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Sommario 

Gli studi che suggeriscono che la via di segnalazione di Notch potrebbe essere 

coinvolta nella modulazione della risposta farmacologica nelle neoplasie 

ematologiche, T-LLA, B-LLC e LAM, sono in continuo aumento. 

Precedentemente, nel nostro gruppo abbiamo dimostrato che Notch3 e Notch4 

supportavano la sopravvivenza delle cellule primarie di B-LLA, suggerendo quindi 

un coinvolgimento della segnalazione di Notch nella risposta ai farmaci. In questo 

lavoro, abbiamo adottato approcci in vitro, in silico ed in vivo per comprendere 

appieno il ruolo della via di Notch nella patogenesi della B-LLA, in termini di 

prognosi, proliferazione, sopravvivenza e risposta ai farmaci. Le linee cellulari di 

B-LLA sono state acquistate dall’ATCC, mentre le cellule primarie sono state 

isolate dal midollo osseo o dal sangue periferico di 51 pazienti di B-LLA. 

Esperimenti di citofluorimetria e western-blot hanno dimostrato che le cellule 

primarie, derivanti da pazienti ad alto rischio di B-LLA, presentavano una 

sovraespressione di Notch3, Notch4 e Jagged2, mentre si osservava una riduzione 

dei livelli di espressione di Notch1-4 al termine del trattamento chemioterapico, 

suggerendo un fondamentale ruolo della segnalazione di Notch nella B-LLA  in 

risposta al farmaco. Abbiamo quindi analizzato la sopravvivenza cellulare in vitro 

di cellule di B-LLA trattate con agenti chemioterapici convenzionali (Citarabina, 

Ara-C; Desametasone, Dexa; Doxorubicina, Doxo) in singolo o in combinazione 

con diversi modulatori della via di segnalazione Notch, di cui anticorpi anti-Notch, 

gamma secretase inibitori (GSI), l’inibitore del fattore di trascrizione di Notch 

(SAHM1) o anticorpi bloccanti. Le GSIs e l’anti-Notch4 potenziavano la morte 

cellulare indotta da farmaci nelle cellule B-LLA, regolando i livelli intracellulari di 

specie reattive dell'ossigeno (ROS), che a loro volta erano in grado di modulare i 

livelli di espressione di proteine implicate nella sopravvivenza, come mTor, Akt, 

NFκ-B ed Erk. Dopodiché, le osservazioni in vitro sono state riproposte con 

successo in modelli di xenotrapianto murini di B-LLA, mediante l’iniezione della 

linea cellulare di B-LLA RS4;11 in topi NOG. La co-somministrazione in vivo 

dell'inibitore GSI-XII o dell’anti-Notch4 con l'Ara-C riduceva il carico leucemico 

nel midollo osseo, prolungando così la sopravvivenza dei modelli murini, rispetto 

al solo DMSO o all’Ara-C. Nel complesso, i nostri risultati evidenziano il valore 
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prognostico dell'espressione di Notch nella B-LLA, nonché il suo ruolo critico nella 

sopravvivenza delle cellule di B-LLA e nella risposta alla chemioterapia sia in vitro 

che in vivo. Abbiamo quindi dimostrato che l'inibizione della segnalazione di Notch 

migliora la chemiosensibilità delle cellule di B-LLA, migliorando la riduzione del 

carico leucemico nel midollo osseo mediata dall’Ara-C, suggerendo dunque che la 

segnalazione di Notch potrebbe essere una possibile strategia terapeutica per 

sradicare la malattia residua minima nella B-LLA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 
 

Abstract 

Growing evidence suggests that Notch signaling pathway can modulate drug 

response in hematological malignancies including T-ALL, B-CLL and AML. In B-

ALL we have previously demonstrated that Notch3 and Notch4 support survival of 

primary B-ALL cells, suggesting a role for Notch signaling in drug response. Here, 

we used in vitro, in silico, and in vivo approaches to comprehensively the role of 

Notch pathway in B-ALL pathogenesis in terms of prognosis, proliferation, survival 

and drug response. B-ALL cell lines were obtained from ATCC, while B-ALL 

primary cells were isolated from bone marrow or peripheral blood of 51 B-ALL 

patients. Flow cytometry and western immunoblotting analyses showed that 

primary leukemia cells from high-risk patients overexpressed Notch3, Notch4, and 

Jagged2 while displaying a reduction in expression levels of Notch1-4 following 

chemotherapy, suggesting that Notch signaling may be critical to drug response in 

B-ALL. We then analyzed in vitro cell survival of B-ALL cells treated with 

conventional chemotherapeutic agents (Cytarabine, Ara-C; Dexamethasone, Dexa; 

Doxorubicin, Doxo) alone or in combination with Notch signaling modulators, 

including anti-Notch blocking antibodies, gamma secretase inhibitors (GSIs), and 

Notch transcription factor inhibitor (SAHM1). GSIs and anti-Notch4 were all 

capable of potentiating drug-induced cell death in B-ALL cells, up-regulating 

intracellular levels of reactive oxygen species (ROS) that were then capable to 

modulate pro-survival protein levels such as mTor, Akt, NFκ-B and Erk. In vitro 

observations were successfully translated in mouse-based xenograft models of B-

ALL, obtained by injecting the B-ALL line RS4;11 in NOG mice. The in vivo co-

administration of Notch inhibitor GSI-XII or anti-Notch4 with the 

chemotherapeutic agent Ara-C lowered bone marrow leukemic burden, thus 

prolonging mouse survival, compared with DMSO or Ara-C alone. Overall, our 

results highlighted the prognostic value of Notch expression in B-ALL as well as 

its critical role in B-ALL cell survival and response to chemotherapy in vitro and 

in vivo. We demonstrated that inhibition of Notch signaling enhances the 

chemosensitivity of B-ALL cells, improving Ara-C-mediated reduction of blast 

cells in bone marrow, suggesting that Notch signaling is a possible therapeutic 

strategy to eradicate the minimal residual disease in B-ALL. 
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I. Introduction 

 

1. Hematopoiesis and Leukemogenesis 

Physiologically, the hematopoiesis is the process that define the production, 

proliferation, self-renewal and differentiation of blood cells, which all derived from 

multipotent hematopoietic stem cells (HSCs), residing at the apex of the 

hematopoietic system [1, 2] (Figure I). In response to growth factors, such as stem 

cell factor glycoproteins (Interleukins 1 to 7) and colony-stimulating factors, HSCs 

can generate and maintain in the blood, bone marrow, spleen and thymus, two 

differentiated lineages: the lymphoid lineage, including T-, B-, and natural killer- 

(NK) cells, and the myeloid lineage, consisting of erythrocytes, megakaryocytes, 

granulocytes, and monocyte/macrophage [3]. The lymphoid cells are part of the 

immune system and have the key role of controlling infection [2], while the myeloid 

cells have roles more heterogeneous, e.g. erythrocytes are responsible for carrying 

and delivering oxygen to the body organs and tissues; the megakaryocytes produce 

the platelets or thrombocytes, responsible for blood clotting; the myeloblast cells 

differentiate into four types of cells, such as neutrophils, eosinophils, basophils and 

monocytes, which have the capability of defending the body against infection and 

toxins, [4]. Conversely, in a pathological situation, leukemic transformation of an 

HSCs involves a disruption in the course of normal proliferation and differentiation 

process, the resistance to apoptotic signals, and increased self-renewal [5]. The 

prevalent theory of leukemogenesis is that a single hematopoietic cell, vulnerable 

of a mutation, that goes into an unlimited process of self-renewal resulting in 

malignant, poorly differentiated hematopoietic cells, called clonal origin of 

leukemia cell [6, 7] (Figure I). Leukemia cells behave oppositely than normal 

hematopoietic precursors, having slower cell division and longer time to produce 

DNA, collecting persistently in the bone marrow of leukemic patients and 

progressively replace hematopoietic cells [7, 8]. Eventually, this process can result 

in bone marrow failure, characterized by severe anemia, bleeding, and infections 

[7, 9]. 
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Having to classify the different type of leukemia, firstly leukemia can be 

characterized as acute or chronic disease. In acute leukemia, the abnormal clonal 

proliferation contains very immature cells (blasts) that do not function properly. 

The blasts multiply quickly and the disease progresses rapidly [10]. Instead, in 

chronic leukemia, the blasts tend to proliferate more slowly than in acute leukemia, 

the abnormal cells show various levels of differentiation beyond the blast stage and 

may even function normally [11]. Moreover, leukemia can be divided into 

lymphocytic or myeloid lineage. Lymphocytic leukemia (also known as lymphoid 

or lymphoblastic leukemia) develops in the white blood cells called lymphocytes in 

the bone marrow. Myeloid (also known as myelogenous) leukemia occurs in the 

early stages of myeloid cells, like red blood cells, platelets, and most of the white 

blood cells [12]. In our case, in the next chapters we're going to pay attention on the 

topic of B-acute lymphoblastic Leukemia (B-ALL), an acute and lymphoid type of 

leukemia.  

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure I. Hematopoiesis and Leukemogenesis processes. This process leads to the formation of highly 

specialized circulating blood cells from HSCs in the bone marrow. Multipotent hematopoietic stem cells in BM 

differentiate into myeloid or lymphoid progenitor cells. Myeloid cells differentiate into red blood cells, 

platelets, and myeloblasts, which differentiate into basophils, neutrophils, eosinophils, and macrophages, while 

lymphoid cells differentiate into B and T-lymphocytes and natural killer cells (NK). Moreover, lymphoid 

neoplasms, i.e. Chronic Lymphoblastic Leukemia (CLL), yellow panel, and Acute Lymphoblastic Leukemia 

(ALL), red panel, derived from B- and T-lineage Common Lymphoid Progenitor (CLP), while myeloid 

neoplasms, i.e. Chronic Myeloid Leukemia (CML), blue panel, and Acute Myeloid Leukemia (AML), green 

panel, derived from Common Myeloid Progenitor (CMP). Modified from [13]. 
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1.2.   B-Acute Lymphoblastic Leukemia 

Acute lymphoblastic leukemia (ALL) is a hematologic malignancy in which 

uncontrolled proliferation of lymphoblasts (of B- or T- cell origin) occurs in the 

bone marrow, peripheral blood, and/or tissues [14]. Notably, B-ALL is 

characterized by the clonal expansion of CD19+, neoplastic B-cell precursors at 

different developmental stages [15]. ALL has a bimodal incidence distribution with 

roughly 60% of cases diagnosed in patients younger than 20 years of age, 

accounting for nearly 80% of childhood leukemias [16]. About 3,000 children in 

the United States and 5,000 children in Europe are diagnosed with ALL each year, 

with the peak incidence of ALL occurs between age 2 and 5 years [14]. The 

estimated global incidence of B-ALL is around one to 5 per 100,000 persons per 

year [17] (Figure II). Nowadays, more than 90% of all patients obtained disease 

complete remission following treatment, but the prognostic for relapsed/refractory 

patients or adult B-ALL patients is still poor [18]. Likewise, the precise 

pathogenetic events leading to the development of B-ALL are unknown [7]. Only 

a few cases (<5%) are associated with inherited, predisposing genetic syndromes, 

such as Down's syndrome, Bloom's syndrome, ataxia-telangiectasia, and Nijmegen 

breakage syndrome, or with ionizing radiation or exposure to specific 

chemotherapeutic drugs [19, 20]. There are further increasing evidence on the 

association between overweight at birth and risk for childhood B-ALL [21]. In the 

last years, many other risk factors have been suggested, including parental 

occupation, maternal reproductive history, parental tobacco or alcohol use, 

maternal diet, prenatal vitamin use, exposure to pesticides or solvents, and exposure 

to high levels (>0.3 or 0.4 μT) of residential, power-frequency magnetic field [22, 

23].  
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Figure II. Average Number of New Cases Per Year and Age-Specific Incidence Rates per 100,000 

Population of ALL, in UK between 2014 and 2016. In the UK in 2014-2016, on average each year around 5 

in 100 (6%) new cases were in people aged 75 and over. In contrast to most cancer types, acute lymphoblastic 

leukemia occurs most frequently at younger ages. Age-specific incidence rates are highest in infants aged 0-4 

and drop sharply through childhood, adolescence and young adulthood, reaching their lowest point at age 30-

34 in males and 35-39 in females, and increasing slightly thereafter. The highest rates are in the 0 to 04 age 

group for females and males. Incidence rates are significantly lower in females than males in a few (mainly 

younger) age groups. The gap is widest at age 35 to 39, when the age-specific incidence rate is 2.8 times lower 

in females than males. 

 

 

1.2.1.   Classification and Biology of B-ALL 

B-ALL is a biologically heterogeneous disorder characterized by various clinical 

features and different cancer cells [24]. Notably, childhood B-ALL often displays 

significant heterogeneity in both its morphology, in the immunophenotype, in the 

genetic aberrations, and even in the clinical symptoms and response to therapy [24-

26]. Consequently, the recent World Health Organization (WHO) on ALL 

recommends that the French-American-British (FAB) morphologic classification 

(L1, L2, L3) be abandoned (Table I), since this classification has no clinical or 

prognostic relevance [27, 28]. Contrary, WHO advocates the use of the 

immunophenotypic classification (Table II), that is an independent prognostic 

parameter [27]. In this case, B-ALL can be subdivided into: early pre B-ALL (also 

known as pro B-ALL), common B-ALL, pre B-ALL and mature B-ALL [27, 29]. 

Furthermore, the innovative use of cytogenetic analysis and molecular cytogenetic 

studies, such as fluorescence in situ hybridization (FISH), revealed recurring 
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chromosome abnormalities in approximately 80% of ALL, including numerical and 

structural changes, such as translocations, inversions, or deletions [30]. These 

cytogenetic abnormalities (Table III) are incorporated in the WHO classification 

of ALL revised in 2016 [27]. In this classification were further included 2 new 

provisional entities of B-ALL: BCR-ABL1-like B-ALL, originally reported as a 

subtype of poor prognosis childhood ALL with a gene expression profile similar to 

Philadelphia chromosome-positive ALL, and B-ALL with intrachromosomal 

amplification of chromosome 21 (iAMP21), detected by FISH with a probe for 

RUNX1, showing 5 or more copies of the gene [27]. The first type is observed in 

about 2-5% of children compared with about 30% of adults [31], while the second 

type is checked about 1.5-2% of children, although extremely rare in adults [32]. 

Recently, the screening of DNA sequence of specific areas of interest within the 

genome (targeted sequencing) has identified also recurrent mutations in B-ALL 

[33], demonstrating a lack large genomic instability, including tens of recurrent 

copy number alterations (CNAs), involving genes serving for lymphoid growth or 

tumorigenesis [34], such as the B-lymphoid development regulators PAX5 and 

IKZF1, tumor suppressors such as CDKN2A/CDKN2B and RB1, and drug response-

related genes like NR3C1 [35]. Moreover, microarray analyses found alterations 

involving the CRLF2 gene, demonstrating its overexpression in one-third of BCR-

ABL1-like cases and more than half of ALL patients with Down syndrome. 

Frequently, this alteration appears concomitantly with gain-of-function mutations 

of JAK1 or JAK2 genes [36, 37]. Another common mutation in B-ALL is the MLL-

rearranged (Mixed-lineage leukemia–rearranged) leukemia [38]. It is a unique 

entity notable for initiation in utero, myeloid and lymphoid features, and poor 

responsiveness to therapy [38]. Fortunately, nowadays most laboratories around the 

world are being equipped with next-generation sequencing (NGS), favoring the 

increase in the number of studies involving large patient cohorts and leading to the 

discovery of new targets and new molecular entities [34]. The most recent main 

studies concerning of NGS applications in B-ALL demonstrated: about 90% of 93 

cases harbored at least one mutation among FAT1, SF1, CRLF2, TET2, and PTPN1 

genes correlated to a better survival [39]; the deregulation of DUX4 and ERG genes 

in up to 7% of B-ALL, associated with a favorable outcome [40]; Fischer et al. 
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found an association of TCF3-HLF−fusion with PAX5 haploinsufficiency and 

enrichment in stem cell and myeloid expression signatures [41]; about one-third of 

infant BCP-ALL presents high hyperdiploidy with more than 50 chromosomes, 

demonstrating the involvement of the RTK-RAS pathway and histone modifiers, 

with no observation of recurrent fusion genes [42].  

Here below we will discuss some of these molecular abnormalities and their 

contribution to B-ALL. 

 

 

 

 

 

Morphologic Classification 

FAB Type Feature of Blasts 

L1 Small cells with scant cytoplasm; nucleoli indistinct and not visible 

L2 Large heterogeneous cells with moderately abundant cytoplasm; clefting and 

indentation of nucleus; large and prominent nucleoli 

L3 Large cells with moderately abundant cytoplasm; regular, oval-to-round 

nucleus; prominent nucleoli; prominent cytoplasmic basophilia and 

cytoplasmic vacuoles 
Table I.  The French-American-British (FAB) classification. The older, traditional classification of acute 

lymphoblastic leukemia (ALL) is the French-American-British (FAB) classification. This has now been 

replaced by the newer World Health Organization. 

Markers Pro  

B-ALL 

Common  

B-ALL 

Pre  

B-ALL 

Mature  

B-ALL 

TdT ++ ++ ++ ++ 

CD10 - ++ ++ ++ 

CD19 ++ ++ ++ ++ 

CD20 - + + + 

CD22 ++ ++ ++ ++ 

CyCD79 ++ ++ ++ ++ 

CyIgm - - ++ ++ 

SmVpre-B/15 - - - ++ 

SmIg-CD79 - - - ++ 

CD34 + + + + 

HLA-DR ++ ++ ++ ++ 

Table II. Immunophenotypic classification of precursor B-ALL. The morphological appearance taken into 

consideration, surface markers on the leukemic cells determine the phenotype of leukemia. Modified from [48]. 
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Table III. World Health Organization (WHO) classification of B-ALL from revision of 2016. In 1997, the 

World Health Organization proposed a composite classification in attempt to account for morphology and 

cytogenetic profile of the leukemic blasts and identified three types of ALL: B lymphoblastic, T lymphoblastic 

and Burkitt-cell Leukemia.19 Later revised in 2008, Burkitt-cell Leukemia was eliminated as it is no longer seen 

as a separate entity from Burkitt Lymphoma, and B-lymphoblastic leukemia was divided into two subtypes: B-

ALL with recurrent genetic abnormalities and B-ALL not otherwise specified. B-ALL with recurrent genetic 

abnormalities is further delineated based on the specific chromosomal rearrangement present.  In 2016, two 

new provisional entities were added to the list of recurrent genetic abnormalities and the hypodiploid was 

redefined as either low hypodiploid or hypodiploid with TP53 mutations. [27] 

 

 

1.2.1.1. Mutations in signaling pathway components 

Genetic events that give rise to leukemic transformation occur inside components 

of tyrosine kinase (RTK) signaling pathways or/and other signaling pathway 

components. In fact, several numbers of genes encoding signaling pathway 

components including RAS, JAK1/JAK2, CRLF2, PTPN1, FAT1 are recurrent 

mutation targets in B-ALL (Table IV, Figure III). 

 

- RAS 

In physiological conditions of bone marrow, RAS signaling pathway is 

fundamentally involved and controls the essential steps of primitive and definitive 

blood-cell production, regulating hematopoiesis, erythropoiesis, myelopoiesis, 

thrombopoiesis, the formation of monocytic and lymphocytic lineages [43]. 

Whereas, the expression RAS signaling receptors is modified in the bone marrow 

following cellular maturation or an injury, ligation of RAS signaling receptors has 

been shown to modify the status of the bone marrow resulting in accelerated 

hematopoiesis after injury [44]. Consequently, this mechanism involves that 

activating mutations of RAS signaling are among the most frequent mutations in 

cancer, initially reported in about 15% of pediatric BCP-ALL [43, 44]. 

WHO classification of B-acute lymphoblastic leukemia with recurrent genetic 

abnormalities 

Genetic abnormalities Involved-Genes 

Hypodiploidy - 

Hyperdiploidy - 

t(9;22)(q34;q11.2) [BCR-ABL1] 

t(v;11q23) [MLL rearranged] 

t(12;21)(p13;q22) [ETV6-RUNX1] 

t(1;19)(q23;p13.3) [TCF3-PBX1] 

t(5;14)(q31;q32) [IL3-IGH] 

Intrachromosomal amplification of chromosome 21 iAMP21 

Translocations involving tyrosine kinases or cytokine receptors [BCR-ABL1] 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5520400/#bib19
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Nevertheless, the clinical significance of RAS mutations is still debated, and it is 

unknown whether the recent inclusion of minimal residual disease (MRD) levels as 

risk criterion influences the prognostic effect of RAS pathway mutations in 

contemporary protocols [45]. Therefore, recent studies found that even mutations 

in NRAS, KRAS, FLT3 and PTPN11 are more frequently observed at relapse (34–

38%), and in part confer a poor prognosis [46-48]. Recently, Jerchel IS and co-

workers demonstrated that given that clonal mutations at initial diagnosis were 

retained at relapse and that subclonal mutations often expanded at relapse, RAS 

pathway mutations may serve as a biomarker to identify patients eligible for 

MEK/ERK targeted therapy [45]. Furthermore, they concluded by suggesting that 

the synergistic effect between MEK inhibition and prednisolone may be of 

additional advantage in the treatment of B-ALL [45].  

 

- JAK1/JAK2 

JAK1 is a critical effector of proinflammatory cytokine signaling and plays 

important roles in immune function, so that abnormal JAK1 activity has been linked 

to immunological and neoplastic diseases, while specific functions of JAK1 in the 

context of hematopoiesis, and specifically within HSCs, have not clearly been 

delineated [49]. Nevertheless, one study suggests that mice with conditional 

deletion of JAK1 in the hematopoietic system are characterized by leukocytosis, 

reduced spleen and thymus weights [50]. JAK1 and JAK2 gain of function 

mutations are found also in human hematological malignancies, favoring the 

validation of the JAK-inhibitors, used clinically to treat various types of leukemia 

and myeloproliferative neoplasms (MNPs) [51]. However, as these studies 

highlight, unexpected side effects from long term profound JAK1 inhibition may 

occur and could even result in stem cell failure if these results in mice were 

extrapolated to humans [52-54]. A recent clinical trial of Phase 2 Study is 

systematically investigating key questions of whether the addition of a JAK-

inhibitor Ruxolitinib with chemotherapy in children, adolescents, and young adults 

BCR-ABL1-like can decrease relapse and improve survival of these patients. 
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- CRLF2 

CRLF2 is a member of type I cytokine receptor family, that forms a functional 

complex with IL-7 receptor α chain and thymic stromal lymphopoietin, inducing 

the activation of signal transducers and activators of transcription proteins [55]. 

CRLF2 rearrangement is found in approximately 50% of pediatric Philadelphia-like 

B-cell acute lymphoblastic leukemia (Ph-like B-ALL), and around 50% of 

CRLF2+ cases harbor JAK mutations [55]. Having said that, CRLF2 rearrangement 

in B-ALL could further facilitate the JAK2 mutation assay for targetable therapy 

[55]. 

 

- PTPN1 

PTPN1 is a tyrosine phosphatase implicated as a negative regulator of the insulin 

pathway and removes phosphate molecules from activated insulin receptor kinase 

[56]. Besides, PTPN1 regulates the activity of a variety of other kinases implicated 

in a variety of cellular contexts including EGFR, JAK2, TYK2, and FAK, and it 

has been associated with the regulation of several cellular processes including 

invasion, cytokine sensitivity, cell adhesion, and proliferation [56]. Contrary, loss 

of PTPN1 in preclinical studies leads to increased JAK-STAT pathway activity in 

hematopoietic cells in vitro, while a deletion of PTPN1 in mice results in a 

hematopoietic malignancy [57]. As inactivation mutations in PTPN1 are restricted 

to distinct subsets of leukemia and lymphoma, a future challenge will be to identify 

in which cellular contexts do they contributing to the initiation or maintenance of 

leukemogenesis or lymphomagenesis. 

 

- FAT1 

The cadherin gene FAT1, located on chromosome 4q34-35 within a region 

frequently deleted in human cancers, encodes a large protein with 34 extracellular 

cadherin repeats [58]. Although the gene was originally cloned from a human T-

cell acute lymphoblastic leukemia (T-ALL) cell line, FAT1 just recently gained 
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interest owing to its altered gene expression levels and the detection of somatic 

mutations identified by next-generation sequencing (NGS) even in B-ALL [39]. 

Recently, de Bock CE and colleagues identified FAT1 cadherin as a unique and 

independent prognostic factor for relapse-free and overall survival in pediatric pre-

B-ALL, underlining FAT1 in future studies as a new MRD marker [59]. 

 

1.2.1.2.   Mutations in transcription factors 

Lymphopoiesis is orchestrated by a small number of transcription factors, which 

are subjected to mutation or molecular rearrangement in B-ALL [39, 41]. Among 

them IKZF1, ETV6 and Runt-related transcription factor 1 (RUNX1), steroidogenic 

factor 1 (SF-1), Double Homeobox 4 (DUX4) and ERG, TCF3 and PAX5 (Table 

IV, Figure III). 

 

- IKZF1 alterations 

IKZF1 is a member of the Ikaros family and is mainly expressed in the 

hematopoietic and lymphopoietic system [60]. IKZF1 is required for differentiation 

and maturation of B- and T-cells, possibly by involvement in the rearrangement of 

immunoglobulins and immune receptor genes [60]. Given the diverse roles of 

Ikaros in hematopoiesis and the growing list of key developmental genes that are 

co-regulated by Ikaros, it is not surprising that loss of Ikaros function has been 

observed in human hematopoietic malignancies [61]. The first description of 

alterations in Ikaros function in human disease was reported by Lei Sun and 

colleagues, showing aberrant expression of Ikaros isoforms in infant B-ALL [62]. 

Besides, deletions in IKZF1 with the consequent expression of DN protein isoforms 

found in B-cell precursor ALL correlate with an inherent resistance to current 

therapeutic strategies and increased risk of poor outcomes, in about a quarter of 

high-risk pediatric B-ALL cases [63]. Therefore, several groups have described the 

increased DN Ikaros isoforms in B-ALL to coincide with expression of the 

Philadelphia chromosome, a translocation of chromosomes 9 and 22 resulting in 

constitutive activation of the ABL tyrosine kinase [64-66]. Additionally, Iacobucci 
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I and colleagues suggested that the increased expression of the DN Ikaros isoforms 

in 49% of adult Philadelphia chromosome-positive (Ph+) ALL cases is linked with 

resistance to targeted therapy with tyrosine kinase inhibitors [64]. Some research 

groups are focusing to understand the mechanisms involved downstream the DN 

Ikaros isoforms, such as experimental models of Ikzf1 mutated pre-B cells that 

favor the upregulation of pro-survival signaling pathways such as JAK-STAT, as 

well as increased expression of anti-apoptotic proteins such as Bcl-xL and Bcl-2 

[67, 68]. Overall, the clarification of Ikaros function should provide an in-depth 

view of its role in normal hematopoietic regulation, as well as guide therapeutic 

choices in malignant tumors characterized by loss of Ikaros function.  

 

- ETV6/RUNX1 fusion gene 
 

RUNX1 is a Runt family transcription factor critical for normal hematopoiesis [69]. 

Consequently, it is easy to understand that one of the most frequent chromosomal 

lesions on pediatric B-ALL is t(12; 21)(p13; q22), which results in its molecular 

genetic counterpart, the ETV6/RUNX1 (also known as TEL/AML1) fusion gene 

[69]. This alteration occurs in approximately 25% of childhood ALL diagnosed 

between the ages of 2 and 10 years, with a median age of 4 years [70]. 

The ETV6/RUNX1 fusion gene results in the generation of a persistent pre-leukemic 

clone, which postnatally converts, at low frequency, to ALL after the acquisition of 

necessary secondary genetic abnormalities [70]. Although multiple studies have 

identified a variety of second genetic hits, their correlation with 

the ETV6/RUNX1 fusion gene and their effects on the pathogenesis of leukemia 

need to be further explored [70, 71]. Given that the ETV6/RUNX1 fusion gene 

drives not only the leukemic transformation process but also the maintenance and 

propagation of leukemia cells, the specific components of affected signaling 

pathways and epigenetic regulators, constitute ideal therapeutic targets. For 

instance, inhibitions of the aberrantly activated PI3K/AKT/mTOR pathway, 

STAT3 signaling and/or MDM2/P53 interaction represent promising therapeutic 

strategies [72, 73]. 
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- DUX4 rearrangement and ERG deregulation 

DUX4 is a powerful transcriptional regulator with an unknown still physiological 

role in normal cells [74]. In vitro, full-length DUX4 is expressed in human 

embryonic, mesenchymal stromal cells and induced pluripotent stem cells [74]. 

Whereas, ERG is a member of the ETS family of transcription factors, with a role 

in hematopoiesis stem cell maintenance [75]. Several studies demonstrated that 

ERG has an impact on the characteristics of leukemia development/maintenance in 

several settings [76-78], it is frequently overexpressed in human AML and T-ALL 

and it is associated with poor outcome in these types of leukemia [79]. Indeed in 

2007, Charles G. Mullighan and co-worker demonstrated that the ERG deletions 

resulting in enhanced transcriptional activity, defining a novel subtype of B-

Progenitor Acute Lymphoblastic Leukemia [80]. Recently, Jinghui Zhang and 

colleagues performed expression profiling and DNA copy-number analysis on 

1,913 patients with B-ALL combined with whole-genome, whole-exome and RNA 

sequencing in a subset, demonstrating that transcriptional deregulation of ERG was 

observed in all DUX4-rearranged cases with identification of a noncanonical 

aberrant ERG transcript resulting in a truncated protein [81]. Seeing as, some 

studies suggested that ERG transcript retained DNA binding activity and acted as a 

competitive inhibitor of wild-type ERG, promoting lymphoid leukemogenesis in 

mice [81], this finding may allow for improved risk stratification and guide therapy 

in patients with B-ALL, as patients with this form of leukemia have an excellent 

prognosis. 

 

- PAX5 rearrangement in TCF3-PBX1 

TCF3 is a transcriptional activator widely expressed and influential in diverse 

cellular processes, as well as critical in lymphocyte development, precisely in the 

normal B-cell hematopoiesis is essential [82]. The oncogenic TCF3-PBX1, also 

known as E2A-PBX1, fusion gene results from a translocation between 

chromosomes 1 and 19 in pre-B-cell acute leukemia (pre-B-ALL) [83] . Whereas, 

PAX5 is a transcription factor that is expressed exclusively in cells of the B-cell 

lineage [84]. It plays hence a crucial role in B-cell development and commitment 
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of the bone marrow multipotent progenitor cells to the B-lymphoid lineage [84]. 

Especially since, antibodies to PAX5 are used for the diagnosis of lymphoid 

malignancies, particularly precursor B-ALL [85]. Nevertheless, a genome-wide 

analysis using oligo SNP arrays recently demonstrated that PAX5 (paired-box 

domain 5) is the main target of somatic mutations in childhood BCP-ALL being 

altered in 38.9% of the cases [86]. PAX5 alterations are heterogeneous consisting 

of complete loss in 17%, focal deletions in 10%, point mutations in 7% and 

translocations in 1% of the cases [86]. PAX5 complete loss and PAX5 point 

mutations differ [86]. Familiades J et colleagues published “a GRAALL study”, 

showing that PAX5 deletions are highly skewed toward BCR-ABL1 and TCF3-

PBX1 fusion genes, occurring in 71% of patients in deleted PAX5 compared to 22% 

in normal PAX5 and 29% in mutant PAX5 [87]. It suggests a very important role of 

PAX5 dosage during the transformation process of these two oncogenes [87]. 

Furthermore, in 2018 Thayana Conceição Barbosa and colleagues reported a case 

report of a 16-year-old boy identified a novel PAX5 rearrangement in TCF3-PBX1 

in B-ALL [88].   

 

 

Table IV. The main genetic abnormalities in ALL. Identification of recurring cytogenetic abnormalities and 

molecular alterations in ALL has had a major impact on risk assessment and several structural and chromosomal 

changes have been incorporated into existing classification systems. Modified from [29]. 

 

 

 

Disease Abnormality Gene involved Incidence 

 

 

 

 

 

 

 

B-ALL 

t(9;22)(q34;q11) BCR ABL Adult: 30% 

Children: 3% 

t(12;21)(p13;q22) 

 

TEL AML1 Adult: <1% 

Children: 20% 

t(4;11)(q21;q23) 

 

MLL AF4 Adults: 5% 

Infants: 60% 

t(1;19)(q23;p13) 

 

E2A PBX1 5% 

t(8;14)(q24;q32) 

 

c-MYC IgH 1% 

t(17;19)(q22;p13) 

 

E2A HLF <1% 

t(11;19)(q23;p13) MLL ENL 

JAK1/2/3 mutations 

<1% 

10% 
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1.2.1.3.   Epigenetics modifier mutations 

Aberrant promoter methylation and histone modifications have been shown to play 

a role in B-ALL pathophysiology. Moreover, some studies have established a 

relationship between the epigenetics signatures with defined genomic 

rearrangement in B-ALL [89, 90]. In B-ALL mutations have been found in 

epigenetics actors such as MLL, DNMT3A, TET2 genes etc [89]. It is proposed that 

these genes could be in pre-leukemic hematopoietic stem cells and occur early in 

the evolution of B-ALL (Table IV, Figure III). 

 

- MLL mutations 

The MLL (Mixed Lineage Leukemia) gene encodes a protein that plays an essential 

role in early development and hematopoiesis by acting as a histone 

methyltransferase and transcriptional co-activator, but also a common target for 

chromosomal translocations associated with human acute leukemia [91]. 

Rearrangements of the MLL gene at 11q23 occurs in at least two-thirds of infants 

with ALL, less frequent than in older individuals [92, 93]. This rearrangement 

known also as t(4;11)(q21;q23)/MLL-AFF1(AF4), occurs where physiologically 

MLL gene regulates hematopoiesis through the maintenance of normal homeotic 

gene expression [92, 93]. Of all patients treated with topoisomerase II inhibitors, 

between 2 and 12% go on to develop secondary leukemia, reporting a smaller 

number of cases of ALL compared to AML [94, 95]. This therapy-related leukemia 

secondary also harbors MLL translocations in at least 70% of cases [94, 95].  

 

- TET2 

The Tet methylcytosine dioxygenase enzymes (TET1-3) mediate active DNA 

demethylation of cytosines in CG dinucleotides [96]. Besides, TET2 is the most 

expressed TET gene in the hematopoietic tissue, especially in hematopoietic stem 

cells [96]. Loss-of-function mutations of TET2 have been found in patients with a 

wide range of hematological diseases, including mature B-ALL (2%) [97]. More 
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recently, TET2 mutations were also identified in mantle cell lymphomas and in 

diffuse large B-cell lymphoma (12%) in which they were associated with an altered 

DNA methylation pattern of genes involved in hematopoietic development [98]. 

Clinically, targeting aberrant DNA methylation using hypomethylating agents is an 

alternative to conventional chemotherapy, modulating the decreased TET2 activity 

in the transformed cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure III. Frequency of gene mutations and related signal pathways in ALL subtypes. A) Frequency of 

the top 38 gene mutations in different ALL subtypes, which are shown in indicated colors. B) Frequency of 

gene mutations involved in different functional pathways. Figure modified from [39]. 
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1.2.2.    Sign and symptoms in B-ALL 

Leukemia may present in various ways. Many times, the symptoms are non-

specific, including fever, weight loss and loss of appetite [10, 26, 27]. Occasionally, 

there are also symptoms that are related to bone marrow insufficiency, i.e. pallor 

and bruising [14, 17, 99]. Clinically, patients with ALL typically present 

constitutional symptoms, fatigue, bleeding, infections, and/or bone pain, with less 

than 10% of individuals having symptomatic central nervous system (CNS) 

involvement at diagnosis [26, 29]. Mature B-cell ALL can also present as 

extramedullary (gastrointestinal or testicular involvement) disease [14]. Age at 

diagnosis has a strong prognostic effect, but also leucocyte count is a continuous 

prognostic variable, with increasing counts conferring a poorer outcome [10, 24]. 

Indeed, patients with extreme hyperleukocytosis (>400×109/L) are at high risk for 

early complications, such as central nervous system involvement, hemorrhage and 

pulmonary and neurological events due to leukocytosis [24].  

 

1.2.3.    B-ALL treatment and emerging approaches 

The treatment options of B-ALL are dependent on several important factors, of 

which the most significant is the type or subtype of B-ALL [14]. Additional to this, 

other factors should be taken into consideration to establish a treatment plan, 

including cytogenetic abnormalities of the blasts as well as clinical features, the 

patient’s age and involvement of the central nervous system (CNS) [100]. The 

mainstay of treatment is chemotherapy and, in some protocols, children with CNS 

diseases are given cranial irradiation [100]. Except for patients with mature B-cell 

ALL, who are treated with short-term intensive chemotherapy (including high-dose 

methotrexate, cytarabine, and cyclophosphamide), treatment for B-ALL typically 

consists of a remission-induction phase, an intensification (or consolidation) phase, 

and continuation therapy (long-term maintenance) [14, 28, 100]. The goal of 

induction treatment for B-ALL is to clear the blood and bone marrow of immature 

white blood cells (blasts) and bring about a complete remission, or complete 

response [28]. Otherwise, the consolidation treatment for B-ALL is given to prevent 

leukemia cells from coming back, indeed begins when the person goes into 
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remission after induction treatment, while  the long-term maintenance is used to 

prevent or delay the cancer's return if it is in complete remission after the initial 

treatment or to slow the growth of advanced cancer after the initial treatment [28]. 

Finally, allogeneic hematopoietic stem cell transplantation may be indicated for the 

treatment of several subgroups of B-ALL patients with poor prognostic factors, 

such as those with Ph-positive disease (even when treated with a tyrosine kinase 

inhibitor) or with a poor initial response to treatment, as shown by minimal residual 

disease monitoring with different techniques, such as flow-cytometry or molecular 

biology [14, 28, 100]. Here below we will discuss some of the new emerging 

approaches to treated specific B-ALL cases. 

 

- Tyrosine Kinase inhibitors 

Historically, Ph-positive ALL presented 5-year survival ~5–20% and the Allo-SCT 

has been the only chance for cure, as long as the advent of TKIs made a turning 

point in the treatment of Ph-positive ALL [31]. The second-generation ABL kinase 

inhibitor, called Dasatinib, was developed as a dual Src/Abl kinase inhibitor, 

penetrating the blood-brain barrier and was effective at treating CNS disease [101]. 

Besides, Dasatinib was shown to be effective in inducing complete remission when 

used in combination with prednisone and intrathecal methotrexate 

[101].  Ponatinib, a third-generation TKI with the ability to inhibit most BCR-

ABL1 kinase domain mutations, has recently gained approval for resistant Ph-

positive ALL [102]. Progressively, the PACE trial demonstrated the ability of 

Ponatinib to generate a cytogenetic response in 47% of Ph-positive ALL patients 

after Dasatinib failure [103]. Moreover, clinical trial studies demonstrated that 

Ibrutinib, the inhibitors of pre-BCR+ B-cell by targeting Bruton’s tyrosine kinase 

(BTK) and B lymphocyte kinase (BLK), is tolerance in malignant B-cells and has 

progressed into phase III trials [104]. Furthermore, the combination treatment of 

Ibrutinib with Vincristine or Dexamethasone demonstrated valid activity during the 

therapy of B-ALL [100]. Other studies tested the combination of Ruxolitinib with 

Nilotinib demonstrating that it usually inhibits the proliferation of leukemia cells 

especially in Ph + ALL [100].  
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- Signaling pathway inhibitors 

The screening of new targets and seeking novel effective inhibitors of signaling 

pathway involved in hematopoiesis are necessary and will provide more options for 

B-ALL treatment. For example, one group demonstrated that the combination of 

Temsirolimus, a specific inhibitor of mTOR, with Ibrutinib resulted in the cell 

growth reduction during the B-cell receptor pathway in vivo [105], others found that 

in vitro the Rapamycin (Sirolimus) inhibits cell growth and even promotes cell 

death in B-precursor ALL [106], while T315I, an integrin-linked kinase (ILK) 

inhibitor, which downregulates protein kinase B (Akt) and p-Akt, a unique mutation 

because of its resistance to the approved BCR-ABL inhibitors [107]. Otherwise, 

Idelalisib is a promising treatment option for BCP-ALL patients with TCF3-PBX1 

(E2A-PBX1), whereas other drugs could be useful depending on the genetic context 

of individual patients [83], ABL001, also named Asciminib, could bind to the 

Myristoyl pocket of ABL1 and induces the formation of kinase conformation [108]. 

Besides, ABL001 is a potent and selective ABL1 inhibitor that is undergoing 

clinical development testing in patients with CML and Ph + ALL [108]. 

 

-         Epigenetic therapies 

Given that pediatric leukemia represents a heterogeneous group of diseases 

characterized by germline and somatic mutations that manifest within the context 

of disturbances in the epigenetic machinery and genetic regulation, current efforts 

are focused on drug candidates targeting histone deacetylases (HDACs) or 

methyltransferases as possible therapeutic agents, such as EPZ-5676, Decitabine, 

Vorinostat, Panobinostat etc [14, 100]. Fortunately, DNA methyltransferase 

inhibitors or hypomethylating agents, including Azacitidine and Decitabile, are 

already approved for use in MDS [109]. Also, clinical trials in phase 1 and phase 2 

for Decitabile and Vorinostat, respectively, demonstrated their ability to alter the 

abnormal cellular pathways of leukemic blasts and essentially turn off anti-

apoptotic proteins, while the leukemic cells have become primed for cytotoxic cell 

kill via chemotherapeutic agents [110]. EPZ-5676 is used for ALL harbor 

rearrangements of the MLL gene, because it blocks the activity of DOT1L, a protein 
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that plays an important role in the malignant process in these type of leukemia 

[111]. Many other classes of epigenetic modulators are under investigation for B-

ALL treatment. These classes include: IDH inhibitors, BET inhibitors, DOT1L 

inhibitors etc [100, 112]. 

 

- Other target therapies 

There are many other emerging therapies under investigation for B-ALL treatment 

such as antibody therapy [113]. A deep description of emerging therapies in B-ALL 

is beyond the scope of this study. However, it is worthy to mention that a good 

strategy consists in the use of the combination of two therapies than one [100, 110]. 

It may be the consequence of the existence of many clones in B-ALL developments, 

each dependent on one or two molecular abnormalities with are the target of 

pharmacological agents.  

 

 

2. The Notch signaling pathway 

2.1.   The Notch receptors and ligands 

The canonical Notch signaling pathway was first identified in the context of lateral 

inhibition of the peripheral nervous system of insects in 1917, when Thomas Hunt 

Morgan and colleagues described a strain of Drosophila with notches at the end of 

their wing blades [114, 115]. This curious trait was attributed to a partial loss of 

function (haploinsufficiency) of what would be later identified as the NOTCH gene 

[115]. Later, Notch signaling was described as an evolutionarily conserved 

pathway, being crucially involved in cell fate decision, proliferation, development, 

adult homeostasis and stem cell maintenance [114]. Notch proteins (Figure IV) are 

single-pass transmembrane receptors that transduce extracellular signals into cells 

and mediate cell-cell interactions [115]. There are four Notch receptors in mammals 

(namely Notch1–Notch4), of which Notch1 and Notch2 have each 36 epidermal 

growth factor (EGF)-like repeats, while Notch3 and Notch4 have 34 and 29 repeats, 

respectively, followed by three Lin-NOTCH repeats (LNR) [115, 116]. The 
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intracellular domain called Notch intracellular domain (NICD) presents the RBP-J-

associated molecule (RAM) domain, six ankyrin repeats (ANK), nuclear 

localization sequences (NLS), a transactivation domain (TAD) required for 

activating transcription and a proline-, glutamate-, serine- and threonine-rich 

(PEST) domain which regulates NOTCH degradation [115, 116]. RAM domain and 

ANK repeats have been identified as regions involved in the interaction with CSL 

transcription factors [114-116]. The hydrophobic region or heterodimerization 

domain, together with the LNR repeats, form the negative regulatory region (NRR), 

adjacent to the cell membrane involved in the prevention of ligand-independent 

activation of Notch [114-116]. Furthermore, there are five canonical Notch ligands 

in mammals belonging to Delta (Dll1, Dll3 and Dll4) and Jagged (Jag 1 and Jag 2) 

families [115, 116]. Like the Notch receptors, these ligands are single-pass 

transmembrane proteins having multiple EGF-like repeats and cysteine-rich 

sequences known as the Delta-Serrate-Lag2 (DSL) motif [115, 117]. The EGF-like 

repeats and the DSL motifs on the ligands are required for them to bind and activate 

the Notch receptors on the neighboring cells, moreover these ligands may display 

or specificity or redundancy for different Notch receptors [114, 115]. 

 

 

 

Figure IV. Structure of human Notch receptors and ligands. Figure adapted from [116]. 
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2.2. Mechanism of Notch signaling 

Initially, as illustrated in Figure V, the Notch receptors are transcribed and 

translated as 210-300 kDa large precursor molecules. A series of post-

translational modifications are required for the precursors to acquire their active 

forms [118]. The intact precursor molecules are first glycosylated in the 

endoplasmic reticulum (ER) by O-fucosyletransferase (Pofut-1 in mammals), 

which adds fucose to serine or threonine sites on specific EGF-like repeats 

[118]. The glycosylated precursors are then cleaved in the trans-Golgi network 

into two subunits by furin-like convertases (S1-cleavage) [118]. This cleavage 

converts the precursor molecule into the noncovalently linked Notch 

extracellular domain (NECD) and Notch transmembrane-Notch intracellular 

domain (TM–NICD) complex, which is then further glycosylated by enzymes 

of the Fringe family [118, 119]. In mammals, three Fringe genes have been 

identified: Lunatic fringe (Lfng), Radical fringe (Rfng) and Maniac fringe 

(Mfng) [114, 118, 119]. Fringe proteins add N-acetylglucosamines moieties to 

already existing O-fucose molecules on the EGF-repeats [116, 118, 119]. This 

modification in the Notch ligand-binding domain seems to alter the 

responsiveness of the receptor to different ligand interactions or enhance S2 

mediated cleavage of the receptor [116, 118, 119]. The effects of Fringe 

dependent modification of Notch are complex and the outcome of the signaling 

largely seems dependent on the combination of receptor, fringe family member 

and ligand [116, 118, 119]. The mature Notch receptor is then translocated to 

the cell surface and is, via its EGF-like repeats, activated upon binding to one 

of its ligands, which are expressed on neighboring cells. The receptor-ligand 

binding results in a conformational change of the receptor and the exposure of 

an extracellular metalloprotease site (S2). S2 cleavage of the NECD is 

controlled by the ADAM/TACE (a desintegrin and metallopeptidase/tumor 

necrosis factor α converting enzyme) family of transmembrane proteases 

resulting in an active membrane anchored Notch [116, 118, 119]. This Notch 

form is subsequently cleaved within the TD close to the cytoplasmic border by 

the presenilin-γ-secretase complex (S3), between gly1743 and val1744 (termed 
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site 3 or S3), which is composed of a four-protein complex consisting of the 

catalytic component presenilin and the three co-factors, nicastrin (NCSTN), 

anterior pharynx-defective 1 (APH-1) and presenilin enhancer 2 (PEN-2). 

Following the multi-step cleavage of Notch and liberation of NICD from the 

inner membrane, activated NICD is translocated into the nucleus via 

endocytosis and endosomal trafficking [118, 120, 121]. In the nucleus NICD 

normally is a transcriptional activator, consisting of ankyrin repeats domain, a 

RAM (RBP-Jκ associated molecule) domain, a transactivation domain (TAD), 

a nuclear localization signal (NLS), and a PEST domain that regulates protein 

stability, and binds to the transcriptional repressor RBP-Jκ, which together with 

co-activators belonging to the 1-3 Mastermind-like family (MAML1-3) of 

proteins [115, 118, 120, 121]. Notch ligands are also cleaved by γ-secretase and 

ADAM/TACE metalloprotease complexes, thus providing an additional level 

of regulation of the pathway. The complex further recruits different co-

regulators e.g. the histone acetyltransferase p300 and other chromatin 

remodeling factors together with the cyclin-dependent kinase (CDK) 8 [114, 

119, 120]. Recruitment of CDK8 leads to phosphorylation of NICD and thereby 

subsequent proteasomal degradation of the complex through E3-ligase FBW7 

(Cdc4) mediated ubiquitination of the TAD and PEST domains (polypeptide 

rich in proline, glutamate, serine and threonine), thereby terminating active 

Notch signaling. Other important regulators of Notch signaling are the Numb 

and Numb-like proteins, which act upstream of S3 cleavage to antagonize Notch 

signaling through direct interaction via Notch ankyrin (ANK)-repeats [114, 119, 

120]. It is also likely that NICD can act in a RBP-Jκ independent non-canonical 

manner and interact with several other components in the nucleus e.g. Hif-1α, 

NFκB and β-catenin [122]. Some of the best-known target genes belong to the 

HES/HEY (Hairy Enhancer of Split/Hairy Enhancer of Split related) family, 

which are basic helix-loop-helix (bHLH) transcriptional repressors important 

for development, proliferation, differentiation and cell fate decision [120, 122]. 

Besides bHLH transcription factors, several other genes like the protooncogene 

c-Myc and the cell cycle regulators p27KIP1 and cyclin D1 have been identified 

as Notch targets [119, 120, 122]. 
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Figure V. Schematic representation of the Notch signaling pathway. Once synthesized in the endoplasmic 

reticulum (①), the inactive single peptide precursor moves to the Golgi where it is cleaved by a furin-like 

convertase (S1 cleavage) (②) and translocate into the cell membrane. The binding with a Notch ligand (③) 

induces the second cleavage (S2) by a member of the disintegrin and metalloproteinases (ADAM) family (④), 

resulting in the formation of a membrane-tethered Notch truncated (NEXT) fragment, which is further 

processed in two sites (S3 and S4) by a presenilin-dependent γ-secretase complex (⑤), generating the Notch 

intracellular domain (NICD), the active form of the Notch receptor (⑥). The NICD can now enter into the 

nucleus, where it exerts its transcriptional activity (⑦). The ubiquitination of the NICD (⑧) leads to its 

proteasome degradation (⑨). Figure adapted from [116]. 

 

 

2.3. Role of Notch in development 

As already mentioned, Notch was first identified in Drosophila as a mutation 

associated to the wing-Notching phenotype [114, 115]. Subsequently, it was 

identified as a highly conserved and a master developmental gene involved in the 

embryonic development and tissue homeostasis from flies to mammals [114, 115]. 

In human, Notch participates in the control of cell proliferation, self-renewal, 
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apoptosis, migration and differentiation regulating a wide variety of developmental 

processes, such as neurogenesis, heart and endocrine development [114]. It has 

been proposed that Notch regulates developmental processes through three models, 

i.e. lateral inhibition, lateral induction and lineage decisions [121] (Figure VI). 

Lateral induction occurs among cells with equal capability to undergo different 

fates. In this case, Notch activation maintains cells in undifferentiated state, while 

neighbor cells undergo the differentiation [121]. During lateral induction, Notch 

receptor-expressing cells undergo differentiation, while adjacent cells are 

maintained in the undifferentiated state. Over lineage induction means at each cell 

division, Notch is activated in one daughter cell, but not in the other cell, which 

results in the adoption of distinct cell fates [114, 121]. 

 

 

Figure VI. The Notch signaling pathway is used for a wide range of cell-fate decisions. The top panels 

show how cell fates are specified in wild-type cells; the bottom panels show the consequences of no Notch 

signaling. a) Lateral inhibition: a pair or a group of equivalent precursor cells (light purple) signal through the 

Notch pathway to inhibit each other's ability to adopt a distinct fate. In a sequential process (shown by the 

arrows), which is amplified by feedback loops, one cell in each group (dark purple) 'wins' by lacking Notch 

activation. Notch activation in the other cells results in an alternative cell fate (yellow). b) Asymmetric cell 

divisions: at each cell division, Notch is activated in one daughter cell (solid lines) but not in the other cell 

(dashed lines), which results in the adoption of distinct cell fates (indicated by different colors). c) Inductive 

signaling: one group of cells (yellow) signals (orange arrows) to a distinct neighboring group of cells (green) 

to induce a new cell fate along the interface between them (red). Figure modified from [121]. 
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2.3.1. Role of Notch signaling in organ development 

Since Notch pathway is a signaling network essential for proper organ development 

in an embryo and is indispensable for tissue regeneration in the adult, the 

dysfunctions in Notch signaling pathway have been linked to the pathogenesis of 

several inherited human diseases, including Alagille Syndrome, Spondylocostal 

dysostosis, Hajdu Cheney Syndrome, mucoepidermoid carcinoma, Aortic valve 

disease, Cerebral autosomal dominant arteriopathy with subcortical infarcts and 

leukoencephalopathy (CASASIL) and T-acute lymphoblastic leukemia (T-ALL) 

[123-132] (Table V). For Alagille Syndrome, most cases (94%) are associated with 

a mutation in the Notch ligand JAGGED1, including some cases with deletions in 

chromosome 20 where the ligand gene is located [130]; the remained patients 

present a mutation in other genes of Notch family, mostly (1-2%) NOTCH2 

[129]. Alagille patients are characterized by bile duct malformation, a combination 

of heart defects, broad and prominent forehead due to bone defect, and central 

nervous system impairment [129, 130]. Spondylocostal dysostosis, however, is 

caused by a mutation in one of at least five different genes, specifically 

DLL3, MESP2, LFNG, HES7 and TBX6, though an altered DLL3 gene is still the 

most common cause [128]. The Notch gene mutations cause malformations 

affecting the spine and ribs, bringing accordingly severe breathing [128]. Another 

rare disease, characterized by mutations in Notch signaling, is the Hajdu Cheney 

Syndrome, after mutations in the NOTCH2 gene, which primary manifestations are 

focal bone destruction and osteoporosis, while secondary are craniofacial 

abnormalities, renal cysts, cleft palate and cardiac defects [132]. Diversely, 

CADASIL is a neurological disorder involving mutations in Notch signaling, which 

genetic risk factors have been mapped to chromosome 19q13 and many mutations 

on NOTCH3 gene [124]. The most common clinical manifestations are migraine 

headaches and transient ischemic attacks or strokes, which usually occurs between 

40 and 50 years of age. Mutations in the NOTCH3 gene cause an abnormal 

accumulation of Notch receptors at the cytoplasmic membrane of vascular smooth 

muscle cells both in cerebral and extracerebral vessels, following 

leukoencephalopathy [124]. All these diseases Notch-associated reflected the broad 

requirement for Notch signaling in embryogenic and adult development [114, 116].  
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Table V. Mutations in Notch signaling components result in developmental defects and human diseases. 

Summary of some mutations involved in the Notch signaling, cause of human diseases. 

 

 

2.3.2. Role of Notch signaling in lymphocyte development 

Since Notch signaling plays a major role in hematopoiesis and lymphocyte 

development, Notch receptors and ligands are widely expressed in the whole 

hematopoietic system [114] (Figure VII). Some studies suggested that the different 

Notch receptors and their specific ligand interactions may have distinct roles in 

HSC self-renewal and differentiation [133, 134]. Notably, accumulating evidence 

suggest that Notch1 plays a significant role in T-cell versus B-cell fate 

determination [134]. Radtke et al. even demonstrated that the inhibition of RBP-J 

dependent Notch1 signaling completely blocks T-cell development and causes 

incremental development of B-cells in the thymus and vice versa, while activation 

of Notch signaling increases the frequency of multipotent progenitor cells and 

drives T-cell differentiation in a dose-dependent manner [134, 135]. They 

demonstrated also that the inactivation of Notch2 does not affect T-cell 

development, indicating any redundancy for Notch1 and Notch2 in T:B lineage 

commitment [134, 135]. However, the Notch2 receptor is predominantly expressed 

in B-cells and a Dll1/Notch2 interaction seems necessary for marginal zone B 

(MZB) cell differentiation [133, 134]. Once again, loss or gain of function 

approaches were useful strategies to investigate the role of Notch signaling in 

hematopoiesis and lymphocyte development. The retroviral expression of active 

forms of Notch1 (NICD1), Notch4 (NICD4) or Hes1 in stem/progenitors cell-

enriched populations, increases the pool of cells with repopulating capabilities, such 

as mouse KLS (c-Kit+Scal1+Lin-) and Lin- cord blood cells [136]. Delaney et al. 

gave an important insight to Notch requirement in hematopoiesis, as they observed 

Gene Disease associated to mutated gene Ref. 

DLL3 Spondylocostal dysostosis (axial skeleton segmentation disorder) [131] 

JAG1 Alagille Syndrome [130] 

LFNG Spondylocostal dysostosis (axial skeleton segmentation and 

growth disorder) 

[128] 

NOTCH1 T-ALL, Aortic valve disease [125] 

NOCTH2 Alagille Syndrome, Hajdu-Cheney Syndrome [129, 132] 

NOCTH3 CADASIL [124] 

NOCTH4 Schizophrenia [123] 
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that treatment of CD34+CD38- cord blood progenitors with a low density of DLL1 

enhanced generation of NOD/SCID repopulating cells, while an high density of the 

ligand-induced a switch in lymphoid lineage [137]. In this term, we can say that 

though Notch is involved in the maintenance of HSCs, Notch could then act as a 

decisional specification stimulating the common lymphoid to differentiate into T-

lineage, while silencing of Notch activity leads to the onset of B-cell lineage [133-

135]. In conclusion, the different role of each receptors and ligands during 

hematopoiesis or lymphoid differentiation is still under investigation.  

 

 

Figure VII. Expression pattern of Notch receptors (above cells) and ligands (below cells) in different 

hematopoietic lineages in the organ of developmental origin. In green, expressed genes, red, absence of 

detectable expression. Figure adapted from [134]. 

 

 

 

 

2.4.    Role of Notch signaling in cancer 

While Notch signaling is crucially involved in normal regulation of cell 

differentiation, proliferation, development, its dysregulation often has even a 

profound effect on the cellular fate and may lead to tumor formation [114, 134]. 
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Indeed, the role of Notch in cancer is largely documented both in solid tumors and 

in liquid malignancies, leading to either activation or inhibition of the pathway 

[114, 117, 126]. Even though Notch pathway was early recognized as an oncogene, 

it can act as oncogene or tumor suppressor depending on the cell context [114]. 

Generally, Notch may act as an oncogene in tissues where it is involved in stem cell 

self-renewal or in cell fate decisions, while it may have a tumor suppressive role in 

tissues where Notch promotes terminal differentiation [138]. The first report of the 

oncogenic role of Notch has been described in T-ALL, an aggressive neoplasm of 

immature T-cells, as more than 50% of patients display an activating mutation in 

Notch1 gene [84, 125]. Since then, overexpression or downregulation of Notch 

components have been associated to cancer initiation, growth, epithelial to 

mesenchymal transition (EMT), angiogenesis and microenvironment-promoted 

cancer growth and chemo-resistance [139]. Some evidence suggest that in a few 

tumor types, including human hepatocellular carcinoma, skin and small lung 

cancer, expression of Notch1, Notch2, Jagged1 and Hes1 are reduce, while the 

speculatively activation of Notch signaling may function in a tumor suppressive 

manner [138, 140]. For example, during angiogenesis, Notch1 as well as the ligand 

DLL4 have been shown to interact with vascular endothelial growth factor (VEGF) 

and Hif-1α which are key controllers of both normal and tumor-related 

angiogenesis [141]. Other Notch components, such as Notch1 and Jagged1 were 

besides mostly studied for their role in cancer, representing good therapeutic targets 

[133, 134, 138, 140]. Furthermore, Notch knock-down using siRNA, shRNA, 

blocking antibodies, reduces cancer cell proliferation, growth, migration/invasion 

and sensitizes cells to chemotherapy in a several cancer, increasing the critical role 

of Notch signaling in cancer and favoring its role as target therapy [133, 134, 138, 

140].   

 

 

2.5.    Role of Notch signaling in leukemia 

The human NOTCH1 gene was first identified through its involvement in a 

t(7:9)(q34;q34.3) chromosomal translocation found in approximately 1% of T-

ALL, while later activating mutations in the HD and PEST domains were 
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discovered in 55-60% of human T-ALL, indicating a broader role for Notch1 in 

cancer formation [125, 126]. Then, an oncogenic role for Notch signaling has also 

been discovered in others hematological disease, including in Hodgkin’s lymphoma 

(HL), anaplastic large-cell non-Hodgin’s lymphoma (NHL), acute myeloid 

leukemias (AML) and B-cell chronic lymphoid leukemias (CLL) [117, 142-144]. 

The prevalence of Notch mutation in AML is probably less than 5%, and Notch 

ligation in AML cells has diverse or only minor effects, while seem that the AML 

express mostly JAG1, Notch1 and Notch2 [145]. In AML, the role of Notch remains 

controversial, although our group has recently demonstrated that the protective role 

of the microenvironment can be abrogate mediated the inhibition of Notch, 

reducing the chemoresistance of AML cells [144]. Otherwise, in CML Notch 

emerges as tumor suppressor gene rather than oncogene, although still poorly 

investigated [138]. The importance of Notch activation was instead discovered in 

T-ALL from the use of GSIs for in vitro experiments, demonstrating that these 

inhibitors sensitized the T-ALL cell survival [125, 126]. Subsequently, other Notch 

inhibitors showed the same profile, like Notch transcription factors inhibitors (e.g. 

SAMH1) and Notch blocking antibodies [16, 113]. Besides Notch1, higher levels 

of Notch3 were found in T-ALL cells, and its genetic inhibition through siRNA led 

to growth inhibition and apoptosis [16]. In CLL, however, constitutive activation 

mutations of Notch are a hallmark, especially in the PEST domain of Notch 

receptors and are associated with a shorter overall survival [16, 146]. Rosati et al. 

found high expression of Notch1, Notch2, Jagged1 and Jagged2 in CLL correlated 

with higher activation of the pathway [146]. Accordingly, our group demonstrated 

that Notch inhibition induces CLL apoptosis and sensitizes leukemia cells to 

treatment with chemotherapeutic agents [147]. Expect in T-ALL, Notch mutation 

is very rare in other leukemia types. In B-ALL, NOTCH1 mutation was not 

observed, but a tumor suppressor role of the pathway was suggested. Notch seems 

to be epigenetically silenced in B-ALL since NOTCH3, JAGGED1, HES2, HES4 

and HES5 are frequently hypermethylated in B leukemia cell lines and in primary 

B-ALL [148]. Restoration of HES5 expression by lentivirus transduction resulted 

in growth arrest and apoptosis in HES5 negative B-ALL cells [148]. In contrast, our 
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group has recently shown that microenvironment of bone marrow protects B-ALL 

cells from apoptosis induced by chemo agents through Notch activation [117].  

 

2.6.     Notch signaling-related therapeutic strategies 

Therapeutic strategies targeting Notch are designed to interfere with specific steps 

of the pathway, such as ligand-receptor interactions and receptor processing, 

agonistic and antagonistic antibodies, stimulatory fusion proteins, inhibitors of 

intracellular signaling and transcription complex formation [113, 145, 149, 150] 

(Figure VIII). For example, inhibition of the γ-secretase activity, with general 

downregulation of Notch signaling, has been used in experimental in vitro studies, 

displaying in some cases a strong antineoplastic capacity [149-151]. Indeed, as 

already cited, unless NICD is translocated to the nucleus, the NICD form of Notch 

is ubiquitinated and thereafter degraded by the proteasomes [118-121]. In this 

instance, contrarily and if necessary, the use of proteasomal inhibitors may thus 

enhance Notch signaling [113]. Indeed, various proteasomal inhibitors are now 

used in the treatment of hematologic malignancies, and they are also tried as 

immunosuppressive agents, but it is not still known whether inhibition of Notch 

signaling contributes to their clinical effects [149, 150]. Coming back to inhibition 

of Notch, several GSIs have been developed for cancer therapy, including 

BMS906024, MK0752, PF03084014, R04929097 and are already used in clinical 

trials [149, 150]. The more serious problem is that physiologically, as already 

announced, some adult tissues required Notch activity for their function, such as 

gastric epithelium, thus explaining the gastrointestinal toxicity observed during 

GSIs treatment [114, 119, 152]. Furthermore, to by-pass to this issue, some 

researchers started to introduce specific small molecules against Notch targets, such 

as receptor or ligand decoy or blocking monoclonal antibodies [145, 149]. This 

alternative therapeutic approach is mostly interesting, as a specific and unique 

Notch component could be responsible for the cancer phenotype, i.e. NOTCH1 

mutation for T-ALL [125, 126]. Several Notch receptors blocking antibodies were 

also used in clinical trials, like OMP-59R5/Tarextumab, OMP-52M51 and OMP-

21M18/Demcizumab [150], while others are under investigation. 
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Figure VIII. Latest strategies to target Notch in hematological malignancies. The figure shows an overview 

of therapeutic targeting of Notch signaling, with emphasizing innovative approaches or experiences that 

translated pre-clinical observations into clinical trials. Figure adapted from [150]. 
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3. Reactive Oxygen Species (ROS) 

The reactive oxygen species (ROS) is a collective term used to describe many free 

oxygen radicals and reactive molecules derived from molecular oxygen, including 

superoxide anion (O2-), hydroxyl radical (•OH), hydrogen peroxide (H2O2) and 

singlet oxygen (O2), while the NOX family are the critical determinants of the redox 

state [153, 154]. For a long time, ROS were only recognized as a kind of toxic by-

products from aerobic metabolism, which caused damage to cells by deleteriously 

modifying biological molecules, including lipids, proteins and nuclear acids [154, 

155]. Furthermore, ROS are usually linked with aging and many distinct human 

diseases, such as cardiovascular disease, neurological disorders, cancers and 

chronic inflammation [153-156]. However, as research progressed, another voice 

of ROS emerged. Indeed, some researchers claim that ROS can also function as 

second messengers, fine-tuning the complicated network of signal transduction, 

thus triggering or modulating various cellular activities, such as cell proliferation, 

cell differentiation and cell death [157, 158]. It is currently unknown the specific 

role of ROS in both physiological and pathological development, but it was 

demonstrated that any alterations of intracellular ROS levels may induce a cellular 

signal and determine the behavior of cells in both situations [156-158]. 

 

3.1.  Role of ROS in biological processes 

As already announced, ROS participate in various cellular processes in response to 

extracellular and intracellular signals [156-158]. It follows that, any alterations of 

intracellular ROS levels will induce a cellular signal, which can either damage cells 

or be used as intracellular messengers to regulate the activities of several proteins, 

including several transcription factors [157, 158] (Figure IX). In term of cell 

proliferation, ROS exhibit a dual effect, i.e. low levels are required for cell growth, 

while high levels lead to apoptosis or necrosis [159, 160]. Another role in which 

the ROS are involved is to determinate cell differentiation. Indeed, a report 

described the role of ROS in human embryonic stem cells (hESCs) differentiation,  

suggesting that the continuous exposure to ROS could diminish the pluripotency of 
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hESCs and consequently induce hESCs to differentiate into bi-potent 

mesendoderm, which could be further specified to mesoderm or endoderm [161]. 

Some studies also demonstrated the role of ROS in the apoptosis, induced by H2O2, 

in several cell types including rat neural AF5, glioma, colon cancer and human 

cervical carcinoma HeLa cells [154, 156, 160]. Here, we can conclude saying that 

the role of ROS in the physiological development is largely studied and 

demonstrated, now it is necessary to better understand its role in term of cancer, 

disease and pathological development.  

 

 

 

Figure IX. ROS mediated-cellular signaling. Intricate control of ROS can be either directly or indirectly 

mediated by several transcription factors (blue), as well as by kinases (yellow) and phosphatases (green). Other 

regulators, such as the cytokine signaling inhibitor LNK, the modulator KEAP1, the E3 ubiquitin ligase MDM2, 

the cell cycle inhibitors p16INK4A and p19ARF (which are negatively modulated by the polycomb group 

member BMI1), the complex mTORC1, TXNIP, and the antioxidant enzyme GPX3 (all shown in orange) can 

also control ROS levels. Dashed arrows and lines indicate regulations that have not been explicitly shown to 

occur in stem cells; unbroken lines represent interactions that have been shown in stem cells. p53 has both 

antioxidant and pro-oxidant functions (shown in somatic cells). Figure adapted from [157]. 
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3.2. Role of ROS in cancer 

Elevated levels of ROS, alteration in redox balance, and deregulated redox 

signaling are common hallmarks of cancer progression and resistance to treatment 

[156-158]. These are due to since high metabolic activity, cellular signaling, 

peroxisomal activity, mitochondrial dysfunction, activation of oncogene, and 

increased enzymatic activity of oxidases, cyclooxygenases, lipoxygenases, and 

thymidine phosphorylases [153-156]. It was demonstrated ROS-mediated signaling 

pathways activate pro-oncogenic signaling which eases in cancer progression, 

angiogenesis, and survival [159-162]. Therefore, ROS play a vital role in every 

stage of cancer development, including initiation, promotion, and progression 

[155]. An increase in intracellular ROS levels may result in the activation of 

oncogenes and oncogenic signals, including constitutively active mutant RAS, BCR-

ABL, and c-MYC which are involved in cell proliferation and inactivation of tumor 

suppressor genes, angiogenesis, and mitochondrial dysfunction [153, 156-158]. 

Studies have demonstrated that H2O2 can promote the activation of Ras protein and 

growth factor signaling which in turn activates PI3K/Akt/mTOR, MAPK/ERK and 

inactivates PTEN signaling cascades [163, 164]. Recently, it has been also 

demonstrated that breast cancer-associated mitochondrial DNA haplogroup 

promotes neoplastic growth via ROS-mediated AKT activation [165]. Furthermore, 

clinically, chemotherapy and radiotherapy are designed to exuberantly-increase 

cellular ROS levels to induce irreparable damages subsequently resulting in tumor 

cell apoptosis [157, 158, 160]. Anthracyclines, such as Doxorubicin, Daunorubicin 

and Epirubicin, generate in effect the highest levels of cellular ROS [154, 155]. 

 

3.3. Crosstalk between Notch Signaling pathway and ROS 

The development and regulation of physiological activities require orchestrated 

activities, such as Notch signaling pathways but also the modulation of ROS levels 

[114, 157, 158]. In effect, studies conducted in the last several years have provided 

clear evidence that Notch signaling pathway is regulated at least in part by NOX-

derived ROS [153, 154]. In bone marrow-derived mesenchymal stem cells 
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Boopathy et al. observed the upregulation of Notch1 after a myocardial infarction, 

which induced an increased level of H2O2 [166]. Another research group 

demonstrated that Notch signaling lowers the levels of ROS in cancer cells, 

improving cancer cell survival and chemoresistance [167]. In 2015, 

Sankaranarayanan Kannan and colleagues published that Notch activation 

regulated the antioxidant response via suppression of the master regulator NRF2, 

suggesting a pivotal role of Notch/NRF2 in the regulation of antioxidant responses 

in AML and a potential clinical significance for ROS-inducing chemotherapies 

[168]. A clear distinction between Notch robust cell-fate decisions and ROS 

modulation may provide clues for clinical strategies and drug discovery targeting 

several diseases and cancer. 
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II. Rational and aims 

The pivotal influence of the several different signaling pathways on tumor cells, as 

a basis for chemosensitivity and treatment failure, has been clearly shown [144, 

168]. Consequently, many of the most recent therapeutic approaches have shifted 

from classic single chemotherapies to the combination between chemo agents and 

inhibitors, which interfere with the activation of signaling pathways involved in the 

development of tumor cells, i.e. Notch signaling, or by targeting other signaling 

molecules at post-translational level including NFkB, Akt, mTOR, MAPK/ERK 

[105, 110, 112]. It has recently been shown that Notch ligands protect B-cells from 

apoptosis in germinal centers [169], while our group extended the knowledge on 

the protective role of Notch signaling in B-cell malignancies, i.e. B-ALL and C-LL 

[117, 147]. Furthermore, some evidence suggest that Notch mutation is very rare in 

B-ALL, but it seems to be epigenetically silenced [148]. Recently, we observed 

high expression levels of Notch receptors and ligands in a subset of 12 B-ALL 

patients, whose abrogation through Notch inhibitors, such as GSIs, resulted in B-

ALL cells apoptosis [15]. By literature, we knew that Notch signaling pathway 

controls not only proliferation, survival, differentiation, but also lowers the levels 

of ROS in cancer cells, improving cancer cell survival and chemoresistance [167]. 

These previous observations suggested the involvement of Notch signaling not only 

in B-ALL cell survival, but also in chemosensitivity.  

The aims of this study are: 

- to study the epigenetics patterns of Notch genes in B-ALL and to investigate if 

Notch may be a marker of risk for B-ALL patients; 

- to assess of the effects of inhibitors of Notch signaling in combination with some 

chemo-agents on B-ALL chemosensitivity and modulation of intracellular levels of 

ROS; 

- to validate a in vivo xenograft model of NOG, confirming the in vitro observations 

and to study the preclinical effect of combination treatments. 

Overall, we demonstrated through in vitro, in silico and in vivo approaches the 

contribution of Notch signaling pathway to B-ALL cell response and 

chemotherapy. 
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III. Materials and Methods 

 

Chemicals and antibodies 

For flow cytometry analysis, mouse IgG2b-FITC (IC0041F), goat IgG-PE 

(IC108P), anti-Jagged1-4 FITC (FAB1277F) and anti-Dll3-PE (FAB4315P) were 

from R&D System (Minneapolis, MN). Mouse IgG2a-PE (400214), mouse IgG1κ-

PE (400114), anti-Notch1-PE (352106), anti-Notch2-PE (348304), anti-Notch3-PE 

(354406), anti-Notch4-PE (349004), anti-Dll1-PE (346404), and anti-Dll4 

(346506) were from Biolegend (San Diego, CA). For B-ALL cell identification we 

used anti-CD19-PerCp/-APC and anti-CD45-PerCp/-APC/-V450/V500 antibodies 

all from MiltenyiBiotec, (Bergisch Gladbach). Rabbit anti-Deltex1 (ab135730), 

rabbit anti-HES5 [EPR15578] (ab194111), rabbit anti-HEY1 antibody (ab154077) 

were from Abcam (Cambridge, UK). Rabbit anti-c-Myc (D84C12) was from Cell 

Signaling (Leiden). For western blot analysis anti-Notch2 (sc-5545) was from Santa 

Cruz Biotechnology (Dallas, TX), anti-GAPDH (G9545) and HRP conjugated 

secondary antibodies against mouse, rabbit or goat were from Sigma Aldrich 

(Darmstadt). The rest of antibodies used for Western blot including anti-Notch1 

(4380), anti-Notch3 (5276), anti-Notch4 (2423), anti-Hes1(11988), anti-

Jagged1(2155), anti-Jagged2(2620), anti-DLL-4 (4147), anti-mTOR (2983), anti-

AKT/(Thr308)AKT (9272/2965), anti-NF-κB/(Ser536)NF-κB (8242/4764) and 

anti-ERK1/2/(Thr202/Tyr204) ERK1/2 (4695/4370) were from Cell Signaling 

(Leiden). For cell culture, recombinant human Jagged1 (1277-JG), Jagged2 (1726-

JG), DLL-4 (1506-D4) and blocking Notch-3 (AF1559) were from R&D Systems 

(Minneapolis, MN). Neutralizing Notch4 (sc-8643) was from Santa Cruz 

Biotechnology (Dallas, TX). Recombinant human Jagged1 and Jagged2 were from 

R&D System. GSI-IX (DAPT) was purchased from Stemgent (Cambridge, MA), 

while GSI-XII and SAHM1 were from Merck Millipore (Darmstadt). Cytarabine 

(Ara-C), Dexamethasone (Dexa), Doxorubicin (Doxo) were provided by Pharmacy 

Unit of the University Hospital of Verona. 
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Patients and samples 

The characteristics of patients involved in this study are presented in Table 3. This 

study was conducted in accordance with the declaration of Helsinki, all primary cell 

samples being collected from B-ALL patients after written informed consent as 

approved by the Ethical Committee of Azienda Ospedaliera Universitaria Integrata 

Verona Italia (N. Prog. 1828, May 12, 2010 - ‘Institution of cell and tissue 

collection for biomedical research in Onco-Hematology’). Primary B-ALL samples 

were used equally fresh or after freezing.  

 

 

Cell line culture and validation 

B-ALL cell lines including VR-ALL, RS4;11, and SUP-B15 were cultured in 

complete RPMI (RPMI supplemented with 10% fetal bovine serum (FBS), 1% L-

Glutamine and 1% Penicillin/Streptomycin). VR-ALL cells were isolated, 

characterized and validated in our laboratory, as previously described [151], while 

RS4;11, and SUP-B15 cell lines were acquired from American Type Culture 

Collection (ATCC). Stability and identity of all B-ALL cell lines were controlled 

during and at the end of the current study using flow cytometry of membrane 

marker, morphological analysis after Giemsa staining and Short Tandem Repeat 

(STR). The stability and identity of all other cell lines (including HEK 293, 

HEK293T, CEM and Ramos) used as control in western immunoblot were 

validated only through flow cytometry of membrane marker and morphological 

analysis after Giemsa staining. All cell lines were routinely tested to be 

Mycoplasma-free using the Mycoplasma PCR detection kit from Sigma Aldrich 

(Darmstadt). Once thawed cells were passaged every week and were not used for 

more than 3 months. This period corresponding to 8-12 cell passages. 

 

 

Western blotting 

Cells were lysed with appropriate amount of RIPA buffer (25 nM Tris pH 7.6, 150 

mM NaCl, 1% NP40, 1% Na-deoxycholate, 0.1% SDS) supplemented with 

complete Protease Inhibitor (Roche) and 1 mM Na3VO4. Proteins were separated 
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on a 10% polyacrylamide gel. Subsequently, proteins were transferred onto 

nitrocellulose membrane (GE Healthcare), labeled with appropriate antibody and 

acquired by LAS4000 (GE Healthcare) instrument. GAPDH was used as loading 

control. All samples subjected to immunoblotting contained more than 80% of 

leukemia cells. The specificity of all Notch antibodies was validated on three 

control lysates, as previously described (5,14,15): HEK 293, HS27A stromal cell 

line and CEM T-ALL cell line. 

 

 

MTT viability assay 

To study the specific relative basal sensitivity of B-ALL cells to different agents, 

cells were seeded in 96 well plates and cultured for 48 hours in presence of 

increasing concentrations of each modulator or drug. To determinate IC50 dose for 

each drug and modulator, we performed the colorimetric 3-[4,5-dimethylthiazol-2-

yl]-2,5-diphenyltetrazolium bromide (MTT, Sigma-Aldrich) metabolic activity 

assay. B-ALL cell lines (104 cells per wells) or B-ALL primary cells (105 cells per 

wells) were seeded in 96 wells plates, with increasing concentrations of different 

drugs. Cell viability was then assessed by adding 10 µL of MTT into each well and 

keeping in incubator for 3 hours. Metabolically active, viable cells converted MTT 

into a colored formazan, which was solubilized with a volume of acid isopropanol 

equal to the volume of cell suspension. The product was then measured at 570 nm 

in a spectrophotometric microplate reader (PerkinElmer VICTORX4). The viability 

was expressed as the percentage of optical density of treated cells compared to 

optical density of cells treated with specific vehicles. The effective concentration to 

induce 50% reduction of B-ALL cell viability (IC50) derived from the equations 

that best fit the linear range of the dose-response curve. Each experimental 

condition was done in sextuplicate and repeated at least twice.  

 

 

Cell proliferation and TOPRO-3 viability assay 

Cell proliferation was evaluated by carboxy fluorescein succinimidyl ester (CFSE) 

(Life Technologies) staining. Briefly, cells were washed twice with PBS and 
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resuspended in 0.1% PBS-BSA, stained with CFSE (5mM) for 10 minutes in the 

dark at 37°C and incubate 5 minutes on ice. Then, cells were pelleted by 

centrifugation and washed three times with fresh media and cultured from 1 to 4 

days.  At the end of the experiment, cells were harvested and stained with anti-

CD19-PerCP-Vio700. In order to discriminate live cell population, samples were 

stained with TO-PRO-3 (1µM) and analyzed by FACS. Relative cell proliferation 

was expressed as percentage of CFSE median fluorescence of treated cells 

compared to cells treated with the specific vehicle. 

 

 

Measurement of ROS levels 

Immediately prior to use, we prepare a fresh stock solution of carboxy-H2DCFDA 

(Life Technologies) in sterile dimethylsulfoxide (DMSO). Briefly, 50.000 cells 

were stained with 5μM cm-H2DCFDA for 30 minutes in the dark, in a conventional 

incubator (37°C, 5% CO2). Then we washed twice the cells with PBS and 

immediately measured ROS levels by flow cytometry. 

 

 

Apoptosis 

Apoptotic rate of B-cells was assessed using FITC-Annexin V/ Propidium Iodide 

(PI) staining. Briefly, cells were washed twice with PBS and then stained with APC-

conjugated anti-CD19 for 15 minutes in the dark at room temperature. Cells were 

re-suspended in binding buffer (MiltenyiBiotec) and stained for 15 minutes with 

FITC-conjugated Annexin V (MiltenyiBiotec) at 1 μg/mL concentration. Cells 

were then analyzed by flow cytometry. 

 

 

Xenograft mouse model 

NOD/Shi-scid/IL-2Rγnull (NOG) mice were purchased from Taconic 

(Germantown, NY) and kept in pathogen-free conditions in the animal facility of 

the Interdepartmental Centre of Experimental Research Service of the University 

of Verona. B-ALL cells (5x106) were injected into the tail vein of totally irradiated 
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(1.2 Gy, 137173 Cesium source), 8-12-week-old mice. At day 14 post-injection, 

mice were assigned to one of the following treatment arms: DMSO (GSIs vehicles) 

or IgG isotype (0.5 mg/kg), Ara-C (100 mg/kg) + DMSO or Ara-C + IgG isotype, 

Ara-C + GSI-XII mg/kg) or Ara-C + anti-Notch4 (0.5 mg/kg), all administered 

through intraperitoneal daily injection for 3 days. In case of combined treatment, 

mice were firstly treated for 3 days with Ara-C followed by GSI-XII or anti-Notch4 

for 3 days. Animals were sacrificed after 4 weeks from injection of cell lines, and 

bone marrow leukemic burden was evaluated as percentage of human CD19+ cells. 

To assess the effect of N-acetylcysteine (NAC) on animal outcome, mice were 

treated for six days with NAC (150mg/kg), starting from the first day of Ara-C 

administration. To exclude any toxic effect of NAC, non-transplanted mice were 

also treated with NAC only. Animal experiments presented here were approved by 

the review board of the Italian Health Ministry. 

 

 

RNA silencing 

RNA interference was performed using FlexiTube SiRNA (Quiagen), sequences of 

the siRNAs used in this work are listed here below. Transfections were performed 

using MACSfectin (transfection solution (MiltenyiBiotec) according to 

manufacturer instructions. 

GENE symbol (ID) SiRNA ID Target sequence 

 

NOTCH 4 (4855) 
 

 

Hs_NOTCH4_6 
 

 

TCGGGACTTCTGTTCAGCCAA 
 

 

Hs_NOTCH4_5 
 

 

CAGATATGTAAGGACCAGAAA 
 

 

Hs_NOTCH4_3 
 

 

CACAACGGGCAGTGTGAGAAA 
 

 

Hs_NOTCH4_1 
 

 

TCGCTATTTAAGAACCCTAAA 
 

 

NOTCH 3 (4854) 
 

 

Hs_NOTCH3_5 
 

 

CTGCGAGATTAATGAGGATGA 
 

 

Hs_NOCTH3_3 

 

AAGGAATAGTTAACATCAAA 

 

Hs_NOTCH3_2 

 

ATGCCTAGACCTGGTGGACAA 

 

Hs_NOTCH3_1 

 

CAGCGTGACCGAGATAGGTCA 
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Genomic sequencing and analysis 

Cell samples were collected after written informed consent, as approved by the 

Ethics Committee of Azienda Ospedaliera Universitaria Integrata Verona (N. Prog. 

1828, May 12, 2010 - ‘Institution of cell and tissue collection for biomedical 

research in Onco-Hematology’). Mononuclear cells were purified by Ficoll-Paque 

centrifugation (Lymphoprep, Fresenius Kabi Norge AS for Axis-Shield Poc AS, 

Oslo, Norway), washed in phosphate-buffered saline solution (PBS) and 

resuspended at 10x106/mL concentration in PBS. DNA was obtained from 107 cells 

by GentraPuregene cell kit (Qiagen, Hilden, Germany). Genomic DNA was 

quantified using the Quant-iTPicoGreen dsDNA Assay Kit (Life Technologies, 

Carlsbad, CA, USA) on a NanoDrop 3300 fluorospectrometric (Thermo Scientific, 

Wilmington, DE, USA). Then, 1.3 µg of DNA was sheared to 100-450 bp on a 

Covaris S220 instrument (Covaris, Woburn, Massachusetts, USA). Fragmentation 

was verified on the Agilent 2100 Bioanalyzer using a DNA 1000 assay (Agilent, 

Santa Clara, CA, USA). Sheared DNA was subjected to Illumina paired-end DNA 

library preparation using the TruSeq DNA Sample preparation kit (Illumina, San 

Diego, CA, USA). The quality of the library was evaluated with an Agilent High 

Sensitivity DNA assay (Agilent, Santa Clara, CA, USA) and then quantified using 

the Quant-iTPicoGreen dsDNA Assay Kit (Life Technologies, Carlsbad, CA, USA) 

on a NanoDrop 3300 fluorospectrometric (Thermo Scientific, Wilmington, DE, 

USA). Exome capture was performed starting from 500 ng of library as input 

material with TruSeq Exome Enrichment Kit (Illumina, San Diego, CA, USA) 

following manufacturer’s instruction. The quality of the whole exome library was 

checked with an Agilent High Sensitivity DNA assay and quantified by qPCR on a 

Stratagene MX3000P (Agilent, Santa Clara, CA, USA) using Kapa Library Quant 

kit (Kapa Biosystems, Woburn, MA).Whole exome library was sequenced with an 

Illumina HiSeq 1000 sequencer (Illumina Inc., San Diego, CA, USA) and 100-bp 

paired-end sequences were generated. Putative pathogenic variants identified in 

Notch genes were confirmed by Sanger sequencing. Raw reads were processed by 

Knome Inc. using hg19 human genome assembly as a reference. Called annotated 

variants were filtered using knomeVARIANTS software. “Intron”, “synonymous”, 

“non-genic” and “untranslated” options were deselected and variants passing the 
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quality filter was selected (“Passes quality filter” option). Only variants with a 

phred scaled call confidence > 50 were considered and a threshold on allele 

frequency < 0.05 was set. Potentially damaging variants were selected by setting a 

minimum effect score threshold of 0.469 and evolutionary conserved variants were 

selected by setting a conservation score ≥ 0.8. Next, 2 systems biology–ranking 

algorithms, Endeavor 

(http://homes.esat.kuleuven.be/≈bioiuser/endeavour/tool/endeavourweb/php), and 

ToppGene (http://toppgene.cchmc.org/prioritization.jsp), were used to rank the 

putative disease-causative genes. The softwares were trained with a custom panel 

of 44 genes known to be involved or related to ALL. Default prioritization 

parameters were used for each algorithm. 

 

 

Notch gene methylation pattern 

Processed methylation data publicly available were downloaded from NCBI GEO 

under accession number GSE49031[170]. These data represent genome wide DNA 

methylation levels measured using the InfiniumHumanMethylation 450k BeadChip 

assay (Illumina, San Diego, CA, USA). Using custom R scripts only the normalized 

β-values corresponding to the 10 genes of interest were retrieved (Notch1, Notch2, 

Notch3, Notch4, Jagged1, Jagged2, DLL-1, DLL-3, DLL-4, Hes1). The average β-

values for each probe matching the genes across individuals grouped by condition 

was calculated and plotted using the R package ggplot2. According to the averaged 

β-value a single probe was classified as hypomethylated (β ≤ 0.2), intermediate-

methylated (0.2 < β < 0.8) or hypermethylated (β ≥ 0.8). 

 

 

Statistical analysis 

Statistical analysis was performed using GraphPad Prism software (La Jolla, CA). 

Data were expressed as mean ± standard error means (SEM). Mann-Whitney and 

Kruskal-Wallis were used to compare 2 groups or more than 2 groups, respectively. 

Pearson Chi-square analysis was used to test association between variables. 
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IV. Results 

 

1. Mutational and epigenetic patterns of Notch genes in human 

B-ALL 

The pathologic role of Notch signaling in T-ALL and CLL is often linked to the 

mutational status of the pathway. More than 50% of patients with T-ALL present 

an activating mutation of NOTCH1 [125, 126], whereas in CLL the occurrence of 

NOTCH1 mutations in a subset of patients may explain the activation and therefore 

the oncogenic function of Notch signaling [146, 147]. To assess the presence of 

mutations in Notch family genes in B-ALL, we performed whole genome 

sequencing in samples derived from six patients. Consistently with other studies, 

we identified many mutations usually found in B-ALL, including those affecting 

NCOR1 and PAX5 genes (Table 1). None of the activating Notch point mutations 

observed in T-ALL and CLL was present in B-ALL samples. Considering the small 

number of patients analyzed, we compared our results with those published by other 

groups regarding genomic characterization of cytogenetic alterations in ALL 

samples [30]. We found no evidence of Notch activating mutations in B-ALL. In 

one patient (Patient 14) [151], we found missense variants both in NOTCH2 (E38K) 

and JAGGED1 (P871R) genes as well as a putative mutation in NOTCH1 

(K1821N); this patient with multiple aberrations in Notch components was also 

affected by Alagille syndrome [129, 130], a genetic disease characterized by 

multiple aberrations in JAGGED1 and/or NOTCH2 genes (Table 1). Therefore, to 

exclude mutations associated only with ALGS, we compared a whole genome 

sequencing of other patients suffering from B-ALL only. None of these patients 

presented any mutation associated with ALGS, such as aberrations in JAGGED1 

or/and NOTCH2 (data not shown). However, none of the aberrations found in this 

patient led to the activation of the pathway. Aberrant DNA methylation is one of 

the main features of B-ALL cells and may influence the course of the treatment [98, 

171]. Epigenetic status of Notch genes has been described elsewhere (GSE49031) 

[171]. Using bioinformatics tools, like Endeavour and ToppGene, we analyzed the 

change in β-value of probes corresponding to Notch genes in B-ALL cells, as 
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compared to normal B-cells. We observed a variation in several probes when 

leukemia cells at diagnosis were compared with normal B-cells (Table 2), thus 

depicting a possible epigenetic regulation of Notch genes in B-ALL. Overall, the 

emerging picture is that each components of Notch signaling is characterized by a 

processed methylation, therefore no specific receptors or ligands cannot be used as 

markers that can guide therapeutic decisions, whereas epigenetic deregulations may 

correlate with patient’s prognosis, leukemia cell survival and drug resistance. 

 

 

 

 

 

 

 

Global 

prioritization Patient 40 Patient 41 Patient 42 Patient 43 Patient 44 

Alagille/ 

Patient 14 

(ALGS-PT) 

1 CDH2 EPHA2 TNC MCM2 JAG1 NOTCH3 

2 ITGA1 TYK2 VAV2 CNTN1 BCR NOTCH1 

3 NCOR1 LAMA4 FLNB AGRN TSC2 JAG1 

4 DLG1 COL18A1 HSPG2 

CENTD2| 

STARD10 KDR EPHA2 

5 PTPRB HSPG2 KRT18 NUMB NRCAM PAX5 

6 KRT18 KRT18 LTBP1 PLK4 LAMA4 PTPN11 

7 STK36 LAMA3 TLE2 LAMA1 C6 

CHUK|ERLI

N1 

8 SLC25A5 NFASC RECQL5 HABP2 LRP2 STAT1 

9 IFNAR2 NCOR1 NCOR1 KRT18 KRT18 HD 

10 MAPK13 BCLAF1 BCLAF1 PTPRM LAMB2 MST1 

11 DPYD COL6A2 KRT1 CDC25C LRP5 LAMA3 

12 MAP3K12 MYH9 SVEP1 NBEA BCLAF1 KRT18 

13 ADAMTS1 LY75 CTBP2 NCOR1 NCOR1 TF 

14 TNN AKAP13 ERCC5 BCAN CTBP2 NUMA1 

15 CRIM1 STK36 MKNK2 BCLAF1 PABPC1 LTBP1 

16 RBL2 PABPC1 USH2A PAK2 CFTR NCOR1 

17 DSP HMCN1 DLG5 STK36 RAD54B BCLAF1 

18 DUSP5 C1S CFTR CTBP2 C8A SERPINA5 

19 CAP1 PLXND1 USP16 PTPRB TFR2 PABPC1 

20 SETD2 RECQL F5 PABPC1 HERC2 LIG1 

>20      PIK3C2B 

Table 1. List of prioritized genes. The rank of genes with potentially damaging mutations in different disease 

prediction algorithms and the combined results. 
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Table 2. Changes in probe β-value between B-ALL cells and normal donor B-cells.  Processed methylation 

data publicly available were downloaded from NCBI GEO under accession 115 number GSE49031. The 

average β-values for each probe matching the genes across 116 individuals were calculated using the R package 

ggplot2. According to the averaged β-value a 117 single probe was classified as hypomethylated (β ≤ 0.2), 

intermediate-methylated (0.2 < β < 0.8) or 118 hypermethylated (β ≥ 0.8). 

 

 

2. Notch components are highly expressed in B-ALL samples 

We have described elsewhere the expression of Notch components in B-ALL 

samples. Here, we analyzed by flow cytometry the Notch expression pattern in a 

larger cohort of patients (n=51) (Table 3) and in B-ALL cell lines. We found the 

expression of Notch1, Notch3, Notch4, Jagged2, DLL-3, and DLL-4, in B-ALL 

primary cells (Figure 1A). Through Western blot analysis, we observed that Notch 

expression pattern was similar both in primary cells and B-ALL cell lines (Figure 

1A-B). Lobry C and colleagues [172] and Kannan S and colleagues [173] 

previously reported that the presence of Notch receptors and ligands does not 

always correlate with the activation of the pathway. We then analyzed the 

expression of the Notch target gene HES1 in B-ALL cell lines and primary B-ALL 

cells from randomly chosen patients (n=21). We observed the expression of Hes1 

in B-ALL cell lines as well as in 13/21 primary B-ALL cell samples (61.9%) 

(Figure 1C, 2A-B). In addition, proteins corresponding to other Notch target genes 

such as HES5, HEY1, DELTEX1, and C-MYC, were also expressed in primary 

samples (Figure 1C, 2A). Treatment of cells lines with Notch inhibitors, such as 

SAHM1, GSI-IX, and GSI-XII, reduced the band corresponding to Hes1, thus 
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confirming that Hes1 expression in B-ALL cells arises at least in part from Notch 

activation (Figure 2C). We have previously shown that Notch3 and Notch4 are the 

main active receptors in B-ALL samples [117]. B-ALL cell line lysates were probed 

with anti-Notch3 (D11B8) and -Notch4 (L5C5) antibodies, which recognize full 

length, and the cleaved form of corresponding receptors according to 

manufacturer's instruction and confirmed using specific siRNA against Notch3 and 

Notch4 (Figure 2D). B-ALL cell lines expressed the active forms of Notch3 and 

Notch4, as confirmed by their protein level sensitivity to Notch inhibitors (Figure 

2C). However, some samples lacking Hes1 expression still showed the presence of 

Notch4 active form, suggesting a non-CSL coupling of Notch4 in B-ALL cells.  
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 Sex Age  Subtype and Cytogenetics MRD after 

42 days 

Patient 1 F 4 Pre-B ALL  No 

Patient 2 F 4 Pre-B ALL Yes 

Patient 3 M 18 Common ALL, hyperdiploidy Yes 

Patient 4 M 71 Mature B-cell ALL,t(4;11) No 

Patient 5 F 37 Common ALL Yes 

Patient 6 F 51 Common ALL, hyperdiploidy No 

Patient 7 M 71 Common ALL, NOS: 47XXY/46XY No 

Patient 8 F 13 Pre-B ALL Yes 

Patient 9 F 49 Common ALL Yes 

Patient 10 M 89 Pre-B ALL Yes 

Patient 11 M 28 Common ALL with t(9;22) Yes 

Patient 12 F 1 Common ALL NA 

Patient 13 M 43 Common ALL NA 

Patient 14  M 20 Common ALL/Alagille syndrome Yes 

Patient 15 F 3 Common ALL No 

Patient 16 M 10 Common ALL Yes 

Patient 17 M 1 Pre-B with t(19;11) Yes 

Patient 18 F  3 Common ALL/ Down syndrome No 

Patient 19 F 2 Common ALL NA 

Patient 20 M 16 Common ALL Yes 

Patient 21 F 53 CML, Blast crisis Excluded 

Patient 22 M 13 Common ALL with t(9;22) No 

Patient 23 M 62 Common ALL, 

NOS: 45,XY,7,t(8;12)(q13;p13)/46,XY 

Yes 

Patient 24 M 2 Pre-B ALL NA 

Patient 25 M 81 Common ALL with t(9;22) No 

Patient 26 F 63 Common ALL with t(9;22) Yes 

Patient 27 F 3 Pre-B ALL Yes 

Patient 28 M 25 Common ALL Yes 

Patient 29 F 52 Common ALL with t(9;22) No 

Patient 30 F 43 Common ALL Yes 

Patient 31 M 3 Common ALL No 

Patient 32 M 69 B-ALL, hyperdiploidy Yes 

Patient 33 F 2 Pro-B ALL NA 

Patient 34 F 39 Common ALL, NOS :45XY, 

t(3;9)(q13;p24),-20 

NA 
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Patient 35 M 6 Common ALL No 

Patient 36 F 4 Common ALL Yes 

Patient 37 M 74 Pro-B ALL NA 

Patient 38 F 77 Common ALL with t(9;22) Yes 

Patient 39 F 7 Pre-B ALL Yes 

Patient 40 M 3 Common ALL No 

Patient 41 M 22 Common ALL Yes 

Patient 42 M 28 Common ALL No 

Patient 43 M 24 Common ALL Yes 

Patient 44 M 23 Pre-B ALL No 

Patient 45 F 3 Common ALL Yes 

Patient 46 F 3 Common ALL No 

Patient 47 M 15 Common ALL yes 

Patient 48 M 72 Pro-B ALL t (4;11) yes 

Patient 49 M 19 Pre-B ALL yes 

Patient 50 M 24 Common ALL yes 

Patient 51 M 41 Common ALL no 

 

Summary 

Samples Sex Medi

an 

Age 

B-ALL Subtypes Molecular 

Features 

51 

 

Females 

= 22 

Males = 

29 

Child

ren 

(23) 

6[1-

18] 

Adult

s (28) 

48 

[19-

89] 

B-ALL common (37) 

Pre-B (10) 

Pro-B(3) 

Mature B (1) 

 

BCR-ABL (7) 

Hyperdiploidy 

(3) 

Hypodiploidy 

(2)  

NOS (4)  

Trisomy 21(1) 

t(4;11) (2) 

Alagille 

Syndrome (1) 
Table 3. Characteristics of B-ALL patients. B-ALL cells were obtained after informed consent from bone 

marrow or peripheral blood samples of 51 patients with B-ALL at diagnosis, including 23 pediatric cases and 

28 adults. MRD: minimal residual diseases. NOS: No otherwise specified, NA: data not available. 
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Figure 1. Notch expression and activation in B-ALL samples. A) Flow cytometric analysis of B-ALL cells 

(n = 45) using fluorochrome-conjugated antibodies specific for extracellular Notch receptors and ligands; data 

are represented as mean fluorescence intensity of each antibody normalized to specific fluorochrome-

conjugated controls. B) Immunoblot of B-ALL cell lines (VR-ALL, RS4;11, and SUP-B15), the lymphoma 

cell line Ramos, and the T-ALL cell line CEM probed for Notch1-4, Jagged1-2, DLL-4, and Hes1 expression. 

Data are representative of six independent experiments. C) Representative expression of Notch targets (Hes1, 

Hes5, Hey1, and Deltex1) in primary B-ALL sample analyzed by flow cytometry using fluorochrome-

conjugated antibodies Data are representative of 5 B-ALL cell samples.  
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Figure 2. Notch activation in B-ALL cell lines. A) Flow cytometric analysis of Notch target gene in primary 

B-ALL cells (n=5) using fluorochrome-conjugated antibodies specific for each target gene. B) Immunoblot of 

B-ALL cell lines probed for Hes1 (D6P2U), active forms of Notch 3 (D11B8) and Notch4 (L5C5). C) Bands 

corresponding to Hes1 and active forms of Notch3 and Notch4 were all sensitive to treatment with Notch 

inhibitors. D) Immunoblot analysis of Notch 3 (D11B8) and 162 Notch4 (L5C5) in HEK 293T cells silenced 

for Notch3 and Notch4. 

 

 

3. Notch signaling overexpression in high-risk patient group 

Higher levels of Notch signaling have been described as prognostic factor in many 

hematologic malignancies, including, CLL and AML [144-147]. We asked whether 

Notch expression could correlate with response to treatment or patient's overall 

survival. B-ALL patient risk stratification is based on many prognostic factors, 

including cytogenetics, age, and white blood cell count (WBC) [18]. We did not 

find any correlation between Notch expression levels and cytogenetics or WBC, 

nor difference in Notch expression between pediatric and adult patients. A research 

group of St. Jude Children's Research Hospital classified as high-risk group, 

patients with blast cell persistence in bone marrow more than 42 days after 

treatment [174]. Thus, we classified cell samples into two cohorts, that is low-risk 
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group including patients achieving complete remission within 42 days following 

induction, and high-risk group, including patients with persistent leukemia cells in 

the bone marrow after 42 days of treatment (refractory) (Table 3). The analysis of 

Notch pathway expression in the samples collected from patients at diagnosis 

revealed that the high-risk group presented higher levels of Notch3, Notch4, and 

Jagged2 at diagnosis, as compared with the low-risk group (Figure 3). In addition, 

using Pearson Chi square analysis to seek association between Notch protein levels 

and drug response, we found a dependent association between Jagged1, Jagged2, 

and drug refractoriness (Table 4). These observations suggested that Notch levels 

at diagnosis could play a role in chemosensitivity and therefore have a predictive 

value for the response to treatment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Notch expression as prognostic marker. Samples collected from patients at diagnosis were later 

classified according to treatment outcome, that is, patients responsive (11) to treatment and refractory patients 

(11). Then Notch expression levels were analyzed in each B-ALL sample through flow cytometric analysis. *, 

p < 0.05. 
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4. Notch expression pattern is modulated by chemotherapy 

To address a possible role for Notch signaling in B-ALL cell response to 

chemotherapy, we investigated the changes in the expression pattern of Notch 

components after chemotherapy. We have previously observed that Notch 

expression pattern in B-ALL cells correlates with its expression in bone marrow 

stroma cells [15]. Thus, considering the variability among patients, our aim was to 

assess whether, at any time point after treatment, bone marrow cells (including 

stromal cells) were characterized by reduced levels of Notch proteins. Patients 

achieving complete remission following chemotherapy display no or a few blast 

Data analyzed 
Notch1 

Data analyzed 
Jagged2 

Responsive Refractory Total Responsive Refractory Total 

High 23 14 37 High 9 18 27 

Low 27 36 63 Low 41 32 73 

Total 50 50 100 Total 50 50 100 

p-value 0.0312 p-value 0.0213 

Data analyzed Notch2 Data analyzed DLL1 

High 9 14 23 High 9 9 18 

Low 41 36 77 Low 41 41 82 

Total 50 50 100 Total 50 50 100 

p-value  0.2348 p-value  1 

Data analyzed Notch3 Data analyzed DLL3 

High 9 14 23 High 14 18 32 

Low 41 36 77 Low 36 32 68 

Total 50 50 100 Total 50 50 100 

p-value 0,1174 p-value 0.45  

Data analyzed Notch4 Data analyzed DLL4 

High 9 14 23 High 14 18 32 

Low 41 36 77 Low 36 32 68 

Total 50 50 100 Total 50 50 100 

p-value 0,1174 p-value 0.2  

Data analyzed Jagged1 

 
High 0 14 14 

Low 50 36 86 

Total 50 50 100 

p-value <0.0001 

Table 4. Relationship between Notch expression level and therapy outcome after 42 days. According to 

the average expression level of each specific receptor and ligand, sample were classified as high expression 

level and low expression level. Chi Square analysis were performed to test the association of Notch expression 

level and response to therapy. Data are expressed as percentage or frequencies. 
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cells in bone marrow [18, 28]. Consequently, B-ALL blast cells (CD19+) cannot be 

used to follow the general Notch downregulation in the bone marrow following the 

treatment. Therefore, we focused the assessment of Notch expression by focusing 

on the entire non-leukemic bone marrow cell population (CD19+ cells) before and 

after the treatment, thus showing the reduction of Notch expression because of 

chemotherapy (Figure 4A). Retrieving GSE49031 data, we observed that the 

epigenetic pattern of Notch genes changes from diagnosis to follow-up period, 

whereas patients at diagnosis and relapsed patients had the same methylation 

pattern (Figure 4B). This change in Notch expression according to the treatment 

status may reflect a possible role for Notch signaling in the response to 

chemotherapy. To clarify this issue, we treated B-ALL cell lines for 72 hours with 

chemotherapeutic agents, including Ara-C and Dexa. Increasing concentrations of 

these pharmacological agents determined significant and dose-dependent decrease 

in our B-ALL cell line viability. The IC50 values for each drug are shown in Table 

5. At 24 hours of treatment, although MTT and Annexin V/ Propidium Iodide (PI) 

assays revealed no apoptosis in treated cells, immunoblots revealed a decrease of 

Notch1, Notch2, and Notch3 protein levels in samples treated with Ara-C and Dexa. 

Notch4 levels did not change regardless the chemotherapeutic agents (Figure 4C), 

suggesting that Notch4 could be irrelevant for drug response or, by contrast, it could 

be the main Notch receptor involved in chemoresistance. To assess the contribution 

of each pathway component to chemosensitivity, we decided to interfere with Notch  

molecules expression in B-ALL cells upon drug treatment. 

 

 

 

 

 

 

Drugs VR-ALL RS4 ;11 SUP-B15 

Ara-C 5,321e-007 8,445e-007 6,380e-007 

Dexamethasone 1,193e-008 3,071e-009 4,201e-009 

Doxorubicin 
1,184e-008 1,648e-008 1,025e-008 

Table 5. Sensitivity of B-ALL cell lines to drugs. Cells were cultured for 48h with increasing concentration 

of each drugs. Then cell viability was assessed by MTT assay. The viability was expressed as the percentage 

of optical density of treated cells compared to optical density of cells treated with the specific vehicle. The 

effective concentration to induce 50% reduction of B-ALL cells viability (IC50) derived from the equations 

that best fit the linear range of the dose-response curve. Each experimental condition was done in sextuplicate 

and repeated at least twice. 
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Figure 4. Treatment-induced changes in the expression of Notch receptors in B-ALL cells. A) Flow 

cytometric analysis of Notch expression in cell population from patient samples collected before and after the 

treatment. Data are represented as mean fluorescence intensity of each antibody normalized to specific 

fluorochrome conjugated control. B) Percentage of hypomethylated probes in samples from patients collected 

at diagnosis, after the treatment, or from relapsed patients. Relative hypomethylation was defined as probes 

with low β-value as compared to normal B cells. C) Immunoblot analysis for Notch1-4 in B-ALL cell lines 

treated for 24 hours with Ara-C (5 mmol/L) and dexamethasone (0.5 mmol/L). Data are representative of four 

independent experiments. *, p < 0.05. 

 

 

 

5. Notch inhibition affects B-ALL cell survival and 

proliferation 

We tested three categories of Notch inhibitors for their effects on B-ALL cell 

survival, proliferation, and drug response, that is Notch blocking antibodies, GSI-

IX/GSI-XII, and a Notch transcription factor inhibitor (SAHM1). We previously 

demonstrated, using Western blot analysis of active form of Notch receptors as well 

as RBP-Jk reporter genes, that all these inhibitors were capable of inhibiting Notch 

signaling in leukemic cells [144, 151]. In this study, the concentration used for each 

inhibitor was enough to reduce the levels of Hes1 in B-ALL cells (Figure 2C). We 

observed that GSI-IX and GSI-XII significantly reduced B-ALL primary cell 

viability in vitro (Figure 5A). Although a reduction in cell viability following 

SAHM1 addition was observed, the effect was not statically significant (Figure 

5A). We have previously shown that 5 mg/mL of anti-Notch3 or anti-Notch4 

antibodies are enough to inhibit Notch signaling in B-ALL cell samples [15, 144]. 
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Accordingly, anti-Notch3 (5 mg/mL) or anti-Notch4 (5 mg/mL) blocking 

antibodies decreased B-ALL leukemia cell survival in vitro (Table 6). We also 

observed a reduction in cell proliferation of B-ALL cell lines cultured in media 

supplemented with the Notch inhibitors (Figure 5B). We then generated a 

xenograft model of B-ALL by injecting the B-ALL cell line RS4;11 into the tail 

vein of NOG mice; after 4 weeks, mice showed 69% to 80% of human CD19+ cells 

in the bone marrow (Figure 5C). At week 2 following injection, mice received 

intraperitoneal injection of GSI-IX (10 mg/kg) or GSI-XII (10 mg/kg) or their 

vehicle (DMSO) daily for 3 days. Only a slight, and not significant reduction in 

levels of human CD19+ cells was observed in the bone marrow of mice treated with 

GSI-IX and GSI-XII (Figure 5C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Notch inhibition reduces B-ALL cell proliferation and survival. A) Relative viability of primary 

B-ALL cell samples cultured for 4 days in presence of Notch inhibitors, that is, SAHM1 (20 mmol/L), GSI IX 

(15 mmol/L), and GSI-XII (10 mmol/L). Cells were collected, stained with Topro-3, and analyzed by flow 

cytometry; viable cells were identified as Topro-3-negative cells. Data are expressed as the mean _ SEM of 

four independent experiments involving 12 patient samples. B) Relative proliferation of B-ALL cell lines 

stained with CFSE and treated for 4 days with Notch inhibitors; CFSE dilution was analyzed by flow cytometry 

and is expressed as relative proliferation. Data are reported as mean ±SEM of four independent experiments 

performed in duplicate. C) Flow cytometric analysis of human CD19+ cells in bone marrow samples obtained 

from mice transplanted with the B-ALL cell line RS4;11. Starting from day 14 post-engraftment, mice were 

treated for 3 days with either GSI-IX (10 mg/kg) or GSI-XII (10 mg/kg) or their vehicle (DMSO). The assay 

was performed with at least five mice in each group. *, p < 0.05; **, p < 0.01; ***, p < 0.001. 
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6. Notch Inhibition potentiates B-ALL cell chemosensitivity 

Considering the lack of significant reduction of leukemic cell burden in mouse bone 

marrow, we investigated the effect of the association of Notch inhibitors with 

chemotherapeutic agents on B-ALL cell in vitro survival and in vivo clearance. GSI-

IX or GSI-XII were all capable of sensitizing B-ALL cells to Ara-C, 

dexamethasone, and doxorubicin treatments (Figure 6A), whereas SAHM1 was not 

(Figure 7). These effects were mostly mediated by Notch4, as only its blockade 

reproduced all the effects observed with GSI-IX and GSI-XII, thus promoting B-

ALL cell apoptosis induced by all the drugs (Figure 6A, 8). We next investigated 

whether the synergy between Notch inhibition and chemotherapy could also occur 

in the mouse xenograft model of B-ALL. To this aim, we assessed in vitro the most 

effective combination schedule of drugs with Notch inhibitors. B-ALL cell lines 

were treated with Ara-C, Dexa, or Doxo associated with one of the Notch inhibitors. 

Results clearly highlighted that the strongest antileukemic effect was obtained in 

vitro with Ara-C plus GSI-XII combination (Figure 7). Therefore, 2 weeks after 

injection of RS4;11 in NOG mice, animals were treated for 3 days with Ara-C alone 

followed by 3 days of treatment with Notch inhibitors (GSI-XII, anti-Notch4) or 

their respective controls (DMSO, IgG isotype). Analysis of mouse bone marrow at 

4 weeks showed that Ara-C significantly reduced the levels of human CD19+ cells, 

particularly when Ara-C treatment was followed by GSI-XII or anti-Notch4 

 Viable cell population (%) 

VR-ALL RS4;11 SUP-B15 Patients 

Anti-Notch3 110.0 ± 4.624  

 

96.62 ± 1.049  

p=0.0020 

99.02 ± 4.805  72.53 ± 8.107 

p=0.0363 

Anti-Notch4 99.68 ± 4.881  

ns 

81.51 ± 3.848  

p=0.0020 

41.37 ± 7.008  

p=0.0020 

70.55 ± 9.27 

p=0.0467 

rJagged1 110.7 ± 4.794 97.80 ± 0.9163  95.56 ± 6.708  85.40 ± 9.48 

rJagged2 111.7 ± 3.213 97.40 ± 1.513 103.5 ± 4.309  84.50 ± 12.74 

rDLL-4 112.8 ± 4.413  96.32 ± 1.599  112.8 ± 10.05  99.28 ± 12.11 

Table 6. Notch inhibition reduces B-ALL cell survival. Relative cell viability of B-ALL primary cells or B-

ALL cell lines cultured for 4 days in the presence of Notch modulators including, rJagged1 (5 µg/ml), rJagged2 

(5 µg/ml), rDLL-4 (5 µg/ml), anti-Notch3 (5 µg/ml) and anti-Notch4 (5 µg/ml). Cells were collected, stained 

with Topro-3 and analyzed by flow cytometry; viable cells were identified as Topro-3-negative cells; relative 

viability was obtained as the percentage of viable cells in treated samples compared to samples treated with 

IgG (5 µg/ml). Data are reported as mean ± SEM of 3 independents experiments performed in duplicate and 

involving 12 patient samples. 
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treatment (Figure 6B). Reduction of leukemic burden in the bone marrow 

correlated with increased mouse survival, with a median survival of 42, 51, and 55 

days for vehicle (DMSO), Ara-C, and Ara-C+GSI-XII, respectively (Figure 6C).  

 

 

 

 

Figure 6. Notch inhibition enhances drug effects in vitro and in vivo. A) Primary B-ALL cells were cultured 

for 2 days in presence of Ara-C (5 mmol/L) or doxorubicin alone or in combination with Notch inhibitors, that 

is, GSI IX (15 mmol/L), GSI-XII (10 mmol/L), and anti-Notch4–blocking antibodies (5 mg/mL). Cells were 

then collected, stained with Annexin V/PI, and analyzed by flow cytometry. Data are expressed as the mean ± 

SEM of three to five independent experiments involving eight patient samples. B) Representative and 

quantitative flow cytometric analysis of human CD19+ cells in bone marrow samples obtained from mice 

transplanted with the B-ALL cell line RS4;11. Starting from day 14 post-engraftment mice were treated for 3 

days with Ara-C, followed by 3 days of Notch inhibitors (GSI-XII 10 mg/kg, anti-Notch4 0.5 mg/kg) or their 

respective controls (DMSO and the control isotype IgG1 0.5 mg/kg). Data are reported as mean ± SEM of 

values obtained from at least six mice marrow. C) Mice survival as analyzed with the log-rank (Mantel–Cox) 

test. The assay was performed with at least five mice in each group. *, p < 0.05; **, p < 0.01. 
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Figure 7. Notch inhibition potentiates drug efficacy. Primary B-ALL cells were cultured for two days in 

presence of Ara-C (5 μM), Dexamethasone (0.5 μM) or Doxorubicin (0.1 μM) alone or in association with 

Notch inhibitors, i.e. SAHM1 (20 μM), GSI IX (15 μM), GSI-XII (10 μM), and anti-Notch4 (5 μg/ml). Cells 

were then collected, stained with Annexin V/PI and analyzed by flow cytometry. Data are expressed as mean 

± SEM of 5 independent experiments. *p<0.05, **p<0.01. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Contribution of each Notch receptor to drug efficacy. Primary B-ALL cells were cultured for two 

days in the presence of Ara-C (5 μM), Dexamethasone (0.5 μM) or Doxorubicin (0.1μM) alone or in association 

with Notch receptor blocking antibodies. All antibodies were used at a final concentration of 5 μg/ml. Data are 

reported as mean ± SEM of 4 independent experiments performed in triplicate, using samples from 8 patients: 

*p<0.05. 
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7. Notch signaling modulates drug resistance by controlling 

production of ROS species  

Many anticancer drugs trigger cell death through the induction of ROS species 

[154]. We observed that pre-treatment of B-ALL cell lines with anti-oxidants, such 

as NAC or β-mercaptoetanol (BME), prevented cell death induced by Ara-C or 

Doxo (Figure 9A). It has been demonstrated that Notch inhibition can potentiate 

cell death by increasing the levels of intracellular ROS [167]. Accordingly, we 

found that NAC administration to B-ALL xeno-transplanted mice suppressed the 

survival advantage conferred by the co-administration of GSI-XII with Ara-C 

(Figure 10A). NAC administration had no effect on survival of non-transplanted 

mouse, excluding any toxic effect of NAC alone (Figure 9B). To assess whether 

Notch inhibition favored Ara-C- and doxorubicin-induced cell death by enhancing 

intracellular ROS levels, we used oxidation of c-H2DCFDA as surrogate for ROS 

production. We observed that cells treated with Ara-C or Doxo in association with 

Notch inhibitors showed increased levels of ROS, as compared with cells treated 

with Ara-C or doxorubicin only (Figure 10B). To determine whether pro-oxidant 

effects of Notch inhibitors were responsible for the sensitization of B-ALL cells to 

Ara-C and Doxo, we incubated cells with NAC or BME two hours before combined 

treatment with Ara-C/Doxo and Notch inhibitors. Cell death was analyzed at 48 

hours using Annexin V/PI staining. Our results showed that NAC or BME treatment 

abrogated cell death induced by Ara-C or doxorubicin, used either as single agents 

or in combination with Notch inhibitors (Figure 11A, 9C). To confirm this critical 

role for ROS in Notch inhibition-mediated cell death, we assessed through Western 

immunoblotting the levels of proteins capable to support the pro-survival role of 

Notch towards cancer cells, that is mTOR, AKT, NF-kB, and ERK1/2 [163-165]. 

We observed that Ara-C treatment associated with Notch inhibition through either 

GSIs or anti-Notch4 reduced the levels of mTOR, pNF-kB/NF-kB, and 

pERK1/2/ERK. Interestingly, NAC pre-treatment prevented the reduction of 

expression levels of pro-survival proteins in B-ALL cells incubated with Ara-C 

associated with Notch inhibitors. However, considering mTOR and pNF-kB/NF-

kB proteins, NAC-induced rescue was different according to the type of Notch 

inhibitor used (GSIs or anti-Notch4), whereas a common pattern of modulation 



74 
 

between GSIs and anti-Notch4 was found for pERK1/2 and ERK1/2, thus 

suggesting that ERK1/2 may act as the main downstream target involved in ROS 

dependent Notch-mediated survival and chemosensitivity in B-ALL cells (Figure 

11B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Drug-mediated cell death is sensitive to antioxidants. A) Relative viability, as assessed by MTT 

assay, of B-ALL cell lines treated for 48 hours with either Ara-C or Doxorubicin and increasing concentration 

of NAC or BME. Data are reported as mean ± SEM of 3 independent experiments performed in sexplicate. B) 

Effects of NAC (150 mg/kg) treatment on mice transplanted (grafted mice) or not ‘non-grafted mice) with 

RS4;11 cell line and treated or not daily with NAC for 6 days starting at day 14 post engraftment. Differences 

in survival curves were analyzed with the Log-rank (Mantel-Cox) Test. C) Primary B-ALL cells were cultured 

for two days in presence of Ara-C alone or with Notch inhibitors, i.e. SAHM1 (20 μM), GSI IX (15 μM) or 

GSI-XII (10 μM), and with or without NAC (2 mM) and BME (2 mM). Data are expressed as mean ± SEM of 

5 independent experiments. *p<0.05, **p<0.01. 
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Figure 10. Notch inhibition controls redox system. A) Survival of mice transplanted with RS4;11 cell line 

and subdivided in five treatment groups. NAC treatment started at day 14 and lasted for 6 days. Differences in 

survival curves were analyzed with the log-rank (Mantel– Cox) test. B) ROS levels in B-ALL cell lines treated 

with Notch inhibitors (SAHM1 20 mmol/L, GSI IX 15 mmol/L, or GSI-XII 10 mmol/L) in association with 

Ara-C (5 mmol/L). Cells were collected at each time point and stained with 5 mmol/L of cm-H2DCFDA for 

30 minutes. Fluorescence of oxidized cm- H2DCFDA was measured by flow cytometry. Data are representative 

of three independent experiments performed in duplicate. The control group used for statistics was Ara-

C+DMSO. *, p < 0.05; **, p < 0.01; ***, p < 0.001.  

 

 

 

 

 

 

 

Figure 11. Notch inhibition-induced cell death is sensitive to the oxidative state. A) Primary B-ALL cell 

samples were cultured for 2 days in presence of Ara-C (5 mmol/L) alone or with Notch inhibitors, that is, 

SAHM1 (20 mmol/L), GSI IX (15 mmol/L), GSI-XII (10 mmol/L), and with or without NAC (2 mmol/L). 

Cells were collected, stained with Annexin V/PI, and analyzed by flow cytometry. Data are expressed as mean 

SEM of four independent experiments using eight different patient samples. B) Representative Immunoblot 

analysis of pro-survival proteins in B-ALL primary cells treated with Ara-C (5 mmol/L) alone or with Notch 

inhibitors, that is, GSI IX (15 mmol/L), GSI-XII (10 mmol/L), anti-Notch4 (5 mg/mL), and with or without 

NAC (2 mmol/L). Experiments were performed with samples from at least four patients. *, p < 0.05; **, p < 

0.01; ***, p < 0.001. 
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V. Discussion and future directions 

 

The pathogenetic role of Notch signaling in leukemic diseases, such as T-ALL and 

CLL, has been ascribed to the presence of activating mutations in genes coding for 

components of the Notch pathway [125, 147]. Mutations status of Notch in these 

pathologies is correlated with patient’s prognosis, leukemia cell survival and drug 

resistance [144-145]. However, Notch pathway overexpression due to paracrine 

signals between leukemic cells and stromal cell microenvironment may result in 

enhanced leukemia cell survival, as shown both in B-ALL [15] and AML cells [144, 

172, 173] that normally lack activating Notch mutations [90, 112]. The reason for 

this abnormal expression of the Notch pathway is unclear, but Notch receptor and 

ligand overexpression can be a consequence of side mutations or cytogenetic 

abnormalities affecting other signaling systems, as it occurs in AML for β-catenin 

[175], Flt3 [136], and PML-RAR [176]. In AML, even in absence of Notch gene 

mutations, a significant expression of Notch pathway correlated with shorter patient 

survival [173]. Recently, some publications reported the oncogenic role of Notch 

to inhibit a selective growth advantage to precursors B-ALL cells, where Notch 

pathway genes ted to be epigenetically silenced. Briefly, JAG1, HES2 and HES4 

are methylated, while NOTCH3 and HES5 were found preferentially 

hypermethylated both in B-ALL cell lines and primary B-ALL [177-178]. 

Accordingly, gene sequencing of six patients with B-ALL revealed the lack of any 

activating mutation in Notch components; according to previous studies, we found 

some mutations in genes associated to the Notch pathway regulation, including 

NCOR1, NUMB, and TCF3 [73, 171], which could be related to patient outcomes 

and involved in drug response and survival of leukemia cells [145]. Despite the 

numerosity limitations, our genomic profiling of B-ALL provides useful data to 

confirm some molecular vulnerabilities that could be exploited in the design of 

more effective targeted therapies [179, 180]. However, deeper studies are needed 

to pinpoint the contribution of NOTCH in the hierarchy of events driving B-cells. 

In this study, we observed that B-ALL cells expressed high levels of different 

components of the Notch pathway. Notch1, Notch3, Notch4, Jagged2, DLL-3, and 

DLL-4 resulted upregulated both in B-ALL primary cells and B-ALL cell lines and 
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the pathway was functional, as shown by the expression of Notch target genes 

HES1, HES5, HEY1, DELTEX1, and c-MYC in B-ALL cells. The functionality of 

the pathway was also revealed by the sensitivity of target genes to Notch inhibitors, 

such as SAHM1, GSI-IX, and GSI-XII. However, an important finding is that 

Notch pathway promotes B-ALL cell chemosensitivity in vitro and in vivo, 

potentiating B-ALL cell survival, proliferation, and modulating drug resistance 

through the control of ROS species. We observed when analyzing samples from 

patients, that expression levels of all Notch receptors decreased upon 

chemotherapy. Consistently, changes in expression levels of Notch1-3 in B-ALL 

cells were associated in vitro to drug treatments. However, all the drugs tested in 

vitro were unable to modulate Notch4 levels in B-ALL cell lines at 24 hours, thus 

suggesting a critical role for Notch4 in B-ALL cell survival. To assess the specific 

contribution of Notch4 and other Notch receptors to B-ALL cell chemosensitivity, 

we studied the effects of either pan-Notch inhibitors, such as GSI-IX and GSI-XII, 

or specific receptor blockade in terms of cell survival, proliferation, and drug 

response. Even if anti-Notch4 and anti-Notch3 antibodies were all capable of 

lowering B-ALL cell viability, only anti-Notch4 reproduced the inhibitory effects 

of GSI-IX and GSI-XII by sensitizing B-ALL cells to apoptosis induced by Ara-C, 

dexamethasone or doxorubicin. These results raised two issues; being the only 

receptor whose blockade reproduces effect of pan Notch inhibitors, Notch4 appears 

as be the main mechanism of Notch-mediated drug resistance in B-ALL. Secondly 

a poor result with the Notch transcription factors SAHM1 could depict an 

involvement of non-canonical Notch signaling in B-ALL cell response to 

chemotherapy. This latter hypothesis was supported by the fact that the presence of 

active form of Notch4 in B-ALL cell was not always associated to the expression 

of Notch target genes HES1. Accordingly, we have recently characterized a new B-

ALL cell line (VR-ALL) displaying a non-CSL dependent Notch signaling; VR-

ALL cell line is sensitive to GSIs and anti-Notch4, but poorly to SAHM1 [151]. 

Consequently, Notch4 seemed to be the main driving mechanism of Notch-

mediated drug resistance in B-ALL cells.  

The challenge of frontline therapy in B-ALL is to completely eradicate leukemia 

cells in bone marrow after induction. Patients with no evidence of minimal residual 
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disease following induction show a better outcome as compared to patients with 

persistent leukemic clones, requiring new therapeutic strategies [18, 28]. The 

association between clinical status and Notch expression suggested the involvement 

of the Notch pathway in chemoresistance. But the validation on a larger B-ALL 

cohort of patients would further strengthen the prognostic value of Notch signaling 

monitoring. Importantly, through in vitro approaches, we identified Ara-C+GSI-

XII as the most active combination of chemotherapeutic agents and Notch 

inhibitors. The effectiveness of this combination was confirmed in the xenograft 

model of B-ALL. We observed that GSI-XII potentiates antileukemic effects of 

Ara-C by reducing the bone marrow leukemic burden and prolonging the overall 

survival of mice undergoing xenotransplantation with the B-ALL cell line RS4;11. 

Preclinical and clinical use of GSIs are hampered by their high toxicity, likely due 

to off-target effects and the inhibition of all Notch receptors, including those not 

involved in the disease [28]. In this study, we showed the central role of Notch4 in 

B-ALL chemosensitivity and we demonstrated that association of Ara-C to anti-

Notch4 blocking could lead to an antileukemic effect equivalent to the one observed 

with GSIs treatment. These findings may pave the way to the association of Notch 

inhibitors to chemotherapy in the induction regimen or during consolidation therapy 

with the aim of eradicating minimal residual disease. In fact, Notch inhibitors act 

either by potentiating the effect of drugs on specific pathways or by interfering with 

pathways that sustain resistance to anticancer drugs [145, 150]. The three 

chemotherapeutic agents used in our study have as common feature, the capability 

of inducing the production of high levels ROS in cancer cells, leading to apoptosis 

[156-158]. Emerging data revealed that leukemic cells in general present so high 

level of ROS that any little increase in ROS levels may induce cell death. That is 

why many proteins associated to ROS production such as P53 and its targets 

including BAX, PUMA are down regulated in cancer cells [165-166]. Data from 

many studies revealed that Notch signaling protects cancer cells from apoptosis by 

keeping low level of ROS. Inhibition of Notch being sufficient to increase levels of 

ROS in leukemic cells, even when P53 is mutated [167].  

In our study, we demonstrated that Notch inhibitors potentiate drug-induced 

apoptosis by increasing ROS production and decreasing mTOR, NF-kB, and ERK 
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levels. Abrogation of these effects by NAC clearly showed that Notch inhibitors 

improve antileukemic activity of drugs through the induction of ROS.  

Taken together, our data provide preclinical data in favor of the potential usefulness 

of the association of Notch inhibitors with conventional chemotherapy to reduce 

the relapse rate.  
However, prior to think about clinical study, the next step consists in the generation 

of Notch knockdown mice model by infecting RS4;11 cell line with lentivirus 

particles carrying shRNA corresponding to following targets RBP-jk, MALM1 and 

Notch4. The engraftment efficiently of silences cells will be compared also to in 

vivo after injection in NOG mouse model. In parallel, we plan to generate some 

recombinant monoclonal antibodies against Notch4 to reduce the toxicity derived 

from Notch inhibitors in vivo. The recombinant monoclonal antibodies will be used 

to treat our xenograft model of B-ALL in combination with chemotherapeutic 

agents, and the progression of the disease will be monitored weekly.  
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