
ware response. Otherwise, a past observed API sequence is produced with the same
historical probability associated to the observation of such trace in response to a.
Consequently, at the beginning of the game the simulation is purely random, but it
becomes more and more accurate as the game evolves. The second important opera-
tion is CHOOSEACTION (line 5) which implements the analyzer strategy while playing
the game. Recall that every state of the underlying game is associated to a mal-
ware model, therefore every node of the search tree is also associated to a temporary
malware model m corresponding to the state of the game represented by such node
(composed by a mix of simulated malware responses generating during the MCTS and
actually observed ones). We adopted an information-centric reward based on entropy
aimed at selecting the action a that has maximum entropy value Hy,(a) in the current
temporary model m.

H(a) = — Z Dy,(a);In Dy, (a); (6.1)

Dy, (a) is the probability distribution for reaching a vertex i, labeled as terminal
(T') in the model m, starting from the initial vertex while considering the analyzer
action a. The motivation for this choice of value function is that usually higher
entropy is an indicator of a more informative action. Since the aim is to generate a
model for the malware that is as informative as possible (without having access to the
code, but only to the observation of behaviors), minimizing the entropy of the model
under construction is a reasonable solution for the analyzer to confidently learn how
a malware agent reacts to the stimuli. For the model depicted in Figure 4.3a, the

6.2. Analysis pipeline 71

computation of the entropy for action sms uses Theorem 2.2 as follows for n = 3 steps

0.4

Dp(sms)=[1 0 0 0 0 0 0]

coocoocooo
cooooo
coocoo~O
CcCoocowo o
coocooo

=[0 0 0 0 015 0.85]

read, deleteMessage

H,(sms) = —0.15-In(0.15) + 0.85 - In(0.85) = 0.423

Reward backpropagation

The reward for the analyzer is meant to represent the amount of information extracted
by performing a triggering action in the environment. In particular, during the back-
propagation step, the reward accumulated in each node of the path between the root
and the expanded node is the entropy gain H,,(a) — H,,(a) computed with Equation
6.1, where a and m are the action and the temporary model associated to a node,
while m/ is the temporary model obtained at the end of the simulation step. Notice
that for the nodes at maximum depth (length of the game) H,,(a) — Hy,(a) = 0, hence
we make the simulation of MCT'S go one step further (to depth n+1) and compute the
entropy gain from that model. Such value gives an estimate of how much information
the analyzer might acquire by playing a certain sequence of actions from the current
state of the game to the end of it.

6.2 Analysis pipeline

Figure 6.1 depicts the analysis pipeline by reporting three main operations: setup of
the environment, generation of the behavioral model and analyzer trigger selection.
In particular, given an application to analyze, first the emulator is started and after
the boot is completed the application is installed and executed. To avoid downtime,
the analyzer trigger selection operation is executed in parallel with the setup of the
environment operation. At this point, the environment is ready and a trigger has
been selected, hence it can be applied by the analyzer in order to extract the response
as an execution trace that will update the current application model. The process is
iterated for a predefined number of times n = 30, corresponding to the length of the
analysis game. The MCTS then is set to reach a maximum depth of 30 and the reward
to backpropagate is computed from the model obtained at that point. Based on our
architecture and pipeline, the stopping condition for the MCTS instead is met when
the emulator has finished booting and the application is installed and running, ready
to be stimulated. In case of unsatisfying results and depending on the computational
power available, it is possible to let the MCTS run longer, up to a predefined number
of iterations or by increasing the waiting time before selecting the outcome.

6.3 Running Example

The process of stimulating a malware is iterated for a predefined number of times
n = 30, corresponding to the length of the analysis game. The MCTS then is set to

72 Chapter 6. A Monte Carlo Tree Search Approach to Active Malware Analysis

Set of applications : Generation of the behavioral model;

Execution |
App model <—O<7 trace <
Update model

& Android
"l Sample 1

Setup of the environment;

(O >O >O ><A> Apply trigger

& Android
"l Sample 2

Start emulator Install APK Execute APK

Analyzer trigger selection

'ﬁ' Android e .| Selected [f]i
Sample N : % | trigger :
i Execute MCTS :

FIGURE 6.1: SECUR-AMA analysis pipeline

reach a maximum depth of 30 and the reward to backpropagate is computed from the
model obtained at that point. Based on our architecture and pipeline, the stopping
condition for the MCTS instead is met when the emulator has finished booting and the
application is installed and running, ready to be stimulated. In case of unsatisfying
results (in terms of correctness of the models and with respect to the final classification
score) and depending on the computational power available, it is possible to let the
MCTS run longer, up to a predefined number of iterations or by increasing the waiting
time before selecting the outcome. In fact, increasing the computational power of the
analyzer allows to compute the next action to perform more accurately since MCTS is
a CPU bound process and the more iterations can be performed in the time that has
been allocated, the better the tree will estimate future interactions between analyzer
and malware. In the next paragraph we provide a running example of the analysis
process.

Suppose that the stochastic game of SECUR-AMA is currently in state s after 5
stages (5 analyzer-malware interactions) out of 30 (total game length). The state s is
defined by the malware model s,, generated so far and the analyzer has a history of
past malware execution traces s; observed in response to specific triggering actions.
The analyzer has now to select the 6" triggering action to play next by running a
MCTS with input model s,, and maximum depth 30 — 5 = 25. Figure 6.2 provides
a running example of a MCTS action selection operation. Every node of the tree
contains the name of its triggering action and a couple (n, X) where n is the number
of visits and X the accumulated reward for that node. The example starts at the
beginning of the 16" iteration (notice that n = 15 for the root node). The selection
step visible in Figure 6.2a descends the tree by computing the UCT (Equation 2.6) for
every node at the same level to select the one with highest value. While descending,
the input model s,, is updated with a malware execution trace in response to the
analyzer triggering action a corresponding to the node traversed (using the history
Sm or simulating a new trace as per Section 6.1.2). The green arrows highlight the
selected descent path. The expansion of the selected node is represented in Figure
6.2b where also the n values of the nodes in path have been updated (green) according
to the selection step. Figure 6.2c shows that from the expanded node, the remaining
number of interactions to the end of the game (23 to reach 30 + 1) are simulated
based on the history of the current analysis s;, (see the default policy of Section
6.1.2), resulting in a model m’. In particular, at the first step of the simulation the
analyzer selects the triggering action with associated highest entropy in the malware

6.3. Running Example 73

(A) Selection (B) Expansion

browse
(4,1.5)

browse
(8,2.5)

(¢) Simulation (D) Backpropagation

F””””i """"" H

Simulation

FIGURE 6.2: MCTS running example

temporary model corresponding to the expanded node, simulates a malware response
to such action, updates the temporary model and moves the game to the next state to
continue the simulation. In the backpropagation step (Figure 6.2d), for each node the
information gain is computed with the entropy difference H,,(a) — H,y(a), where a
and m are the triggering action and the temporary model tied to a node respectively,
from which rewards are updated accordingly (green). For an example of entropy
calculation see Equation 6.2 in Section 6.1.2. The 16" iteration is completed and
if the MCTS process was to be stopped now, the selected action would be the most
visited child node of the root, i.e., “wi-fi”.

75

Chapter 7

Empirical Evaluation of

SECUR-AMA

This chapter reports a detailed empirical evaluation of SECUR-AMA compared with
other state-of-the-art techniques, namely DENDROID (Suarez-Tangil, Tapiador, et
al., 2014) and CANDYMAN (A. Martin et al., 2018). In malware analysis, the first
step to analyze an unknown software is to decide whether it could be malicious (Aafer
et al., 2013). Having decided that a program contains malicious code, a main task
is represented by the identification of the specific malicious family a software belongs
to in order to use proper (possibly already known) countermeasures to handle the
potential threat. Our method aims to accomplish this identification goal employing
standard machine learning techniques to train various classifiers, namely K-NN, Ran-
dom Forest and Linear SVM. In particular, we want to obtain models that are as in-
formative as possible, i.e., a reliable representation of malware behaviors in response
to specific analyzer actions, leveraging on the information entropy. Lower entropy
means probability values on the transitions between APIs that are further away from
uninformative. Therefore, entropy is an internal measure that SECUR-AMA opti-
mizes (minimizing it) during the analysis process, whereas the Fj-score is used as
external measure to evaluate the results of the classification. Section 7.1 reports the
details of the dataset of real Android malware used in the experiments; Section 7.2
explains the experimental methodology adopted to conduct the empirical evaluation;
Section 7.3 reports the obtained results; Section 7.4 presents the runtime performance
of the analysis process; Section 7.5 concludes the chapter with final considerations
and possible future directions.

7.1 Dataset

The dataset we used to test our approach has been built by selecting approximately
1400 malicious programs partitioned into 24 different families from the samples col-
lected in (F. Wei et al., 2017). The number of families is comparable to those of
other dynamic analysis techniques (CANDYMAN for example reports experiments
for 24 families as well). One of the reasons that guided our selection process is that,
in contrast to the majority of the works on Android dynamic analysis, we built our
framework to use the 6! (more recent) version of the Android operating system, in-
stead of the 4*". This is a specific choice we made in order to conduct an empirical
evaluation that is realistic with respect to the malware that is spreading nowadays (or
in recent times). This is very different from all the other dynamic analysis techniques
(at least those that are publicly accessible), that are only able to analyze older malware
that are no more around or new malware executing on older versions of the operating
system (when possible at all). Many malware that were written for Android 4 or be-
low are not able to perform malicious behaviors anymore on newer versions since the

76 Chapter 7. Empirical Evaluation of SECUR-AMA

security layer of Android has radically changed and improved. In this regard, many of
the malware contained in older datasets, e.g., “Genome”; simply do not run on newer
versions of Android. Notice that this problem is specific for the dynamic analysis
paradigm, whether static analysis techniques can analyze older malware without any
particular issues since they study the binary file without executing it. Considering all
of the above, static analysis techniques can report results about many thousands of
malware analyzed, in contrast to us.

Since our analysis is active, the main principle that guided the selection process
was the presence of triggering mechanisms inside the malware payload. For instance,
the family Finspy concerns the logging and exfiltration of personal information of the
user on an Android device, thus it is sensitive to calls, SMS activities, browser naviga-
tion history updates, etc. For our classification problem, some of the families included
in this experiment can be seen as challenging to correctly classify since they employ
specific mechanisms aimed to deceive the analysis. In particular, Gorpo and Kemoge
exploit a combination of anti-analysis techniques such as the dynamic loading of the
malicious code at runtime and the execution of noisy API calls that are not useful to
implement the malware payload but serve as a method to mislead an analyzer that fo-
cuses on the sequence of actions performed by the malicious sample. Hence, resulting
models will contain malicious behaviors interweaved by APIs that can induce an ana-
lyzer to ignore malicious characteristics. Moreover, AndroRat and GoldDream families
distinguish themselves on the type of infection vector. Such classes are composed by
small malware injected into complex harmless applications! such as games. This pecu-
liar feature causes the models generated by SECUR-AMA to have only few branches
depicting malicious behaviors (potentially negligible), thus making their identification
hard. The rest of the families involved in the dataset can be considered less sophis-
ticated because they do not employ advanced anti-detection mechanisms and do not
hide themselves through injection. Figure 7.1 shows the composition of the dataset in
terms of relative frequency for each family. It can be noticed the unbalanced nature of
the composition with families with more than 200 samples and others with as few as
5. Such dataset characteristic reflects how malicious software appear in the real world
in relation to their families: recently, the focus in malware design has shifted from the
creation of new types of malicious payloads, i.e., the code slice of a malware aimed at
causing harm, to the engineering of the stealthy system?, while the payload is reused
from older deployed malware as is or with minor modifications (Upchurch and Zhou,
2016). As a consequence of this trend, most of the malware in the wild fall in few
families, inducing a disproportion among the cardinality of specimens contained in
the different families (Walenstein and Arun Lakhotia, 2006; Walenstein et al., 2007).

7.2 Experimental methodology

In order to empirically assess the contribution of our proposal we perform a compar-
ison of SECUR-AMA with relevant techniques proposed in literature (Suarez-Tangil,
Tapiador, et al., 2014; A. Martin et al., 2018). The main goal of such methods is
the same: given a set of known malware K, where each element is labeled with its
actual malicious family identifier, and a set of unknown (unlabeled) malware U, for
each sample u € U infer for the malware family which u should belong to by using
the knowledge provided by K. We selected state-of-the-art approaches that employ

1We refer to small and complex programs in qualitative terms, using as discriminant the cardinality
of instructions composing such objects.
2The code of a malware that makes it to remain undetected during its execution.

7.2. Experimental methodology 7

GoldDream
Kuguo

Mseg
AndroRAT
Leech
Kemoge

Fjcon

Bogx

Triada

Gorpo

> SmsZombie
€ Winge
© FakeDoc
w Opfake
SpyBubble
Vidro

Stealer

Vmvol

Obad

Svpeng

Cova

Finspy

Tesbo

FakeAV

o
wv

10 15 20
Frequency

FIGURE 7.1: Dataset composition

different paradigms in the analysis process, differentiating from the AMA approach
of SECUR-AMA. In (Suarez-Tangil, Tapiador, et al., 2014) authors propose a static
method, called DENDROID (Section 3.1.1), to determine the distribution of particu-
lar structures embedded in the applications of the dataset and exploit such features
to train a classifier to recognize the similarity degree between malware samples and
family representatives. The work presented in (A. Martin et al., 2018) instead belongs
to the dynamic paradigm, in which authors describe a dynamic process to conduct the
analysis of malware, called CANDYMAN, followed by the classifier training phase. A
core aspect of this work is the wide range of supervised algorithms considered and
evaluated, involving almost all classical learning methods and also deep learning tech-
niques (Section 3.2). The analysis steps of CANDYMAN might closely recall the main
concepts composing the methodology of SECUR-AMA. Indeed, the authors choose to
model a Markov chain using the state space corresponding to the malicious APIs
captured during the observations. Nonetheless, there are some important points that
distinguish our approach. First of all, CANDYMAN randomly selects the triggering
actions that aim at simulating users’ behaviors. In contrast, in SECUR-AMA the
analyzer agent implements a specific strategy, based on information gain, through
multiple MCTS stages. This leads to different resulting models: for CANDYMAN, a
single Markov chain is obtained for each sample and there is no labeling of the tran-
sition probabilities between Markov chain’s states; SECUR-AMA instead retrieves a
set of Markov chains (each one specifying the behaviors observed in response to an
analyzer action, hence associated to a triggering action label). As a consequence, we
can consider CANDYMAN as naively active as it does not use an informed strategy to
interact with the malware agent. Moreover, CANDYMAN applies some approxima-
tions on the Markov chains to lower the number of states composing the Markov chains
and, in the feature extraction part, to reduce the feature space used to subsequently
train a classifier’. During the replication of the work of (A. Martin et al., 2018) we
focused on preserving the same analysis process described by the authors, but some
details in the implementation have been changed due to programmatic reasons related
to some parts of our framework. In particular, the state space of the Markov chains we

3To summarize, CANDYMAN employs the API labels retrieved through Droidbox as state space
for the Markov chains, which represent an abstraction of real Android APIs. Moreover, once the
feature vector is built, it erases from the feature model all transitions that occur less than € times.

78 Chapter 7. Empirical Evaluation of SECUR-AMA

& Android Execution Merge Model: ensemble
W Maiware) traces ||| of Markov chains
‘% CFG Random | Analyzer ‘:I .
Extraction actions | agent oo :
(statically) (Monkey) T Transition
- babilities
Code structures Execution Merge | \odel: single Pre :
__ (chunks) H ‘ (Jtsrg(;:je?"e O Markov chgin | = Btract |

Mine (to Transition
VSM) probabilities and
state frequencies

Extract

Malware family
vectors
(representatives) \fTrain

Classifier

FIGURE 7.2: Overview of the experimental methodology for behavioral analysis.
SECUR-AMA is contained within in the dashed area.

generate does not use event labels provided by the DroidBox tool?, but rather adopt
the actual Android API calls captured during the malware execution. Furthermore,
some experimental setup choices made in (A. Martin et al., 2018) have been changed
due to the characteristics of our setting, e.g., families with less than 20 malware are
not discarded as we want to be able to handle also unbalanced datasets. However,
the mentioned changes do not affect the overall results obtained from the classifiers
we trained, which are comparable to the ones obtained in (A. Martin et al., 2018).

In Figure 7.2 we report a schematic overview of the experimental methodology.
First, every malicious sample is subject to a mining phase to extract information about
the malware, which is different for each method implemented, i.e., code chunks for
DENDROID, log files of execution traces for both CANDYMAN and SECUR-AMA.
Next, outcomes of CANDYMAN and SECUR-AMA are parsed in order to obtain a
behavioral model of the sample (DENDROID skips this operation since the behavioral
model is considered to be the set of chunks). Finally, features are extracted from each
model and used to train a classifier to identify the malicious family an unknown sample
belongs to. Both DENDROID (Suarez-Tangil, Tapiador, et al., 2014) and CANDY-
MAN (A. Martin et al., 2018) are focused on the Android platform and they provide
a classification approach to produce malicious family detectors for each examined
sample. In our empirical evaluation we also employ supervised learning algorithms®.
In particular, we decided to conduct experiments using the best performing classifier
pointed out in each paper, i.e., K-NN with £ = 1 and Random Forest for DENDROID
and CANDYMAN respectively. We adopted Stratified K-Fold Cross Validation with
K =5 to provide training and testing sets with 5 different random splits. Quality of
the results is assessed with unweighted® standard measures, i.e., precision, recall, and
Fi-score. Implementations of classifiers, quality measures and cross-validation make
use of Scikit-Learn (Pedregosa et al., 2011). For each technique tested, we report the
performance values achieved for every malware family in the dataset and the overall
average score.

“https://github.com/pjlantz/droidbox

SDENDROID efficiently supports only the 1-NN algorithm, hence we report only results for such
classification technique in the corresponding table.

5The cardinality of each class does not affect the computation of the overall scores, hence every
class has the same weight in the aggregated measures.

https://github.com/pjlantz/droidbox

7.3. Results and discussion 79

Best Overall

Precision
I Recall

DENDROID
F-Score

1-NN

Method

SECUR-AMA
Linear SVM

Linear SVM

00 01 02 03 04 05 06 07 08 09 1.0
Value

FIGURE 7.3: Malware classification comparison

7.3 Results and discussion

All three techniques are compared with 1-NN (chosen since DENDROID is built to
work only with it). CANDYMAN and SECUR-AMA are also compared with Random
Forest and Linear SVM where the first is shown to perform better with CANDYMAN
in (A. Martin et al., 2018), whereas the second performs better with SECUR-AMA.
The overall best results for every approach are reported in Figure 7.3 where it is visible
that SECUR-AMA with Linear SVM performs better than the others. However, every
method has its strengths and weaknesses that are worth discussing more in detail.

Table 7.1 reports the results of the comparison between all three techniques where
1-NN is used as classifier, Table 7.2 reports the results of the comparison between
CANDYMAN and SECUR-AMA with Random forest classifier, and finally, Table 7.3
reports again the results of the comparison between CANDYMAN and SECUR-AMA,
but with a Linear SVM classifier. The two active techniques, i.e., CANDYMAN and
SECUR-AMA perform better than the static one, i.e., DENDROID. As explained in
Section 3.1.1, common problem of static methodologies comes from analyzing mal-
ware with encrypted malicious code deployed at runtime or obfuscated. This lowers
the classification score of DENDROID for many of the families in the dataset. Dy-
namic analysis instead typically suffers of the opposite problem: it is difficult to
observe executions of the program that cover the entire code, i.e., the code coverage
problem. Such problem is noticeable in the Opfake, Winge and Triada families as
they are designed to receive commands from an external server controlled by an at-
tacker in order to be triggered and show their malicious behavior. DENDROID is
able to analyze such behaviors by looking at the code without executing it, resulting
in a better classification score for such families regardless of the classifier used for
CANDYMAN and SECUR-AMA. However, the code coverage limitation is much less
prominent in Android malware analysis since what is observed is usually relevant in
the overall behavior, as the software are developed for the specific smartphone usage.
There are obviously some exceptions, nonetheless, experiments confirm the viability of
dynamic analysis in our case to focus on what is important to learn for the classifica-
tion task. Other families for which the static analysis of DENDROID performs better
than the other two techniques are AndroRAT and GoldDream, characterized by small

80 Chapter 7. Empirical Evaluation of SECUR-AMA

DENDROID | CANDYMAN | SECUR-AMA
Family Precision Recall Fl—score‘Precision Recall Fl—score‘PreciSion Recall Fi-score
AndroRAT| 0.96 0.96 0.96 0.79 0.75 0.77 0.78 0.78 0.78
Bogx 0.92 0.95 0.93 0.77 0.88 0.82 0.85 0.85 0.85
Cova 0.78 1.00 0.88 0.53 1.00 0.69 0.71 1.00 0.83
FakeAV 1.00 0.89 0.94 1.00 0.80 0.89 1.00 0.80 0.89
FakeDoc 0.90 1.00 0.94 1.00 0.95 0.98 1.00 1.00 1.00
Finspy 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Fjcon 0.83 1.00 0.91 0.71 0.75 0.73 0.59 0.81 0.68
GoldDream| 1.00 1.00 1.00 0.54 0.67 0.60 0.63 0.79 0.70
Gorpo 0.46 0.67 0.55 0.92 0.67 0.77 0.87 0.72 0.79
Kemoge 0.56 0.67 0.61 1.00 0.62 0.76 1.00 0.43 0.60
Kuguo 0.00 0.00 0.00 0.81 0.73 0.77 0.7 0.77 0.78
Leech 0.00 0.00 0.00 0.97 097 097 0.95 1.00 0.97
Mseg 0.87 1.00 0.93 0.86 0.80 0.83 0.87 0.87 0.87
Obad 0.00 0.00 0.00 1.00 1.00 1.00 1.00 0.80 0.89
Opfake 1.00 1.00 1.00 0.67 0.40 0.50 1.00 0.30 0.46
SmsZombie| 0.75 0.86 0.80 1.00 1.00 1.00 1.00 1.00 1.00
SpyBubble | 0.94 0.70 0.80 0.29 0.50 0.37 0.67 1.00 0.80
Stealer 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Svpeng 1.00 0.80 0.89 1.00 1.00 1.00 1.00 1.00 1.00
Tesbo 0.31 0.57 0.40 0.00 0.00 0.00 0.00 0.00 0.00
Triada 0.95 0.95 0.95 0.75 0.73 0.74 0.79 0.76 0.78
Vidro 1.00 1.00 1.00 0.96 1.00 0.98 1.00 1.00 1.00
Vmvol 0.90 1.00 0.94 1.00 085 0.92 1.00 1.00 1.00
Winge 1.00 1.00 1.00 1.00 0.61 0.76 0.93 0.7 0.85

0.75 0.80 0.77 0.82 0.78 0.79 0.85 0.81 0.82

TABLE 7.1: Malware classification comparison - 1-Nearest Neighbor

malicious code injected into bigger benign applications. Such configuration prevents
dynamic techniques to obtain perfect scores, because of the mentioned problem of
“noisy” execution traces: the part of the model of interest (containing the malicious
behavior) is too small compared to its entirety, making the classifier fail.

The strength of classical dynamic analysis in handling encrypted or obfuscated
code with respect to static approaches contributes to better scores when considering
the whole dataset, as visible in Tables 7.2 and 7.3. The main difference between
CANDYMAN and SECUR-AMA is that the first performs sequences of thousands of
random events focused on the user interface of the specific application under analysis,
whereas SECUR-AMA strategically selects generic user-like actions (without consider-
ing the user interface) in the order of tens so as to trigger the malware. SECUR-AMA
results in more satisfactory performances, justifying a triggering mechanism driven by
rational policy to improve in efficiency over a random action selection. The capability
of targeting the graphical parts of an application, although randomly as CANDYMAN
does, have the clear advantage of being able to analyze malware that are explicitly
triggered by actions on the user interface, such as for many games injected with ma-
licious code. For SECUR-AMA it is not straightforward to implement the same kind
of interaction since such an action is heavily context-dependent, hence there is the
risk to gather no information if it is performed without checking whether the system

7.3. Results and discussion 81

CANDYMAN | SECUR-AMA
Family Precision Recall Fl—score‘Precision Recall Fi-score
AndroRAT| 1.00 0.78 0.87 1.00 0.76 0.86
Bogx 0.85 0.95 0.90 0.93 0.95 0.94
Cova 1.00 1.00 1.00 0.89 0.94 091
FakeAV 1.00 0.80 0.89 1.00 0.80 0.89
FakeDoc 1.00 0.95 0.98 1.00 1.00 1.00
Finspy 1.00 1.00 1.00 1.00 1.00 1.00
Fjcon 1.00 0.75 0.86 0.87 0.81 0.84
GoldDream| 0.71 0.81 0.76 0.82 0.98 0.90
Gorpo 1.00 0.50 0.67 1.00 0.56 0.71
Kemoge 1.00 0.23 0.38 1.00 0.21 0.35
Kuguo 0.82 093 0.7 0.79 0.96 0.87
Leech 1.00 0.97 0.99 1.00 1.00 1.00
Mseg 0.91 0.93 0.92 0.96 0.94 0.95
Obad 1.00 1.00 1.00 1.00 0.80 0.89
Opfake 1.00 0.20 0.33 1.00 0.30 0.46
SmsZombie| 1.00 1.00 1.00 1.00 1.00 1.00
SpyBubble 0.67 0.80 0.73 0.83 1.00 0.91
Stealer 1.00 1.00 1.00 1.00 1.00 1.00
Svpeng 1.00 1.00 1.00 1.00 1.00 1.00
Tesbo 0.00 0.00 0.00 0.00 0.00 0.00
Triada 0.79 0.75 0.77 0.88 0.82 0.85
Vidro 1.00 1.00 1.00 1.00 1.00 1.00
Vmvol 1.00 1.00 1.00 1.00 1.00 1.00
Winge 1.00 0.67 0.80 094 0.83 0.88

0.91 0.79 0.82 0.91 0.82 0.84

TABLE 7.2: Malware classification comparison - Random Forest

is in the right context. A solution to address this problem could be the definition
of a generic “use GUI” analyzer action, accountable for any interactions involving a
screen event. However, such trigger would be too broad as there are many distinct
possible interactions that are substantially different from application to application,
e.g., pressing a button within a program may have totally uncorrelated meanings with
respect to another program. For instance, the consequences of pushing the fee button
in a ransomware form are completely different and unrelated to the effects of pressing
a button in the main menu of a game application.

Figure 7.4 shows the learning rate for SECUR-AMA with Linear SVM classifier,
i.e., how the performance changes with the number of actions performed, in terms
of classification measures. The best is reached at around 20 actions performed by
the analyzer and results stabilize from that point onward. Figure 7.5 depicts the
normalized confusion matrix of SECUR-AMA with Linear SVM classifier for a more
detailed visualization of results presented in Table 7.3.

We may conclude the discussion by saying that our methodology accomplishes the
objective to propose a valid analysis to deal with triggered malware. Nevertheless,
the performances achieved by the comparison techniques confirm their effectiveness
as well: in spite of their overall lower learning metrics, they require a lower amount

82 Chapter 7. Empirical Evaluation of SECUR-AMA

CANDYMAN SECUR-AMA
Family Precision Recall Fj-score|Precision Recall Fj-score
AndroRAT | 0.94 0.76 0.85 0.89 0.80 0.84
Bogx 0.88 0.91 0.90 0.96 0.96 0.96
Cova 0.83 1.00 0.92 0.89 1.00 0.94
FakeAV 1.00 0.80 0.89 1.00 0.80 0.89
FakeDoc 1.00 0.95 0.98 1.00 1.00 1.00
Finspy 1.00 1.00 1.00 1.00 1.00 1.00
Fjcon 0.43 0.72 0.55 0.93 0.81 0.87
GoldDream| 0.64 0.73 0.68 0.90 0.94 0.92
Gorpo 0.79 0.83 0.81 0.79 0.83 0.81
Kemoge 1.00 0.62 0.76 0.80 0.31 0.44
Kuguo 0.83 0.84 0.84 0.90 0.95 0.93
Leech 0.98 0.97 098 0.99 1.00 1.00
Mseg 0.96 0.89 0.93 0.99 0.97 0.98
Obad 1.00 1.00 1.00 1.00 1.00 1.00
Opfake 1.00 0.40 0.57 0.83 0.50 0.63
SmsZombie| 1.00 1.00 1.00 1.00 1.00 1.00
SpyBubble 0.22 1.00 0.36 0.83 0.50 0.63
Stealer 1.00 1.00 1.00 1.00 1.00 1.00
Svpeng 1.00 0.91 0.96 1.00 1.00 1.00
Tesbo 0.00 0.00 0.00 1.00 0.20 0.33
Triada 0.88 0.63 0.74 0.73 0.92 0.81
Vidro 1.00 1.00 1.00 1.00 1.00 1.00
Vmvol 1.00 0.85 0.92 1.00 1.00 1.00
Winge 0.80 0.70 0.76 0.94 0.83 0.88

0.83 0.80 0.81 0.94 0.85 0.87

TABLE 7.3: Malware classification comparison - Linear SVM

Learning Rate

1.0

0.9

0.8

0.7

Value

0.6

0.5

—— Precision
Recall
—— F1-Score

0.4

0.3
1 4 7 10 13 16 19 22 25 28
Number of Actions

FIGURE 7.4: Learning rate: precision, recall and Fj-score evolution against actions performed

7.4. Runtime Performance 83

1.0
GoldDream m

Kuguo
Mseg
AndroRAT 80
Leech 0.8
Kemoge .08 Sl .38.23
Fjcon .06 12
Bogx m
Triada .92
Gorpo .06 .06 .06 0.6
SmsZombie
Winge .11 .06
FakeDoc
Opfake .10 .20.10 .10
SpyBubble — 0.4
Vidro
Stealer
Vmvol
Obad
Svpeng — 02
Cova
Finspy

Tesbo .40 .20 .20 .20
FakeAV .20 m

True Label

- 0.0

Predicted Label

FIGURE 7.5: Normalized confusion matrix for SECUR-AMA with Linear SVM classifier.
Values smaller than 0.05 are masked

of data to train a classifier with respect to SECUR-AMAT and, in case of malware
that do not present any event listeners to show the payload, perform similarly or even
better than our active approach. We believe that SECUR-AMA is a valid addition
to complement existing techniques by providing satisfying results on a real malware
dataset.

7.4 Runtime Performance

SECUR-AMA is built in order to make the analyzer perform its selected action and
then observe the malware response for 10 seconds. Indeed, in the context of Android
malicious applications it is often the case that if a target malware is reactive, it will
probably respond as soon as triggered by the analyzer and will perform its goal in
a reasonable amount of time. After each interaction the emulator is reset (using a
snapshot) to a clean state in about 10 seconds. The optimal length of the analysis
game has been found empirically to be around 20 actions for the analyzer in our
experimental setting, as visible in Figure 7.4, resulting in about 6.5 minutes for the
analysis of a single malware on a standard machine with 4 cores and 16GB of RAM.
Hence, the time resources required by SECUR-AMA are comparable to those specified
for the experimental settings of CANDYMAN in (A. Martin et al., 2018).

"The process depicted in (A. Martin et al., 2018) requires a classifier to be trained with a single
transition matrix per malware family, whereas our analysis involves multiple Markov chain transition
matrices.

84 Chapter 7. Empirical Evaluation of SECUR-AMA

sms: 1.0
call: 1.0
sms: 0.75
sms: 0.6 load open \call: 0.37 snr;lsE: %8
call: 0.3 _\ Library Socket call: 1.
sms: 0.25 .
call: 0.63

sms: 0,4 abort
call: 0.7 \groadcas

delete

call: 1.0

FIGURE 7.6: Example of malware injection

7.5 Conclusions

We propose SECUR-AMA, an alternative AMA technique based on MCTS to collect
information about malicious software. SECUR-AMA models a malware as a set of
Markov chains representing the behavior of the malware in response to triggering ac-
tions performed by the analyzer. Malware models are generated at runtime using the
information collected during the analysis and such information is used to guide the re-
mainder of the analysis in an iterative process. This formalism allows to represent the
features obtained from the generated models in order to proceed to their classification
with standard machine learning techniques, i.e., K-NN, Random Forest and Linear
SVM. We conducted a throughout evaluation by comparing SECUR-AMA with other
state-of-the-art techniques of different nature on a real malware dataset. Results show
that our approach is a viable addition to existing techniques and is better performing
in many cases.

Furthermore, the models generated by SECUR-AMA are agnostic with respect
to the malware families (and so is the decision making process for the analyzer).
This means that instead of using classification to study the models after the analysis
process, non-supervised machine learning algorithms can be employed, e.g., clustering
approaches. This allows to group the models with respect to similarity between each
other regardless of the malware families. To clarify, malware models would be grouped
together based on how similar they are to each other, and not to how similar they
are to the examples of the families that have been shown during the training phase.
This can result in groups of malware that do not represent any of the known families
because they are different, effectively discovering new malware families. We went for a
supervised (classification) approach because it allows us to reliably validate the results
obtained against a ground truth.

Nevertheless, SECUR-AMA also suffers from some limitations mentioned in Sec-
tion 7.3: malware often employ anti-detection techniques that inject noise in their
execution trace, or the malicious code itself is injected into a bigger harmless appli-
cation. Such factors make difficult for defense systems to detect threats due to the
presence of “noise” inside the behavioral models generated. Consider for example the
malware model of Figure 7.6: if the malicious code injected is composed only of the
states in red color, i.e., loadLibrary, read, write, all the other states and transitions
involving them should be discarded (or ignored) in order to correctly identify the
malicious part. The same stands if all the states in black color (and the transitions

7.5. Conclusions 85

involving them) are randomly produced at runtime by the malicious code as an anti-
detection mechanism that introduces noise trying to hide the malicious behavior. In
Chapter 8 we address this problem, introducing a long-term analysis of the behavioral
models generated by SECUR-AMA in order to focus on the interesting parts of the
models, ignoring the possible noise.

Part IV

Long-Term Behavioral Analysis

87

89

Chapter 8

Long-Term Analysis of Behavioral
Models

In this chapter we aim at improving the identification of behavioral models generated
by SECUR-AMA, for the particular cases of malicious code injection and Dynamic
Obfuscation. The main hypothesis of our approach is that in the long-term, the in-
tended behavior of the target agent! will emerge, allowing the analyzer to filter out
possible misleading observations. In this perspective, we compute long-term transition
probability values as features for classification instead of using the standard transi-
tion matrix as proposed for SECUR-AMA (Chapter 6). Specifically, we estimate the
values of going from each state to every other, giving the process represented by the
Markov chain enough time to reach a fixpoint, i.e., when the result would not change
anymore from that point onward. Although our main application domain is to the
malware behavioral models of SECUR-AMA, we design our methodology in order to
make it applicable independently of the technique used to obtain the behavioral mod-
els of the target agents (as long as they can be interpreted as Markov chains). Hence,
the focus of this chapter is not to improve the process of obtaining the behavioral
models (although obviously some techniques can give better final results for partic-
ular domains), but rather the approach used to analyze them after they have been
generated. Consequently, we can not make any assumptions on the various properties
that the Markov chains may hold. Section 8.1 defines the problem and summarizes
our solution approach; Section 8.2 details the methodology employed to compute and
extract the long-term transition probability values. The approach presented in this
chapter has been published in (Sartea and Farinelli, 2018; Sartea et al., 2019).

8.1 Problem definition

In scenarios in which intelligent agents interact within complex uncertain environ-
ments gathering information and adapting their behaviors accordingly, an important
issue is to identify whether a known behavior appears within a behavioral model that
has been learned through observations (Hiraishi and Kobayashi, 2014; Arifoglu and
Bouchachia, 2017). As previously mentioned, a key challenge in this context is to deal
with the presence of noise, e.g., while performing a difficult task an agent might make
mistakes trying to follow her policy, consequently injecting noise into the behavioral
model learned by observing the execution of that task. Moreover, noise injection could
be intentional, e.g., a malicious agent might try to mask her real intentions and to
deceive potential observers (Marpaung et al., 2012). The last example represents a

"'We generically refer to the agent that is being analyzed by the analyzer as the “target agent”. In
the case of malware analysis this is the malware

90 Chapter 8. Long-Term Analysis of Behavioral Models

limitation of the SECUR-AMA framework, as explained in Section 7.5 with specific
reference to Figure 7.6.

In this context, the methods for behavioral modeling mentioned in Section 3.3 ei-
ther impose constraints on the models to be analyzed, e.g., (Whittaker and Thomason,
1994) requires the Markov chain of the behavior we want to capture to be a sub-graph
of the a bigger Markov chain containing multiple behaviors, or perform transforma-
tions that are application specific, e.g., (Zhu et al., 2002; Mayil, 2012) require cycles to
be removed and arbitrary states to be grouped together, hence neglecting significant
information for what concerns behavior identification. Other works (Dyer et al., 2006;
Busic et al., 2009) provide methods to compare Markov chains relying on the mixing
time and by directly computing or estimating the stationary distribution. However,
the behavioral models we deal with are generated by generic techniques, hence we have
no guarantee for the existence of a meaningful stationary distribution, as it requires
specific properties to hold. We also differ from (Hernandez-Leal and Kaisers, 2017) as
we explicitly take into account adversarial agents that may intentionally perform some
random or completely unrelated actions in order to mask their real policy, injecting
noise in the behavioral model. Consequently, an observer agent can be deceived if she
does not consider such potential deviation during the analysis process.

To address the problems presented above, we aim to compute the long-term tran-
sition probability features defined as follows

Definition 8.1 (Long-term transition probability). The long-term transition proba-
bility for a Markov chain is the probability of going from any state s; to any other
state s; gwen an infinite number of steps

A crucial technical difficulty related to this idea is the computation of the long-term
transition probability values as features for generic Markov chains. In fact, while
there are methods to compute different long-term characteristics, e.g., the stationary
distribution (Theorem 2.3) or the time to absorption (Theorem 2.5), their applica-
tion is subject to the presence of specific properties, irreducibility and absorbency
respectively (Definitions 2.26 and 2.27), that generic Markov chains may not have.
For example, in our experiments we have large models that are generated through the
observation of an agent’s policy. For such models, the absorbency property, which is a
fundamental requirement to compute long-term transition probability, never holds. To
overcome this problem we propose a transformation of the Markov chain that enforces
the absorbency property and allows to derive the long-term transition probability for
the original Markov chain?, i.e., preserving the long-term semantics of the embedded
behavior.

8.2 Long-term behavior extraction

Similarly to SECUR-AMA, we are given a set of known behavioral models K parti-
tioned into a set of classes C, and a set of unknown (unlabeled) behavioral models
B of target agents. All models are represented with Markov chains and have been
generated by observing the changes in the environment as a consequence of the in-
teraction between an analyzer agent and a target agent. Our goal is then to assign
the unknown elements of B to the known classes of C. The solution we propose is to
employ supervised learning techniques to train a classifier for B given K. In contrast
to SECUR-AMA, the probability values of transitioning between every state that are

2We focus on the long-term transition probability and not on the stationary distribution for
example, because the former is more informative for our aim (example in Section 8.2).

8.2. Long-term behavior extraction 91

FIGURE 8.1: Markov chain with states in bold (S3, S4, S5) forming a terminal SCC

specified by the transition matrix of the Markov chains are not used as features to
train the classifier since (as detailed in Chapter 7) such features may be unreliable
as they only represent short-term transition probability, hence neglecting important
information about the long-term behavior of the agent. This new approach instead,
aims at extracting such long-term behavior from every model by using the long-term
transition probability. For example, in a learning by demonstration setting for a
complex task, a teacher agent might make mistakes while trying to follow its default
policy, injecting noise in its execution trace. A deliberately harmful scenario instead
is when a malware designer intentionally inserts fake API calls to deceive malware
detection tools. We use the long-term transition probability instead of the stationary
distribution, as the latter is not guaranteed to be meaningful in the behavioral models
we are given to analyze. Looking at the Markov chain in Figure 8.1, the stationary
distribution (computed using Theorem 2.3) is 7 = [0,0,0,0.37,0.37,0.26, 0, 0], where
m; corresponds to the probability of being state Si. Notice that 7 is non-zero only for
the set of states forming an irreducible (Definition 2.26) Markov chain (53,54, S5).
Hence, we lose the information that all the states where m; = 0 can be reached, even
though never visited again afterward. The long-term transition probability instead
would tell us that, considering state Sy for example, the probability values of reaching
the other states are Lg; = [0, 0.6,0.6,0.6,0.6,0.6,0.4,0.4]. Such information for every
couple of states is fundamental to our approach.

We exploit some well known properties to compute the long-term behavior of
the agents by using the transient states probability (Theorem 2.6). However, this
approach can be used only for absorbing Markov chains, but since our behavioral
models come from generic extraction techniques, there are no guarantees that the
corresponding Markov chains are absorbing (in our case studies we are never given
Markov chains already absorbing). The methodology is independent from how the
Markov chain was generated as no assumption is required about the meaning of the
states, or the structure of the Markov chain. In fact, we use representations with
different meanings for the three experimental settings (see Chapter 9). To overcome
this problem, we define a procedure to transform any Markov chain into an absorbing
one. The goal is to design a transformation procedure that takes as input any Markov
chain, i.e., without imposing any constraint on it, and derives the long-term transition
probability.

92 Chapter 8. Long-Term Analysis of Behavioral Models

8.2.1 Absorbing transformation

Algorithm 8.1 (ABSENFORCER) details our transformation procedure. Given a Markov
chain M of n states, a corresponding absorbing Markov chain M’ with g < n transient
states and an absorbing state s, is created. Only the block matrix @ of the canonical
form (Definition 2.28) is returned since it is the only part used in the subsequent
computations. R (g x 1), I (1 x 1) and @ (1 x g) can be easily derived knowing that
exactly one absorbing state exists in M’ and that every row of M’ must sum to 1
(if a state had an outgoing probability value of 0 it would not reach an absorbing
state, hence M’ would not be absorbing). The first step is to compute the Strongly
Connected Components (SCCs) of the Markov chain (Tarjan, 1971). A SCC is a set
of states where every state can be reached by any other in a finite number of steps and
we distinguish between terminal and non-terminal SCC. In Figure 8.1, states (S1,.52)
form a non-terminal SCC, whereas states (53,54, 55) form a terminal SCC.

Algorithm 8.1 ABSENFORCER

Require:
M - transition matrix of a Markov chain
Ensure:
Q - block matrix of new absorbing Markov chain M’

1: sces <— TARJAN(M) > Find SCCs
2: for all T' € sccs, with T' terminal do

3: Sm—SseErRT > Randomly select a merge state
4 for all s; € M, with s; ¢ T do

5 p<+0

6: for all s; € T do > Remove edges and record weights
7 p<p+ Mij

8 Mij +~0

9 My, —p > Redirect edges to s,, € T
10: Merge T into the single state s;,

11: M <+ 0 > Connect s, to s, with P =1
122 Q+ M

13: return @

Definition 8.2. We say a SCC A is terminal if there does not exist a path from a
state s; € A to a state s; ¢ A, otherwise A is defined as non-terminal.

Given a Markov chain M, for each terminal SCC T, ABSENFORCER merges all the
states s; € T into a single state s, € T, connecting it to an absorbing state s, with a
new edge. Since we work with the canonical form, and we impose M,,,, = 0 (line 11),
the state s,, is consequently connected to s, with probability value 1, i.e., in the R
block matrix not explicitly represented. The update of M (lines 4-9) redirects edges
entering any state s; € T to the designated merged state s, € T before making it the
only state of 7" (line 10). Figure 8.2 shows an application example of ABSENFORCER
to the Markov chain in Figure 8.1. The resulting transition matrix M’ in canonical
form is visible in Equation 8.1. Indices for states S6 and S7 are 4 and 5 respectively
in M’ as a consequence of merging the terminal SCC. Block matrices @, R,) and I
are the top-left, top-right, bottom-left, and bottom-right blocks of M’ respectively, as

8.2. Long-term behavior extraction 93

FIGURE 8.2: Absorbing transformation applied to the Markov chain of Figure 8.1. State S3
has been selected as s, for the terminal SCC (S3, S4, S5)

of Definition 2.28.
0.4

(8.1)

0
0
0
M =10
0
0
0

ocloococo~o
olooco o0
oloococoo

oclo—~ oo oo
—l— o=, o oo

In the following we prove that the output of ABSENFORCER is an absorbing
Markov chain M’ w.r.t. a generic Markov chain M. This is fundamental as it allows
to apply Theorems 2.4 and 2.6 and then to derive the long-term transition probability
for M.

Theorem 8.1. The application of ABSENFORCER to a Markov chain M always re-
sults in an absorbing Markov chain M’

Proof. Every Markov chain M contains at least one terminal SCC. Notice that a single
state is a SCC since there is always a 0-length path from it to itself. ABSENFORCER
creates a new Markov chain M’ by merging each terminal SCC T € M into a chosen
state s, € T, and redirecting all incoming edges of the removed states toward s,,.
The definition of probability is maintained accumulating the weights of all the edges
redirected for each source state and assigning the same sum of weights to the new edge
toward s, (lines 4-9). Additionally, s,, is also connected to the absorbing state s,
with P =1 as a consequence of removing any outgoing edge from it (line 11). Every
state s; € M’ is either contained in a terminal SCC T for M, or in a non-terminal SCC
U for M. In the first case s; is a merged state s,, € M’ for T. Consequently there
exists a direct edge in M’ such that s; = s, — s4. In the second case there exists a
path in M’ such that s; ~ s,,, where s,, is the result of merging a terminal SCC of
M. This is true because since the number of states is limited, following an outgoing
path from U, a terminal SCC will eventually be reached. Then s; ~ s,, — s, in M’.
Therefore, every state of M’ is either the absorbing state s, or a transient state that
will eventually reach the absorbing state s,. Hence, from Definition 2.27, M’ is an
absorbing Markov chain. O

94 Chapter 8. Long-Term Analysis of Behavioral Models

The transformation described above, even though removing states forming termi-
nal SCCs, allows to derive the long-term transition probability for the original Markov
chain, including all the removed states. To show this we make use of Lemma 8.1. Also
notice that every state of M is a transient state in M’ (possibly merged in a s,,).

Lemma 8.1. Within a terminal SCC T, the long-term transition probability values of
going from any state s; € T to any state s; € T converge to 1 as the number of steps
n — o0o.

Proof. By Definition 2.26, a terminal SCC T is an irreducible Markov chain, mean-
ing that it is possible to go from each state to every other with non-zero probability.
Moreover, being terminal, there exists no outgoing path from 7. Consequently, start-
ing from any state s; € T', the probability value of reaching any other state s; € T'
increases, approaching 1, as the number of steps n increases. O

As from Theorem 8.1, ABSENFORCER produces an absorbing Markov chain (specif-
ically, its @ block matrix). Therefore, Theorems 2.4 and 2.6 can be applied to its
output in order to compute the long-term transition probability as of Definition 8.1.

Corollary 8.1 (Long-term transition probability). Given a Markov chain M, the
long-term transition probability value L;j of going from state s; € M to state s; € M
can be computed from the transient states probability H (Theorems 2.4 and 2.6) with
@@ = ABSENFORCER (M) as follows

1 if s; and s; are in the same terminal SCC in M
0 if s; is in a terminal SCC T in M and s; ¢ T
Lij(H) = { Hiy, if s; is not in a terminal SCC in M and s; was

merged into a state s, i M’

| H;; otherwise

The first case is a direct application of Lemma 8.1, whereas the third one is a con-
sequence: in the long-term, the probability value of reaching a state of a terminal
SCC T is the same of reaching any other state of T', as in the long-term they can
reach each other with probability value 1. The second case is trivial: states within a
terminal SCC can only reach other states of the same SCC. The fourth case is where
no adjustment has to be made and the standard transient states probability can be
used.

The application of Definition 8.1 to a model transformed with ABSENFORCER
allows to recover the long-term behavior associated to the original Markov chain.
Therefore the original long-term semantics is preserved, or rather it can be fully re-
constructed.

8.2.2 Feature extraction

The feature extraction process is tailored on our supervised learning approach. As we
aim at recognizing known behaviors, we require a “blueprint” D as input, along with
the actual model z from which to extract the feature vector. The blueprint is used
to retrain from x, only the long-term transition probability values between the states
we are interested in. Hence, the only information that D needs to contain are states
and corresponding edges between states. The probability values on the edges (for D)
are not required since they are not used in the feature extraction process. Essentially,
the blueprint D is a “shape” on which to project the long-term transition probability
extracted from a model x to analyze. Figure 8.3 shows an example of blueprint.

8.2. Long-term behavior extraction 95

F1GURE 8.3: Example of blueprint D

Algorithm 8.2 (EXTRACTOR) details the feature extraction procedure for an un-
known model z, given a blueprint D. The first step is to apply ABSENFORCER to
transform M into an absorbing Markov chain M’, obtaining its block matrix @ (line
1). Now we can apply Theorems 2.4 and 2.6 to @) as second step, retrieving the
transient states probability values H of going from each state to every other for M’
(lines 2-3). The last step is to extract the long-term transition probability (Definition
8.1) from H, for the states of x that also appear in the blueprint D (lines 5-7). In
our experiments we label the states of the models we generate in a consistent manner,

therefore, to check if a state of D exists also in x we perform a simple label comparison
(line 6).

Algorithm 8.2 EXTRACTOR

Require:
D - G(V, E) blueprint model with k = |V
M - Markov chain of model x

Ensure:
F' - feature vector

Q@ < ABSENFORCER(M) > Algorithm 8.1
N+ (I-Q)t > Theorem 2.4
H« (N-I)N./! > Theorem 2.6

D’ < k x k empty matrix
for all edges (s;,s;) € E do
if states s;, s; exist also in M as s,, s, then
ng + Lyy(H) > Definition 8.1

return FLATTEN(D)

The application of the complete feature extraction procedure to the model x of
Figure 8.1 with the blueprint D of Figure 8.3 is reported below. The first step is
to enforce the absorbency property, obtaining a result visible in Figure 8.2 and cor-
responding to Equation 8.1. Then, by applying Theorems 2.4 and 2.6 to the block
matrix @ (top-left block of Equation 8.1) we obtain the transient states probability
matrix H of Equation 8.2.

[0 06 06 06 04 04]
0025 1 1 0 0
0 025 025 1 0 O
H=19 0 0o o 0 o0 (82)
o0 0 0 0 1
o 0 0 0 0 o0 |

96 Chapter 8. Long-Term Analysis of Behavioral Models

Finally, the projection of H over the blueprint D making use of Definition 8.1 results
in matrix L of Equation 8.3. Recall that state S5 was merged into 53 as effect of
the absorbing transformation, hence L;5 = L;3 for every state s;, whether states S4
and S6 are not contained in D (indices 4 and 5 then correspond to states S5 and S7
respectively in L). Matrix L will then be flattened into the final feature vector.

0 06 06 06 06 047
002 1 1 1 0
0 025 025 1 1 0
=19 0 0o 0o o o (83)
00 0 0 0 0
0 0 0 0 0 0 |

The exploitation of standard techniques for absorbing Markov chains enable to
efficiently extract the long-term transition probability instead of, for example, per-
forming multiple Depth-First Searchs (DFSs) till a convergence point. We can now
solve our classification problem by training a classifier using the features extracted by
EXTRACTOR. We first create blueprints for every class in C'. These can be manually
crafted by a domain expert or, as we did in the experiments, can simply be created
from the known models K by choosing representatives for the classes and retaining
their graphs (states and edges, no probability values). It is also possible to select more
than one representative per class and to perform a merge to obtain a single blueprint
for such class. Then all the blueprints for the classes in C' are merged together to
obtain a single blueprint D. Successively, we train a classifier extracting the training
features from each d € K by calling EXTRACTOR(D, M) and using the knowledge
of which class ¢ € C, d belongs to. We then classify the unknown behavioral models
x € B by extracting their features, i.e., by calling EXTRACTOR(D, M,), and then
querying the trained classifier. M, and M, are the transition matrices of d and x
respectively.

97

Chapter 9

Empirical Evaluation of the
Long-Term Behavioral Analysis

This chapter presents the empirical evaluation of the long-term behavioral analysis
described in Chapter 8. Section 9.1 reports the results obtained with application
of our approach to classical games; Section 9.3 reports instead the results for real
Android malware; Section 9.2 provides a pathological example to show the limitations
of this approach; Section 9.4 concludes the chapter with final consideration and future
directions.

We divide the empirical analysis in two types of experiments: in the first one
we focus on agents interacting within classical games, i.e., the iterated Prisoner’s
Dilemma (Nowak and Sigmund, 1993), Rock Paper Scissors (RPS) and a repeated
lottery game, while in the second one we analyze real Android malware trying to
identify malicious behaviors. The first experimental setting is interesting as it shows
that our approach can be used in a generic domain where multiple agents interact and
observe each other. Moreover, this gives us the opportunity to study our proposed
technique in a well known domain. The second experimental setting instead is crucial
in real world IT defense systems and aims at solving the problem regarding the pres-
ence of noise inside the models generated by SECUR-AMA (Chapter 6). Figure 9.1
shows an overview of the empirical evaluation we conducted, where an analyzer agent
performs the MCA action selection strategy of SECUR-AMA described in Section
6.1.1 to generate the behavioral models of different agents, i.e., players of classical
games, malicious software agents. Again, the specific technique employed to generate
the behavioral models is independent from our methodology used to analyze them.
From such models we apply our approach to extract the long-term transition prob-
ability values as informative features, and compare the learning quality with respect
to other different features proposed in literature, i.e., 1-step transition probabilities
(the classical transition matrix) used also in SECUR-AMA and n-grams (Nowak and
Sigmund, 1993; Friedman, 1971).

Our analyzer agent selects the actions to perform in order to gain as much infor-
mation as possible on the adversary, trying to minimize the entropy of the behavioral
model being generated. A behavioral model is represented with a set of Markov chains
extracted from the observation of an agent’s actions (see Section 4.2). For all the ex-
periments we trained a Linear SVM performing a K-fold cross validation with K = 5.
Classification quality is evaluated using precision, recall, and Fj-score. Since each
behavioral model encodes multiple Markov chains, EXTRACTOR is applied to each of
them individually in order to extract a feature vector for each Markov chain. Then,
we perform a concatenation of the feature of each Markov chain in a single vector for
classification. A complete example of the extraction process is reported in Section 8.2.

98 Chapter 9. Empirical Evaluation of the Long-Term Behavioral Analysis

Target AQent | . -ooooooooo :

g frova]| L YSY [Becuton] MEe uarioschai | AbeFloree] Absorbing
Malware i Analyzer

— aget | |

Classical || —— 71777 : 1 _Stgp Long-term

game player N-Grams . p:;abr;iﬁ:ﬁigs : transition

— Extract | Extract | |Probabilities ||| Extractor

Othertarget(l]| | T

L ’\fT‘rain

Classifier

FIGURE 9.1: Overview of our methodology for behavioral analysis. The dashed area contains
the method of SECUR-AMA, whereas bold text represent the long-term analysis

9.1 Classical games

While there are various approaches in the context of games to find strategies that op-
timize agents’ payoffs studying equilibria (Nash, 1950), here we focus on the identifi-
cation of known strategies only by observing the interaction between players, therefore
we are not interested in the computation of an equilibrium.

9.1.1 Iterated Prisoner’s Dilemma

In the iterated (or repeated) Prisoner’s Dilemma (Section 2.2.5), two players are given
the choice to cooperate (C) or to defect (D) in a repeated interaction of the same
stage game. Hence, we design 6 strategies previously used in literature (Nowak and
Sigmund, 1993; Friedman, 1971) for player B (target agent), while player A (analyzer
agent) chooses its actions following the MCA action selection strategy of SECUR-
AMA. The six strategies are:

1. tit-for-tat: play the action played by the adversary in the last game

2. retaliation: cooperate until the adversary defects to the police for the first time
and then defect forever

3. random: cooperate and defect are chosen with 0.5 and 0.5 probability values
respectively

4. always cooperate
5. always defect

6. mixed: cooperate and defect are chosen with % and % probability values respec-
tively

States are labeled with the joint actions that made the game reach such state, whereas
edges are labeled with the action of player A that triggered such transition. Figure 9.2
shows an example of an observed random behavioral model for player B. State CD
for example is the result of actions (cooperate, defect) by player A and B respectively.
Every strategy has been played 20 times in an iterated Prisoner’s Dilemma of length
100, obtaining 120 behavioral models for player B. The aim then is, given such models,
to classify them over the 6 known strategies (classes). The blueprint (Section 8.2.2)

9.1. Classical games 99

FIGURE 9.2: Example of an observed random behavioral model for player B in the iterated
Prisoner’s Dilemma

Strategy Precision Recall Fj-score

1 Tit-for-tat 1.00 1.00 1.00

2 Retaliation 1.00 1.00 1.00

3 Random 1.00 0.65 0.79

4 Always C 1.00 1.00 1.00

5 Always D 1.00 1.00 1.00

6 Mixed 0.74 1.00 0.85
Total 0.94 0.94 0.94

TABLE 9.1: Player’s strategy identification for the iterated Prisoner’s Dilemma

has been created selecting random representatives from each strategy and merging all
their graphs together. Table 9.1 reports the evaluation of the process. Results show
that strategies 1, 2, 4 and 5 are perfectly identified by our method. However, since
strategies 3 and 6 differ only in the probability value they assign to actions cooperate
and defect, if the Markov chain states are highly connected, e.g., if they form a
single SCC, the long-term behavior tends to flatten the differences between transition
probability values, making harder to distinguish behaviors in the long-term compared
to the short. This is a limitation of our approach that arises in the pathological case
of models composed only by few terminal SCCs. However, this is unlikely to happen
with more complex models and real world scenarios, as our next experiments will
show.

9.1.2 Rock Paper Scissors

The second evaluation setting involves the famous game of RPS in its iterated version
(Norris, 2017). Two players are given the choice to play rock (R), paper (P) or scissors
(S), with a payoff matrix visible in Table 9.2. Also in this case we simulated an in-
teraction between two players: player A (analyzer agent) chooses its actions following
the MCA action selection strategy of SECUR-AMA, whereas player B follows one of
four possible known strategies, specifically:

1. tit-for-tat: play the action played by the adversary in the last game

100 Chapter 9. Empirical Evaluation of the Long-Term Behavioral Analysis

Player 2
R P S
rR| 00 -1,1 1,-1
Player1 P |1,-1 0,0 -—1,1
S|-1,1 1,-1 0,0

TABLE 9.2: Normal form of the RPS game

S: 1.0
P: 1.0

S: 1.0

SP » SS
R: 0.10
R: 0.90

RS » RR

R: 0.07 R: 0.93

R: 0.50 R: 0.50

FI1GURE 9.3: Example of an observed tit-for-tat behavioral model for player B in the iterated
RPS

2. counter: play the action that neither players used in the last game

3. mirror: play the same action of the last game if it was a winning choice

11

4. random: R, P, S are played 3,3 and % probability values respectively

The Markov chain representation of the game is similar to the Prisoner’s Dilemma,
but the chains are 3 (because of the 3 possible actions of player A) and with more
states. Again, every strategy has been played 20 times in an iterated RPS of length
100, obtaining 80 behavioral models for player B.

Table 9.3 reports the evaluation of the process. The aim then is again to classify
the models over the 4 known strategies. The blueprint D has been created selecting
random representatives from each strategy and merging all their graphs together.
Also in this case results are satisfying, although the problem of model collapse is still
present as visible from the lower precision in the strategies. In the next experiments
(Sections 9.1.3 and 9.3) the models will be more complex and reflecting more realistic
scenarios, therefore less impacted by the problem of model collapse.

9.1. Classical games 101

Strategy Precision Recall Fj-score
1 Tit-for-tat 1.00 1.00 1.00
2 Counter 0.78 0.98 0.86
3 Mirror 0.79 0.99 0.87
4 Random 0.79 0.99 0.88
Total 0.87 0.99 0.90

TABLE 9.3: Player’s strategy identification for the iterated RPS

FIGURE 9.4: Example of an observed behavioral model in the repeated lottery

9.1.3 Repeated lottery game

As a third evaluation setting, we define a custom repeated lottery game (Mas-Colell
et al., 1995) as follows: at every iteration, a player chooses between a safe (S) and
a risky (R) lottery, accumulating the reward at each stage. S gives reward 4 with
P = 0.9 and halves the current accumulated reward with P = 0.1. R gives a reward
of 8 with P = 0.5, halves the current accumulated reward with P = 0.4, and sets it
to 0 with P = 0.1. Figure 9.4 shows an example of an observed behavioral model for
the repeated lottery game. States are labeled with the current accumulated reward,
whether edges are labeled with the lottery chosen by the player. This experiment
is useful also to show that the meaning of a state is not important with respect to
the method that we use to extract the long-term features. Indeed, here we do not
represent states with actions, but with the internal state of the agent that we have
access to. Although, what is important is that a path in the model is characteristic of
the strategy employed, therefore the model can be used to identify specific strategies.
In this case, behavioral models are generated by the analyzer only by observing the
player agent, i.e., no interaction is involved between the two. We design some similar
strategies with respect to the previously used games:

1. always S
2. always R
3. R until loss (always R until the first loss happens, S from that stage onward)
4. S until loss (always S until the first loss happens, R from that stage onward)
5. random: S and R are chosen with 0.5 and 0.5 probability values respectively

6. mixed: S and R are chosen with % and % probability values respectively

102 Chapter 9. Empirical Evaluation of the Long-Term Behavioral Analysis

Strategy Precision Recall Fj-score
1 Always S 0.86 0.90 0.88
2 Always R 0.95 1.00 0.98
3 R until Loss 0.89 0.85 0.87
4 S until Loss 1.00 0.95 0.97
5 Random 1.00 0.95 0.97
6 Mixed 0.95 1.00 0.97
7 R between [10, 20] 1.00 1.00 1.00
8 R between [10, 50] 1.00 1.00 1.00
9 R between [20,40] 1.00 1.00 1.00

Total 0.96 0.96 0.96

TABLE 9.4: Player’s strategy identification for the repeated lottery game

7. R is played when the current accumulated reward is within [10, 20], S otherwise
8. R is played when the current accumulated reward is within [10, 50], S otherwise
9. R is played when the current accumulated reward is within [20, 40], S otherwise

Every strategy has been played 20 times in a repeated lottery game of length 500,
obtaining 180 behavioral models for the player agent. The aim, again, is to classify
such models over the 9 known strategies (classes). This experiment is different from
the previous one as the generated behavioral models are much bigger (up to 1913
states) and contain a various number of terminal and non-terminal SCCs, resulting in
a comprehensive evaluation setting for our approach. Also in this case, the blueprint
D has been created selecting random representatives from each strategy and merging
all their graphs together. Table 9.4 reports the results of the process, where it is
visible that the strategies are overall well classified. We notice that strategies 5 and 6
are identified more clearly compared to Table 9.1. As we mentioned before, in bigger
and realistic models, the flattening problem of the long-term transition probability
is much less prominent. Strategies 1 and 3, and strategies 2 and 4 instead, can be
confused with each other depending on when the first loss happens during the game.
Strategy 4 for example becomes exactly strategy 2 after the first loss. If this change
happens at the very beginning of a game, the two strategies become indistinguishable.
In contrast to the previous experiments, given the more complex behavioral models
generated in this evaluation setting, the problem of model collapse does not appear.

9.2 Investigating a pathological case: model collapse

In the previous sections we mentioned the problem of model collapse, giving a brief in-
tuition of what this is about. In this section we provide a detailed explanation of such
problem to understand better on the implications. Figure 9.5 presents a visualization
of the model collapse that happens when models are composed only by a few, or in
this specific example by only one, terminal SCCs. In particular, Figure 9.5a shows a
behavioral model where the transition function is uniformly random: from every state
there are always two possible successors, each one equally likely. Figure 9.5b instead
shows a behavioral model with the same state space, but the transition function is dif-
ferent in terms of probability distribution with respect to Figure 9.5a: from every state
there are always two possible successors, not equally likely as before. Now, comparing
the two transition functions as they are, the difference is clearly visible. However, if

9.3. Malware analysis 103

0.45 O.

(A) Behavioral model M representing a ran- (B) Behavioral model M, representing a ran-
dom uniform strategy composed by a single dom mixed strategy composed by a single ter-
terminal SCC minal SCC

(¢) Result of the transformation algorithm applied to the behavioral models M; and M of Figures
9.5a and 9.5b respectively

FI1GURE 9.5: Example of model collapse in the case of a single SCC and different strategies

we apply ABSENFORCER (Algorithm 8.1) to both models the result will be that of
Figure 9.5¢ in both cases: the terminal SCC containing all the states is merged into
a single node S1, and the model collapses. Therefore, EXTRACTOR (Algorithm 8.2),
that relies on the long-term transition probability of Definition 8.1, would produce’
feature vectors F1 and Fy of Equation 9.1, that are obviously indistinguishable.

Fr=11111111]

9.1
Fb=[11111111] 51)

The problem of model collapse is strictly tied to the shape of the Markov chain:
fewer terminal SCCs will more likely result in equal feature vectors extracted with
the long-term behavioral analysis. In our main realistic application setting though
(Section 9.3), models are much more complex than those of the iterated Prisoner’s
Dilemma and the iterated RPS, where the state space is of size 4 and 9 respectively.
Additionally, in such games, transitions are possible between all of the states, making
the creation of terminal SCCs even more likely.

9.3 Malware analysis

As mentioned in Section 7.5, some advanced malware inject noise, e.g., sequences of
random or non-dangerous actions, in their behavior as an anti-detection mechanism,
hence creating an extremely challenging scenario for the analyzers. Another com-
plication for the analyzer comes from small malware injected into bigger and benign
applications, e.g., a password stealer inserted into the code of a game. In this case, the
major portion of the behavioral model corresponds to actions belonging to the benign
gaming application, whereas the few related to the password stealing process appear

! Assuming a blueprint of the same shape of Figures 9.5a and 9.5b, hence projecting all the edges
of the models

104 Chapter 9. Empirical Evaluation of the Long-Term Behavioral Analysis

Family 3-grams 4-grams SECUR-AMA Long-term
AndroRAT 0.83 0.86 0.84 0.94
GoldDream 0.88 0.92 0.92 0.95
Gorpo 0.77 0.66 0.81 0.93
Kemoge 0.58 0.57 0.44 0.92
Cova 0.91 0.92 0.94 0.97
FakeAV 0.89 0.89 0.89 0.89
Kuguo 0.87 0.85 0.93 0.90
SpyBubble 0.94 0.94 0.63 0.95
Winge 0.78 0.72 0.88 0.86

TABLE 9.5: Malware classification comparison F}-score

within them. In this experimental scenario we aim at improving the identification of
malware behavioral models extracted by SECUR-AMA for families that are difficult
to correctly classify for the reasons explained. The dataset used (F. Wei et al., 2017)
is the same of Section 7.1 but here the focus is on 4 particular families: AndroRAT,
GoldDream, Gorpo and Kemoge. AndroRAT and GoldDream are an example of small
malware injected into bigger applications (games and others). They steal personal
information such as contact numbers, sms and call contents. Therefore, they react to
the analyzer actions of sending an sms, making a call etc. Gorpo and Kemoge families
instead employ anti-detection techniques such as dynamically loading the malicious
code at runtime and performing unrelated actions to intentionally inject noise. We
compare the long-term behavioral analysis approach with SECUR-AMA, where the
same process is used to generate the malware models (the difference lies in the feature
extraction as summarized in Figure 9.1). For a visual example of malware behavioral
model refer to Figure 4.3. We also compare with the n-gram features extensively
used in literature (Rieck et al., 2011; Wressnegger et al., 2013). As suggested in such
works we experimented with SVM and K-NN classifiers using gram lengths in the
range [1,4]. To perform a fair comparison, we extract the n-grams directly from the
same execution traces used by the other two methods. Regarding our approach, the
blueprint D has been generated merging the graphs of the representatives for each
family. Specifically, if the standalone (not injected) or clean (without anti-detection
mechanisms) version of a malware for a family is known, its behavioral model is used
as representative of such family, otherwise random behavioral models are chosen from
the same family.

Table 9.5 reports our empirical best results obtained using SVMs and gram lengths
3 and 4. The two methods using features extracted from the Markov chains, i.e.,
SECUR-AMA and the long-term analysis, have overall better results when compared
to n-grams. Using Markov chain transition probability values as features allows to
better capture distinctive characteristics of the malware dynamics, improving the clas-
sifier performance. Moreover, when comparing SECUR-AMA and this new approach
we can notice that the performance of the classifier are always comparable and most of
the time are significantly better in favor the long-term. In more detail, the technique
based on the long-term behavioral analysis performs significantly better for malware
that are injected into benign applications (AndroRAT and GoldDream) or for mal-
ware employing anti-detection techniques preforming a lot of noisy actions (Gorpo
and Kemoge). This confirms that using the long-term transition probability values
as features allows to effectively remove noise and significantly improve the classifica-
tion performances for such families, i.e., we achieve a gain up to 34%. With classical

9.4. Conclusions 105

Feature Type Comparison

1.0 NOISY | CLEAN
1
0.9 -~ 1
|
i |
0.8 I
|
0.7 1 1
|
i |
0 0.6 I
S |
— 1
[F 4 i I
0. I
|
0.3 A |
|
0.2 - !
1 Short-term
0.1 - : HEEl Long-term
|
0.0 -
A @ o @ N o Q& @
¥ N Q S v N LS
Q- o S o Q! O 2 &
(\&0 &0 (&) \{_Q,@ ((,Sl- ‘{—Q \6()‘ $
v R K

Malware Family

FIGURE 9.6: Visualization of the malware classification comparison Fj-score

malware (lower half of Table 9.5) instead, the long-term behavioral analysis does not
consistently provide significant gains and is comparable to the others. This suggests
that our proposed methodology should complement existing techniques to provide
benefits in specific and important situations, e.g., malware injection and countering
anti-detection mechanisms. Figure 9.6 displays a bar chart of the classification per-
formance (Fj-score) comparing the different features tested.

9.4 Conclusions

We propose the use of Markov chains to identify known behaviors of intelligent agents
acting within uncertain environments. More in detail, we employ classification to
solve the problem and we use the long-term transition probability values as features.
We design a transformation to enforce the absorbency property for Markov chains,
enabling the computation of such features for generic Markov chains. This makes our
approach independent of the specific technique used to extract the behavioral models.
We evaluate our methodology in three domains: two player games, a single player
repeated lottery game, and malware analysis. The empirical evaluation shows that
our approach provides informative features to successfully identify known behaviors.
In particular, for the malware analysis scenario this method allows to significantly
outperform SECUR-AMA and other standard feature, i.e., n-grams, when considering
real-world injected malware samples and advanced anti-detection mechanisms.
However there are some limitations of using the long-term transition probability
as feature. For example, as explained in Section 9.1, if a model is composed by only
few SCCs it may collapse and flatten all the probabilities extracted from it. An at-
tacker can exploit such weakness by designing malware that perform execution traces
forming complete graphs when represented with Markov chains, making the long-term

106 Chapter 9. Empirical Evaluation of the Long-Term Behavioral Analysis

behavioral analysis inconclusive. Moreover, a deeper empirical and theoretical study
would be useful in order to assess the degradation of a behavioral model before apply-
ing the transformation algorithm. This would also improve the knowledge on whether
it is useful to employ the long-term transition probability instead of other features (as
seen in Section 9.3, not all the malware families benefit from that). Nonetheless, we
believe that the approach detailed in this chapter represents a valid addition to the
tools available for analyzing behaviors of intelligent agents based on Markov chains,
as confirmed also by the empirical evaluation conducted.

107

Part V

Active Malware Analysis as a
Bayesian (Game

109

Chapter 10

Bayesian Active Malware Analysis

We have seen in previous chapters that malware can be grouped in families (or types),
that are behavioral categories in which malicious software fall into. Nevertheless, this
grouping applies also to actions that trigger malicious behaviors: every family re-
sponds to a certain set of triggers, many of which are shared across different families.
For example, both a spyware and a ransomware may react to an incoming sms: the
first forwarding it to a third party, whereas the second encrypting its content. How-
ever, this information on the grouping of triggering actions has never been used by
previous works on malware analysis in order to improve the decision making strategy
at runtime. In SECUR-AMA for example, the model is used to select the best action
to perform next for the analyzer, without taking in consideration the type of the ad-
versary. Consequently, for all the AMA techniques, if the number of possible analyzer
actions is high, many analysis steps may be required to achieve a high classification
score.

In this chapter, we present a new approach, BAMA, that uses the available in-
formation on the families and on the characteristics of behaviors they contain, i.e.,
triggers, to guide the analyzer in selecting triggering actions that reflect the current
belief regarding which family the malware being analyzed belongs to. The main ben-
efit of this is to be able to identify the correct malware family of the adversary with
less interactions by explicitly lowering the uncertainty on its type rather than on its
behaviors, i.e., on the model being generated. In particular, our aim is to exploit the
intrinsic characteristics of the malware families, where each one is known to respond
to specific stimuli depending on the malicious payload. With such information at
hand, we model the analysis in order to reason about the malware family (type) at
runtime, and to adapt the analyzer action selection strategy accordingly. Section 10.1
defines the problem and summarizes our solution approach; Section 10.2 investigates
the sources of uncertainty for our problem and how to deal with them; Section 10.3
details the formalization of BAMA as a Bayesian game; Section 10.4 explains the new
analyzer strategy we devised to play BAMA when analyzing malware; Section 11.2
presents the empirical results obtained with application of BAMA to real Android
malware comparing with SECUR-AMA and other state-of-the-art approaches.

10.1 Problem definition

There exists an extensive literature that takes into account the type of the other agents
to perform inference, with one key framework being that of Bayesian games (Section
2.2.4). These are used to model many domains, such as security games (Tambe, 2011;
Jain et al., 2008; H. Xu et al., 2016), coalitional games (Chalkiadakis and Boutilier,
2007; Chalkiadakis et al., 2007), or network security (Jin et al., 2013; Xinxin Liu et
al., 2013). In our proposed BAMA approach we build the formalization upon the link
between malware family and the notion of types in Bayesian games. In particular, we

110 Chapter 10. Bayesian Active Malware Analysis

formalize the analysis as a Bayesian game between an analyzer agent and a malware
agent, focusing on the decision making strategy for the analyzer. Such strategy is
guided by a utility function specifically designed to reflect the amount of uncertainty
on the type of the adversary, according to the analyzer’s belief. The aim is to be able
to select triggering actions that allow one to infer the type of malware with increasing
accuracy at every stage of the game while it progresses.

Our proposed methodology, BAMA, is to the best of our knowledge the first to
consider the link between malware families and the notion of types in Bayesian games.
The goal is to be able to match an unknown malware sample to the family (class) to
which it belongs, by performing as few analyzer triggering actions as possible. In order
to achieve this goal, we make use of a priori information about the malware families
that BAMA employs. Such information is represented as a list of all the malware
families that respond to a specific analyzer triggering action. Indeed, nowadays almost
every repository of malware reports detailed information for every family, including
the triggering mechanisms, such as the one we use in the experiments (F. Wei et
al., 2017). Furthermore, in our application domain (Android systems), the triggers
we use are actions that an average smartphone user would perform, e.g., sending an
sms, making a call, opening the browser etc., for which an application has to declare
listeners in the manifest to intercept (Section 5.1.3), thus easily obtainable by an
analyzer. In contrast to previous works (Sartea and Farinelli, 2017; A. Martin et al.,
2018), in order to devise the strategy for the analyzer to identify the malware type,
we do not make use of detailed information, i.e., exact list of APIs, of an execution
trace, but rather only distinguish between a passive execution trace that could have
been observed also without interacting with the malware, and a reactive execution
trace that is triggered by the specific action performed by the analyzer. This is an
advantage since we require less information and the abstraction between passive and
reactive allows to deal with the intrinsic uncertainty of the problem. Before giving the
formalization of BAMA (Section 10.3), we first explain the problems arising from the
uncertainty on the observations of malware behaviors as execution traces, and how to
solve them (Section 10.2).

10.2 Dealing with uncertainty

Our approach makes use of an Android sandbox emulator to run malicious applica-
tions, to execute analyzer triggering actions, and to observe and extract the corre-
sponding execution traces (see Section 5.3 for details). However, uncertainty affects
the readings of the execution traces from the sandbox due to several reasons. The
first is given by the intrinsic slow nature of AMA: the emulator has to be reset to a
clean state and rebooted after every interaction, hence it needs to take time. After
executing a triggering action, the analyzer waits for a fixed amount of time before
registering the malware response.! This is motivated by the fact that in Android ma-
licious applications it is often the case that if a malware is reactive, it will probably
respond in a reasonable time after having been triggered. Nevertheless, for this same
reason execution trace can be “cut” in different places when read multiple times as
a response to a trigger. The second reason of uncertainty is that malware also often
employ deception techniques that intentionally inject noise (random or non-correlated
APIs) within execution traces, to deceive an analyzer by trying to hide their mali-
cious behavior (as extensively studied in Chapter 8). In addition, a malware could

!The amount of time is a parameter of the analysis depending on the host system. Usually varies
between 10 and 30 seconds.

10.3. BAMA formalization 111

have been designed to activate the payload in response to a specific trigger with some
probability, instead of being deterministic. Finally, malware samples belonging to
the same family may differ, possibly not responding to a trigger that is instead com-
mon to other samples of the same family, due to code repackaging and other changes
inserted by criminals that often modify existing malware rather than creating them
from scratch (Upchurch and Zhou, 2016). Hence, based on system workload, timing
constraints, deception techniques, and other factors, different execution traces from
the same malware could be retrieved in response to the same triggering action. This
makes the analysis task harder since the underlining decision making process is based
on the observation of malware behaviors that is affected by uncertainty.

As mentioned, we are only interested in distinguishing between passive and re-
active responses without analyzing in detail the content of the execution traces. A
passive response is extracted before starting the game by simply executing a malware
and observing its behavior without any interaction. Thus, we employ the Kullback-
Leibler divergence D, of Definition 2.12 between the distribution of APIs P of the
passive execution trace, and the distribution of APIs () of another execution trace. In
particular, we compute a threshold value € on a training set of Android applications
(both benign and malicious) by randomly executing triggering actions and measuring
the mean value of Dk between the passive and the reactive responses. Given P
and @, if Dgr(P || Q) > € the trace from which @ has been extracted is considered
reactive, otherwise it is considered passive.

10.3 BAMA formalization

The goal of our proposed technique is to analyze a malware by repeatedly interacting
with it in order to infer its type. Thus, BAMA is a game that we model from the
point of view of the analyzer, meaning that it reflects how the analyzer sees the whole
process. In particular, the utility function is designed from an information-centric
perspective aimed at guiding the analyzer in acquiring information on the type of the
adversary faced during the game.

Definition 10.1 (BAMA game). The game of BAMA is a Bayesian game with
o N = {ny,na} where ny is the analyzer and na is the malware
e A=A x Ay where

— Ay = {t1,....,t,} are all the possible triggering actions for the analyzer
(call, wifi, etc.)

— A = {passive (p), reactive (1)} consists of a passive execution trace and a
reactive response to a trigger for the malware

e ® = 07 x Oy where

— 01 = {01} the fized type of the analyzer

— Oy ={f1,..., fu} where f; with j =1,...,k is a malware family
o u = (uy,u2) is a profile of utility functions with

uy : A X ® — Req utility function for the analyzer

e p = Dir(a) is the Dirichlet prior over ©

112 Chapter 10. Bayesian Active Malware Analysis

Nature

up(ty,p) uj(ty,r) up(tm.p) ui(tmr) ui(ty,p) up(ty,r) uj(tm.p) ui(tmr)

FIGURE 10.1: A stage of the BAMA game

BAMA is clearly an instance of a Bayesian game of Definition 2.18 between two
players: the analyzer n; and the malware no. The action set A; available to the
analyzer comprises all the possible triggering actions that can be performed on the
system (send/receive an sms, make/receive a call, enable/disable wifi, etc.) and that
could possibly cause a reaction in the adversary. The malware action set As instead
is an abstraction over all the concrete actions that can be observed, i.e., the execution
traces, that are grouped in either passive or reactive. The type of the analyzer 6
is fixed, whereas for the type set ©9 available to the malware we build a one-to-
one correspondence with the possible malware families. The player’s type 6; encodes
all the relevant private information for player ¢ that in our context maps to how a
malware responds to the possible analyzer triggering actions. Since |O2| > 2, giving a
multinomial probability distribution as uncertainty measure over the types, our choice
for prior p is the Dirichlet distribution, which is the conjugate of the multinomial
distribution. The initialization of p can either be a uniform distribution or else reflect
the distribution of the families in the dataset (or in the wild). The analyzer uses
the prior p to reason about the next action to play during the game, updating it
accordingly to the observation of the outcomes. The utility function is explained in
Section 10.3.2 since it is based on the prior update process, therefore we first present
that in Section 10.3.1 for a better understanding.

BAMA is intended to be played as a repeated game in multiple stages. In detail,
every time a malware sample has to be analyzed, the analyzer starts a BAMA game
of length n, i.e., of n stages in total. At each stage [, the analyzer selects a triggering
action, observes the malware response, obtains the reward, updates the prior p into
p’ accordingly and moves to stage [+ 1 against the same malware sample but with
the new prior (posterior) p’. At the end of stage n, the prior p is reset to its initial
distribution and the analysis process starts again with a new malware sample from
stage 1. Figure 10.1 depicts a BAMA stage game. Formally, since the type of the
malware sample is initially unknown, we assume its type is drawn by nature at stage 1
and remains fixed for the next n stages (or rather that nature always draws the same
type), until the game resets to stage 1 again.

10.3.1 Prior update

The Dirichlet prior is updated into a posterior by adding to parameters a (a vector of
pseudo-counts) the count of the new observations per class (Section 2.1.5). However,
in contrast to many classical instances of Bayesian games, after receiving a reward
we are still uncertain about the type of the adversary since more families can share

10.3. BAMA formalization 113

the same triggers, requiring observations to be treated accordingly. We first define a
function g() that maps each analyzer triggering action to the set of families that are
known to respond to it based on the a priori available information:

g: A = P(0y) (10.1)
Given a prior p with parameters o = (a1, ...,ax) at stage [, the posterior p’ with
parameters o’ = (o], ...,) at stage [+ 1 depends on the action ap of the malware

after the analyzer played action a; at [. The «;’s are one per malware family f;. The
prior update is performed via function w():

w(a,ar,a) = o'

where
o + m [€ g(a1) A ag = reactive (10.2)
o 1 _ ;
o =4 aj+ To(an)] fi ¢ g(a1) A az = passive
aj otherwise

with 1 < j < k and f; € ©2. That is, if a malware actively responds to a triggering
action aq, i.e., ag = reactive, we split the observation across all the families that are
known to respond to aj, which are given by g(a;). Conversely, if a malware does not
respond to aq, i.e., ag = passive, we split the observation across all the families that
are known to not respond to a;. Notice that, as explained before, given the uncertainty
in the readings from the emulator, we have to stay conservative as an execution trace
may be detected as passive when it was reactive instead or vice versa. As such, we
never force a;- to be close to 0 as this can result in wrong inference in the remainder
of the game.

10.3.2 Utility function

The key point of our formalization is the utility function u; for the analyzer. This is
designed with the aim of guiding the selection of triggering actions so as to maximize
the information acquired on the type of the adversary. The current belief on the
adversary type is encoded by the prior p = Dir(a), and the multinomial distribution
0 ~ Dir(a) has an uncertainty degree tied to the entropy Hp(c) of Definition 2.11.
The reward received by the analyzer then is the entropy of the posterior obtained by
updating p (with Equation 10.2) after a; € A; and ag € Ay are performed:

ui(ai,a2) = Hp(w(a, ay,az)) (10.3)

where w() is computed with Equation 10.2. Essentially, the utility is a function that
corresponds to the amount of uncertainty on the type of the adversary resulting after
the joint actions (a1, a2) have been played, hence on how the prior (and consequently
the belief on the type of malware) changes due to an analyzer action. Our formaliza-
tion allows to avoid the need to explicitly capture every single factor that contributes
to the uncertainty (time, deception, etc., as mentioned in the first part of Section
10.2) by abstracting between passive and reactive responses and maintaining a prior
probability distribution used in the utility function of the analyzer.

114 Chapter 10. Bayesian Active Malware Analysis

10.4 Analyzer strategy

BAMA is a game where the analyzer’s end goal is to infer the type of the adversary. In-
deed, knowing with enough confidence what is the type of the current adversary, allows
the analyzer to pick the correct actions in order to trigger the malware and observe
its malicious behavior in response. Nonetheless, in the context of malware analysis
it is crucial to characterize the payload of a malware and this is often done inferring
its behavioral category with respect to other known malicious samples. However, our
aim is not to reach full code coverage, i.e., to enumerate all the reactive traces, as we
rather want to gain enough information that allows to correctly classify a malware
into its family, and consequently infer its behavior by similarity to others of the same
category. If a malware family has 5 known triggers, and after executing 2 of them the
prior points precisely, i.e., low uncertainty in the resulting multinomial distribution,
to such family, it is useless to perform also the other 3 triggers and observe the corre-
sponding new traces since that would mean spending time in performing interactions
that with high probability will confirm the current prior shape (this is obviously an
extreme example).

As such, we devise the analyzer strategy with the aim of reducing the entropy in the
prior p at every stage. The key point is that after performing a trigger a;, the analyzer
acquires information on the response that changes the prior accordingly (Equation
10.2). Since the aim is to reduce the uncertainty on adversary type when sampling
the prior, we base the analyzer strategy on the entropy minimization principle for p,
employing a 1-step lookahead that considers the two known possible updates from p at
stage [to p’ at stage [+ 1 (passive or reactive response). Thus, the analyzer employs
its current belief on the type of adversary, and chooses the action that reduces the
entropy of p’ the most. Formally, action selection starts with a sampling of the current
prior p giving @ ~ Dir(a), and then picks an entropy minimizing action, as follows

argmin [q - ui(aq, reactive) + (1 — q) - u1 (a1, passive)]
a1€A1

that is

argmin [q - Hp(w(e, a1, reactive))

a€d (10.4)

+ (1 —q) - Hp(w(ey, a1, passive))]
with

g= > 0

fi€g(ar)

where w() is defined in Equation 10.2 and Hp is the entropy of the Dirichlet from
Definition 2.11. The value of ¢ sums up to the probability for the adversary to respond
to the analyzer triggering action a1, based on the current prior p and the information
on the families and their triggers (function g() of Equation 10.1). Equation 10.4 then
corresponds to selecting the action that minimizes the expectation over Hp at the
next stage.

After a BAMA game ends, the state of the prior p should reveal the type of the
adversary the analyzer has been confronting. However, the same set of triggers may be
shared among multiple malware families, making them to be seen as the same type in
our formalization. For this reason, we make use of Markov chain based models (Figure
4.3) as a tie breaker. Specifically, such a model is generated using the execution traces
observed while playing BAMA, but it is not considered at all during the game: it is
only used at the end to clear the uncertainty in the prior, if so required. Moreover,

10.4. Analyzer strategy 115

building such models allows us to compare with state-of-the-art techniques in terms
of model classification score, as detailed in Section 11.2.

Algorithm 10.1 BAMA Analysis
Require:

p = Dir(a) - prior over O

n - game length

€ - threshold value for Dy,

1: Retrieve distribution P of passive trace
2: for n times do
3: Sample 6 ~ Dir(a)
Select action a; with Equation 10.4 using 6
Execute aq and retrieve distribution () of the trace
if DKL(P H Q) > € then
a9 + reactive
else
as < passive

10: o — w(a,ay,as) > Update with Equation 10.2
11: Update p with a + o’

Algorithm 10.1 details the BAMA analysis. The first step (line 1) retrieves the
distribution of the passive trace for the computation of Dy, later. At this point the
game begins by sampling the prior p for action selection (lines 3-4). The selected
action aq is then executed on the emulator and the subsequent execution trace of the
malware is retrieved along with its distribution @ (line 5). Based on the value of
Dk (P || Q) with respect to the threshold e, action ag of the malware is assigned as
passive or reactive (lines 6-9). Finally, the prior parameters o are updated according
to the outcome, and the game progresses to the next stage (lines 10-11). At every
stage [the analyzer selects the action that minimizes the entropy Hp of the prior p
at stage [+ 1. Reducing the entropy at every stage achieves the result of reducing
the uncertainty on the type of adversary when sampling the prior, as confirmed by
experiments and visible in Figure 11.1.

The overall BAMA analysis pipeline with respect to the framework described in
Chapter 5 is shown is Figure 10.2, where the analyzer’s decision making module is
represented by a BAMA stage game with the current value of the Dirichlet prior.
The behavior observation module differs from SECUR-AMA as it assign the resulting
execution trace, after the execution of a triggering action, to either passive or reactive,
consequently updating the prior before restarting the emulator in order to play the
next stage.

116 Chapter 10. Bayesian Active Malware Analysis

Set of applications ; Behavior observation

O Execution
trace
Passive/Reactive

A

& Android
"' Sample 1

Setup of the environment;

=O >O ><> Apply trigger
Install APK Execute APK : 0

& Android
"l Sample 2

BAMA stage game

lﬁl SAar;:jp:T:dN :O N Stellected [
: rigger :
: Entropy minimization 9 :

FIGURE 10.2: BAMA analysis pipeline

117

Chapter 11

Empirical Evaluation of BAMA

In the experimental setting we compare BAMA with other three AMA techniques:
MYOPIC (Williamson et al., 2012), SECUR-AMA, and CANDYMAN (A. Martin
et al., 2018). All the techniques tested in the experiments share the end goal of iden-
tifying the family of an unknown malicious software by employing different strategies
for the analyzers (as previously detailed in Section 3.2). Section 11.1 briefly explains
the characteristics of the dataset employed in the experiments; Section 11.2 reports
the results obtained with all the tested techniques; Section 11.3 concludes the chapter
with final considerations and future directions.

11.1 Dataset

We use the same dataset of the previous chapters (Section 7.1) composed of about
1400 real Android malware partitioned into 24 families. For instance, the family Fin-
spy concerns the logging and exfiltration of personal information of the user on an
Android device, thus it is sensitive to calls, SMS activities, browser navigation history
updates, etc. Furthermore, some of the families included in this experiment can be
seen as challenging to correctly classify, since they employ specific mechanisms aimed
at deceiving the analysis. In particular, Gorpo and Kemoge employ a combination of
anti-analysis techniques such as the dynamic loading of the malicious code at runtime
and the execution of noisy unrelated API calls that are not useful to implement the
malware payload but serve as a method to mislead an analyzer that focuses on the
sequence of actions performed by the malicious sample. Hence, behaviors related to
the damaging payload interwaved by noisy APIs can induce an analyzer to overlook
malicious characteristics. Moreover, AndroRat and GoldDream families distinguish
themselves on the type of infection vector, as they are composed by small malware in-
jected into complex harmless applications such as games. This peculiar feature causes
only a small portion of the observed execution traces to depict malicious behaviors,
while the rest being related to the harmless application that has been injected, thus
making the malware identification hard. Malware samples belonging to Opfake are
designed to receive commands from an external server controlled by an attacker in
order to be triggered and show their malicious behavior. This happens also for sam-
ples of Tesbo that additionally also try to hide themselves by not having a GUI for
the user to see. The rest of the families involved in the dataset can be considered less
sophisticated because they do not employ advanced anti-detection mechanisms and
do not hide themselves through injection into other applications. The detailed report
available for each family has been used to build function g() of Equation 10.1 with
the a priori information about which families respond to which triggers; g() is used
then in turn to construct the initial Dirichlet prior for our experiments (reflecting the
dataset composition visible in Figure 7.1).

118 Chapter 11. Empirical Evaluation of BAMA

Reward Rate

—130
-140
—150

-160

Reward

-170
-180
-190

-200

0 2 4 6 8 10 12 14 16 18 20
Stage

F1GURE 11.1: Rewards obtained over time in a BAMA game

11.2 Empirical evaluation

For the experiments we employed a Stratified K-Fold Cross Validation with K = 5
to provide training and testing sets with 5 different random splits. Quality of the
results is assessed with unweighted standard measures, i.e., precision, recall, and Fi-
score. Implementations of the classifier, i.e., a linear SVM,! quality measures and
cross-validation make use of Scikit-Learn (Pedregosa et al., 2011).

Results in Figure 11.1 show that rewards, i.e., the entropy of the posterior Dirich-
let distribution, clearly decrease at each stage of BAMA, a confirmation that the
analyzer progressively reduces the uncertainty on the sampling of the type of adver-
sary. Next, we perform a comparison by classifying the transition matrices of the
Markov chain models (Figure 4.3) obtained after every step of the analysis for each
of the techniques employed in the experiments. In particular, SECUR-AMA outputs
such model by default, we apply the same model generation method to the MYOPIC
algorithm, and we build the model also while playing BAMA as explained before
(without using it in any way during the analysis). CANDYMAN instead outputs
models of the same kind but without the conditioning of the probabilities based on
the analyzer action, i.e., the model is composed by a single Markov chain. This al-
lows us to fairly compare the different AMA techniques as they all share the same
type of output model. The set of triggering actions for the analyzer is the same for
BAMA, SECUR-AMA and MYOPIC, and is composed of 17 different actions that
mimic a standard user’s behavior: send/receive sms, make/receive call, switch on/off
Wifi/GPS/screen, charge/discharge battery, add/remove contact, install/remove app,
set clock (Section 5.5). CANDYMAN instead uses different triggering actions that
are related to the GUI of every specific application, randomly selecting up to 5000
of such actions in 5 minutes. Therefore, we are able to show the classification score
rate of BAMA, SECUR-AMA and MYOPIC, as the progression in terms of analyzer
actions performed is comparable; while for CANDYMAN we can only show the score
after the analysis is complete, since the number and type of triggering actions are of
different nature.

1We also tested other classifiers but the linear SVM gives the best results.

11.2. Empirical evaluation 119

Classification Score Rates

Time (s)
0 40 80 120 160 200 240 280 320 360 400

09 |
0.8
0.7
0.6

0.5

Fl-score

0.4

0.3
—— BAMA
SECUR-AMA
-------- MYOPIC
m CANDYMAN

0 2 4 6 8 10 12 14 16 18 20
Analyzer actions

0.2

0.1

FI1GURE 11.2: Comparison of classification score rates

Figure 11.2 shows the classification score rates in term of Fj-score obtained, where
the shaded area represent the confidence interval. It is clearly visible that BAMA
learns faster compared to the other techniques: it only requires 4 analyzer actions
(about 80 seconds) to reach the same best overall classification score (0.87) of SECUR-
AMA. Indeed, the speed of the analysis is extremely important: there are many web
services that analyze malware at users’ request: the faster the response the better.
However, the greatest impact is for security firms that have to analyze a huge amount
of new malware discovered every day (in the order of thousands), thus, reducing the
number of analyzer actions required to identify a malware has a big impact on the
overall analysis time.

Furthermore, BAMA also reaches the highest global classification score (0.92), due
to the fact that by using the information on the adversary type, final malware models
contain less noise, i.e., fewer Markov chains associated to reactions to triggers that are
not meaningful for that malware, augmenting the classification process. The difference
between BAMA and the other techniques is statistically significant according to a
Student’s paired two-tailed t-test with p < 0.05. It is clear that BAMA improves the
strategy of the analyzer: it allows to pick a sequence of actions that is shorter and
more precise compared to the other techniques in order to generate a good malware
model based on the observation of the traces. The SVM classifiers used on the models
extracted by SECUR-AMA, MYOPIC and CANDYMAN reach a worse classification
score than when BAMA is used to create the models. Therefore, the BAMA decision
making strategy has clear value in terms of results. Table 11.1 shows the best overall
Fi-score classification results for the best instance of each technique: 8 actions in 160
seconds for BAMA, 14 actions in 280 seconds for SECUR-AMA, 18 actions in 360
seconds for MYOPIC, and 310 seconds for CANDYMAN.

Although BAMA performs better overall when compared to the other techniques,
it does not perform better for every malware family in the dataset. Table 11.2 details
the per-family Fj-score for the best instance of each technique tested, i.e., the BAMA,

120 Chapter 11. Empirical Evaluation of BAMA

BAMA SECUR-AMA MYOPIC CANDYMAN

Analyzer actions 8 14 18 -
Seconds 160 280 360 310
Fi-score 0.92 0.87 0.86 0.81

TABLE 11.1: Best overall classification results

SECUR-AMA, MYOPIC, and CANDYMAN instances reported in Table 11.1. In the
case of AndroRAT and GoldDream for example, the BAMA entropy minimization
of the prior strategy is able to overcome the injection problem (mentioned at the
beginning of this section) by executing a limited subset of triggers that are specific to
the injected malicious part of the application, allowing it at the same time to identify
the correct family. For the other techniques that instead rely on the model for their
decision making strategy (whereas BAMA does not use it at all), the presence of
a small malicious behavior within a bigger harmless application is harder to detect.
The anti-analysis routines employed by the Kemoge family make the samples load the
code at runtime when triggered by specific actions on the GUI: since CANDYMAN
triggering mechanism is specifically designed around the GUI, it is more effective in
stimulating the samples belonging to such family. On the other hand, since Tesbo does
not have a GUI, CANDYMAN is not able to trigger any behaviors from such samples.
Nevertheless, all the techniques perform badly on Tesbo because of the code coverage
problem of dynamic analysis: some malicious behaviors are triggered by commands
coming from an external server, therefore they are never exhibited without designing
application specific triggers (this is the case also for the Opfake family).

The fact that BAMA does not rely on the sequences of API calls but abstracts
them in either passive or reactive has the good side effect of being able to better
counter the dynamic obfuscation and noise injection mechanisms of some malware.
The reason is that an execution trace presenting unrelated noisy APIs most likely has
an entropy value different from the passive execution trace, therefore such trace will be
tagged as reactive. Consequently, a malware trying to hide its intentions by injecting
noise, will reveal itself as responding to the triggering action, which is all what BAMA
considers. A main reason for BAMA to perform worse with some families (although
still comparably to the other techniques) lies in the stochasticity in the retrieval of
malware responses since the threshold value € for the Kullback-Leibler divergence may
result in a wrong identification of the trace type and hence impact on trigger selection.
Another reason for errors in classification comes from the fact, explained in Section
10.2, that a specific malware sample may respond not only to the triggers for which its
family is known to respond to, but also to triggers of other families as well. Conversely,
a malware sample could also not respond to some triggers listed for its family. This
happens in the experiments and it is a major source of uncertainty, as well as one of
the key reasons why the problem of malware analysis based on triggering is difficult
and the classification will not be perfect. Figure 11.3 shows how the expectation of
the Dirichlet prior (Definition 2.8) is updated after every stage of the BAMA game
when analyzing a malware sample of the Opfake family. It can be noticed that after
an initial adjustment during the first 7 stages, from that point onward the analyzer is
quite confident about the malware family type. This result is tied to that of Figure
11.1, as converging to a single family in the belief also reduces the uncertainty in the
Dirichlet prior. Finally, Figure 11.4 shows the confusion matrix related to Table 11.2
for a better visualization of the classification results.

11.2. Empirical evaluation 121

Family BAMA SECUR-AMA MYOPIC CANDYMAN
AndroRAT 0.93 0.84 0.84 0.85
Bogx 0.95 0.96 0.93 0.90
Cova 0.97 0.94 0.89 0.92
FakeAV 0.89 0.89 0.89 0.89
FakeDoc 1.00 1.00 1.00 0.98
Finspy 1.00 1.00 1.00 1.00
Fjcon 0.94 0.87 0.79 0.55
GoldDream 0.94 0.92 0.87 0.68
Gorpo 0.87 0.81 0.82 0.81
Kemoge 0.70 0.44 0.35 0.76
Kuguo 0.94 0.93 0.91 0.84
Leech 0.99 1.00 0.98 0.98
Mseg 0.99 0.98 0.97 0.93
Obad 1.00 1.00 1.00 1.00
Opfake 0.75 0.63 0.67 0.57
SmsZombie 1.00 1.00 1.00 1.00
SpyBubble 0.95 0.63 0.46 0.36
Stealer 1.00 1.00 1.00 1.00
Svpeng 1.00 1.00 1.00 0.96
Tesbo 0.57 0.33 0.57 0.00
Triada 0.91 0.81 0.84 0.74
Vidro 0.96 1.00 1.00 1.00
Vmvol 1.00 1.00 1.00 0.92
Winge 1.00 0.88 0.91 0.76

TABLE 11.2: Per-family Fj-score classification for the best instance of each technique as
reported in Table 11.1

122 Chapter 11. Empirical Evaluation of BAMA

Prior update

0
1
2
3 -0.75
4
5 W
6 0.60
7 B
v . m -
9
%10 0.45
H1u N ||
12 B B
o | 0.30
15 B
16 B
17 [| 0.15
18
- EEREEEEEE
20
EQOELSULEXTOVWLYYLOFET DO Q9
HaHL R
éz g—léu' ¢U£§%8§>%>Ou>’ ic
= C [} [T
[} < c %
O n
Family

FIGURE 11.3: Heatmap visualizing how the expectation of the prior is updated after every
stage of the BAMA game when analyzing a malware sample of the Opfake family

GoldDream 1.0
Kuguo EE .07
Mseg
AndroRAT EE
Leech EE 0.8
Kemoge .23 .38.38
Fjcon 19 ER
Bogx .06
Triada
Gorpo .06 11EE 0.6
SmsZombie
Winge .44
FakeDoc
Opfake .30 [60 .10
SpyBubble — 0.4
Vidro
Stealer
vmvol
Obad
Svpeng =02
Cova
Finspy
Tesbo 20 .20
FakeAv .20 180)

N

True Label

= 0.0

Predicted Label

FIGURE 11.4: Normalized confusion matrix for BAMA with Linear SVM classifier. Values
smaller than 0.05 are masked

11.3. Conclusions 123

11.3 Conclusions

BAMA is a novel technique for dynamic malware analysis formalized as a Bayesian
game between an analyzer and a malware agent. Specifically, the formalization is
built upon the link between malware family and the notion of types in Bayesian
games. To guide the analyzer we design a utility function that expresses the amount
of uncertainty on the type of the adversary after the execution of an action. Such
uncertainty is represented by a Dirichlet prior over the possible types of the game, i.e.,
the possible malware families, that is employed as analyzer’s belief. The algorithm
devised to play BAMA aims at minimizing the entropy of the analyzer’s belief at
every stage of the game in a myopic fashion selecting the action the allows to acquire
the most information possible about the malware family of the current adversary.
Experiments on a dataset of real Android malware show that, when compared to
other state-of-the-art techniques, BAMA requires fewer actions (and consequently
time) to reach a satisfying classification score for malware identification. As such, our
approach paves the way for using Bayesian malware analysis in a large and significant
scale.

Nevertheless, one of the strengths of BAMA, i.e., the exploitation of easy to obtain
prior information, is also a potential weakness: if such information is incorrect, the
analysis could be inconclusive. Indeed, if the function g() that maps triggers to
families is imprecise, the analyzer is not able to pick actions that lower the entropy
of the Dirichlet prior. However, the amount of wrong mappings inside g() has to
be consistent for BAMA to not work at all, since (as explained in Section 10.2) some
degree of uncertainty is already taken into account by the formalization, e.g., malware
that do not respond to some triggers of their families.

Notice that with BAMA we generate the same malware models of SECUR-AMA,
however the decision making process of the analyzer is not agnostic with respect to
the families, on the contrary it is heavily reliant on the mapping between triggers
and families. For this reason, we believe that SECUR-AMA is more indicated than
BAMA for the identification of new unknown families (see Section 7.5).

125

Chapter 12

Conclusions and Future Work

In this final chapter we draw the conclusions of the work conducted in the thesis
(Section 12.1), and we also present an overview of some possible future directions to
improve the presented approaches and further develop research in the field of Al and
cyber-security (Section 12.2).

12.1 Conclusions

This thesis proposes a novel perspective for AMA, where the malware and the an-
alyzer are modeled as intelligent agents that interact during the analysis process.
A main goal of our approach is to analyze the behavior of the malware, i.e., what
the malware does during its execution. To fully realize this we propose the use of
a probabilistic malware behavioral model, i.e., a Markov chain, and we devise novel
methodologies that allow an analyzer agent to select triggering actions that can build
such a model while interacting with the malware. The behavioral models generated
with our proposed techniques can be grouped and compared to each other in order
to successfully identify the family of malware, giving better results with respect to
existing state-of-the-art techniques.

The key problem when designing an AMA analyzer is to devise her decision making
strategy in order to select triggering actions that allow to acquire the highest amount
of information possible on the adversary. Our research is inserted in the mentioned
scenario and provides contributions to AMA and behavioral analysis of adversarial
agents based on interaction. We propose solutions in three areas: (1) dynamic gen-
eration of malware behavioral models; (2) extraction of a new type of feature for
classification of behavioral models derived from the analysis of the long-term behav-
ior; (8) new formalization of AMA as a Bayesian game. More in detail, this thesis
advances the state-of-the-art with these contributions:

1. Dynamic generation of malware behavioral models

e We define a behavioral model based on multiple Markov chains where each
one represents the observation of a behavior in response to a specific ana-
lyzer action. This allows us to efficiently compute the probability distribu-
tion over the possible responses to the analyzer actions

e We develop a RL approach for AMA based on MCTS that can dynamically
generate the malware behavioral model at runtime, i.e., while interacting
with the malware

2. Extraction of a new type of feature for classification of behavioral models derived
from the analysis of the long-term behavior

126 Chapter 12. Conclusions and Future Work

e We use of the long-term transition probability as a new type of feature to
classify behavioral models. Focusing on the long-term allows to enhance
the connections between states that are important for the malicious be-
havior and that arise when reaching a fixpoint of the process depicted by
the Markov chain of the model. This lessens the impact of noise within
the models that is usually more apparent when considering the classical
transition matrix (1-step connections)

e We design a transformation for Markov chains enforcing the absorbency
property. This allows us to use standard techniques to derive the long-
term transition probability, making our approach independent from the
specific process that generated the Markov chain based models

3. New formalization of AMA as a Bayesian game

e We propose BAMA, a novel technique for AMA, formalized as a Bayesian
game between an analyzer agent and a malware agent, focusing on the
decision making strategy for the analyzer. The formalization is built upon
the link between malware family and the notion of types in Bayesian games.
A key point is the design of the utility function, which reflects the amount of
uncertainty on the type of the adversary after the execution of an analyzer
action

e We devise an algorithm to exploit the formalization building on an entropy
minimization principle applied to the analyzer’s belief. This allows us to
successfully reduce her uncertainty on the type of the adversary at every
stage of the game

We also build a comprehensive analysis framework for Android malware that includes
as modules for the analyzer all the solutions presented: SECUR-AMA, the long-term
behavioral analysis and BAMA. The empirical evaluations reported in this thesis have
been conducted with such framework analyzing a dataset of real malware composed
of about 1400 samples divided into 24 families (F. Wei et al., 2017).

This thesis provides novel contributions to AMA showing that the use of intelligent
analyzer agents gives significant improvements to the analysis of malware.

12.2 Future Work

The work conducted opens to several future research lines within malware analysis
scenarios and also in other domains.

e In future work we will consider the use of static analysis techniques to augment
AMA, for example, to extract triggers from malware code in addition to the cur-
rent triggers based on the simulation of user activity. Indeed, combining static
and dynamic analysis would help in mitigating the limitations of the separate
techniques, although being not trivial. Nonetheless, fusing the information ac-
quired by static and dynamic methods in meaningful features, or using static
analysis combined with dynamic analysis to create a comprehensive analysis
approach could really improve the overall methodology

e In this thesis we always considered malware as belonging to one specific family.
Sometimes however, many malware of different families are injected within a
benign application that serves as infection vector. This poses a challenge for

12.2. Future Work 127

the analyzer since the observed behaviors are partitioned into multiple families
instead of only one. Hence, directing research effort into extending the presented
approaches in order to deal with such scenario would be a significant contribution

e Regarding the procedure for the computation of the long-term transition proba-
bility, there is an interesting theoretical link with the field of abstract interpreta-
tion, which extracts and studies semantic properties of computer programs with
formal reasoning methodologies that heavily rely on the concept of fixpoint. The
transformation algorithm that identifies and merges the terminal SCCs allowing
to reason about the connections between states at a fixpoint is indeed a form
of abstract interpretation. Therefore, applying techniques of such field to the
computations performed on the Markov chain models could help improving the
approach to analyze the long-term behavior. We think that this connection is
worth further investigation

e Another interesting direction is that of improving SECUR-AMA by augmenting
the simulation capabilities of the MCTS with generative models for the execution
traces. The idea is to address the problem of generating an execution trace with
Natural Language Processing (NLP) techniques, since an execution trace could
be interpreted as a sentence where words (tokens) correspond to API calls. This
would allow us to take advantage of the vast literature of generative models for
NLP (Gatt and Krahmer, 2018) and apply it to our cyber-security domain

e The recent success of Generative Adversarial Networks (GAN) could provide an
interesting direction too for the generation of realistic execution traces (J. Xu
et al., 2018; Fedus et al., 2018; J. Guo et al., 2018), however the application to
sequences is still limited, especially when dealing with discrete tokens (such as
APIs). The game theoretic implications of GAN also apply well to AMA and it
would be interesting to substitute the analyzer and the malware agents with the
two competing network where the first generates sequences of inputs to trigger
the second. Indeed, a network as attacker instead of a malware is not an unre-
alistic case since, nowadays, the extensive use of Al to empower cyber-security
systems has given rise to attacks targeting machine learning algorithms rather
than the system architectures themselves (Samangouei et al., 2018; Xuanging
Liu and Hsieh, 2019)

e In the context of attacks to machine learning algorithms we believe that the game
theoretical formalization could be more resilient to such attacks with respect to
other classifiers based on feature selection or extraction. There are works that
show how the features computed by a neural network can be studied in order to
generate samples that escape or change the classification boundaries as desired
by a malicious attacker (Eykholt et al., 2018; L. Tong et al., 2019). While playing
a game instead, the analyzer can compute a strategy that already takes into
account a strategic malware (attacker) adapting the decision making strategy
in order to play at the equilibrium. By definition of equilibrium, an attacker
can not do any better by deviating from the best response that the analyzer
has computed. This approach would not make the analyzer perfect, neither
always effective, nevertheless it would allow to plan a defense strategy that is
geared toward the worst case scenario. In this perspective, in the near future
we plan to extend BAMA to consider also malware that actively try to counter
a strategic analyzer. By this we do not mean malware that use simple anti-
emulation mechanisms, but rather malware that, on top of the usual goal and

128 Chapter 12. Conclusions and Future Work

ability to release the payload, also strategize to counter an analyzer’s attempts
to reveal their family. Of course, malware of such level of sophistication are
not common yet in the real world, but the existing few are arguably among
the most dangerous ones. Our formalization allows the easy modeling of such
malware, requiring only the careful design of the utility function so that it
accurately represents the adversary goals and abilities. Indeed, for strategic
malware, responding to an analyzer triggering action becomes a choice that has
to balance the trade off between releasing the payload and not revealing the
belonging family. The utility function of the malware then will have to consider
that. Designing the decision making strategy of BAMA to consider the malware
as strategic will allow the analyzer to reason about (or play at) the equilibrium,
therefore gaining the maximum out of the analysis process in the worst case

e We plan to investigate an interesting research domain for the techniques pro-
posed in this thesis that goes beyond malware analysis: network security. We
believe that AMA techniques could find application as an intelligent firewall
interacting with agents over a network, extending the framework to the case
of multiple (possibly adversarial) unknown agents, e.g., IoT devices. Our anal-
ysis framework would be a starting point, although the extension requires a
consistent amount of research

e We also plan to apply AMA to cyber-physical systems and in particular to robot
security. We believe that, in the robotic domain, being able to perform actions
in the physical world in order to gain information to better refine what caused
a possible anomaly would be a great improvement to current anomaly and fault
detection techniques. For example, an autonomous drone that is undergoing a
GPS spoofing attack could perform the physical action of a fixed trajectory to
understand if such attack is actually happening. The cost of acting in the real
world, e.g., battery consumption and execution time, should be carefully evalu-
ated by the system in order to balance the cost of the action with the amount
of information that can potentially be acquired. This requires a sophisticated
decision making mechanism that can act in face of uncertainty. The long-term
behavioral analysis could be an important additional tool for attack or anomaly
detection in robotic platforms since the complexity of the tasks performed are
subject to errors, consequently inserting noise in the observed behavioral models

o Attackers will likely develop new anti-emulation methods, and the analysis
framework would benefit from the integration of a proper counter anti-emulation
layer to hide the sandbox, making it appear as a physical smartphone to the
malware. The current solution is just a collection of masking functions that
attackers can easily bypass with a slight change to the malware code. Research
in adaptive counter anti-emulation techniques, i.e., stealthy mechanisms for the
sandbox that adapt to what the malware does at runtime instead of being fixed,
is another interesting direction

Overall, the field of cyber-security (be it related to computer, network or cyber-
physical systems) is playing nowadays a fundamental role as application scenario for
research in Al, and will do even more so in the future. We believe that the approaches
presented in this thesis are a significant contribution to the synergy between cyber-
security and Al from which both fields can benefit, providing interesting solutions at
the intersection between theory and practice.

129

Glossary

A

Air Gapped Newtork A network security measure employed on one or more com-
puters to ensure that a secure computer network is physically isolated from
unsecured networks, such as the public Internet or an unsecured local area net-
work 62

C

Call Graph The call graph represents, using graph notation, the call dependencies
between functions of a program. The call graph does not represent the possi-
ble “flows” of a program (as the control flow graph does), i.e., no if-then-else
branching or loops are considered, but if a function can possibly call another
one, a dependency is created (Allen, 1970) 40

Control Flow Graph Representation, using graph notation, of all paths that might
be traversed through a program during its execution. The CFG is essential to
many compiler optimizations and static analysis tools. In a control flow graph
each node in the graph represents a basic block: jump targets start a block,
and jumps end a block. Directed edges are used to represent jumps in the
control flow. There are, in most presentations, two specially designated blocks:
the entry block, through which control enters into the flow graph, and the exit
block, through which all control flow leaves (Allen, 1970) 40

D

Duopoly In the duopoly game, two firms produce the same good and can decide to
charge either a low (L) price or a high (H) price. The goal of each firm is to
earn the highest profit as possible. If both firms choose H, each earns $1000;
if one chooses H and the other L, the one that chose H incurs in a loss of
$200, whereas the other earns $1200; if both firms choose L, each earns $600.
The game matrix visible in Table 1 models the same situation of the Prisoner’s
Dilemma (Osborne and Rubinstein, 1994)

Firm 2
H L
H | 1000,1000 —2000,1200
L

Firm 1 1200, —200 600, 600

TABLE 1: Duopoly game matrix

19

Dynamic Obfuscation In the most general sense, to obfuscate a program means to
transform it into a form that is more difficult for an adversary to understand

130

Glossary

J

or change than the original code. In the case of dynamic obfuscation, the soft-
ware make the execution trace observed at runtime change every time inserting
random actions or interweaving different behaviors (Collberg and Nagra, 2009)
89

Joint project Two students are working on a joint project. Each of them can either

K

work hard (W) or goof off (G), preferring to goof off if the other works hard
(although the outcome of the project would be better if both work hard, but
the increment in value is not worth the extra effort). The outcome of both
working hard is preferable to that of both goofing off (in which case nothing
gets accomplished), whereas the worst outcome for a working hard student is
for the other one to goof off (as the first gets exploited). The game matrix visible
in Table 2 models the same situation of the Prisoner’s Dilemma (Osborne and
Rubinstein, 1994)

Student 2
W G
2,2 0,3
Student 1 G130 1.1

TABLE 2: Joint project game matrix

19

k-nearest neighbor The k-nearest neighbor classifier is a supervised approach com-

monly based on the Euclidean distance (but any other choice suitable for the
specific application domain can be used) between test samples a training sam-
ples. With k-nearest neighbor where k = 1, the predicted class of test sample is
set equal to the true class of its nearest neighbor training sample. For k > 1 the
predicted class of test sample is set equal to the most frequent true class among
k nearest training samples (Cover and Hart, 2006)

® o
PPN
// .A \\
\ o)
\\\\ ® L
o o

Y

FIGURE 1: k-nearest neighbor decision with & = 5. The new sample “?” will be assigned to

the red class

Glossary 131

40, 79

M

Aperiodic Markov chain The period d; of a state s; of a Markov chain P is defined
to be the Greatest Common Divisor (GCD) d; = ged{n | P]; > 0}. A state s;
is aperiodic if d; = 1. A Markov chain is aperiodic if the period of all its states
is 1. If an irreducible Markov chain has an aperiodic state, then all of its states
are aperiodic and so is the entire Markov chain (Kemeny and Snell, 1983) 34,
131

Ergodic Markov chain A Markov chain is ergodic if it is aperiodic and positive
recurrent (Kemeny and Snell, 1983) 34

Positive Recurrent Markov chain A state s; of a Markov chain is recurrent if the
process will return to state s; with probability 1, otherwise s; is transient. A
Markov chain is recurrent if all of its states are recurrent. Let T; = {n > 1 |
X,, = i} be the time of first return to state s;. Then s; is positive recurrent if
E(T; | Xo = 1) < oo, otherwise s; is null recurrent. A Markov chain is positive
recurrent if all its states are positive recurrent (Kemeny and Snell, 1983) 34, 131

Regular Markov chain A Markov chain with transition matrix P is called regular
if P™ has only positive components for any integer n (Kemeny and Snell, 1983)
36

Markov perfect equilibrium The Markov perfect equilibrium corresponds to sub-
game perfect equilibrium for stochastic games with the additional properties:
the strategies of players can depend only on the current state (they have to
be Markovian); the state can encode only payoff-relevant information, meaning
that strategies must depend only on moves of the players without considering
cooperation, signaling, etc. (Fudenberg and Tirole, 1991) 28

N

n-gram An n-gram is a contiguous sequence of n items from a given sequence, e.g.,
words in a text, APIs in an execution trace, opcodes in a program, etc. n-
gram models, in the form of Markov models, are widely used to predict the next
item in a sequence in the fields of probability, communication theory, natural
language processing, computational biology, and data compression. The main
limitation of n-grams, despite their relative simplicity, is that by increasing n
the spatial requirements grow exponentially (Sidorov et al., 2013) 40-42

P

Pareto optimality An action profile is Pareto optimal (or efficient) if there is no
other action profile that increases the payoff of at least one player without de-
creasing anyone else’s (Mock, 2011). For the Prisoner’s Dilemma (Table 2.1), the
Pareto optimal action profile is (C, C) since it is the best outcome considering
both suspect payoffs 20

Perfect Bayesian equilibrium A strategy profile for an extensive game is a perfect
Bayesian equilibrium if: each player’s strategy specifies optimal actions given her
beliefs and the strategies of other players (sequential rationality); each player’s
belief is consistent with her strategy profile (consistency of beliefs). The second

132 Glossary

part requires the Bayes rule to be followed to maintain consistency of the beliefs
where appropriate (Osborne and Rubinstein, 1994) 24

R

Random forest classifier Random forests are an ensemble learning method for clas-
sification, regression and other tasks that operates by constructing a multitude
of decision trees at training time and outputting the class that is the mode of
the classes (classification) or mean prediction (regression) of the individual trees.
The fact that a forest of trees instead of a single decision tree is generated helps
reducing the overfitting problem (Ho, 1995)

Jo =

FiGURE 2: Random forest composed by 3 decision trees

79

S

Sequential equilibrium Sequential equilibrium strengthens the perfect Bayesian
equilibrium by requiring that beliefs be justifiable as coming from some set of
totally mixed strategies that are close to the equilibrium strategies, i.e., a small
perturbation of the equilibrium strategies. (Osborne and Rubinstein, 1994) 24

Sub-game perfect equilibrium Nash equilibrium ignores the sequential structure
of an extensive game, leading to situations in which player’s strategies are op-
timal at the beginning of the game, but are sub-optimal for some histories h
(sub-games). For such cases, the concept of sub-game perfect equilibrium comes
in handy: in no sub-game can any player ¢ do better by choosing a strategy
different from s}, given that every other player j adheres to s;‘f, where s, is the
strategy profile of the sub-game perfect equilibrium (Osborne and Rubinstein,
1994) 22

Support vector machine Support vector machines are supervised models for clas-
sification that construct a set of hyperplanes in order to separate the points of
the training set by the largest margin (max margin) with respect to their classes.
Support vector machine are originally applied to linearly separable classes, but
they have been extended to non-linearly separable ones with the use of kernels
to implicitly mapping their inputs into high-dimensional feature spaces., e.g.,
radial basis function kernel (Cortes and Vapnik, 1995)

Glossary 133

FIGURE 3: Separating hyperplane (purple line) in a 2-dimensional space

47,79, 103, 118

T

Term Frequency-Inverse Document Frequency Term frequency-inverse document
frequency, is a numerical statistic that is intended to reflect how important a
word is to a document in a collection or corpus. The TFIDF value increases
proportionally to the number of times a word appears in the document and is
offset by the number of documents in the corpus that contain the word. Denot-
ing D as the corpus of documents and f; 4 as the number of times term ¢ occurs
in document d € D: (Rajaraman et al., 2014)

, I 1 ft.d D
D)= (>+= : I
tfidf(t,d, D) <2 T 2mar{fua |V € d}> *®HaeDlted)

40

135

Acronyms

A
AT Artificial Intelligence iii, 1-4, 30, 41, 125, 127, 128

AMA Active Malware Analysis iii, iv, 1-7, 39, 43, 46, 48, 55, 58, 67, 77, 84, 109,
110, 117, 118, 125-128

API Application Programming Interface 4, 40, 42, 46, 55-59, 62, 63, 67-70, 75, 77,
91, 110, 111, 117, 120, 127, 131

ARM Advanced RISC Machine 59, Glossary: ARM Architecture

B

BAMA Bayesian Active Malware Analysis 6-8, 11, 109-112, 114, 115, 117-120, 122,
123, 126-128

C
CFG Control Flow Graph 40, 41, 129, Glossary: Control Flow Graph
CG Call Graph 40, 42, Glossary: Call Graph

CPU Central Processor Unit 59, 72

D
DAG Directed Acyclic Graph 44

DFS Depth-First Search 96

G

GAN Generative Adversarial Networks 127
GCD Greatest Common Divisor 131

GPS Global Positioning System 43, 64, 128

GUI Graphical User Interface 43, 117, 118, 120

H

HTTP HyperText Transfer Protocol 48

I

IDS Intrusion Detection System iii, 1

136 Acronyms

IoT Internet of Things 1, 128

K

K-NN K-Nearest Neighbor 40, 47, 75, 78, 84, 104, Glossary: k-nearest neighbor

M
MCA Monte Carlo Analysis 68, 97-99

MCTS Monte Carlo Tree Search 4, 6, 7, 11, 30-32, 46, 47, 63, 67-73, 77, 84, 125,
127

MDP Markov Decision Process 28

N

NLP Natural Language Processing 127

@)

OTP One Time Password 60, Glossary: One Time Password

R
RL Reinforcement Learning 4, 6, 32, 46, 125

RPS Rock Paper Scissors 97, 99-101, 103

S

SCC Strongly Connected Component 92-94, 99, 102, 103, 105, 127, Glossary: Strongly
connected component

SVM Support Vector Machine 47, 75, 79, 81, 84, 97, 104, 118, 119, Glossary: Support
vector machine

T

TFIDF Term Frequency-Inverse Document Frequency 40, 133, Glossary: Term Frequency-
Inverse Document Frequency

U
UCB Upper Confidence Bound 29, 30, 32

UCT Upper Confidence Bound for Trees 32, 69

X
XML eXtensible Markup Language 40, 42, 62

137

Bibliography

Aafer, Yousra, Wenliang Du, and Heng Yin (2013). “DroidAPIMiner: Mining API-
Level Features for Robust Malware Detection in Android”. In: Security and Privacy
in Communication Networks. Ed. by Tanveer Zia, Albert Zomaya, Vijay Varad-
harajan, and Morley Mao. Cham: Springer International Publishing, pp. 86-103.

Allen, Frances E. (July 1970). “Control Flow Analysis”. In: SIGPLAN Not. 5.7, pp. 1—-
19. 188N: 0362-1340. DOI: 10.1145/390013.808479. URL: http://doi.acm.org/
10.1145/390013.808479.

Arifoglu, Damla and Abdelhamid Bouchachia (2017). “Activity Recognition and Ab-
normal Behaviour Detection with Recurrent Neural Networks”. In: Procedia Com-
puter Science 110. 14th International Conference on Mobile Systems and Pervasive
Computing (MobiSPC 2017) / 12th International Conference on Future Networks
and Communications (FNC 2017) / Affiliated Workshops, pp. 86-93. 1sSN: 1877-
0509. DOI: https://doi.org/10.1016/j.procs.2017.06.121. URL: http:
//www.sciencedirect.com/science/article/pii/S1877050917313005.

Auer, Peter, Nicolo Cesa-Bianchi, and Paul Fischer (May 2002). “Finite-time Analysis
of the Multiarmed Bandit Problem”. In: Machine Learning 47.2, pp. 235—256. ISSN:
1573-0565. DOI: 10.1023/A:1013689704352. URL: https://doi.org/10.1023/A:
1013689704352.

Bhandari, Shweta, Rekha Panihar, Smita Naval, Vijay Laxmi, Akka Zemmari, and
Manoj Singh Gaur (2018). “SWORD: Semantic aWare andrOid malwaRe De-
tector”. In: Journal of Information Security and Applications 42.JEEE Trans Inf
Forensics Secur 12 8 2017, pp. 46-56. DOI: 10.1016/j.jisa.2018.07.003. URL:
https://app.dimensions.ai/details/publication/pub.1106321275.

Browne, Cameron (2011). “The Dangers of Random Playouts”. In: ICGA Journal 34.1,
pp- 25-26. DOI: 10.3233/ICG-2011-34105. URL: https://doi.org/10.3233/
ICG-2011-34105.

Browne, Cameron, Edward J. Powley, Daniel Whitehouse, Simon M. Lucas, Peter I.
Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez Liebana, Spyridon
Samothrakis, and Simon Colton (2012). “A Survey of Monte Carlo Tree Search
Methods.” In: IEEE Trans. Comput. Intellig. and Al in Games 4.1, pp. 1-43.

Busic, A., LM.H. Vliegen, and A. Scheller-Wolf (2009). Comparing Markov chains:
combining aggregation and precedence relations applied to sets of states. English.
Report Eurandom. Eurandom.

Calleja, Alejandro, Alejandro Martin, Héctor D. Menéndez, Juan E. Tapiador, and
David Clark (2018). “Picking on the family: Disrupting android malware triage by
forcing misclassification”. In: Ezpert Syst. Appl. 95, pp. 113-126. DOT: 10.1016/j .
eswa.2017.11.032. URL: https://doi.org/10.1016/j.eswa.2017.11.032.

Chalkiadakis, Georgios and Craig Boutilier (2007). “Coalitional Bargaining with Agent
Type Uncertainty”. In: Proceedings of the 20th International Joint Conference on
Artifical Intelligence. IJCAI’07. Hyderabad, India: Morgan Kaufmann Publishers
Inc., pp. 1227-1232. URL: http://dl.acm.org/citation.cfm?id=1625275.
1625474.

https://doi.org/10.1145/390013.808479
http://doi.acm.org/10.1145/390013.808479
http://doi.acm.org/10.1145/390013.808479
https://doi.org/https://doi.org/10.1016/j.procs.2017.06.121
http://www.sciencedirect.com/science/article/pii/S1877050917313005
http://www.sciencedirect.com/science/article/pii/S1877050917313005
https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1016/j.jisa.2018.07.003
https://app.dimensions.ai/details/publication/pub.1106321275
https://doi.org/10.3233/ICG-2011-34105
https://doi.org/10.3233/ICG-2011-34105
https://doi.org/10.3233/ICG-2011-34105
https://doi.org/10.1016/j.eswa.2017.11.032
https://doi.org/10.1016/j.eswa.2017.11.032
https://doi.org/10.1016/j.eswa.2017.11.032
http://dl.acm.org/citation.cfm?id=1625275.1625474
http://dl.acm.org/citation.cfm?id=1625275.1625474

138 Bibliography

Chalkiadakis, Georgios, Evangelos Markakis, and Craig Boutilier (2007). “Coalition
Formation Under Uncertainty: Bargaining Equilibria and the Bayesian Core Sta-
bility Concept”. In: Proceedings of the 6th International Joint Conference on Au-
tonomous Agents and Multiagent Systems. AAMAS ’07. Honolulu, Hawaii: ACM,
64:1-64:8. 1SBN: 978-81-904262-7-5. DOI: 10.1145/1329125.1329203. URL: http:
//doi.acm.org/10.1145/1329125.1329203.

Chaslot, G.M.J.B., M.H.M. Winands, J.W.H.M. Uiterwijk, H.J. van den Herik, and
B. Bouzy (2007). “Progressive strategies for Monte-Carlo tree search”. Dutch. In:
Information Sciences 2007. Ed. by P.P. Wang. Vol. 10. Pagination: 7. World Sci-
entific Publishing Company, pp. 655-661. ISBN: 9812709665.

Chaslot, Guillaume, Sander Bakkes, Istvan Szita, and Pieter Spronck (2008). “Monte-
carlo Tree Search: A New Framework for Game AI”. In: Proceedings of the Fourth
AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment.
AIIDE’08. Stanford, California: AAAI Press, pp. 216-217. URL: http://dl.acm.
org/citation.cfm?id=3022539.3022579.

Chen, Xi, Xiaotie Deng, and Shang-Hua Teng (May 2009). “Settling the Complexity
of Computing Two-player Nash Equilibria”. In: J. ACM 56.3, 14:1-14:57. 1SSN:
0004-5411. por: 10.1145/1516512.1516516. URL: http://doi.acm.org/10.
1145/1516512.1516516.

Cheung, Matthew (June 2018). Market Share: Operating Systems, Worldwide, 2017.
https://www.gartner.com/doc/3879167/market-share-operating-systems-
worldwide. Gartner, Inc.

Collberg, Christian and Jasvir Nagra (2009). Surreptitious Software: Obfuscation, Wa-
termarking, and Tamperproofing for Software Protection. 1st. Addison Wesley Pro-
fessional.

Cortes, Corinna and Vladimir Vapnik (Sept. 1995). “Support-vector networks”. In:
Machine Learning 20.3, pp. 273-297. por: 10.1007 /BF00994018. URL: https:
//doi.org/10.1007/BF00994018.

Coulom, Rémi (2007). “Efficient Selectivity and Backup Operators in Monte-Carlo
Tree Search”. In: Computers and Games. Ed. by H. Jaap van den Herik, Paolo
Ciancarini, and H. H. L. M. (Jeroen) Donkers. Berlin, Heidelberg: Springer Berlin
Heidelberg, pp. 72-83. 1SBN: 978-3-540-75538-8.

Cover, T. and P. Hart (Sept. 2006). “Nearest Neighbor Pattern Classification”. In:
IEEE Trans. Inf. Theor. 13.1, pp. 21-27. 1ssN: 0018-9448. por1: 10.1109/TIT.
1967.1053964. URL: https://doi.org/10.1109/TIT.1967.1053964.

Dyer, Martin, Leslie Ann Goldberg, Mark Jerrum, and Russell Martin (2006). “Markov
chain comparison”. In: Probab. Surveys 3, pp. 89-111. DOI: 10.1214/154957806000000041.
URL: https://doi.org/10.1214/154957806000000041.

Ebrahimi, Nader, Ehsan S. Soofi, and Shaoqiong (Annie) Zhao (Mar. 2011). “Infor-
mation Measures of Dirichlet Distribution with Applications”. In: Appl. Stoch.
Model. Bus. Ind. 27.2, pp. 131-150. 1SSN: 1524-1904. DOI: 10.1002/asmb . 870.
URL: http://dx.doi.org/10.1002/asmb.870.

Elisan, C.C. (2015). Advanced Malware Analysis. McGraw-Hill Education. URL: https:
//books.google.it/books?id=17SUAwWAAQBAJ.

Eykholt, Kevin, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei
Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song (2018). “Robust Physical-
World Attacks on Deep Learning Visual Classification”. In: 2018 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT,
USA, June 18-22, 2018, pp. 1625-1634. pOI: 10.1109/CVPR.2018.00175.

https://doi.org/10.1145/1329125.1329203
http://doi.acm.org/10.1145/1329125.1329203
http://doi.acm.org/10.1145/1329125.1329203
http://dl.acm.org/citation.cfm?id=3022539.3022579
http://dl.acm.org/citation.cfm?id=3022539.3022579
https://doi.org/10.1145/1516512.1516516
http://doi.acm.org/10.1145/1516512.1516516
http://doi.acm.org/10.1145/1516512.1516516
https://www.gartner.com/doc/3879167/market-share-operating-systems-worldwide
https://www.gartner.com/doc/3879167/market-share-operating-systems-worldwide
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/BF00994018
https://doi.org/10.1109/TIT.1967.1053964
https://doi.org/10.1109/TIT.1967.1053964
https://doi.org/10.1109/TIT.1967.1053964
https://doi.org/10.1214/154957806000000041
https://doi.org/10.1214/154957806000000041
https://doi.org/10.1002/asmb.870
http://dx.doi.org/10.1002/asmb.870
https://books.google.it/books?id=17SUAwAAQBAJ
https://books.google.it/books?id=17SUAwAAQBAJ
https://doi.org/10.1109/CVPR.2018.00175

Bibliography 139

Fedus, William, Ian Goodfellow, and Andrew M. Dai (2018). “MaskGAN: Better Text
Generation via Filling in the blanks”. In: International Conference on Learning
Representations. URL: https://openreview.net/forum?id=By0ExmWAb.

Friedman, James W. (1971). “A Non-cooperative Equilibrium for Supergames”. In:
Review of Economic Studies 38.1, pp. 1-12. URL: https://EconPapers . repec.
org/RePEc:oup:restud:v:38:y:1971:i:1:p:1-12..

Fudenberg, Drew and Jean Tirole (1991). Game Theory. Translated into Chinesse by
Renin University Press, Bejing: China. Cambridge, MA: MIT Press.

Gao, Debin, Michael K. Reiter, and Dawn Song (2008). “BinHunt: Automatically
Finding Semantic Differences in Binary Programs”. In: Proceedings of the 10th
International Conference on Information and Communications Security. ICICS
'08. Birmingham, UK: Springer-Verlag, pp. 238-255. I1SBN: 978-3-540-88624-2. DOTI:
10.1007/978-3-540-88625-9_16. URL: http://dx.doi.org/10.1007/978-3-
540-88625-9_16.

Garbaczewski, Piotr (Apr. 2006). “Differential Entropy and Dynamics of Uncertainty”.
In: Journal of Statistical Physics 123.2, p. 315. 1SSN: 1572-9613. DOI1: 10.1007/
$10955-006-9058-2. URL: https://doi.org/10.1007/s10955-006-9058-2.

Gascon, Hugo, Fabian Yamaguchi, Daniel Arp, and Konrad Rieck (2013). “Structural
Detection of Android Malware Using Embedded Call Graphs”. In: Proceedings of
the 2018 ACM Workshop on Artificial Intelligence and Security. AlSec ’13. Berlin,
Germany: ACM, pp. 45-54. 1SBN: 978-1-4503-2488-5.

Gatt, Albert and Emiel Krahmer (Jan. 2018). “Survey of the State of the Art in
Natural Language Generation: Core Tasks, Applications and Evaluation”. In: J.
Artif. Int. Res. 61.1, pp. 65-170. 1ssN: 1076-9757. URL: http://dl.acm. org/
citation.cfm?7id=3241691.3241693.

Gelly, Sylvain and David Silver (July 2011). “Monte-Carlo Tree Search and Rapid
Action Value Estimation in Computer Go”. In: Artif. Intell. 175.11, pp. 1856—
1875. 18SN: 0004-3702. DOIL: 10.1016/j . artint . 2011 .03 .007. URL: http:
//dx.doi.org/10.1016/j.artint.2011.03.007.

Ginsberg, Matthew L. (June 2001). “GIB: Imperfect Information in a Computationally
Challenging Game”. In: Journal of Artificial Intelligence Research 14.1, pp. 303—
358. 1SSN: 1076-9757. URL: http://dl.acm.org/citation.cfm?id=1622394.
1622405.

Guo, Jiaxian, Sidi Lu, Han Cai, Weinan Zhang, Yong Yu, and Jun Wang (2018).
“Long Text Generation via Adversarial Training with Leaked Information”. In:
AAAI pp. 5141-5148. URL: https://www . aaai.org/ocs/index . php/AAAT/
AAAT18/paper/view/16360.

Guo, Yuhong and Dale Schuurmans (2007). “Discriminative Batch Mode Active Learn-
ing”. In: Proceedings of the 20th International Conference on Neural Information
Processing Systems. NIPS’07. Vancouver, British Columbia, Canada: Curran As-
sociates Inc., pp. 593-600. 1SBN: 978-1-60560-352-0. URL: http://dl.acm.org/
citation.cfm?7id=2981562.2981637.

Han, Weijie, Jingfeng Xue, Yong Wang, Lu Huang, Zixiao Kong, and Limin Mao
(2019). “MalDAE: Detecting and explaining malware based on correlation and fu-
sion of static and dynamic characteristics”. In: Computers € Security 83, pp. 208—
233. 18SN: 0167-4048. DOIL: https://doi.org/10.1016/j.cose.2019.02.007.
URL: http://www.sciencedirect.com/science/article/pii/S016740481831246X.

Harsanyi, John C. (1967). “Games with Incomplete Information Played by “Bayesian”
Players, I-1I1 Part I. The Basic Model”. In: Management Science 14.3, pp. 159—
182. poI: 10.1287/mnsc.14.3.159. eprint: https://doi.org/10.1287/mnsc.14.
3.159. URL: https://doi.org/10.1287/mnsc.14.3.159.

https://openreview.net/forum?id=ByOExmWAb
https://EconPapers.repec.org/RePEc:oup:restud:v:38:y:1971:i:1:p:1-12.
https://EconPapers.repec.org/RePEc:oup:restud:v:38:y:1971:i:1:p:1-12.
https://doi.org/10.1007/978-3-540-88625-9_16
http://dx.doi.org/10.1007/978-3-540-88625-9_16
http://dx.doi.org/10.1007/978-3-540-88625-9_16
https://doi.org/10.1007/s10955-006-9058-2
https://doi.org/10.1007/s10955-006-9058-2
https://doi.org/10.1007/s10955-006-9058-2
http://dl.acm.org/citation.cfm?id=3241691.3241693
http://dl.acm.org/citation.cfm?id=3241691.3241693
https://doi.org/10.1016/j.artint.2011.03.007
http://dx.doi.org/10.1016/j.artint.2011.03.007
http://dx.doi.org/10.1016/j.artint.2011.03.007
http://dl.acm.org/citation.cfm?id=1622394.1622405
http://dl.acm.org/citation.cfm?id=1622394.1622405
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16360
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16360
http://dl.acm.org/citation.cfm?id=2981562.2981637
http://dl.acm.org/citation.cfm?id=2981562.2981637
https://doi.org/https://doi.org/10.1016/j.cose.2019.02.007
http://www.sciencedirect.com/science/article/pii/S016740481831246X
https://doi.org/10.1287/mnsc.14.3.159
https://doi.org/10.1287/mnsc.14.3.159
https://doi.org/10.1287/mnsc.14.3.159
https://doi.org/10.1287/mnsc.14.3.159

140 Bibliography

Hernandez-Leal, Pablo and Michael Kaisers (2017). “Towards a Fast Detection of
Opponents in Repeated Stochastic Games”. In: Autonomous Agents and Multiagent
Systems. Ed. by Gita Sukthankar and Juan A. Rodriguez-Aguilar. Cham: Springer
International Publishing, pp. 239-257. 1SBN: 978-3-319-71682-4.

Hiraishi, Kunihiko and Koichi Kobayashi (2014). “Detection of Unusual Human Activi-
ties Based on Behavior Modeling”. In: IFAC' Proceedings Volumes 47.2. 12th IFAC
International Workshop on Discrete Event Systems (2014), pp. 182-187. 1sSN:
1474-6670. DOI: https://doi.org/10.3182/20140514-3-FR-4046.00029. URL:
http://www.sciencedirect.com/science/article/pii/S1474667015374000.

Ho, Tin Kam (1995). “Random Decision Forests”. In: Proceedings of the Third Inter-
national Conference on Document Analysis and Recognition (Volume 1) - Volume
1. ICDAR ’95. Washington, DC, USA: IEEE Computer Society, pp. 278—. ISBN:
0-8186-7128-9. URL: http://dl.acm.org/citation.cfm?id=844379.844681.

Jain, Manish, James Pita, Milind Tambe, Fernando Ordéniez, Praveen Paruchuri, and
Sarit Kraus (June 2008). “Bayesian Stackelberg Games and Their Application for
Security at Los Angeles International Airport”. In: SIGecom Fxch. 7.2, 10:1-10:3.
ISSN: 1551-9031. DOI: 10.1145/1399589.1399599. URL: http://doi.acm.org/
10.1145/1399589.1399599.

Jin, Xinyu, Niki Pissinou, Sitthapon Pumpichet, Charles A. Kamhoua, and Kevin A.
Kwiat (2013). “Modeling cooperative, selfish and malicious behaviors for Trajec-
tory Privacy Preservation using Bayesian game theory”. In: 38th Annual IEFEE
Conference on Local Computer Networks, Sydney, Australia, October 21-2/, 2013,
pp. 835-842. por: 10.1109/LCN.2013.6761339. URL: https://doi.org/10.
1109/LCN.2013.6761339.

Jurisi¢, M., D. Kermek, and M. Konecki (May 2012). “A review of iterated prisoner’s
dilemma strategies”. In: 2012 Proceedings of the 35th International Convention
MIPRO, pp. 1093-1097.

Kachitvichyanukul, Voratas and Bruce W. Schmeiser (Feb. 1988). “Binomial Random
Variate Generation”. In: Commun. ACM 31.2, pp. 216-222. 1ssN: 0001-0782. DOTI:
10.1145/42372.42381. URL: http://doi.acm.org/10.1145/42372.42381.

Kemeny, J.G. and J.L. Snell (1983). Finite Markov Chains: With a New Appendix
"Generalization of a Fundamental Matriz". Undergraduate Texts in Mathematics.
Springer New York. ISBN: 9780387901923. URL: https://books.google.com.sg/
books?id=0bTK5uWzbYwC.

Kocsis, Levente and Csaba Szepesvari (2006). “Bandit Based Monte-carlo Planning”.
In: Proceedings of the 17th European Conference on Machine Learning. ECML’06.
Berlin, Germany: Springer-Verlag, pp. 282-293. 1SBN: 978-3-540-45375-8.

Kullback, Solomon and Richard A Leibler (1951). “On information and sufficiency”.
In: The annals of mathematical statistics 22.1, pp. 79-86.

Lai, T.L and Herbert Robbins (1985). “Asymptotically efficient adaptive allocation
rules”. In: Advances in Applied Mathematics 6.1, pp. 4—22. 1SSN: 0196-8858. DOI:
https://doi.org/10.1016 /0196 - 8858(85) 90002 - 8. URL: http://www .
sciencedirect.com/science/article/pii/0196885885900028.

Lakhotia, A., M. Dalla Preda, and R. Giacobazzi (2013). “Fast location of similar code
fragments using semantic 'Juice”. In: 2nd Workshop on Program Protection and
Reverse Engineering PPREW 2013. ACM.

Lee, P.M. (2012). Bayesian Statistics: An Introduction. Wiley. 1SBN: 9781118359778.
URL: https://books.google.it/books?id=WOWOKqWQwAcC.

Lin, Chih-Hung, Hsing-Kuo Pao, and Jian-Wei Liao (2018). “Efficient dynamic mal-
ware analysis using virtual time control mechanics”. In: Computers € Security
73, pp. 359-373. 1SsN: 0167-4048. DOIL: https://doi.org/10.1016/j . cose.

https://doi.org/https://doi.org/10.3182/20140514-3-FR-4046.00029
http://www.sciencedirect.com/science/article/pii/S1474667015374000
http://dl.acm.org/citation.cfm?id=844379.844681
https://doi.org/10.1145/1399589.1399599
http://doi.acm.org/10.1145/1399589.1399599
http://doi.acm.org/10.1145/1399589.1399599
https://doi.org/10.1109/LCN.2013.6761339
https://doi.org/10.1109/LCN.2013.6761339
https://doi.org/10.1109/LCN.2013.6761339
https://doi.org/10.1145/42372.42381
http://doi.acm.org/10.1145/42372.42381
https://books.google.com.sg/books?id=0bTK5uWzbYwC
https://books.google.com.sg/books?id=0bTK5uWzbYwC
https://doi.org/https://doi.org/10.1016/0196-8858(85)90002-8
http://www.sciencedirect.com/science/article/pii/0196885885900028
http://www.sciencedirect.com/science/article/pii/0196885885900028
https://books.google.it/books?id=WOW0KqWQwAcC
https://doi.org/https://doi.org/10.1016/j.cose.2017.11.010
https://doi.org/https://doi.org/10.1016/j.cose.2017.11.010

Bibliography 141

2017.11.010. URL: http://www.sciencedirect.com/science/article/pii/
S016740481730247X.

Liu, Xinxin, Kaikai Liu, Linke Guo, Xiaolin Li, and Yuguang Fang (2013). “A game-
theoretic approach for achieving k-anonymity in Location Based Services.” In:
INFOCOM. TEEE, pp. 2985-2993. 1SBN: 978-1-4673-5944-3. URL: http://dblp.
uni-trier.de/db/conf/infocom/infocom2013.html#LiuLGOF13.

Liu, Xuanqging and Cho-Jui Hsieh (2019). “Rob-GAN: Generator, Discriminator, and
Adversarial Attacker”. In: IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pp. 11234—
11243.

Mariconti, Enrico, Lucky Onwuzurike, Panagiotis Andriotis, Emiliano De Cristofaro,
Gordon J. Ross, and Gianluca Stringhini (2017). “MaMaDroid: Detecting Android
Malware by Building Markov Chains of Behavioral Models”. In: NDSS. The Inter-
net Society.

Marpaung, J. A. P.;, M. Sain, and Hoon-Jae Lee (Feb. 2012). “Survey on malware
evasion techniques: State of the art and challenges”. In: 2012 14th International
Conference on Advanced Communication Technology (ICACT), pp. 744-749.

Martin, Alejandro, Ratl Lara-Cabrera, and David Camacho (2019). “Android malware
detection through hybrid features fusion and ensemble classifiers: The AndroPy-
Tool framework and the OmniDroid dataset”. In: Information Fusion 52, pp. 128—
142. DOIL: 10.1016/j . inffus.2018.12.006. URL: https://doi.org/10.1016/j.
inffus.2018.12.006.

Martin, Alejandro, Victor Rodriguez-Fernandez, and David Camacho (2018). “CAN-
DYMAN: Classifying Android malware families by modelling dynamic traces with
Markov chains”. In: Engineering Applications of Artificial Intelligence 74, pp. 121—
133. 18sN: 0952-1976. DOI: https://doi.org/10.1016/ j . engappai . 2018 .
06 . 006. URL: http://www . sciencedirect . com/ science /article /pii/
S0952197618301374.

Martin, Ignacio, José Alberto Hernandez, and Sergio de los Santos (2019). “Machine-
Learning based analysis and classification of Android malware signatures”. In: Fu-
ture Generation Computer Systems 97, pp. 295-305. 1SSN: 0167-739X. DOI: https:
//doi.org/10.1016/j.future.2019.03.006. URL: http://www.sciencedirect.
com/science/article/pii/S0167739X18325159.

Mas-Colell, Andreu, Michael D. Whinston, and Jerry R. Green (1995). Microeconomic
Theory. New York: Oxford University Press.

Mayil, V.valli (May 2012). “Web Navigation Path Pattern Prediction using First Order
Markov Model and Depth first Evaluation”. In: International Journal of Computer
Applications 45.16, pp. 26-31.

Meng, Guozhu, Yinxing Xue, Zhengzi Xu, Yang Liu, Jie Zhang, and Annamalai
Narayanan (2016). “Semantic Modelling of Android Malware for Effective Malware
Comprehension, Detection, and Classification”. In: Proceedings of the 25th Interna-
tional Symposium on Software Testing and Analysis. ISSTA 2016. Saarbrücken,
Germany: ACM, pp. 306-317. 1SBN: 978-1-4503-4390-9.

Mertens, J. -F. and A. Neyman (June 1981). “Stochastic games”. In: International
Journal of Game Theory 10.2, pp. 53—66. 1SSN: 1432-1270. DOI: 10.1007/BF01769259.
URL: https://doi.org/10.1007/BF01769259.

Mock, William B. T. (2011). “Pareto Optimality”. In: Encyclopedia of Global Justice.
Ed. by Deen K. Chatterjee. Dordrecht: Springer Netherlands, pp. 808-809. 1SBN:
978-1-4020-9160-5. DOI: 10.1007/978-1-4020-9160-5_341. URL: https://doi.
org/10.1007/978-1-4020-9160-5_341.

https://doi.org/https://doi.org/10.1016/j.cose.2017.11.010
https://doi.org/https://doi.org/10.1016/j.cose.2017.11.010
http://www.sciencedirect.com/science/article/pii/S016740481730247X
http://www.sciencedirect.com/science/article/pii/S016740481730247X
http://dblp.uni-trier.de/db/conf/infocom/infocom2013.html#LiuLG0F13
http://dblp.uni-trier.de/db/conf/infocom/infocom2013.html#LiuLG0F13
https://doi.org/10.1016/j.inffus.2018.12.006
https://doi.org/10.1016/j.inffus.2018.12.006
https://doi.org/10.1016/j.inffus.2018.12.006
https://doi.org/https://doi.org/10.1016/j.engappai.2018.06.006
https://doi.org/https://doi.org/10.1016/j.engappai.2018.06.006
http://www.sciencedirect.com/science/article/pii/S0952197618301374
http://www.sciencedirect.com/science/article/pii/S0952197618301374
https://doi.org/https://doi.org/10.1016/j.future.2019.03.006
https://doi.org/https://doi.org/10.1016/j.future.2019.03.006
http://www.sciencedirect.com/science/article/pii/S0167739X18325159
http://www.sciencedirect.com/science/article/pii/S0167739X18325159
https://doi.org/10.1007/BF01769259
https://doi.org/10.1007/BF01769259
https://doi.org/10.1007/978-1-4020-9160-5_341
https://doi.org/10.1007/978-1-4020-9160-5_341
https://doi.org/10.1007/978-1-4020-9160-5_341

142 Bibliography

Moser, Andreas, Christopher Kruegel, and Engin Kirda (2007). “Exploring Multiple
Execution Paths for Malware Analysis”. In: Proceedings of the 2007 IEEE Sym-
posium on Security and Privacy. SP ’07. Washington, DC, USA: IEEE Computer
Society, pp. 231-245. 1SBN: 0-7695-2848-1.

Myerson, Roger B. (Sept. 1997). Game Theory: Analysis of Conflict. Harvard Univer-
sity Press.

Nash, J. F. (1950). “Equilibrium Points in N-Person Games”. In: Proceedings of the
National Academy of Sciences of the United States of America 36.48-49.

Ng, K.W., G.L. Tian, and M.L. Tang (2011). Dirichlet and Related Distributions: The-
ory, Methods and Applications. Wiley Series in Probability and Statistics. Wiley.
ISBN: 9781119998419. URL: https://books.google.it/books?id=k8GS8680y04C.

Nissim, Nir, Robert Moskovitch, Lior Rokach, and Yuval Elovici (2014). “Novel ac-
tive learning methods for enhanced PC malware detection in windows OS.” In:
Ezpert Syst. Appl. 41.13, pp. 5843-5857. URL: http://dblp.uni-trier.de/db/
journals/eswa/eswadl.html#NissimMRE14.

Norris, Donald J. (2017). “Games”. In: Beginning Artificial Intelligence with the Rasp-
berry Pi. Berkeley, CA: Apress, pp. 77-110. 1SBN: 978-1-4842-2743-5. DOI: 10 .
1007/978-1-4842-2743-5_4. URL: https://doi.org/10.1007/978-1-4842-
2743-5_4.

Nowak, Martin and Karl Sigmund (Aug. 1993). “A Strategy of Win-Stay, Lose-Shift
That Outperforms Tit-for-Tat in the Prisoner’s Dilemma Game”. In: Nature 364,
pp. 56-8.

Osborne, Martin J. and Ariel Rubinstein (July 1994). A Course in Game Theory.
Cambridge, MA, USA: The MIT Press.

Otte, Stefan, Johannes Kulick, Marc Toussaint, and Oliver Brock (2014). “Entropy-
based strategies for physical exploration of the environment’s degrees of freedom”.
In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems,
Chicago, IL, USA, September 14-18, 2014, pp. 615-622. DOI: 10. 1109/ IROS .
2014.6942623. URL: https://doi.org/10.1109/IR0S.2014.6942623.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay (2011). “Scikit-learn: Machine
Learning in Python”. In: Journal of Machine Learning Research 12, pp. 2825-2830.

Rajaraman, Anand, Jure Leskovec, and Jeffrey D. Ullman (2014). Mining Massive
Datasets. URL: http://infolab.stanford.edu/ ullman/mmds/book.pdf.

Rieck, Konrad, Philipp Trinius, Carsten Willems, and Thorsten Holz (2011). “Auto-
matic analysis of malware behavior using machine learning”. In: Journal of Com-
puter Security 19.4, pp. 639-668. DOI: 10.3233/JCS-2010-0410. URL: https:
//doi.org/10.3233/JCS-2010-0410.

Samangouei, Pouya, Maya Kabkab, and Rama Chellappa (2018). “Defense-GAN: Pro-
tecting Classifiers Against Adversarial Attacks Using Generative Models”. In: In-
ternational Conference on Learning Representations. URL: https://openreview.
net/forum?id=BkJ3ibb0-.

Sartea, Riccardo, Georgios Chalkiadakis, Alessandro Farinelli, and Matteo Murari
(2020). “Bayesian Active Malware Analysis”. In: Proceedings of the 19th Interna-
tional Conference on Autonomous Agents and MultiAgent Systems. AAMAS ’20.
Accepted for publication. Richland, SC: International Foundation for Autonomous
Agents and Multiagent Systems.

https://books.google.it/books?id=k8GS868oyo4C
http://dblp.uni-trier.de/db/journals/eswa/eswa41.html#NissimMRE14
http://dblp.uni-trier.de/db/journals/eswa/eswa41.html#NissimMRE14
https://doi.org/10.1007/978-1-4842-2743-5_4
https://doi.org/10.1007/978-1-4842-2743-5_4
https://doi.org/10.1007/978-1-4842-2743-5_4
https://doi.org/10.1007/978-1-4842-2743-5_4
https://doi.org/10.1109/IROS.2014.6942623
https://doi.org/10.1109/IROS.2014.6942623
https://doi.org/10.1109/IROS.2014.6942623
http://infolab.stanford.edu/~ullman/mmds/book.pdf
https://doi.org/10.3233/JCS-2010-0410
https://doi.org/10.3233/JCS-2010-0410
https://doi.org/10.3233/JCS-2010-0410
https://openreview.net/forum?id=BkJ3ibb0-
https://openreview.net/forum?id=BkJ3ibb0-

Bibliography 143

Sartea, Riccardo and Alessandro Farinelli (2017). “A Monte Carlo Tree Search ap-
proach to Active Malware Analysis”. In: Proceedings of the Twenty-Sixth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-17, pp. 3831-3837. DOLI:
10.24963/ijcai.2017/535. URL: https://doi.org/10.24963/ijcai.2017/535.

Sartea, Riccardo and Alessandro Farinelli (2018). “Detection of Intelligent Agent Be-
haviors Using Markov Chains”. In: Proceedings of the 17th International Confer-
ence on Autonomous Agents and MultiAgent Systems. AAMAS ’18. Stockholm,
Sweden: International Foundation for Autonomous Agents and Multiagent Sys-
tems, pp. 2064-2066. URL: http://dl.acm.org/citation.cfm?id=3237383.
3238073.

Sartea, Riccardo, Alessandro Farinelli, and Matteo Murari (2019). “Agent Behavioral
Analysis Based on Absorbing Markov Chains”. In: Proceedings of the 18th Inter-
national Conference on Autonomous Agents and MultiAgent Systems. AAMAS
’19. Montreal QC, Canada: International Foundation for Autonomous Agents and
Multiagent Systems, pp. 647—655. ISBN: 978-1-4503-6309-9. URL: http://dl.acm.
org/citation.cfm?id=3306127.3331752.

Sartea, Riccardo, Alessandro Farinelli, and Matteo Murari (2020). “SECUR-AMA:
Active Malware Analysis Based on Monte Carlo Tree Search for Android Systems”.
In: Engineering Applications of Artificial Intelligence 87, p. 103303. 1SSN: 0952-
1976. DOIL: https://doi.org/10.1016/j.engappai.2019.103303. URL: http:
//www.sciencedirect.com/science/article/pii/S0952197619302635.

Sartea, Riccardo, Mila Dalla Preda, Alessandro Farinelli, Roberto Giacobazzi, and
Isabella Mastroeni (2016). “Active Android Malware Analysis: An Approach Based
on Stochastic Games”. In: Proceedings of the 6th Workshop on Software Security,
Protection, and Reverse Engineering. SSPREW ’16. Los Angeles, California, USA:
ACM, 5:1-5:10. 1SBN: 978-1-4503-4841-6. DOI: 10.1145/3015135.3015140. URL:
http://doi.acm.org/10.1145/3015135.3015140.

Sarukkai, Ramesh R. (2000). “Link Prediction and Path Analysis Using Markov
Chains”. In: Proceedings of the 9th International World Wide Web Conference on
Computer Networks : The International Journal of Computer and Telecommuni-
cations Netowrking. Amsterdam, The Netherlands: North-Holland Publishing Co.,
pp. 377-386. URL: http://dl.acm.org/citation.cfm?id=347319.346322.

Sharif, Monirul, Vinod Yegneswaran, Hassen Saidi, Phillip Porras, and Wenke Lee
(2008). “Computer Security - ESORICS 2008: 13th European Symposium on Re-
search in Computer Security, Malaga, Spain, October 6-8, 2008. Proceedings”. In:
ed. by Sushil Jajodia and Javier Lopez. Springer Berlin Heidelberg. Chap. Eureka:
A Framework for Enabling Static Malware Analysis, pp. 481-500. ISBN: 978-3-540-
88313-5. DOI: 10.1007/978-3-540-88313-5_31. URL: http://dx.doi.org/10.
1007/978-3-540-88313-5_31.

Sheppard, Brian (2002). “World-championship-caliber Scrabble”. In: Artificial Intel-
ligence 134.1, pp. 241-275. 1ssN: 0004-3702. DOI: https://doi.org/10.1016/
S0004 - 3702(01) 00166 -7. URL: http://www.sciencedirect . com/science/
article/pii/S0004370201001667.

Sidorov, Grigori, Francisco Velasquez, Efstathios Stamatatos, Alexander Gelbukh,
and Liliana Chanona-Hernandez (2013). “Syntactic Dependency-Based N-grams
as Classification Features”. In: Advances in Computational Intelligence. Ed. by I1-
dar Batyrshin and Miguel Gonzalez Mendoza. Berlin, Heidelberg: Springer Berlin
Heidelberg, pp. 1-11.

Sikorski, Michael and Andrew Honig (2012). Practical Malware Analysis: The Hands-
On Guide to Dissecting Malicious Software. 1st. San Francisco, CA, USA: No
Starch Press. 1sBN: 9781593272906.

https://doi.org/10.24963/ijcai.2017/535
https://doi.org/10.24963/ijcai.2017/535
http://dl.acm.org/citation.cfm?id=3237383.3238073
http://dl.acm.org/citation.cfm?id=3237383.3238073
http://dl.acm.org/citation.cfm?id=3306127.3331752
http://dl.acm.org/citation.cfm?id=3306127.3331752
https://doi.org/https://doi.org/10.1016/j.engappai.2019.103303
http://www.sciencedirect.com/science/article/pii/S0952197619302635
http://www.sciencedirect.com/science/article/pii/S0952197619302635
https://doi.org/10.1145/3015135.3015140
http://doi.acm.org/10.1145/3015135.3015140
http://dl.acm.org/citation.cfm?id=347319.346322
https://doi.org/10.1007/978-3-540-88313-5_31
http://dx.doi.org/10.1007/978-3-540-88313-5_31
http://dx.doi.org/10.1007/978-3-540-88313-5_31
https://doi.org/https://doi.org/10.1016/S0004-3702(01)00166-7
https://doi.org/https://doi.org/10.1016/S0004-3702(01)00166-7
http://www.sciencedirect.com/science/article/pii/S0004370201001667
http://www.sciencedirect.com/science/article/pii/S0004370201001667

144 Bibliography

Sobezyk, K. (2001). “INFORMATION DYNAMICS: PREMISES, CHALLENGES
AND RESULTS”. In: Mechanical Systems and Signal Processing 15.3, pp. 475—
498. 18SN: 0888-3270. DOI: https://doi.org/10.1006/mssp.2000.1378. URL:
http://www.sciencedirect.com/science/article/pii/S0888327000913785.

Suarez-Tangil, Guillermo, Mauro Conti, Juan E. Tapiador, and Pedro Peris-Lopez
(2014). “Detecting Targeted Smartphone Malware with Behavior-Triggering Stochas-
tic Models”. In: Computer Security - ESORICS 2014: 19th European Symposium
on Research in Computer Security, Wroclaw, Poland, September 7-11, 2014. Pro-
ceedings, Part I. Cham: Springer International Publishing, pp. 183—201. 1ISBN: 978-
3-319-11203-9.

Suarez-Tangil, Guillermo, Juan E. Tapiador, Pedro Peris-Lopez, and Jorge Blasco
Alis (2014). “Dendroid: A text mining approach to analyzing and classifying code
structures in Android malware families”. In: FExpert Syst. Appl. 41.4, pp. 1104—
1117.

Szita, Istvan and Andras Loérincz (2008). “The Many Faces of Optimism: A Unify-
ing Approach”. In: Proceedings of the 25th International Conference on Machine
Learning. ICML ’08. Helsinki, Finland: ACM, pp. 1048-1055. 1SBN: 978-1-60558-
205-4. DOI: 10.1145/1390156.1390288. URL: http://doi.acm.org/10.1145/
1390156.1390288.

Tambe, Milind (2011). Security and Game Theory: Algorithms, Deployed Systems,
Lessons Learned. 1st. New York, NY, USA: Cambridge University Press. 1SBN:
1107096421.

Tarjan, R. (Oct. 1971). “Depth-first search and linear graph algorithms”. In: 12th
Annual Symposium on Switching and Automata Theory (swat 1971), pp. 114-121.
DOI: 10.1109/SWAT.1971.10.

AV-Test (2019). Malware Statistics and Trends Report. https://www.av-test.org/
en/statistics/malware/. Independent I'T-Security Institute.

Tong, Liang, Bo Li, Chen Hajaj, Chaowei Xiao, Ning Zhang, and Yevgeniy Vorob-
eychik (Aug. 2019). “Improving Robustness of ML Classifiers against Realizable
Evasion Attacks Using Conserved Features”. In: 28th USENIX Security Sympo-
sium (USENIX Security 19). Santa Clara, CA: USENIX Association, pp. 285—
302. 1SBN: 978-1-939133-06-9. URL: https://www . usenix . org/ conference/
usenixsecurityl9/presentation/tong.

Tong, Simon and Daphne Koller (Mar. 2002). “Support Vector Machine Active Learn-
ing with Applications to Text Classification”. In: J. Mach. Learn. Res. 2, pp. 45—
66. 1SSN: 1532-4435. DOI: 10.1162/153244302760185243. URL: https://doi.
org/10.1162/153244302760185243.

Upchurch, Jason and Xiaobo Zhou (2016). “Malware Provenance: Code Reuse De-
tection in Malicious Software at Scale”. In: 2016 11th International Conference on
Malicious and Unwanted Software (MALWARE), pp. 1-9. DOI: 10.1109/malware.
2016.7888735.

Walenstein, Andrew and Arun Lakhotia (2006). “The Software Similarity Problem in
Malware Analysis”. In: Duplication, Redundancy, and Similarity in Software.
Walenstein, Andrew, Michael Venable, Matthew Hayes, Christopher Thompson, and
Arun Lakhotia (2007). “Exploiting Similarity Between Variants to Defeat Malware

“ Vilo ” Method for Comparing and Searching Binary Programs”. In:

Wei, Fengguo, Yuping Li, Sankardas Roy, Xinming Ou, and Wu Zhou (2017). “Deep
Ground Truth Analysis of Current Android Malware”. In: International Con-
ference on Detection of Intrusions and Malware, and Vulnerability Assessment
(DIMVA’17). Bonn, Germany: Springer, pp. 252-276.

https://doi.org/https://doi.org/10.1006/mssp.2000.1378
http://www.sciencedirect.com/science/article/pii/S0888327000913785
https://doi.org/10.1145/1390156.1390288
http://doi.acm.org/10.1145/1390156.1390288
http://doi.acm.org/10.1145/1390156.1390288
https://doi.org/10.1109/SWAT.1971.10
https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/
https://www.usenix.org/conference/usenixsecurity19/presentation/tong
https://www.usenix.org/conference/usenixsecurity19/presentation/tong
https://doi.org/10.1162/153244302760185243
https://doi.org/10.1162/153244302760185243
https://doi.org/10.1162/153244302760185243
https://doi.org/10.1109/malware.2016.7888735
https://doi.org/10.1109/malware.2016.7888735

Bibliography 145

Wei, Kai, Rishabh Iyer, and Jeff Bilmes (2015). “Submodularity in Data Subset Selec-
tion and Active Learning”. In: Proceedings of the 32Nd International Conference
on International Conference on Machine Learning - Volume 37. ICML’15. Lille,
France: JMLR.org, pp. 1954-1963. URL: http://dl.acm.org/citation.cfm?id=
3045118.3045326.

Whittaker, James A. and Michael G. Thomason (Oct. 1994). “A Markov Chain Model
for Statistical Software Testing”. In: IEEE Trans. Softw. Eng. 20.10, pp. 812-824.
1SSN: 0098-5589. URL: http://dx.doi.org/10.1109/32.328991.

Williamson, Simon A., Pradeep Varakantham, Ong Chen Hui, and Debin Gao (2012).
“Active Malware Analysis Using Stochastic Games”. In: Proceedings of the 11th
International Conference on Autonomous Agents and Multiagent Systems - Volume
1. AAMAS ’12. Valencia, Spain: International Foundation for Autonomous Agents
and Multiagent Systems, pp. 29-36. I1SBN: 0-9817381-1-7. URL: http://dl.acm.
org/citation.cfm?id=2343576.2343580.

Wressnegger, Christian, Guido Schwenk, Daniel Arp, and Konrad Rieck (2013). “A
Close Look on N-grams in Intrusion Detection: Anomaly Detection vs. Classifi-
cation”. In: Proceedings of the 2013 ACM Workshop on Artificial Intelligence and
Security. AlSec '13. Berlin, Germany: ACM, pp. 67-76. ISBN: 978-1-4503-2488-5.
DOI: 10.1145/2517312.2517316. URL: http://doi.acm.org/10.1145/2517312.
2517316.

Xu, Haifeng, Rupert Freeman, Vincent Conitzer, Shaddin Dughmi, and Milind Tambe
(2016). “Signaling in Bayesian Stackelberg Games”. In: Proceedings of the 2016 In-
ternational Conference on Autonomous Agents and Multiagent Systems. AAMAS
’16. Singapore, Singapore: International Foundation for Autonomous Agents and
Multiagent Systems, pp. 150-158. 1SBN: 978-1-4503-4239-1. URL: http://dl.acm.
org/citation.cfm?id=2936924.2936950.

Xu, Jingjing, Xuancheng Ren, Junyang Lin, and Xu Sun (Oct. 2018). “Diversity-
Promoting GAN: A Cross-Entropy Based Generative Adversarial Network for Di-
versified Text Generation”. In: Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing. Brussels, Belgium: Association for Com-
putational Linguistics, pp. 3940-3949. DOI: 10.18653/v1/D18-1428. URL: https:
//www.aclweb.org/anthology/D18-1428.

Yaghmour, Karim (2013). Embedded Android. O’Reilly Media.

Yang, Chao, Zhaoyan Xu, Guofei Gu, Vinod Yegneswaran, and Phillip Porras (2014).
“Computer Security - ESORICS 2014: 19th European Symposium on Research in
Computer Security, Wroclaw, Poland, September 7-11, 2014. Proceedings, Part I”.
In: ed. by Mirostaw Kutytowski and Jaideep Vaidya. Cham: Springer International
Publishing. Chap. DroidMiner: Automated Mining and Characterization of Fine-
grained Malicious Behaviors in Android Applications, pp. 163—-182. 1SBN: 978-3-
319-11203-9. por: 10.1007/978-3-319-11203-9_10. URL: http://dx.doi.org/
10.1007/978-3-319-11203-9_10.

Yin, Li, Li-Guo Huang, Xiu-Li Lin, and Yong-Li Wang (July 2018). “Monotonicity,
concavity, and inequalities related to the generalized digamma function”. In: Ad-
vances in Difference Equations 2018.1, p. 246. 1SSN: 1687-1847. poI: 10.1186/
$13662-018-1695-7. URL: https://doi.org/10.1186/s13662-018-1695-7.

Yu, Kai, Jinbo Bi, and Volker Tresp (2006). “Active Learning via Transductive Exper-
imental Design”. In: Proceedings of the 23rd International Conference on Machine
Learning. ICML ’06. Pittsburgh, Pennsylvania, USA: ACM, pp. 1081-1088. 1SBN:
1-59593-383-2. DOI: 10.1145/1143844.1143980. URL: http://doi.acm.org/10.
1145/1143844.1143980.

http://dl.acm.org/citation.cfm?id=3045118.3045326
http://dl.acm.org/citation.cfm?id=3045118.3045326
http://dx.doi.org/10.1109/32.328991
http://dl.acm.org/citation.cfm?id=2343576.2343580
http://dl.acm.org/citation.cfm?id=2343576.2343580
https://doi.org/10.1145/2517312.2517316
http://doi.acm.org/10.1145/2517312.2517316
http://doi.acm.org/10.1145/2517312.2517316
http://dl.acm.org/citation.cfm?id=2936924.2936950
http://dl.acm.org/citation.cfm?id=2936924.2936950
https://doi.org/10.18653/v1/D18-1428
https://www.aclweb.org/anthology/D18-1428
https://www.aclweb.org/anthology/D18-1428
https://doi.org/10.1007/978-3-319-11203-9_10
http://dx.doi.org/10.1007/978-3-319-11203-9_10
http://dx.doi.org/10.1007/978-3-319-11203-9_10
https://doi.org/10.1186/s13662-018-1695-7
https://doi.org/10.1186/s13662-018-1695-7
https://doi.org/10.1186/s13662-018-1695-7
https://doi.org/10.1145/1143844.1143980
http://doi.acm.org/10.1145/1143844.1143980
http://doi.acm.org/10.1145/1143844.1143980

146 Bibliography

Zhang, Li, Vrizlynn L. L. Thing, and Yao Cheng (2019). “A scalable and extensible
framework for android malware detection and family attribution”. In: Computers
& Security 80, pp. 120-133. DOI: 10.1016/j.cose.2018.10.001. URL: https:
//doi.org/10.1016/j.cose.2018.10.001.

Zhang, Mu, Yue Duan, Heng Yin, and Zhiruo Zhao (2014). “Semantics-Aware Android
Malware Classification Using Weighted Contextual API Dependency Graphs”. In:
Proceedings of the 2014 ACM SIGSAC Conference on Computer and Commumni-
cations Security. CCS ’14. Scottsdale, Arizona, USA: ACM, pp. 1105-1116. 1SBN:
978-1-4503-2957-6.

Zhu, Jianhan, Jun Hong, and John G. Hughes (2002). “Using Markov Chains for Link
Prediction in Adaptive Web Sites”. In: Proceedings of the First International Con-
ference on Computing in an Imperfect World. Soft-Ware 2002. Berlin, Heidelberg:
Springer-Verlag, pp. 60-73. 1SBN: 3-540-43481-X. URL: http://dl.acm. org/
citation.cfm?id=645974.758446.

https://doi.org/10.1016/j.cose.2018.10.001
https://doi.org/10.1016/j.cose.2018.10.001
https://doi.org/10.1016/j.cose.2018.10.001
http://dl.acm.org/citation.cfm?id=645974.758446
http://dl.acm.org/citation.cfm?id=645974.758446

Index

A

Absorbing transformation, 92
Active malware analysis, 3, 43
Android application, 60

Android application components, 61
Android application intents, 61
Android application manifest, 62
Android architecture, 59
Android emulation, 62

Android operating system, 59
Android security, 60

B

Bayesian active malware analysis, 111
Behavioral model, 53

Behavioral modeling, 47

Beta distribution, 13

Bionomial distribution, 12

C

Call graph, 40, 129
Classical games, 98
Conjugate prior, 15
Contributions, 4

Control flow graph, 40, 129

D

Dataset, 117

Default policy, 69

Digamma function, 11

Dirichlet distribution, 14
Entropy, 17

Dynamic analysis, 41

E
Entropy, 16
Beta distribution, 17
Dirichlet distribution, 17
Kullback—Leibler divergence, 18
Experimental platform, 63
Exploration-exploitation dilemma, 29

F
Feature selection, 42

147

Framework architecture, 62

G
Game Theory
Lottery game, 101
Prisoner’s Dilemma, 98
Rock paper scissors, 99
Game theory, 18
Bayesian entry game, 23
Bayesian game, 22
Bayesian Nash equilibrium, 24
Duopoly, 19, 129
Entry game, 21
Extensive game, 21
Intelligence, 18
Joint project, 19, 130
Markov perfect equilibrium, 28,
131
Nash equilibrium, 20
Pareto optimality, 20, 131
Perfect Bayesian equilibrium, 24,
131
Prisoner’s Dilemma, 19
Rationality, 18
Repeated game, 24
Repeated Prisoner’s Dilemma, 25
Sequential equilibrium, 24, 132
Stochastic game, 26
Strategic game, 18
Sub-game perfect equilibrium, 22,
132
Theory of rational choice, 18
Gamma, function, 11

H
Hybrid analysis, 42

I
Information theory, 11

K
k-nearest neighbor, 40, 47, 130
k-nearest neighbor classifier, 79

148

INDEX

L

Linear SVM classifier, 79, 98, 103, 118
Long-term behavior, 90

Long-term feature extraction, 94

M
Malware analysis, 1, 39, 79, 103, 118
Malware behavioral model, 53
Malware dataset, 75
Malware detection, 39
Malware model design, 56
Markov chain, 33
Absorbing, 35
Absorption probabilities, 37
Canonical form, 35
Fundamental matrix, 36
Time to absorption, 37
Transient states probability, 37
Aperiodic, 34, 131
Ergodic, 34, 131
Evolution, 33
Irreducible, 34
Positive recurrent, 34, 131
Regular, 36, 131
Stationary distribution, 34
Model collapse, 102
Model comparison, 57
Monte Carlo analysis, 68
Monte Carlo methods, 28
Monte Carlo Tree Search

Upper confidence bound for trees
(UCT), 31
Monte Carlo tree search, 30, 69
Multi-armed bandit, 29
Player’s regret, 29
Upper confidence bound (UCB),
29
Multinomial distribution, 12

N
n-grams, 131

P
Platform independent model, 55
Prior update, 15

R
Random forest classifier, 79, 132
Reward backpropagation, 71

S

SECUR-AMA, 67

SECUR-AMA analysis pipeline, 71
SECUR-AMA running example, 71
Static analysis, 40

Support vector machine, 47, 132

T

Term frequency-inverse document
frequency, 40, 133

Tree policy, 69

Triggering actions, 63

	Introduction
	Malware analysis
	Intelligent active malware analysis
	Contributions of this thesis
	Dynamic generation of malware behavioral models
	Long-term behavioral analysis
	Bayesian Active Malware Analysis
	Summary of the contributions

	Organization of the thesis
	Publications

	I Background and Related work
	Background
	Information Theory
	Binomial distribution
	Multinomial distribution
	Beta distribution
	Dirichlet distribution
	Conjugate prior
	Entropy
	Entropy of beta distribution
	Entropy of Dirichlet distribution
	Kullback–Leibler divergence

	Game theory
	Strategic games
	Nash equilibrium
	Extensive games
	Bayesian games
	Repeated games
	Stochastic games

	Monte Carlo methods
	Multi-armed bandit
	Upper confidence bound
	Monte Carlo tree search
	Upper confidence bound for trees

	Markov chain
	Irreducible Markov chain
	Absorbing Markov chain

	Related Work
	Malware analysis
	Static analysis
	Dynamic analysis
	Hybrid analysis and feature selection

	Active malware analysis
	Non-intelligent active malware analysis
	Intelligent active malware analysis

	Agent Behavioral Modeling

	II Behavioral Model and Analysis Framework
	Behavioral Model
	Behavioral model of the interaction
	Markov chain based malware model
	Platform independent model
	Malware model design

	Model comparison

	Analysis Framework
	Android Operating System
	Android architecture
	Android security
	Android application

	Android emulation
	Framework architecture
	Experimental platform
	Triggering actions

	III Dynamic Generation of Malware Behavioral Models
	A Monte Carlo Tree Search Approach to Active Malware Analysis
	SECUR-AMA
	Monte Carlo analysis
	Monte Carlo tree search implementation

	Analysis pipeline
	Running Example

	Empirical Evaluation of SECUR-AMA
	Dataset
	Experimental methodology
	Results and discussion
	Runtime Performance
	Conclusions

	IV Long-Term Behavioral Analysis
	Long-Term Analysis of Behavioral Models
	Problem definition
	Long-term behavior extraction
	Absorbing transformation
	Feature extraction

	Empirical Evaluation of the Long-Term Behavioral Analysis
	Classical games
	Iterated Prisoner's Dilemma
	Rock Paper Scissors
	Repeated lottery game

	Investigating a pathological case: model collapse
	Malware analysis
	Conclusions

	V Active Malware Analysis as a Bayesian Game
	Bayesian Active Malware Analysis
	Problem definition
	Dealing with uncertainty
	BAMA formalization
	Prior update
	Utility function

	Analyzer strategy

	Empirical Evaluation of BAMA
	Dataset
	Empirical evaluation
	Conclusions

	Conclusions and Future Work
	Conclusions
	Future Work

	Glossary
	Acronyms
	Bibliography
	Index

