UNIVERSITY OF VERONA

DOCTORAL THESIS

Taming Strings in Dynamic Languages

An Abstract Interpretation-based Static Analysis Approach

Author: Supervisor:
Vincenzo ARCERI Prof. Isabella MASTROENI
Thesis referees: Prof. Sergio M AFFEIS

Prof. Xavier RIVAL

Defence committee members: Prof. Roberto BRUNI
Prof. Sergio MAFFEIS
Prof. Isabella MASTROENI

Local committee members: Prof. Isabella MASTROENI
Prof. Graziano PRAVADELLI
Prof. Roberto SEGALA

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

at the

Department of Computer Science

April 21, 2020

http://www.univr.it/
http://www.di.univr.it/

UNIVERSITA
di VERONA

Dipartimento
di INFORMATICA

Declaration of Authorship

I, Vincenzo ARCERYI, declare that this thesis titled, “Taming Strings in Dynamic Lan-
guages - An Abstract Interpretation-based Static Analysis Approach” and the work
presented in it are my own. I confirm that:

This work was done wholly or mainly while in candidature for a research de-
gree at this University.

Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

Where I have consulted the published work of others, this is always clearly
attributed.

Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

I have acknowledged all main sources of help.

Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed: \mezo LW

Date: April 21,2020

vii

“ Agire senza obiettivo, giocare per distruggere.”

Alessandro Pecile

iX

UNIVERSITY OF VERONA

Abstract

School of Science and Engineering
Department of Computer Science

Doctor of Philosophy

Taming Strings in Dynamic Languages
An Abstract Interpretation-based Static Analysis Approach

by Vincenzo ARCERI

In the recent years, dynamic languages such as JavaScript, Python or PHP, have
found several fields of applications, thanks to the multiple features provided, the
agility of deploying software and the seeming facility of learning such languages. In
particular, strings play a central role in dynamic languages, as they can be implicitly
converted to other type values, used to access object properties or transformed at
run-time into executable code. In particular, the possibility to dynamically gener-
ate code as strings transformation breaks the typical assumption in static program
analysis that the code is an immutable object, indeed static. This happens because
program’s essential data structures, such as the control-flow graph and the system of
equation associated with the program to analyze, are themselves dynamically mu-
tating objects. In a sentence: "You can’t check the code you don't see”. For all these
reasons, dynamic languages still pone a big challenge for static program analysis,
making it drastically hard and imprecise.

The goal of this thesis is to tackle the problem of statically analyzing dynamic
code by treating the code as any other data structure that can be statically analyzed,
and by treating the static analyzer as any other function that can be recursively
called. Since, in dynamically-generated code, the program code can be encoded
as strings and then transformed into executable code, we first define a novel and
suitable string abstraction, and the corresponding abstract semantics, able to both
keep enough information to analyze string properties, in general, and keep enough
information about the possible executable strings that may be converted to code.
Such string abstraction will permits us to distill from a string abstract value the ex-
ecutable program expressed by it, allowing us to recursively call the static analyzer
on the synthesized program.

The final result of this thesis is an important first step towards a sound-by-
construction abstract interpreter for real-world dynamic string manipulation lan-
guages, analyzing also string-to-code statements, that is the code that standard static
analysis “can’t see”.

HTTP://WWW.UNIVR.IT/
http://www.scienzeingegneria.univr.it
http://www.di.univr.it/

Contents

Declaration of Authorship

Abstract

1 Introduction
1.1 Why is it important to analyze dynamiccode?
1.2 JavaScriptoverview

1.2.1

evalinthewild

1.3 Contributions and structure of thethesis

2 Mathematical background
2.1 Basicnotionsandnotation,
2.2 Posets, semi-latticesand lattices
23 Fix-pointtheory o oL
24 Galoisconnections e
2.5 Abstractinterpretation o L L Lo

251
252
253
254
255

Concrete objects, abstract objects and Galois connections
Fix-point computations
Fix-point extrapolation and interpolation
Abstract domains collectively
Making abstract interpretations complete

2.6 Strings, languages and finite state automata

2.6.1

Regular expressions

3 A dynamic imperative core language: 11JS
3.1 pulSsyntaxand semantics L
3.2 Semantics over CFGs and static analysisof #JS

4 Towards a string abstract domain for dynamic languages
41 Anexampleof completeshell
4.2 Making JavaScript string abstract domains complete

421
422

Completing SAFE string abstract domain
Completing TAJS string abstract domain

4.3 What we gain from using a complete abstract domain?
4.4 Can we use complete shells for dynamic code analysis?

5 The finite state automata domain
51 DFA,z abstractdomain.
5.2 Characterization of substrings languages

521
522
523

Substring language between two fixed indexes
Substring language after a fixed initial index
Substring language to an unbounded final index

xi

Xii

6 A sound abstract interpreter for dynamic code

6.1 wpJSwitheval . .

6.2 Dyn: An abstractdomainfor uJSo Lo
6.2.1 Abstractsemanticsof uJS oo oL
6.3 Towards an analysis for dynamiccode
6.4 The analyzer architecture
6.5 Approximating eval executablecode oL
6.5.1 StmSyn: Extracting the executable language
6.5.2 CFGGen: Control-flow graph generation
6.5.3 Abstracting sequences of eval nested calls
6.6 Evaluating theanalyzer

6.6.1 Limitations

6.6.2 ComparisonwithTAJS.,

7 An abstract domain for

objects in dynamic languages

7.1 Object concrete semantics
7.2 Anabstract domain forobjects 0 0L
721 Normalization.
7.2.2 Objects-related abstract semantics

7.2.3 Widening

8 Conclusions
8.1 Related works . .
8.2 Future directions

A Proofs

Bibliography

69
69
70
73
82
83
84
84
87
90
91
94
94

99
100
102
103
105
107

111
111
113

117

138

xiii

List of Figures

1.1

1.2

2.1
2.2
23
24
25
2.6

3.1
3.2
3.3
34
3.5

4.1

4.2
4.3
44
4.5
4.6

51
52

6.1
6.2

6.3
6.4

6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13

(a) Object property lookup with eval, (b) Object property lookup with-

outeval. L e e e e 4
JavaScript obfuscated malware example. 5
Example of Hasse diagram. 11
(a) Example of join semi lattice and (b) meet semi lattice 12
Exampleof DFA. 26
Left quotient and right quotient algorithms. 27
Suffix and prefix algorithms. o000 28
(@) e-NFA A. (b)) DFA N st. L(A) =L (N). 30
pdSsyntax. 36
uJS implicit type conversion functions.o 37
Exampleof if CFG. 40
Exampleof while CFG. 40
Ty abstract domain for JS. 43
(a) Type abstract domain for PHP. (b) Complete shell of type abstract
domain w.r.t. the sum operation. 48
(a) SAFE, (b) TAJS string abstract domains recasted for #JS. 49
SAFE concat abstract semantics. 000 50
Absolute complete shell of ps7 w.r.t. concat. 51
TAJS numerical abstractdomain. 52
Complete shell of p;; relative to p7;, w.rt. toNum. 53
(a) A1 (b) A5 (0) |\/|in(A1 Ubra A2> 60
(a) A4, .iﬂ(Al) = {6,(1} (b) Ay, g(Az) = {a, Hﬂ} (C) AlleFA/EAz 63
Coalesced sum abstract domainfor pJS 72
(a) A1, Z(81) = {abc, hello}. (b) Ay, £ (h) = {abc, hello} U { (abb)" | n >

0 F 78
(@) A, £(A) = {ddd,abc,bc}. (b) &', Z(A') = {bcd, aaab} 78
@A ZB)={a"|n>0}U{b} ()4, LA)={cd" |neN}(c)

AT =CCHA) . 79
A potentially malicious obfuscated JavaScript program. 81
A4 abstract value of d before eval call of the program in Figure 6.5 . . . 81
FA A4s abstract value of ds at line 15 of Example6.9. 83
Analyzer architecture and call execution structure. 84
FA ABS™ = StmSyn(Aas). - « v v v e e e e 87
(a) CFGyys(la:=a+1; || b:=b+1;f), (b) CFGyys(](a:=a+1;)f) 88
plSprogramof Jragf.o o 90
Control-flow graph Ggqs generated by CFGGen module 91
Aggr st L(Aser) ={x=5"%|n>0} L. 94

Xiv

7.1
7.2
7.3

74
7.5
7.6

Motivatingexample.o oo oL 100
pulS programexample. Lo Lo 103
(a) Abstract value of o after line 1 of the fragment reported in Fig-
ure 7.2 (b) Abstract value of o after line 10. (c) Normal form of o after

line 10. o 103
Example of materialization., 106
(a) uJS fragment, (b) Value of o after while-loop. 107

(a) uJS fragment, (b) Value of o after while-loop. 108

Dedicated to Patrizia, Mattia and Chiara.

XV

Chapter 1

Introduction

Dynamic languages, such as JavaScript, PHP or Python, in the last years have faced
an important growth in a very wide range of fields and applications, thanks to the
several features that dynamic languages provide and the agility offered by these lan-
guages in deploying applications. Dynamic language common features are implicit
type conversion, dynamic typing, the multiple usages of strings (e.g., used to access
object-properties) and string-to-code statements, only to cite few. In particular, the
possibility to transform strings into executable code at run-time is one of the most
challenging features to statically analyze, since it breaks the standard assumption in
static analysis that the code we aim to analyze is, indeed, static.

In this chapter, we introduce the problem of statically analyzing string manip-
ulation programs, also those that may turn strings into executable code. In par-
ticular, we first motivate the need and the importance of analyzing string-to-code
statements in dynamic languages, presenting also the difficulties and the challenges
that these languages pose from the point of view of static program analysis. Then,
we go into details of a particular dynamic language, namely JavaScript, chosen as
representative of the class of dynamic languages, giving an overview of its dynamic
features that we aim to analyze in this thesis.

The goal of this thesis is to tackle the problem of statically analyzing dynamic
code. Hence, in the last part of this chapter, we present an overview of the contribu-
tion of this thesis, presenting the several steps we have intended to take in order to
reach our goal.

1.1 Why is it important to analyze dynamic code?

String-to-code statements allow developers to transform strings into executable code
at run-time. If from the one hand this practice permits developers to simplify writ-
ing programs, on the other hand it introduces statically unpredictable executions in
deployed applications, which may make programs harder to understand and error-
prone. As we have already mentioned before, programs that turn strings into ex-
ecutable code are hard to statically analyze. This happens because of program’s
essential data structures, such as the control-flow graph and the system of recursive
equations associated with the program to analyze, are themselves dynamically mu-
tating objects. In a sentence: “You can’t check code you don’t see” [Bessey et al., 2010].
Despite several tools proposed in the last years to reason about dynamic code,
static analysis is still extremely hard if not even impossible. Indeed, the only sound
way analyses have to overcome the execution of code they “don’t see" is to sup-
pose that a string-to-code statement can do anything, i.e., it can generate any possible
memory. Hence, when reaching such a statement, an analysis may continue by ac-
cepting to lose any previously gathered information. Let us show this situation on
a simple but expressive enough JavaScript example. In JavaScript, it is possible to

2 Chapter 1. Introduction

transform strings into executable code by calling the global function eval. Consider
the code on the left, where there is a variable x independent from what is dynami-

cally executed in y. Suppose we are interested in analyzing
1 ox = 1; the interval of the variable x inside the loop, i.e.,
> a = 1; atline 5. Executing the code, we can observe that
sy o= Mat+;"; the interval of x at line 5 is precisely [1,9], and
+ while (x<10) { this would be the result of any interval analy-
sy =y + ¥ sis on the code without line 6. Unfortunately,
s eval(y); the presence of eval makes it impossible for the
7 X+t analysis to know whether there is any “hidden"
e} (dynamically generated) modification of x, and

therefore it cannot properly compute the interval of x. This is a very simple use
of eval, but anyway it is not even suitable for code rewriting techniques removing
(when possible) eval by replacing it with equivalent code without eval [Jensen, Jon-
sson, and Moller, 2012]. Indeed, in the example, the eval parameter is not hard-coded
but dynamically generated.

The only way to make the analysis aware of the fact that the execution of eval
does not modify x is to compute, or at least to over-approximate, what is executed in
eval. Moreover, it should be clear that any analysis of dynamically-generated code
cannot be independent from string analysis. Unfortunately, existing static analyzers
for dynamic languages, may fail to precisely analyze strings in dynamic contexts.
For instance, in the example, existing static analyzers such as TAJS [Jensen, Moller,
and Thiemann, 2009], SAFE [Lee et al., 2012] and JSAI [Kashyap et al., 2014] lose
precision on the eval input value, losing any information about it. Namely, the
issue of analyzing dynamic languages, even if tackled by sophisticated tools as the
cited ones, still lacks formal approaches for handling the more dynamic features of
string manipulation, such as dynamic code generation.

For all these reasons, we believe that the analysis of dynamic code is not some-
thing that can be ignored forever.

In this thesis, we choose a representative of the class of dynamic languages,
JavaScript. This choice is guided by the fact that JavaScript is the most popular
language and it seems to be the most misunderstood dynamic language. For exam-
ple, let us consider the 2017 Stack Overflow survey L. Here, we can observe that
JavaScript is, for the seventh year in a row, the most common used programming
language (67.8% of the questions posted are tagged with #javascript). Moreover,
looking at the Stack Overflow ranking of the most common web frameworks and
libraries, at the first three positions we find jQuery (first position), React (second po-
sition) and Angular]S (third position), all libraries for JavaScript. Even the GitHub
surveys confirm the language as the most common and popular programming lan-
guage, with more than 1.5 million pull requests in 2016 and 323.938 active reposito-
ries in 20147

At the first impact, JavaScript can offer a wide range of features and function-
alities, since it supports several programming paradigms, but given its dynamic
nature, the resulting applications can open potential security holes, leading to leak-
age of data or compromise of data integrity. The behavior of JavaScript is provided
by the informal ECMA specification that can lead to misunderstandings and unex-
pected behaviors during the program execution. More dangerous, JavaScript pro-
vides string-to-code primitives that allow programmers (but also malicious agents)

Inttps://insights.stackoverflow.com/survey/2019%technology
Zhttps://octoverse.github. com/

https://insights.stackoverflow.com/survey/2019%23technology
https://octoverse.github.com/

1.2. JavaScript overview 3

to execute arbitrary code in web applications. String-to-code statements constitute
a serious security problem and very few solutions have been proposed in order to
solve this issue.

In the next section, we go deeper into some of the most unexpected, weird, and
critical behaviors of a dynamic language such as JavaScript (according to the formal
semantics reported in [Maffeis, Mitchell, and Taly, 2008]) explaining the challenges
behind static analysis of JavaScript programs and applications.

1.2 JavaScript overview

JavaScript is a dynamically typed scripting language, born in 1995 as a client-side
scripting language to interact at run-time with the HTML object during the web
navigation. Nowadays JavaScript is implemented in every major browser and a
must-requirement for web developers. The JavaScript interpreter does not provide
a static semantics, i.e. a type system, and during the program execution it assigns a
type to each variable. For example, let var x = 5 be a typical JavaScript assignment.
The type of x is not provided by the programmer when the variable is declared but
rather it is derived at run-time by the interpreter. Hence, in JavaScript it is legal, for
example, to write x = true after the previous declaration. Similarly to other typical
scripting languages, in JavaScript dynamic typing occurs together with implicit type
conversion. Let us consider the expression 5 + true. Obviously the sum operation
cannot be performed in this form because of the second operand. Hence, unlike
strongly-typed languages (e.g., Java), the interpreter is not stuck with a type error but
rather it implicitly converts true value to 1, making the sum feasible and returning 6.
Now consider the expression 5 / 0. Unlike other typical programming languages,
the division by zero is allowed in JavaScript and returns the JavaScript global object
Infinity. This makes the division a polymorphic function, since it may return either
anumber or Infinity, in the division-by-zero case. Most of the JavaScript operators
and functions have two or more return-types and this may compromise readability
and data consistency [Pradel and Sen, 2015]. Implicit type conversion is a key feature
of the world of scripting languages since it lightens the development process, often
sacrificing code readability and making the code bug-prone.

JavaScript is also an object-oriented programming language based on prototypal
inheritance. Any object has an internal property called __proto__ that points to the
constructor prototype, from which it inherits its properties. The property lookup is
performed searching the property on the prototype chain and it is very simple: if the
object contains the property, the execution returns the value of its property, other-
wise it is recursively searched in its prototype object. This operation stops when the
root of the prototype chain, i.e., Object .prototype, is reached. JavaScript prototypal
inheritance makes very easy to perform some object modifications to any object built
with a specific constructor, even for the standard built-in objects such as Number or
String, leading programs to be error-prone and more unreadable.

Further, the possibility of dynamically building code instructions as the result
of text manipulation is a key aspect in dynamic programming languages such as
JavaScript. By using reflection, programs can turn text, which can be built at run-
time, into executable code. These features are often used in code protection and tam-
per resistant applications, employing camouflage for escaping attack or detection,
in malware, in mobile code, in web servers, in code compression, and in code op-
timization, e.g., in Just-in-Time (JIT) compilers employing optimized run-time code

4 Chapter 1. Introduction

i = 2 : ;
obj = {a: 20, b: 30}; obj = {a: 20, b: 30};

p = getPropName () ; p = getPropName () ;

eval ("result = obj." + p)
(A)

result = objlpl;
(8)

FIGURE 1.1: (a) Object property lookup with eval, (b) Object property
lookup without eval.

generation. In JavaScript it is possible to transform strings into executable code by
calling the global function eval.

While the use of eval may simplify considerably the art and performance of pro-
gramming, this practice is also highly dangerous, making the code prone to un-
expected behaviors and malicious exploits of its dynamic vulnerabilities, such as
code/object-injection attacks for privilege escalation, data-base corruption, and mal-
ware propagation. The most suggested best practice for JavaScript-based web appli-
cation developers is

"The eval function is the most misused feature of JavaScript. Avoid it.”[Crockford, 2008]

Indeed, most of the eval usages are often not necessary and can be replaced by a
more clear and secure JavaScript semantic-equivalent statement, such as in the case
of JSON deserialization and library loading [Richards et al., 2011].

For example, let us consider the program reported in Figure 1.1a. The getPropName
function may return "a" or "b" and then the code stores into the variable result the
value of the obj property calling the function eval. Here the call to eval is com-
pletely unnecessary and dangerous. The getPropName function may retrieve some
data from users and then access them into the eval code, causing a potential code
injection. In this case, JavaScript best practice suggests to avoid eval and use the
typical object property access, shown in Figure 1.1b.

1.2.1 eval in the wild

An important survey on eval usage (and other string-to-code statements such as
setInterval and Function) has been presented in [Richards et al., 2011], showing
that eval is still popular in benevolent web applications. In the recent years, string
obfuscation and the use of eval to hide malicious intents have also become very pop-
ular in JavaScript malware [Xu, Zhang, and Zhu, 2012]. Its classical usage is depicted
in Figure 1.2. Let NUCLEAR_BOMB be a function with malicious intents (e.g., creates an
ActiveXObject to open a shell). In the example, the string value NUCLEAR_BOMB is
obfuscated and it is manipulated by string manipulation operations in order to ob-
tain the plain string. Finally, when the string is deobfuscated, it is transformed into
executable code by eval, in order to perform the attack. We wonder: How popu-
lar is eval in JavaScript malware in order to hide malicious actions? In order to answer
this question, we have performed a simple investigation on a JavaScript malware
collection [Petrack, 2018]. We have focused on the benchmark related to malware
collected in the year 2017, consisting of 192 JavaScript malware samples. Focusing
on the explicit eval calls (i.e., explicit in the program code and not obfuscated) we
have found that:

e 52% of the samples have no explicit eval calls;

1.3. Contributions and structure of the thesis 5

"qxfohdu_erpe()";
- O, f = "n,

while(i++ < s.length) {
¢ = s.charAt (i) ;
if (1" (_)".includes (c)){
¢ = String.fromCharCode(
c.charCodeAt (0) - 3);
}
f += c;

3

eval (f.toUpperCase()); // NUCLEAR_BOMB ()

FIGURE 1.2: JavaScript obfuscated malware example.

o 33% of the sample have 1 explicit eval call;

e 15% of the samples have >1 explicit eval calls.

Further, we have analyzed dynamic eval calls (i.e., potentially obfuscated eval
calls), discovering that 23.5% of the JavaScript samples has at least an obfuscated
eval call. Summarizing, more than 50% of the JavaScript samples has at least an
eval call (implicit or explicit). Moreover, even if it is not a common practice to use
nested eval calls, we have found that a subset of this benchmark uses this strategy
to highly obfuscate malicious intents (almost the 10%).

In this simple analysis of eval usage in JavaScript malware, it should be clear
that using string-to-code primitives to hide a malicious attack is a common practice
and the lack of static analyses of these kind of statements could increase the trend.
Moreover, eval (dynamic code in general) can be used also for protecting benevolent
code: there already exist obfuscator tools® that may transform a removable eval (re-
placeable with an eval-free equivalent code fragment) [Jensen, Jonsson, and Meller,
2012] in an eval that can not be removed, providing also malware with powerful
obfuscation techniques against existing JavaScript analyzers.

1.3 Contributions and structure of the thesis

In this thesis, we focus on the problem of statically analyzing the dynamic features
concerning strings reported in previous sections. The contribution of this thesis is
twofold:

e We first focus on the problem of statically reasoning about program strings
properties. In particular, we first present the string analyses of existing ab-
stract interpretation-based static analyzers, systematically improving the pre-
cision of their string abstractions w.r.t. an operation of interest. Then, we will
discuss the need of designing a novel string abstract domain, preparing the
ground for the core contribution of this thesis, namely the eval analysis. We
aim at a strings abstraction collecting, as faithfully as possible, the set of pos-
sible values that a string variable may receive before eval executes it. It surely

3https ://www.daftlogic.com/projects-online-javascript-obfuscator.htm,
http://www.danstools.com/javascript-obfuscate/

https://www.daftlogic.com/projects-online-javascript-obfuscator.htm
http://www.danstools.com/javascript-obfuscate/

6 Chapter 1. Introduction

has to approximate the set of possible string values, hence it has to be a lan-
guage, it has also to keep enough information allowing us to extract code from
it, but it has also to keep enough information for analyzing properties of string
variables that are never executed by an eval during computation. In particu-
lar, we will formally present the finite state automata abstract domain. Then,
we focus on the characterization of the abstract semantics of the most common
string manipulation operations, inspired by the JavaScript semantics, taking
into account also implicit type conversion. Since strings plays a crucial role
also in objects, in dynamic languages, we will exploit finite state automata do-
main also in analyzing objects.

e Then, we exploit the finite state automata abstract domain and the correspond-
ing string analysis in order to tackle the problem of soundly analyzing dy-
namic code. The idea behind our approach is that of treating code as any
other dynamic structure that can be statically analyzed by abstract interpre-
tation [Cousot and Cousot, 1977], and to treat the abstract interpreter as any
other program function that can be recursively called on a piece of code. In par-
ticular, once we have designed the novel string abstract domain, since we have
to analyze the code potentially executed by an eval call, we need to extract
from the abstract argument of eval (i.e., from an automaton), an abstraction of
the code that this collection may contain. Hence, once we have extracted an ap-
proximated code representation from an automaton, the idea is to recursively
call the abstract interpreter, for the performed analysis, on this approximated
code. The result is a first step towards a static analyzer for dynamic code con-
taining non-trivial usage of eval that still have some limitations (as we will
explain in the final discussion) but which pose the basis for studying more
general solutions to the problem.

Structure of the thesis. In Chapter 2 we introduce the basic mathematical notions
needed to understand the work and the notations adopted in this thesis. In particu-
lar, we introduce basic notions about ordered algebraic structures, abstract interpre-
tation and finite state automata.

In Chapter 3 we introduce in detail #JS, the dynamic core language on which we
will present the main contributions of the thesis. Its syntax and semantics is inspired
by the real JavaScript semantics. Moreover, in this chapter we show how to perform
static analysis by abstract interpretation of #JS programs, analyzing their control-
flow graphs. This is the starting point for the abstract interpreter for eval that we
will introduce in Chapter 6.

In Chapter 4 we present the main string abstractions integrated in real JavaScript
static analyzers. In particular, we formally discuss the completeness property w.r.t.
some common string operations and we will systematically improve the precision
of the abstractions for those operations. At the end of this chapter, we discuss the
importance of completeness of string abstractions in abstract interpretation and we
motivate the need of a novel string abstract domain for dynamic languages.

In Chapter 5 we present the finite state automata abstract domain, formally defin-
ing it and introducing some novel operations on that. This is the core of the value
abstract domain that we will use for analyzing JS programs.

In Chapter 6 we present a sound abstract interpreter for uJS programs with eval,
built upon the finite state automata abstract domain. First, we define the abstract
semantics of the string manipulation operations of #JS, allowing us to analyze string
values. Then, upon the string analysis, we define a sound analysis for eval. We

1.3. Contributions and structure of the thesis 7

evaluate our approach on real-world examples, from a precision point of view, also
comparing the interpreter with an existing JavaScript static analyzer.

In Chapter 7 we report the last part of the thesis contribution, exploiting again
finite state automata abstract domain for analyzing objects properties. We extend
uJS syntax and semantics with objects, then we formally introduce a novel abstract
domain for objects, built upon the finite state automata abstract domain described
in Chapter 5.

Finally, in Chapter 8 we conclude the thesis, discussing the main related works
and discussing the approach and the contribution of this thesis and its future direc-
tions. Long proofs of the main results of the thesis are reported in Appendix A.

Publications. Most of the results presented in the thesis have been already pub-
lished in the following papers:

e Vincenzo Arceri and Isabella Mastroeni [2019]. “Static Program Analysis for
String Manipulation Languages”. In: Proceedings Seventh International Work-
shop on Verification and Program Transformation, Genova, Italy, 2nd April 2019.
Ed. by Alexei Lisitsa and Andrei Nemytykh. Vol. 299. Electronic Proceed-
ings in Theoretical Computer Science. Open Publishing Association, pp. 19—
33. DOI: 10.4204/EPTCS.299.5

e Vincenzo Arceri et al. [2019]. “Completeness of Abstract Domains for String
Analysis of JavaScript Programs”. In: Theoretical Aspects of Computing - ICTAC
2019 - 16th International Colloquium, Hammamet, Tunisia, October 31 - November
4, 2019, Proceedings, pp. 255-272. DOI: 10.1007/978-3-030-32505-3_15

e Vincenzo Arceri, Michele Pasqua, and Isabella Mastroeni [2019]. “An abstract
domain for objects in dynamic programming languages”. In: 8th International
Workshop on Numerical and Symbolic Abstract Domains - NSAD'19.

e Vincenzo Arceri and Isabella Mastroeni [2020]. “A sound abstract interpreter
for dynamic code”. In: SAC "20: The 35th ACM/SIGAPP Symposium on Applied
Computing, online event, [Brno, Czech Republic], March 30 - April 3, 2020. Ed. by
Chih-Cheng Hung et al. ACM, pp. 1979-1988. DOI: 10.1145/3341105.3373964

https://doi.org/10.4204/EPTCS.299.5
https://doi.org/10.1007/978-3-030-32505-3%5C_15
https://doi.org/10.1145/3341105.3373964

Chapter 2

Mathematical background

In this chapter, we introduce the basic notions that we will use in this thesis. We will
first recall notions for sets, relations an functions. Then, we will present the basic
background about ordered sets, following [Bancerek and Rudnicki, 2002], useful for
introducing abstract interpretation (that will be presented after), the main formal
framework that we will exploit for statically reasoning about programs. Most of the
results and definitions are taken from [Cousot and Cousot, 1977; Cousot and Cousot,
1976; Nielson, Nielson, and Hankin, 1999]. Finally, we will present the background
about strings, formal languages and finite state automata (taken from [Davis, Sigal,
and Weyuker, 1994]), fixing the notation and reporting the main operations on finite
state automata that we will use in the subsequent chapters.

2.1 Basic notions and notation

A set is a collection of objects, without ordering. When an object x is a member of
a set X we write x € X, otherwise we write x ¢ X. We can extensionally represent
a finite set of elements xo, x1,...,x, as {xo, x1,..., %, }. We intesionally represent a
subset of a set Y of elements satisfying a property ¢ as { x € Y | ¢(x) }. We often
omit Y when it is clear from the context. The predicate ¢ is a first-order logic pred-
icate with the following notation: — (negation), V (disjunction), A (conjunction), =
(implication), <> (double-implication/logical equivalence), V (universal quantifier),
3 (existential quantifier). The cardinality of a set X, namely the number of elements
of X, is denoted by |X| and the empty set is denoted by @. A set X is subset of Y,
denoted by X C Y, when any element of X belong also to Y. The empty set is subset
of every set. The set of any possible subset of X is denoted by o (X) and it is defined
as{ Y |Y C X }. Let X, Y be two sets. Then, the following operations between sets
can be performed.

e (Union) XUY = {x|xeXVxeY};
e (Intersection) XNY 2 {x|xc XAx€Y};
e (Setdifference) X\ Y 2 {x|xEXAx &Y };

We can extend union and intersection to a family of sets A: JX = Uxex X =
{x|3XeXxeX}andNX ENxer X2 {x|VXEX.x X}

Given a set X, aset P C p(X) is a partition of X if the following conditions hold:
(i) VP € P.P # @, (ii) Upep P = X, (iii) VP;,P, € P.P, = P,V P NP, = @. For
example, if X = {1,2,3,4,5}, theset p = {{1},{2,3},{4,5}} is a partition of X.

The cartesian product of two sets X and Y is denoted by X x Y and it is the set
of all pairs where the first element belongs to X and the second one belongs to Y,
formally X x Y 2 { (x,y) | x € XAy € Y }. The cartesian product definition can

10 Chapter 2. Mathematical background

be extended to n sets, with n > 2, denoted by X; x X, ... X, and it is defined as
Xix Xog X - x Xy 2 { {x,x0,...,x) | x1 EX1 A2 € Xo A+ Axy € Xy)

A relation R between the sets X, Xy, ..., X, is a subset of the cartesian product
X1 X Xy X + -+ x Xj;. The elements x;, withi € [1,n] arein relation R if (x1,x2,...,x,) €
R. The relation R C X; X X», for some set X; and X; is called binary and in order
to denote the membership of an element to R we write x; R x; and (x1, x2) € R and
to denote that an element does not belong to R we write x; R x; and (x1,x2) ¢ R.
Given two relation R; C X; x X and R, C X; x X3 we defined the composition
between R; and Ry, denoted by R; o Ry, and defined as Ry o Ry = { (x1,x3) | Ixp €
Xs. <X1,X2> € Ri A <XQ,X3> € Ry }

A binary relation R on X (i.e,, R C X x X) can have some important properties,
listed in the following:

o (Reflexivity) Vx € X. x R x;

o (Irreflexivity) Vx € X.x R x;

o (Symmetry)Vx,y € X.x Ry =y Rx;

o (Anti-symmetry) Vx,y € X.x RyAyRx = x =y;
o (Transitivity) Vx,y,z € X.x RyAyRz = xRz

o (Totality) Vx,y € X.x RyVy R x;

A binary relation is an equivalence relation if it is reflexive, symmetric and tran-
sitive. An equivalence relation R on X induces a partition on X. Each element of
the partition induced by R is called equivalent class, usually denoted by [x]r, for
x € X, and it is defined as [x]g = { y € X | x Ry }. Given an equivalence class [x],
the element x is called representative of the equivalence class. A binary relation is
a preorder if it is reflexive and transitive. A binary relation is a partial order if it is
reflexive, anti-symmetric and transitive.

A function f from the set X to the set Y is a relation f C X x Y such that:

e VxeX.dyeY. (xy) €f;
e (vy)efAY)EfF=Yy=Y,

Hence, a function maps any element of X to a single element of Y. The set of func-
tions from X to Y are denoted by X — Y and we denote an element f of it as
f : X — Y. Sometimes we use the lambda notation to refer to a function: Ax . f(x).
Given f : X — Y, X and Y are called domain and co-domain of f, respectively.
We denote the domain of a function f as dom(f). If an element y € Y is in rela-
tion with x € X we write y = f(x) and y is called image of x. The composition
of a function f : X — Y with ¢ : Y — Z is the function go f : X — Z where
Vx € X.gof(x) = g(f(x)). Given f : " — T,s € S" and i € [1,n], we denote
by fi = Az.f(s[z/i]) : S — T a generic i-th unary restriction of f. Given a function
f : X = X we define the iterates of f from x € X as follows:

£
frHx) = f"o f(x)

A function f : X — Y is injective if Vx,x" € X. f(x) = f(x') = x = v’ and it is
also called one-to-one function. A function f : X — Y is surjective if Vy € Y Jx €

X

2.2. Posets, semi-lattices and lattices 11

]
2N
N
N
°

1

FIGURE 2.1: Example of Hasse diagram.

X. f(x) = y and it is also call onto function. A bijective function is a function that
is both injective and surjective. Given a function f : X — Y, its additive lift is the
function f : p(X) — p(Y) that maps a subset X’ C X to the set of images of elements
of X/, thatis f(X') £ { f(x) | x € X’ }. In the thesis, we will often abuse notation
denoting the additive lift of f on X’ with f(X').

A partial function f from a set X to the set Y is a relation f C X x Y s.t.

s (xy)efn(xy)ef=y=Y

In partial functions, for some elements of the domain their behavior is not defined.
The set of the partial functions from X to Y is denoted by X < Y.

2.2 Posets, semi-lattices and lattices

In the previous section, we have defined a set as a collection of unstructured el-
ements. In this section, we define several algebraic structures embedding orders
between the elements contained.

Definition 2.1 (Poset). A set X with a partial order relation <x is said partial order
set, denoted by (X, <x), and it is called poset.

When it is clear from the context where the order relation <y is defined on, the
subscript is omitted. A typical example of poset is (IN, <), where Vx,y € N.x <
y & Jz € N.x +z = y. We can use graphical notation to represent a poset, called
Hasse diagram. Given a poset (X, <), each elements of x € X is represented, in the
corresponding Hasse diagram, as a node of the diagram and an edge between x € X
and y € X if y covers x, thatis y < x and zeXx<zAnz< y. An example of
Hasse diagram is reported in Figure 2.1, that corresponds to the poset (P, <) where
P ={L1,0,+,—, T} and order < is defined as follows: 1L < 1,1 <0,1L <+,1 <
-1 <T7T,0<00<+0<-0<T,+<++<T,-<—--<T,T<T.
Depending on the type of order, we obtain different types of posets.

Definition 2.2 (Chain). A chain of a poset (P, <) is a subset C C P s.t.
Vx,ye C.x<yVy<x

) is a chain if P is a chain for (P, <), namely < is a total
), where < is the typical order relation between natural, is

We say that a poset (P,
order. For example (N,
a chain.

<
<

Definition 2.3 (Ascending chain condition). A poset (P, <) satisfies the ascending
chain condition (for short ACC) iff any infinite sequence pg < p; < --- < p, < ...
of elements of P is not strictly increasing, that is 3k > 0.Vj > k. px = p;-

12 Chapter 2. Mathematical background

C b c
RN N S
a b a
(a) (B)

FIGURE 2.2: (a) Example of join semi lattice and (b) meet semi lattice

Definition 2.4 (Descending chain condition). A poset (P, <) satisfies the descending
chain condition (for short DCC) iff any infinite sequence pg > p1 > -+ > p, > ...
of elements of P is not strictly decreasing, that is 3k > 0.Vj > k. px = p;.

Definition 2.5 (Upper bounds, least upper bound, maximum). Let (P,<)Dbea poset,
and X C P. An element m is an upper bound of X if Vx € X.x < m. If m also
belongs to X it is called maximal. If the set of upper bounds of X has the smallest
element, we call this element least upper bound of X (lub for short) and it is denoted
by V X. If the lub belongs to P, then the lub is called maximum (or top) element.

Given a poset (P, <) and X C P, for duality, we can defined the notion of lower
bound, minimal element of a set X, greatest lower bound (glb for short), denoted by
A X, and minimum. We denote the bottom and the top element of a poset by L and
T, respectively. It is worth noting that the bottom and the top elements are unique
by anti-symmetry property of the order relation. Given two elements x,y € P, we
denote by x VV y and x A y the elements \/{x, y} and A{x,y}, respectively.

More complex algebraic structures can be defined, such as the ones defined below.

Definition 2.6 (Directed set). Let (P, <) be a poset. P is a directed set if VS C P s.t.
S # @ and S is finite, then S have least upper bound in P.

For duality, we can define when a poset (P, <) is a co-directed set, namely if VS C P
s.t. S # @ and S is finite, then S have greatest lower bound in P.

Definition 2.7 (Complete partial order). Let (P, <) be a poset. P is a complete partial
order on directed sets (cpo for short) if L € P and for each directed set D in P we
have that \/ D exists and \/ D € P.

Definition 2.8 (Join semi lattice). A join semi lattice (P, <,V) is a poset (P, <) such
that Vx,y € Phavelub x Vy.

Definition 2.9 (Meet semi lattice). A meet semi lattice (P, <, A) is a poset (P, <) such
that Vx,y € Phaveglb x A y.

For example, Figure 2.2a reports a join semi lattice and Figure 2.2b reports a meet
semi lattice. Merging the definitions of join semi lattice and meet semi lattice we
obtain the notion of lattice, as reported below.

Definition 2.10 (Lattice). A lattice (P, <,V, A) is both a join semi lattice and a meet
semi lattice.

Given a set X, a typical example of lattice, is p(X), namely the powerset of X, where
the glb operator is the set intersection and the lub is the set union. When we talk
about lattices, it is not guaranteed that the lub or the glb of a subset of it always exist.
We can characterize this important property in the definition of complete lattice.

Definition 2.11 (Complete lattice). A complete lattice is a lattice (P, <,V, A) such
that VX C P. \V X € P.

2.2. Posets, semi-lattices and lattices 13

For example, given a set X, p(X) is a complete lattice. The notion of complete lat-
tice plays a crucial role when we will talk about abstract interpretation in the next
sections. Another characterization of the notion of complete lattice is given by the
following theorem.

Theorem 2.12. Let P be a poset s.t. P # &. The following assertions are equivalent:
e P is a complete lattice;
e VXCP. VXeP
o P has the top element T and VS C P.S # &, then)\ S exists in P.

In the following, we denote a complete lattice L by (L, <,V, A, T, L).

Definition 2.13 (Moore family). Let L be a complete lattice. X C L is a Moore family
of Lif X=M(X)={AS|SC X} where A\ =T € M(X).

For each subset X C L, M(X) is called Moore closure of X in L, namely M (X) is
the smallet subset of L which contains X and it is a Moore family of L.

Let (P, <p) and (Q, <() be two posets. A function can have interesting proper-
ties when they are defined on ordered structures.

e (Monotone) f : P — Q is monotone if Vx,y € P.x <p x = f(x) <q f(y);

e (Order-embedding) f : P — Q is order-embedding if Vx,y € P.x <p y &
f(x) <o f(y);

e (Order-isomorphism) f : P — Q is order-isomorphism if it is surjective and
order-embedding;

e (Extensive) a function f : P — P is extensive if Vx € P.x <p f(x);

e (Reductive) a function f : P — P is reductive if Vx € P. f(x) <p x;

e (Idempotent) a function f : P — P is idempotent if Vx € P. f(f(x)) = f(x);

e (Additive) a function f : P — Q is additive if VX C P. f(\p X) = Vo f(X)

e (Co-additive) a function f : P — Qs co-additiveif VX C P. f(Ap X) = Ng f(X)
An important property of functions over cpo’s is to be (Scott) continuous.

Definition 2.14 (Continuous function). Let (P, <p) and (Q, <¢) be two cpo’s. A
function f : P — Q is continuous if VD C P directed:

fVD)=\f(D)=\{fd)|deD}
P Q Q

For duality, a function f : P — Q is (Scott) co-continuous if it preserves existing
greatest lower bound of co-directed subsets, that is, VD C P co-directed:

fIND)= Af(D)= \{f(d)|deD}
P Q Q

14 Chapter 2. Mathematical background

2.3 Fix-point theory

Given a poset (P, <) and a function f : P — P, a fix-point of the function f is an
element x € X such that f(x) = x. In general, a function may have zero or more
fix-points. Moreover, we define the following sets:

e set of fix-points: fp(f) £ {x € P| f(x) =x };
e set of pre-fix-points: prefp(f) £ { x € P | x < f(x) };
e set of post-fix-points: postfp(f) = {x € P | f(x) <x };

Note that, by reflexivity, fp(f) C prefp(f) and fp(f) C postfp(f) and, by anti-
symmetry, fp(f) = prefp(f) N postfp(f). Given a poset (P, <) and a fix-point x of
f : P — P is the least fix-point of f if Vy € P. f(y) = y = x < y and it is the
greatest fix-point if Vy € P. f(y) = y = y < x. We denote by Ifp(f) and gfp(f) the
least fix-point and the greatest fix-point of f, respectively. It is important to know,
especially when we will talk about static analysis by abstract interpretation, when

and if a function admits fix-points. For this reason we recall the following theorem.

Theorem 2.15 (Knaster-Tarski fix-point theorem [Tarski, 1955]). Let (L, <,V, A, L, T)
be a complete lattice f : L — L a monotone function. The set of the fix-points of f is a
complete lattice. Moreover, the least and greatest fix-points are

Ifp(f) = A postfp(f) gfp(f) =V prefp(f)

Knaster-Tarski theorem guarantees the existence of fix-points but does not give any
constructive method about how to compute such fix-points. The following fix-point
characterization gives us a constructive method to compute them.

Theorem 2.16 (Kleene fix-point theorem). Let (D, <,V,A, L, T)beacpoand f : D —
D be a continuous function. Then, f has a least fix-point and it is the least upper bound of
the following increasing chain.

L<fL) <AL <.

that is Ifp(f) = V{ f"(L) [n € N }.

The above theorem ensures that the least fix-point is reached in at most a countable
numbers of steps. The dual result holds for the greatest fix-point, that is, under the
dual assumptions, f has the greatest fix-point and it can be computed as follows.

gfo(f) = A{f"(T) IneN}

2.4 Galois connections

In this section, we recall important notions of other algebraic structures that play a
crucial role in abstract interpretation.

Definition 2.17 (Galois connection). Let (C, <¢) and (A, <4) be two posets and « :
C— Aandy: A — C. We say that (C,a,7, A) is a Galois connection (for short GC)
if
VeeC,Vac A.a(c) <paa<c < y(a)
A GC (C,a,7,A) is denoted as
Ces A

2.4. Galois connections 15

In this case, « [] is called left adjoint [right adjoint] of v [«]. They, when we have
a GC, it is worth noting that since the adjoints are monotone, preserve the relative
precision relation, meaning that if an element of C contains more information of an-
other element of C, then this relation is preserved when the elements are mapped in
A by a. Moreover, the GC conditions guarantee the existence of the best abstraction
a(c), for each ¢ € C.

Theorem 2.18. If C —— Aand C =—= A, then xy = ap & y1 = 7.

2

An important consequence of Theorem 2.18 is that we can refer to a GC between C
and A simply by its left adjoint or its right adjoint. Moreover, we can determinate
one adjoint knowing the other one.

Proposition 2.19. Each adjoint can be uniquely determined by using the other one,
as follows.

VeeCa(c) = N{acA|c<cy(a)}
A

Vae A.y(a)=\/{ceCla(c)<pa}
C

Theorem 2.20. C % A iff a is additive iff <y is co-additive.

The consequence of the above theorem is that whenever we have an additive (or a
co-additive) function between two posets then we have a GC between them. Hence,
given an additive function f C — A, we can construct the corresponding GC by
defining its right adjoint f* £ Aa.\/c{ ¢ | f(c) <4 a }. Dually, given a co-additive
function f : A — C we can construct the corresponding GC by defining its left

adjoint f~ = Ac. Aa{a|c<c f(a) }.

Definition 2.21 (Galois insertion). Let C %) A be a GC. If « o 7y is the identity
function, thatis & o y = Aa . a, then we have a Galois insertion (GI for short) that it
is denoted as follows

C%»A

When we have a GC, it is always possible to obtain a GI collecting all the elements
a € A having the same image under the function . This process is called reduction,
since, informally speaking, removes all the elements in A that are already “repre-

. . il .
sented” in A by another element. Moreover, given C % A, the following state-
ments are equivalent:

v
e C—x A;

4
e « is surjective;
e 7y is injective;

Given two GCs, it is possible to compose them as stated in the following.

Proposition 2.22. Let C <— B and B <:> A be two GCs. The composition of

1° 72
them is defined as C <—W A.

16 Chapter 2. Mathematical background

It is possible to equivalently define GCs also in terms of upper closure operators.

Definition 2.23. Let (P, <p) be a poset. A function p : P — P is an upper closure
operator (uco for short) if p is extensive, monotone and idempotent.

Dually, we can define lower closure operator (lco for short) requiring that the closure

is reductive. Given a GC C % A, the function yoa isan ucoon C and a o y is a
Ico on A. This means that « is allowed to lose information when it is mapped to
an element of A, but this is forbidden to 7. Given a element ¢ € C, a(c) is the
most precise element that represents c, that is, as we have already mentioned before,
a(c) is the best abstraction. The next theorem relates the notions of Galois insertion,
upper closure operator and Moore family.

Theorem 2.24. Let C and A be two lattices,and « : C — Aand vy : A — C. The following
statements are equivalent:
v

oC<_>T}A;

o A is isomorphic to a Moore family of C;

e if p is an uco on C and there exists an isomorphism 1 : p(C) — A (therefore 1! :
-1
A — p(C)), then C <_—p» A.

The above theorem tells us that a Galois insertion can be represented also as an
upper closure operator on C. Depending on the context of application, it could be
more convenient to represent a Galois insertion as an upper closure operator, since
the first is related to the representation of the objects of A, namely the names of ele-
ments of A, while the latter is not and it talks about the elements of A independently
from their names.

2.5 Abstract interpretation

In this section, we introduce the formal notions about abstract interpretation [Cousot
and Cousot, 1977; Cousot and Halbwachs, 1978], that is the formal framework that
we will use along all this thesis. The first and main application of abstract interpre-
tation is static analysis, and it is used to approximate concrete behaviors of a system
into an abstract version of them. Informally speaking, we call the concrete/real be-
havior of a system concrete semantics and an abstract approximation of it is called
abstract semantics.

Why do we need abstractions? Given a system, or a program, the meaning, namely
its concrete semantics, can be represented as a mathematical object like a set. This
set can be infinite and, in general, it is undecidable to compute any possible behav-
ior of a program. Hence, due to Rice’s Theorem, it is undecidable to reason about
(non-trivial) program properties on its concrete semantics. The idea behind abstract
interpretation is to relate concrete and abstract worlds and to reason in the abstract
world implying some reason about the concrete one. Hence, the fact that a certain
degree of abstraction is added permits to gain decidability, sacrificing, on the other
hand, precision of the observed concrete objects. In particular, abstract interpretation
consists in observing the semantics at certain level of abstraction, watching at only
the properties of interest and discarding any other concrete detail not interesting or
relevant for the property. After that, abstract interpretation permits to calculate, in a

2.5. Abstract interpretation 17

constructive way, the abstract semantics of the system. A crucial property of abstract
interpretation is that it does not permits false negatives, namely it is sound-by-design:
any possible concrete behavior also holds in the abstract.

2.5.1 Concrete objects, abstract objects and Galois connections

Abstract interpretation is a formal framework for approximating mathematical ob-
jects. In particular, abstract interpretation does not focus on what the objects are, but
rather on the relation between them. Once the relation between concrete objects and
abstract objects is established, the idea is to fully transfer computations on abstract
objects, with the goal of reasoning about concrete objects.

We denote the concrete object domain as C, that can be a set of numbers, func-
tions, heap locations, etc. The abstract object domain is denoted by A and it is the
domain on which the concrete objects are abstracted. Concrete and abstract domains
are modeled as posets, namely (C, <¢) and (A, <,). We say that ¢ € C is more pre-
cise than ¢’ € Cif ¢ < ¢’. These domains are related by the monotone function
« : C — A and the function v : A — C, called abstraction and concretization func-
tions, respectively. These functions must preserve the relative precision of objects,
thatis ¢ < ¢’ [a < a'] implies a(c) <4 a(c’) [v(a) <c y(a’)]. Anyway, this is not
sufficient to guarantee that a concrete object has best abstraction in A. As we have
already mentioned in the previous section, this is guaranteed when a Galois connec-
tion exists, and this also corresponds to the optimal case of abstract interpretation.

v
(C,<¢) % (A, <a)

The Galois connection condition

VeeCac Aa(c) <pa<c<cy(a)

ensures soundness and to have, for each ¢ € C the best abstraction «(c), namely the
most precise correct abstraction in A w.r.t. <4. In this ideal setting, abstract inter-
pretation inherits all the properties about Galois connections. For example, we can
determine the abstraction function knowing the concretization function and vicev-
ersa (Proposition 2.19) or we can always obtain, from a Galois connection, a Galois
insertion, in order to remove the abstract objects that have the same image under the
concretization function (i.e., useless abstract object).

Example 2.25 (Interval abstract domain [Cousot and Cousot, 1977]). A typical exam-
ple of abstraction of integers is the interval abstract domain. Informally speaking,
the idea of the interval domain is to abstract an integer property (namely an integer
set) in the least interval that contains any integer of the property. Given the concrete
domain p(Z), the interval domain is defined as

Ints = {1L}U{[a,b] |a,b € ZU{~0c0,+0},a<b}

where the order < is the typical order between integers enriched with Vz ¢ Z. —
o0 < z Az < 4o0. The element L is the bottom element while the interval [—oo, 4+ 0]
is the top element. The (partial) order C s between intervals is defined as:

VieZ. L Ciusi AV[a,b],[c,d] €Ints. [a,b] Ciys [c,d] & c<anb<d

18 Chapter 2. Mathematical background

The least upper bound operator Lijns : Ints X Ints — Ints and the greatest lower
bound operator My @ Ints X Ints — Ints are defined as follows:

Vielnts, L Ui =0 A il L 20 A
V[a, b],[c,d] € Ints. [a,b] U [c,d] = [min<{a,c}, max<{b,d}]

Vieclnts, L Minsi = L A il L = L A Va,b],[c,d] € Ints

Let i = max<{a,c} and j = min<{b,d} [a,b] Mints [, d] =i <j2[i,f]: L
It is possible to prove that (Ints, Cnts, Uints, Mints, L, [—00, +00]) is a complete lattice.
Let consider the abstraction function 7us : Ints — (Z) defined as follows:

,

1%} ifi=_1

{neZ|i<n<j} ifi=][ij]stij¢{—o0,+oo}
yi)EL{neZ|n>i} if i = [i, +-00]

{neZ|n<i} ifi = [—o0,1]

Z otherwise

From Proposition 2.19, having 7ints, we can uniquely determine the corresponding

abstraction function s @ ©(Z) — Ints in terms of |ns. It possible to prove that

0(Z) % Ints.

Xlnts

Interval abstract domain is one of the first numerical domains proposed in abstract
interpretation. Several other complex numerical abstract domains have been pro-
posed from the origin of abstract interpretation, for example congruence [Granger,
1989], octagons [Miné, 2006], polyhedra [Chen, Miné, and Cousot, 2008], octahe-
dron [Claris6 and Cortadella, 2007] and pentagons [Logozzo and Fahndrich, 2010].

Once the concrete and abstract elements are related, the next step is to move con-
crete computations on the abstract domain. As we have already mentioned before,
in general, a function f : C — C is not computable. Hence, we build a computable
function f*: A — A that must correctly approximate f, namely, if we aim at correct
abstract computations, it must be sound.

Definition 2.26 (Soundness). Consider (C, <¢) <_%+ (A, <4), a concrete function

f: C — C and an abstract function f* : A — A. The function f* is sound/correct
approximation of f in A if the following condition holds:

Ve € C.a(f(c) <a fH(a(c))

or equivalently

Va € A. f(y(a)) <c v(f*(a))

Among all the sound abstract functions f* w.rt. f, we would like to have the best
one, that is the one that loses less information computing the abstraction of f. This
property is given by the notion of best correct approximation.

Definition 2.27 (Best correct approximation). Given (C, <c) % (A, <4) and a
concrete function f : C — C. The functionao foy : A — A is the best correct
approximation (bca for short) of f in A.

2.5. Abstract interpretation 19

Since the best correct approximation of f depends on the abstraction and concretiza-
tion functions, it is often useless since it needs to pass through the concrete domain,
leading, as we have already mentioned before, to undecidability of the computation.

We can strengthen the soundness conditions, reported in Definition 2.26, by re-
quiring the equality. Doing so, we obtain two notions of completeness.

Definition 2.28 (Completeness). Consider (C, <¢) £ (A, <4), a concrete function
f: C — Cand an abstract function f*: A — A. We say that:

e f*isbackward complete for f if: Vc € C.a(f(c)) = f*(a(c));
e f*is forward complete for f if: Va € A. f(y(a)) = y(f*(a)).

Backward completeness property focuses on complete abstractions of the inputs,
while forward completeness focuses on complete abstractions of the outputs, both
w.r.t. an operation of interest f. While the notion of backward completeness is well
known in abstract interpretation [Arceri et al., 2019], the notion of forward complete-
ness is less known. If the backward completeness property is guaranteed, no loss of
information arises during the input abstraction process, w.r.t. an operation of inter-
est. When forward completeness is guaranteed, no loss of information arises during
the output abstraction process, w.r.t. an operation of interest.

2.5.2 Fix-point computations

The most interesting operations we can do on (concrete) mathematical objects (num-
bers, strings, etc.) are the ones expressible as fix-point computations, that is the goal
is to compute a least (or greatest) fix-point of a certain function. In general, comput-
ing the least fix-point of a function on concrete objects may be undecidable. The goal
is, given a complete lattice (C,<, L, T, A, V), a monotone function f : C — C and
the abstraction « : C — A (A is the abstract domain), to compute a(lfpf) without
computing Ifpf, that is without passing through concrete computations. Depending
on the relation between a(Ifpf) and Ifpf we obtain different desirable properties.

Definition 2.29 (Fix-point soundness and completeness). Consider C —— — A, a con-
crete function f : C — C and an abstract function f* : A — A: We say that f*
is

e fix-point sound if a(Ifpf) <4 Ifpf*;

e fix-point complete if a(Ifpf) = Ifpf*

Theorem 2.30 (Fix-point approximation). Consider C *— A, a concrete function f :
C — A and an abstract function f*: A — A. Then the followmg fact holds:

Ve e C.a(f(c)) <a fH(a(c)) = a(ifpf) <4 lfpf*
that is, f* is fix-point sound.

Theorem 2.31 (Tarski fix-point transfer). Let consider the complete lattices C and A, the
concrete function f : C — C and the abstract function f* : A — A and suppose that f and
f* are monotone. If there exists an abstraction a : C — A s.t. a is co-additive and satisfies
ao f <c f*ouwand for each post-fix-point a € A there exists a post-fix-point ¢ € C s.t.
a(c) = a, then a(Ifpf) = Ifpf*.

20 Chapter 2. Mathematical background

2.5.3 Fix-point extrapolation and interpolation

In the previous section we have shown how to transfer a least-fix-point computation
from the concrete world to the abstract one. Nevertheless, we can still have infinite
computations also in the abstract domain. Termination of the fix-point computations
is guaranteed, on a complete lattice L either when:

e [is a finite lattice;

e [is ACC (Definition 2.3).

In the absence of one of these properties, fix-point computations may diverge. In
this context, these kinds of abstract domains are equipped with an extrapolation
operator to enforce convergence and hence termination of fix-point computations.

Definition 2.32 (Widening [Cousot and Cousot, 1977; Cortesi, 2008]). Let (P, <) be
a poset. A widening V : P x P — P satisfies the following conditions:

e Vx,y € P.x < (xVy) ANy < (xVy);

e for any increasing chain xp < x; < xp < ..., the following increasing chain

A
Yo = Xo

A
Ynt1 = YnVXnt1

is not strictly increasing.

Hence, a widening operator is an over-approximation of the least upper bound and
is needed to enforce termination of infinite increasing chain. Widening can also be
used in converging fix-point computations in order to accelerate convergence when
the computation is on too long ascending chains.

Example 2.33 (Interval widening). The interval abstract domain Ints previously re-
ported is not ACC, meaning that fix-point computations may diverge. Hence, Ints is
equipped with the widening operator Vs : Ints X Ints — Ints, introduced in [Cousot
and Cousot, 1976], defined as follows.

Vielnts.i Vigs L 2 L Vips i 21
V]a,b],[c,d] € Ints. [a,b] Vins [c,d] 2 [(c <a? —c0:a),(d>b? 4+ o0:b)]

It has been proved that V|, satisfies the condition reported in Definition 2.32 [Cousot
and Cousot, 1976]. For example, [0, 1] Vins [0,2] = [0. 4 oo]. It is worth noting that
widening operators, in general, are not monotone. This is also the case of the inter-
vals widening V.

Next definition shows how to involve widening operator in the (upward) iteration
sequence over a poset.

Definition 2.34 (Upward iteration with widening). Let (P, <p) a poset, f : P — P
a function and V : P x P — P a widening. The iteration sequence with V for f,
starting from the bottom element | € P is recursively defined as follows, for each
n € IN:

X0 éJ_
A {xn iff(xn) SP Xn

X =
s x,Vf(x,) otherwise

2.5. Abstract interpretation 21

Any iteration sequence of a function f, equipped with a widening as shown
above, is increasing but stationary after a finite number of steps. Moreover, its
limit, denoted by xV, is a post-fix-point of f, that is an over-approximation of Ifp(f),
namely Ifp(f) <p xV.

Clearly, fix-point computations exclusively equipped with a widening may lead
to a drastic loss of information. In order to retrieve some precision lost by the widen-
ing, also a interpolation operator, called narrowing, is integrated to improve the pre-
cision of over-approximation made by the widening.

Definition 2.35 (Narrowing). Let (P, <) be a poset. A narrowing A : P x P — P
satisfies the following condition:

e Vx,ye P.x<y=x<(xAy) <y;
e for any decreasing chain xop > x1 > xp > ..., the following decreasing chain
A
Yo = Xo
Yn+1 = Yn A Xpya

is not strictly decreasing.

Example 2.36 (Interval narrowing). The abstract domain Ints can be also equipped
with the narrowing operator Ay, @ Ints X Ints — Ints, reported in [Cortesi, 2008],
defined as follows.

Vients.i A L2 L A i & L
V[a,b],[c,d] € Ints. [a,b] Ajns [c,d] £ [(a = —c02c:a),(b=+oc0?d:b)]

It had been proved that A satisfies the condition reported in Definition 2.35 [Cortesi,
2008]. As for widening, narrowing may be not monotone.

Definition 2.37 (Downward iteration with narrowing). Let (P, <p) a poset, f : P —
P a function and A : P X P — P a narrowing. The iteration sequence with A for f,
starting from xV is recursively defined as follows, for each n € IN:

0 2V
g e y" if f(y") =y"
y*Af(x") otherwise

Hence, any iteration sequence, equipped with a narrowing and starting with the
post-fix-point xV of f, is decreasing but stationary after a finite number of steps.
Moreover, its limit yV is a post-fix-point of f, that is an over approximation of Ifp(f):

Ifp(f) <y <2V

A final remark is about the usefulness of infinite domain equipped with widen-
ing and narrowing. Among the years, there has always been the feeling that, given
an infinite abstract domain with widening and narrowing, it were possible to find
an equivalent finite abstract domain (hence without widening and narrowing oper-
ators) able to produce the same results. It is trivial to show a counterexample to this,
as it had done in [Cousot and Cousot, 1992b], showing that, in general, finite abstract
domains are less precise than infinite abstract domains equipped with widening and
narrowing.

22 Chapter 2. Mathematical background

2.5.4 Abstract domains collectively

In the previous sections, we have presented abstract domains individually. In par-
ticular, we have shown that we can characterize abstract domains as adjoints or up-
per closure operators. In the following, we present the lattice of abstract domains,
namely the lattice of any possible abstract domain for a given concrete domain C.

Definition 2.38 (Lattice of abstract domains [Cousot and Cousot, 1977]). Let C a
complete lattice. The lattice of abstract domains £¢ of C is

(uco(C),C, LU, M, Ax. T, Ax.x)

where uco(C) is the set of all the possible abstract domains of the concrete domain
C. £¢ is a complete lattice, where Ax.x is the bottom element and Ax.T is the top
element. Let p, 17 € uco(C), {pi}ier € uco(C). The partial order, least upper bound
and greatest lower bound are defined as follows

e pCypeVeeCplc) Enle)
b (l_lielpi>(c) = Nierpi(c), forc € C
o (Uicrp)(c) =c e Vie Lpi(c) =c

The partial order on £¢ corresponds the comparison between abstract domains:
indeed A; is more precise than A, meaning that A; is an abstraction of Aq,if A; T As.
The least upper bound A; LI A; gives as result the most concrete domain that is an
abstraction of A; and A; and it is the least w.r.t. C while the greatest lower bound
AqT1 A, is the most abstract domain which is most concrete than A; and A».

Several abstract domains combinations have been proposed, such as cartesian
product, reduced product [Cousot and Cousot, 1979] or complement [Cortesi et al.,
1997]. Further, we will also exploit an abstract domain combination for the abstract
interpreter of our core dynamic language, since we will deal with different abstract
domains.

2.5.5 Making abstract interpretations complete

We conclude the background about abstract interpretation presenting the interesting
work reported in [Giacobazzi, Ranzato, and Scozzari, 2000]. The author of this work
proposed a constructive methodology to derive, from a incomplete abstract domain,
w.r.t. an operation of interest, a novel abstract domain, that it is complete for that
operation. We will use the notions reported in this section in Chapter 4, when we will
talk about completeness of string operations and complete domains for JavaScript.

As reported in [Giacobazzi, Ranzato, and Scozzari, 2000], it is worth noting that
completeness is a property related to the underlying abstract domain. Starting from
this fact, the authors proposed a constructive method to manipulate the underlying
incomplete abstract domain in order to get a complete abstract domain w.r.t. a cer-
tain operation. In particular, given two abstract domains A and B and an operator
f : A — B, the authors gave two different notions of completion of abstract domains
w.r.t. f: the one that adds the minimal number of abstract points to the input abstract
domain A or the other that removes the minimal number of abstract points from the
output abstract domain B. The first approach captures the notion of complete shell of
A, while the latter defines the complete core of B, both w.r.t. an operator f.

2.5. Abstract interpretation 23

Complete shell vs complete core. In this thesis, we will focus on the construction
of complete shells of abstract domains, rather than complete cores. This choice is
guided by the fact that a complete core for an operation f removes abstract points
from a starting abstract domain, and so, even if it is complete for f, the complete core
could worsen the precision of other operations. On the other hand, complete shells
augment the starting abstract domain (adding abstract points), and consequently
they cannot compromise the precision of other operations.

Below, we provide two important theorems proved in [Giacobazzi, Ranzato, and
Scozzari, 2000] that give a constructive method to compute abstract domain com-
plete shells, defined in terms of an upper closure operator p. Precisely, the latter
theorems present two notions of complete shells: i. complete shells of p relative to n
(where 7 is an upper closure operator), meaning that they are complete shells of
operations defined on p that return results in #, and ii. absolute complete shells of p,
meaning that they are complete shells of operations that are defined on p and return
results in p.

Theorem 2.39 (Complete shell of p relative to #). Let C and D be two posets and f :
C" — D be a continuous function. Given p € uco(C), then S}J : uco(D) — uco(C) is the
following domain transformer:

Sii =Mpu(J max({zeC|(f)(z) <py})
i€[0,n)
xeC"yen

and it computes the complete shell of p relative to 1.

As already mentioned above, the idea under the complete shell of p (input ab-
straction) relative to 77 (output abstraction) is to refine p adding the minimum num-
ber of abstract points to make p complete w.r.t. an operator f. From Theorem 2.39,
this is obtained adding to p the maximal elements in C, whose f image is dominated
by elements in 7, at least in one dimension i. Clearly, the so-obtained abstraction may
not be an upper closure operator for C. Hence, Moore closure operator is applied.
On the other hand, absolute complete shells are involved in the case in which the
operator f of interest has same input and output abstract domain, i.e., f : C* — C.
In this case, given p € uco(C), absolute complete shells of p can be obtained as the
greatest fix-point of the domain transformer SJ’[J (see Theorem 2.39), as stated by the
following theorem.

Theorem 2.40 (Absolute complete shell of p). Let C be a poset and f : C" — C be a
continuous function. Given p € uco(C), then gfr : uco(C) — uco(C) is the following
domain transformer:

S = gfp(A.85 (1))

and it computes the absolute complete shell of p.

For example, the sign abstract domain is complete for the product operation, but
it is not complete w.r.t. the sum. Indeed, the sign of e; + e, cannot be defined by
simply knowing the sign of e; and e;. In [Giacobazzi, Ranzato, and Scozzari, 2000],
authors computed the absolute complete shell of the sign domain w.r.t. the sum
operation, and they showed it corresponds to the interval abstract domain [Cousot
and Cousot, 1977].

24 Chapter 2. Mathematical background

Final remarks. In this section, we have reported the background notions about
abstract interpretation. As we have already mentioned before, the most popular ap-
plication of abstract interpretation is static analysis. Since its birth, program static
analysis by abstract interpretation have been applied in several research fields, such
as for example type checking [Cousot, 1997], information flow [Giacobazzi and Mas-
troeni, 2018], malware detection [Preda et al., 2008], heap analysis [Balakrishnan and
Reps, 2006], termination analysis [Cousot and Cousot, 2012], only to cite few. In
Chapter 3, we will introduce the core language that we will use in this thesis and we
will explain how to exploit abstract interpretation for static program analysis.

2.6 Strings, languages and finite state automata

A symbol is a primitive abstract data type that we do not formally define. Letters,
numeric characters and punctuation characters are examples of symbols. An alphabet
is a finite set of symbols and it is denoted by . A string is a sequence of zero or more
characters and it is denoted by ¢. The empty string is denoted by €. For example, if
Y. = {a,b,c}, the string caaabc is a string built upon the alphabet X. The length of a
string is the number of symbols that occurs in o and it is denoted by |c|. For example,
|caaabc| = 6. The concatenation operation is the end-to-end join between two strings.
Given two strings o and ¢’ its concatenation is denoted by ¢ - /. Sometimes we omit
the dot and we refer to the concatenation of two strings by co’. For example, the
concatenation of abc and cba is abccba. Let ¢ = oyoq ... 0, be a string. We denote
by o; the character at the i-th position of . Given a string o, the string oy ...0;,
i € {0,...,n} is called prefix of o, the string 0; ...y, i € {0,...,n} is called suffix of
o and the string 0; ... 0, i,j € {0,...,n} withi < j < |o|is called substring of o. For
example, if we consider the string o = helloworld, then hel is a prefix, Id is a suffix
and /ow is a substring from i to j of ¢. It is worth noting that € is always prefix, suffix
and substring of any string. Given an alphabet X, the Kleene-closure of ¥, denoted
by X, is the set of any string of finite length over the alphabet ~. For example, if
Y. = {a,b}, then aaba € X*. If ¥ is not the empty set or composed only by the empty
string, then X* is always an infinite set. Moreover, we use the following notations,
withi e N: 2 2 {oc € X*||r] =i }and 2 £ Uj<i &/, corresponding to the set of
strings of length i and the set of strings of length less than i, respectively.

Definition 2.41 (Formal language). Given an alphabet ¥, a formal language (for
short language) .Z is a set of strings over X, namely . C X*.

For example, ¥ = {a,b,c}, then £*, {€}, { a" | n € N } are examples of languages
over X. The language not containing any string is the empty language and it is de-
noted by @.

In the following, we define standard language operations. Let X be an alphabet
and .%, ¢’ be languages over X.

o 7 £ ¥\ Zis the complement language of Z;
e UYL E{0|oce L VoL } isthe union language of £ and .Z’;
e NYL' 2 {0 |oceLNoE L} is the intersection language of £ and .£”;

o ¥ L E {00 |0€ Lo €L} isthe concatenation language of £ with £
Note that - @ = @ and £ - {e} = Z.

2.6. Strings, languages and finite state automata 25

e N 2 {c|ocec L No¢ L} is the subtraction language between £ and
<.

The notions of prefix, suffix and substring can be also lifted from strings to lan-
guages, as reported in the following definitions.

Definition 2.42 (Suffixes and prefixes [Davis, Sigal, and Weyuker, 1994]). Let £ C
Y* be a language. The suffixes of .# are SU(.¥) £ { c € * | 30’ € &*.d/c € £ },
and the prefixes of £ are PR(.Z) £ { ¢ € &* | o € Z* .00’ € L }.

For example, consider the language . = {abc, def }. Then, its suffixes are SU(.Z) =
{€,abc,be,c, f,ef, def } and its prefixes are PR(.Z) = {€,a,ab, abc,d, de,def }. Finally,
we report two other important operations between languages.

Definition 2.43 (Left quotient [Davis, Sigal, and Weyuker, 1994]). Let £, ¥ C ¥* be
two languages. The left quotient of £ w.rt. ¢ is LQ(Z, %) £ {c € ¥ | Ao’ €
L.doe 2}

Definition 2.44 (Right quotient [Davis, Sigal, and Weyuker, 1994]). Let .Z,. ¢’ C
Y* be two languages. The right quotient of .2 w.rt. ¢’ is RQ(Z, ') 2 { ¢ €
Y* |30’ e Lo0 € £ }.

For example, let £ = {xab,yac} and ¥’ = {x,y} be two languages. The left quo-
tient of £ w.rt. £ is LQ(Z,¢") = {ab,ac}. Consider now .¢ = {xab,yab} and
%" = {b,ab}. The right quotient of .£ w.r.t. ¥ is RQ(.Z,.¥") = {xa,ya,x,y}.

We introduce a particular subset of suffixes, namely the suffixes starting from a
given position. This language will be useful in Chapter 5 when we will define, given
a language, its substring language between two indexes.

Definition 2.45 (Suffixes starting from a given position). Let . C X* be a language
and i € IN. The suffixes of .# starting from i are SU(.Z,i) 2 {y € Z* | Ix € T*.xy €
2L, x| =i}

For instance, let ¥ = {abc, hello}, then SU(Z,2) = {c,llo}. Moreover, we can
rewrite the suffixes starting from a position as composition of prefix and left quotient
languages, namely SU(.%, i) = LQ(Z, PR(.Z) NL'), as shown below.

Su(Z,i)={yeX|Ixelxye L |x|=i} |Def. 2.45§
={yeX|Ielxye L |x|=ix € PR(Y) } |Def. 2.42
={yer | Ixer xyec. £ xcPrR(L)NZ } |Def. ¥/
={yeX|IecPRY)NZ.xyc £} |Def. of N
= LQ(Z,PrR(Z) N L) |Def. 2.43§

It is also worth noting the following fact:
Su(Su(Z,i)) ={yeXl |yeSu(L,j)j>i} (2.1)

Definition 2.46 (Substrings/Factors [Davis, Sigal, and Weyuker, 1994]). Let . C ©*
be a language. The set of its substrings/factors is FA(Z) £ { ¢/ € £* | o,0” €
Y* . oold" € £}

It is worth noting that the set of the factors of .#’ can be rewritten as composition of
prefix and suffix operators, namely FA(.Z) = PR(SU(.Y)).

26 Chapter 2. Mathematical background

FIGURE 2.3: Example of DFA.

Definition 2.47 (Deterministic finite state automaton). A deterministic finite state
automaton (DFA for short) is a tuple (Q, X, J, qo, F) such that:

e (is a finite set of states;

2 is an alphabet;
e 0 :Q X X — Qis the transition function;
e go € Qs the initial state;

e [C Qisa set of final state;

We can graphically represent a DFA as a graph. An example is reported in Fig-
ure 2.3, where edges correspond to the transition function ¢, the double-circled state
is the final state (43) and the state with the incoming transition without the source is
the initial state (o). The behavior of a DFA is given by the transition function §, that
takes as input a single symbol and a state and returns as output the state reached by
reading the input symbol. From the transition function J, we can uniquely obtain its
transitive-closure § : Q x ©* — Q as follows:

R q ifo=e
o(g,0) = A
(4.0) {(5(5((1, 00...0y-1),0n) otherwise

Given p,q € Q, we write p ~» q if there exists a path in the automaton from p to 4. A
string o is accepted by a DFA A = (Q, %, 6, 4o, F) if (q,0) € F. Informally speaking,
the string is accepted if, reading the string starting from the initial state qo, a final
state is reached. For example, the string abbb is accepted by the DFA reported in
Figure 2.3, whereas the string aabb is not accepted.

Definition 2.48 (Language accepted/recognized by an automaton). Given a DFA
A= (Q, %4, qo, F), thelanguage accepted by 4, denoted by .#(A), is the set of strings
accepted /recognized by 4, that is

Z(h) 2 {cecx*|d(qo,0)€EF}
At this point, we are able to characterize the class of languages recognized by DFA.

Definition 2.49 (Regular language). A language . is regular if there exists a DFA A
such that & = .Z(A).

2.6. Strings, languages and finite state automata 27

Algorithm 1: LQ : DFA x DFA — Algorithm 2: RQ : DFA x DFA —
DFA DFA
Data: A1, A, € DFA, Data: A1, A, € DFA,
Ay = (Q1, %, 61,90 Fi), Ay = A = (Q1,%,01, 90", Fi), A =
(Q2,%,62,90% F2) (Q2,%,62,90%)
Result: LQ(A1, 4) Result: RQ(A1, 4;)
1L+ @ 1 FrRq+ 9
2 foreach g € Q7 do 2 foreach g € Q; do
3 | Ap <+ (Q1,%,01,90 {q}); 3| A+ (Quq.% 0, F)
4 | ifAyNAf # @ then 4 | ifAyNA; # O then
5 ‘ lIiq < LU {q}, 5 ‘ FrqQ + Frq U {E]},
6 end 6 end
7 end 7 end
8 return Min((Q1, I q, %, 61, F1)); 8 return Min((Q1, 90", %, 31, Frq));

FIGURE 2.4: Left quotient and right quotient algorithms.

We denote by DFA the set of deterministic finite state automata. Interesting and de-
sirable properties are guaranteed by regular languages, as reported by the following
theorem.

Theorem 2.50 (Regular languages closure properties [Davis, Sigal, and Weyuker,
1994]). Regular languages are closed under union, intersection, complement, concatenation
and factors, right quotient, left quotient, suffix and prefix operations.

Given Ay, Ay € DFA, we denote by A; U Ay and A; N A, the union and the inter-

section between automata, abusing notation. Moreover, we introduce the operators
LQ,RQ : DFA x DFA — DFA, corresponding to the left quotient and right quotient
transformers on automata, respectively, and SU, PR : DFA — DFA, corresponding to
the suffix and prefix transformers on automata, respectively. In Figure 2.4, we report
the left quotient and right quotient algorithms on automata. Algorithm 1 [Davis,
Sigal, and Weyuker, 1994] computes the left quotient between two automata, A; and
Ay. For each state g of A;, we build a new automaton Ay, equal to A;, except that
the only final state is g (line 3). If As recognizes strings of 4, i.e., ArNAp # &, the
algorithm collects g in I q (lines 4-5). Finally, the result is an automaton equals to A,
except that the set of initial states is I . We denote by Min the minimization oper-
ation on automata (that we will shortly define). Dually, Algorithm 2 computes the
right quotient between two automata.
In Figure 2.5, we reported the suffix and prefix algorithms on automata. In particu-
lar, Algorithm 3 [Davis, Sigal, and Weyuker, 1994] computes the suffix automata of
A. For each state g, the algorithm checks if there exists a path from g to a final state
(line 3). If this happens (line 4), the state g is collected into Isy. Finally, the result is
the (minimum) automaton equal to A, except that the set of the initial states is Isy.
Dually, Algorithm 4 computes the prefix automata of A. As far as factor automaton
is concerned, it can be computed as composition of prefix and suffix operators on
automata, as for languages, namely FA(.Z(A)) = PR(SU(A)). Given A;, Ay € DFA,
the following results hold [Davis, Sigal, and Weyuker, 1994].

RQ(Z (A1), Z (A
FA(Z (M) =

2)) = RQ(A1, A7) LQ(Z (A1), Z(A2)) = LQ(A1, 42)
FA(A1) Su(Z(A1)) =SU(A) Pr(Z(A1)) = PR(41)

28 Chapter 2. Mathematical background

Algorithm 3: SU : DFA — DFA Algorithm 4: PR : DFA — DFA
Data: A € DFA, A = (Q, X%, 4,490, F) Data: A € DFA, A = (Q,%,6,90, F)
Result: SU(A) Result: PR(A)

1 Igy+— < 1 Fpr+— O

2 foreach g € Q do 2 forg € Qdo

3 if dp € F.q ~» p then 3 if g0 ~» g then

4 | Isy < IsyU{q}; 4 | Fer < FrU {q};

5 end 5 end

6 end 6 end

7 return Min((Q, %, 6, Isy, F)); 7 return Min((Q, %, 6, g0, Fpr));

FIGURE 2.5: Suffix and prefix algorithms.

It is worth noting that, in the definition of a DFA, § is a function. We can extend &
to be a relation, rather than a function, introducing non-determinism in recognizing
strings.

Definition 2.51 (Non-deterministic finite state automaton). A non-deterministic fi-
nite state automaton (NFA for short) is a tuple (Q, %, J, I, F) such that:

e () is a finite set of states;

2 is an alphabet;

e 0 C Q x X x Qis the transition relation;
e | C Qs the set of the initial states;

e [C Qisa set of final state;

This definition can be further enriched allowing a NFA to read no symbol, mean-
ing that when a transition without symbols is met, the automaton directly goes to
the next state. This class of finite state automata is called non-deterministic finite
state automaton with e-transition (e-NFA). Despite the extension of DFA with non-
determinism, the classes of languages both recognized by NFA and e-NFA do not
change, as stated by the following theorem.

Theorem 2.52 (Equivalence between DFA, NFA and e-NFA [Hopcroft, Motwani, and
Ullman, 2007]). The classes of languages recognized by DFA, NFA and e-NFA coincide and
it is the class of regular languages.

The above theorem tells us that non-determinism, also enriched with e-transitions,
does not add expressiveness to finite state automata. Hence, given a NFA, or a e-
NFA, we can obtain an equivalent DFA recognizing the same language. Before pro-
viding the algorithm to do that, we introduce three operations used by it:

e c—closure(q): set of states reachable from g with e-transition (included g);
e c-closure(S): set of states reachable from some g € S with e-transition;

e move(S,a): set of states to which there is a transition labeled with a € X from
some q € S.

2.6. Strings, languages and finite state automata 29

Algorithm 5: Subset construction algorithm
Data: e-NFA A = (Q,%, 9,40, F)
Result: DFA A" = (Q', %, ¢, q, F') s.t. Z(A) = L (&)
8« & F + &
q¢ < e-closure(qo);
Q' « qp
while there is some unmarked state P in Q' do
mark P;
foreach a € X do

R < e-closure(move(P, a));

if R ¢ Q' then

| Q'+ QUR;

end

'+ & U(P,a,R);
end
end
foreach S € Q' do
if SNF # @ then

‘ F' + F'US;

end

© ® g S U1 B W N =

S S S G
S U A W N R o

Juy
N

end
A/ — <Q,/ Zr 5/1 %/ F/>/
return A’;

N =
S O ®

The algorithm to convert a e-NFA A into an equivalent DFA A is called subset con-
struction [Rabin and Scott, 1959] and its pseudo-code is reported in Algorithm 5.
The algorithm starts computing the power-state g € p(Q) (line 2), that merges all
the states reachable from the initial state go of A only with e-transition. At line 3, this
is the only state of the resulting DFA (line 3). Then, for each unmarked state P in
Q', it is first marked and then, for each symbol a of the alphabet, is computed the
e-closure of the power-state, namely R reached by reading the symbol a4 from any
state of P (lines 5-7). If R is not in Q’ yet then it is added to it as an unmarked state
(lines 8-10) and the transition (P, a, R) is added to J. This operation is repeated for
any computed macro-state of Q' and it terminates when any macro-state is marked.
Finally, lines 14-17 build the novel set of final states as follows: for each macro-state
S € Q/, if it contains a final state of the NFA A, then S is also a final state of the DFA
A’. For example, let consider the e-NFA A reported in Figure 2.6a, that recognizes
the language { {a,0}"abb | n € N }. Applying the subset construction algorithm
reported in Algorithm 5 we obtain the DFA A’ reported in Figure 2.6b, recognizing
the same language.

The subset construction algorithm, in the worst case has exponential complex-
ity [Hopcroft, Motwani, and Ullman, 2007], since starting from a e-NFA with n
states, the resulting DFA may have 2" states. Moreover, it is worth noting that Al-
gorithm 5 also works to convert NFA in DFA. We introduce the notation Det(A) to
denote the determinized automaton of A, that implements Algorithm 5.

Theorem 2.53 (Minimum DFA). For each regular language £, there uniquely exists a
DFA A, with the minimum number of states, s.t. ¥ = £ (A), modulo state renaming.

30 Chapter 2. Mathematical background

(B)
FIGURE 2.6: (a) e-NFA A. (b) DFA A’ s.t. £ (A) = Z(A).

Hence, given an automaton A that recognizes a language ¢, we can obtain an equiv-
alent DFA A’ s.t. Z(A) = Z(A') = &£, and A has the minimum number of states.
For example, the DFA A reported in Figure 2.6b is also the minimum DFA recog-
nizing the language { {a,b}"abb | n € IN }. Several algorithms have been pro-
posed to minimize a DFA. In this thesis, we report two minimization algorithms,
namely Hopcroft’s algorithm [Hopcroft, 1971] and Brzozowski’s algorithm [Brzo-
zowski, 1962]. Before introducing these two approaches, we need to define two
classes of states in a non-minimized DFA:

o unreachable states: states that cannot be reached starting from the initial state of
the DFA;

o non-distinguishable states: states that cannot be distinguished from another state
of the DFA.

Since unreachable states cannot be reached by g, they cannot recognize any string
and they can be removed by the DFA without affecting the recognized language.
The algorithm to detect unreachable states is reported in Algorithm 6. The idea is
to perform a visit of the DFA, starting from the initial state go, collecting in RS the
states met in the visit reading some symbol of the alphabet X (lines 3-12). In T are
saved the states met while visiting states in NS and are computed in lines 4-9. Then,
at line 10, are computed the states that have not been visited yet (T \. RS) and at line
11 are saved in RS the new reached states. The process at lines 3-12 terminates when
no more new reached states are met (line 12). Unreachable states are all the states
not met during this visit, namely Q \ RS (line 13). Given a DFA A, we denote by
Reach(4) the automaton A without unreachable states.

Hopcroft’s minimization algorithm takes care of merging non-distinguishable states
of a DFA. The idea behind is to partition the states of a DFA into classes by their
behavior. Algorithm 7 represent the pseudo-code of Hopcroft’s minimization algo-
rithm. In particular, the algorithm returns as result P, that is the set of equivalence

2.6. Strings, languages and finite state automata 31

Algorithm 6: Unreachable states detection algorithm.

Data: DFA A = (Q, %, 6, 90, F)
Result: Set of unreachable states US

1 RS « {q0};

2 NS « {q0};

3 repeat

4 T+ @;

5 for g € NS do

6 foreacha € X do
7 | T« Tu{peQl|3dqeQ.éga)=p}
8 end

9 end

10 NS + T\ RS;

11 RS + RSUNS;

12 until NS # o;
13 US «+ Q \RS;
14 return US;

classes of states of the input automaton. States in the same equivalence class are
undistinguished states (i.e., have the same behavior). Similarly to the subset con-
struction algorithm, the minimum DFA of A can be constructed from the equivalence
classes obtained from Algorithm 7, creating a single state for each equivalence class
and creating a transition between two equivalence classes S and R when there exists
a transition in (s,a,7) inAs.t. s € Sand r € R.

Hopcroft’s algorithm works only on DFA. Another minimization algorithm had
been proposed by Brzozowski [Brzozowski, 1962] and also works with e-NFA and
NFA, as described by Theorem 2.54, where Reverse(A) denotes the automaton recog-
nizing the reversal language recognized by A.

Theorem 2.54 (Brzozowski’s minimization algorithm [Brzozowski, 1962]). Given a
DFA A,

A" = Reach(Det(Reverse(Reach(Det(Reverse(4)))))
is the minimum DFA s.t. £ (A) = L (A').

The complexity of Brzozowski’s algorithm may be exponential in the worst case but
in practice performs better than the worst case. Hopcroft’s algorithm performs better
than the Brzozowski one, since its worst case running time is O(|Z||Q|log(|Q])) but
its average-case complexity is O(|Q|loglog|Q|). Given a DFA 4, in the thesis, we
denote by Min(A) the minimum DFA of A. Given a language .¥ € X*, we abuse
notation denoting with Min(#) the minimum DFA recognizing .£.

2.6.1 Regular expressions

A different way to characterize regular languages is reqular expressions, introduced
and defined for the first time by Kleene in the 1950s. A regular expression is a se-
quence of symbols that identifies a pattern, that is the set of strings that fulfill a
certain constraint expressed by the regular expression.

Definition 2.55 (Regular expression). Given an alphabet X, the following are con-
stant regular expressions:

32 Chapter 2. Mathematical background

Algorithm 7: Hopcroft’s minimization algorithm.
Data: DFA A = (Q, %, 6, qo, F)
Result: P, equivalence classes of A

1 P+ {F,Q\F};

2 W+« {F};

3 while W # @ do

4 select A from W;

5 W+ WA

6 foreacha € X do

7 X—{qeQl|d(qga)cAl;

8 foreachY € Ps.t. XNY £ Fand Y ~\ X # @ do
9 P+ (PNY)U{XNY}U{Y~X};

10 if Y € W then

1 | W (WNY)U{XNYIU{Y X}
12 else

13 if XNY] <Y\ X|then

14 | W+ WU {XnY};

15 else

16 | W WU{Y X}

17 end

18 end

19 end

20 end

21 end

22 return P;

o (empty set) & is the empty set denoting the empty set &;
e (empty string) € is the empty string denoting {€};
e (character) a2 € X denotes {a}.
If r and s are regular expressions, the following are also regular expressions

e (concatenation) rs denotes the set containing the strings that are the concatena-
tion between a string in r and a string in s;

e (disjunction) r || s denotes the set containing the strings in r and s;

o (Kleene star) r* denotes the set containing all the strings obtained by concate-
nating zero or more times strings in r.

To avoid ambiguity, Kleene star has highest priority, then concatenation and then
disjunction.

For the sake of clarity, we can use parentheses. For example, given the alphabet ¥ =
{a, b}, the regular expression ab*c |a denotes the set of strings { ab"c | n € N } U {a}.
Given a regular expression r, we denote by .Z(r) the string set denoted by r, and we
call it the language recognized by r. Given the regular expressions r, s and t, it is easy
to prove that they respect the following properties:

erl|ls=s]|r;

2.6. Strings, languages and finite state automata 33

o (rlfs)[lt=rll(s]lt);

o (rs)t =r(st);

r(s||t) =rs||rt;

(r]|s)t=rt]||st
o J* =g

° (r*)* — r*;

(elfrr) =(ellr)" =r7
o (r"s*) = (r|[s)"

Next theorem tells us that the class of languages recognized by regular expressions
is the one of regular languages.

Theorem 2.56 (McNaughton-Yamada [McNaughton and Yamada, 1960]). Let r be a
regular expression. There exists an e-NFA As.t. Z(A) = ZL(r).

The proof of Theorem 2.56 is recursively done on the structure of a regular expres-
sion and also gives an algorithm to transform a regular expression to a e-NFA [Mc-
Naughton and Yamada, 1960], and hence to a DFA for Theorem 2.52. In this thesis,
we will often refer to a regular language, or a finite state automata, by its corre-
sponding regular expression. Regular expressions will play a crucial role when we
will define the analysis of string-to-code statements (i.e., eval) in Chapter 6.

35

Chapter 3

A dynamic imperative core
language: 1JS

In this chapter, we define a dynamic imperative core language, that we call pJS, in-
spired by the JavaScript language. We have decided to adopt a core language rather
than a real-world one, such as JavaScript, in order to focus the attention on the main
dynamic features we want to analyze and not on other features, that would only
make the exposition more complicated. This is the core language that we will use
for the rest of the thesis and it is expressive enough to handle implicit type con-
version, dynamic typing and string manipulation operations. In the next chapters,
we will further augment the syntax and semantics of 3JS, with string-to-code state-
ments and object expressions.

In the next, we first define the formal syntax and semantics of xJS, then we in-
troduce the basic notions in order to statically analyze uJS programs by abstract
interpretation. This will place the ground for the main contribution of the thesis,
that will be presented in the next chapters.

3.1 uJS syntax and semantics

uJS is a dynamic imperative core language and its syntax is reported in Figure 3.1
and it is expressive enough to write arithmetic expressions (AE), boolean expres-
sions (BE) and string expressions (SE). For the sake of simplicity, in the definition of
1JS we have not considered some JavaScript features, not related to strings, such as
assignment expressions. As far as statements are concerned, we can express no-op
statement (skip), variable assignments (x = e) and if and while control standard
structures. A uJS program is an element of STMT rule reported in Figure 3.1, ending
with a semicolon. It is worth noting that in #JS any kind of expression can be used
also in expressions of a different type. For example, the JS programx = 5 + true;
is a legal program. In this sense, 1JS takes into account of implicit type conver-
sion [Arceri and Maffeis, 2017]. We will shortly explain what implicit type conver-
sion means when we will define the ;JS semantics. We denote by ID the set of #JS
identifiers, ranged over the meta-variable x. Primitive values are represented by the
set VAL = INTUBOOL U STR U {NaN} U {1} such that:

e INT = Z is the set of signed integers;
e BOOL = {true, false} is the set of booleans;
e STR = X" is the set of strings over a fixed alphabet X;

e NaN is a special value denoting not-a-number;

36 Chapter 3. A dynamic imperative core language: uJS

Aa€EAE:=x Il nle+e | e-e | e*xe | e/ e
| length(e) | index0f(e,e)
be BE:=x | true | false | e& e | el e | ! e
| e<e | e=c¢e
s€ SE u==x | "s" | substr(e,e,e) | charAt(e,e)
| concat(e,e)
ec Ex=a | b | s | NaN | (e)
st€ STMT == st ; st | skip | x=e | if (b) {st} else {st}

| while (b) {st}
PeulS u= st ;

where x € ID (identifiers), n € Z and s € &*

FIGURE 3.1: uJS syntax.

e 1 denotes an error value. In particular, in expression semantics, if an operand
evaluates to 1, it is propagated in the evaluation of the main expression (e.g., 1
+ 5 =1). For the sake of readability, in the following definition of the concrete
semantics, these cases are implied.

We denote by Xf | C STR the set of numerical strings, namely strings corresponding
to integers. X is defined by the regular expression {+, —, €} - {0,1,...,9}. More-
over, the function 7 : Xj | — Z maps numeric strings to the corresponding integers.
Dually, we define the function S : Z — X} that maps each integer to its minimal
numeric string representation (e.g., 1 is mapped to the string "1", and not "+1").
Program states STATE : ID — VAL are ranged over the meta-variable ¢ and are
partial functions that maps from identifiers to primitive values. State updates and

lookups are defined as follows:

v ifx=y
¢(y) otherwise

Slx < ol(y) = {

In order to define the behaviors of the ;JS syntax elements, we define its formal
big-step semantics. In particular, we define the function [P] : STATE — STATE that
takes as input a JS program and a program state and returns the output state, con-
taining the effects of the input program execution on the input state. The big-step
concrete semantics is inductively defined on the structure of STMT. Hence, abusing
notation, we define the function [st] : STATE — STATE as follows.

[skip]¢ = ¢
[x = e]¢ = ¢[x « [e]¢]

. _) Ist1]¢ if toBool([e]&) = true
[1#(e) sty Jedseist: }]¢ = {[[stz]](j if toBool([e]¢) = false

[while(e){st }J& = Ifp(At. U [if(e){ st }else{ skip }|t)

3.1. uJS syntax and semantics 37

v v € STR v v € INT
"NaN" v = NaN 1 U = true
toString(v) = { "true" © = true tolnt(v) =< 0 v = false Vv = NaN
"false" v = false Z(v) v€E€STRADE X!,
S(v) v € INT NaN v € STRAvD € X,
v v € BOOL
toBool(v) = ¢ true v € INT\ {0} Vv € STR\ {¢}

false v=0Vov=€¢Vov=NaN

FIGURE 3.2: uJS implicit type conversion functions.

The semantics uses the concrete semantics of expressions, like the assignment rule,
defined, abusing notation again, as the function [e] : STATE — VAL, that takes as
input an expression and a state and returns the primitive value to which the ex-
pression evaluates to in the input state. We will later formally define the expression
semantics. All the big-step semantics rules are standard expect for the if statement,
which contains the first example of implicit type conversion, meaning that language
operations allow operands of any type and it applies an implicit conversion when a
specific type is needed. For example, the statement if(5+2){ x=1; }else{x=2; } isa
legal statement in uJS, but the boolean guard of the if statement does not normally
evaluate to an boolean value. Hence, when the boolean guard evaluates to a final
value, the semantics relies on the function toBool that converts the boolean guard
final value to a boolean value. In our example, the boolean guard evaluates to 7 and
it is implicitly converted to true. In order to deal with implicit type conversion, we
define the auxiliary functions toBool : VAL — BOOL, tolnt : VAL — INT U {NaN} and
toString : VAL — STR, that convert a primitive value to a boolean, an integer (if pos-
sible) and a string, respectively. Their definitions are reported in Figure 3.2. Note
that all the functions behave like the identity when applied to values not needing
conversion, e.g., tolnt on integers. Then, toString maps any input value to its string
representation; tolnt returns the integer corresponding to a value, when it is possible:
For true and false it returns respectively 1 and 0, for strings in X, it returns the
corresponding integer, while all the other values are converted to NaN. For instance,
tolnt("42") = 42, tolnt("42hello") = NaN. Finally, toBool returns false when the
input is false, 0, NaN or the empty string, and true for all the other primitive values.

Expression semantics. We now define the concrete semantics for boolean, arith-
metic and string expressions. As we have already mentioned before, the expressions
semantics is captured by the function [e] : STATE — VAL. The evaluation of a vari-
able returns the value of the corresponding identifier, if it is defined in the current
state, otherwise 71 is returned.

[x]¢ = {c:,‘(x) if x € dom(¢)

T otherwise

The semantics for addition, subtraction, multiplication and division is reported be-
low, where 00 € {+,-,*%,/} and B € {4+, —,*,/}, corresponding to the standard
integer operations.

38 Chapter 3. A dynamic imperative core language: uJS

[e1]¢ M [ey]¢ if tolnt([e1]&) € INT A tolnt([ex]&) € INT
NaN otherwise

[e1 Oep]¢ = {

If both evaluations of arithmetic expression operands are implicitly converted to an
integer value, then the corresponding standard integer expression is applied to the
implicitly converted values, otherwise, NaN is returned. For example, 5 + true re-
turns 6, while 5 + "hello" returns NaN, since the string "hello" cannot be converted
to an integer value by tolnt.

The semantics of length, reported below, evaluates its input expression, then im-
plicitly converts the result to a string and finally computes its length.

[Length(e)[¢ = [toString([e])]

The semantics of index0f returns the position of the first occurrence of a given sub-
string, if present, otherwise it returns -1. Let us suppose that toString([e;]¢) = o and

toString([e2]¢) = ¢

min{i\ai...ajzé} Hi,jGN.Ui...U]’:§
-1 otherwise

[index0f (e1, e2)] = {

Logical boolean expressions behave as usual and their semantics is only enriched
with implicit type conversion, as follows.

[e1 && e2] = toBool([e1]¢) && toBool([e2]&)
[er Il e2] = toBool([e1]&) || toBool([e2]&)
[te] = —toBool([e]¢)

The semantics of less (<) and equals (==), if both the operands have the same type,
returns a result, otherwise an error occurs. Their definitions are reported below.

([e1]€ < [e2] if [e1]& € INT A [e2]& € INT
[e1]S] < [[e2]€] if [e1]¢ € STR A [e2]¢ € STR
[e1 < e2]¢ = { tolnt([e1]¢) < tolnt([e2]]&) if [e1]¢ € BOOL A [e2]& € BOOL

0 otherwise

[e1]¢ == [e2]¢ if [e1]C A [e2]¢ have the same type
[e1 == 2] = :

0 otherwise

The semantics of < successfully evaluates to a primitive value when the operands
have the same type: if both operands are integers, then the standard less opera-
tion between integer is applied, when they are strings, then the comparison is done
between their lengths and when the operands are booleans, they are converted to
integers and the integer comparison is applied (e.g., false < true = 0 < 1 = true).
The behavior of == behaves similarly to <, since it applies the standard equal opera-
tion only when the operands have the same type. When types do not coincide, 1 is
returned.

3.2. Semantics over CFGs and static analysis of 4JS 39

As far as string expressions are concerned, pJS includes substr, charAt and
concat. Let us first focus on the substr semantics and suppose that toString([e;[¢) =
o, tolnt([ex]¢) = i and tolnt([es]¢) = j. Before applying the substr semantics, two
checks are performed on i and j:

1. if i or j are equal to NaN, then 1 is returned;

2. if i or j are negative integers, then they are treated as 0;

At this point, the semantics of substr is applied, after having performed the checks
above.

[substr(c,j,i)]i ifj<i
[[substr(el,ez, 63)]](’; =40i...0j ifi <] < |0"
Oi...0p_q ifi<jj>lol=n

If the first index is greater than the second one, the indexes are swapped (first case),
otherwise if the second index is less than the input string length, the correspond-
ing substring is extracted from ¢. Finally, if the second index is greater than the
input string length, the suffix starting from i is returned (third case). For instance,
substr("abc",1,4) = "bc".

The semantics of charAt is similar to the substr one. Let toString([e;]¢) = ¢ and

tolnt([e2]¢) = i.

1 ifi = NaN
[charAt(e;,)] =< 0; ifi € INTAO <i<|o]
€ otherwise

Finally, the semantics of concat relies on the standard concatenation operation be-
tween strings, as reported by the following semantics.

[concat (e, e2)]¢ = toString([e1]&)toString([e2]¢)

3.2 Semantics over CFGs and static analysis of 1JS

In this section, we focus on the problem of performing static program analysis (by
using abstract interpretation), defining a collecting semantics for #JS programs. In
particular, we follow the notation and the notions reported in [Seidl, Wilhelm, and
Hack, 2012; Miné, 2013], recalling the static analysis process and the necessary se-
mantic transformer corresponding to the statements of #JS. The approach we use is
quite standard, but we recall it here for fixing also the notation used in the rest of the
thesis.

Given a uJS program P, we suppose to annotate each statement with a label
¢ € Lab, that is not part of the uJS syntax, corresponding to the statement program
point in P. Let /, a special label identifying the initial program point and /¢ a special
label identifying the final /exit program point. We refer to the labels of P with Labp.

In order to analyze a program P € uJS, we have to build a corresponding control
flow graph [Seidl, Wilhelm, and Hack, 2012] (CFG for short), which embeds the
control structure in the graph and leaves in the blocks (or equivalently on the edges)
only the manipulation of the states (assignments) and the guards. We follow [Seidl,
Wilhelm, and Hack, 2012] for the construction of the control flow graph, where each

40 Chapter 3. A dynamic imperative core language: uJS

if (B) {
2X — ua=a+1;n3
} x = "a=a+1;"
else {
4X - "b=b+1;"5
};©
[Next]

FIGURE 3.3: Example of if CFG.

node is a program point, and each edge is labeled with a statement or a boolean
guard. Formally, given a program P € uJS, we define the corresponding CFG Gp =
CFG,ys(P) £ (Nodesp, Edges,, Inp, Outp) as the CFG whose nodes are the program

points, namely Nodesp £ Labp, the input node (without incoming edges) is the entry
program point, i.e., Inp £ ¢, the output node (without outgoing edges) is the last
program point, i.e.,, Oute = /s, and the edges Edges, € Nodesp x 11JS-CFG x Nodesp
are inductively defined on P by the function

Edges("'skip®) = {(f1,skip, (1)}
Edges("'x =) = {(l;,x =¢e,(p)}
Edges(”lif(e){ €2S'E1£3 }else{ €4St2£5 }[6) = {(El,e, £2>, <£1, le, £4>, <€3,true, £6>}
U {(¢5, true, lg) }
U Edges(‘>st;"*) U Edges("*sty")
Edges(“'while(e){ st }4) = {(l1,e,02), (€1, e, Ly), (£3,true, b1)}
U Edges(‘2st")
Edges("sty;"2sty?) = Edges(“'st;”?) U Edges("st")

In Figures 3.3 and 3.4 we report the if statement transformation and while statement
transformation to CFG, respectively.
From this construction, it is clear that the language of CFG, namely the grammar
of edge labels, is slightly different from 3JS, and in particular it is generated by the
grammar:

#JS-CFG> 1= skip|x=e|e

At this point, given a CFG G, we denote by Nodes(G) its set of nodes, by Edges(G) C

1X = nn, x = "

while (B) {
3x = concat(x, "a=a+1;")*

};°
[Next]

FIGURE 3.4: Example of while CFG.

3.2. Semantics over CFGs and static analysis of 4JS 41

Nodes(G) x uJS-CFG x Nodes(G) its set of edges, by In(G) its (unique by construc-
tion) input node and by Out(G) its (unique by construction) output node. Finally,
given a CFG G, we can define the set of its (finite) paths (from the input node to the
exit node). CFG paths can be seen as computations on a CFG, i.e., any possible legal
sequence of statements on G. Formally,

Paths(G) = { 1ol7... 1 | Vi < k.<€1‘, 1;, £i+1> € Edges(G),Eo = IH(G),£k+1 = Out(G) }

Note that the CFG reported in Figure 3.3 has only two paths, while the CFG Fig-
ure 3.4 has infinite paths, since it contains a cycle (i.e., nodes 2-3-4).

Our aim is to analyze programs in #JS by analyzing their CFG. Hence, first of all
we have to specify the semantic transformation associated with each possible edge
of the CFG. In other words, we have to provide the semantics of the edge labels.
In particular, we have to formalize how each statement transforms a current state,
which is in general represented as a store, namely as an association between identi-
fiers and values. It is well known that static program analysis works computing (ab-
stract) collecting semantics, namely for each program point p and for each variable
x, it computes the set of values that the variable x can have in any computation at
the program point p. Let VAL £ o(INT) U p(BOOL) U p(STR) U p({NaN}) U p({1})
be the set of the possible collecting values. We define the set of collecting memo-
ries M £ ID — VAL, ranged over the meta-variable m that associates with each
variable a set of values. We define two particular memories, mg and m+, that
associate each variable with @ and each variable with any possible value, respec-
tively. The update of memory m for a variable x with set of values v is denoted
by m[x/v]. Finally, lub and glb of memories are computed point-wisely, that is
mq L rrnz(x) = rml(x) U Emz(x) and mq M rmz(x) = rml(x) N cmz(x).

The collecting (input/output) semantics of statements' st € #JS-CFG is defined
as the function (st) : M — M. As far as expression semantics is concerned, we
abuse notation defining the function (e) : M — VAL, defined as additive lift of the
previously reported expression semantics. For example, if m = {x — {1,2},y —
{3,4}} then, (x + y)m = {4,5,6}.

(skip)m = m
(x=e)m = mlx/(e])m]
(e)m = mn{m' |toBool((e)m’) = {true} }

The semantics of skip simply returns the input collecting memory without altering
it. The semantics of assignment replaces the value of x in the input memory m with
the evaluation of e. The semantics of expressions returns as output the projection of
the input memory where the expression is true. This is defined as the glb between
the input memory and the set of any memory where e evaluates to true. Since uJS
provides implicit type conversion, the evaluation of e is implicitly converted to a
boolean by toBool, that is the additive lift of the value-to-bool function previously
defined on single values. Once we have defined the collecting semantics of a single
edge, we can define the collecting semantics of a CFG path of G. Let 7= € Paths(Gp),
T =1pl1...1,andm € Mthen (7t)m £ (1) o ... o (1) o (1o) m [Seidl,
Wilhelm, and Hack, 2012]. Note that, given a program P, by construction of Gp =

IThe collecting semantics defined in this chapter is an abstraction fo the more typical one (i.e., the
one collecting sets of concrete memories). Nevertheless, the choice is not restrictive for our purpose
and we adopted this semantics for the sake of simplicity.

42 Chapter 3. A dynamic imperative core language: uJS

Algorithm 8: Procedure ANALYZE(Gp, $0), static analysis on CFG of P

Data: Gp = (Nodesp, Edges,, Inp, Outp) and a flow-sensitive input store s
Result: s fix-point of the collecting memories for each program point (result
of the analysis)

$ < 3,
s — O;
while s # s’ do

s — s

foreach (/1,st, () € Edges, do

| s < s[sy,/(st)sy, Usy);

end
end
return s;

O ® 9 o Uk W N R

CFG,ys(P), it is well known (and it can be easily proved by induction) that

Vm € M. 311 € Paths(Gp). (P)m = U(]n[)cm (3.1)
nell

where the (| P) m is the collection of the executions of P on the concrete memories
collected in m.

At this point, we use this semantic transformer for analyzing pJS programs by
computing the fix-point of the collecting semantics for each program point. In partic-
ular, we rewrite the standard fix-point algorithm for static analysis reported in [Niel-
son, Nielson, and Hankin, 1999] in our notation. First of all we define another im-
portant element, which is the collection of stores for each program point, that we
will call flow-sensitive store S = Labp — M associating with each program point a
(collecting) memory. Hence, a store s € S is a sequence of memories, one for each
program point. We use s, to denote s(¢), namely the memory at the program point /.
Given a store s, the update of memory s, with a new memory m is denoted s[s;/ m]
and provides a new store s’ such that s, = m while V/' # ¢ we have s, = s,. Finally,
let s be the initial flow sensitive store where all the memories associate with all the
variables the empty set, i.e., V¢ € Labp. $5(f) = mg. Then the analysis algorithm is
Algorithm 8, whose result is a store s such that for each ¢ € Labp, we have that s, is
the fix-point collecting memory for the program point £.

For instance, let us consider the control-flow graph G reported in Figure 3.3 and
let us suppose that the if guard B evaluates to the value set {true, false}, namely
it is statically unknown. Applying ANALYZE(G, sz) the result is the following flow-
sensitive store s:

$1,%2,%3 7 3y
sy — {x — {"a=a+1;"}}
s5 — {x — {"b=b+1;"}}
s6 — {x — {"a=a+1;","b=b+1;"}}

In this case, Algorithm 8 converges and returns as result the flow-sensitive store
s that corresponds to the variables values potentially holding at each program point.
In general, it is well-known that Algorithm 8, in presence of loops may diverge on
concrete memories, as it happens, for example, for the CFG reported in Figure 3.4.
This means that we need abstraction for guaranteeing loop analysis convergence,

3.2. Semantics over CFGs and static analysis of 4JS 43

Integer Bool Nan String

FIGURE 3.5: Ty abstract domain for uJS.

as it is usual in static program analysis. In order to show how static program anal-
ysis by abstract interpretation based on control-flow graphs works, we consider a
particular value abstraction for VAL, that is the types abstraction [Cousot, 1997]. The
type abstract domain is reported in Figure 3.5, where Cv,, iy and My, respectively
the partial order, the least upper bound and the greatest lower bound on Ty, can be
derived from the Hasse diagram.

The abstraction function a1, : VAL — Ty and concretization function 7y, : Ty —
VAL are defined as follows.

Ly ifv=ovo={1} {1} ifa= Ly
Integer if v € p(INT) (INT) if a = Integer
iy (0) 2 Bo?l %fv € p(BooL) oy (a) 2 p(BooL) ?fa = Bo?l
String if v € p(STR) ©(STR) if a = String
Nan if v = {NaN} {NaN} if a = Nan
Ty otherwise VAL ifa=Tr

\

. T
It is trivial to prove that VAL <—a_y> Ty. Given this value abstraction, we can use it
Ty

to abstract also collecting memories. The set of abstract memories M™ £ ID — Ty,
ranged over m Y, associates with each variable the corresponding type. The abstrac-
tion function a,, v, : M — M is defined as ay,r, (m) £ { x — a7y (v) [x > v Em },
namely abstracts each collecting value (associated with a variable) to its correspond-
ing type, and the corresponding concretization function 7,7 : M — M can be
derived from aT, (see Proposition 2.19). We can easily prove that M % M.

m'Y
Similarly, the set of abstract flow-sensitive store S £ Lab — M, ranged over

s, associates with each program point the corresponding abstract memory. The
abstraction function ar, : S — S abstracts each collecting memory to an abstract
memory, namely agr (s) = { £ — apw(s¢) | s¢ € s } and the corresponding con-
cretization function ygw : 8" _ G can be derived from agty (see Proposition 2.19).

’)’STy
We can easily prove that S % sm.

The idea is to use the same algorithm reported in Algorithm 8, replacing col-
lecting memories and stores, and the corresponding operations on them, with the
abstract versions of them. We denote by ANALYZE" the Algorithm 8 that uses the
type abstract domain. Before doing that, we need to define the abstract semantics of

CFG labels, namely pJS-CFG.

(skip)¥m™ = ml
(x=e)m"Y = mY[x/(e)Ym"]
(e)¥mY = mh

Clearly, we need also to define the abstract semantics of expressions and we abuse

44 Chapter 3. A dynamic imperative core language: uJS

notation denoting it by (e)™ : M™ — Ty and we suppose that it is defined as the
best correct approximation of the collecting semantics (see Definition 2.27).

The abstract semantics of skip and assignment is similar to the collecting one.
The semantics of expressions, also used in the control-flow graph as boolean guard,
simply propagate the input abstract memory. The domain Ty loses any information
about the concrete value and it is able only to track the type of each value. In the
case of booleans, the abstract semantics is not able to know if the boolean is true
or false and it can only return the input abstract memory (like the expression e
evaluates both to true and false).

Finally, we can use this abstraction and the corresponding abstract semantics in
Algorithm 8, in order to answer about types of the input pJS program. For example,
let us suppose to analyze the CFG reported in Figure 3.4. The algorithm converges
and returns as result the following abstract flow-sensitive store s:

T T
Ty sV sy

sV = .
s7,,513,51Yy,8"5 — {x > String}

It is possible to prove that Algorithm 8, for any P € uJS always converges, since Ty is
a finite height abstract domain (consequently also M ™ and S domains) hence, any
fix-point computation converges. Moreover, the abstract store computed by Algo-
rithm 8 on the type abstract domain is sound. Let s be the fix-point collecting flow-
sensitive store, associating for each program point of a program P € uJS collecting
memories, and s = ANALYZE " (Gp, vy (m)). Then V/ € Labp.s; C v, (57).
The type analysis we have shown here is able to track, for each variable program, if
it has constant type during program execution.

Unfortunately, the proposed static analysis algorithm may not be sufficient to
avoid divergence of the analysis. This may happen, for example, when the abstrac-
tion integrated into the analysis is not ACC. For example, let us suppose to use the
same value abstract domain reported in Figure 3.5 replacing the integer abstraction
with the interval abstract domain Ints described in Example 2.25. We denote this
abstract domain by ITy, with the abstraction function defined as

ayry(v) 20€ p(Z)? ans(0) ary(v)

The least upper bound L, : ITy x ITy — ITy of ITy is defined as follows, and the
greatest lower bound M1y : ITy X ITy — ITy can be dually defined.

U1 Unts 02 if 1 € Ints, vy € Ints
v1 Uy vy if g € Ints, 02 € Ints

A .
01 |_J|Ty Uy = 01 if Uy = J—Ty
(%] if 01 = J—Ty
Ty otherwise

Similarly to Ty, we can lift this abstraction to memories and stores, obtaining My &
ID — ITy, ranged over m'™, and 'Y £ Lab — M'T, ranged over s'TY. Now,
let us suppose to analyze the following 1JS program with Algorithm 8, using the

abstraction just defined.

3.2. Semantics over CFGs and static analysis of 4JS 45

Algorithm 9: Procedure ANALYZE(Gp, $9), static analysis on CFG of P with
widening

Data: Gp = (Nodesp, Edges,, Inp, Outp) and a flow-sensitive input store s

Result: s fix-point of the collecting memories for each program point (result
of the analysis)

184 3$0;

2§ — &

3 whiles # s’ do

4 s s

5 foreach (/;,st, {,) € Edges, do

6 ‘ $<—$[$£2/$£2V(] st D$fl];

7 end

8 end

9 return s;

1x=0;
Zwyhile (B) {
Sy = x + 24
}.5

Since the value of boolean guard B is statically unknown also the number of the
while-loop iterations is unknown. Hence, since Ints is not ACC, also ITy is not ACC
and the value of x diverges at the program point 2: [0,2], [0,4], [0,6].... As we have
already mentioned before, we can use a widening operator in order to enforce ter-
mination, still guaranteeing soundness. Hence, we introduce the widening operator
Vity : ITy x ITy — ITy defined as follows.

A {vlvmtsvz if v1 € Ints, vy € Ints
nViryv2 =)
v1 Uy v2 otherwise

The widening defined above applies the interval widening when both operands are
intervals, while it behaves as its least upper bound in the other cases, since the source
of divergence is the interval abstract domain, where a widening is needed. Given
V1,, we can build upon it the widenings V my : M'™ x MY — M'™ and Vg, :
gy « gy _ glTy, namely the widening on abstract memories and abstract stores,
respectively.

m'™ V .m m'™ 2 \x € Ip. [x = m'Y (x)Vgy fmlTy/(x)]

s Vo s 2)/ € Lab. s (O)V $'Ty’(ﬁ)

At this point, we need to integrate the widening operator on abstract store on the
already presented Algorithm 8, in order to obtain an algorithm able to guarantee
convergence of any pJS program, even in presence of abstract domains that are not
ACC. This algorithm is reported in Algorithm 9 and it is defined independently from
the abstraction: it is enough to substitute the abstraction-related operations (e.g.,
widening V) in Algorithm 9 in order to obtain the abstract interpreter using the de-
sired abstraction. What changes w.r.t. Algorithm 8 is line 6: when an edge (¢1, st, ¢2)
is processed and analyzed, the resulting memory should be put at ¢», lubbing it with
the previous memory at /,. Instead, we substitute least upper bound with widening,
that is the previous memory holding at ¢, is widened with the resulting memory of

46 Chapter 3. A dynamic imperative core language: uJS

. flteration |y | o | |y \ VI VIT
Line
1 %] (%] %] %] (%] %] (%]
2 [0, 0} [0, 0] [0, 0] [O, —I-oo] [0, —l—oo] [O, —I—OO] [0, +00]
3 1] [O, 0] [0, 0] [0, O] [0, —|—oo] [O, —|—oo] [0, +oo]
4 %) 0] [2, 2] [2, 2] [2, 2] [2, —|—oo] [2, +oo]
5 @ 10,0 | [0,0] | [0,0] |[0,400] | [0,+0o0] | [0,+00]
TABLE 3.1: Example of application of Algorithm 9.
(st)se,-

For example, let us consider the uJS divergent program previously reported and
let’s analyze its corresponding control-flow graph with Algorithm 9. In Table 3.1 we
report the iterations of Algorithm 9, showing what is computed at each iteration for
each program point. In particular, the algorithm converges after seven iterations,
since the fix-point it is reached.

Final remarks. In this chapter, we have introduced our core dynamic language,
namely uJS. As we have shown, the language is expressive enough to write pro-
grams with some important dynamic features, such as implicit type conversion and
dynamic typing. After that, we have recalled and provided the basic background
of static program analysis by abstract interpretation (in particular analyzing the
control-flow graph of a program), showing static analysis process on two different
abstract domains, a finite abstract domain and an infinite abstract domain.

This chapter places the ground for the next chapters of the thesis. In particu-
lar, in the next chapters, we will present the main contribution of this thesis, pre-
senting an abstract interpreter for xJS augmented by string-to-code statements, able
to both perform a precise string analysis and answering questions about programs
that transform strings into code, at run-time. Before doing that, we will first present
state-of-art string abstractions integrated in real-world JavaScript static analyzers.
In particular, we will discuss the string abstractions of TAJS and SAFE analyzers in
the context of backward completeness property introduced in Section 2.5. Given an
operation, when backward completeness is guaranteed means that no loss of infor-
mation arises during input abstract process of the operation of interest. We show
that these abstractions are not backward complete w.r.t. some string operations of
interest, and then we will show how to build a complete version of these abstrac-
tions. In the final discussion of the chapter, we will discuss the possibility to build
complete domains also for more challenging string operations, such as eval. This
will lead us to motivate the need of designing a novel string abstract domain for
dynamic languages.

47

Chapter 4

Towards a string abstract domain
for dynamic languages

In this chapter, we discuss the precision of existing string abstractions integrated
into state-of-the-art static JavaScript analyzers based on abstract interpretation. As
discussed in Section 2.5, when we talk about precision, we are talking about com-
pleteness.

Completeness in abstract interpretation is a well-known property, which ensures
that the abstract framework does not lose information during the abstraction pro-
cess, with respect to the property of interest. Completeness has never been taken into
account for existing string abstract domains, due to the fact that it is difficult to prove
it formally. However, the effort is fully justified when dealing with string analysis,
which is a key issue to guarantee security properties in many software systems, in
particular for JavaScript programs where poorly managed string manipulating code
often leads to significant security flaws. In this chapter, we address backward com-
pleteness property ! for the main JavaScript-specific string abstract domains, inte-
grated into real JavaScript static analyzers, improving precision of them, w.r.t. some
operations of interest. In particular, we will exploit the constructive methodologies
presented in Section 2.5.5 providing suitable refinements of JavaScript-specific string
abstract domains, and we discuss the benefits of guaranteeing completeness in the
context of abstract interpretation-based string analysis of dynamic languages.

At the end of this chapter, we discuss and motivate the need of building a novel
string abstract domain for the analysis of dynamic code, rather than the ones pre-
sented in this chapter.

4.1 An example of complete shell

As we have already mentioned in Section 2.5.5, the complete shell of an abstract
domain A, w.r.t. an operation of interest f : A — B, is a refinement of A that adds
the minimal number of abstract points to A in order to make A complete w.r.t. the
operation f. Before going into details of complete shells for JavaScript-specific string
abstract domains, we give an informal introduction to complete shells by means of
a simple but enough expressive example in the context of dynamic languages.

As mentioned more than once, a common feature of dynamic languages is to
be not typed. Hence, in those languages, it is allowed to change the variable type
through the program execution. For example, in PHP, it is completely legal to write
fragments such as $x=1;$x=true;, where the type of the variable x changes from
integer to boolean. One of the first attempt to statically reasoning about variable

!n the rest of this chapter, when we talk about completeness, we mean backward completeness.

48 Chapter 4. Towards a string abstract domain for dynamic languages

T

NG e

Null Bool Int Float String Null _ Bool Int Float Strint StrFloat

\\l// \\L//

(A) (B)

FIGURE 4.1: (a) Type abstract domain for PHP. (b) Complete shell of
type abstract domain w.r.t. the sum operation.

types was to track the latter adopting the type abstract domain [Arceri and Maf-
feis, 2017; Kneuss, Suter, and Kuncak, 2010] (similar to the one presented in Sec-
tion 3.2), in order to detect whether a certain variable has constant type through
the whole program execution. In Figure 4.1a, we report the type abstract domain
for an intra-procedural version of PHP [Arceri and Maffeis, 2017], that tracks null,
boolean, integer, float and string types”. Consider the formal semantics of the sum
operation in PHP [Filaretti and Maffeis, 2014]. When one of the operands is a string,
since the sum operation is feasible only between numbers, implicit type conversion
occurs and converts the string operand to a number. In particular, if the prefix of
the string is a number, it is converted to the maximum prefix of the string corre-
sponding to a number, otherwise it is converted to 0. For example, the expression
e = "2.4hello" + "4" returns 6.4. Let @ be the abstract sum operation on the type
abstract domain. The type of the expression e is given by:

a({"2.4hello"}) @& a({"4"}) = String & String =T

The static type analysis based on the type abstract domain returns T (i.e., any possi-
ble type), since the sum between two strings may return either an integer or a float
value. Precisely, the domain is not complete w.r.t. the PHP sum operation, since
for any string o and ¢”, it does not meet the completeness condition: a(c & ¢') =
a(c) & a(c’), eg., a(c + ') = Float # a(c) @ a(c’) = T. Intuitively, the type
abstract domain is not complete w.r.t. the sum operation due to the loss of preci-
sion that occurs during the abstraction process of the inputs, since the domain is not
precise enough to distinguish between strings that may be implicitly converted to
integers or floats.

Figure 4.1b shows the complete shell of the type abstract domain w.r.t. the sum.
The latter adds two abstract values to the original domain, namely StrFloat and
Strint, that correspond to the abstractions of the strings that may be implicitly con-
verted to floats and to integers, respectively. Note that, the type analysis on the novel
abstract domain is now complete w.r.t. the sum operation. Indeed, the completeness
condition also holds for the expression ¢, as shown below.

a({"2.4hello"} + {"4"}) = Float
= a({"2.4hello"}) ® a({"4"})
= StrFloat ¢ Strint
= Float

2Closing the type abstract domain by the powerset operation, a more precise abstract domain is
obtained, called union type abstract domain[Kneuss, Suter, and Kuncak, 2010], that tracks the set of the
possible types of a certain variable during program execution.

4.2. Making JavaScript string abstract domains complete 49

Tsr
- ~ Trg
Numeric NotNumeric Unsigned/ EotUnsigned
SN T e e
TN\ T TR e
lsr L7y

(4) (B)

FIGURE 4.2: (a) SAFE, (b) TAJS string abstract domains recasted for
uJsS.

As pointed out above, guaranteeing completeness in abstract interpretation is a pre-
cious and desirable property that an abstract domain should aim to, since it ensures
that no loss of precision occurs during the input abstraction process of the operation
of interest. It is worth noting that guessing a complete abstract domain for a cer-
tain operation becomes particularly hard when the operation has a tricky semantics,
such as in our example or, more in general, in dynamic languages operations. For
this reason, complete shells become important since they are able to mathematically
guarantee completeness for a certain operation, starting from an abstract domain of
interest.

4.2 Making JavaScript string abstract domains complete

In this section, we study the completeness property of two string abstract domains
integrated into two state-of-the-art JavaScript static analyzers based on abstract in-
terpretation, that are SAFE [Lee et al., 2012] and TAJS [Jensen, Moller, and Thiemann,
2009]. Both the abstract domains track important information on JavaScript strings,
e.g., SAFE tracks numeric strings, such as "2.5" or "+5", and TA]JS is able to infer
when a string corresponds to an unsigned integer, that may be used as array index.

For the sake of readability, we recast the original string abstract domains for uJS,
following the notation adopted in [Amadini et al., 2017]. Figure 4.2 depicts them.
Moreover, without loss of generality, the string "NaN", has no particular meaning
here, and it is treated as a non-numerical string.

For each string abstract domain D, we denote by a), : p(X*) — D its abstraction
function, by 7, : D — p(X*) its concretization function, and by p, : p(X*) —
©(X*) € uco(D) the associated upper closure operator.

4.2.1 Completing SAFE string abstract domain

Figure 4.2a depicts the string abstract domain SF, i.e., the recasted version of the
domain integrated into the SAFE [Lee et al., 2012] static analyzer. It splits strings
into the abstract values: Numeric (i.e., numerical strings) and NotNumeric (i.e., all the
other strings). Before reaching these abstract values, SF precisely tracks each single
string value. For instance, as7({"+9.6","7"}) =Numeric, and as-({"+9.6", "bar"}) =
Tsr.

We study the completeness of SF w.r.t. concat operation. Figure 4.3 presents
the abstract semantics of the concatenation operation for SF, that is:

[concat(e,®)]*" : SF x SF — SF

50 Chapter 4. Towards a string abstract domain for dynamic languages

[concat(sy, s2)]5" H Lsr ‘ o EXF ‘ Numeric NotNumeric ‘ Tsr ‘
Lsr Lsr Lsr Lsr Lsr Lsr
Numeric o =""or
o €X* Lsr 0102 o1 € X{¢ | NotNumeric | Tsr
NotNumeric otherwise
Numeric oy =""or
Numeric Lsr 02 € Zint Tsr NotNumeric | Tgr
NotNumeric otherwise
NotNumeric Lsr NotNumeric NotNumeric NotNumeric | Tgr
TS}‘ J—S}‘ TS}‘ TS}' TS}' TS}'

FIGURE 4.3: SAFE concat abstract semantics.

In particular, when both abstract values correspond to single strings, the standard
string concatenation is applied (second row, second column). In the case in which
one abstract value, involved in the concatenation, is a string and the other is Numeric
(third row, second column and second row;, third column) we distinguish two cases:
if the string ¢ is empty or corresponds to an unsigned integer string (i.e.,, o € X{,,,,)
we can safely return Numeric, otherwise NotNumeric is returned. This happens be-
cause, when two float strings (hence numerical strings) are concatenated, a non-
numerical string is returned (e.g., concat("1.1","2.2") = "1.12.2"). For the same
reason, when both input abstract values are Numeric, the result is not guaranteed to
be numerical, indeed, [concat(Numeric, Numeric)[* = T .

Lemma 4.1. SF is not complete w.r.t. concat. In particular3, VS51,8, € p(X*) we
have that:

asr([concat(Sy,S2)]) S [concat(asr(S1), asr(S2))]*”

Consider S; = {"2.2","2.3"} and S, = {"2","3"}. The completeness property
does not hold:

asr([concat(Sy,S2)]) = Numeric # Tsr = [concat(asr(S1), as+(S2))]*"

The S F abstract domain loses too much information during the abstraction pro-
cess; information that cannot be retrieved during the abstract concatenation. Intu-
itively, to gain completeness w.r.t. concat operation, SF should improve the pre-
cision of the numerical strings abstraction, e.g., discriminating between float and
integer strings. Following Theorem 2.40, we can formally construct the absolute
complete shell of psr w.r.t. concat operation, that is giiﬁcat. The abstract domain
corresponding to this complete shell, that is complete for concat, is reported in Fig-
ure 4.4 and we denote it by SF (and hence its corresponding upper closure operator
by psg).

In particular, the points inside dashed boxes are the abstract values added dur-
ing the iterative computations of psg, the points inside standard boxes are instead
obtained by the Moore closure of the other points of the domain, while the remain-
ing abstract values were already in SF. The meaning of abstract values in SF is
intuitive. In order to satisfy the completeness property, SF splits the Numeric ab-
stract value, already taken into account in S, into all the strings corresponding to
unsigned integer (UInt), unsigned floats (UFloat), and signed numbers (SignedNum).

3We abuse notation denoting with [-] the additive lift to set of basic values of the concrete semantics,
i.e., the collecting semantics.

4.2. Making JavaScript string abstract domains complete 51

" Ulnt® | UNum ' NotUnsignedNotEmpty iNotNumeric
——————— ‘ S . S SELELI
/ Ulnt UFloat SignedNum || NotNumNotEmpty !
| | ! I
| | N e
nn Illll ||2II P ||1.3Il||2.5ll, . '\"_OcQW/I‘"W nn
Lk

FIGURE 4.4: Absolute complete shell of psr w.r.t. concat.

Moreover, particular importance is given to the empty string, since the novel ab-
stract domain specifies whether each abstract value contains "". Indeed, the Ulnt®
abstract value represents the strings corresponding to unsigned integer or to the
empty string, and the UNum® abstract value represents the strings corresponding to
unsigned numbers or to the empty string. An unexpected abstract value considered
in SF is NotUnsignedNotEmpty, such that:

15¢ (NotUnsignedNotEmpty) = { & € E* | 0 € gy U (S ~ {""}) }

where 2y, and Z{ inum cOrrespond to the set of strings that are signed numbers

and not numerical strings, respectively. Hence, the concretization of the above ab-
stract point corresponds to the set of any non-numerical string, except the empty
string, and any string corresponding to a signed number. This abstract point has
been added to SF following the computation of the formula below:

NotUnsignedNotEmpty € max({ Z € p(X*) | [concat(Numeric, Z)] C
vsr(NotNumeric) })

Informally speaking, we are wondering the following question: which is the maximal
set of strings s.t. concatenated to any possible numerical string will produce something
that is dominated by any possible non-numerical string? Indeed, in order to be sure to
obtain non-numerical strings, the maximal set doing so is exactly the set of any non-
numerical non-empty string, and any string corresponding to a signed number, that
is NotUnsignedNotEmpty.

Theorem 4.2. pg; is the absolute complete shell of psr w.r.t. concat operation and it is
complete for it.

For example, consider again S; = {"2.2","2.3"} and S, = {"2","3"}. Given
SF, the completeness condition holds:

asg([concat(Sy, S2)]) = UFloat

= [[COIlcat(IXSF(Sl)/ “SF(SZ)>HSF
— [concat(UFloat, Ulnt)]°F

4.2.2 Completing TAJS string abstract domain

Figure 4.2b depicts the string abstract domain 77, that is the string domain inte-
grated into TAJS static analyzer [Jensen, Moller, and Thiemann, 2009]. Differently

52 Chapter 4. Towards a string abstract domain for dynamic languages

TTJN
/ \
UnsignedInt NotUnsignedInt
a \\ LIS
04 2 -5 +6—-2234

\\////

FIGURE 4.5: TAJS numerical abstract domain.

from SF, it splits the strings into Unsigned, that denotes the strings correspond-
ing to unsigned numbers, and NotUnsigned, any other string. Hence, for example,
args({"9","+9"}) = Tr; and a;,({"9.2","foo"}) = NotUnsigned. As for SF, before
reaching these abstract values, 7 J precisely tracks single string values.

In this section, we focus on the toNum (i.e., string-to-number) operation. Since
this operation clearly involves numbers, in Figure 4.5 we report the TAJS numeri-
cal abstract domain, denoted by 7 7. The latter domain behaves similarly to 77,
distinguishing between unsigned and not unsigned integers. As far as TAJS is con-
cerned, we consider the following string operation

[[toNum(O’)]] _ {g(g) U e Z‘Num

otherwise

that takes a string as input and returns the number that it represents if the input
string corresponds to a numerical string (i.e., ¢ € Xy,,,,), 0 otherwise. For example,
toNum("4.2") = 4.2 and toNum("asd") = 0.

Below we define the abstract semantics of the string-to-number operation for
T J. In particular, we define the function:

[toNum(e)]" : TT — T In

that takes as input a string abstract value in ¢ € 77, and returns an integer abstract
valuein 7 JN.

Lray c=L1lry
[solun(o)]™ = [toNum(c)] o € X*
Unsignedint ¢ = Unsigned

Tr7y o = NotUnsignedVo = T,

When the input evaluates to L ;;, bottom is propagated and L7 is returned
(first row). If the input evaluates to a single string value, the abstract semantics relies
on its concrete one (second row). When the input evaluates to the string abstract
value Unsigned (third row), the integer abstract value UnsignedInt is returned. Finally,
when the input evaluates to NotUnsigned or T, the top integer abstract value is
returned (forth row).

Lemma 4.3. 77 is not complete w.r.t. toNum. In particular, VS € p(X*) we have
that:
wr g, ([toNum(S)]) € [toNum(ar,(S))]"

4.2. Making JavaScript string abstract domains complete 53

T T T T T / ””\\
' UnsignedOrNotNumeric | NotUnsigned
T ey ! F,\ffffffffﬂ‘
Unsigned NotNumeric ! SignedOrFIoats |
PR L——%—%——\—— <
non nqn ||2|| ufoouubaru onn 5||||+6

\\//

FIGURE 4.6: Complete shell of p7; relative to o7, w.r.t. toNum.

For example, consider S = {"2.3","3.4"}. The completeness property does not
hold:

77, ([toNum(S)]) = NotUnsignedint # T, = [toNum(a7,(S))]"

Again, the completeness condition does not hold because the 7 J string abstract do-
main loses too much information during the input abstraction process, and the latter
information cannot be retrieved during the abstract toNum operation. In particular,
when non-numeric strings and unsigned integer strings are converted to numbers
by toNum, they are mapped to the same value, namely 0. Indeed, 7 J does not dif-
ferentiate between non-numeric and unsigned integer string values, and this is the
principal cause of the 77 incompleteness w.r.t. toNum. Additionally, more precision
can be obtained if we could differentiate numeric strings holding float numbers from
those holding integer numbers. Thus, in order to make 77 complete w.r.t. toNum,
we have to derive the complete shell of the 77 string abstract domain relative to
the 7' Jn numerical abstract domain, applying Theorem 2.39. In particular, let pr,
and prz, be the upper closure operators related to 77 and 7 J abstract domains,
respectively. By applying Theorem 2.39, we obtain St (07,), namely the com-
plete shell of p7; relative to pr;, w.r.t. toNum. For the sake of readability, we denote
this upper closure operator by pt; and the corresponding abstract domain, denoted
by TJ, is depicted in Figure 4.6.

In particular, the abstract points inside dashed boxes are the abstract values
added during the iterative computations of p;, the points inside the standard boxes
are instead obtained by the Moore closure of the other points of the domain, while
the remaining abstract values were already in 7 J. A non-intuitive point added by
TJ is SignedOrFloats, namely the abstract value s.t. its concretization contains any
float string and the signed integer strings. This abstract point is added during the
computation of TJ, following the formula below:

SignedOrFloats € max({ Z € p(X*) | [toNum(Z)] C 74, (NotUnsignedint) })

Informally speaking, we are wondering the following question: which is the maximal
set of strings Z s.t. toNum(Z) is dominated by NotUnsignedInt? In order to obtain from
toNum(Z) only values dominated by NotUnsignedInt, the maximal set doing so is
exactly the set of the float strings and the signed strings. Other strings, such that:
unsigned integer strings or not numerical strings are excluded, since they are both
converted to unsigned integers, and they would violate the dominance relation.

Similarly, the abstract point UnsignedOrNotNumeric is added to the absolute com-
plete shell TJ, when the following formula is computed:

54 Chapter 4. Towards a string abstract domain for dynamic languages

UnsignedOrNotNumeric € max({ Z € p(Z*) | [toNum(Z)] C 7, (Unsignedint) })

In order to obtain from toNum(Z) only values dominated by UnsignedInt, the maximal
set doing so is exactly the set of unsigned integer strings and non-numerical strings,
since the latter are converted to 0.

Theorem 4.4. pry is the complete shell of p7; relative to prz, w.r.t. toNum operation and
hence it is complete for it.

For example, consider again the string set S = {"2.3","3.4"}. Given TJ, the
completeness condition holds:

a7z, ([toNum(S)]) = NotUnsignedInt
= [toNum(ar;(5))]"™
= [toNum(SignedOrFloats)]"”

4.3 What we gain from using a complete abstract domain?

In this section, we discuss and evaluate the benefits of adopting the complete shells
reported in Section 4.2 and, more in general, complete domains, w.r.t. a certain op-
eration. In particular, we compare the string abstract domains adopted by SAFE
and TAJS with their corresponding complete shells, we discuss the complexity of
the complete shells, and finally we argue how adopting complete abstract domains
can be useful into static analyzers.

Precision. In the previous section, we focused on the completeness of the string ab-
stract domains integrated into SAFE and TAJS w.r.t. two string operations, namely
concat and toNum, respectively. While string concatenation is common in any pro-
gramming language, toNum assumes critical importance in the dynamic language
context, mostly where implicit type conversion is provided. Since type conversion is
often hidden from the developer, aim to completeness of the analysis increases the
precision of such operations. For instance, let x be a variable, at a certain program
execution point. x may have concrete value in the set S = {"foo", "bar"}. If S is
abstracted into the starting TAJS string abstract domain, its abstraction will corre-
spond to NotUnsigned, losing the information about the fact that the concrete value
of x surely does not contain numerical values. Hence, when the abstract value of S is
used as input of toNum, the result will return T, i.e., any possible concrete integer
value. Conversely, abstracting S in TJ (the absolute complete shell of 77 relative to
toNum discussed in Section 4.2.2) leads to a more precise abstraction, since TJ is able
to differentiate between non-numerical and numerical strings. In particular, the ab-
stract value of S in TJ is NotNumeric, hence toNum(NotNumeric) will precisely return
0.

Adopting a complete shell w.r.t. a certain operation does not compromise the
precision of the others. For example, consider again the original string abstract do-
main into TAJS static analyzer and the following JavaScript fragment.

4.3. What we gain from using a complete abstract domain? 55

i var obj = {

2 "foo" : 1,

3 "bar" : 2,

a "1.2" : 3,

5 "2.2" : "hello"
s

8y = Obj [idX];

Let us suppose that the value of idx is the abstraction, in the starting TAJS string
abstract domain, of the string set S = {"foo","bar"}, namely the abstract value
NotUnsigned. The variable idx is used to access a property of the object obj at line
8 and, in the abstract computation, to guarantee soundness, it accesses all the prop-
erties of obj, includes the fields "1.2" and "2.2", introducing noise in the abstract
computation, since "1.2" and "2.2" are false positives values introduced by the ab-
straction of the values of idx. If we analyze the same JavaScript fragment with the
absolute complete shell (w.r.t. toNum operation) of the TAJS string abstract domain
defined in Section 4.2.2, we obtain more precise results. Indeed, in this case, the
value of idx corresponds to the abstract value NotNumeric, and when it is used to
access the object obj at line 8, only "foo" and "bar" are accessed, since they are the
only non-numerical string properties of obj.

Complexity of the complete shells. We evaluate the complexity of the complete
shells we have provided in the previous section. As usual in static analysis by ab-
stract interpretation, there exists a trade-off between precision and efficiency: choose
a more precise abstract domain may compromise the efficiency of the abstract com-
putations. A representative example is reported in [Giacobazzi, Ranzato, and Scoz-
zari, 2000]: the complete shell of the sign abstract domain w.r.t. addition is the in-
terval abstract domain. Hence, starting from a finite height abstract domain (signs)
we obtain an infinite height abstract domain (intervals). In particular, fix-point com-
putations on signs converge, while they may diverge on intervals, being interval
abstract domain not-ACC. Indeed, after the completion, the interval abstract do-
main should be equipped also with a widening [Cousot and Cousot, 1977] in order
to still guarantee termination. A worst-case scenario is when the complete shells
w.r.t. a certain operation exactly corresponds to the collecting abstract domain, i.e.,
the concrete domain. Clearly, we cannot use the concrete domain due to undecid-
ability reasons, but this suggests us to change the starting abstract domain, since it
is not able to track any information related to the operation of interest. An example
is the suffix abstract domain [Costantini, Ferrara, and Cortesi, 2015] with substring
operation: since this abstract domain tracks only the common suffix of a strings set,
it cannot track the information about the indexes of the common suffix, and the com-
plete shell of the suffix abstract domain w.r.t. substring would lead to the concrete
domain. Hence, if the focus of the abstract interpreter is to improve the precision of
the substring operation, we should change the abstract domain with a more precise
one for substring.

Consider now the complete shells reported in Section 4.2. The obtained complete
shells still have finite height, hence termination is still guaranteed without the need
to equip the complete shells with widening operators. Moreover, the complexity of
the string operations of interest is preserved after completion. Indeed, in both TAJS
and SAFE abstract domains, concat and toNum operations have constant complexity,
respectively, and the same complexity is preserved in the corresponding complete

56 Chapter 4. Towards a string abstract domain for dynamic languages

shells. It is worth noting that also the complexity of the abstract domain-related op-
erations, such as least upper bound, greatest lower bound and the ordering operator,
is preserved in the complete shells. Hence, to conclude, as far as the complete shells
we have reported for TAJS and SAFE are concerned, there is no worsening when
we substitute the original string abstract domains with the corresponding complete
shells, and this leads, as we have already mentioned before, to completeness during
the input abstraction process w.r.t. the relative operations, namely concat for SAFE
and toNum for TA]JS.

False positives reduction. As we have already mentioned before, in static analysis
a certain degree of abstraction must be added in order to obtain decidable proce-
dures to infer invariants on a generic program. Clearly, using less precise abstract
domains lead to an increase of false positive values of the computed invariants. In
particular, after a program is analyzed, this burdens the phase of false positive de-
tection: when a program is analyzed, the phase after consists of detecting which
values of the invariants derived by the static analyzer are spurious values, namely
values that are not certainly computed by the concrete execution of the program of
interest. In particular, using imprecise (i.e., not complete) abstract domains clearly
augment the number of false positives in the abstract computation of the static an-
alyzer, burdening the next phase of detection of the spurious values. On the other
hand, adopting (backward) complete abstract domains w.r.t. a certain operation re-
duces the numbers of false positives introduced during the abstract computations,
at least in the input abstraction process. Clearly, in this way, the next phase of de-
tection of false positives will be lighter since less noise has been introduced during
the abstract computation of the invariants. Consider again the JavaScript fragment
reported in the previous paragraph. As we have already discussed before, using the
starting TAJS abstract domain to abstract the variable idx leads to a loss of precision,
since the spurious value "1.1" and "1.2" are taken into account in its abstract value,
namely NotUnsigned. Using the complete shell of TAJS w.r.t. toNum instead does not
add noise when idx is used to access obj.

4.4 Can we use complete shells for dynamic code analysis?

We have addressed the problem of backward completeness in JavaScript-specific
string abstract domains, and provided, in particular, the complete shells of TAJS
and SAFE string abstract domains w.r.t. concat and toNum operations, respectively.
Our results can be easily applied also to JSAI string abstract domain [Kashyap et al.,
2014], as it can be seen as an extension of the SAFE domain. At the end, we have also
discussed the importance, for strings abstractions, of guaranteeing completeness for
strings operations.

Complete shells can help to provide more precise string analyses, enabling in
turn more precision in abstracting string-to-code inputs. One can think to use the
methodologies of complete shells also with respect to string-to-code statements,
starting from the string abstract domains presented in this chapter. Unfortunately,
doing so, will lead to the string concrete domain, producing no useful abstract do-
main for analyzing string-to-code statements. Informally speaking, string-to-code
statements (e.g., eval) exactly implement the concrete interpreter of a language and
it does make sense to get the concrete domain when you try to compute the com-
plete shell for such operations. Hence, complete shells do not help in constructively

4.4. Can we use complete shells for dynamic code analysis? 57

building a useful domain for analyzing dynamic code and we need to build a novel
string abstract domain upon which we can build an analysis for dynamic code.

We aim at a strings abstraction collecting, as faithfully as possible, the set of
possible values that a string variable may receive before string-to-code executes it.
It surely has to approximate the set of possible string values, hence it has to be a
language, it has also to keep enough information for allowing us to extract code
from it, but it has also to keep enough information for analyzing properties of string
variables that are never executed by a string-to-code statement during computation.

We think that a suitable string abstraction meeting all the requirements is regular
languages, by means of their representation of finite state automata. In particular, in
the next chapter we will formally present the finite state automata abstract domain,
that prepares the ground for the dynamic code analysis.

59

Chapter 5

The finite state automata domain

In this chapter, we define the finite state automata abstract domain for string val-
ues, namely the domain of regular languages over X*, inspired by similar string
domains such as the ones reported in [Park, Im, and Ryu, 2016; Choi et al., 2006;
Yu et al., 2008]. The domain is the core of the abstract interpreter for dynamically
generated code we will describe later. In particular, we will first formally define
the abstract domain, then we will define some novel important operations on finite
state automata, characterizing several notions of substring languages and automata,
useful to integrate the domain into an abstract interpreter for string manipulation
programming languages.

5.1 DFA /- abstract domain

The aim of this section is that of characterize automata as a domain for abstracting
the computation of program semantics in the abstract interpretation framework. The
exploited idea is that of approximating strings as regular languages represented by
the minimum DFA [Davis, Sigal, and Weyuker, 1994] recognizing them. We denote
the set of all (deterministic) finite state automata by DFA. In general, given a regular
language, we can have more finite state automata that recognize that language. Let
us consider the equivalence relation =C DFA x DFA defined as

VA1, Ay € DFA. AL = A & Z(8) = Z(4y)

We consider the partition induced by = of DFA, denoted by DFA,— = { [A]l= | A €
DFA }, namely the set of all the equivalence classes induced by =, where any equiv-
alence class [A]= is composed by the DFA that recognize the same language. When
we refer to an element of DFA ,—, we abuse notation by representing equivalence
classes in the domain DFA ;= w.r.t. = by one of its automata (usually the minimum
w.r.t. the number of states), that is when we write A € DFA ,— we mean [A]=. We
define the partial order Ty, induced by language inclusion, that is:

VA1, Ay € DFA /= . Ay Ty B & Z (A1) C L(A2)
Lemma 5.1. (DFA,—, Cp,,) is a poset.
Proof. For all A1, Ay, A3 € DFA /= the relation Cy,, satisfies:

1. Reflexivity: £ (A1) C £ (A1) & A Cpp Ay

60 Chapter 5. The finite state automata domain
b Y
-O0~0-0~0 —~0O~0~0-0

Q@*@/
(A) (B)

FIGURE 5.1: (a) A1 (b) Az (c) Min(A1 Lpg, A2)

2. Anti-symmetry:

Ay Cp A2 AN Ay s A
= .,%(Al) - X(Az) /\g(Az) - g(Al)
= X(Al) = g(Az)
S A =4

3. Transitivity:

Ay Cpr A2 AN A Dppy A3
& Z(A) C ZL(A) NZL(82) CL(A3)
= Z (A1) C Z(43)
< A1 Lo A3

O]

DFA /- has bottom element, denoted by Min(&), that is the equivalence class
represented by the automaton that recognizes the empty language, and top element,
denoted by Min(X*), that is the equivalence class represented by the automaton that
recognizes .

The least upper bound (lub) Ly, : DFA,= X DFA ;= — DFA /= on the domain DFA ,_,
corresponds to the standard union between automata:

VA1, Ay € DFA/—. A Lipy, A2 = Min(Z (A1) U .Z(42))

It is the minimum automaton recognizing the union of the languages .# (A1) and
Z(A2). This is a well-defined notion since regular languages are closed under union.
As example, consider Figure 5.1, where the automaton in Figure 5.1c is the least
upper bound of A; and 4; given in Figure 5.1a and Figure 5.1b, respectively. Dually,
the greatest lower bound (glb) My, : DFA,= x DFA,= — DFA = corresponds to
automata intersection, formally:

VA1, Ay € DFA/—. A1 Mpp, Ay = Min(Z (A1) N .2 (82))

As for automata least upper bound, also the greatest lower bound is well-defined
since regular languages are closed under intersection.

Lemma 5.2. (DFA,/—, Ty, Upes, Mpra, Min(2), Min(X*)) is a lattice.

Proof. The lemma holds since regular languages (hence, finite state automata) are
closed under finite union and intersection, i.e., Ly, and Mpy,. O

Theorem 5.3. (DFA /—, Ty, Lpes, Mpra, Min(@), Min(2*)) is not a complete lattice.

5.1. DFA = abstract domain 61

Proof. Consider the family of regular languages .¢; = * \ {a/ b/}, with j € N. For
each .Z; there exists a deterministic finite state automaton A; such that £ (4;) = .Z;.
Suppose that A € DFA - is the greatest lower bound of {A;};cn and consider the
language .’ = { o € {a,b}* | |0]s # |o|p }. Since .Z(A) contains all the strings not
in the form a’b’, ¢’ C Z(4). In particular, &' C Z(A).

&L C Z(A)
=Jore W)Y
=2 c (b))~ {oc} CcZ(h)

This leads to a contradiction, as - (A) does not contain only the strings not in the
form a'b' and, in turn, the automaton A is not the greatest lower bound of {Aj} jEN-
O

In other words, there exists no Galois connections between DFA ,— and p(X*),
i.e., there may exist no minimal automaton abstracting a language. Some works have
studied automatic procedures to compute, given an input language .2, the regular
cover of .2 [Domaratzki, Shallit, and Yu, 2001], namely an automaton containing the
language .Z. In particular, [Campeanu, Paun, and Yu, 2002; Domaratzki, Shallit, and
Yu, 2001] have studied regular covers guaranteeing that the automaton obtained is
the best w.r.t. a minimal relation (but not minimum).

The best abstraction fails since the set of the possible abstractions of a language
£ € p(X*) may be a strictly decreasing chain w.r.t. Cp,,. Let us consider the context-
free language . = { a"b" | n € IN }. The set of the possible finite state automata
approximating the language is indeed reported in the following.

Min({e} U{a"b" |n+m >0})

Tpe Min({€,ab}u{a"b™ |n+m>1})

e Min({e,ab,a®p*} U {a"b™ | n+m >2})
Toea Min({e,ab,asz,a3b3} u{a"" |n+m>3})

However, this is not a concern. Indeed, as stated in [Cousot and Cousot, 1992a], one
can abandon the idea of having the best abstraction, choosing an arbitrary abstract
element among the possible abstractions of a concrete element. Other solutions can
be performed since the relation between concrete semantics and abstract semantics
can be weakened while still ensuring soundness [Cousot and Cousot, 1992b]. A well-
known example of abstraction where the best abstraction does not exists is the con-
vex polyhedra domain [Cousot and Halbwachs, 1978]. From here on, we denote by
Yora : DFA /= — p(X*) the concretization function of DFA ,—, that given an automa-
ton returns the language recognized by the automaton, namely yp,, (A) = Z(A).

Widening automata. Itis easy to see that the abstract domain DFA ,— is infinite and
it is not ACC, as stated by the following theorem.

Theorem 5.4. (DFA ,—, Cp,,) is not ACC.

Proof. As a counterexample, let us consider the family of regular languages .£; =
{ a'b | 0 <i<j} Foreachj € N there exists the minimal automaton A; that
recognizes the language .Zj, since these languages are regular. It is trivial to prove

62 Chapter 5. The finite state automata domain

that Vi € IN. A; C A;;1. Let {A;};en be an infinite increasing chain and suppose that
stabilizes after a certain number of steps k € IN.

HkENV]Zk Ak:A]'
= A = Ak
L (A) = L (A1)
S{adb |0<i<k}={db|0<i<k+1}

The two languages are not equal since the string ¢ = a**1b**1 € Z(a;, ;) buto ¢
Z(Ag), leading to a contradiction. O

The domain DFA /= is an infinite domain, and it is not ACC, i.e., it contains infi-
nite ascending chains. This clearly implies that any computation on DFA /= may lose
convergence [Cousot and Cousot, 1992b]. Most of the proposed abstract domains for
strings [Costantini, Ferrara, and Cortesi, 2015; Kashyap et al., 2014; Jensen, Moller,
and Thiemann, 2009; Lee et al., 2012] trivially satisfy ACC by being finite, but they
may lose precision during the abstract computation [Cousot and Cousot, 1992b]. In
these cases, domains must be equipped with a widening operator approximating
the least upper bound in order to enforce convergence (by necessarily losing preci-
sion) for any increasing chain [Cousot and Cousot, 1992b]. As far as automata are
concerned, existing widenings are defined in terms of a state equivalence relation
merging states that recognize the same language, up to a fixed length n (set as pa-
rameter for tuning the widening precision) [D’Silva, 2006; Bartzis and Bultan, 2004].
We denote this parametric widening with V[P DFA = x DFA)= — DFA ,—, with
n € N [D’Silva, 2006] and it is defined in the following.

LetA = (Q,%,6,90, F) and A" = (Q', %, ¢, q(, F') be two finite state automata such
that Z(4) C Z(A): the widening between A and A’ is formalized in terms of a re-
lation R C Q x Q' between the sets of states of the two automata. The relation R is
used to define an equivalence relation =g C Q' x Q' over the states of A’, such that
=gr= Ro R™!. The widening between A and A’ is then given by the quotient automa-
ton of A" w.r.t. the partition induced by =g: A'VgA' = A’ER]. Thus, the widening
operator merges the states of A’ that are equivalent by the relation =g. By changing
the relation R, we obtain different widening operators [D’Silva, 2006]. It has been
proved that convergence is guaranteed when the relation R, C Q x Q' is such that
(9,9") € R, iff q and g’ recognize the same language of strings of length at most
n [D’Silva, 2006]. Thus, the parameter n tunes the length of strings determining the
equivalence of states used for merging them in the widening. It is worth noting that,
the smaller is 1, the more information will be lost by widening automata.

In the following, given A, A" € DFA ,— (without any constraints on the languages
they recognize), we define the widening operator on DFA /= parametriconn € IN as
follows.

AVY

Dra /=

A £ AVR, (A Lp, A)

In order to show how the defined widening operator works, let us consider the fol-
lowing example.

Example 5.5. Consider the following 3JS program.

1Given A € DFA /— and a partition 77 over its states, we denote as A; = (Q’, &/, q0, F', £) the quotient
automaton [Davis, Sigal, and Weyuker, 1994].

5.2. Characterization of substrings languages 63

a
~0%0 NG LTS _4
(A) (B) (©)

FIGURE 5.2: (a) &, Z(81) = {e,a} (b) by, L(hy) = {a,aa} (¢
AlleFA/EAZ

str = "";

while (x < 100) {

Xx = x + 1;

str = concat(str, "a")
}s;

Since the value of the variable x is unknown, also the number of iterations of
the while-loop is unknown. In these cases, in order to guarantee soundness and
termination, we apply the widening operator. In Figure 5.2a, we report the abstract
value of the variable str at the beginning of the second iteration of the loop, while in
Figure 5.2b the abstract value of the variable str at the end of the second iteration is
reported. Before starting a new iteration, in the example, we apply V. ,_ between
two automata, namely we merge all the states having the same outgoing character.
The minimization of the obtained automaton is reported in Figure 5.2c. The next
iteration will reach the fix-point, guaranteeing termination. Moreover, in this case,

the result that we obtain is the most precise we can hope for.

5.2 Characterization of substrings languages

In this section, we characterize the substring languages of a regular language. In
Section 5.1, we have introduced the factors of a regular language, and the corre-
sponding operator on finite state automata, containing any substring of a regular
language. Here, we want to characterize sets of substrings between an initial and a
final index (hence subsets of factors). After that, we aim at computing the automata
recognizing these sets. Hence, we will introduce several novel and non-standard au-
tomata operations, needed to integrate the abstract domain DFA ,— into the abstract
interpreter we will define in the next chapter.

5.2.1 Substring language between two fixed indexes

In this section, we are interested in studying the substring language, that is, given a
regular language ., we aim at computing another language ¢’ of substrings of .
between two indexes i, j € IN, such that i < j. In particular, we identify two types of
substrings: proper and non proper substrings.

For example, let us consider the string hello and the substring from 1 to 3, namely
el. We say that el is a proper substring, since it is fully contained in hello. Hence, given
a regular language, we can define the proper substring language of .Z.

Definition 5.6 (Proper substring language). Let . be aregular languageand i,j € IN
s.t. i < j. The proper substring language of .Z from i to j is defined as follows.

PSs(Z,i,j) £ {y € X" | Iz € L*.yz € SU(Z,i),z € SU(Z,)) }

For example, let us consider . = { 4" | n € IN }. The proper substring language
of £ from 1to 3is PSS(.Z,1,3) = {aa}. Itis trivial to see that any proper substring

64 Chapter 5. The finite state automata domain

has length j — i, that is PSS(.%, i,j) C £/~ Let us consider again the string hello and
consider its substring from 3 to 7. We call such substring non-proper substring, since
at least one of the indexes is out-of-bound of the length of the string. As we have
done for proper substrings, we can define the non-proper substring language of a
regular language.

Definition 5.7 (Non-proper substring language). Let .# be a regular language and
i,j € N s.t. i < j. The non-proper substring language of .Z from i to j is defined as
follows.

NSs(Z,i,j) £ {y €X' |y esu(ZL,i)y eI U{e| LN #£ o}

For example, let us consider . = { 4" | n € N }. The non-proper substring
language from 1 to 3 of £ is PSs(.Z,1,3) = {€,a}, corresponding to the substring
from 1 to 3 of € and a4, respectively. It is trivial to see that any non proper substring
has length less than j — i, that is NSS(.%, i,j) C » <

Hence, we can characterize the substring language of a regular language as the
union of its proper and non-proper substrings.

Definition 5.8 (Substring language). Let . be a regular language and i,j € IN s.t.
i < j. The substring language of . from i to j is defined as follows.

SS(Z,i,j) £ PSS(Z,i,j) UNSS(.Z,i,])

Let us consider again .¥ = { 4" | n € N }, we have that its substring language from
1to3isSs(%,1,3) = {€,a,aa}.

At this point, our goal is to compute these particular sets by means of the au-
tomata that recognize these languages. Giveni,j € IN (i < j) and a finite state au-
tomaton A € DFA /= recognizing the language ./, we aim at building the automata
recognizing PSS(.Z,1,j) and NSS(.Z, 1, j), and consequently SS(.%, i, j).

Definition 5.9 (Proper substring automaton). Let A € DFA,—,and i,j € INs.t. i <.
The proper substring automaton of A from i to j is defined as follows.

PSS(A,i,) £ RQ(SU(A,i), SU(A,) Mo, Min(Z/)

For example, let us consider the automaton A such that Z(8) = { a" | n €
IN } U {hello, bc}. The proper substring language from 1 to 3 of .Z(A) is {aa, el } and
the automaton recognizing that language is correctly computed by Definition 5.9. In
particular, the following theorem holds.

Theorem 5.10. Let A € DFA and i,j € IN s.t. i < j. Then, PSS is complete, namely
PSs(Z(A),i,j) = L (PSS(4,1,]))
Proof.
PSS(Z(h),i,j) =

_ {y - dx,z € X*.yz € SU(Z(A),1) }
z € SU(Z(A),))

|Def. 5.6

| Def. proper substring |

.| 3x,z € X¥.yz € SU(ZL(A),1)
=(YVEX iy
z € SU(ZL(A),]),y e &

5.2. Characterization of substrings languages 65

_ {y - dx,z € X*.yz € SU(ZL(A),1) } s 1Def. 1§
z € SU(Z(A),))
= RQ(SU(Z(A),1),SU(Z(h),))) N/ |Def. 2.44
= Z(RQ(SU(A,1),SU(A,j)) N Min(Z/7) {Thm. 2.50§
= Z(PSS(4,i,7)) Def. 5.9§
O

Similarly, we can define the non-proper substring automaton, as follows.

Definition 5.11 (Non-proper substring automaton). Let A € DFA,—, and i,j € IN s.t.
i < j. The non-proper substring automaton of A from i to j is defined as follows.

NSS(A,i,7) £ (SU(A, i) Mpe Min(Z< 7)) Upp, (AMpes Min(Z57) = Min(2) 2 Min({e}) : Min(2))

The left-hand side of the automata union computes the non-proper substrings,
while the second one, following Definition 5.7, checks if A recognizes strings of
length less or equals to i. If so, also the automaton recognizing the empty string
is added to the result. For example, let us consider again the automaton A such that
L) = {a" | n € N }U({hello,bc}. The non-proper substring language from
1to 3 of Z(4) is {€,a,c} and the automaton recognizing that language is correctly
computed by Definition 5.11. Note that the resulting automaton correctly recognizes
also the empty string. In particular, the following theorem holds.

Theorem 5.12. Let A € DFA = and i,j € N s.t. i < j. Then, NSS is complete, namely

NSs(Z(4),i,j) = L(NSS(4,i,7))

Proof.
NSs(Z(h),i,]) =
={yer |yesSu(LM),i)yeczI Ju{e| LB)NZS £ 2} |Def. 5.7§
= (SU(ZLA),)NZIHU(ZLB)NZS £ @2e:0) |Def. £<I~1§
= 2((SU(a,i)
Mo Min(Z77)) Upps (A Mppa Min(Z57) 2 Min({e}) : Min(2))) {Thm. 2.50§
= Z(NSS(4,i,])) |Def. 5.11§

O

At this point, given an automaton, we can define the substring automaton be-
tween two indexes as union of its proper substring automaton and its non-proper
substring automaton.

Definition 5.13 (Substring automaton). Let A € DFA,=, and i,j € N s.t. i < j. The
substring automaton of A from i to j is defined as follows.

SS(A,i,7) 2 PSS(A, i,) Ups NSS(A, 7,)

For example, let us consider again the automaton A such that £ (A) = { a" | n €
IN } U {hello, bc}. The substring language from 1 to 3 of .Z(A) is {aa,el,€,a,c} and
the automaton recognizing that language is correctly computed by Definition 5.13.
In particular, the following theorem trivially holds.

66 Chapter 5. The finite state automata domain

Theorem 5.14. Let A € DFA)= and i,j € IN s.t. i < j. Then, SS is complete, namely
SS(Z(h),i,j) = Z£(SS(4,1,)))

Proof. The proof follows from Theorem 5.10 and Theorem 5.12. O

5.2.2 Substring language after a fixed initial index

We have previously characterized the substring automaton between two indexes i
and j of A, namely the automaton recognizing any substring from i to j of any string
recognized by A. This operation will be crucial when we will define the abstract
interpreter for uJS using finite state automata. In the following, we characterize
another type of substring language. For example, let us consider the language . =
{hello} and suppose we want to characterize the language of any substring starting
after the index 2, that, in our example, are {¢,1,11,1l0,0,l0}. In the following, we
define the language of any substring starting after a fixed index.

Definition 5.15 (Substring language after a fixed index). Let .Z be a regular language
and i € IN. The substring language of . after i of .Z is defined as follows.

Ss7(Z,i)2{y|Fzer" acN,yz € SU(L,a),a>i}

As we have already done before, we want to compute the automaton recognizing
the language we have characterized in Definition 5.15.

Definition 5.16 (Substring automaton after a fixed index). Let A € DFA,=, and i €
IN. The substring automaton of A after i is defined as follows.

SS(A,i) = FA(SU(A,1))

Next theorem shows that SS© exactly computes the substring language after a fixed
index of an automaton.

Theorem 5.17. Let A € DFA = and i € IN. Then, SS* is complete, namely

S (Z(h),1) = (S5 (4, 1))

Proof.

Ss(Z(h),1)

={y|3zeX.aeN,yz € SU(Z(A),a),a >i} |Def. 5.15§

={y|3Jze X yz e SU(SU(ZL(n),i)) } 1Eq. 2.1§

= Pr(SU(SU(Z(4),1))) |Def. 2.42§
= FA(SU(Z(4),1)) |Def. 2.46§

— Z(FA(SU(4, 1)))Thm. 2.50§

= Z(SS7(A,1)) |Def. 5.16

5.2.3 Substring language to an unbounded final index

The last type of substring language we introduce is the substring language between
a fixed initial index and a final index starting after a certain point. For example, let us

5.2. Characterization of substrings languages 67

consider the language . = {hello} and suppose we want to know the language of
its substrings between 1 and any index greater than 2. This language, corresponds to
{el,ell,ello}, that is the substrings between 1 and 3, 1 and 4, 1 and 5. The following
definition characterizes such language.

Definition 5.18 (Substring language to undefined final index). Let .Z be a regular
language and i,j € IN s.t. i < j. The substring language from i to any index greater
or equal to j of £ is defined as follows.

Ss7(ZL,i,)= {y| I zeEZ x| =i |z| >i+jxyz € L}
Note that, we can also characterize Ss™(.Z, i,) as follows:

Ss7(Z,i,j) = | S8(.2,i,k) (.1)
k>j

As before, our aim is to compute the automata recognizing the language we have
characterized in Definition 5.18.

Definition 5.19 (Substring automaton to undefined final index). Let A € DFA /-, and
i,j € Ns.t. i <j. The substring automaton from i to any index greater or equal to j
of A is defined as follows.

SS™(4,i,j) = RQ(SU(4,i),SU(SU(4,/)))

Next theorem shows that SS™ exactly computes the substring language to undefined
final index.

Theorem 5.20. Let A € DFA and i,j € N s.t. i < j. Then, SS™ is complete, namely

Ss7(Z(h),i,j) = Z(SS7(A,i,]))

Proof.
Ss7(Z(h),i,]) =
={y|3Invzel|x|=ilz| >i+jxyz e L(A)} | Def. 5.18§
={y|IzeX yzeSu(ZL(4),i),lz| >i+j} |Def. 2.45§
={y|3ze X yz e Su(L(A),i),ze SU(SU(L(A),i),i+])} [Def. 242§
={y|Jze X yz € SU(Z(A),i),z € SUSU(Z(A),])) } 1Eq. 2.1
= RQ(SU(Z(4),i),Su(Su(Z(4A),))))) |Def. 2.44§
= Z(RQ(SU(4,7),SU(SU(4,)))))) {Thm. 2.50§
= Z(SS7(4,1,7)) |Def. 5.19
O
Theorem 5.21. Regular languages are closed under Ss, S and SS™.
Proof. The proof follows by Theorem 5.14, Theorem 5.17 and Theorem 5.20. O

In this section, we have defined three classes of languages, that is the substring
language, the substring language from a certain index and substring languages be-
tween a fixed initial index to an undefined final index. For each language, we have
also defined the corresponding operator on finite state automata that computes the
automaton recognizing each language. The automata operators SS, SS and SS™

68 Chapter 5. The finite state automata domain

will play a crucial role when we will talk about the abstract semantics of substr, in
our abstract interpreter that we will define in the next chapter.

Implementation and final remarks. The finite state automata abstract domain pre-
sented in this chapter has been implemented and it is publicly available at https:
//github.com/SPY-Lab/java-fsm-library. The library includes the implementa-
tion of all the algorithms reported in Section 2.6, such as suffix, prefix, right quo-
tient, left quotient operations. Moreover, the library provides minimization and de-
terminization algorithms discussed in Section 2.6 and the abstract-domain related
operations discussed in this chapter, such as least upper bound U,,, greatest lower
bound My, and the parametric widening Vp,, _, for tuning precision and forcing
convergence in abstract computations. Moreover, it provides also all the substring
automata operations reported in this chapter, namely SS, SS©* and SS™. The abstract
semantics reported in this paper ofter relies on minimization of finite state automata,
in order to keep the automata arising during abstract computations determinized
and minimized. In general, minimization has exponential complexity but this is not
a concern. Indeed, our library relies on the Brzozowski’s algorithm, since in prac-
tice it is extremely fast on average and consistently outperforms other minimization
algorithms (e.g., Hopcroft’s algorithm [Hopcroft, Motwani, and Ullman, 2007], hav-
ing average-case complexity O(nlog n), where n is the number of states) as reported
in [Holzer and Jakobi, 2013]. Moreover, the minimization is only applied when the
input automaton is not-deterministic. The finite state automata abstract domain is
the core of the abstract domain that we will present in the next chapter. In particular,
we will show that the finite structure of finite state automata lends itself well to both
perform a precise string static analysis and dynamically-generated code analysis,
corresponding to the core of the contribution of this thesis.

https://github.com/SPY-Lab/java-fsm-library
https://github.com/SPY-Lab/java-fsm-library

69

Chapter 6

A sound abstract interpreter for
dynamic code

In this chapter, we go into detail of the main contribution of this thesis, that is an
abstract interpreter for string manipulation languages with dynamic code genera-
tion. As we have already mentioned in the introduction, dynamic languages employ
string-to-code primitives to turn dynamically generated text into executable code at
run-time. These features make standard static analysis (presented in Chapter 3) ex-
tremely hard if not impossible because its essential data structures, i.e., the control-
flow graph and the system of recursive equations associated with the program to
analyze, are themselves dynamically mutating objects.

In this chapter, we augment the syntax of yJS with a string-to-code statement,
namely eval, that takes as input a string and executes the code expressed by its
input. It should be clear that an analysis of eval is strongly dependent on the choice
of the performed string analysis. Hence, we first describe a precise string analysis
based on the finite state automata defined in Chapter 5. After that, we propose a
static analysis for eval exploiting the finite state automata abstract domain. Our
goal is to use the automata domain allowing us to soundly over-approximate and
analyze the code potentially executed by a string-to-code statement.

6.1 puJS with eval

In this section, we augment the syntax of #JS with a string-to-code statement, namely
eval, and then we define the concrete semantics of eval. In particular, we add eval
syntax to the statement syntax of uJS as

st € STMT = ... | “leval(s)”

taking as input a string expression s € SE. We also extend the big-step semantics of
1JS extending the function [eval(s)] : STATE — STATE as

[eval(s)]¢ = {[[st]]é if st = c'ode([[s}](:)
¢ otherwise

where code : STR — uJS converts a string to the corresponding pJS program, if it
is executable. For example, code(a = 1;) = a = 1;. Hence, the semantics of eval
evaluates its input and then it interprets the string as code, if possible, and it execute
that code. For example, [eval("x=1")]¢ = [x=1;]¢ and [eval("hello")]¢ = ¢. For
the sake of simplicity, when the eval input string is non-executable, the semantics
behaves as a no-op statement (i.e., skip), propagating the input state, unlike the
JavaScript semantics that throws a syntax error.

70 Chapter 6. A sound abstract interpreter for dynamic code

As we have already discussed in Chapter 3, our aim is to reason about a yJS pro-
gram analyzing its corresponding control-flow graph. Hence, we extend the func-
tion Edges in order to handle also eval.

Edges(‘eval(s)?) = {1, eval(s), l}

Moreover, from the control-flow graph construction, also the grammar of edges la-
bels changes.
#JS-CFG > 1= --- | eval(s)

Consequently, we need to also extend the collecting semantics of statement st €
1JS-CFG, defined in Section 3.2 as the function (st) : M — M.

(eval(s) Jm= [J(c)m

ceC
where C = { code(c) € pJS? code() : skip | o € (e)m }

We have defined and extended the collecting semantics of #JS. But, as we have al-
ready mentioned before, we need abstraction to guarantee convergence in analyzing
uJS programs. Unfortunately, this is sufficient to avoid divergence when the code is
static (namely without string-to-code statements), but when code is dynamic other
aspects of computation, not controllable by data abstraction, may cause divergence.
It is worth noting that the collection of potential executable strings reaching an eval
argument may be infinite, and this implies that, precisely as it happens for data
values, we need to abstract also code (by suitable finite representations of potential
infinite programs) in order to be able to enforce convergence by losing precision.
Moreover, there is another potential subtle source of divergence due to the un-

predictability of the code to execute in dynamic languages. Let us consider the code
below.

ly = "eval(x)";

Zeval (x);°
In this case, the second line activates an infinite nested call chain to eval. This diver-
gence comes directly from the meaning of dynamically generated code from strings
and cannot be controlled by the semantics once we execute the string-to-code state-
ment. In the following, in order to build a static analyzer for uJS, we tackle three
problems separately, in particular:

e we build a suitable data abstraction, and the corresponding abstract semantics,
preparing the field for analyzing eval (Section 6.2);

e we provide an over-approximation of the code executed by eval. Once we
have such abstraction, we recursively call the abstract interpreter on the ab-
stracted code (Section 6.5);

e finally, we provide a sound solution to control nested eval calls (Section 6.5.3).

6.2 Dyn: An abstract domain for 1JS

In order to solve the first standard source of divergence, we have to consider a suit-
able abstraction of data. In particular, we have to combine an abstraction of numeri-
cal values, of boolean, of NaN and of strings. For the first three data types, the choice
is not relevant in presence of string-to-code statements such as eval, except for tun-
ing precision. We have decided to abstract integers value to the well-known interval

6.2. Dyn: An abstract domain for pJS 71

domain Ints for numerical values [Cousot and Cousot, 1977] and boolean values
and NaN value to their identities, i.e., Bool = { Lpgy|, true, false, T ool }, With YBool
denoting its concretization function, and NaN = {_Lnan, NaN}, ynan denoting its con-
cretization function. As far as strings are concerned, we use the finite state automata
abstract domain DFA /= described in Chapter 5, since DFA are enough precise for an-
alyzing string properties in general, and since their finite representation is suitable
for building algorithms able to extract/approximate the executable sub-language of
the string when necessary, namely in presence of string-to-code statements. We will
present and discuss these algorithms in the next sections.

Further, we need to combine these abstract domains, in order to obtain a com-
posed abstract domain abstracting values in the collecting domain, namely VAL =
©(INT) U p(BOOL) U p(STR) U p({NaN}) U p({1}). There exist several ways to com-
bine abstract domains, such as by applying Cartesian product, direct product or
reduced product operators [Cortesi, Costantini, and Ferrara, 2013]. In our abstract
interpreter, we combine our abstract domains by coalesced sum (also called smashed
sum).

Definition 6.1 (Coalesced sum domain [Reynolds, 1998]). Let (A, <4,Ua,Ma, La, Ta)
and (B, <g,Up,Mp, Lg, Tp) be two domains. The coalesced sum domain A & B is
defined as

A®BE{Laapt U{AN{LA}} U{B~{Lp}} U{T s}

such that the partial order is defined as x <aqp ¥y < x <a y (x,y € A)Vx <p
y (x,y € B)and Vx € A® B. Laap <aep X <aap T aep, its least upper bound is
defined as
xUay ifx,ye A
xUagpy = xUpy ifx,ycB
Taap otherwise

and its greatest lower bound as

xMay ifx,y€c ANxTIay# La
XMaepy = xMpy ifx,y € BAxMpy # Lp
L aep otherwise

The name of this domain composition comes from the fact that a new bottom
element is added to the domain (L 4¢,3) and it smashes/coalesces the bottom elements
of A and B together. It is worth noting that coalesced sum domains are able to
precisely track a variable value if it has constant type: for example, let us consider
the following pJS program if (y < 5){x = 42} else {x = true}; and suppose
to abstractly execute it with a coalesced sum abstract domain, where integers are
abstracted into intervals. The value of the variable y is statically unknown, hence we
must take into account both the branches. The true-branch body abstracts the value
of x to the interval [42,42] and the false-branch body abstracts the value of x to true.
Hence, in order to answer about the value of x at the end of the if statement, these
values must be lubbed into the coalesced sum abstract domain, namely [42,42] U
true = T. In presence of dynamic typing, such as in uJS and in any dynamic
programming language, the coalesced sum abstract domain is not a good choice.
Indeed, variables can change type during program execution and coalesced sum
abstract domains easily lose any information about variable values.

72 Chapter 6. A sound abstract interpreter for dynamic code

Ints~{ Lints} Bool~{ LBool }

FIGURE 6.1: Coalesced sum abstract domain for pJS

A better choice to master dynamic typing is Cartesian product abstract domain
[Cortesi, Costantini, and Ferrara, 2013], integrated into several static analyses for
dynamic languages [Jensen, Meller, and Thiemann, 2009; Fromherz, Ouadjaout,
and Miné, 2018; Arceri and Maffeis, 2017; Arceri and Mastroeni, 2019; Hauzar and
Kofron, 2015a]. In order to catch union types, we need to complete [Giacobazzi,
Ranzato, and Scozzari, 2000; Giacobazzi and Quintarelli, 2001; Giacobazzi and Mas-
troeni, 2016] Dyn domain in order to observe collections of values of different types.
This combination is captured by Cartesian product composition.

Definition 6.2 (Cartesian product domain [Cortesi, Costantini, and Ferrara, 2013]).
Let (A, <4,Ua,Ma, La, Ta)yand (B, <p,Ug,Mp, Lp, Tg)betwo domains. The Carte-
sian product domain A x B is defined as follows.

AxB={{ab)|ac AbeB}

such that the partial order is defined as (a,b) <axp (4',V') < a <, a' ANb <p 'V, its
least upper bound is defined as (a, b) Lisxp (a’,b') = (alisa’,bUpb’) and its greatest
lower bound is defined as {a,b) Maxp (a’,b') = (aMaa’,bMpb’)

Hence, as shown in Arceri and Malffeis, 2017; Arceri and Mastroeni, 2019, the Carte-
sian product abstract domain is able to capture union types, being complete w.r.t.
dynamic typing. Nevertheless, the choice of adapting a particular domain compo-
sition does not affect the eval analysis we will explain in the next sections. For this
reason, in order to lighten the presentation of the novel approach, we compose the
singleton value abstract domains of #JS by coalesced sum, abstracting VAL, as fol-
lows.

Dyn = DFA = @ Ints ® Bool @& NaN (6.1)

In Figure 6.1, Dyn is graphically reported and the concretization function py, :
Dyn — VAL is reported in the following.

(

{1} if a = Lpya
Yinws(a) ifa € Ints
YBool (ﬂ) if a € Bool
Yor(a) ifa € DFA,—
Ynan(a) if a € NaN
VAL otherwise

Yoyn (@) £

Moreover, we denote by Lipyn, lMpyn : Dyn X Dyn — Dyn the least upper bound
and the greatest lower bound, respectively, and by Cp,, the partial order on Dyn.

6.2. Dyn: An abstract domain for pJS 73

Since Ints and DFA /= are not ACC, also Dyn is not ACC. As we have observed
before, the static analysis of a #JS program control-flow graph with a non-ACC ab-
stract domain not equipped with a widening, may diverge. Hence, we equip Dyn
with the widening operator Vﬁyn : Dyn x Dyn — Dyn, with n € IN, defined as

aVinsh ifa,b € Ints
aVy.. b ifa,b € DFA

; N DFA /= .
aVpynb = algeoi b if a,b € Bool
NaN ifa,b € NaN
L Tbyn otherwise

The widening operator Vp, , is defined point-wise. Since boolean abstract domain
is ACC, it does not need a widening for ensuring termination and it simply lubs the
operands. Finally, the parameter n € IN is needed only by the DFA ,— widening for
tuning the precision, as explained in Chapter 5.

In the following, we define the abstract semantics of JS that used the coalesced
sum abstract domain just defined. Since we perform static analysis of #JS programs
by analyzing their control-flow graphs, it is enough to define the abstract seman-
tics of the edge labels of a control-flow graph, namely of #JS-CFG, and the abstract
semantics of expressions.

6.2.1 Abstract semantics of yJS

Following the concrete semantics defined in Section 3.2, we denote the set of ab-
stract memories by IM*, ranged over m*, associating with variables values in the
abstract domain Dyn. Similarly to the concrete counterpart, the update of an abstract
memory m* for x € ID with the abstract value v € Dyn is denoted by m*[x/v],
while lub and glb of memories are defined point-wise, namely m*; L.+ m*,(x) =
m*1(x) Upyn m*2(x) and m* Mye m*2(x) = m*(x) Mpyn m*2(x). The abstract se-
mantics of #JS-CFG is captured by the function (st)* : M* — IM?* and the one of
assignments, skip and boolean expressions is standard and it is reported below.

(x=e)*m* =m*[x/(e])*m]
(skip)*m" = m*
(b)*m" = m" M |i|{ m"s | (b)*m®* = true }

We abuse notation denoting by (e)* : M#* — Dyn the abstract semantics of expres-
sions. Similarly to the concrete counterpart, we define a collection of abstract stores
for each program point, that is flow-sensitive abstract store, ranged over s*, elements
of * : Lab, — M*. Let us observe how Equation 3.1 is rewritten on the abstract
semantics

vm* € M* 311 C Paths(Gp). (P)*m* C | J (7)*m" (6.2)

mell
At this point, in order to integrate the abstract domain Dyn into an abstract in-
terpreter (that uses the static analysis algorithm reported in Algorithm 9), we need
to define the abstract semantics of string operations. While the abstract semantics
of the other operations, e.g., numerical and boolean operations, are quite standard,
the abstract semantics of string operations require more attention. In particular, pJS

74 Chapter 6. A sound abstract interpreter for dynamic code

provides five string operations: substring, charAt, index0f, length and concat. In
the following, we provide the abstract semantics of these string operations. Finally,
we will also define the abstraction of the implicit type conversion functions reported
in Section 3.

Abstract semantics of substring. Here, we will define the abstract semantics of
substring. In particular, following its concrete semantics in Section 3, we define the
function SS* : DFA /= X Ints x Ints — DFA ,_, taking as input an automaton and two
intervals, corresponding to the interval of initial indexes and the interval of final in-
dexes, respectively. The results is an automaton recognizing the set of all substrings
of the input automata language between the indexes in the two intervals. In Sec-
tion 5.2, we have defined several automata substring operators, taking as input two
tixed indexes. The idea is to lift those operators on set of integers, namely intervals.
unfortunately, this is not enough since we also need to face two main problems: in-
tervals may contain infinite indexes (e.g., [5, +0]) and we need to take into account
the swaps of indexes, following the 1JS semantics, when the initial index is greater
than the final one!. For these reasons, several cases arise in defining the abstract
semantics of substring.

Let A € DFA = be the input automaton, [i,j] € Ints the interval of the initial in-
dexes, and [I, k] € Ints the set of final indexes. We define the function SS* recursively
defined with four base cases, while the others are recursive call splitting and rewrit-
ing the input intervals in order to match or to get closer to base cases. Table 6.1
reports the abstract semantics of SS* when i, j < I (hence i < k). Without loss of
generality, when a negative index is met (i,], 1,k < 0), we suppose that the index is
implicitly treated as 0 (following the definition of substring given in Chapter 3).

1. Ifi,j,1,k € Z (second row, second column of Table 6.1) we have to compute the
language of all the substrings between an initial index in [7, j] and a final index
in [1, k. For example, let & = {a}* U {hello, bc}, the set of its substrings from
1to3isSs(Z,[1,1],[3,3]) = {€,a,aa,el, c}. In this case, since both intervals are
bounded, we can rely on the substring operator defined in Definition 5.13, lift-
ing it to intervals and taking into account swaps. Hence, the abstract semantics
is defined as

SS*(a[i,jl, LK) 2 || SS(Amin({a,b}), max({a,b})) (63)
aeli,jl,be(lk]

In order to handle the substring swaps, for each elementa € [i,j] and b € [I, k]
we apply SS on A between the minimum and the maximum of a and b;

2. Since any negative index is treated as 0, in the substring semantics, when both
intervals correspond to [—oo, +o0] (fifth row, fifth column), they can be seen as
[0, +0]. Hence, the result is the automaton recognizing any possible substring
of strings accepted by the input automaton, namely the result is FA(4);

3. If [i,] is bounded and the interval of final indexes is unbounded, i.e., [I, +0o0]
(second row, forth column), we have to compute the automaton recognizing
the language of all the substrings between a finite interval of initial indexes and
an unbounded final index. In this case, we can rely on the substring operation

IWe recall that, for example, substring(”hello”,3,1) = substring(”hello”,1,3).

6.2. Dyn: An abstract domain for pJS 75
ss*(a, [i,j], [LK]) = —co lez = —o0
i,jS[ll]i]g[k)] Lkez kez k= 4o k= +oo

ijeZ Eq. 6.3 Ss*(a,[i, 7], [0,K]) Ukefi,) SS™ (A, K, 1) Ss*(a,[i, 7], [0, 4+o0])
:]%G_Zw SS*(a, (0,71, (1K) | SS*(a,[0,]], [0,K]) SS*(,(0, 7], I, +o0]) SS*(4,10,71, 0, +o0])
PSR ([ik[]l][C’T 0 k]])) SS¥(a, [i, +o0], [0,K]) | S (A, [i,1),1) U S5 (&,1) | SS(A, [i, +o0], 0, +o0])
;. z jr: SS*(A, [0, +00], [1,k]) | SS*(4,[0,+c0],[0,K]) | SS*(a, [0, +c0], [I, +00]) FA(A)

TABLE 6.1: Definition of SS* when i,j < (and thus i < k)

to an undefined final index, namely SS™ defined in Section 5.2.

SS*(, [i,j], 1, +o0)) & | | SS7(a,k1)
keli,j]

In this case, the abstract semantics returns the least upper bound of all the
automata of substrings from k in [i, j] to an unbounded index greater than or

equal to [;

4. When both intervals are unbounded ([, +o0] and [/, +o0], forth row, forth col-
umn of Table 6.1), we split the language to accept. In particular, we compute
the substrings between [i,I] and [+ co] (and this has been considered in case
3), and the automaton recognizing the language of all substrings with both
initial and final index greater than [, i.e., the language SS* (4,1), defined in
Definition 5.16.

We have shown the abstract semantics of substring, captured by SS*, only for
the case i,j < I (and thusi < k). The remaining cases, namely when i > [,i < k
andi >k Vv (i <1,j > 1) are reported in Table 6.2 and Table 6.3, respectively. Even
in these cases, the semantics splits and rewrites the input intervals reducing each
recursive call to an already defined case.

Let Ss(.%, [i,j], [I,k]) = { Ss(.Z, min({a,b}), max({a,b}))) | a € [i,j],b € [Lk] }
be the collecting semantics of substring (obtained lifting integers to intervals in
Definition 5.8 and taking into account the indexes swaps).

Theorem 6.3 (Soundness and completeness of SS*). SS* is sound and complete, formally

VA € DFA,—, [i,j], [1K] € Ints. SS(Z(8), [i, 1], [LK]) = .2(SS*(&, [i, j], [1,K]))

ss*(a, [i, 7], [1,k]) [=—c0 leZ [= -
1<i<k Lkez kez k = +oo k = +oo
. SS*(a, [1,], [i, 1]) Uos
i,je?Z Table 6.1 Table 6.1 P * | Table 6.1
] SS*(a, [i,], [j, +0])
IJZE’Z“’ Table 6.1 Table 6.1 Table 6.1 Table 6.1
ez SS*(a, [k, [i, k) Unen
I teo SS*(a, [1,4], [i, +0]) Ups, | Table 6.1 | SS*(4, [I, 4-c0], [i, +-c0]) | Table 6.1
J= SS*(a, [i, K], [k, +o0])
b= Table 6.1 Table 6.1 Table 6.1 Table 6.1
j=to

TABLE 6.2: Definition of SS* wheni > 1,i < k.

76 Chapter 6. A sound abstract interpreter for dynamic code

SS*(a, [i,j, [1K]) lkez l=—00 leZ l=—c0
i>kVv ([i<lj>1I ’ kez k= +oo k= oo
i<Ilj>1
. SS#(A/ [l/]}r [l/]D I—'DFA
i,jeEZ Table 6.1 Table 6.1 SS*(A, [i, 1], [1, +00]) Lioss Table 6.1

SS*(a, 1,1, lj, +°])

i=—o0

jez Table 6.1 Table 6.1 Table 6.1 Table 6.1

iez P>k Table 6.1 | if i < [Table 6.1;if i > [Table 6.2 | Table 6.1
j=+oo SS* (4, [, K], [i, +o0]) ' - - ' '
b= Table 6.1 Table 6.1 Table 6.1 Table 6.1
j= oo

TABLE 6.3: Definition of SS* wheni >k v (i <1,j > 1)

Abstract semantics of charAt. The abstract semantics of charAt should return the
automaton accepting the language of all the characters of strings accepted by an
automaton 4, in a position inside a given interval [i,j]: This is computed by the
function CA* : DFA /= X Ints = DFA ,—, defined in the following.

Ukerijy SS* (A, [k, K], [k+1L,k+1]) ijeZ
CA*(4,[0,]) Ups Min({e}) i=—00,j€EZ,j>0
CA*(a, [i,7]) £ { Min({e}) i=—00,jEZ,j<0
FA(SU(A, 7)) Mpe Min(Z<1) i€Z,i>0,j=+o
FA(A) Mppa Min(X<q) i=—ocori€Z,i<0,j =400

When the interval index [i, f] is finite, we rely on the already defined function SS*.
When! < Oor! = —oco and h € Z is positive, we restrict the interval recursively
calling CA* only on the positive values of the interval, adding Min({e}) as the result
of the negative cases. A particular case is when [i,j] C [—o0o, —1], where no valid
index is inside the interval. In this case, we simply return Min({€}). When i €
Z,j = +oo, we return the automaton recognizing any character starting from i of
A. Note that also the empty string is recognized by the resulting automaton (since
for any .¥ € p(X*), e € FA(Z)). In the last case, when i = —oco or negative and
j = 400, we return the automaton recognizing any substring of A (computed by FA)
of length less or equal than 1. Let CA(.%Z, [i,j]) = { Ss(o,k,k+1) |c € L,k € [i,j] }
be the collecting semantics of charAt.

Theorem 6.4. CA? is sound and complete: VA € DFA ,—, [i,]] € Ints,

CA(Z (1), [i,j]) = 2 (CA*(A,[i,]]))

Abstract semantics of length. The abstract semantics of length should return the
interval of all the possible string lengths in an automaton, i.e., it is LE* : DFA,— —
Ints computed by Algorithm 10, where minPath, maxPath : DFA /= x Q x Q — p(Q)
return the minimum and the maximum paths between two states of the input au-
tomaton, respectively. len : p(Q) — IN returns the size of a path, and hasCycle :
DFA /- — {true, false} checks whether the automaton contains cycles. The idea
is to compute the minimum and the maximum path reaching each final state in the
automaton (in Figure 6.2a, we obtain 3 and 5). Then, we abstract the set of lengths
obtained so far into intervals (in the example, [3,5]). Problems arise when the au-
tomaton contains cycles. In this case, we simply return the undefined interval start-
ing from the minimum path, to a final state, to +-co. For example, in the automaton

6.2. Dyn: An abstract domain for pJS 77

Algorithm 10: LE* : DFA ,— — Ints algorithm
Data: A = (Q,X%, 5,40, F)
Result: LE*()

1 P_len <~ 0; p_len <— o0

2 if hasCycle(A) then

3 foreach g € F do

4 p < minPath(4,qo, q5);
5 if len(p) < p_len then
6 | p_len < len(p)

7 end

8 end

9 | return [p_len, +o0];
10 else

1 foreach g € F do

12 p <— minPath(4, qo,qf);
13 P < maxPath(4, q0,9¢);
14 if len(p) < p_len then
15 | p_len < len(p)

16 end

17 if len(P) > P_len then
18 | P_len < len(P)

19 end

20 end

21 return [p_len, P_len|;
22 end

in Figure 6.2b, the length interval is [3, +c0]. Let LE(.Z) £ { |o| | ¢ € .Z } be the
collecting semantics of length.

Theorem 6.5. LE* is sound but not complete. Formally,

VA € DFA,—. LE(Z(A)) C LE*(a)

Abstract semantics of index0f. The abstract semantics of index0f is captured by
the function 10* : DFA,— x DFA ;= — Ints and should return the interval of any pos-
sible positions of strings in a language inside strings of another language. Consider
for instance the automaton A in Figure 6.3a and suppose to call I0%(4,A") where A’ =
Min({bc}). The idea is that of building, for each state g in A, the automaton A; which
is A where all the states are final and the initial state is . Hence, we check whether
Ay Mpa A’ is non empty and we collect the size of the maximum path from g to g in A.
If there exists at least one state from which any string accepted by A’ cannot be read,
we collect -1. In the example, A;, adds {0}, A;, adds {1}, while all the other states
add {—1}. Finally, we return the interval [min{—1,1,0}, max{—1,1,0}] = [-1,1].
The full algorithm is reported in Algorithm 11.

Theorem 6.6. 10" is sound but not complete. Formally,

VA, A" € DFA,—. T0(Z(A), £ (L") C TO(A,4)

78 Chapter 6. A sound abstract interpreter for dynamic code

b
a OLR a O_b' ¢
~f, Q ~f Q
C(oioioié C(oioioié
(A) (B)

FIGURE 6.2: (a) Ay, Z(A1) = {abc hello}. (b) Ay, ZL(8) =
{abc, hello} U { (abb)" | n >0 }.

As a counterexample to completeness, consider the automaton A’ in Figure 6.3b
and the automaton A” = Min({b}): 10*(#/,A") = [-1,3] ¢ To(ZL(), L (A")) =
{0,3}. The interval [—1, 3] contains also indexes where the string b is not recognized
(e.g., 2), but it also contains the information (—1) meaning that there exists at least
one accepted string without b as substring, which is not true.

Abstract semantics of concat. The abstract semantics of string concatenation is
CC* : DFA,— x DFA;— — DFA,_ and returns the concatenation between two au-
tomata. Since regular languages are closed under concatenation, the property also
holds on automata. In Figure 6.4, we report an example of concatenation between
two automata. Hence, CC* exactly implements the standard concatenation opera-
tion between automata. Let CC(.Z, ") £ { o0’ | ¢ € £, € £ } be the collecting
semantics of concat. Given the closure property on automata w.r.t. concatenation,
the following result holds.

Theorem 6.7. CC" is sound and complete. Formally,
VA, A" € DFA /= .CC(Z(A), Z(A)) = CC*(a, 1)

Proof. Soundness and completeness follow from the fact that finite state automata
and regular languages are closed under finite concatenation (see Theorem 2.50). [

Abstract implicit type conversion. Here we discuss the abstraction of the implicit
type conversion functions reported in Figure 3.2. We will focus only on the con-
version of automata into intervals and booleans and viceversa, being the other con-
versions straightforward. In the definition of the semantics of implicit type conver-
sion functions we follow the definition of implicit type conversion for basic types of
JavaScript.

H@OLQ o ?Lo\bb
Notey el

(A) (B)

FIGURE 6.3: (a) A, Z(A) = {ddd,abc,bc}. (b) A/, £ (A") = {bcd, anab}

6.2. Dyn: An abstract domain for pJS 79

Algorithm 11: 10% : DFA ,_ x DFA,— — Ints algorithm
Data: A = (Q,%,6,90,F), A" = (Q,%,¢,q,, F')
Result: [0%(4,4’)

1 indexesOf <— &

2 foreach g € Q do

3 A‘i — <QIZ/5/qr Q>/

4 if A; Mpy, A # @ then

5 indexesOf <— indexesOf U {len(maxPath(4,q0,9))};

6

7

8

9

if dp = path(qo,) s.t. hasCycle(p) then
indexesOf <— indexesOf U {+o0}

end

else
10 | indexesOf <— indexesOf U {—1};
1 end
12 end
13 if |Z(8)| == |.Z(N)| == 1 then
14 | return [min(indexesOf), min(indexesOf)];
15 else
16 | return [min(indexesOf), max(indexesOf)];
17 end

String to boolean conversion. The function toBool” : Dyn — Bool is the function
that handles the conversion from boolean values to other type values. Let this func-
tion be applied to A € DFA /—. The abstract function toBool” is defined as follows.

true if AMp, Min({e}) = Min(©)
toBool*(4) = { false if A = Min({e})
TRool Otherwise

String to integer conversion. Unlike boolean-to-string conversion, converting in-
tervals to FA is more tricky. The function tolnt* : Dyn — Ints U {NaN} handles
conversion to intervals. Given an automaton A, we split the behavior of tolnt” in the
following cases:

e Alp, Min(2z) = @: in this case, A does not recognize any numerical string,
hence the automaton is precisely converted to NaN, namely tolnt*(A) = NaN;

e A Ly, Min(Xz): it means that A recognizes only numerical strings. For the sake
of precision, we check whether A recognizes positive numeric strings (checking
if the initial state reads only + or number symbols), negative numeric strings

~0 00 - %@
(A) (B) (©)

FIGURE 6.4: (a) A, Z(A)

={a| juf{by)N, 2(1) =
{cd"|neN}(c)n #

(a,4)

80 Chapter 6. A sound abstract interpreter for dynamic code

Applied

. Result
conversion

Input abstract value

.9}

{0
[0, 4+o0] toString” Hé
0...9)

0.9
[—00,0] toString® H. - ,@0_?
Min({"12abc", "15"}) tolnt* [0, +o0]
Min({"12abc", "hello"}) tolnt? [0, +00] Upyn NaN
Min({e, "hello"}) toBool* {false, true}
Min({"asd", "false"}) toBool” true

TABLE 6.4: Examples of abstract implicit type conversions.

(checking if the initial state reads only — or 0 symbols) or both. In the first
case, the function tolnt returns [0, +-c0], in the second [—o0,0] and in the last
[—o00, +00].

e in the remaining cases, A can recognize both numerical and non-numerical
strings, hence tolnt” should return an interval containing the values expressed
by numerical strings recognized by A together with NaN. Hence, tolnt” returns
Tpyn, being the most precise abstract value containing both the interval and
NaN in Dyn.

Boolean and integer to string conversion. Implicit type conversion to DFA /= is
handled by the function toString” : Dyn — DFA /=. If the input is the boolean
value true (false) it returns Min({true}) (Min({false})), otherwise it returns the
automaton Min({true,false}). As far as interval-to-automata conversion is con-
cerned, several cases arises depending on the value of the input interval [i,j]. If
i,j € Z, it means that the interval is finite and the conversion to automata of the
interval [i, j] is Ly, Min({S(n)}), recalling that S converts a numerical string to
the corresponding integer value. In this case, since [i,] is bounded, the function
toString” converts any integer in the interval to its corresponding automaton and
afterward joins them all. The interval-to-automaton conversion for [0, +oo] and
[—00,0] are the automata AT and A~, respectively shown in Table 6.4 in the sec-
ond and third rows. Other unbounded intervals, [k, +o0] and [—k, +oo] (with k >
0), are converted in toString” (A*) \p,,_ toString® ([0, k — 1]) and toString® ([—k, 1]) L
toString” (A1), respectively. Conversions of intervals [—oco, k] and [—oco, —k] (with k >
0) are similar and in particular are converted to toString”(A~) Up,, toString®([1,k])
and toString® (A7) \pr.,_ toString” ([—(k —1),0]). The last case is toString” ([— o0, +0])
= Min(Zz).

Theorem 6.8. The abstract implicit type conversion methods toBool”, tolnt* and toString”
are sound.

6.2. Dyn: An abstract domain for pJS 81

vd, ac, la = "";

v = "wZsZ"; m = "AYcYtYiYvYeYXY";
tt = "AObyaSZjectB";

1 = "WYSYcYrYiYpYtY.YSYhYeY1Y1Y";

while (i+=2 < v.length)
vd = vd + v.charAt(i);

while (j+=2 < m.length)
ac = ac + m.charAt(j);

B

ac += tt.substring(tt.index0f ("0"), 3);
ac += tt.substring(tt.index0f("j"), 11);

while (k+=2 < 1l.length)
la = la + 1l.charAt(k);

d = vd + "=new " + ac + "(" + la + n)u;
eval (d);

FIGURE 6.5: A potentially malicious obfuscated JavaScript program.

Example: Obfuscated malware The abstract interpreter for the abstract semantics
so far defined has been tested by means of the implementation of an automata li-
brary, available at https://github.com/SPY-Lab/java-fsm-1library. The library is
suitable and easily pluggable into existing static analyzers, such as [Jensen, Moller,
and Thiemann, 2009; Lee et al., 2012; Kashyap et al., 2014]. It is worth noting that, as
reported in Theorem 5.3, p(X*) (string concrete domain) and DFA ,— (string abstract
domain) do not form a Galois connection but, nevertheless, this is not a concern. We
have shown, for the core language we adopted, that the abstract semantics we have
defined for string operations guarantee soundness hence, if the abstract interpreter
starts from regular initial conditions (i.e., constraints expressible as finite state au-
tomata) it will always compute regular invariants. Indeed, it is sound to start from
T initial condition that, in our string abstract domain, is expressible by Min(p(X*)),
which is regular. Consider the fragment reported in Figure 6.5. By abstractly execut-
ing this code, we obtain that the abstract value of 4, at the eval call, is the automaton
A4 in Figure 6.6. The cycles are caused by the widening application in the while
computation. From this automaton we are able to retrieve some important and non-
trivial information. For example, we are able to answer to the following question:
May A4 contain a string corresponding to an assignment to an ActiveXObject? We can sim-
ply answer by checking the predicate Aq My, Min(ID - {new ActiveXObject(} - STR -
{)}) # @, checking whether A4 recognizes strings that are concatenations of any

A,C,t,i,’l}7€7X,Y VV;S,C,’I’,Z‘,p,t,h,G,l,Y

o) b J e c t ()

FIGURE 6.6: A4 abstract value of d before eval call of the program in
Figure 6.5

https://github.com/SPY-Lab/java-fsm-library

82 Chapter 6. A sound abstract interpreter for dynamic code

identifier with the string new ActiveXObject, followed by any possible string. In the
example, the predicate returns true. Another interesting information could be: May
Ag4 contain eval string? We can answer by checking whether A4 My, Min({eval}) # &,
that is false and guarantees that no explicit call to eval can occur.

We observe that such analysis may lose precision during fix-point computations,
causing the cycles in the automaton in Figure 6.6, due to the widening application.
Nevertheless, it is worth noting that this result is obtained without any precision
improvement on fix-point computations, such as loop unrolling or widening with
thresholds. We think these analyses will drastically decrease false positives of the
proposed string analysis but we will address this topic in future work.

6.3 Towards an analysis for dynamic code

At this point, we are able to compute a static analysis of strings, where strings are
abstracted to finite state automata. In the concrete semantics, eval turns strings into
executable code, hence, in the abstract, we need to approximate the sub-language of
only executable strings. The abstract semantics of eval is

(eval(s))* m* = UQCD#cm# where ¢ £ Z((s)" m") m uJS

ceC
Example 6.9. Consider the following uJS program. For the sake of readability, we
omit the else empty branches.

lyhile (x < 3) {
20s = concat(os,"xA:=Bx+1B;y:=1A0;x:=Bx+1A;");

35 = x + 14
}.5
if (x > 10) {

bos = "whiAleB(X>5A)A{X:A=X+1;y:=X};B"7
}.8
if (x == 5) {

90s = "hello{"!
}.11
if (x == 8) {

1205 - "while(y;"13
}.14

ds = deobf (o0s);®

eval (ds) ;1©
The statement ds = deobf (os) is syntactic sugar for the string transformer that re-
moves the chars "A" and "B" from the string. In Figure 6.7 we depict the automaton
A4s, namely the abstract value of ds at the program point 15, computed analyzing the
corresponding control-flow graph using the Dyn abstract domain, w.r.t. the widen-

ing V’Byn, with n = 3.

Since A4 is used as input of eval, we need to extrapolate a control-flow graph
from the automaton. In particular, we first need to remove from the FA all the non-
executable strings. This corresponds to perform the intersection between the regu-
lar language computed as the abstract value of ds (denoted by .Z((ds)*m*) for
a given memory m") and the (context-free) #JS language (also denoted by pJS):
Z((ds)*m*) m uJS. Note that, the intersection between a context-free language
and a regular language (which is our case) is always a context-free language. This

6.4. The analyzer architecture 83

FIGURE 6.7: FA A4g abstract value of ds at line 15 of Example 6.9.

means that we could remove the non-executable strings accepted by the input au-
tomaton by performing an intersection such the one above, but unfortunately the
computation of this intersection could be costly in practice due to the size of a real
language grammar.

6.4 The analyzer architecture

In this section, we have to characterize the sub-language of executable strings of a
FA in a constructive way. Moreover, eval turns strings into executable code, hence,
once we have the FA of the sub-language of executable strings in the abstract do-
main, we need to turn FA into executable code. Namely, we have to synthesize from
the FA an approximation of a uJS program that is a sound approximation of the
code that may be executed in the concrete execution. Hence, we provide an algo-
rithmic approach for approximating in a decidable way the test . ((| s)* m*) m uJS,
by building a control-flow graph that soundly approximates the executable yJS pro-
grams in .Z((s) m*), i.e., whose semantics soundly approximates the semantics of
the code that may be executed by eval. This allows us to recursively call the abstract
interpreter on the synthesized control-flow graph.

This original approach works by steps: Let (eval(s))* m* be the semantics the
analyzer has to compute

1. First, we have to clean up the language .Z((s) m*) from all the strings that
are surely not executable. This is obtained by visiting the FA A, = (s)* m*
and by keeping only those paths that can be executable. It should be clear that
a FA cannot recognize precisely a context free language, hence we still keep in
the resulting FA not executable strings, in particular those that do not respect

the balanced bracketing. Let us denote the resulting FA Afsm =S StmSyn(As);

2. From the regular expression corresponding to A®**", namely Regex (A2*™), we

build a control-flow graph, over-approximating the executable strings in the
FA, ie., G, £ CFGGen(Regex(AE®™)). Then on this control-flow graph the ana-
lyzer can be recursively called.

The whole architecture is given in Figure 6.8, where the procedure Exe” encapsulates
(1) and (2) and their details are in the next sections. In particular, in the next sections,

84 Chapter 6. A sound abstract interpreter for dynamic code

Exel

s,m - Al = (]s[)# m#

ARS*™ — StmSyn(A,)

s

Gp7s# —> Analyze r = Regex(AS tm)
Gp = (Nodesp, Edgesp)
procedure ANALYZE(Gp,3p)

Gc = CFGGen(r)

S < So , # Gca Sm
S < Slf (\
while s # s’ do “
s s S, sll
for (¢1,1,45) € Edgespdo """ Exe |
s < s[sg, /[c] 3¢, Usg,]
end for Analyze
s# ¢ end while > |
end procedure e Analyze
J >

FIGURE 6.8: Analyzer architecture and call execution structure.

we suppose that the FA A is such that any cycle of A accepts only executable strings
of uJS. We say that a FA A satisfying this property is cycle-executable. For example,
the FA that accepts the language { (x=x+1;)" | n > 1 } is cycle-executable, while
the one accepting { x=(1)"; | n > 1 } is not. In Section 6.6.1 we will discuss this
constraint on the input automaton of eval.

6.5 Approximating eval executable code

In this section, we go into the details of how the synthesis of the control-flow graph
executed by an eval works, i.e., how Exe” works. The abstract interpreter reported
in Figure 6.8, when an eval is met, calls Exe” on the FA approximating the eval
input. Let us consider Example 6.9. At line 15, we need to execute Exe” on A. In
particular, Exe” goes through two steps: (1) extract from a FA the sub-language of
executable strings (procedure StmSyn); (2) generate from the FA of the sub-language
of executable strings a control-flow graph (procedure CFGGen). In the following, we
describe these two sub-modules of Exe.

6.5.1 StmSyn: Extracting the executable language

The first step consists in reducing the number of states of the FA, by (over) approx-
imating every string recognized as a statement, or partial statement, in #JS. The
idea is to derive, starting from the original FA As (generated by the string analysis),
whose alphabet is the set of characters ¥, a new FA whose alphabet is a set of strings.
These strings are obtained by collapsing consecutive edges, in Ag, up to any punctu-
ation symbol in Punct £ {;,{},()}. In particular, any executable statement ends
with a semicolon by language definition, while the braces allow us to split strings
when the body of a while or of an if either begins or ends, finally the parentheses
recognize the begin and the end of a parenthesized expression (the guard of an if
or a while). In particular, we define a set of partial statements, that is a regular over-
approximation of the yJS grammar, which will be the alphabet of the resulting FA.

6.5. Approximating eval executable code 85

Algorithm 12: StmSyn function, building the FA.
Input: A = (Q, 9,490, F, %)
Output: A" = (Q', 0,90, F/, Zpstm)
1 function StmSyn (A):
2 | Q< {q};
3 | FF«Fn{q};
4 8 — o;
5 | Visited < {q0};
6 return StmSynTr(qo);
1 function StmSynTr(g):
2 | B < Build(a,q);
3
4
5
6
7
8
9

Visited « Visited U{q};
Q<+ Qu{plap eBl;
F' Q/ NFE;
&« du{(gap)|(ap B}
W<« {p|(a p) € B }\Visited;
while W # & do

select pin W;

10 W W~ {p}
11 StmSynTr(p);
12 end

The partial statements Ypsen € X* are defined as follows

x is a maximal substring of a 1JS statement
Tpstn = Punct U { x € £*| between two punctaction symbols

(first punctaction symbol excluded)

Lemma 6.10. Let & be the function mapping any sequence (X*)* on its string coun-
terpart on X* (and, abusing notation, also its additive lift to sets of sequences), then
1S € &((Xpsem)*), namely any statement ¢ € pJS can be written as a sequence of
partial statements in Xg¢n. Formally,

VP € ‘MJS .dk e N '{Ui}iG[O,k] € ZpStm .C = 6(0’00’1 .. .(Tk).

At this point, the idea is that of transforming the FA As on the alphabet X in the
FA APS™ on the alphabet X s¢n, removing any string recognized by As which will be
surely not executable. The soundness constraint obviously consists in guaranteeing
that any executable string is not lost by this transformation.

In order to derive the FA AP*™, we design the procedure StmSyn (Algorithm 12)
taking as input a FA on X (i.e., As for eval(s)) and returning the FA on a finite sub-
set of Xpsen. In particular, the idea of Algorithm 12 is to perform, starting from the
state g, a visit of the states recursively identified by Algorithm 13, that is the states
reached by go reading partial statements, and to recursively replace the sequences
of edges that recognize a symbol in Yy s:n with a single edge labeled by the corre-
sponding string. Algorithm 13 scans the edges of the original FA As and, when a
punctuation symbol occurs or a final state is reached, it verifies whether the string
read so far is in Xpsen, otherwise it is discarded: This executability check is performed

86 Chapter 6. A sound abstract interpreter for dynamic code

Algorithm 13: Statements recognized from a state 4.

Input: A = (Q, 9,490, F, %)

Output: [, set of all pairs (partial statement,reached state)
1 function Build(A):

2 Iy < &;

3 | BuildTr(q,¢ @);

4 return I;;

1 function BuildTr (g, word, Mark):

2 | Mg A{(op)|d(go)=p};

3 while A; # @ do

4 select (o, p) in Ay;

5 Ay =D~ A(o,p)}s

6 if (q,p) ¢ Mark then

7 if o € Punct A p ¢ F then

8 ‘ BuildTr(p, word.c, MarkU{(q,p)});
9 if o € Punct A\ word.c € Yipgen then
10 | I < I;U{(word.c, p)};

11 if p € FAword.c € Ypgen then

12 | I < I;U{(word.c, p)};
13 end

atlines 9 and 11 and ensures, for any state g of the FA A, that I; contains only (partial)
statements of 1JS. In particular, from the state g9 we reach the states computed by
Build(go), and the corresponding read words. Recursively, we apply Build to these
states, following only those edges that we have not already visited. For instance, in
Figure 6.9 we have the FA AR>*™ = StmSyn(Aq4s). Note that the string hello{, that it is
recognized by A4, is not recognized by Agim since it is discarded by Algorithm 12,
because it does not belong to Xpstn. Instead, the string while(y; is still recognized
by the resulting FA even if it is not executable (this is due to the fact that FA cannot

recognize the balanced parenthesisation).

Lemma 6.11. Let A be a cycle-executable finite state automaton. Then, Vo € X,
S(0) € Z(A) = 0 € L(aP5™m),

Next theorem tells us that any executable string collected during computation is
kept in the transformed FA, guaranteeing soundness.

Theorem 6.12. Let s € SE, let Ag be the FA recognizing the strings associated with s, and
APS*™ £ StmSyn(A), then Yo € £ (As) M uJS. 36 € L (AR5™) s.t. code(&(8)) = 0.
Proof. Given o € £ (As) mulS, from Lemma 6.10, 36 € g, such that code(S(4)) =

pStm
o and from Lemma 6.11, § € Z(APS*™), O

We can observe that the procedure Build(4, q) executes a number of recursive-
call sequences equal to the number of maximal acyclic paths starting from g on A.
The number of these paths can be computed as Y, (out(q) — 1) + 1, where out(q)
is the number of outgoing edges from 4. The worst case depth of a recursive-call
sequence is |Q|. Thus, the worst case complexity of Build (when out(q) = |Q| x ||
for all ¢ € Q) is O(|Q|?). Concerning StmSyn, we can observe that in the worst case
we keep in StmSyn(A) all the |Q| states of A, hence in this case we launch |Q| times
the procedure Build. Hence, the worst case complexity of StmSyn is O(|Q|*).

6.5. Approximating eval executable code 87

FIGURE 6.9: FA APS™™ = StmSyn(Ags).

6.5.2 CFGGen: Control-flow graph generation

At this point, the idea is to use the so far obtained FA over X g, to generate a
control-flow graph approximating the program executed in eval(s). In particular,
in this section we design the procedure CFGGen, that works by several steps. It is
well known that a FA A can be equivalently rewritten as a regular expression r, s.t.
Z(h) = Z(r) [Brzozowski, 1964]. Let RE be the domain of the regular expressions
over Ypstn, and Regex : FA — RE be such an extractor. In the running example,
_ pStmy . . s
ras = Regex (AL, ") is the following regular expression:

ras = x=x+1; | | while(y; | | while(x>5){x=x+1;y=x}; | | x=x+1;(y=10;x=x+1;)"

The analyzer implements the Brzozowski algebraic method [Brzozowski, 1964] to
convert a FA to an equivalent regular expression. It is worth noting that several reg-
ular expression simplifications are applied (e.g., the ones reported in Section 2.6.1).
One important rearrangement is when we meet a concatenation d;dy: when d; d, are
ground terms (i.e., elements of Ys¢n), concatenation is removed and a single ground
term is created. Hence, any executable regular expression d;d; cannot be such that
d; and d, are not executable.?

The idea is to exploit the inductive structure of regular expressions to generate a
uJS program that can be converted to a control-flow graph over-approximating the
executable program contained in s. In particular, we introduce a special symbol to
the boolean expressions of pJS:

beBEu="-| &

The special symbol ® is used in the following to generate, from a regular expres-
sion over Xpsen, a §JS program augmented with ®. We abuse notation denoting
by uJS the language taking into account also ®. This symbol is only used to la-
bel the boolean guards of an if or a while statements, during the translation from
regular expressions to our code intermediate representation. The special symbol ®
must be intended only as a placeholder and it will be never executed neither in the
concrete nor the abstract semantics. In particular, we augment the Edges function,
namely the one that generates the edges of a control-flow graph, for if and while

2Moreover, since concatenation is distributive w.r.t. |1, the conversion algorithm always dis-
tributes, in this case. For instance, x=(1; | | 2;) is converted to (x=1;) | | (x=2;).

88 Chapter 6. A sound abstract interpreter for dynamic code

(a) (B)

FIGURE 6.10: (@) CFG,ys(la:=a+1; || b:=b+1;f), (b)
CFGst(l(a:=a+1;)S)

statements when their boolean guard is ®.

Edges("if(®){ 2st; Yelse{ “sty’s }'¢) = {(f1, true,), (f1,true, l4),}
U {(¥3,true, ls), ({5, true, lq)}
U Edges("st;"?) U Edges("st,")
Edges(zlwhile(@;){ lagtls }64) = {({q,true, lp), ({1,true, ly)}
U {(£3,true, £1)} U Edges("st")

The special guard ® is used as a non-deterministic boolean guard. For example, let
us consider following program:

if(®){ a=a+1 else{ b=b+1};

Its control-flow graph, generated with the augmented version of Edges, is reported
in Figure 6.10a, where the true and false branches are both labeled with true. In
this way, the static analysis algorithm (namely Algorithm 9) must take into account
both branches, similarly to an if abstract execution where the boolean guard is stat-
ically unknown, namely it evaluates to {true, false}. Similarly, let us consider the
while case:

while(®){ a=a+1 };

The corresponding control-flow graph is reported in Figure 6.10b, where, both the
true branch and the false branch (that exits from the body) are labeled with true.
In this way, we emulate a while loop where the boolean guard is statically unknown,
namely it evaluates to {true,false}. We abuse notation denoting by CFG,s the
control-flow graph generator that takes into account the novel special guard ® and
the corresponding Edges definition.

At this point, we have all the ingredients to generate a #JS program from a reg-
ular expression. In particular, we define the function | - { : RE — uJS that, given
r € RE, translates r to a uJS program augmented with the special boolean symbol
®. The function [- | is inductively defined on the structure of regular expressions,
where d € Zpgen.

6.5. Approximating eval executable code 89

code(&(d)) if code(S(d)) € Lpstm
laf =9 .
skip otherwise

nrf=1nf 1rf
Inllnf=1if(®){{nf € uJS? Ir | :skip }else{ {rnf € uJS? 1| :skip}
1)*) =while(®){rf € uJS? {rf :skip}

In the base case (first line), we check if d is a partial statement, namely if d € Xpgen. If
s0, it is returned as code (abusing notation of code), otherwise skip statement is re-
turned. In the case of [rir;§, the function concatenates the two programs inductively
generated.

In the case of {r1 | Ir2f, we need to emulate the non-deterministic execution of
both operands. Here comes to play the special symbol ®, previously introduced. In
particular, we return an if statement where the if-true body is replaced with]r;
if it is executable, skip otherwise, and the if-false body is replaced with {r, ¥, if it is
executable, skip otherwise. The boolean guard of the if statement is ®. It is worth
noting that we need to check the executability of {r{{ and [r,§, since the true and
false bodies must be uJS executable. For example, let us consider the following
regular expression:

while(| | a=a+1;

Clearly, while (is not executable, hence, following the definition of { - |, it is replaced
with skip (i.e., no-op) without affecting the abstract semantics of other potentially
statements (e.g., a=a+1;). Indeed, the resulting program is

if(®){ skip }else{ a=a+l };

We treat in a similar way the case of {(r)*{: in order to guarantee soundness, the
uJS program [r{ must be executed an undefined number of times, hence, we build
a while loop program, where the boolean guard is ®. Hence, the final function to
transform a regular expression over partial statements into a #JS program, using the
function { - {is {r{” = {r] € uJS? 1 r | : skip, that uses the rules defined above and
just explained. In the following, we abuse notation denoting { - ¥ as] - .

In our running example, the code synthesis from the regular expression rg4s is the
augmented uJS program reported in Figure 6.11.

Finally, we need to generate a control-flow graph on which we can recursively
call our abstract interpreter. Hence, the last step corresponds to call CFG, s on the
synthesized code, namely CFGGen(r) = CFG,s(]rf). In our running example, the
synthesis from the regular expression rqs is the control-flow graph Gqs = CFGGen(rys)
reported in Figure 6.12, where the labels true are omitted. From here on, for the
sake of readability, consecutive edges labeled with trues are omitted. Note that
the control-flow graph of while(y; corresponds to the control-flow graph of skip
(right-most path in Figure 6.12).

Finally, we have to prove soundness, proving that the output control-flow graph
contains the computation of all the executable strings that are in the starting FA. In
particular, the next lemma shows that the control-flow graph generated by CFGGen(r)
contains all the computations of executable strings recognized by r.

Lemma 6.13. Given r € RE, let G, = CFGGen(r), then V6 € Z(r), Vm* € M* 31T C
Paths(G,) s.t. (code(&(3)))*m* C Urerr(7 ¥ m#

90 Chapter 6. A sound abstract interpreter for dynamic code

1 if (®) {

> if (@) {

3 if (®) {

a x = x + 1
5 } else {

6 skip

7 }

8 } else {

o while (x > 5) {
10 x = x + 1;
11 y = X

12 }

13 }

14 } else {

15 X = x + 1;

16 while (@) {

17 y = 10;

18 x = x + 1

19 }

20 }

FIGURE 6.11: uJS program of (rqs .

Finally, next theorem tells us that any executable string collected by the analysis
is kept in the final generated control-flow graph.

Theorem 6.14 (Soundness). Let s € SE, let As be the FA recognizing the strings associated
with s, then Vo € £ (As) M uJS,Vm* € M*

311 C Paths(Gs). Gs = CFGGen(Regex(StmSyn(As))). (o) m* € | J (7)*m*
mell

Proof. By Theorem 6.12, we have that Vo € Z(As) M uJS 30 € Z(StmSyn(As))
such that code(&(d)) = o, hence any string collected in A corresponding to ex-
ecutable code, is kept in the transformed automaton AEStm = StmSyn(As). Then,
Z(StmSyn(As)) = Z(Regex(StmSyn(As))), hence § € Z(Regex(StmSyn(4As))). Fi-
nally Lemma 6.13 we have that Ym* € M*. (¢)*m* = (code(&(8)))*m* C
UTL’EH(] T D# m*. [

6.5.3 Abstracting sequences of eval nested calls

We have previously described the architecture of the analysis, which recursively
calls the analysis on the synthesized control-flow graph when an eval occurs. Due to
unpredictability of the code that can be generated, it is impossible to foresee from the
program code whether the recursive sequence of calls will terminate. In particular,
this kind of divergence comes directly from the meaning of dynamically generated
code from strings and cannot be controlled by the semantics (namely with standard
techniques such as in the case of loop computations or recursive function calls) once
we execute the string-to-code statement. At the beginning of Section 6.1, we have
seen a quite simple example with a divergent recursion, but in general this kind of
situations may be hard to detect and is clearly out of the scope of the abstraction
made on data (and of its widening). If the program using eval terminates, then

6.6. Evaluating the analyzer 91

FIGURE 6.12: Control-flow graph Ggs generated by CFGGen module

there must be a maximal depth of nested calls to eval, and therefore we can ensure
enough precision until a maximal degree of nested calls to eval. However, to extract
this maximal depth is in general undecidable.

In order to approximate this maximal depth of nested eval call, we can introduce
a nested call widening, which consists in fixing a threshold of allowed height of the
nested eval calls. Once we reach the threshold, the only way to keep soundness con-
sists in approximating the collection of values for any variable to the top, when the
threshold is overcome, meaning that after the threshold anything can be computed.
In this way, we guarantee soundness by fixing a degree of precision in observing the
nesting of eval statements.

6.6 Evaluating the analyzer

We have implemented the pJS static analyzer (available at https://github.com/
SPY-Lab/mujs-analyzer) described in this chapter, testing it on some significant
eval programs in order to highlight the strengths and the weaknesses of the pre-
sented analyzer. In this section, we report the most significant cases in order to
evaluate our approach. Moreover, we are currently integrating our approach upon
TAJS static analyzer [Jensen, Moller, and Thiemann, 2009]. The proposed prototype
shows that it is possible to design and implement an efficient sound-by-construction
static analyzer based on abstract interpretation for self modifying code. In order
to measure quality and precision of our abstract interpreter we tackle the follow-
ing questions:

Q1: Does the analyzer handle string-to-code statements (eval), even in presence of
join points?

Q2: Does the analyzer handle nested calls to eval?

In order to answer to Q1 and Q2, we evaluate the precision of our approach dis-
cussing, in the next sections, several eval usages inspired by real-world JavaScript
applications. Finally, we conclude the evaluation by comparing our analyzer with

https://github.com/SPY-Lab/mujs-analyzer
https://github.com/SPY-Lab/mujs-analyzer

92 Chapter 6. A sound abstract interpreter for dynamic code

Code fragment Exe output
str = "x=":
if (B) true true
str = str + "f"; QO
else £0 g0
str = str + "g"

eval(str + ") ;");

tru‘eﬁ\frue

if (B))
_ . . x <3

str = "if"; fx>=3 Ai{<3 X+

else O
str = "while";
++ >= 3
str = str + "(x<3){x++;}" i :

eval(str);

str = "a=0;b=0;";
while (i++ < 100) {
if (B)
str = str + "a++;";
else true true true
str = str + "b++;";
} a=a+1 b=b+1
eval (str);

TABLE 6.5

TAJS [Jensen, Mgller, and Thiemann, 2009; Jensen, Jonsson, and Mgller, 2012](ver-
sion 0.9-8).

eval of dynamic-generated string (Q1). As observed before, the proposed archi-
tecture allows the analyzer to handle non-standard uses of eval, where the eval
input string is dynamically manipulated. In the following, we describe three signif-
icant witnesses, allowing us to discuss about the precision of the analyzer.

Consider the first row of Table 6.5, supposing that the boolean guard B is un-
known; hence both branches must be taken into account, implying that the state-
ments executed by eval may be either x=f () or x=g(). We approximate the code
potentially executed by eval with the control-flow graph reported in the first row,
second column, in Table 6.5 (Exe” output). Concerning precision, the synthesized
control-flow graph is precise since it precisely contains the two possible executions.

6.6. Evaluating the analyzer 93

Consider a more challenging example, provided in the second row of Table 6.5.
The boolean value of the guard is unknown, hence eval may execute either an if
or a while statement. In this case, the code that will be potentially executed is not a
simple combination of syntactic language structures. Hence, we think (and we have
found) that this is a harder case to tackle for existing analysis tools. The approxima-
tion of the potentially executed code is reported in the second row. As before, the
generated control-flow graph is precise since it contains the two possible programs
to execute.

Finally, in the last row of Table 6.5, the eval input string is built after a while
statement join point. In this case, we also need to approximate the while loop exe-
cution, in order to avoid divergence. The number of loop iterations is unknown due
to the unknown value of i before the loop. Hence, we need to apply the widening

operator V’f)yn, to ensure termination. In the example, we fix n = 5, using the DFA /=

widening operator V2 ,_, allowing us to over-approximate the value of str by the

regular expression a=0;b=0; (a++; | |b++;)*. It is possible to tune string approxima-
tion precision, and therefore to obtain different code approximations, by changing
the widening operator used in the analysis. The corresponding control-flow graph,
over-approximating the code executed by eval, is shown in the last row. In this case,
the control-flow graph generation process adds further imprecision due to both the
widening (generating cycles in the FA) and the way a control-flow graph is gener-
ated starting from a Kleene-star regular expression.

Nested eval calls (Q2). As explained in Section 6.5.3, the soundness and termi-
nation of our approach is guaranteed by nested call widening. Note that different
results can be obtained from the analysis by tuning this parameter. In order to show
how the analysis behaves in these situations, let us consider two significant exam-
ples: the first example is a terminating sequence of nested eval calls, while the sec-
ond one is an infinite one. Consider the fragment below.

a=0;

str = "a++;if(a < 3){eval (\"a++;\" + str);}";

eval (str);
As long as a is less than 3, the program concatenates "a++; " with str, while, when
a becomes greater then or equal to 3, the eval call returns, closing the sequence
of nested calls. Clearly, the analysis result depends on the value of the nested call
widening: if it is greater than or equal to 3, no loss of precision occurs during the
analysis, handling precisely and efficiently the whole sequence of nested eval calls.
Otherwise, the analysis gives up, returning the T abstract state (i.e., all the possible
variables evaluated to T) as explained in Section 6.5.3. In this way, while preserv-
ing soundness, the analysis may continue on the code after the eval call causing
the nested call sequence, still able to get significant information about the program.
Indeed, the T abstract string value is modeled by the FA recognizing >*, making
the analyzer able to trace string manipulations also of unknown (set to T) variables.
Next code fragment shows an example of non-terminating sequence of nested eval
calls. In this case, independently from the choice of the nested call widening, the
static analyzer has to give up because the program diverges.

a=0;
str = "a++;"
str = str + "if(a<3){str = \"a++\" + str;} eval(str);";

eval (str) ;

94 Chapter 6. A sound abstract interpreter for dynamic code

str = "x=5";
while (i++ < 3)
5
str += "5";)
eval (str + ";"); *Q—EQ;&O

(4) (B)

FIGURE 6.13: Agtr s.t. L (Astr) = {x=5"; | n > 0}

In order to be sound, a T abstract state is returned. Some techniques to detect as
precisely as possible the presence of infinite nested eval call sequences can be stud-
ied and involved into the analyzer. This would define a smart widening technique
for approximating nested eval calls for tuning the precision of the analysis in these
situations, and it surely deserves further investigation.

6.6.1 Limitations

As shown in the previous sections, the proposed abstract interpreter is able to pre-
cisely answer about several eval patterns, even in presence of join points. Any-
way, for some cases, even our abstract interpreter is not able to derive a control-flow
graph that over-approximates the eval input string. Consider the fragment reported
in Figure 6.13a, assuming that the value of i is unknown. Moreover, consider to ap-

ply V3., ,_ in the while-loop. In Figure 6.13b, we report the FA abstracting the eval

input, where the cycle in the FA is caused by the application of the widening V2, .

to ensure termination. In this case, our analyzer cannot return a control-flow graph
that over-approximates the code that may be concretely executed: the hypothetical
control-flow graph could be infinite since it should consider any possible assignment
to x of any possible number formed by sequences of 5 (i.e., x=5;,x=55;,x=555;...).
In general, our analyzer fails to construct a control-flow graph that approximates the
code that may be concretely executed when the cycles in the FA abstracting the in-
put value of eval do not repeat valid statements, namely when the automaton is not
a cycle-executable automaton, as in the example. In order to preserve soundness,
when an eval statement occurs, our analyzer checks whether the input FA contains
cycles that do not repeat a valid statement; if so, top abstract state is returned. It
is worth noting that these cases occur only when the FA contains cycles that do not
repeat valid statements. Nevertheless, we are currently investigating how to handle
even these cases, trying to propose a solution to integrate into our analyzer.

6.6.2 Comparison with TAJS

In [Jensen, Jonsson, and Magller, 2012], the authors introduce an automatic code
rewriting technique removing eval constructs in JavaScript applications, showing
that, in some cases, eval can be replaced by an equivalent JavaScript code without
eval. This work has been inspired by [Richards et al., 2011] showing that eval is
widely used. In particular, the authors integrate a refactoring of the calls to eval
into TAJS. It performs inter-procedural data-flow analysis capturing whether eval
input expressions evaluate to constant values. If so, eval call can be replaced with
an eval-free alternative code. It is clear that code refactoring is possible only when
the string analysis recognizes that the arguments of eval are constants. Moreover,
they handle the presence of nested eval by fixing a maximal degree of nesting, but
in practice they set this degree to 1, since, as they claim, it is not often encountered

6.6. Evaluating the analyzer 95

P TAJSresult | Exe®(Ay) result
y="X=X+1;"; x=x 41 x=x+1
eval (y); ’
if (x > 0)
y="a=a+1l;"; Analysis trus Lrue
else Limitation
y="b=b+1;"; Exception a=a+l b=b+1
eval (y);
y;.:'li"’ (3) { trueT
<
waLLe ix Analysis true
y =y + "x=x+1h, L .
‘1 Limitation
X=X 5 . -
} Exception true x=x+1
eval (y);

TABLE 6.6: Comparison with TAJS

in practice. The solution we propose allows us to go beyond constant values and
refactor code also when the arguments of eval are not constants. We have identi-
fied three particular classes of eval programs depending on some features of the
analyzed program which allow us to underline the differences between TAJS and
our approach. We report three significant examples in Table 6.6, where we summa-
rize the comparison with TAJS. The first class of tests consists in programs where
the string variables collect only one value during execution, i.e., they are constant
strings. A witness of this class of programs is provided in the first row of Table 6.6,
where the string value contained in y is constant. In this case, both, TAJS and our
analyzer, are precise since no loss of information occurs during both the analyses.
By using the value of y as input of eval, we obtain exactly the statement x=x+1;
since Exe”, in this case, behaves as the identity function. TAJS performs the uneval
transformation and executes the same statement.

The second class of tests consists in programs where there are no constant strings,
namely strings whose value before eval is not precisely known and it is approxi-
mated by a set of potential string values. An example of this class is reported in
the second row of Table 6.6. In this case, since we do not have any information
about x, we must consider both branches, meaning that before eval we only know
that y is one value between "a=a+1" and "b=b+1". If we analyze this program in
TAJS, the value of y before the eval call is identified as a string, and when it loses
the constant information it loses the whole value, leading to an exception in TAJS

96 Chapter 6. A sound abstract interpreter for dynamic code

analysis when eval is met. On the other hand, our analyzer keeps the least upper
bound between the stores computed in each branch, obtaining the abstract value
for y modeled by the FA A, recognizing the language expressed by the regular ex-
pression a=a+1;||b=b+1;. Afterwards, our analyzer returns and analyzes the sound
approximation of the program passed to eval reported in the second row.

In the last class of examples, the string that will be executed is dynamically built
at run-time. In the example provided in Table 6.6, the dynamically generated string
is x=x+1; (x=x+1;)*. In this case, as it happened before, TAJS loses the value of y
and can only identify y as a string. This means that, again, eval makes the analysis
stuck, throwing an exception. On the other hand, our analyzer performs a sound
over-approximation of the set of values computed in y. In particular, the analysis,
in order to guarantee termination, computes widening instead of least upper bound
between FA, inside the loop. This clearly introduces imprecision, since it makes us
lose the control on the number of iterations. In particular, applying V3 ,_, We com-
pute a FA A, strictly containing the concrete set of possible string values, recognizing
the regular expression x = x + 1; (x = x + 1;)*. The presence of possible infinite se-
quences of x=x+1; is due to the over-approximation induced by the use of widening
operator on FA. Nevertheless, the widening parameter can be tuned in order to get
the desired precision degree of the analysis: The higher the parameter, the more pre-
cise and costly the analysis is. The control-flow graph extracted from Ay is reported
in the third row.

Final remarks. The novel approach presented in this chapter attacks an extremely
hard problem in static program analysis: Analyzing dynamically mutating code
in a meaningful and sound way. This provides the very first proof of concept in
sound static analysis for self-modifying code based on bounded reflection for a
high-level script-like programming language. The main contribution of this chap-
ter is in proposing an innovative approach for designing sound static analyzer for
dynamic code, i.e., for code that may change during execution. The main idea is
to analyze strings by approximating them as regular languages, i.e., by using fi-
nite state automata. When a string-to-code instruction is met, the automata mod-
eling the string-to-code instruction input is analyzed in order to approximate its
executable sub-language, namely the sub-language of all the executable statements
at that program point. This approximated sub-language is then used for building a
control-flow graph whose semantics soundly approximates the semantics of what is
concretely executed by the string-to-code statement. In this way we can recursively
call the same abstract interpreter on the synthesized control-flow graph. Once the
recursive call returns we continue the standard analysis. The approach we propose
is, in this sense, a truly dynamic static analyzer, keeping the analysis going even when
code is dynamically built.

We have implemented the analyzer for #JS and itis available at https://github.
com/SPY-Lab/mujs-analyzer. As far as the string analysis is concerned, in the thesis
we have shown the abstract semantics of five popular string operations. Neverthe-
less, the static analyzer we have implemented provide several other string opera-
tions contained into the built-in JavaScript global object String, such as, for exam-
ple slice, startsWith or repeat. We have decided to omit these other operations to
do not burden the presentation, since their abstract semantics can be seen as corner
cases of the abstract semantics reported in this chapter (e.g., slice for substring).

Moreover, we are currently integrating the finite state automata abstract domain
and the dynamic code analysis reported in this chapter upon TAJS. The prototype
is available at https://github.com/SPY-Lab/tajs_automata. The result, is still a

https://github.com/SPY-Lab/mujs-analyzer
https://github.com/SPY-Lab/mujs-analyzer
https://github.com/SPY-Lab/tajs_automata

6.6. Evaluating the analyzer 97

prototype and it cannot be considered a real tool for several reasons. For example,
high-order functions and JavaScript prototype inheritance are, at the moment, par-
tially supported, as well as some standard built-in global objects. Moreover, we have
implemented only one string-to-code statement, i.e., eval. It is well known that there
are other ways for dynamically executing code built out of strings, but it is clear that
the same approach used for eval can be easily applied to any other string-to-code
statement. We are currently improving the prototype to deal with full JavaScript.

99

Chapter 7

An abstract domain for objects in
dynamic languages

In this last chapter, we present a preliminary approach that tries to face another
problem in dynamic programming languages. As we have already mentioned more
than once, dynamic languages such as JavaScript or PHP have gained a huge suc-
cess in a very wide range of applications and this mainly happened due to the sev-
eral features that such languages provide to developers. One of this features is the
way strings may be used to interact with programs objects. Unlike strongly-typed
object-oriented languages, where the structure of an object (i.e., its class) is known at
compile-time and cannot change during program execution, usually in dynamic lan-
guages it is possible to create, manipulate, and delete object properties at run-time,
interacting with them using strings. If, on the one hand, this may help developers to
simplify coding and to build applications faster, on the other hand, this may lead to
misunderstandings and bugs in the produced code. Furthermore, because of these
dynamic features, reasoning about dynamic programs by means of static analysis is
quite hard, producing very often imprecise results.

For instance, let us consider the simple yet expressive example reported in Fig-
ure 7.1, supposing that the value of the if guard is statically unknown. The value of
idx is indeterminate after line 6 and it is updated at each iteration of the while loop
(line 10). The while guard is also statically unknown and at each iteration we access
obj with idx, incrementally saving the results in n. The goal is to statically retrieve
the value of idx and n at the end of the program. It is worth noting that a crucial
role here is played by the string abstraction used to approximate the value of idx,
that is used to access obj. Indeed, adopting finite abstract domains, such as [Jensen,
Moller, and Thiemann, 2009; Kashyap et al., 2014; Lee et al., 2012], will lead to in-
fer that idx could be any possible string. Consequently, when idx is used to access
obj, in order to guarantee soundness, we need to access all properties of obj. For
instance, we also have to consider the property ac, which is never used to access obj
during the execution of the program. This ends up in an imprecise approximation
of idx and, in turn, of n.

In this chapter, we further augment the puJS syntax and semantics in order to
make it able to handle also object expressions. Since we do not model important
object-related features such as encapsulation or inheritance, it would be more ap-
propriate to refer to our model as associate arrays [Hauzar and Kofron, 2015a] nev-
ertheless, in this chapter, for the sake of simplicity, we will refer to it as objects.

We exploit again the finite state automata abstract domain presented in Chap-
ter 5. We still abstract strings values to the finite state automata abstract domain and
we use it also to define a novel abstract domain for objects. The idea is to abstract
the objects properties in the same domain used to abstract string values, namely
the finite state automata abstract domain. We show that exploiting finite automata

100 Chapter 7. An abstract domain for objects in dynamic languages

o if (7)) {

2 idx = "a"
s F

. else {

5 idx = "b"
s F;

7 n = 0; obj = new {a:1, aa:2, ab:3, ac:"world"};
s while (?7) {

s n = n + objlidx];

10 idx = concat (idx, "a")

11 }

2 objlidx] = n; // value of idx and n 7

FIGURE 7.1: Motivating example.

to abstract string values and objects properties produces precise results in abstract
computations, in particular in object properties lookup and in object manipulations
inside iterative constructs. We define the necessary semantic transformers for objects
to be integrated in the static analysis algorithm on control-flow graph but, differently
from what we have done until this chapter, for the sake of simplicity, all the exam-
ples of the abstract computations shown here are done directly on the 4JS program
we aim to analyze and not on its corresponding control-flow graph.

7.1 Object concrete semantics

In this section, we extend the uJS syntax with object expressions. An object is a
comma-separated collection (potentially empty) of property-value associations.

ocOE=x={}|{op:ep,01:€1,...,00: €}

For example, a 11JS object may be {a:1, b:2, c:3}. Afterwards, we also introduce
object construction, object-property lookup and object-property update, as follows.

e€Eu="--|x]s] st ESTMT :=--- | x =newo | x[s| = e

For the sake of simplicity, it is worth noting that object properties cannot recursively
contain other objects. Anyway, this choice is not restrictive and in [Arceri, Pasqua,
and Mastroeni, 2019] we have taken into account also objects that can recursively
contain other object properties.

The set of the possible values associated with a variable must take into account
also objects. We recall that VAL is defined as VAL = INTUBOOLUSTRU {NaN} U {1}.
Hence, we define the set VAL® as

VAL” £ VAL U OBJ

An object 0 € OB]J is represented as a map that associates strings to primitive val-
ues, namely OBJ £ STR — VAL. It is worth noting that there is no order relation
between object properties, as it happens in standard programming languages. At
this point, we are ready to extend the expression and statement big-step seman-
tics defined in Chapter 3. The evaluation of an object takes each association string-
expression and it recursively evaluates the expressions, returning as result a map

7.1. Object concrete semantics 101

containing the string-value associations. Hence, we extend the expressions seman-
tics [e] : STATE — VAL' as follows.

[{so:eo,s1:€1,...5::€en}]C £ [snr>[en]]®...o[s1—[e1]C] ® [so— [eo]]

where f e g(s) = g(s) if g(s) #1 Af(s) =1 and f e g(s) £ f(s) otherwise. For
example, the expression {a:1, b:length("foo"), c:5+3} evaluates to the object
[ar+> 1 b 3 c+— 8]. Following the JavaScript semantics, it is worth noting that, for
instance, {a:1, a:2} evaluates to [a+ 2], saving only the last association with the
same property a.

The semantics of objects properties lookup x[s] checks whether the string result-
ing from the evaluation of s is a property of the object stored in x. If so, the as-
sociated value is returned. Hence, its definition is the following, supposing that
[s|¢ = o € STR:

A | C(x)(0) ifg(x) € OBJ Ao € dom(E(x))
[x[s]]¢ = { .
0 otherwise
In our core language, we allow only to access already stored objects. Moreover, it
is worth noting that when we try to access a property ¢ not present in the object
contained in x, then 1 is returned.
Finally, we augment the statement semantics [st] : STATE — STATE, defining

the semantics of object construction and object property update. The semantics of
X = new o stores into the states the evaluation of OBJ.

[x =newo]¢ £ &[x « [o]¢]

The semantics of x[s| = e stores in the object stored by x, at the property expressed
by the evaluation of s, the evaluation of e. In the following, we suppose thato = [x]¢.

[x[s] =€]¢ =[x « o o [[s]¢ — [e]¢]]

Note that, as it happens in dynamic languages, if the property is not contained in
the object stored by x, a new association is created and added. As a final remark,
we point out that in our extension of 1JS we do not model features such as pointer
arithmetic, objects comparisons and object-related implicit type conversion.

At this point, since we perform static analysis of the control-flow graph of a ;JS
program, we need to slightly change the collecting semantics defined in Section 3.2
taking into account also object values. First, the set of the possible collecting value
associated with a variable contains also sets of object and hence it is extended as

VAL" £ VAL U p(OBJ)

where VAL has been defined in Chapter 3 and it is VAL = p(INT) U p(BooL) U

©(STR) U p({NaN}) U p({1}). We recall that collecting memories M : ID — VAL?,
ranged over m, associate with each variable a set of values. Also the language of
edge labels of a control-flow graph pJS-CFG changes as follows.

uJS-CFG>1 = ---|x =newo | x[s|] =e

since a control-flow graph edge can be also labeled with object constructor and
object-property update statements. Next, we need to define how these new state-
ments act on a collecting memory, extending the collecting semantics (st) : M — M

102 Chapter 7. An abstract domain for objects in dynamic languages

as follows.

m[x < (o] m]

mx < {oe[s—v] o€ (x)m,s€(s)move(e)m]}

We also augment the expression collecting semantics for the novel introduced ex-
pressions, as follows.

Vi e |0,
({so:eq,s1:€1,...5n €})m={ [s,r>0,]@...0[51>01] @[50+ Dg] felon
vi € (e)m

(x[s])m={J{ofs] o€ (x)m,s € (s)m,s € props(o) }

Above, we use the notation props(o) C X* to denote the set of the properties of
an object 0. In the following, we will present the abstract domain for objects OBJ*
and the abstract semantics of the object-related statements and expressions added to
1JS. In particular, we will focus on augmenting the abstract function (-)*, that is
the semantic transformer of edges labels of a control-flow graph.

7.2 An abstract domain for objects

Similarly to what we have already done for strings, integers and booleans, we need
also to finitely represent an infinite set of concrete objects, namely we need to design
an abstract domain for concrete objects. We start here with our representation of
infinite sets of objects, namely we define an abstract domain approximating o (OBJ).
In particular, we first have a non-relational abstraction between objects-properties
and values, i.e., we abstract p(OBJ) in (STR) — VAL. Then, we abstract p(STR) to
the finite state automata abstract domain DFA ,— and VAL in the coalesced abstract
domain Dyn defined in Section 6.2 (see Equation 6.1). Finally, we can abstract values

of VAL” in the Dyn” abstract domain, defined as follows.

Dyn” £ Dyn @ OBj*

where the new object abstract domain is OBJ* 2 Dra /= — Dyn. The partial order
Cov; for OB]# is the point-wise ordering between functions, i.e., of Cob; o§ £ (VA €
DFA /—. o’f (A) Coyn 0%(4)). This order is not optimal but it does not harm the analysis
since, as we can see in Section 7.2.1, the order can be strengthen.

Similarly, the least upper bound for OBJ* is defined as Lop X £ \A € DFA. Loy
{o*(a) | o* € X}. We can similarly define the greatest lower bound for OBJ*. It is
straightforward to see that (OBJ*, Coy,;) is a lattice, with minimum mapping every
automaton to Lpy,, and maximum mapping every automaton to Tpy,. The con-
cretization yo € OBJ* — ©(OBJ) is defined as:

Yo(o*) £ {0 € OBJ

Vo € STRJA € DFA /=
(‘7 € ')/DFA(A) A 0(0-) € ’)’Dyn(o#(A)) \ O(U) :T)

In order to show how our object abstract domain works, we consider a simple
yet expressive uJS example (Figure 7.2, where we suppose that the boolean guards
of while and if statements are statically unknown). The fragment declares the ob-
ject o at line 1, and its abstract value at lines 1-9 is reported in Figure 7.3a. Then,
it indefinitely iterates over the string variable idx at lines 3-6 appending either the

7.2. An abstract domain for objects 103

1 o = new {x:1, y:2, z:3};

2 idx = "x";

s while (7) {

« if (7)) {

5 idx = concat (idx, "x")
s } else {

7 idx = concat(idx, "y")
s F

o 1

0 olidx] = 7;

FIGURE 7.2: uJS program example.

strings "x" or "y". Finally, idx is used to access the object o at line 7. Let us suppose
to statically analyze the above program with the abstract domain previously pre-
sented. Since the number of iterations of the while-loop is statically unknown, the
computation of the value of idx, abstracted as a finite state automaton, may diverge.
In order to enforce termination, the automata widening V5, _ is applied. Tuning
Vi, With n = 3, the abstract value of idx at line 10, after the while computation,
corresponds to the automaton expressed by the regular expression x(x || y)*. Since
idx does not represent just a single string, when we analyze o [idx] we may have to
overwrite an object property (e.g., x) and add new properties to o (e.g., xyy). Since
the abstract value of idx expresses an infinite number of object properties, we call
this property summary property. The abstract value of o after line 10 is depicted in
Figure 7.3b, where the summary property x(x || y)* is added to the object reported
in Figure 7.3a. Note that in the abstract object updated at line 10, the abstract prop-
erties x and x(x || y)* share the common concrete property x. In particular, the value
of o["x"] may be either 1 or 7. We aim at an objects representation where every
property does not share any property with the others, namely when objects are in
normal form.

7.2.1 Normalization

We now formally define the notion of abstract object normal form. Given an ab-
stract object o € OBJ*, we abuse notation denoting by props(0*) C DFA ,— the set
of its abstract properties, namely the properties which are not undefined. Formally,

x — [1,1] x — [1,1] x — [1,7]
y—[2.2] y—1[22] y—[22]
z — [3,3] z — [3,3] z — [3,3]

! - i | x(x[ly) =771 | x(x|[y)t = [7.7]

(4) (B) (©)

FIGURE 7.3: (a) Abstract value of o after line 1 of the fragment re-
ported in Figure 7.2 (b) Abstract value of o after line 10. (c) Normal
form of o after line 10.

104 Chapter 7. An abstract domain for objects in dynamic languages

props(o*) = {p € DFA,— | of(p) #7}. Abstract properties represent sets of con-
crete properties. Since abstract properties are represented as finite state automata,
we can refer to the set of the concrete properties captured by the abstract one. Hence,
given an abstract property p € props(o*), we abuse notation denoting by .#(p) the
language of the concrete properties captured by p.

Definition 7.1 (Abstract object normal form). An abstract object o* € OBJ* is in nor-
mal form when:

Vp € props(0®) . |.Z(p)| € {1,w} AVp1, p2 € props(0”) .. Z(p1) N L (p2) = @

Informally speaking, we say that an abstract object is in normal form when each
property p represents only a single string (i.e., |-Z(p)| = 1) or an infinite language
(ie., |-Z(p)| = w) and it does not share any concrete property with other abstract
properties. Hence, a normal form abstract object has two kinds of properties: p is
a non-summary property, if | £ (p)| = 1, and p is a summary property, if |.Z(p)| = w.
For instance, the abstract object in Figure 7.3a is in normal form, since any abstract
property expresses concrete properties that are not expressed by other abstract prop-
erties and it only contains non-summary properties. Instead, the abstract object in
Figure 7.3b is not in formal form, despite it has only summary and non-summary
properties, since the string x is expressed by the non-summary property x and by
the summary property x(x || y)*.

During abstract computations, it may happen that abstract objects are not in nor-
mal form, so we need to normalize them. We rely on the function Norm : OBJ# —
OB]# that normalizes an abstract object and its behavior is captured by the algorithm
reported by Algorithm 14.

The first part of the algorithm, namely lines 1-6, checks if any property of o is
summary or non-summary. If it finds a property p such that £ (p) ¢ {1, w} then the
algorithm first removes that property from the object, and then looks at its language
(that is finite) and adds any single property captured by p with its old corresponding
value. For example, let us consider the object [x || y — [5,5]], the algorithm returns
as result the normal form abstract object [x +— [5,5],y — [5,5]]. The idea of the
second part of Algorithm 14 (lines 7-17) is to check, for any p; € props(o*), if it
shares at least a concrete property with any other p, € props(o*) (lines 11-16). This
boils down to check whether the intersection between p; and p; is not empty. If so,
three new abstract properties are created in 0o* (note that p; is removed at line 8 and
p2 will be removed at line 16). In particular:

e the property pi Mpr, p2 points to the join of the previous values of p; and p»
and the previous value (if present) of p; Mpy, p2 in 0¥ (line 16);

e the property p1 \p:,_ p2 points to the join of the previous value of p; and the
previous value (if present) of p1 \pr.,_ p2 in 0* (line 17);

e the property p2 \ps,_ p1 points to the join of the previous value of p; and the
previous value (if present) of p2 \pe, ,_p1in o* (line 18);

Otherwise, if p; does not share any property with other abstract properties of o*,
the association [p; +— 0*(p1)] is simply added to o (line 17). For example, let us
consider again the abstract object reported in Figure 7.3b. The result obtained by
applying Algorithm 14 is the abstract object reported in Figure 7.3c.

Proposition 7.2. Given o* € OBJ*, the abstract object Norm(o*), computed by Al-
gorithm 14, is in normal form (Definition 7.1). Moreover, we have that yo(0*) =

yo(Norm(o*)).

7.2. An abstract domain for objects 105

Algorithm 14: Norm € OB — OpJ* algorithm

Data: o* € Opj*
Result: Norm (o)
1 foreach p € props(o*) do

2 | o+ o*(p);
3 | if | Z(p)| ¢ {1l,w} then
4 remove p from o;
5 foreachs € Z(p) do
6 | of < o" e [s > 0
7 end
8 end
9 end
10 foreach p; € props(o*) do
11 v + 0*(p1); remove p; from o”; normalized + false;
12 | foreach p, € props(o*) do
13 vh + o (p2);
14 if p1 Mpea p2 # Min(@) A p1 # po then
15 normalized < true;
16 0" < 0" @ [p1 Mpes P2+ 0" (P1 Mora P2) Ubyn 0F Libyn 4);
17 o « o* e [p NDra,_ P2 — o*(p1 e, P2) Lbyn vﬂ;
18 0" < o @ [pa \p,_ p1 > 0% (P2 Npes, P1) Ubyn 95);
19 remove p; from o'
20 end
21 end
22 if Inormalized then o* + 0" e [p; — 1] ;
23 end
24 return 0#;

As we have previously mentioned in this section, normalization strengthens the ab-
stract order between objects. For example, the objects [a — [1,1],b — [1,1]] and
[a || b — [1,2]] are not comparable, but, if we normalize the second object (i.e., in
la — [1,2],b +— [1,2]]), then we have [a — [1,1],b — [1,1]] Copj Norm([a || b

[1,2]]).

7.2.2 Objects-related abstract semantics

In this section, we focus on defining the abstract semantics of the novel objects-
related statements and expressions we have added to uJS. In particular, we define
the abstract semantics of an object expression, an object-access property (x[s]), object
constructor (x = new o) and object-property update (x[s] =e).

The object evaluation is straightforward and follows the concrete semantics re-
ported in the previous section.

({o0:eo,51:€1,...50 e})'m* 2 [0 (e) m* ... [0 (e) m*] @ [0p— (o)*m*]

The abstract semantics of an object property x|s| is reported in the following, sup-
posing that A = (s)*m* and 0 = m*(x)

(x[s] D*m* £ | |{ 0o*(a") | A’ € props(o*), A" Ty, A # Min(2) }

Dyn

106 Chapter 7. An abstract domain for objects in dynamic languages

ar—[14]

b+ [2,2] b — [2,2]

c — [3,3] c — [3,3]
a(a)* — [44] | at e [44]

(a) (B)

FIGURE 7.4: Example of materialization.

Since we abstract both strings and object properties to finite state automata, po-
tentially recognizing more than a string (because of summary properties), the result
of the least upper bound of any value corresponding to a property stored in x whose
intersection with the automaton A is non-empty. For example, if we want to access
the object [a < [1,1],b « [2,2],¢ < [3,3]] with the automaton recognizing the
language {a, b}, the results would be [1,2].

As far as the statement x = new o is concerned, we need to store a novel ab-
stract object into x and its semantics is straightforward and follows the concrete one.
Formally:

#_# A #[

(x=newo)* m* £ m*[x « (o)*m"]

The case when we have the abstract semantics of object-property update, namely
x[s] =e, is where materialization occurs. As we have already mentioned before, we
allow to update only the objects that have been already stored into the memory.
Suppose that v = (e)*m*, A = (s)*m* and o* = (x)*m*:

(x[s]=e)*m* £ m*[x + Norm(o" e [A + 0" (4) Upy, *])]

The abstract semantics of x[s| = e needs to update properties of abstract objects stored
into the variable x. In particular, the object stored into x must be updated at the
property A, corresponding to the evaluation of the expression s, with the least upper
bound between v* (i.e., the abstract evaluation of the expression s) and the previous
value stored at 0”(A). Before storing the updated abstract object in m*, the latter is
normalized. It is worth noting that here we perform a weak update of the object con-
tained in x [Balakrishnan and Reps, 2006]. We could improve the precision of the
analysis performing a must-may analysis (as it has been done in [Fromherz, Ouad-
jaout, and Miné, 2018] for Python) in order to distinguishing between properties
that certainly point to some value and properties that may point to others. This can
be done improving the proposed analysis using standard techniques, such as the
ones reported in [Balakrishnan and Reps, 2006; Nielson, Nielson, and Hankin, 1999;
Wilhelm, Sagiv, and Reps, 2000].

For example, let us suppose that m*(x) is the object reported in Figure 7.4a and
we want to update the property a, with the interval [1,1]. Applying these values
to the previously defined abstract semantics, we obtain the abstract object reported
in Figure 7.4b, that it is stored into the variable x. We say that the property a has
been materialized, since, before the update, it was part of a summary property, and
after the update it is a non-summary property. We say that a (concrete) property is
materialized when a string of an abstract object passes, during the update, from a

7.2. An abstract domain for objects 107

i o = new {a:1}; a1

> key = "a"; aa — [1,1]

s while (?) {

« key = concat(key, "a"); aza — [11]

s olkey]l =1 aaaa(a)* — [1,1]]

s F;

(a) (B)
FIGURE 7.5: (a) #JS fragment, (b) Value of o after while-loop.

summary property to a non-summary property. It is worth noting that normaliza-
tion takes care of materialization. The abstract semantics is sound w.r.t. the concrete
collecting semantics, i.e., it computes an over-approximation of state invariants at
any statement.

Theorem 7.3 (Soundness). The abstract semantics of object assignment, object update and
object expressions is sound, namely ¥ m* € M*

(st DYeme (M*) S Yo ((sEDFM*) (&)yt (m*) S yoyn((e)* m*)!

7.2.3 Widening

Note that, the augmented abstract domains Dynp defined in this section is not ACC,
because of the intervals abstract domain, the automata abstract domain and the
novel objects abstract domain. Hence, fix-point computations may diverge with-
out introducing an extrapolation operator. We have already defined the widening
operator for finite state automata and for intervals. Here, we define the widening
operator also for the novel object abstract domain.

In particular, OBJ* is not ACC because we model objects properties with the finite
state automata domain, which is not ACC. Anyway;, a slight extension of the least up-
per bound Ll is enough to guarantee termination of computations, exploiting the
widening of the finite state automata domain. Informally speaking, abstract string
values, in while-loop computations, always converge since finite state automata do-
main is equipped with a widening. Consequently, since the object properties are
finite state automata, properties also converge. For this reason, we cannot have in-
finite ascending chains depending on the objects properties, but only depending on
the values that are associated with them.

Let us consider the uJS fragment reported in Figure 7.5a and suppose that the
boolean guard value is statically unknown. At each iteration on the while-loop,
the string "a" is concatenated to the string value of key and then it is used to add
a new property to the object o. If the DFA = were not equipped with a widening,
the computation of the value of key would diverge. Since convergence of string
computations is enforced by the widening Vy,, (with n = 3), the computations of
object properties of o converge. Indeed, the while-loop converges and the abstract
values of the variable o is the (normalized) object reported in Figure 7.5b. Clearly,
the simple object join is enough for objects properties convergence but it is not for
the associated value. For example, let us consider the uJS fragment reported in
Figure 7.6a. In this case, the number of properties of the object o does not increase
in the while-loop but the value of the property a increases at each iteration. The

Lym# is the concretization function on Dyn abstract memories defined as 7, (m*) = { x
Yoyn(0) [x v € m* }

108 Chapter 7. An abstract domain for objects in dynamic languages

1 o = new {a:1};

> while (?) { a1, +o0]
5 o["a"]l = o["a"] + 1 f
s}

(4) (B)

FIGURE 7.6: (a) uJS fragment, (b) Value of o after while-loop.

idea behind the widening for objects is to apply the widening of values point-wisely
between the properties of the two objects. Hence, we define the widening on OBJ*
as: of Vopj 05 = Ap.of(p) Vi, 05(p). Coming back to the example, applying the
widening defined above, the abstract value of o after the while-loop is reported in
Figure 7.6b. At this point, we can integrate this widening into the one for abstract

memories and abstract stores.

Example. We now illustrate the so far defined analysis on the example reported in
the introduction (Figure 7.1). It is worth noting that, in this example, objects widen-
ing does not occur. We have already commented it with the fragments reported in
Figure 7.5 and Figure 7.6. The goal of the analysis is to reason about the value of idx
(and, in turn, of n) at the end of the execution. At the beginning of the first iteration
of the while loop, the value of n is [0,0] and the value of idx is the automaton ex-
pressed by the regular expression a || b. The latter is used during the first iteration
to access obj and then the result is stored in n (line 9). Since the property b is not
present in obj, only the property a is accessed by idx, and the value of n is [1,1].
Before starting the next iteration, idx is updated at line 10 and its value becomes the
automaton recognizing aa || ba.

Widening is applied before starting new iterations. Supposing to apply the widen-
ing Vy,,,_, with n = 1, and the widening for intervals, the values of the variables
before the second iteration are: n = [0,4], idx = a || b || aa || ab since, in
this case, the widening for automata coincides with the automata join. In the sec-
ond iteration idx accesses the properties a and aa, hence n gets the value [1, +co] =
[0, +00] + ([1,1] Uints [2,2]). Similarly to the previous iteration, idx becomes aa ||
ba || aaa || aba. Before starting the new iteration we apply the widening, obtaining
the values n = [0, +o0] and idx = (a || b) a*. The third iteration does not change the
values of n and idx, hence the fixpoint is reached.

Finally, atline 12, the value of n is assigned to obj [idx], updating the abstract ob-
ject obj as follows: [a, aa — [0, +0],ab — [3,3],ac — Min({"world"}), (a || b)a* \
{a,aa} — [0,+o0]]. The summary property (a || b) a* \ {a, aa} is added and only
the properties a and aa are modified. Properties already present in obj remain unal-
tered (e.g., ab and ac).

Final remarks. In this chapter we have presented a preliminary approach for an-
alyzing objects in dynamic languages, exploiting again finite state automata to ab-
stract objects properties. We have proposed an abstract domain suitable for the anal-
ysis of objects properties in dynamic programming languages. The novelty consists
in exploiting finite state automata, in order to approximate objects properties. This
leads to a better precision (less false positives), compared to state-of-the-art domains
approximating strings (for instance, [Costantini, Ferrara, and Cortesi, 2015]). A key
aspect of our abstract domain is the normal form for objects and we have presented
a normalization algorithm: it transforms objects in their normal form. An object is

7.2. An abstract domain for objects 109

in normal form if and only if it has only two kind of properties: summary and non-
summary. The idea behind summarization, and hence materialization, is not new in
static analysis, and comes from the well-known shape analysis [Nielson, Nielson,
and Hankin, 1999]. For example, this idea has been adopted in [Hauzar and Kofron,
2015a], where the authors present a static analyzer for PHP that also involve heap
analysis, where the heap, in their abstraction, is made of summary heap identifiers
and non-summary heap identifiers. In particular, in [Hauzar and Kofron, 2015a],
a summary heap identifier summarizes all the elements of the heap that could be
updated by statically unknown assignments. We have adopted the same idea with
the difference that we may have more summary properties, expressed by automata
recognizing infinite languages, rather than a single summary property that merges
together heap elements updated by statically unknown assignments. The idea of
summarization has been also taken into account in [Balakrishnan and Reps, 2006],
where the authors propose the recency abstraction, which consists in representing
each abstract allocation site with two memory regions, namely the most recently allo-
cated block and the not most recently allocated blocks. The latter is basically a summary
memory region, since more than one block may be allocated. Recency abstraction
has been implemented also in TAJS [Jensen, Moller, and Thiemann, 2009], showing
that such abstraction outperforms other abstract allocation-based techniques. As fu-
ture work, we aim to implement our objects abstract domain upon TAJS. We believe
that the combination of our abstract domain and the recency abstraction can pro-
duce good results, w.r.t. analysis precision, and it would be interesting to make a
comparison with TAJS and other JavaScript static analyzers, such as SAFE [Lee et
al., 2012] and JSAI [Kashyap et al., 2014]. Finally, a similar work has been proposed
in [Ko, Rival, and Ryu, 2019], where the authors propose a weakly sensitive analy-
sis for objects manipulated into loops and fix-point computations, in the context of
JavaScript. The authors build their analysis upon SAFE and focuses more on im-
proving precision on loop computations and seem to have, in the object abstraction,
a single summary property. As future work, it will be interesting to study the re-
lation between the work proposed in this chapter and the work proposed in [Ko,
Rival, and Ryu, 2019] and how to integrate our object abstraction.

111

Chapter 8

Conclusions

In this thesis, we made a little step towards a sound abstract interpreter for dynamic
string manipulation languages. In particular, we first have tackled the problem of
analyzing strings, showing a novel abstract domain for strings by means of finite
state automata. On this domain, we have designed a sound abstract interpreter for
string-to-code statements such as eval, treating the code as any other data type and
treating the abstract interpreter as any other abstract function. We have shown our
approach for a core dynamic language, namely uJS. The language has been defined
to precisely contain the string features we faced in the thesis. Hence, for example,
the language does not contain several important features of JavaScript, such as func-
tions, object prototypal inheritance or built-in objects. At the end of the thesis, we
have exploited again finite state automata to abstract object properties. This contri-
bution must be intended as a proof of concept, since the object extension we made
for uJS still misses important JavaScript object features (e.g., property deletion or
inheritance).

In this chapter we conclude the thesis, reporting the most related work concern-
ing string analysis, analysis of dynamic languages and dynamic code. Then, we will
show the future directions of the work presented here.

8.1 Related works

Static analysis of strings. The issue of analyzing strings is a widely studied prob-
lem, and it has been tackled in the literature from different points of view. For this
reason, the analysis of strings is nowadays a relatively common practice in program
analysis due to the widespread use of dynamic scripting languages. Examples of
analyses for string manipulation are in [Doh, Kim, and Schmidt, 2009; Christensen,
Moller, and Schwartzbach, 2003; Yu, Alkhalaf, and Bultan, 2011; Thiemann, 2005;
Minamide, 2005; Kim, Doh, and Schmidt, 2013; Loring, Mitchell, and Kinder, 2019].
The use of symbolic (grammar-based) objects in abstract domains is also not new
(see [Cousot and Cousot, 1995; Heintze and Jaffar, 1994; Venet, 1999]) and some
works explicitly use transducers for string analysis in script sanitisation ([Hooimei-
jer et al.,, 2011] and [Yu, Alkhalaf, and Bultan, 2011]), all recognizing that specifying
the analysis in terms of abstract interpretation makes it suitable to potential com-
binations with other analyses, providing a better potential in tuning accuracy and
costs. In [Yu et al., 2008], the authors propose a symbolic string verifier for PHP
based on finite state automata, represented by a particular form of binary decision
diagrams, the MBDD. Even if it could be interesting to understand whether this
representation of DFAs may be used also for improving our algorithms, their work
only considers operations exclusively involving strings (not also integers such as
substring) and therefore it provides a solution for different string manipulations.

112 Chapter 8. Conclusions

In [Choi et al., 2006], the authors propose an abstract interpretation-based string an-
alyzer approximating strings into a subset of regular languages, called regular strings
and they define the abstract semantics for four string operations of interest together
with a widening. As far as our string analysis based on finite state automata is con-
cerned, this is the most related work, but our approach is strictly more general, since
we do not introduce any restriction to regular languages and we abstract integers on
intervals instead of on constants (meaning that our domain is strictly more precise).
In [Park, Im, and Ryu, 2016], the authors propose a scalable static analysis for jQuery
that relies on a novel abstract domain of regular expressions. The abstract domain
in [Park, Im, and Ryu, 2016] contains the finite state automata one but pursues a dif-
ferent task and does not provide semantics for string manipulations. Surely it may
be interesting to integrate our library for string manipulation operators into SAFE.
The authors of [Midtgaard, Nielson, and Nielson, 2016] propose a lattice-based gen-
eralization of regular expression, formally illustrating a parametric abstract domain
of regular expressions starting from a complete lattice of reference. However, this
work does not tackle the problem of analyzing string manipulations, since it instan-
tiates the parametric abstract domain in the network communication environment,
analyzing the exchanged messages as regular expressions.

Finite state machines (transducer and automata) have found a critical application
also in model checking both for enforcing string constraints and to model infinite
transition systems [Lin and Barcel6, 2016]. For example, the authors of [Abdulla et
al., 2014] define a sound decision procedure for a regular language-based logic for
verification of string properties. The authors of [Bouajjani, Habermehl, and Vojnar,
2004] propose an automata abstraction in the context of regular model checking to
tackle the well-known problem of state space explosion. Moreover, other formal sys-
tems, similar to DFA, have been proposed in the context of string analysis [Bouajjani
et al., 2008; Alur and Madhusudan, 2004; Holik et al., 2018]. As future work, it can
be interesting to study the relation between standard DFA and the other existing
formal models, such as logics or other forms of FA.

Static analysis of dynamic languages. During the years both the programming
language research community and the industry have spent much effort in analyz-
ing dynamic languages. For PHP language several tools and analyses have been
proposed with the common purpose of detecting or mitigating vulnerabilities and
security holes on web applications [Hauzar and Kofron, 2015b; Hauzar and Kofron,
2014; Wilhelm, Sagiv, and Reps, 2000; Jovanovic, Kriigel, and Kirda, 2006, Dahse
and Holz, 2014; Kneuss, Suter, and Kuncak, 2010; Saxena et al., 2010]. Nevertheless,
none of them faced the problem of analyzing programs that dynamically generated
code. Even for JavaScript, very few static analyzers tried to face the problem of
statically analyzing eval and its variants. For example, some analyses are based
on JavaScript subsets that do not include eval, forbid its usage [Anderson, Gian-
nini, and Drossopoulou, 2005] or simply ignore its effects [Guarnieri et al., 2011],
making the analysis drastically imprecise or even unsound. In the following, we
briefly present some of the most important JavaScript static analyzers that have in-
spired this thesis, with the goal of improving the precision of JavaScript analyses,
especially in the case of dynamic code generation.

We have already introduced TA]JS [Jensen, Jonsson, and Meller, 2012], but other
static analyzers for JavaScript, based on abstract interpretation, have been devel-
oped, such as JSAI [Kashyap et al., 2014] and SAFE [Lee et al., 2012]. They aim

8.2. Future directions 113

at a flexible, configurable and tunable tool focusing on context-sensitiveness, heap-
sensitiveness [Kashyap et al., 2014] and loop-sensitiveness [Lee et al., 2012]. Never-
theless, they do not explicitly mention solutions to analyze dynamically generated
code by eval. TamiFlex [Bodden et al., 2011] also synthesizes a program at every
eval call by considering the code that has been executed during some (dynamically)
observed execution traces. The static analysis can then proceed with the so obtained
code without eval. It is sound only with respect to the considered execution traces,
producing a warning otherwise. Similarly, in [Loring, Mitchell, and Kinder, 2019],
the authors relies on regular expressions proposing in dynamic symbolic execution
for JavaScript, modeling the complete regular expression language of ECMAScript
6.

Static analysis for a static subset of PHP (i.e., ignoring eval-like primitives) has
been developed in [Biggar and Gregg, 2009]. Static taint analysis keeping track of
values derived from user inputs has been developed for self-modifying code by par-
tial derivation of the control-flow graph [Wang et al., 2008]. The approach is limited
to taint analysis, e.g., for limiting code-injection attacks. Staged information flow for
JavaScript in [Chugh et al., 2009] with holes provides a conditional (a la abduction
analysis in [Giacobazzi, 1998]) static analysis of dynamically evaluated code. Sym-
bolic execution-based static analyses have been developed for scripting languages,
e.g., PHP, including primitives for code reflection, still at the price of introducing
false negatives [Xie and Aiken, 2006].

We are not aware of effective general purpose sound static analyses handling
self-modifying code for high-level scripting languages. On the contrary, a huge ef-
fort was devoted to bring static type inference to object-oriented dynamic languages
(e.g., see [An et al., 2011] for an account in Ruby) but with a different perspective:
Bring into dynamic languages the benefits of static ones — well-typed programs don’t go
wrong. Our approach is different: Bring into static analysis the possibility of handling
dynamically mutating code. A similar approach is in [Anckaert, Madou, and Boss-
chere, 2006]. The idea is that of extracting a code representation which is descriptive
enough to include most code mutations by a dynamic analysis, and then reform
analysis on a linearization of this code. On the semantics side, since the pioneer-
ing work on certifying self-modifying code in [Cai, Shao, and Vaynberg, 2007], the
approach to self-modifying code consists in treating machine instructions as regu-
lar mutable data structures, and to incorporate a logic dealing with code mutation
within a la Hoare logics for program verification.

8.2 Future directions

The approach of the thesis has been provided for a running core dynamic language,
namely uJS. Clearly, this is not a real-world programming language. Anyway, we
are already integrating finite state automata and the eval analysis upon TA]JS, in
order to analyze real JavaScript programs.

As far as string analysis is concerned, we have presented the abstract semantics
of five popular string operations, but the static analyzer implementation also con-
tains other string operations taken from the built-in JavaScript global object String,
as we have previously discussed. Nevertheless, we still miss some string operation,
such as replace, and, more important, there is no support for JavaScript regular
expressions. We are already working to fully cover the operations offered by the
String global object, providing also support for JavaScript regular expressions. The

114 Chapter 8. Conclusions

finite state automata domain is equipped with a widening in order to enforce con-
vergence in fix-point computations. As we have mentioned in Section 2.5, abstract
interpreters only equipped with widening may lead to a big loss of precision. For
this reason, other investigations will be addressed in order to provide a narrowing
for automata.

We are strongly confident the proposed approach for analyzing string-to-code
statements places an important starting point for analyzing real-world programs
that dynamically change their own code at run-time. We think that an important
application is for analyzing JavaScript malware. As shown in the introduction, hid-
ing the malicious intent into strings to be later converted to executable code seems
to be a common practice in malware, also because of the lack of analyzers for such
programs and the difficulty behind analyzing self-modifying code.

We have discussed the limitations of the analysis of eval in Section 6.6.1. In
particular, problems arise when the cycles inside the automaton from which an ex-
ecutable program must be extracted do not read executable statements. Cycles in
automaton occurs because of widening application in fix-points computations. We
have already mentioned narrowing to mitigate this problem but also smarter tech-
niques to improve precision of loop computations may be integrated in order to re-
move cycles in the automata constructed by fix-point computations. For instance, we
think widenings with threshold and loop unrolling may decrease, in certain cases,
the number of false positive values, obtaining automata without cycles. Also loop
analysis techniques such as the one reported in [Park and Ryu, 2015] may help to
obtain more precise string abstract values in loop computations. Further investiga-
tions will address our future works in order to improve the string analysis proposed
here.

Rather than improving the underlying string analysis, we are currently investi-
gating another (and more general) solution trying to answer about those eval pat-
terns such that their inputs are abstracted to non-cycle executable automata. In this
work-in-progress investigation, the idea is to formally relate semantic and syntactic
abstractions. In the thesis we have focused only of semantic abstractions, acting on
data abstraction (e.g., finite state automata) and standard control-flow graphs. We
are currently studying how to involve syntactic abstraction, namely code abstrac-
tion, that does not interfere with the semantic one. Informally speaking, the aim
is to abstract the syntax of the language of interest without changing the abstract
interpreter we want to involve for answering about programs written in that lan-
guage. The non-interference relation between syntactic and semantic abstractions is
formalized in terms of forward completeness. In order to give the flavor of what it is
our goal, let us consider the example reported in Section 6.6.1. As we have already
mentioned before, our eval analysis fails to synthesize, to a control-flow graph, the
automaton recognizing the language . = { x=(5)"; | n > 0 }, since the automa-
ton is non cycle-executable. Supposing to perform a sign analysis, it is worth noting
that any executable string of ¢ is not distinguishable for the sign analysis, since
the abstract execution of any executable string would assign the positive abstract
value to x. Hence, the idea is to abstract the language syntax adding an abstract
statement x=+; such that its concretization contains any statement that assigns pos-
itive values to x. Namely, the syntactic abstraction merges statements that cannot
be distinguished by the semantic abstraction. In this sense, we say that the syntax
abstraction does not interfere with the semantic one, ensuring to still preserving the
property we want to analyze (e.g., signs in the above example).

Finally, in the thesis we have reported several uJS examples showing that our
approach is promising for analyzing more complex JavaScript programs but we are

8.2. Future directions 115

aware of the fact that further comparisons with existing static analyzers must be take
into account in future works in order to validate our approach, also in more challeng-
ing real world JavaScript test cases. The absence of a more advanced comparison is
due to the absence of a static analyzer for JavaScript, but only for a dynamic core
language. Nevertheless, as we have already mentioned, we are integrating finite
state automata abstract domain, the corresponding string analysis and the analysis
of eval upon TAJS. This would permits us to better validate the approach by show-
ing a comparison with the other static analyzers.

117

Appendix A

Proofs

In this appendix we report all the long proofs of the results presented in the thesis.
The proofs are listed in order of appearance. Some other theorems and lemmas,
which are needed by the proofs, are also presented here.

Theorem 4.2

Proof sketch of Theorem 4.2. Following Theorem 2.40, the result of the procedure to
obtain the absolute complete shell of ps» with respect to the concat operation is
given below. In particular, we obtain the greatest fix-point after one step, computing:

pse=M(psy U |J max({x€p(X) |[concat(z,x)] Sy })))

zep(X*),yEpsr

since U max({ x € p(X*) | [concat(x,z)] C y }) does not add new ab-
z€p(X*) yepsrF
stract points to the complete shells.

Table A.1 shows how the abstract points of the complete shell are added (in
particular, the ones reported in Figure 4.4 in the dashed boxes). The points in the
standard boxes are added by Moore closure of the other points. In Table A.1, it is
possible to check, for each cell, that no other string values are added to the ones re-
ported inside the cell, since they would violate the dominance relation expressed by
Theorem 2.40.

O

Theorem 4.4

Proof sketch of Theorem 4.4. Following Theorem 2.39, the result of the procedure to
obtain the complete shell of p7; relative to pr;, with respect to the toNum operation
is given below.

or = M(pr; U(|J max({ze (=) | [toNun(z)] Sy })))

yeijN

Since T7; and L7, trivially belongs to pt;, and the singleton strings do not add any
novel abstract value in the complete shell, the only points we need to add to p;; are
the ones reported in the following. Note that the concretization of the abstract value
NotUnsignedInt in 77 are all the float strings and the non-numerical strings.

max({ z € p(X*) | [toNum(z)] C ¥7s,(Unsignedint) })
=max({z € p(X¥) | [toNum(z)] S {n|neN}})
= {0 € X" | risnotnumeric } U{ ¢ € ¥ | 0 is unsigned integer string }

118 Appendix A. Proofs

"s" € NotNum
1
1
L
lVvoex*
Lveoexr
lveex*
T

vt e F
L
1
L
lveoekX®
1lveeXx®
1
T

'n" € Z
€
s
€
1lveoeX*
s
€
T

NotNumeric
1
[NotNum ~ {""}]
U NotUInt
U NotUFloat
NotNumeric
U NotUlInt
U NotUFloat
[NotNum ~ {""}]
U Float
U NotUInt
NotNumeric

[NotNum ~ {""}]

)

Numeric
1
{""}UUlInt
1
U Ulnt
U UFloat
{""}UUInt
1
T

T
Numeric
NotNumeric
"n", n is integer
nfr f is float

"s" € NotNum

TABLE A.1: SAFE completion

= concretization of UnsignedOrNotNumeric

Any other string is not contained in the maximum set of strings whose image of
toNum is dominated by elements of Unsignedint, since toNum operation on signed
number strings (i.e. "f" € ¥* s.t. f is a float or signed number) return either signed
numbers of float numbers, that are not dominated by elements of UnsignedInt.

max({ z € p(X*) | [toNum(z)] C ¥, (NotUnsignedint) })
=max({ z € p(X*) | [toNum(z)] C { ¢ € ¥ | 7 is signed or float string } })
= { 0 € " | ¢ is a float string or a signed number string }

= concretization of SignedOrFloat

Any other string is not contained in the maximum set of strings whose image of
toNum is dominated by elements of NotUnsignedInt, since toNum operation on un-
signed strings (i.e. "n" s.t. n is a natural) or not-numerical strings return 0, that is

Appendix A. Proofs 119

not dominated by elements of NotUnsignedInt
Hence, the complete shell of p;; relative to p7;, w.r.t. toNum is obtained as

o1 = M(prs U UnsignedOrNotNumeric U SignedOrFloat)

that is the abstract domain reported in Figure 4.6, where NotNumeric is obtained by
Moore closure, namely by the intersection between the concretization of NotUnsigned
and the concretization of SignedOrFloats. O

Theorem 6.8

Proof of Theorem 6.8. Here we need to prove soundness of the abstract implicit type
conversion methods toBool”, tolnt* and toString#. As mentioned in Section 6.2.1, we
focus on the implicit type conversion concerning strings, since the other cases are
straightforward.

> toBool*

We abuse notation denoting by toBool : p(X*) — ©(BOOL) the collecting semantics
of the implicit boolean conversion function concerning strings, obtained lifting the
definition of toBool on strings reported in Figure 3.2, namely

toBool(.Z) £ { toBool(¢) | ¢ € £ }

Here we show that toBool” is complete (and hence sound), formally VA € DFA /-
holds

toBool (Ypyn(A)) = Ypyn(toBool*(4))

We have three cases:
o A= I\/Iin({e})

toBool (Ypyn(A)) = toBool (£ (4)) = toBool({e}) = {false} = Ypyn(toBool*(A))

e Alp, Min({€}) # Min(@). Since any non-empty string is converted to true,
the thesis holds.

toBool (7pyn(A)) = toBool(Z(4)) = {true} = Ypyn(true) = Ypyn(toBool*(4))

e In the remaining case, A recognizes both the empty string and at least a non
empty string, hence toBool(.£(A)) returns {true, false}

toBool(ypyn(A)) = toBool(.Z(A)) = {false, true}
= ’YDyn(TBooI) = YDyn (tOBOOl#(A))

> tolnt”

We abuse notation denoting by tolnt : p(X*) — ©(INT) U p({NaN}) the collecting
semantics of the implicit integer conversion function on strings obtained lifting the
definition of tolnt on strings reported in Figure 3.2, namely

tolnt(£) £ { tolnt(c) | c € £ }
Hence, in order to prove soundness we need to prove VA € DFA the following fact.

toInt(.i”(A)) EDyn YDyn (tOInt#(A))

120 Appendix A. Proofs

We have three cases:

e Allpg Min(Xz). This means that A does not recognize any numerical string,
consequently any string of .Z’(A) is converted to NaN

tolnt(Z(A)) = {NaN} = ypyn(tolnt*(A)) = vpyn(NaN)

e A Cp, Min(Xz). This means that A only recognizes numerical strings. In this
case, the abstract function tolnt” checks if A either reads, from the initial state,
only digits or + symbol, or only the — symbol. In the first case, it means
that .2 (A) only contains numerical non-negative strings, that are converted,
by tolnt, only to non-negative numbers, hence

tolnt(Z(4)) € {n]n >0} C ypyn(tolnt*(4)) = ypyn ([0, +o0])

In the second case, it means that £ (A) only contains numerical non-positive
strings, that are converted, by tolnt, only to non-positive numbers, hence

tolnt(Z(8)) € {n | n <0} C ypyn(tolnt”(8)) = Ypyn([—00,0])

If the automaton both reads, from the initial state, digits or + symbol and
— symbol, it means that that £’(A) contains numerical positive and negative
strings, hence the thesis holds.

tolnt(Z(A)) € Z C ypyn(tolnt*(4)) = Ypyn([—00, +00])

e In the last case, A can recognize both numerical and non-numerical strings and
tolnt” returns Tpyn, hence the thesis trivially holds.

o> toString”

We abuse notation denoting by toString : VAL — STR the collecting semantics of the
implicit string conversion function obtained lifting the definition of toString reported
in Figure 3.2, namely

toString(S) £ { toString(v) |v € S}
Hence, in order to prove soundness we need to prove Vv € Dyn the following fact.
toString(Ypyn () C Ypyn (toString® (v))
We split the proof in the following cases, depending on the type of v.
e v € Bool
- if v = true:
toString({true}) = {true} = ypyn(Min({true})) = vpyn(toString*(v))
- if v = false:
toString({false}) = {false} = ypyn(Min({false})) = ypyn(toString”(v))
- if v = TRool

toString({false, true}) = {false, true}

Appendix A. Proofs 121

e U C

= Ypyn(Min({false, true})) = ypyn (toString® (v))

Ints: we split the proof in several cases, depending on the value of the

input interval v.

ifv=1[i,j],withi,j € Z:

toString([i, j]) = { S(n) [n € [i,j] } = |J Z(Min({S(n)}))

neli]
=2Z(| Min({S(n)})) = 1oy || Min(S(n))) = Yoyn(toString®([i,)
nelij] nelifl
if v = [0, 400] or v = [—00,0]: in the first case, toString(v) = { S(i) | i >

0 }, containing only non-negative numerical strings. In this case, toString”
returns the automaton A™ reported in Table 6.4 (second row), recognizing
only non-negative numerical strings, hence toString(v) = ypyn(AT) =
Z(AT). In the second case, toString(v) = { S(i) | i < 0 }, containing
only non-positive numerical strings. The corresponding abstract seman-
tics toString” returns the automaton A~ reported in Table 6.4 (third row),
recognizing only non-positive numerical strings, hence the thesis holds
since toString(v) = ypyn(A7) = ZL(A7).

if v = [k, +o0], with k > 0:

toString(v) = { S(i) | i >k} ={S@) |i>0}~{5(0),...,S(k—1)}
— 2(Min(a%)) ~ Z(Min({S(0),...,S(k—1)})

= 2 (toString" ([0, +0])) \ £ (toString"([0,k — 1]))

= Z(toString" ([0, +00]) \pp,_ toString® ([0, k — 1]))

= Yyn(toString” ([k, +00]))

if v = [—k, +o0], with i > 0:

toString(v) = { S(i) | i > —k } = {S(—k),...,S()}U{S@E) |i>0}
= ZMin({8(=k),...,S(1)})) UL (Min(a™))

= Z(toString" ([—k,1])) U Z(toString® ([0, +-00]))

= Z(toString” ([—k, 1]) Upg, toString® ([0, +00]))

— oyn(toString® [k, +o0]))

v = [—o0,k| or v = [—o0, —k]|, with k > 0: the proof is analogous to the
previous two cases.

v = [—o00,+o0]:

toString(v) ={S(n) | neZ}={n|n<0}u{n|n>0}
= X(toString#([—OO, 0]) Upga toString#([O,+oo]))

= Z(Min(£z)) = Ypyn(toString” ([—oco, +0]))

122 Appendix A. Proofs

O]

Lemma A.1. Let A € DFA = and [€ IN. The following result holds

Ss(L(4), [, +ool, [I, +o0]) = £(SS7 (A, 1))

Proof. In the proof we will use the following result on suffixes. Given the regular
language .Z the following result holds:

{yEZ*

SS(.Z(A), [1, +00], [I, +c0]) =

= PSs(Z (), I, +0c0],[I, +00]) UNSS(Z(4), [I, +0], [I, +00]) |Def. 5.14F
B dx,z € X*.yz € SU(Z(A),a)

{ z € SU(Z(A),b),a,b € [I, +oo] }
U{y|yesu(Z(a),a)nZ=t=a,bc[l,+o0] }U{e} |Defs. 5.6,5.7§
B dx,z € X*.yz € SU(SU(Z(A),1))
{y 2 € SU(SU(Z(A),1)) }

Jz € ¥*.yz € SU(Y)
z € SU(Y)

} {yEZ*‘ Jz € Z*.yz € SU(Y) } (A1)

)
U{ylyeSu(su(Z(4)l))}u{e} {Eq. 2.1§
={y|3IxzeX" yze Su(Su(Z(a),l)) }
U{y|yesu(Su(Z()l)) }uU{e} [Eq. A.1§
= PR(SU(SU(Z(A),1)))USu(Su(Z(a),1)) U{e} ¢ C PR(Z)S
= PR(SU(SU(Z(A),1))) U {e} |Def. 2.42§
= FA(SU((8),1)) le € FA(Z)S
Z(FA(SU(A,1))) {Thm. 2.50§
Z(SS7(a,1)) |Def. 5.16§
O
Theorem 6.3

Proof of Theorem 6.3. Without loss of generality, we suppose that any integer value
is positive. Indeed, when a negative value is met, it is treated as 0. For the same
reason, when an interval that is fully contained in [—co, —1] is met, it is rewritten as
the interval [0, 0], and when an interval [—oo,i], with i > 0, is met, it is rewritten as
the interval [0, 7], following the SS semantics (any negative index is treated as 0)

> Table 6.1

Second row of Table. 6.1

e i,j,l,k € Z (second row, second column): completeness follows from Theo-
rem 5.14.

o i,j€Z,j=—00,k € Z (second row, third column)

Ss(L(A), [i,jl, [—eco, k) i<

Appendix A. Proofs 123

1) USs(Z(a),[i,j],[0,k]) | Def. of Ssf
,10,k]) 1 U-left-most C U-right-most|
,[0,K])) IZSd-row, ZSdcol.S
,[—o0,k])) |Def. of SS*

= Ss(Z(h), zl] [l 1)) USs(Z(a),[l, +o0],[I, +0o0]) i <1
= 2(SS*(a, [i,1], [1,1]) 1254 row, 25dcol |
Upes SST7 (4, l)) |Lemma A.1§

= SS(-%(A) [] [— ,—1])

USs(.Z(a),[i,], [0, +o0]) |Def. of 55§
= Ss(Z(4n),[i,]],]0,+o0]) | U —left-most C U — right-most|
= 2(SS*(, [i,], [0, +0])) 1259 row, 31 col. |
= 2(SS*(a, [i, f], [~o0, +00])) |Def. of SS*

Third row of Table. 6.1

o i=—o00,jcZ,I k € Z (third row, second column)

AL
= Ss(.Z(4), 0,7, [1,k]) |Def. of Ss§
= .2(SS"(,[0,7], [L,K])) 1259 10w, 20 ol §
= 2(SS5*(a, [—o0,]], [L,K])) |Def. of S§*
o i=—00,jcZ,|= -0,k & Z (third row, third column)

Ss(Z(4), [0, j], [0, k])

= Ss(.Z(A), 0,7, [0,k]) |Def. of S
= .2(SS"(a,[0,1],[0,K])) 1259 10w, 20 ol §
= 2(SS*(a,[~00,]], [—c0,k])) 1Def. of SS*§

o i=—00,jcZ,] €Z,k= +oo (third row, forth column)

124 Appendix A. Proofs

Ss(Z(4), [—oo,fl, [I, +00])
=Ss(Z(4),[0,/],[1, +00]) | Def. of Ssf
= .2(SS*(8,[0,]], [0,4)) 1254 row, 3tcol.]
= 2(SS*(a, [—o9,]], 1, +9])) Def. of SS*(

o i=—00,j€IN,] =—00 k= +o0 (third row, fifth column)

Ss(ZL(A), [—00, j], [0, +09])
=5s(Z(4),[0,7],]0,4+o0]) |Def. of Ss§
= 2(SS%(a,[0,],[0, +00])) zZSd—row,Brdcol.S
= 2(SS*(a,[~09,]], [0, +00])) |Def. of SS*§

Forth row of Table. 6.1

e ic”Z,j=+oo,l k € Z (forth row, second column)

Ss(Z(A), [i, 4+o0], [L,k])

=Ss(Z(n),[i,1],[1,k]) USS(Z(4n),[l, +oo], [1,k]) i <1<kf
=Ss(Z(A),[i,1],[1,k]) USS(Z(A), [1,k], [1, +c0]) | Def. of SS (SWAPS)
= 2(SS*(8, [i, 1], [1, k]) Unes SS*(A, [1, k], [I, +00])) 125%-row, 214 and 3t9cols.]
= 2(S5*(a, [i, +00], [1,K])) |Def. of SS*§

Ss(Z(1), [i, +0], [—o0, k])

= Ss(.Z(), [i, +o0], [0,k]) |Def. of Ss§
= 2(SS*(, [i, +00], [0,K])) 13" row, 21d_coL
= Z(SS*(a, [i, +o9], [~o0, K])) |Def. of 55§
e ic”Z,j=+oo,l € Z,k= Hoo (forth row, forth column)

Ss(Z (), [i, +00], [1, +-00])

=Ss(Z(8),[i,1],]I, +00]) USS(Z(A),]I, +00], [I, +00]) [Def. of Ss,i < I
=Ss(Z(8),[i,1],[l, +00]) U L(SST (L (h),1)) {Lemma A.1§
=S8s7(Z(8),[i,1],1) UL(SST(ZL(a),1)) [Def. 5.18f
= Z(SST(A,[i,1],]) Upea SST(4,1)) {Thm. 5.17,5.20§
= 2(SS* (4, [i, +00], [I, +0])) Def. of SS*§

e icZ,j=400,] =—00,k = 400 (forth row, forth column)

Ss(Z(A), [i, +00], [—00, +00])
— SS(Z(A), [i, +0], [0, +00]) 1Def. of S5

Appendix A. Proofs 125

(SS*(a, [i, +o0], [0, +00]) 14t row, 4th ol g

<z
Z2(SS*(4, [i, +-00], [—00, +00]) |Def. of SS*[

Fifth row of Table. 6.1

o i =—00,j =400, k € Z (fifth row, second column)
Ss(Z (), [—o0,+00], [L,k])
= Ss(Z(hA),[0,+00], [1,k]) | Def. of Ssf
= 2(SS*(a, [0, +o00], [1,K])) z4th-row, 2ndcol.j
= 2(SS5*(a, [—o0, +c0], [1,K])) |Def. of SS*T

o i=—00,j=400,] = —o0,k € Z (fifth row, third column)

Ss(-Z(4), [0, +-00], [—c0, k])

= SS(ZI(A) [0, +0],0,k]) |Def. of Ss|
= 2(SS*(a, [0, +00],[0,k])) z4th-row, ancol.j
= 2(SS*(A, [0, +00], [0, k])) Def. of SS*T

o i=—00,j=+400,] € Z,k = +oo (fifth row, forth column)

S(L(R), [~00, +o0), 1, +00))

= SS(,Z,(A), [0, +00], [1, +o0]) |Def. of Ss§
= .2(SS*(a, [0, +00], [0, K])) 14t 0w, 4theol |
= 2(S5*(a, [—00, +00], [I, +9])) |Def. of SS*T

o i=—00,j= 400, = —00,k = +oo (fifth row, fifth column)

SS(-Z(4), [0, +00], [0, +00])
= S5(.Z (1), [0, +e9], [0, +-00]) 1Def. of Ss|

Jz € *.yz € SU(ZL(A),1)
=3Y
z €SU(L(A),),i,jeN,i<j

U{y|yesSu(Z),i)nNI7ijeN,i<j}
U{e| £B)NZS £0,ie N} li € NS
dz € ¥*.yz € SU(Z(4),i)
z€SU(Z(A),j)i,jeN,i<j }
| {y y € SU(ZL(A),i) N ES-i }
i,jeN,i<j
U {e) le € SU(L(n),i) NZSI—i§
B dz € ¥*.yz € SU(Z(4),1)
N {y z€SU(ZL(A),)),i,jeN,i<| }

126 Appendix A. Proofs

y € Su(Z(b),i)nzsi— -

u {y } li,j € NJ
,jeN,i<j

{ 3z € T*.yz € SU(L(4), i) }

=y USu(Z(4))
z€SU(Z(A),]),i,j EN,i<j
Jz € ¥*.yz € SU(Z(4),1)

= z € SU(Z(A),]) LU —left D U — right|
,jeN,i<j

{y Jz € Z*.yz € SU(Z(A)) } 1Def. of S|
z € SU(Z(4))

={y| ez yzesuzm) | 1Eq. A.1§

Z{y‘ dx,z € . xyz € Z(8) }

= FA(Z(A |Def. of FA[

— 2 (FA(A)) 1 Thm. 2.50§

= £(SS*(a, [—00, +00], [—00, +09])) |Def. of SS*§

> Table 6.2

In Table 6.2, the proofs concerning the cases compatible with Table 6.1 (i.e., cells
containing Table 6.1) are identical to the ones reported above. Here we proof the

remaining cases.
Second row of Table. 6.2

o i,j€Z,] =40, k=400 (second row, forth column)

Ss(Z(A), [i,], [1, +-e0])

= Ss(Z(n),[i,1],[i,]])
USs(Z(a),[i,j], [j, +o)
= 2(s*(a,[i,1], [i,)
Upe SS*(8, [i, /1, [j, +00]))
= 2(SS*(, [i,]], (1, +0]))

Forth row of Table. 6.2

e icZ,j=+oo,l k € Z (forth row, second column)

SS(Z(A), [i, +o0], [1,k])
= Ss(ZL(a), [i,1], [i, K])
USs(Z(a), (L], [I, +e0])
USs(Z (), [i Kl [k, +eo])
= Z(SS*(a, [i,1], [i, k)
Uoe SS*(4, [1,4], [1, +00])

U <i<kf

[Tab.6.1§
Def. of SS*§

U<i<kf

Appendix A. Proofs 127

Upes SS*(A, [i, k], [k, +00])) {Compl. of Tab.6.1
= 2(SS*(a, [i, +o0], [LK])) |Def. of SS*[
e i € IN,j = +oo,] € ints, k = +oo (forth row, forth column)

Ss(Z(4), [i, +-00], [I, +-09])
Ss(Z(a), L], [i,1])

USS(Z(A), [i, +o0], [i, +o0]) li > 1§

= SS(Z(A),[I, +00], [i, +00])

= 2(SS*(a, [1, +00], [i, +00])) |Tab. 6.1]

= 2(SS*(a, [i, +00], [I, +00])) |Def. of SS*
> Table 6.3

In Table 6.3, the proofs concerning the cases compatible with Table 6.1 (i.e., cells
containing Table 6.1) are identical to the ones reported above. Here we proof the
remaining cases.

Second row of Table. 6.3

e i,j €Z,] = +00, k = +00 (second row, forth column)

Ss(Z(4), [i,j], [, +e0])

=5s(Z(4), [Lj1,[1.]])
USs(Z(h),[i,1],[1, +o0])
USs(Z(A), 1, 1], [j + o)) li<jnj=1f
= Z(SS*(a, 1,41, [L1])

Upes SS*(A, [1, 1], [1, 4-00])
Upes SS*(8, 1, 71, [j + o0])) |Tab. 6.1§
= 2(SS*(n, [i, f], [1, +9])) |Def. of SS*[

Forth row of Table. 6.3

e ic”Z,j=+ox,l k€ Z (forth row, second column)

Ss(Z(A), [i, +0], 1, k])

= SS((4),[L,k], [i, 400]) |Def. of Ss,i > kf
£ (SS*(, [K], [i, +00]) 1Tab. 6.15
ZL(SS* (A, [1, k], [i, +0])) |Def. of SS*§

e icN,j=+oo,] € ints, k = +oo (forth row, forth column)

Ss(L(8), [i, +oo], [I, +-c0])
Ss(Z(a), (L], [i,])

USS(Z(8), [i, +o0], [i, +00]) li>1f
= Ss(ZL(8),[l, +o0], [i, +o0]) {Homom. of Ssf
= 2(SS*(a,[1, +00], [i, +9])) Tab.6.1§
= 2(SS*(4, [i, +00], [I, +0])) Def. of SS*T

128 Appendix A. Proofs

O]

Theorem 6.4

Proof of Theorem 6.4. We proof soundness and completeness of CA* splitting the proof
based on the values of the input interval [i, j|. We observe that if [i, j] Cjns [—00, —1],
then

Ca(Z,[i,f]) = {e} (A2)

Moreover, it easy to see that V.¥ € p(X),i,j € Z.CA(Z, [i,j]) C =1, that is we can
obtain either strings of length 1 or the empty string.

o i, jEZ:

Ca(Z(a),[i,]])

={Ss(o,k,k+1)|ce L) kelij} |Def. of CAf

= |J {{Ss(c,kk+1)} |ce2(n)}
kelij]

= |J 2(sS*(a, [k K, [k+1,k+1])) {Thm. 6.3
kelij]

=2(|] SSA, [k k], [k+1,k+1]))) |Def. of Upy, §

keli,f]
= Z(CA*(A,[i,]])) | Def. of CA*S

ei=—00,jE€Z,j>0:

CA(Z(4),[—o0,]])
= CA(Z(h),[—o0,—1]) UCA(Z(1),]0,]])

= {e}ucCa(Z(a),0,f]) 1Eq. A.2§
= {e} U.Z(CA*(4,[0,1])) li,j € Z case]
= Z(Min({€e}) Up., CA*(4,]0,1])) Def. of Lp, |
= Z(CA*(A, [—0,]])) |Def. of CA*{

e i=—00,j€Z,j<O0:

Ca(Z(4),[-o0,]])

= {e} 1Eq. A.2§
= Z(Min({e}))
= Z(CA* (A, [~o0,1])) | Def. of CA*{

e icZ,i>0,j=+c0:
CA(ZL(A),[i, +oo]) =

. {y 3z € £*.yz € SU(Z(A), k)

1Def. of Ss, |y| < 1§
z € SU(L(R),k+1),k € [i,+o0], |y| =1

dz € ¥*.,yz € SU(Z(4),k)
={e}u {y , }
z€SU(ZL(A),k+1),k>i |yl =1

Appendix A. Proofs 129

dx,z € X*.
= {e} U< y| yz € SU(SU(Z(A),1)) |Def. 2.45(

z € SU(SU(Z(A),i+1)), |yl =1

dx,z € X*.
=ty {y yz € SU(SU(Z(4),1)) } n sl =15
= {e} UPR(SU(SU(Z(A),i))) NX! |Def. 2.42
= PR(SU(SU(Z(4),i))) N ==t le € PRS
= Z(PR(SU(SU(4,1))) Mpex Min(Z=1)) {Thm. 2.50
= Z(FA(SU(A,1)) Mpe, Min(Z51)) | Def. of FAS
= L (CA*(a, [i, +00])) Def. of CA*[

i = —coori € Z,i <0,j = 4o0: let consider the case when i = —oo. The

remaining case (i.e., i < 0) is identical.

CA(Z(A),[—00, +0])
= CA(Z(A),[—0o0,—1]) UCA(Z(4), [0, 4+o0])
={e} UCA(Z(n),]0,+o00]) lEq. A.2§

;

el |yl =1

€ Su(Z(h),k
—feudy (Z(8)E) |Def. of Ss§
z€SU(Z(A),k+1)

k € [0, +o0]

JzeX |yl =1
= {e} U y| yz € SU(Su(ZL(4),0)) Uyl =1,Eq. 2.1§
z € SU(SU(Z(4),1))

ey =1
v } lEq. 2.1§
yz € SU(Z(A)),z € SU(SU(Z(4),1))

{e}u{y ety =1 } Il =1

={e} U

yz € SU(ZL(A))

dz € &%,
={e}Uly } nx! |Def. of PR§
yz € SU(ZL(A))
= {e} UPR(SU(Z(A))) NE!
= {e} UFA(Z(A))NZ! |Def. of FA[
= Fa(Z2(n))nx=t le € FA(ZL)S
= Z(FA(A) Mpgy Min(Z=1) {Thm. 2.50§
= Z(CA*(A, [—00, +c0])) |Def. of CA*{

130 Appendix A. Proofs

O]

Theorem 6.5

Proof of Theorem 6.5. LE* is not complete, i.e. LE*(A) ¢ LE(Z(A)). As a counterex-
ample, consider the automaton A, in Figure 6.2b.

LE*(A) = [3,+0] ={n+3|ncN} ¢ LE(Z(A) ={3,5)U{3n+1|n>0}

As far as soundness is concerned, we argue Vo € Z(A). |c| € LE*(a). Let consider
the following cases:

A has cycle : let o be the minimum string accepted by A. Its length is computed by
searching for the minimum path from the initial to final states (lines 4-8). Since
A has cycles, Algorithm 10 returns the intervals [|o|, +c0] (line 9), hence any
string length greater than |o| is contained in the resulting interval, since it is
positive unbounded.

A has not cycle : let ¢ be the minimum string accepted by A. Its length is con-
tained in the resulting interval as explained in the previous case. Let ¢’ be
the maximum string accepted by A. Algorithm 10 searches for the maximum
length path from the initial to final states (lines 11-20). The resulting interval is
[lo|, |¢’|] hence the maximum length string is contained in it. Any other string
length trivially belongs to the resulting interval, since the resulting interval
goes from minimum string length and maximum string length.

O

Lemma 6.10

Proof of Lemma 6.10. The proof is done by structural induction on the structure of uJS
(for the sake of readability we avoid program point labels, since they are not relevant
in the proof). Note that, by definition, P = c;, and all the statements composing c
are separated by ;, hence by trivial induction on ¢ we can prove that any statement
generated by the grammar uJS is in ¢ followed by a ;. Hence, in the following in the
base of the structural induction we consider also ¢; (we need also c for the induction
in the while and if body). We make the proof by structural induction on c.
Base cases:

e skip and skip;
Since both skip, skip; € Ypstn, by definition and since & on sequences already
in X* is the identity, the thesis trivially hold.

e x—eandx = e, withx € IDand e € E.
Let us prove by cases on e

— If e does not contain punctuation symbols in Punct, both x = e,x = ¢; €
Y psen and therefore, as in the previous case, we have the thesis.
— If e contains at least one punctuation symbol in Punct.

Let G(e) = o° the string counterpart of the expression e, such that 0| =
n. Letk € IN \ {0} the number of punctuation symbols that occurs in c®

Appendix A. Proofs 131

and {p; }c 0,x—1) the position in the string ¢ where a punctuation symbols
occurs. A representation of the string in Yys¢n.

S ZpStm S Zvatm
e e e\ e e\
X=00...0p5 . Op ouo.. Oy vvvves o,
N———
(S ZpStm S Z'pStm

Since py is the first position where a punctuation symbol occurs in &(x =
e), the prefix up to o form a partial statement. The following sub-strings,
i.e., all the sub-strings between p; and p;1,7 > 0, form partial statements,
since between p; and p;.1, in ¢¢, does not occur any punctuation symbol
by construction. The substring of ¢® after px + 1 (i.e., the next character
after the last punctuation symbol of ¢® if present) is a partial statement,
since it does not contain other punctuation symbols always by construc-
tion.

e eval(s) and eval(s); with s € SE.
Let us prove by cases on s

- s does not contain punctuation symbols. In this case, eval(s) = &(opo)
where {0;}ic(01] € Zpsen are 0p = eval(and 01 = s). Instead, eval(s); =
S(opo102) where {Ui}ie[olz] C Ypsemare 0p = eval(, 07 =s) and 0y = ;.

— s contains at least a punctuation symbol. In this case, s is split similarly to
e in the proof of the assignment case.

Inductive step:

e sty;sty, with sty, st € STMT and st; not ending with ;
For inductive hypothesis, st; and st, can be written as concatenation of partial
statements, i.e., k1, ky € IN {O} '{O'i}ie[O,lq] - ZpStm; {(5i}i€[0,k2] - ZpStm sty =
S(00...0), st = &(dg...d,). Moreover, by definition ; € Xpsen hence, we
are able to rewrite the statement sty; st with the partial statements {0 }c(ox,]
of sty, ; and {5i}ie[o,k2] of st».

& - ‘Skz S Z;Stm
sty; sty
~—
0.0 € Lisen

where 0] £ 0;; which is a partial statement since, by hypothesis st; was not
ending with a semi-colon.

e while(e){ st } and while(e){ st }; with e € E, st € STMT not ending with ;
Let us prove by cases on e:

— e does not contain punctuation symbols. By inductive hypothesis, the
statement st can be rewritten as sequence of partial statements i.e., 3k €
IN {0} {ci}icjon € Zpstn-st = &(0p. .. 0}). Hence, we can compose the
while statement in the following way (consider the case ending with ;,
the other one is similar without the last partial statement).

€ Zpstn 000 € Lhgen

~ N
while(e) { st} ;
—— N, ~

€ ZpStm c ZpStm S z‘pStm

132 Appendix A. Proofs

where 0] = 0;} which is a partial statement since by hypothesis st does
not end with a semi-colon.

— e contains at least a punctuation symbol. In this case, e is split similarly to
the proof of the assignment.

o if(e){st; jelse{sty} and if(e){st; }else{str }; e € E, sty, st € STMT and
stq, st not ending with a semicolon. The proof is similar to the while statement
case.

O]

Lemma 6.11

Proof of Lemma 6.11. We generalize the above lemma on the language recognized on
a generic state g € Q, namely

Vo € Ligen 30 € Q. 6(0) € Z4(8) = 0 € £, (AP%7)

It is worth noting that the transformation from A to APS*® is performed by the pro-
cedure Build (Algorithm 13), computing, given g € Q, the set I; of pairs (partial
statement, reached state), namely the partial statements recognized from g and the
corresponding reached state. The procedure StmSyn (Algorithm 12) does not affect
the set I, since it simply builds the desired automaton adding the partial statements
and the corresponding reached states to APS*® (lines 6-8). In particular, the procedure
Build is recursively called on these reached states. Once a generic couple (c,q’)
is added to I, the corresponding transition (g,0,4") is added to APS®® Hence, it is
clear that 3¢’ € Q.(v,q') € I, & o € £ (AP5™), for some q' € Q4. For this rea-
son, in order to prove the above lemma, we focus on showing, given g € Q, that
39" € Q. 68(0) € Z,(A) then (&(c),q’) € I;. The proof is conduced by induction on
the length of .

Base cases: || = 1, meaning that o € Z;s¢n. Let suppose that 3g € Q. &(0) € Z(4).
We can split the base cases as follows.

e 0 € Punct: The first call to Build (line 6 of Algorithm 12) is Build(4, o), that
calls BuildTr(qo, ¢, @) (line 3 of Algorithm 13). By definition, any character
of Punct is a single character, meaning that there exists a transition in A from
qo to g labeled with & (o), namely (g0, &(c),q) € 6%. The transition is taken
into account at line 2 (i.e. the pair (&(c),q) € A,) and will be eventually
selected at line 4. No states have been already marked, since it is the first call
to BuildTr, hence the execution passes the test at line 6. The test at line 7 fails,
since o € Punct while the test at line 9 is successful, since (o) € Punct and
word.(&(0)) = &(0) € Punct C Ypgen. Hence, the couple (o,) is added to I,.
Other transitions may be selected at line 4 of Algorithm 13, without removing
the ones already added.

e 0 ¢ Punct: By definition of Xys¢n, any single partial statement is a sequence
of some non-punctuation symbols ending with a punctuation symbol (e.g.,
x =5;). Hence, &(0) can be rewritten as &(c) = S(c'p), p € Punct, ¢’ €
(X N Punct)*. Let n = |S(c”)| be the length of &(¢’) and ¢; be the i-th charac-
ter of §(0”’). Since &(0) € .Z;(4), there exists a path of A from g to g that reads
&(0) = &(c'p), thatis Vi € [0,n — 1]. (g;,¢i, giv1) € 62 A (qu, p,q) € 6.
As in the previous case, the first call to Build is Build(4,qp), calling then
BuildTr(qo, ¢, @) (line 3 of Algorithm 13). The transition (qo, co,q1), i-e., the

Appendix A. Proofs 133

transition that reads the first symbol of (), is taken into account at line 2
and will be eventually selected at line 4. Since no states have been marked yet,
the test at line 6 is successful. ¢j is not a punctuation symbol, hence, the cur-
rent call also passes the test at line 7, performing a recursive call to BuildTr,
namely Buildtr(qs,co, {90, 91}), accumulating ¢y in the second parameter of
the recursive call and searching for the first punctuation symbol. In particu-
lar, for any i € [0, |n — 1|], when the transition (g;,c;, gi+1) is selected at line
4, any recursive call to BUILDTR on a state g; will fall down in a recursive call
to gi+1, at lines 7-8 of Algorithm 13 and it accumulates the current charac-
ter, namely c;. Hence, when BuildTr is called on the state g,, the parameter
word is &(0”), and this call corresponds to the last recursive call of the path
we are considering, namely BuildTr(q,, S(c”),{q0,41,--.,qn}). The transition
(9n, p,q) is added to A,, at line 2 and it will be eventually selected at line 4.
Since p € Punct and 0’'p € psen, the pair (0'p,q) = (0, q) is added to I,,.

Inductive step: Let A be a cycle-executable FA and let consider n € IN,n > 1. We
suppose that Vo € Yig. o] < 1,39 € Q.6(0) € Z(A) = 0 € Z;(AP™"). We
prove that V6 € Xig,. [6] > 1,39 € Q.6(8) € L (A) = 6 € Ly (AP™).

Let consider § = ¢o’, where ¢’ € Yysen, and suppose that 39" € Q. &(0) € £, (A),
meaning that there exists a path in A from g to some state g’ that reads J. Since &(0)
is a prefix of &(0), it is clear that, starting from g, it will reach some state g of A,
namely 37 € Q. &(0) € Z(A). Hence, for inductive hypothesis, ¢ € Z;(APS*™).
Let o = 09,07 ...04_1, Where 0; € Zpgen, for i € [0,n — 1]. The state g is a reachable
state in APS*™ and, in particular, it is reached by the last partial statement of ¢, namely
(04—1). For our hypothesis, from g it is possible to read G(¢”), hence, Build(4, q) will
be called at line 6 of Algorithm 12. Since the lemma is independent from the state, we
can apply the same cases showed in the base, starting from g and showing that also
the pair (¢/,4’) will be added to the set I, and consequently to APS*". Concluding,
since o € Z;(APS*™) A (0'q") € I; = 6 = o0’ € Ly (AP5™™) .

Since the generalized lemma has been proved for a generic state g € Q, clearly
Lemma 6.11 also holds when g € F.

O

Proposition A.2. Let i, r;,r € RE. By construction of | - { and CFG,,s the following
facts hold.

7 € Paths(CFG,ys({r1f))V

T € Paths(CFGst(Zrzj))
Paths(CFG,s(1(r1)*f)) = { true(rmtrue)” | 7 € Paths(CFG,ys(]r1f)),n € N }

Paths(CFGs([r1 | 1r2f)) = { truermtrue

Proposition A.3. Givenr € RE, V§ € Z(r), if 6 ¢ uJS then ¢ is replaced by skip
(hence, discarded) by {rf".

Proposition A.3 follows from the construction of | - {* and { - §, and can be easily
proved by induction of the structure of the regular expressions.

Lemma 6.13

Proof of Lemma 6.13. We recall that & converts a string of strings (in (X*)*) in a string
of chars (in 2*), and code interprets a string of chars as a executable code, if possible.
Let us prove by induction on the structure of r. Let us begin with the base case.

134 Appendix A. Proofs

e let suppose that r = d and code(&(d)) € puJS, then G, = CFG,ys(code(S ())).
¥

By Equation 6.2 we have that Vm* € IM*. 311 C Paths(G,). (code(&(d)))*m
#

UTIEH(] T D# m-.

e let suppose that r = d and code(&(d)) ¢ uJS, then G, = CFG,ys(skip). In this
case, (code(&(d)))* = Am*.m* since it cannot modify memories not being
a legal statement. By construction, V7r € Paths(CFG(skip)) we have that, for
any m* € M*, (code(&(8)))* = (7)* m* = m*, hence trivially we have the
thesis.

-

Let us prove now the inductive steps.

e Letr =ry | Irp. Since a string 6 € Z(r1 | Ir2) can be either belong to £ (r;) or
Z(r2), we can split the proof in two cases. We show the proof when é € £ (ry),
the case & € Z(r) is identical. Let 6 € #(ry). For inductive hypothesis, the
thesis holds for r; and the following fact holds. Let G, = CFGGen(r;), then
V6 € ZL(r).Vm* € M*

1T, C Paths(G,,) s.t. (code(&(5)))*m* C U (m)* m*

m el

Let G, = CFGGen(r) and IT = { truermtrue | 71y € IT; }. By Proposition A.2,
IT C Paths(G,). Moreover, since (true D# m? = m*, namely true semantics
does not alter the input memory, the thesis holds.

(code(G(cS)) [)# m*

c U m* UInductive hp.|
melly

= U (true)* o (711)* o (true)* m* ltrue semantics |
melly

=UJ(n) m* | Def. of TIf
nell

e Let r = rirp. For inductive hypothesis the following facts hold. Let G,, =
CFGGen(ry) and G,, = CFGGen(r;). Then, Vm* ¢ M*

V6, € Z(r1). 31L; C Paths(Gy,) s.t. (code(&(6)))*m* € |
melly
V6, € £(rz). AT, C Paths(Gr,) s.t. (code(&(62)))fm* €

mell,

Let G, £ CFGGen(r) = CFGGen(rirp) and § € .Z(rir2). Clearly, 361 € Z(r1),02 €
ZL(r). 016, = 6. Without loss of generality, let suppose that d1,6, € uJS,
since, by Proposition A.3, any non-executable string would be discarded and
replaced by skip, and the thesis would trivially holds (i.e., G- would corre-
sponds to the CFG of skip and (code(8))*m* = (skip)* m*). Hence, the
paths of G, corresponds to the set IT = { 737y | 1y € 11y, 1o € I, }.

(code(6(9)))* m”
= (code(&(6162)))* m*
= (code(&(8,)))* o (code(& (1)) P* m*

Appendix A. Proofs 135

C U tm)(U (m)fm®) {Inductive hp.§

mell; melly
= U (m)olm)m
nlenl,nzenz

= n)¥ m* | Def. of ITf

mell

e Let r = (r;)*. For inductive hypothesis the following fact holds. Let G, =
CFGGen(r1). Then, Vé; € £(r1). Vm* € M*

Iy C Paths(Gy,) s.t. (code(&(8;)))*m* C U (m)* m*

m el

Let G, £ CFGGen(r)* and IT = { true(m true)” | m; € I1; }. By Proposi-
tion A.2, IT C Paths(G,,)-). Let 61 € Z(r;) and 6 = (61)" € Z((r1)*), for
some n € IN. Since r is regular expression obtained from a cycle executable
automaton, 4; € uJS. Then, V m* ¢ M*

(code(6(4))) m* = (code(&((81)")))* m*

= ((code(&(81)))H)"*m* 161 € uJS§
(Y (m)" m’ UInductive hp.|
mell;
= (true)" o (U (711)* o (true)* m*)" |true semantics|
m el

= Jln) m* |Def. of ITf

7'(51_[
O

Theorem 7.3

Proof of Theorem 7.3. We need to prove the soundness of the expressions and the
statements concerning objects. For any other expression and statement nor regard-
ing objects, we suppose to have soundness. namely V m* € M*

(st)yant (") C yme ((st)*m®) (&) Ye (m*) S YDyn((e)* m*) (A3)
In order to do not clutter the notation, we denote v+ as 7.
Case {sp:ep,S1:€1,...5,: ey}
Given the following object expression

{so:ep,S1:€1,...Sn:€n}

in the proof, let o = [Min({s,})— (en)*m*] e... e [Min({so})+ (e)*m"].

({so:eo,51:€1,...50:¢€n})y(m")

v; € (&)y(m*)

Vi € [0,n] } Def. (-)

= {[Sn'—ﬂ)n] o...[s1—11] @ [s0— Vg

Appendix A. Proofs

136
{ Vi € [0,7] }
Sn>0y) @ ... [s1+>01] @[50 Dg)

v; € v((&)* m¥)
Vi € [0,n]

= { Sur>Up| @ ... [s1—01] @[S Vg
v € y(0*(s1))
Vi € [0,n]

= [our>ou] @ ... [o1>01] @ [0 Vo] | Vo € Min({s;})
v; € y(0*(0))

= Mm {Sn en D# #] [MIH({S()})H &

= ({So 1€0,51:€1,..--Su: en} # #)

Case (x =newo)

(x =newo)y

() =

= 7(m")[x < (o)y(m*)]

"l

Case xs]
(x[s])y (m*) =
=U{o(s) o€ (x)y(m*),s € (s)y(m
C Ul o6s) loer((x)*m*),s € y((s)*m
=U{ o(s) [0 € y(m*(x)),s € 7((
o] e s e ates

s € P, P € props(y(m*(x)))
_ U] e e s exsyan

s € y(A),A € props(m*(x))
~Udots) o€ y(m*(x)),s € y((s)*m

A € props(m*(x)), y(8) Ny ((s)*m*) # &
B o€ y(m*(x)),s € v((s)*m*),s € v(4)
-U {O(S) A € props(m*(x)), A

H A € props(m*(x))

g'r(l_l{ (x)(a Ao (5)F e £ Min(2) })

*),s € props(o) }

*),s € props(o) }
(s)*m*),s € props(o) }

)5 € v(a)

|

|Eq.A.3§

10%(si) = (e)Fm* S

£ Min({s;}))] = 1§

| Def. of ¥
Def. of (-)*§

[Def. (-)

|Eq. A3

|Def. memory |

Def. memory update
y up

Def. memory update
y up

Prop. 7.2§

1Def. (-)*§

(Def. ()
1Eq.A.3§
|Def. | x)*m* |

Def. N§

Closure props. DFA /|

| Def. «§

Appendix A. Proofs 137

= 7((x[s])* m") [Def. (-]

0 € (x)y(m*)
=y(m*)x < oes 0] se(s)y(m*) ¢] (Def. (-]
v € (e)y(m®)
0 € y((x)*m#*)
Cy(m*)[x+ qoes—=1]| seq((s)fm*) ¢l 1Eq.A.3§
vey((e)m?)
0 € y(m*(x))
=y(m*)[x < {oe[s —]| s €q((s)*m*) ¢] 1Def. | x) m*
vey((e)m?)
L | o e)
srle { | o €A (s 1t o el) }]
= y(m")[x + { o]0 € y(m*(x)) e v([[s)* m" — (e)*m"]) }]
=y(m")x & {o]oey(m*(x) o [(s)'m" = (e)*m"]) }] [Def. o
= y(m")[x < y(m*(x) o [(s)*m* = (e)*m¥])] [Def. (m")§
= y(m*[x « m*(x) o [(s) m" = (e)*m"]]) |Def. mem. updpatef
C y(m*[x ¢ m*(x) o [(s)*m" = (e) m* Lpy m* (x) ((s)* m*)]]) {For Upyn |
= 9((x[s] = e)*m¥) |Def. (-)*, Prop. 7.2§

O]

139

Bibliography

Abdulla, Parosh Aziz et al. (2014). “String Constraints for Verification”. In: Com-
puter Aided Verification - 26th International Conference, CAV 2014, Held as Part of the
Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings,
pp- 150-166. DOI: 10.1007/978-3-319-08867-9_10.

Alur, Rajeev and P. Madhusudan (2004). “Visibly pushdown languages”. In: Proceed-
ings of the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA,
June 13-16, 2004, pp. 202-211. DOI: 10.1145/1007352.1007390.

Amadini, Roberto et al. (2017). “Combining String Abstract Domains for JavaScript
Analysis: An Evaluation”. In: Tools and Algorithms for the Construction and Analysis
of Systems - 23rd International Conference, TACAS 2017, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden,
April 22-29, 2017, Proceedings, Part 1, pp. 41-57. DOI: 10.1007/978-3-662-54577-
5_3.

An, Jong-hoon (David) et al. (2011). “Dynamic inference of static types for ruby”.
In: Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011, pp. 459—
472.DOI: 10.1145/1926385.1926437.

Anckaert, Bertrand, Matias Madou, and Koen De Bosschere (2006). “A Model for
Self-Moditying Code”. In: Information Hiding, 8th International Workshop, IH 2006,
Alexandria, VA, USA, July 10-12, 2006. Revised Selcted Papers, pp. 232-248. DOI:
10.1007/978-3-540-74124-4_16.

Anderson, Christopher, Paola Giannini, and Sophia Drossopoulou (2005). “Towards
Type Inference for JavaScript”. In: ECOOP 2005 - Object-Oriented Programming,
19th European Conference, Glasgow, UK, July 25-29, 2005, Proceedings, pp. 428—452.
DOI: 10.1007/11531142\ _19.

Arceri, Vincenzo and Sergio Maffeis (2017). “Abstract Domains for Type Juggling”.
In: Electr. Notes Theor. Comput. Sci. 331, pp. 41-55. DOI: 10.1016/j.entcs.2017.
02.003. URL: https://doi.org/10.1016/j.entcs.2017.02.003.

Arceri, Vincenzo and Isabella Mastroeni (2019). “Static Program Analysis for String
Manipulation Languages”. In: Proceedings Seventh International Workshop on
Verification and Program Transformation, Genova, Italy, 2nd April 2019. Ed. by Alexei
Lisitsa and Andrei Nemytykh. Vol. 299. Electronic Proceedings in Theoretical
Computer Science. Open Publishing Association, pp. 19-33. DOI: 10.4204/EPTCS .
299.5.

— (2020). “A sound abstract interpreter for dynamic code”. In: SAC "20: The 35th
ACM/SIGAPP Symposium on Applied Computing, online event, [Brno, Czech Repub-
lic], March 30 - April 3, 2020. Ed. by Chih-Cheng Hung et al. ACM, pp. 1979-1988.
DOI: 10.1145/3341105.3373964.

Arceri, Vincenzo, Michele Pasqua, and Isabella Mastroeni (2019). “An abstract do-
main for objects in dynamic programming languages”. In: 8th International Work-
shop on Numerical and Symbolic Abstract Domains - NSAD’19.

Arceri, Vincenzo et al. (2019). “Completeness of Abstract Domains for String Anal-
ysis of JavaScript Programs”. In: Theoretical Aspects of Computing - ICTAC 2019 -

https://doi.org/10.1007/978-3-319-08867-9%5C_10
https://doi.org/10.1145/1007352.1007390
https://doi.org/10.1007/978-3-662-54577-5%5C_3
https://doi.org/10.1007/978-3-662-54577-5%5C_3
https://doi.org/10.1145/1926385.1926437
https://doi.org/10.1007/978-3-540-74124-4%5C_16
https://doi.org/10.1007/11531142%5C_19
https://doi.org/10.1016/j.entcs.2017.02.003
https://doi.org/10.1016/j.entcs.2017.02.003
https://doi.org/10.1016/j.entcs.2017.02.003
https://doi.org/10.4204/EPTCS.299.5
https://doi.org/10.4204/EPTCS.299.5
https://doi.org/10.1145/3341105.3373964

140 Bibliography

16th International Collogquium, Hammamet, Tunisia, October 31 - November 4, 2019,
Proceedings, pp. 255-272. DOI: 10.1007/978-3-030-32505-3_15.

Balakrishnan, Gogul and Thomas W. Reps (2006). “Recency-Abstraction for Heap-
Allocated Storage”. In: Static Analysis, 13th International Symposium, SAS 2006,
Seoul, Korea, August 29-31, 2006, Proceedings, pp. 221-239. DOI: 10.1007/11823230\

15.

Bancerek, Grzegorz and Piotr Rudnicki (2002). “A Compendium of Continuous Lat-
tices in MIZAR”. In: |. Autom. Reasoning 29.3-4, pp. 189-224. DOI: 10.1023/A:
1021966832558. URL: https://doi.org/10.1023/A:1021966832558.

Bartzis, Constantinos and Tevfik Bultan (2004). “Widening Arithmetic Automata”.
In: Computer Aided Verification, 16th International Conference, CAV 2004, Boston,
MA, USA, July 13-17, 2004, Proceedings, pp. 321-333. DOI: 10.1007/978-3-540-
27813-9_25. URL: https://doi.org/10.1007/978-3-540-27813-9_25.

Bessey, Al et al. (2010). “A few billion lines of code later: using static analysis to
find bugs in the real world”. In: Commun. ACM 53.2, pp. 66-75. DOI: 10. 1145/
1646353.1646374.

Biggar, P. and D. Gregg (2009). Static analysis of dynamic scripting languages. Technical
Report. Department of Computer Science, Trinity College Dublin.

Bodden, Eric et al. (2011). “Taming reflection: Aiding static analysis in the presence
of reflection and custom class loaders”. In: Proceedings of the 33rd International
Conference on Software Engineering, ICSE 2011, Waikiki, Honolulu , HI, USA, May
21-28, 2011, pp. 241-250. DOI: 10.1145/1985793.1985827.

Bouajjani, Ahmed, Peter Habermehl, and Tomas Vojnar (2004). “Abstract Regular
Model Checking”. In: Computer Aided Verification, 16th International Conference,
CAV 2004, Boston, MA, USA, July 13-17, 2004, Proceedings, pp. 372-386. DOI: 10.
1007/978-3-540-27813-9_29.

Bouajjani, Ahmed et al. (2008). “Antichain-Based Universality and Inclusion Test-
ing over Nondeterministic Finite Tree Automata”. In: Implementation and Appli-
cations of Automata, 13th International Conference, CIAA 2008, San Francisco, Cali-
fornia, USA, July 21-24, 2008. Proceedings, pp. 57—-67. DOI: 10.1007/978-3-540-
70844-5_7.

Brzozowski, J.A. (1962). “Canonical regular expressions and minimal state graphs
for definite events”. In: Mathematical Theory of Automata 12, pp. 529-561.

Brzozowski, Janusz A. (1964). “Derivatives of Regular Expressions”. In:]. ACM 11.4.
ISSN: 0004-5411.

Cai, Hongxu, Zhong Shao, and Alexander Vaynberg (2007). “Certified self-modifying
code”. In: Proceedings of the ACM SIGPLAN 2007 Conference on Programming Lan-
guage Design and Implementation, San Diego, California, USA, June 10-13, 2007, pp. 66—
77.DOI: 10.1145/1250734.1250743.

Campeanu, Cezar, Andrei Paun, and Sheng Yu (2002). “An Efficient Algorithm for
Constructing Minimal Cover Automata for Finite Languages”. In: Int.]. Found.
Comput. Sci. 13.1, pp. 83-97. DOI: 10.1142/50129054102000960.

Chen, Ligian, Antoine Miné, and Patrick Cousot (2008). “A Sound Floating-Point
Polyhedra Abstract Domain”. In: Programming Languages and Systems, 6th Asian
Symposium, APLAS 2008, Bangalore, India, December 9-11, 2008. Proceedings, pp. 3—
18. DOI: 10.1007/978-3-540-89330-1_2.

Choi, Tae-Hyoung et al. (2006). “A Practical String Analyzer by the Widening Ap-
proach”. In: Programming Languages and Systems, 4th Asian Symposium, APLAS
2006, Sydney, Australia, November 8-10, 2006, Proceedings, pp. 374-388. DOI: 10 .
1007/11924661_23.

https://doi.org/10.1007/978-3-030-32505-3%5C_15
https://doi.org/10.1007/11823230%5C_15
https://doi.org/10.1007/11823230%5C_15
https://doi.org/10.1023/A:1021966832558
https://doi.org/10.1023/A:1021966832558
https://doi.org/10.1023/A:1021966832558
https://doi.org/10.1007/978-3-540-27813-9%5C_25
https://doi.org/10.1007/978-3-540-27813-9%5C_25
https://doi.org/10.1007/978-3-540-27813-9%5C_25
https://doi.org/10.1145/1646353.1646374
https://doi.org/10.1145/1646353.1646374
https://doi.org/10.1145/1985793.1985827
https://doi.org/10.1007/978-3-540-27813-9%5C_29
https://doi.org/10.1007/978-3-540-27813-9%5C_29
https://doi.org/10.1007/978-3-540-70844-5%5C_7
https://doi.org/10.1007/978-3-540-70844-5%5C_7
https://doi.org/10.1145/1250734.1250743
https://doi.org/10.1142/S0129054102000960
https://doi.org/10.1007/978-3-540-89330-1%5C_2
https://doi.org/10.1007/11924661%5C_23
https://doi.org/10.1007/11924661%5C_23

Bibliography 141

Christensen, Aske Simon, Anders Mgller, and Michael I. Schwartzbach (2003). “Pre-
cise Analysis of String Expressions”. In: Static Analysis, 10th International Sympo-
sium, SAS 2003, San Diego, CA, USA, June 11-13, 2003, Proceedings, pp. 1-18. DOTI:
10.1007/3-540-44898-5_1.

Chugh, Ravi et al. (2009). “Staged information flow for javascript”. In: Proceedings
of the 2009 ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI 2009, Dublin, Ireland, June 15-21, 2009, pp. 50-62. DOI: 10.1145/
1542476 .1542483.

Claris6, Robert and Jordi Cortadella (2007). “The Octahedron Abstract Domain”. In:
Sci. Comput. Program. 64.1, pp. 115-139.

Cortesi, Agostino (2008). “Widening Operators for Abstract Interpretation”. In: Sixth
IEEE International Conference on Software Engineering and Formal Methods, SEFM
2008, Cape Town, South Africa, 10-14 November 2008, pp. 31-40. DOI: 10 . 1109/
SEFM.2008.20. URL: https://doi.org/10.1109/SEFM.2008. 20.

Cortesi, Agostino, Giulia Costantini, and Pietro Ferrara (2013). “A Survey on Product
Operators in Abstract Interpretation”. In: Semantics, Abstract Interpretation, and
Reasoning about Programs: Essays Dedicated to David A. Schmidt on the Occasion of
his Sixtieth Birthday, Manhattan, Kansas, USA, 19-20th September 2013. Pp. 325-336.
DOI: 10.4204/EPTCS.129.19.

Cortesi, Agostino et al. (1997). “Complementation in Abstract Interpretation”. In:
ACM Trans. Program. Lang. Syst. 19.1, pp. 7-47. DOI: 10.1145/239912.239914.
Costantini, Giulia, Pietro Ferrara, and Agostino Cortesi (2015). “A suite of abstract
domains for static analysis of string values”. In: Softw., Pract. Exper. 45.2, pp. 245—

287.DOI: 10.1002/spe.2218. URL: https://doi.org/10.1002/spe.2218.

Cousot, P. and R. Cousot (1995). “Formal Language, Grammar and Set-Constraint-
Based Program Analysis by Abstract Interpretation”. In: Proceedings of the Seventh
ACM Conference on Functional Programming Languages and Computer Architecture.
ACM Press, New York, NY, pp. 170-181.

Cousot, Patrick (1997). “Types as Abstract Interpretations”. In: Conference Record of
POPL’97: The 24th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, Papers Presented at the Symposium, Paris, France, 15-17 January
1997, pp. 316-331. DOIL: 10.1145/263699 . 263744. URL: https://doi.org/10.
1145/263699.263744.

Cousot, Patrick and Radhia Cousot (1976). “Static determination of dynamic prop-
erties of programs”. In: Proceedings of the 2nd International Symposium on Program-
ming, Paris, France. Dunod, pp. 106-130.

— (1977). “Abstract Interpretation: A Unified Lattice Model for Static Analysis of
Programs by Construction or Approximation of Fixpoints”. In: Conference Record
of the Fourth ACM Symposium on Principles of Programming Languages, Los Angeles,
California, USA, January 1977, pp. 238-252. DOI: 10.1145/512950 . 512973. URL:
https://doi.org/10.1145/512950.512973.

— (1979). “Systematic Design of Program Analysis Frameworks”. In: Conference Record
of the Sixth Annual ACM Symposium on Principles of Programming Languages, San
Antonio, Texas, USA, January 1979, pp. 269-282. DOI: 10.1145/567752.567778.

— (1992a). “Abstract Interpretation Frameworks”. In: J. Log. Comput. 2.4, pp. 511-
547.DOI: 10.1093/1ogcom/2.4.511. URL: https://doi.org/10.1093/1logcom/2.
4.511.

— (1992b). “Comparing the Galois Connection and Widening /Narrowing Approaches
to Abstract Interpretation”. In: Programming Language Implementation and Logic

https://doi.org/10.1007/3-540-44898-5_1
https://doi.org/10.1145/1542476.1542483
https://doi.org/10.1145/1542476.1542483
https://doi.org/10.1109/SEFM.2008.20
https://doi.org/10.1109/SEFM.2008.20
https://doi.org/10.1109/SEFM.2008.20
https://doi.org/10.4204/EPTCS.129.19
https://doi.org/10.1145/239912.239914
https://doi.org/10.1002/spe.2218
https://doi.org/10.1002/spe.2218
https://doi.org/10.1145/263699.263744
https://doi.org/10.1145/263699.263744
https://doi.org/10.1145/263699.263744
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/567752.567778
https://doi.org/10.1093/logcom/2.4.511
https://doi.org/10.1093/logcom/2.4.511
https://doi.org/10.1093/logcom/2.4.511

142 Bibliography

Programming, 4th International Symposium, PLILP’92, Leuven, Belgium, August 26-
28, 1992, Proceedings, pp. 269-295. DOI: 10 . 1007 /3 - 540 - 55844 - 6\ _142. URL:
https://doi.org/10.1007/3-540-55844-6_142.

Cousot, Patrick and Radhia Cousot (2012). “An abstract interpretation framework
for termination”. In: Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2012, Philadelphia, Pennsylvania, USA,
January 22-28, 2012, pp. 245-258. DOI: 10.1145/2103656.2103687.

Cousot, Patrick and Nicolas Halbwachs (1978). “Automatic Discovery of Linear Re-
straints Among Variables of a Program”. In: Conference Record of the Fifth Annual
ACM Symposium on Principles of Programming Languages, Tucson, Arizona, USA,
January 1978, pp. 84-96. DOI: 10.1145/512760.512770. URL: https://doi.org/
10.1145/512760.512770.

Crockford, Douglas (2008). JavaScript: The Good Parts. O'Reilly Media, Inc. ISBN: 0596517742.

Dahse, Johannes and Thorsten Holz (2014). “Simulation of Built-in PHP Features
for Precise Static Code Analysis”. In: 21st Annual Network and Distributed System
Security Symposium, NDSS 2014, San Diego, California, USA, February 23-26, 2014.

Davis, M. D., R. Sigal, and E.]. Weyuker (1994). Computability, Complexity, and Lan-
guages: Fund. of Theor. CS. Academic Press Professional, Inc. ISBN: 978-0-12-206380-
0. DOI: 10.2307/2275691.

Doh, Kyung-Goo, Hyunha Kim, and David A. Schmidt (2009). “Abstract Parsing;:
Static Analysis of Dynamically Generated String Output Using LR-Parsing Tech-
nology”. In: Static Analysis, 16th International Symposium, SAS 2009, Los Angeles,
CA, USA, August 9-11, 2009. Proceedings, pp. 256—272. DOI: 10.1007/978-3-642-
03237-0_18.

Domaratzki, Michael, Jeffrey Shallit, and Sheng Yu (2001). “Minimal Covers of For-
mal Languages”. In: Developments in Language Theory, 5th International Conference,
DLT 2001, Vienna, Austria, July 16-21, 2001, Revised Papers, pp. 319-329. DOI: 10.
1007/3-540-46011-X_28.

D’Silva, V. (2006). Widening for Automata. Diploma Thesis, Institut Fur Informatick,
UZH.

Filaretti, Daniele and Sergio Maffeis (2014). “An Executable Formal Semantics of
PHP”. In: ECOOP 2014 - Object-Oriented Programming - 28th European Conference,
Uppsala, Sweden, July 28 - August 1, 2014. Proceedings, pp. 567-592. DOI: 10.1007/
978-3-662-44202-9_23. URL: https://doi.org/10.1007/978-3-662-44202-
9_23.

Fromherz, Aymeric, Abdelraouf Ouadjaout, and Antoine Miné (2018). “Static Value
Analysis of Python Programs by Abstract Interpretation”. In: NASA Formal Meth-
ods - 10th International Symposium, NFM 2018, Newport News, VA, USA, April 17-19,
2018, Proceedings, pp. 185-202. DOI: 10.1007/978-3-319-77935-5_14.

Giacobazzi, R. (1998). “Abductive analysis of modular logic programs”. In: J. of Logic
and Computation 8.4, pp. 457-484.

Giacobazzi, Roberto and Isabella Mastroeni (2016). “Making abstract models com-
plete”. In: Mathematical Structures in Computer Science 26.4, pp. 658-701. DOI: 10.
1017/S0960129514000358.

— (2018). “Abstract Non-Interference: A Unifying Framework for Weakening Information-
flow”. In: ACM Trans. Priv. Secur. 21.2,9:1-9:31. DOI: 10.1145/3175660.

Giacobazzi, Roberto and Elisa Quintarelli (2001). “Incompleteness, Counterexam-
ples, and Refinements in Abstract Model-Checking”. In: Static Analysis, 8th Inter-
national Symposium, SAS 2001, Paris, France, July 16-18, 2001, Proceedings, pp. 356—
373. DOI: 10.1007/3-540-47764-0_20.

https://doi.org/10.1007/3-540-55844-6%5C_142
https://doi.org/10.1007/3-540-55844-6%5C_142
https://doi.org/10.1145/2103656.2103687
https://doi.org/10.1145/512760.512770
https://doi.org/10.1145/512760.512770
https://doi.org/10.1145/512760.512770
https://doi.org/10.2307/2275691
https://doi.org/10.1007/978-3-642-03237-0_18
https://doi.org/10.1007/978-3-642-03237-0_18
https://doi.org/10.1007/3-540-46011-X%5C_28
https://doi.org/10.1007/3-540-46011-X%5C_28
https://doi.org/10.1007/978-3-662-44202-9%5C_23
https://doi.org/10.1007/978-3-662-44202-9%5C_23
https://doi.org/10.1007/978-3-662-44202-9%5C_23
https://doi.org/10.1007/978-3-662-44202-9%5C_23
https://doi.org/10.1007/978-3-319-77935-5%5C_14
https://doi.org/10.1017/S0960129514000358
https://doi.org/10.1017/S0960129514000358
https://doi.org/10.1145/3175660
https://doi.org/10.1007/3-540-47764-0%5C_20

Bibliography 143

Giacobazzi, Roberto, Francesco Ranzato, and Francesca Scozzari (2000). “Making
abstract interpretations complete”. In: J. ACM 47.2, pp. 361-416. DOI: 10.1145/
333979.333989.

Granger, Philippe (Jan. 1989). “Static Analysis of Arithmetical Congruences”. In: In-
ternational Journal of Computer Mathematics - IJCM 30, pp. 165-190.

Guarnieri, Salvatore et al. (2011). “Saving the world wide web from vulnerable JavaScript”.
In: Proceedings of the 20th International Symposium on Software Testing and Analysis,
ISSTA 2011, Toronto, ON, Canada, July 17-21, 2011, pp. 177-187. DOI: 10 . 1145/
2001420.2001442.

Hauzar, David and Jan Kofron (2014). “WeVerca: Web Applications Verification for
PHP”. In: Software Engineering and Formal Methods - 12th International Conference,
SEFM 2014, Grenoble, France, September 1-5, 2014. Proceedings, pp. 296-301. DOI:
10.1007/978-3-319-10431-7_24.

— (2015a). “Framework for Static Analysis of PHP Applications”. In: 29th European
Conference on Object-Oriented Programming, ECOOP 2015, July 5-10, 2015, Prague,
Czech Republic, pp. 689-711. DOI: 10.4230/LIPIcs.ECO0P.2015.689.

— (2015b). “Framework for Static Analysis of PHP Applications”. In: 29th European
Conference on Object-Oriented Programming, ECOOP 2015, July 5-10, 2015, Prague,
Czech Republic, pp. 689-711. DOI: 10.4230/LIPIcs.ECO0P.2015.689.

Heintze, Nevin and Joxan Jaffar (1994). “Set Constraints and Set-Based Analysis”.
In: Principles and Practice of Constraint Programming, Second International Work-
shop, PPCP’94, Rosario, Orcas Island, Washington, USA, May 2-4, 1994, Proceedings,
pp- 281-298. DOL: 10.1007/3-540-58601-6_107.

Holik, Lukés et al. (2018). “String constraints with concatenation and transducers
solved efficiently”. In: PACMPL 2.POPL, 4:1-4:32. DOI: 10.1145/3158092.

Holzer, Markus and Sebastian Jakobi (2013). “Brzozowski’s Minimization Algorithm
- More Robust than Expected - (Extended Abstract)”. In: Implementation and Appli-
cation of Automata - 18th International Conference, CIAA 2013, Halifax, NS, Canada,
July 16-19, 2013. Proceedings. Ed. by Stavros Konstantinidis. Vol. 7982. Lecture
Notes in Computer Science. Springer, pp. 181-192. DOI: 10. 1007 /978 - 3-642-
39274-0_17.

Hooimeijer, Pieter et al. (2011). “Fast and Precise Sanitizer Analysis with BEK”. In:
20th USENIX Security Symposium, San Francisco, CA, USA, August 8-12, 2011, Pro-
ceedings.

Hopcroft, John E. (1971). An N Log N Algorithm for Minimizing States in a Finite Au-
tomaton. Tech. rep. Stanford, CA, USA.

Hopcroft, John E., Rajeev Motwani, and Jeffrey D. Ullman (2007). Introduction to au-
tomata theory, languages, and computation, 3rd Edition. Pearson international edi-
tion. Addison-Wesley. ISBN: 978-0-321-47617-3.

Jensen, Simon Holm, Peter A. Jonsson, and Anders Moller (2012). “Remedying the
eval that men do”. In: International Symposium on Software Testing and Analysis,
ISSTA 2012, Minneapolis, MN, USA, July 15-20, 2012, pp. 34-44. DOIL: 10. 1145/
2338965 .2336758.

Jensen, Simon Holm, Anders Moller, and Peter Thiemann (2009). “Type Analysis
for JavaScript”. In: Static Analysis, 16th International Symposium, SAS 2009, Los
Angeles, CA, USA, August 9-11, 2009. Proceedings, pp. 238-255. DOI: 10.1007/978-
3-642-03237-0_17. URL: https://doi.org/10.1007/978-3-642-03237-0_17

Jovanovic, Nenad, Christopher Kriigel, and Engin Kirda (2006). “Pixy: A Static Anal-
ysis Tool for Detecting Web Application Vulnerabilities (Short Paper)”. In: 2006
IEEE Symposium on Security and Privacy (S&P 2006), 21-24 May 2006, Berkeley, Cal-
ifornia, USA, pp. 258-263. DOI: 10.1109/SP.2006.29.

https://doi.org/10.1145/333979.333989
https://doi.org/10.1145/333979.333989
https://doi.org/10.1145/2001420.2001442
https://doi.org/10.1145/2001420.2001442
https://doi.org/10.1007/978-3-319-10431-7%5C_24
https://doi.org/10.4230/LIPIcs.ECOOP.2015.689
https://doi.org/10.4230/LIPIcs.ECOOP.2015.689
https://doi.org/10.1007/3-540-58601-6_107
https://doi.org/10.1145/3158092
https://doi.org/10.1007/978-3-642-39274-0%5C_17
https://doi.org/10.1007/978-3-642-39274-0%5C_17
https://doi.org/10.1145/2338965.2336758
https://doi.org/10.1145/2338965.2336758
https://doi.org/10.1007/978-3-642-03237-0%5C_17
https://doi.org/10.1007/978-3-642-03237-0%5C_17
https://doi.org/10.1007/978-3-642-03237-0%5C_17
https://doi.org/10.1109/SP.2006.29

144 Bibliography

Kashyap, Vineeth et al. (2014). “JSAI: a static analysis platform for JavaScript”. In:
Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, (FSE-22), Hong Kong, China, November 16 - 22, 2014, pp. 121-
132. DOI: 10.1145/2635868.2635904. URL: https://doi.org/10.1145/2635868.
2635904.

Kim, Hyunha, Kyung-Goo Doh, and David A. Schmidt (2013). “Static Validation
of Dynamically Generated HTML Documents Based on Abstract Parsing and
Semantic Processing”. In: Static Analysis - 20th International Symposium, SAS 2013,
Seattle, WA, USA, June 20-22, 2013. Proceedings, pp. 194-214. DOI: 10. 1007 /978~
3-642-38856-9_12.

Kneuss, Etienne, Philippe Suter, and Viktor Kuncak (2010). “Phantm: PHP analyzer
for type mismatch”. In: Proceedings of the 18th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, 2010, Santa Fe, NM, USA, November
7-11, 2010, pp. 373-374. DOI: 10.1145/1882291 . 1882355.

Ko, Yoonseok, Xavier Rival, and Sukyoung Ryu (2019). “Weakly sensitive analysis
for JavaScript object-manipulating programs”. In: Softw. Pract. Exp. 49.5, pp. 840—
884. DOI: 10.1002/spe.2676. URL: https://doi.org/10.1002/spe.2676.

Lee, H. et al. (2012). “SAFE: Formal specification and implementation of a scalable
analysis framework for ECMAScript”. In: FOOL’12.

Lin, Anthony Widjaja and Pablo Barcel6 (2016). “String solving with word equations
and transducers: towards a logic for analysing mutation XSS”. In: Proceedings of
the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, pp. 123-136.
DOI: 10.1145/2837614.2837641.

Logozzo, Francesco and Manuel Fiahndrich (2010). “Pentagons: A weakly relational
abstract domain for the efficient validation of array accesses”. In: Sci. Comput.
Program. 75.9, pp. 796-807. DOIL: 10.1016/7j.scico.2009.04.004.

Loring, Blake, Duncan Mitchell, and Johannes Kinder (2019). “Sound regular expres-
sion semantics for dynamic symbolic execution of JavaScript”. In: Proceedings of
the 40th ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019. Ed. by Kathryn S. McKinley
and Kathleen Fisher. ACM, pp. 425-438. DOI: 10.1145/3314221.3314645.

Mafteis, Sergio, John C. Mitchell, and Ankur Taly (2008). “An Operational Seman-
tics for JavaScript”. In: Programming Languages and Systems, 6th Asian Symposium,
APLAS 2008, Bangalore, India, December 9-11, 2008. Proceedings, pp. 307-325. DOI:
10.1007/978-3-540-89330-1_22.

McNaughton, Robert and Hisao Yamada (1960). “Regular Expressions and State
Graphs for Automata”. In: IRE Trans. Electronic Computers 9.1, pp. 39-47.

Midtgaard, Jan, Flemming Nielson, and Hanne Riis Nielson (2016). “A Parametric
Abstract Domain for Lattice-Valued Regular Expressions”. In: Static Analysis -
23rd International Symposium, SAS 2016, Edinburgh, UK, September 8-10, 2016, Pro-
ceedings, pp. 338-360. DOI: 10.1007/978-3-662-53413-7_17.

Minamide, Yasuhiko (2005). “Static approximation of dynamically generated Web
pages”. In: Proceedings of the 14th international conference on World Wide Web, WWW
2005, Chiba, Japan, May 10-14, 2005, pp. 432-441. DOI: 10.1145/1060745.1060809.

Miné, Antoine (2006). “The Octagon Abstract Domain”. In: Higher-Order and Sym-
bolic Computation 19.1, pp. 31-100.

— (2013). Static analysis by abstract interpretation of concurrent programs. (Analyse sta-
tiqgue par interprétation abstraite de programmes concurrents). URL: https ://tel .
archives-ouvertes.fr/tel-00903447.

https://doi.org/10.1145/2635868.2635904
https://doi.org/10.1145/2635868.2635904
https://doi.org/10.1145/2635868.2635904
https://doi.org/10.1007/978-3-642-38856-9_12
https://doi.org/10.1007/978-3-642-38856-9_12
https://doi.org/10.1145/1882291.1882355
https://doi.org/10.1002/spe.2676
https://doi.org/10.1002/spe.2676
https://doi.org/10.1145/2837614.2837641
https://doi.org/10.1016/j.scico.2009.04.004
https://doi.org/10.1145/3314221.3314645
https://doi.org/10.1007/978-3-540-89330-1%5C_22
https://doi.org/10.1007/978-3-662-53413-7%5C_17
https://doi.org/10.1145/1060745.1060809
https://tel.archives-ouvertes.fr/tel-00903447
https://tel.archives-ouvertes.fr/tel-00903447

Bibliography 145

Nielson, Flemming, Hanne Riis Nielson, and Chris Hankin (1999). Principles of pro-
gram analysis. Springer. ISBN: 978-3-540-65410-0. DOI: 10 . 1007 / 978 - 3 - 662 -
03811-6. URL: https://doi.org/10.1007/978-3-662-03811-6.

Park, Changhee, Hyeonseung Im, and Sukyoung Ryu (2016). “Precise and scalable
static analysis of jQuery using a regular expression domain”. In: Proceedings of
the 12th Symposium on Dynamic Languages, DLS 2016, Amsterdam, The Netherlands,
November 1, 2016, pp. 25-36. DOI: 10.1145/2989225.2989228.

Park, Changhee and Sukyoung Ryu (2015). “Scalable and Precise Static Analysis
of JavaScript Applications via Loop-Sensitivity”. In: 29th European Conference on
Object-Oriented Programming, ECOOP 2015, July 5-10, 2015, Prague, Czech Republic,
pp. 735-756. DOI: 10.4230/LIPIcs.ECO0P.2015.735.

Petrack, Hynek (2018). https://github.com/HynekPetrak/javascript-malware-
collection. Accessed: 2018-08-17.

Pradel, Michael and Koushik Sen (2015). “The Good, the Bad, and the Ugly: An
Empirical Study of Implicit Type Conversions in JavaScript”. In: 29th European
Conference on Object-Oriented Programming, ECOOP 2015, July 5-10, 2015, Prague,
Czech Republic, pp. 519-541. DOI: 10.4230/LIPIcs.ECO0P.2015.519.

Preda, Mila Dalla et al. (2008). “A semantics-based approach to malware detection”.
In: ACM Trans. Program. Lang. Syst. 30.5, 25:1-25:54. DOI: 10 . 1145 /1387673 .
1387674.

Rabin, Michael O. and Dana S. Scott (1959). “Finite Automata and Their Decision
Problems”. In: IBM Journal of Research and Development 3.2, pp. 114-125. DOI: 10.
1147/rd.32.0114.

Reynolds, John C. (1998). Theories of programming languages. Cambridge University
Press. ISBN: 978-0-521-59414-1.

Richards, Gregor et al. (2011). “The Eval That Men Do - A Large-Scale Study of the
Use of Eval in JavaScript Applications”. In: ECOOP 2011 - Object-Oriented Pro-
gramming - 25th European Conference, Lancaster, UK, July 25-29, 2011 Proceedings,
pp. 52-78. DOI: 10.1007/978-3-642-22655-7_4.

Saxena, Prateek et al. (2010). “A Symbolic Execution Framework for JavaScript”. In:
31st IEEE Symposium on Security and Privacy, S&P 2010, 16-19 May 2010, Berleley/Oak-
land, California, USA. IEEE Computer Society, pp. 513-528. DOI: 10 . 1109/ SP .
2010.38.

Seidl, Helmut, Reinhard Wilhelm, and Sebastian Hack (2012). Compiler Design - Anal-
ysis and Transformation. Springer.

Tarski, Alfred (1955). “A lattice-theoretical fixpoint theorem and its applications.” In:
Pacific]. Math. 5.2, pp. 285-309. URL: https://projecteuclid.org:443/euclid.
pjm/1103044538.

Thiemann, Peter (2005). “Grammar-based analysis of string expressions”. In: Pro-
ceedings of TLDI'05: 2005 ACM SIGPLAN International Workshop on Types in Lan-
guages Design and Implementation, Long Beach, CA, USA, January 10, 2005, pp. 59—
70. DOI: 10.1145/1040294 . 1040300.

Venet, Arnaud (1999). “Automatic Analysis of Pointer Aliasing for Untyped Pro-
grams”. In: Sci. Comput. Program. 35.2, pp. 223-248.

Wang, Xinran et al. (2008). “STILL: Exploit Code Detection via Static Taint and Ini-
tialization Analyses”. In: Twenty-Fourth Annual Computer Security Applications Con-
ference, ACSAC 2008, Anaheim, California, USA, 8-12 December 2008, pp. 289-298.
DOI: 10.1109/ACSAC.2008. 37.

Wilhelm, Reinhard, Shmuel Sagiv, and Thomas W. Reps (2000). “Shape Analysis”.
In: Compiler Construction, 9th International Conference, CC 2000, Held as Part of the
European Joint Conferences on the Theory and Practice of Software, ETAPS 2000, Berlin,

https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1145/2989225.2989228
https://doi.org/10.4230/LIPIcs.ECOOP.2015.735
https://github.com/HynekPetrak/javascript-malware-collection
https://github.com/HynekPetrak/javascript-malware-collection
https://doi.org/10.4230/LIPIcs.ECOOP.2015.519
https://doi.org/10.1145/1387673.1387674
https://doi.org/10.1145/1387673.1387674
https://doi.org/10.1147/rd.32.0114
https://doi.org/10.1147/rd.32.0114
https://doi.org/10.1007/978-3-642-22655-7%5C_4
https://doi.org/10.1109/SP.2010.38
https://doi.org/10.1109/SP.2010.38
https://projecteuclid.org:443/euclid.pjm/1103044538
https://projecteuclid.org:443/euclid.pjm/1103044538
https://doi.org/10.1145/1040294.1040300
https://doi.org/10.1109/ACSAC.2008.37

146 Bibliography

Germany, March 25 - April 2, 2000, Proceedings, pp. 1-17. DOI: 10 . 1007 /3-540-
46423-9_1.

Xie, Yichen and Alex Aiken (2006). “Static Detection of Security Vulnerabilities in
Scripting Languages”. In: Proceedings of the 15th USENIX Security Symposium,
Vancouver, BC, Canada, July 31 - August 4, 2006. URL: https : //www . usenix .
org / conference / 15th - usenix - security - symposium/ static - detection -
security-vulnerabilities-scripting.

Xu, Wei, Fangfang Zhang, and Sencun Zhu (2012). “The power of obfuscation tech-
niques in malicious JavaScript code: A measurement study”. In: 7th International
Conference on Malicious and Unwanted Software, MALWARE 2012, Fajardo, PR, USA,
October 16-18, 2012, pp- 9-16. DOI: 10.1109/MALWARE . 2012.6461002.

Yu, Fang, Muath Alkhalaf, and Tevfik Bultan (2011). “Patching vulnerabilities with
sanitization synthesis”. In: Proceedings of the 33rd International Conference on Soft-
ware Engineering, ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011, pp. 251-
260. DOI: 10.1145/1985793.1985828.

Yu, Fang et al. (2008). “Symbolic String Verification: An Automata-Based Approach”.
In: Model Checking Software, 15th International SPIN Workshop, Los Angeles, CA,
USA, August 10-12, 2008, Proceedings, pp. 306-324. DOI: 10 . 1007 /978 - 3-540 -
85114-1_21. URL: https://doi.org/10.1007/978-3-540-85114-1_21.

https://doi.org/10.1007/3-540-46423-9%5C_1
https://doi.org/10.1007/3-540-46423-9%5C_1
https://www.usenix.org/conference/15th-usenix-security-symposium/static-detection-security-vulnerabilities-scripting
https://www.usenix.org/conference/15th-usenix-security-symposium/static-detection-security-vulnerabilities-scripting
https://www.usenix.org/conference/15th-usenix-security-symposium/static-detection-security-vulnerabilities-scripting
https://doi.org/10.1109/MALWARE.2012.6461002
https://doi.org/10.1145/1985793.1985828
https://doi.org/10.1007/978-3-540-85114-1%5C_21
https://doi.org/10.1007/978-3-540-85114-1%5C_21
https://doi.org/10.1007/978-3-540-85114-1%5C_21

	Declaration of Authorship
	Abstract
	Introduction
	Why is it important to analyze dynamic code?
	JavaScript overview
	@eval@ in the wild

	Contributions and structure of the thesis

	Mathematical background
	Basic notions and notation
	Posets, semi-lattices and lattices
	Fix-point theory
	Galois connections
	Abstract interpretation
	Concrete objects, abstract objects and Galois connections
	Fix-point computations
	Fix-point extrapolation and interpolation
	Abstract domains collectively
	Making abstract interpretations complete

	Strings, languages and finite state automata
	Regular expressions

	A dynamic imperative core language: JS
	JS syntax and semantics
	Semantics over CFGs and static analysis of JS

	Towards a string abstract domain for dynamic languages
	An example of complete shell
	Making JavaScript string abstract domains complete
	Completing SAFE string abstract domain
	Completing TAJS string abstract domain

	What we gain from using a complete abstract domain?
	Can we use complete shells for dynamic code analysis?

	The finite state automata domain
	Dfa/ abstract domain
	Characterization of substrings languages
	Substring language between two fixed indexes
	Substring language after a fixed initial index
	Substring language to an unbounded final index

	A sound abstract interpreter for dynamic code
	JS with @eval@
	Dyn: An abstract domain for JS
	Abstract semantics of JS

	Towards an analysis for dynamic code
	The analyzer architecture
	Approximating eval executable code
	StmSyn: Extracting the executable language
	CFGGen: Control-flow graph generation
	Abstracting sequences of eval nested calls

	Evaluating the analyzer
	Limitations
	Comparison with TAJS

	An abstract domain for objects in dynamic languages
	Object concrete semantics
	An abstract domain for objects
	Normalization
	Objects-related abstract semantics
	Widening

	Conclusions
	Related works
	Future directions

	Proofs
	Bibliography

