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Sommario 

Le singolari proprietà delle transizioni f-f nei complessi trivalenti di Lantanidi 

sono la principale ragione delle crescenti applicazioni nel campo del biosensing, 

dove la lunga durata di emissione, le bande di emissione nitide e facilmente 

riconoscibili, l’elevata differenza energetica tra le radiazioni assorbite ed emesse 

oltre ai brevi tempi di vita della fluorescenza consentono l’enorme vantaggio di 

isolare il loro caratteristico segnale di emissione dall’indesiderata fluorescenza 

di fondo dei campioni biologici. 

Inoltre, i complessi luminescenti di Eu(III) e Tb(III) sono i candidati più impiegati 

a causa della bassa sensibilità del loro stato eccitato agli effetti di spegnimento 

vibrazionale causati da oscillatori OH, NH o CH, spesso presenti nelle soluzioni 

per il campo dell’imaging. 

Alla luce di ciò, i complessi di Eu(III) e Tb(III) sono stati ampiamente sfruttati 

come sensori per specie metaboliche, nel rispetto delle condizioni fisiologiche, 

consentendo il rilevamento di rilevanti biomarcatori clinici nella diagnostica 

biomedica e nell'imaging. 

Per questi scopi, un’elevata resa quantica di luminescenza e d’intensità di 

risposta sono indispensabili. L’elevata intensità del segnale è possibile grazie alla 

presenza di opportuni ligandi aromatici tramite l'effetto dell'antenna, ed è 

solitamente correlata alla concentrazione dell'analita bersaglio. 

In questo progetto di dottorato, una nuova libreria di complessi idrosolubili a 

base di Eu(III) e Tb(III) costituiti da un nucleo comune chirale di 1,2-

diamminecicloesano (DACH) è stata sintetizzata con successo, completamente 

caratterizzata (anche in soluzione) e impiegata per la rilevazione di importanti 

bioanaliti quali: bicarbonato, L-lattato, albumina e citrato principalmente 

attraverso luminescenza totale (TL) e luminescenza a polarizzazione circolare 

(CPL). Questi analiti sono i principali costituenti del liquido extracellulare, come 

il siero umano. 
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Abstract 

The unique properties of f-f transitions in trivalent lanthanide complexes are the 

understandable reason of increasing applications in biosensing field, where their 

long emission lifetimes, the sharp and easily recognizable emission bands in 

addition to the large shift between the absorbed and emitted radiation besides a 

short-lived background fluorescence permit the great advantage to isolate their 

emission signal from the undesired background fluorescence of the biological 

samples. 

Furthermore, luminescent complexes of Eu(III) and Tb(III) are the most employed 

candidates due to the low sensitivity of their excited state to vibrational quenching 

effects caused by OH, NH, or CH oscillators, frequently present in solution and 

imaging environments. 

For these reasons, Eu(III) and Tb(III) complexes have been extensively exploited 

as sensors of species in physiological conditions, by allowing the detection of 

relevant clinical biomarkers in biomedical diagnostics and imaging. 

For these purposes, a high luminescence emission quantum yield and overall 

luminosity (or brightness) are strongly required and the intensity of the 

luminescent response, that it is enhanced with heteroaromatic ligands via antenna 

effect, is usually correlated to the concentration of target analyte. 

In this PhD project, a library of new water soluble Eu(III) and Tb(III) complexes 

based on the chiral fragment 1,2-diaminecyclohexane (DACH) has been 

successfully synthetized, completely characterized (also in solution) and employed 

for analytical detection of important bio-analytes such as: bicarbonate, L-lactate, 

serum albumin, and citrate through mainly total luminescence (TL) and circularly 

polarized luminescence (CPL). These analytes are the main constituents of 

extracellular fluid, such as human serum. 
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CHAPTER 1- Lanthanide luminescence (TL and CPL) 

 Introduction 1.1.

The lanthanide ions range from lanthanum (Z:57) to lutetium (Z:71) with an 

electronical configuration consisting of a xenon core and 4f valence electrons, 

[Xe]4f
n
. The states originated from different electronic configuration can be 

represent by the term 
2S+1

LJ in which S and L are respectively the total electron 

spin and orbital angular moment, and J denote the total angular moment. The 

mixing of the electrons into the levels by considering the contribution of all 

quantum numbers are reported in the Russell Saunders Coupling scheme, where 

the ground state is deduced by Hund’s rules.
1
 The typical energy diagram

2
 

obtained for each trivalent lanthanides is reported in the Dieke diagram (Figure 1). 

 

 

Figure 1 Partial energy diagrams for the lanthanide aquo ions. The main luminescent levels are drawn in 

red, and the fundamental level is evidenced in blue. 

The unique properties of the lanthanide ions are essentially due to their peculiar 

electronic structure, where the 4f orbitals are shielded from the surroundings 

thanks to the filled 5s
2
 and 5p

6
 orbitals. The poor shielding of nuclear charge 

offered by 4f orbitals it is the cause of an effect known as “the lanthanide 

contraction”, in which the 6s electrons are drawn towards the nucleus, thus 

resulting in a smaller atomic radius with progressive increase of the atomic 

number (Figure 2). 
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These feature makes more similar the radius of Ho
3+

 and  Er
3+

 to that one of Y
3+

, 

by allowing the comparison between the chemical coordination chemistry of 

Yttrium and the rare earths.
3
 

 

 

 

 

 

 

 

 

 

 

Figure 2: Square of the radial wavefunctions for the 4f, 5s, 5p and 6s energy levels from Hartree-Fock.4 

 

The lanthanide ions are conveniently represented by sharp and easily recognizable 

spectra, due to their intrisic nature of the core orbitals 4f. As the consequence of 

the shielding by the core orbitals, the selection rules forbidding f-f transitions are 

weakly relaxed by the surroundings environment, by keeping their atomic nature. 

The monochromatic purity of lanthanide emission
2
 (Figure 3) in complexes or as 

free ions could be efficiently exploited in technological applications. 

The more stable oxidation state is +3, although +2 and +4 valences are also 

possible in particular conditions. 

 

 

Figure 3. Main luminescent transition of trivalent lanthanide aquo ions. 5 

a)Main excited states; b) radiative lifetimes; c) Range of J-values; d) F: fluorescence, P:phosphorescence; e) 

Wavelengths of the most intense transitions.  

 

The strong attraction toward the nucleus not allows the involvement of the orbitals 
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4f in the coordination chemistry of the Ln
3+

, thus the available orbitals in the 

coordination with the ligands are the empty 6s, 6p and 5d. 

The weak influence of the ligands coordination on the f-f transitions is attributed 

on the lost in degeneracy of the J-levels due to the well-known crystal field effect. 

This leads to a further splitting of the (2J+1)-fold degenerate free ion states into 

the so-called Stark levels (or crystal-field levels). The strength of the crystal field 

determines the magnitude of the splitting, its symmetry the number of Stark levels 

that arise. The most common geometry is in low symmetry, in this case the free 

ion levels split into (2J+1) Stark levels, for J integer. If the J values are half-

integer, the Kramers degeneracy is still retained, but the maximum number of 

Stark levels is (J+1/2). Despite the mentioned effect, the influence of the crystal 

field is relatively weak and the splittings are just in the order of 10
2
 cm

-1
 (Figure 

4). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Diagram representing the interactions leading to the splitting of the electronic energy levels of  
Eu3+ ion. 6  

The absorption of the light by the lanthanide ions involves essentially electric 

dipole transitions (ED) with odd parity and magnetic dipole (MD) transitions. All 

4f
n
 states of the free lanthanide ions have the same parity, consequently the f-f 

transitions through electric dipole are forbidden for the Laporte’s rules, and only 

MD dipole transitions are allowed (in principle also electric quadrupole) (Table 

1). 
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Table 1. Overview of the transitions observed in luminescence spectra of europium(III) compounds. 7 

 

In the crystal lattice, if a rare-earth occupies a site with inversion symmetry, the 

transitions between the 4f
n
 levels are strictly forbidden as electric-dipole transition 

(parity selection rule). The only possible transitions are the magnetic-dipole 

transitions which obey the selection rule ∆J=0, +/-1 (from J=0 to J=0 is 

forbidden). 

On the other hand, if there is no inversion symmetry in the crystal lattice, the 

electric-dipole transitions are not so strictly forbidden. The uneven components of 

the crystal field are present exclusively when the lanthanide ion occupies a lattice 

without inversion symmetry. Under these conditions, those components mix a 

small amount of opposite-parity wavefunctions (like 5d) into the 4f 

wavefunctions, by allowing, even if in low entity, the intraconfigurational 4f
n
 

transitions. it can be said  that the forbidden 4f-4f transition steal the intensity 

from the allowed 4f-5d transition.
8
 

The 
5
D0-

7
F2 and 

5
D0-

7
F4 transitions, in europium (III) ion, particularly sensitive to 

the loss of inversion symmetry, are called forced hypersensitive electric dipole 

transitions. As already mentioned, the weak effect of the ligands coordination 

causes the crystal field effect. With this in mind, the trivalent Europium ion is one 

of the most used lanthanide for many reasons. Firstly, since the ground state (
7
F0) 

and the major emitting excited state (
5
D0) are non-degenerate, they are not splitted 

by the crystal-field effect 2J+1, and consequently the interpretation of the 

experimental absorption and luminescence spectra are facilitated. In fact, the main 

advantages of the Europium trivalent ion is the pure and single transition from the 

not-splitted emitting excited level 
5
D0 (J=0) to the acceptor levels 

7
F(0-6)  resulting 

in more defined and recognizable transitions, useful for obtaining structural 

information. 
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In this contest, the 
5
D0→

7
F0 transition is useful for the determination of the 

presence of non-equivalent sites in a host crystal or for determination of the 

number of different europium(III) species in solution, because maximum one peak 

is expected for a single site or species, due to the non-degeneracy of the 
7
F0 and 

5
D0 levels. 

The intensity of the hypersensitive transition 
5
D0→

7
F2 or the ratio R of the 

intensities of the 
5
D0→

7
F2 and 

5
D0→

7
F1 transitions, [R= I(

5
D0→

7
F2)/I(

5
D0→

7
F1)] 

is often used as a measure for the asymmetry degree of the Eu
3+ 

site. A dominant 

hypersensitive transition, connected to a low symmetry around the Eu(III) ion.
7
 

In view of the poor probability of the forbidden f-f transitions, low molar 

absorption coefficients (not above 10 M
-1 

cm
-1

) were unfortunately observed. A 

direct excitation of the lanthanide ions could be possible by employing excitation 

source with intense energy, condition not always viable, especially for application 

in the biological field. The low efficiency of the f-f transitions could be overcame 

with an indirect excitation source, upon excitation of an organic chromophore 

(sensitizer or antenna) followed by the transfer of the excitation energy to the 

lanthanide ion. The whole process is known as “antenna effect” and its schematic 

representation is given in the Figure 5. 

 

Figure 5. Schematic diagram of  the antenna effect. A – absorption, F – fluorescence, P – phosphorescence, L 

– luminescence, ISC – intersystem crossing, ET – energy transfer, BT – back energy transfer, NR – non-

radiative deactivation, 1S – first excited singlet state, 3T – lowest excited triplet state, GS – ground state, f – 

excited level of the metal. 

In 1942 Weissman discovered that intense metal-centered luminescence was 

detected for Europium(III) complexes bearing salicylaldehyde, benzoylacetone, 
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dibenzoylmethane and meta-nitrobenzoylacetone upon excitation within the 

intrinsic absorption region of the organic ligands.
9
 

Upon UV excitation of the ligand, the energy it is transferred to the excited state 

1
S state. This first condition implies high values of molar absorption coefficient of 

the ligand (ɛ). In literature, Parker and co-workers reported a Eu
3+

-complex 

possessing a ɛ value of 15000-30000 M
-1

 cm
-1

 at 337 nm.
10

  

Afterwards, the excited organic molecule could undergo through different 

pathways: a) fast internal conversion to the lower vibrational levels of the 
1
S  

state, for example upon interactions with solvents molecules; b) radiative 

deactivation to the ground state (F, fluorescence, S1→ S0), or c) via non-radiative 

intersystem crossing from the singlet state S1
 
to the triplet state T1. This level can 

be deactivated radiatively to the ground state S0 by the spin-forbidden transition 

T1→ S0 (phosphorescence). The latter condition is particularly favored in Gd
3+

 

ion. It is worth pointing out that the f–f transitions of Gd
3+

 are located at high 

energies due to the extreme stability of its half-filled f-shell (f
7
), being  the lowest-

energy f–f transition around 310 nm. For this reason, in Gd(III)-based complexes 

no antenna effect from a common organic chromophore is usually detected. 

Accordingly, Gd(III) complexes are frequently characterized by emissive 

intraligand (IL) states at lower energies. Lanthanide ions produce a heavy-atom 

effect to ligands by inducing increased spin–orbit coupling. Gd (III) in particular, 

due to its heavy-atom effect and paramagnetism (the so called paramagnetic metal 

effect), can induce a strong singlet/triplet mixing in the ligands.
11

  

As a consequence, the fluorescence of the ligand is quenched since intersystem 

crossing becomes faster, with the final effect to enhance the Phosphorescence (P) 

process (
3
T→ S0). Furthermore, the radiative lifetime of the triplet decreases and 

the phosphorescence quantum yield grows.
12-15   

Moreover, intra-ligand phosphorescence of several Gd(III) complexes appear also 

at room temperature
16-19

 revealing the importance for technological applications. 

As last step of the antenna effect, the triplet state can transfer its excitation energy 

to the excited level of the lanthanide ions, completing the ligand to metal energy 

transfer (LMET). 
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 The total luminescence (TL) 1.2.

In coordination compounds, the overall efficiency of the lanthanide luminescence 

is strictly related to the capability of the designed complex to absorb the photons 

and transfer the excitation energy to the lanthanide ion. This is quantitatively well 

expressed in the equation (1a and 1c). 

𝛷𝑒𝑥𝑡 = 𝐵 = 𝜀𝑎𝑛𝑡 ∗ 𝛷𝑡𝑜𝑡    (𝑒𝑞. 1𝑎) 

𝛷𝑡𝑜𝑡 = 𝛷𝐿𝑛 ∗ 𝜂𝐼𝑆𝐶 ∗ 𝜂𝐸𝑇     (𝑒𝑞. 1𝑏) 

𝛷𝑒𝑥𝑡 = 𝐵 = 𝜀𝑎𝑛𝑡 ∗ 𝛷𝐿𝑛 ∗ 𝜂𝐼𝑆𝐶 ∗ 𝜂𝐸𝑇    (𝑒𝑞. 1𝑐) 

The external quantum yield or overall luminosity [Φext or Brightness (B, eq. 1a 

and 1c), i.e. number of emitted photons / number of incident photons], is due to 

the product of the molar absorption coefficient ɛ and the total quantum yield, Φtot 

(equation 1a) that in turn is equal to the intrinsic lanthanide quantum yield ΦLn, 

multiplied by the efficiency of the intersystem crossing, ηISC and by the efficiency 

of the energy transfer processes, ηET (eq. 1b). 

The energy transfer process could takes places through two main mechanisms, 

which involve directly the excited states of the ligands and the excited 4f levels of 

the lanthanide ion.
7
 

One mechanism is called exchange energy transfer mechanism and requires the 

superimposition between the donor and the acceptor orbitals. The overlap between 

the emission spectrum of the donor (ligand) and the absorption spectrum of the 

acceptor (Ln
III

 ion) (spectral overlap) is also required, as in the case of dipole-

dipole interaction, which is the second quite common process on the basis of 

energy transfer. The efficiency of the exchange process is ruled by the ratio 1/e
r
, 

where r it is the distance lanthanide-antenna. For this reason, the mechanism is 

active in a very short range of lanthanide-antenna distances. 

ET process is due mainly to a dipole-dipole or dipole-multipole interactions, when 

involves a singlet excited state of the ligand (S1). 

On the contrary, when the T1 excited state is involved, the exchange interaction 

dominates the ET process. This is due to the electronic spin selection rules.
19
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The probability of the ET process via dipole-dipole interactions (Förster 

mechanism) is related to additional features such as: i) probability of d-d 

transitions of the donor and the acceptor and the refractive index of the medium. 

As the distance dependence is described by 1/r
6
, where r = distance lanthanide-

antenna, this interaction is efficient in a longer range of lanthanide-antenna 

distances.
21

 

According to the aforementioned spectral overlap, in order to have an efficient 

energy transfer from the triplet state to the lanthanide, the triplet state should be 

located at least 1500 cm
−1

, but preferably 2000 to 3500 cm
−1

 above the emitting 

level of the lanthanide ion.
7
 

In particular, the undesired thermal repopulation at room temperature of the T1 

can be avoided with an energy gap between T1 and the acceptor level of the 

lanthanide ion ≥ 1850 cm
-1

.
22

 

In the case of too low energy difference between the triplet level and the excited 

lanthanide level, an undesirable back transfer (BT) can occur by drastically 

decreasing the energy transfer efficiency. On the other hand, if the energy of the 

triplet level is below the lowest emitting level of the lanthanide ion, the energy 

transfer will not take place at all. With this in mind, the lanthanide luminescence 

in coordination compounds is therefore highly sensitive to the energy position of 

the triplet level of the ligand.  

In the case of the most used lanthanide ions, the acceptor excited state is 20400 

cm
-1

 for the 
5
D4 of the Tb(III) ion and 17200 cm

-1
 for the 

5
D0 of the Eu(III) ion. 

For the aforementioned reasons, the energy for the triplet should be around 22250 

cm
-1

 for the optimal energy transfer to the 
5
D4 of the Tb(III) ion while at ≈19000 

cm
-1

 for the optimal energy transfer to 
5
D0 of the Eu(III) ion. 

One of the causes of the not-radiative transitions of the lanthanides is attributed to 

the presence in the environment of some vibrational modes characterized by high 

energy. These modes are capable to de-activate the excited states of lanthanide 

ions by means of the multiphonon relaxation (MRP) process. 



 

21 
 

The efficiency of the MRP process is dependent on the energy gap between the 

emitting level and the one just below of the lanthanide ion. MPR is important if 

the energy gap is bridged by less than four vibrational quanta (Figure 6). 

 

Figure 6. Radiative transitions of Eu(III) and non-radiative quenching through O-H and O-D bonds 

The 
5
D0 emitting state of europium is at 12000 cm

-1
 above the highest 

7
FJ level. 

This energy gap is covered by three O-H vibrational quanta (vibrational energy 

3600 cm
-1

). On the other hand, for the intrinsic nature of the bond O-D, the 

vibrational energy is lower, and in the case of the deuterium oxide the MPR is less 

efficient since five vibration quanta of O-D vibration (2200 cm
-1

) are necessary to 

fill the energy gap of europium. For this reason, water molecules are particularly 

effective in the non-radiative quenching of lanthanide excited states.  

The number of water molecules bound to the metal (q, hydration number) can be 

determined using Horrock’s equation (Equation 2-3).
23,24 

 

𝑞 =  ∗ (  𝑜   𝐵)  (𝑒𝑞.  ) 

  𝑜  =          =
1

    
 

1

    
  (𝑒𝑞.  ) 

where A and B are empirical constants, K is the reciprocal of 1/τ, τ is the observed 

lifetime in water and in deuterium oxide. 
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Usually, in biological applications, the metal ion is surrounded by several 

biomolecules and for this reason, in addition to O-H vibrations of water, other 

vibrations, such as N-H (3300 cm
-1

) and C-H (2900 cm
-1

), could significantly 

contribute to vibrational quenching of Ln(III)-centered emission.
24

 

The coordination numbers of lanthanide ions are usually above 6, and the most 

common are 7, 8 and 9
25 but they could reach also 12.

26
 

In aqueous solution, the coordination number is usually 9 for the early lanthanides 

(La-Sm) and 8 for the later ones (Dy-Lu), with intermediate lanthanides (Eu, Gd 

and Tb) showing either of both or mixtures in equilibrium. A recent study
27

 shows 

that n = 9 for all [Ln(H2O)n]
3+

 in aqueous solution, apart from Ln = Lu (n = 8).  

As previously mentioned, one of the peculiar properties of the lanthanides are the 

longer lifetimes respect to that one of the traditional fluorophore. The intensity of 

an emission transition is usually described in terms of the spontaneous emission 

probability (or Einstein’s coefficient of spontaneous emission A). These values 

can be calculated for both MD and ED transitions trough the Judd-Ofelt theory.
28

 

The radiative lifetime of the emitting level (J’) is characteristic of each lanthanide 

ion and it is represented by the following equation (4), where the sum Σ is overall 

lower-lying levels. 

   
 =

1

∑   
  

  (𝑒𝑞.  ) 

Unfortunately, the observed lifetimes are perturbed by several additional 

pathways of de-excitation of the emitting level J’, such as MPR and ET processes. 

τobs can be written as depicted in equation (5): 

 𝑜  =
 

∑         ∑   
 
  

  (𝑒𝑞.  )  

where W is the rate of the involved process. The relative importance of radiative 

and not-radiative transitions is usually expresses by the radiative quantum 

efficiency η, also called intrinsic quantum yield ΦLn (eq.6), i.e. number of emitted 

photons / number of absorbed photons by the lanthanide ion. 
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 𝑜  
  

= 𝜂 = 𝛷𝐿𝑛  (𝑒𝑞.  ) 

In an ideal case where the contribution of WMPR and WET are equal to zero, the τobs 

is equal to the τr and the radiative quantum efficiency should be equal to 100%.  

According to the equation 1b is possible to correlate the Φtot with the ΦLn for 

calculating the so-called sensitization efficiency (ηsens) (eq. 7). 

𝜂 𝑒𝑛 = 𝜂𝐼𝑆𝐶 ∗ 𝜂𝐸𝑇 =
𝛷𝑡𝑜𝑡

𝛷𝐿𝑛
  (𝑒𝑞.  ) 

In an ideal case, the efficiency terms of the intersystem crossing, ηISC and by the 

energy transfer processes, ηET are equal to 1 (usually they are <1) and the total 

quantum yield Φtot should be equal to the intrinsic quantum yield ΦLn. 

One of the most common methods for determining the total quantum yield in 

solution involves the use of standards. In the literature, the common employed 

standards are quinine bisulfate, fluorescein, and Rhodamine 6G.
29

 

In order to get a reliable value of quantum yield it is necessary that the emission 

spectra are corrected. In the modern instrument this operation occurs 

automatically; this correction takes into account that the output of the xenon lamp 

is not uniform throughout the entire wavelength range and gratings change their 

efficiency. 

The equation for calculating the total quantum yield is reported in the following 

equation (8). 

𝛷𝑡𝑜𝑡( ) =
  ∗   ∗   

 

  ∗   ∗   
 ∗ 𝛷   (𝑒𝑞.  ) 

The term u is referred to the unknown sample, and the s term to the standard. A is 

the absorbance at the excitation wavelength, F is the integrated emission area 

across the band, and n is the index of refraction of the solvent. In particular nu is 

that one of the unknown sample and no is attributed to the standards solvent, both 

at the sodium D line and the temperature of the emission measurement. It is 

necessary to underline that for this measure, the values of the absorbance of 
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sample and standard must be similar and small (e.g. below 0.10). Furthermore, it 

should be more appropriate if the unknown sample and standard are in the same 

solvent. If this is not possible, a correction for the difference in refractive indices 

of the solvents must be done.
30 

Suitable standards for comparative determination of luminescence quantum yields 

in solution are reported in Table 2.  

 

 

Table 2. Fluorescence quantum yield references (Φf) in various emission range at 25° C. 29 

 

Alternatively, the fluorescence quantum yield can be measured directly by 

employing optical devices such as the integrating sphere (also called Ulbricht 

sphere). An integrating sphere is a spherical cavity with highly-reflective 

(diffusive) surfaces that allows spatial integration of incoming light flux. 

These materials show diffused reflectance distributed nearly according the 

Lambert law and the total value of reflectance is between 92 and 99 % for 

wavelengths from UV-B to near IR; it means that during each reflection a 

negligible percentage of light flux is lost.
31

 

 Circularly Polarized Luminescence (CPL)  1.3.

The circularly polarized luminescence spectroscopy was exploiting since 30 years 

ago. CPL is a chiroptical technique which is attracting a great interest due to its 

wide range of applications in technological and biomedical fields,
32-36 

essentially 
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by combining the sensitivity of the luminescence compounds with high brightness 

and the specificity of chiroptical response. 

The possibility to observe the influence of the metal-ion surroundings on the CPL 

and CD (Circularly Dichroism) spectra represent an additional mean to study the 

complexity of the interaction between the ‘chiral biological world’ and the 

lanthanide luminescent compounds as probes. 

The sophisticated and expensive instrumentations do not allow a routine use, for 

these reasons, the use of the CPL and CD spectra it is mainly performed by 

specialized research group. Furthermore, besides to the above mentioned reasons, 

some drawbacks like the presence of optical artefacts from various source, and 

electronic problems associated to weak difference signals make more challenging 

their use as common techniques. 

In order to understand the circularly polarized luminescence phenomenon, it is 

fundamental to discuss the basics of the light polarization. 

The unpolarized light is an electromagnetic wave constituted by an electric (E) 

and magnetic H field perpendicular each other and also perpendicular to the axis 

of propagation. Both fields are oscillating along different random direction.
37 

  

In the linearly polarized light, the electric field can be described as a vector which 

oscillates along one direction, perpendicular to the axis of propagation
38

 (Figure 

7). 

 

 

 

 

 

 

 

In a linearly polarized light the electric field is described by a vector that, 

according to the parallelogram rule, can be represented by the sum of other two 

vectors describing the electric fields of two circularly polarized radiations, one left 

and the other right-handed (Figure 8a).  

Figure 7. Schematic representation of a linearly polarized light.  
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When the light interacts with a chiral material, as well as our Ln-complexes based 

on the chiral 1,2-cyclohexanediamine, one of the two circularly polarized 

components (left or right-handed) is preferentially absorbed and thus the vector 

describing the electric field of that component undergoes change of the length. 

The resulting vectorial sum gives rise to a vector which is circularly polarized 

(Figure 8b).  This is the principle of the circular dichroism. The same principle 

applied to the emission of light allows us to understand the circularly polarized 

luminescence. 

 

Figure 8. a) Linearly polarized light. The electric vector is composed by the sum of two vectors left and right-

handed with the same length. b) Circularly polarized light. The electric vector is composed by the sum of two 

vectors left and right-handed with different length. 

When CPL light is emitted, one component of the CP light is preferentially 

emitted, giving rise to a different emission intensity of the two components (eq. 9) 

where IL and IR are respectively the left and right circularly polarized light. 

     𝐿      (𝑒𝑞.  )                             

The measurement of absolute emission intensity I require long time and 

procedures, for this reason the CPL spectra are expresses as depicted in equation 

(10): 
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     =
 𝐼

 

 
(𝐼  𝐼 )

= 
𝐼  𝐼 

 

 
(𝐼  𝐼 )

 (𝑒𝑞. 1  )      

where glum is dimensionless and it is known as luminescence dissymmetry factor. 

It is connected to the degree of the polarization of the incoming light.  

In the presence of chiral ligands, glum is different from zero; for the best of our 

knowledge the values for Europium (III) and Terbium (III) complexes are 

commonly included around 0.1 and 0.5, while for the traditional organic 

fluorophores the values are limited between 0.01 and 0.1.
39,40

 

In such cases, even though the ground-state distribution of a mixture of chiral 

molecules is racemic, it is possible to get the CPL signal if the excited state can be 

enriched in one of the enantiomers. This experiment was reported in the work of 

C.L Maupin and J.P Riehl.
41

 

Since the commercial instrumentation is poorly available, all the CPL 

measurements presented in my PhD thesis have been recorded with a homemade 

spectrofluoropolarimeter
42,43 

available at Pisa University, in the research group of 

the Prof. Di Bari. 

The basic configuration of device designed to get CPL is reported in Figure 9.  

A laser system or UV lamp coupled with an excitation monochromator or a 

combination of filters is employed as the excitation source. As already mentioned, 

some optical artefacts could interfere during the measurements, commonly the 

presence of linear polarization in the emission. With this in mind, the signal 

emission is collected at an angle of 90.0° from the direction of the excitation 

beam, in order to avoid the detection light from the excitation source. 

The luminescence from the chiral sample is first directed through a photoelastic 

polarization modulator (PEM), afterwards in a linear polarizer composed by 

focusing lenses or filters to prevent birefringence. The role of linear polarizer is to 

ensure that the detected light entering the monochromator is always polarized in 

the same direction, by preventing artefacts associated with the emission detection 

that it is polarization sensitive. 
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The PEM is made of an isotropic, clear optical material that generates an 

oscillating birefringence at a fixed frequency. This creates a periodic phase shift at 

a frequency, that it is capable to convert either right or left circularly polarized 

emitted light to linearly polarized light oriented at 45° to the PEM crystal axis. In 

this way, both PEM and linear polarizer permit the pass of alternately left then 

right circularly polarized light. 

Afterwards, the emission light is detected by a photomultiplier tube and the 

originating signal is sent into an amplifier-discriminator. 

 

 

Figure 9. Schematic diagram of an instrument designed to measure circularly polarized luminescence 
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 EXPERIMENTAL RESULTS- Effect of the 1.4.

counterion on Circularly Polarized Luminescence 

(CPL) of Eu(III) and Sm(III) complexes  

In this contribution, both enantiopure nitrate [LnL1(L2)2(H2O)]∙NO3 and triflate 

[LnL1(L2)2(H2O)]∙CF3SO3 Eu(III) complexes; with L1 = N,N’-bis(2-

pyridylmethylidene)- 1,2-(R,R+S,S)-cyclohexanediamine,
44,45

 L2 = 2-

thenoyltrifluoroacetyl-acetonate (commercially available) and one chiral 

tetradentate Schiff base NNNN ligand (Figure 10) have been synthetized and 

characterized, by using also chiroptical technique such as Electronic Circular 

Dichroism (ECD) and CPL (Figure 17).   

With the aim to enlarge the repertory of Samarium complexes exhibiting CPL, a 

similar study has been performed on analogous Sm(III) complexes (Figure 13).  

The encapsulation of the water insoluble and chiral [Eu(L1)(L2)2(H2O)]∙CF3SO3 

complex in PLGA nanoparticles entails a potential advantage, that is the use of 

CPL spectroscopy
46

 as a tool to investigate such biocompatible material.  

Since the chiral cyclohexandiamine has been employed in both enantiomeric 

forms, it has been possible to exploit the nanoparticles PLGA-Ln(III)-complexes 

based on L2 (= 2-thenoyltrifluoroacetyl-acetonate) even for CPL measurements. 

Even if the encapsulated complex has not shown CPL activity, further CPL 

studies on the single molecule revealed an good CPL activity and an unexpected 

role of the counterion (triflate or nitrate) and of the solvent (dichloromethane, 

acetonitrile and methanol).
47

 

In all cases, both ligands are capable to sensitize the luminescence of both metal 

ions upon absorption of light around 280 and 350 nm. Despite their similar Total 

Luminescence (TL) and ECD spectra, the CPL activity of the complexes is 

strongly influenced by a synergistic effect of the solvent and the counterion.  

For this contribution, a recent paper reported by Wada et al.
48

 has inspired our 

work. In this context they proved that the chiral geometric environment around 

Eu(III) and also its CPL signature can undergo a substantial change depending on 

the addition of further achiral molecules [acetone or triphenylphosphine oxide 

(tppo)] which coordinate the metal ion. It means that a simultaneous contribution 
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of chiral and achiral ligands can be taken into account when chiroptical activity 

such as CPL is concerned. In principle, this is quite unexpected, since usually only 

chiral molecules are capable to determine the chiroptical properties of a 

compound. 
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Figure 10. Molecular structure of the ligands and Ln-complexes under investigation in the present 

contribution. Ln = Sm and Eu; X = NO3 and CF3SO3; n = 0 or 1. Both enantiomers of the ligand have been 

employed. 

 

1.4.1. UV-visible Absorption and Electronic Circular Dichroism 

(ECD) 

Since the UV-visible electronic absorption spectra and ECD spectra of the triflate 

complexes [EuL1(L2)2(H2O)]CF3SO3 and [SmL1(L2)2(H2O)]CF3SO3) in 
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acetonitrile are perfectly superimposable, the effect of the employed metal ion 

(Sm or Eu) on this chiroptical property is completely negligible (Figure 11). 

 

Figure 11. UV-visible absorption (left) and ECD (right) spectra of [EuL1(L2)2(H2O)]∙CF3SO3 (top) and 

[SmL1(L2)2(H2O)]∙CF3SO3 (bottom) in acetonitrile. The spectra of the R,R enantiomers are reported in blue 

while the spectra of the S,S enantiomers are reported in red. Both UV-Vis and ECD spectra are normalized 

on the maximum absorbance value of the band centered at 350 nm. 

The absorption band around 350 nm can be attributed to the diketonate-centered 

singlet-singlet π-π* enolic transition
49

 whereas the absorption band peaking 

around 280 nm is due to the electronic transitions involving both the pyridine ring 

and the conjugated C=N group (i.e. π-π*, n-π* transitions) of the ligand L1.
46

 The 

sign of the ECD bands reflects the stereochemistry of the chiral ligand L1, which 

is also capable to favour a preferred sense of twist of the diketonates, as 

demonstrated by a dichroic signal around 350 nm, where only the absorption of tta 

takes place.  

Some slight differences either in the absorption and ECD spectra are detected 

upon changing the solvent from acetonitrile to methanol and by using nitrate 

instead of triflate as counteranion (Figure 12-14).  



 

32 
 

 

 

Figure 12. UV-visible Absorption (left) and ECD (right) spectra of [EuL1(L2)2(H2O)]∙CF3SO3 (top) and 

[SmL1(L2)2(H2O)]∙CF3SO3 in methanol.  

 

 

Figure 13. UV-visible Absorption (left) and ECD (right) spectra of [EuL1(L2)2(H2O)]∙NO3  (top) and 

[SmL1(L2)2(H2O)]∙NO3 (down) in acetonitrile (the complexes with R,R stereochemistry are chosen as 

representative).  
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Figure 14. UV-visible Absorption (left) and ECD (right) spectra of [EuL1(L2)2(H2O)]∙NO3  (top) and 

[SmL1(L2)2(H2O)]∙NO3 (down) in methanol (the complexes with R,R stereochemistry are chosen as 

representative).  

Most probably, the small differences are due to some minor structural 

rearrangements for the different lanthanide ion, solvent and counterion. 

 

1.4.2. Total Luminescence (TL), CPL and luminescence decay 

kinetics 

1.4.2.1. Eu complexes 

The TL spectra of the [EuL1(L2)2(H2O)]∙CF3SO3 and [EuL1(L2)2(H2O)]∙NO3 are 

compatible with an emitting Eu(III) ion surrounded by a crystal field whose 

geometry deviates significantly from the inversion symmetry, as the 
5
D0→

7
F2 

transition dominates the spectra (Figure 15 and 17).  

As already discussed, the typical red luminescence of Eu(III) is sensitized by 

either Pyridine L1 (≈280 nm) and L2 ligand (≈350 nm).  

Upon changing of solvent and counterion, whereas minor differences were 

detected for the TL spectra, considerable effects are recorded for the CPL spectra.  

Whilst the CPL signatures of the two enantiomers of the triflate complexes are the 

exact specular images in all the employed solvents, the intrinsic shape of the CPL 

spectra is strongly dependent on the solvent (Figure 15). 
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Figure 15. TL (left) and CPL (right) spectra of [EuL1(L2)2(H2O)]∙CF3SO3 complex dissolved in acetonitrile 

(top), methanol (middle) and dichloromethane (bottom) (λexc=365 nm). The spectra of the R,R enantiomer are 

reported in blue while the spectra of the S,S enantiomer are reported in red. Both the TL and CPL intensities 

are normalized on the maximum of the 5D0 
7F2 transition. 

Moreover, it is worth noting that [EuL1(L2)2(H2O)]∙CF3SO3 complex possessing 

the same ligand stereochemistry shows CPL spectra which are nearly inverted 

when the complex is dissolved in methanol and dichloromethane (Figure 15 and 

16).  
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Figure 16. Comparison between the normalized CPL spectra of (R,R)-[EuL1(L2)2(H2O)]∙CF3SO3 in methanol 

(blue line) and in dichloromethane (dashed blue line).  

In addition, for the 
5
D0→

7
F2 transition, we observed three bands in methanol and 

four bands, two positive and two negative, in acetonitrile (in the TL spectra only 

two bands are visible in both cases).  

As far as the nitrate complex [EuL1(L2)2(H2O)]∙NO3 in which the ligand L1 

possesses R,R stereochemistry is concerned, we observed the same behaviour 

described for the triflate complex in methanol and dichloromethane (Figure 17). 

In contrast to the CPL spectrum of [EuL1(L2)2(H2O)]∙CF3SO3 in acetonitrile, the 

one of [EuL1(L2)2(H2O)]∙NO3 in this same solvent is more similar to the 

spectrum recorded in dichloromethane (Figure 17). 
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Figure 17. TL (left) and CPL (right) spectra of [EuL1(L2)2(H2O)]∙NO3 complex dissolved in acetonitrile 

(top), methanol (middle) and dichloromethane (bottom) (λexc=365 nm). Both the TL and CPL intensities are 

normalized on the maximum of the 5D0 
7F2 transition. The ligand L has R,R stereochemistry. 

 

In conclusion, it is clear that both the nature of the solvent and counterion play a 

crucial role for determining the CPL activity of the complex. It is worth noting 

that in the case of the enantiopure triflate and nitrate Eu complexes, the CPL 

spectra in acetonitrile is superimposable to weighed linear combinations of two 

CPL spectra of the same complex recorded in methanol and dichloromethane 

(Figure 18). 
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Figure 18. Top: CPL spectra of (R,R)-[EuL1(L2)2(H2O)]∙CF3SO3 when dissolved in acetonitrile (black line) 

and as a linear combination of the CPL signature in methanol and dichloromethane (red dashed line). 

Bottom: CPL spectra of (R,R)- [EuL1(L2)2(H2O)]∙NO3 when dissolved in acetonitrile (black line) and as a 

linear combination of the CPL signature in methanol and dichloromethane (red dashed line). 

 

In order to explain the intrinsic CPL spectra footprint of the two complexes in 

different solvents, it was supposed that in apolar solvents such as 

dichloromethane, both triflate and nitrate anions are directly bound to the metal 

cation, whereas in the polar and protic methanol they are completely dissociated. 
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In this way, the presence or absence of the anion in the first coordination sphere of 

Eu(III) is capable to determine two different CPL signature (Figure 15 and Figure 

17).  

In the case of acetonitrile as solvent, the overall CPL spectra are the results of the 

coexistence of both dissociated and undissociated species, but their relative 

amounts depend on the counteranion. In fact, in the case of triflate there is a 

prevailing presence of the dissociated species whilst in the case of nitrate the 

situation is the opposite (a qualitative comparison it is possible by the different 

intensities in Figure 18). These findings are reasonable explained with the 

different coordination ability of the corresponding anion.  

Since the nitrate anion has an high affinity for the lanthanide ions if compared to 

coordinating solvents (NO3
- 

> DMSO (dimethylsulfoxide) > DMF (N,N-

dimethylformamide) > H2O > CH3CN (acetonitrile),
50

 the nitrates behave as non-

electrolytes in anhydrous CH3CN, also at low concentration (0.2 mM)
51

 and 

relatively high amounts of a strong donating ligand like DMSO (concentration 

ratio [DMSO]/[Ln
3+

] = 9) are needed in order to replace the nitrate ion from the 

inner coordination sphere.
50

 The triflates are considered good electrolytes in 

CH3CN, and they are completely dissociated at concentration lower than 0.05 mM 

in anhydrous CH3CN.
52

 

As far as the degree of polarization of the emitted light and the decay kinetics of 

the 
5
D0 Eu(III) excited state are concerned, the highest values of the luminescence 

dissymmetry factor glum for all the Eu(III) complexes are reported in Table 3, 

together with the observed excited state lifetimes. 

 

 

Complex 

glum observed lifetime (ms) 

solvent solvent 

DCM methanol CH3CN DCM CH3OH/ 

CD3OD 

CH3CN 

(R,R)-

[EuL1(L2)2(H2O)]∙CF3SO3 

-0.23 +0.17 +0.11 0.54(1) 0.57(1) 

0.75(1) 

0.44(1) 

(R,R)-

[EuL1(L2)2(H2O)]∙NO3 

-0.05 +0.07 -0.02 0.53(1) 0.42(1)/ 

0.52(1) 

0.53(1) 

Table 3. Values of the emission dissymmetry factor glum and 5D0 Eu(III) excited state lifetimes of the Eu(III) 

complexes under investigation dissolved in different solvents. The glum values are referred to the most 

intense component of the 5D0→
7F1 transition. 
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The highest |glum| is recorded for [EuL1(L2)2(H2O)]∙CF3SO3 in dichloromethane. 

Interestingly, the magnitude and the signs of the glum factors retrace at a glance 

the chemical behaviour of both the triflate and nitrate complexes in the three 

different solvents. In fact, the R,R enantiomers of the complexes present the 

highest negative glum values in CH2Cl2 and the highest positive glum values in 

methanol, whilst in acetonitrile the glum factors reach an intermediate value. In 

particular, in the case of the triflate complex in acetonitrile, glum is positive and 

closer to the one recorded in methanol, as expected given the low coordinating 

ability of the anion. On the other hand, the glum for the nitrate complex in 

CH3CN is negative and closer to the one recorded in CH2Cl2, thus indicating that 

the anion is essentially coordinated to the lanthanide ion. 

All the decay curves are well fitted by a single exponential function, (for nitrate 

complexes, Figure 19; for triflate complexes, see ref. [46]) and the lifetimes in 

methanol and CH2Cl2, which represent the two extreme cases, are rather similar in 

the case of triflate complexes. As discussed in this reference
46

 the presence of one 

water molecule in the inner coordination sphere of the metal ion when the triflate 

complex is dissolved in CH3CN, is responsible of the multiphonon relaxation 

phenomenon, which reduces the value of the observed lifetime.  

 

 

Figure 19. Room temperature decay curves of the 5D0 Eu(III) emission excited around 365 nm in methanol 

and acetonitrile solutions for [EuL1(L2)2(H2O)]∙NO3. The decay curves of the complex in dichloromethane 

are not shown, as it is superimposable to the one recorded in acetonitrile.  

 

In the case of nitrate complexes, it is worth noting the similarity of the observed 

lifetimes in CH2Cl2 and CH3CN (0.53 ms, Table 3). This finding is in agreement 
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with the conclusions drawn by CPL spectroscopy: in fact, due to the high affinity 

toward the metal center, the chelation of nitrate contributes to hinder the access to 

Eu(III) ion by solvent molecules and consequently the solvent molecules (CH2Cl2 

or CH3CN) does not show any influence on the lifetime value. 

Furthermore, the addition of one drop of D2O in the CH3CN solution of the nitrate 

complex should increase the value of the Eu(III) lifetime if water molecules are 

bound to the metal ion, since as a consequence of D2O/H2O exchange, high 

energy vibrations (OH) capable to reduce the value of the Eu(III) observed 

lifetime by multiphonon relaxation process, are removed from the inner 

coordination sphere. Since upon D2O addition the lifetime values does not change 

significantly [0.50(1) vs 0.53(1) ms], the presence of bound water can be ruled 

out.  

When the [EuL1(L2)2(H2O)]∙NO3 complex is dissolved in deuterated methanol 

(CD3OD), an increase of the Eu(III) lifetime value was detected. From the 

equation reported in the literature 
53

 the number of bound methanol molecules (m) 

can be obtained by  =  .1 ∗ (
 

 𝑜       
 

 

 𝑜       
 ). 

The calculated value of m = 1.0(5) is compatible with the presence of one 

methanol molecule in the inner coordination sphere of the metal center. The same 

conclusion can be drawn for the triflate complex.
46

  

Moreover, the quite similar luminescence decay times, recorded for triflate and 

nitrate complexes dissolved in different solvents, is indicative of a similar intrinsic 

quantum yield (in the 50-70% range), already determined for 

[EuL1(L2)2(H2O)]∙CF3SO3.
46

 

 

1.4.2.2. Sm complexes 

From the inspection of the TL and CPL spectra (Figure 20 and Figure 21), we can 

conclude that all Sm(III)-based complexes efficiently emit polarized light, in 

particular around 600 nm (corresponding to 
4
G5/2→

6
H7/2 transition). Other than the 

luminescence of Eu(III) the tta ligand (exc=365 nm) is capable to effectively 

transfer its excitation energy to Sm(III).   
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Figure 20. TL (leftt) and CPL (right) spectra of [SmL1(L2)2(H2O)]∙CF3SO3 complex dissolved in acetonitrile 

(top), methanol (middle) and dichloromethane (bottom) (exc=365 nm). The spectra of the R,R enantiomer are 

reported in blue while the spectra of the S,S enantiomer are reported in red. Both the TL and CPL intensities 

are normalized on the maximum of the 4G5/2 
6H9/2 transition. 

In contrast to the analogous Eu(III) complexes, independently of the solvent  the 

sequences of the signals in the CPL spectra of triflate Sm(III) complexes are quite 

similar. However, in acetonitrile and methanol the intensities of the CPL bands 

associated to the 
4
G5/2→

6
H7/2 (  600 nm) transition are higher than the ones 

recorded in dichloromethane.  In the case of the CPL spectra of nitrate Sm(III) 

complexes (Figure 21), the main differences can be seen in the region centered 

around 560 nm (
4
G5/2→

6
H5/2): in CH3CN and CH2Cl2 only one CPL band is 

present, whilst in methanol there are three CPL bands.  
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Figure 21. TL (right) and CPL (left) spectra of [SmL1(L2)2(H2O)2]∙NO3 complex dissolved in acetonitrile 

(top), methanol (middle) and dichloromethane (bottom). The complexes with R,R stereochemistry are chosen 

as representative. 

These aspects can be related once again to the role of the counterion. Triflate and 

nitrate should be significantly coordinated to Sm(III) in DCM  whilst they should 

be preferentially dissociated in methanol. In acetonitrile however, triflate ion is 

preferentially dissociated while nitrate ion is still preferentially coordinated to the 

metal center. The values of luminescence dissymmetry factor glum and the 

observed excited state lifetimes are reported in the Table 4 (see also Figure 22). 
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Table 4. Values of the emission dissymmetry factor glum and 4G5/2 Sm(III) excited state lifetimes of the Sm(III) 

complexes under investigation dissolved in different solvents. The glum values are referred to the positive band 

of the 4G5/2  
6H7/2 transition in the case of (S,S)-[SmL1(L2)2(H2O)]∙CF3SO3 and to the negative band in the 

case of (R,R)-[SmL1(L2)2(H2O)]∙NO3 

   

 Figure 22. Room temperature decay curves of the 4G5/2 Sm(III) emission excited around 365 nm in 

dichloromethane (CH2Cl2) and methanol (MeOH) solutions for [SmL1(L2)2(H2O)]∙NO3 and 

[SmL1(L2)2(H2O)]∙CF3SO3.  

The highest absolute value of glum is obtained for the complexes when they are 

dissolved in methanol. Conversely to the Eu(III) complexes, in the case of 

Sm(III), being the sequence of the signals of the 
4
G5/2  

6
H7/2 transition essentially 

the same, the signs of the glum for the same enantiomer do not change in the three 

investigated solvents. As expected, the values of the |glum| factors recorded in 

CH3CN lie close to the ones recorded in methanol in the case of the triflate 

complex, and close to the one recorded in CH2Cl2 for the nitrate complex. 

 

Complex 

glum observed lifetime (s) 

solvent solvent 

CH2Cl2 MeOH CH3CN CH2Cl2 CH3OH/ 

CD3OD 

CH3CN 

(S,S)-

[SmL1(L2)2(H2O)]∙

CF3SO3 

+0.007 +0.035 +0.03 28.1(1) 17.9(1)/ 

37.8(1) 

25.2(1) 

(R,R)-

[SmL1(L2)2(H2O)∙

NO3 

-0.016 -0.034 -0.015 28.3(1) 18.6(1)/ 

32.6(1) 

25.6(1) 
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Also the decay curves of the Sm(III) luminescence are well fitted by a single 

exponential function. As the values of the observed lifetimes fall in the s range 

in all the solvents, we can conclude that the Sm(III) emission efficiency is not so 

low even in non-deuterated solvents. In this context, it is useful to remind that a 

good Sm(III) cryptate emitter shows a lifetime around 90 s in deuterated 

methanol.
54

 Clearly, L1 and L2 ligands can protect effectively the metal ion from 

the intrusion of solvent molecules capable to activate the multiphonon relaxation 

mechanism. Unlike the analog triflate Eu(III) complexes, where one water 

molecule was detected in the inner coordination sphere, when the complex was 

dissolved in CH3CN, in the case of triflate (and nitrate) Sm(III) complexes no 

water molecule should be present in the close proximity of the cation, since the 

lifetime observed in this solvent are relatively high (at least higher than in the case 

of methanol solution). This conclusion is supported by the D2O/H2O exchange 

experiments in CH3CN, described above for Eu(III) complexes.  Both for 

[SmL1(L1)2(H2O)]∙CF3SO3 and [SmL1(L2)2(H2O)]∙NO3 the value of the Sm(III) 

lifetime does not change significantly upon addition of one drop of D2O to the 

CH3CN solution of the complexes [28.8(1) ms and 27.5(1) ms, respectively]. 

Nitrate and triflate complexes when dissolved in the same solvent showed a very 

similar luminescence lifetime. The lower lifetime values recorded in methanol are 

compatible with the presence of high energy vibrations (OH) close to the metal 

center, capable to activate a multiphonon relaxation process. Accordingly, when 

the triflate and nitrate complexes are dissolved in CD3OD, the value of the Sm(III) 

lifetime increases (Table 4) in line with a CD3OD→CH3OH substitution in the 

inner coordination sphere.   

Concluding, it has been widely discussed the unexpected role of the counterion 

(triflate or nitrate) and the solvent (dichloromethane, acetonitrile and methanol) on 

the CPL activity of Eu(III) and Sm(III) complexes containing tta and a tetra-aza 

pyridine-based chiral ligand as antennae.  

In particular, in the Eu(III) complexes, the CPL spectra of the species possessing 

the same ligand stereochemistry are nearly inverted if dichloromethane or 

Methanol are employed. This effect is attributed to the presence (in 

dichloromethane) or absence (in methanol) of the anion in the first coordination 



 

45 
 

sphere of Eu(III). An intermediate situation is observed in acetonitrile, even 

though nitrate is preferentially coordinated to the metal ion whilst the triflate is 

preferentially dissociated. To the best of our knowledge, this is the first case 

where achiral entities (counteranion and solvent) play such a strong effect on the 

CPL activity of chiral Ln(III) complexes, despite both their total luminescence 

and ECD spectra are nearly unaffected. 

 

1.4.3. Effect of the counterion on Circularly Polarized 

Luminescence (CPL) of Eu(III) and Sm(III) complexes: 

procedures, techniques and characterization 

1.4.3.1. Materials 

Eu(CF3SO3)3, Sm(CF3SO3)3, Eu(NO3)3∙6H2O and Sm(NO3)3∙6H2O (Merck, 98%) 

were stored under vacuum for several days at 80°C and then transferred in a glove 

box.  

1.4.3.2. Synthesis 

N,N’-bis(2-pyridylmethylidene)- 1,2-(R,R+S,S)-cyclohexanediamine (L1) were 

synthetized by following the procedures reported in literature from our research 

group
44,45 

(Scheme 1),  as well as the complex [EuL1(L2)2(H2O)]∙CF3SO3 that 

was synthesized as reported in the previous literature
46

 (Scheme 2). 

N

N

N

N

NH2

NH2 N
O

2+
EtOH

L1

 

Scheme 1. Synthesis of imine L1 
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Scheme 2. Synthesis of complex [EuL1(L2)2(H2O)n]∙CF3SO3 

N,N'-(cyclohexane-1,2-diyl)bis(1-(pyridin-2-yl)methanimine) (L1). In a flask 

containing an ethanol solution (2mL) with 1,2-diamminocyclohexane (1.3 gr, 

0.01167 mol), a ethanolic solution (2 mL) of pyridine-2-carbaldehyde (2.5 gr, 

0.023 mol) has been slowly added at 0°C. After the adding, the ice-bath has been 

removed to establish the room temperature for 12h. The white product 

precipitating has been filtered and washed three times with cold ethanol (5 mL). 

To increase the yield the ethanol solution can be concentrated to obtain other 

precipitate. White solid. Yield 75%. 
1
H NMR (600 MHz, CDCl3) δ (ppm): 8.53 

(d, J = 4.5 Hz, 2H), 8.30 (s, 2H), 7.87 (d, J = 7.9 Hz, 2H), 7.63 (t, J = 7.3 Hz, 2H), 

7.20 (dd, J = 6.7, 5.4 Hz, 2H), 3.58 – 3.47 (m, 2H), 1.91 – 1.73 (m, 6H), 1.57 – 

1.42 (m, 2H). 
13

C (50 MHz, CDCl3) δ (ppm): 161, 154, 149, 136, 124, 121, 73, 

32, 24. LC-MS: m/z 293[M+1]. IR (KBr pellet): ν = 1645 (N=C imine strech), 

1585 (pydine stretch), 1566 (pydine stretch), 1467 (pydine stretch), 1434 (pydine 

stretch), 1434 (pydine stretch), 791 (pydine stretch), 769 (pydine stretch), 993 

(pyridine bend), 619 (pyridine bend). 

[Eu(L1)(L2)2(H2O)]∙CF3SO3. 78 mg (0.342 mmol) of Htta 

(2‑Thenoyltrifluoroacetyl-acetone) has been completely dissolved in methanol 

(2mL) solution containing 19 mg (0.342 mmol) of KOH. The clear solution has 

been slowly added to methanol solution (2ml) containing 50 mg (0.171 mmol) of 

N,N'-(cyclohexane-1,2-diyl)bis(1-(pyridin-2-yl)methanimine) L1 and 102 mg 

(0.171 mmol) of Eu(OTfa)3. The final solution has been stirred for 1 hour a room 

temperature. After this time, the solvent has been removed under reduced pressure 

and the desiderated product extracted through 6 mL of DCM. Yield: 50%. IR 

(KBr pellet): ν = 1645 (C=N imine stretch), 1537 (carbonyl group stretch), 1029 

(pyridine bend), 638 (pyridine bend).  
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[EuL1(L2)2(H2O)]∙NO3 was synthesized as depicted in Scheme 3, by performing 

the following procedure: at room temperature, 76 mg (0.342 mmol) of Htta 

(2‑Thenoyltrifluoroacetyl-acetone, Merck) have been dissolved in a methanol (1.5 

mL) solution containing 19 mg (0.342 mmol) of KOH. The clear solution was 

slowly added to a methanol solution (2mL) of the enantiopure R,R ligand L1 [50 

mg (0.171 mmol)] and Eu(NO3)3∙6H2O [76.4 mg (0.171 mmol)]. The final 

mixture was stirred for 30 minutes at room temperature and then the solvent was 

removed under reduced pressure. The desired product was obtained in a good 

yield as yellowish powder upon extraction in dichloromethane (6 mL) followed 

by solvent removal under reduced pressure. [EuL1(L2)2(H2O)]∙NO3: Yield 92%. 

Elemental Anal. Calc. for C34H28EuF6N5O7S2 (MW 948.7): C, 43.04; H, 2.97; N, 

7.38; O, 11.81. Found: C, 42.87 ; H, 2.90; N, 7.26; O, 11.87. In acetonitrile: ε 

(279 nm): 27290 M
-1

cm
-1 

(pyridine ring absorption); ε (347 nm): 35570 M
-1

cm
-1 

(tta absorption). 

 

N

N

N

N
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S

O O

CF32

r.t.

1. MeOH/KOH
2. DCM N

N

N

N

Ln+(L2)2

L2H

H2O n

NO
3

-

Ln=Eu3+, Sm3+

 

Scheme 3. Synthesis of complexes [LnL1(L2)2(H2O)n]∙NO3, with Ln=Eu3+ , Sm3+ . 

[SmL1(L2)2(H2O)]∙CF3SO3 was synthesized as depicted in Scheme 3, by 

performing the following procedure: at room temperature, 53.3 mg (0.240 mmol) 

of Htta (2‑Thenoyltrifluoroacetyl-acetone) have been dissolved in a methanol (1.5 

mL) solution containing 13.5 mg (0.240 mmol) of KOH. The clear solution was 

slowly added to a methanol solution (1.5 mL) of the ligand L1 [35 mg 

(0.120mmol)] and Sm(CF3SO3)3 [71.6 mg (0.120 mmol)]. The final mixture was 

stirred for 1 hour at room temperature and then the solvent was removed under 

reduced pressure. The desired product has been obtained in a good yield as 
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yellowish powder upon extraction in dichloromethane (5 mL) followed by the 

removal of the solvent under reduced pressure. The synthesis was performed by 

using both the enantiomers of the ligand L1. [SmL1(L2)2(H2O)]∙CF3SO3: Yield 

84%. Elemental Anal. Calc. for C35H30F9N4O8S3Sm (isomer R,R; MW 1052.2): C, 

39.95; H, 2.87; N, 5.32; O, 12.16. Found: C, 39.80 ; H, 2.98; N, 5.25; O, 12.09. In 

acetonitrile: ε (280 nm): 26560 M
-1

cm
-1

(pyridine ring absorption); ε (347 nm): 

34877 M
-1

cm
-1 

(tta absorption). 

[SmL1(L2)2(H2O)]∙NO3 was synthesized as depicted in Scheme 3, by performing 

the following procedure: at room temperature, 53.3 mg (0.240 mmol) of Htta 

(2‑Thenoyltrifluoroacetyl-acetone) have been dissolved in a methanol (1.5 mL) 

solution containing 13.5 mg (0.240 mmol) of KOH. The clear solution was slowly 

added to a methanol solution (1.5 mL) of ligand L1 [35 mg (0.120 mmol)] and 

Sm(NO3)3∙6H2O [53.3 mg (0.120 mmol)]. The final mixture was stirred for 1 h at 

room temperature and then the solvent was removed under reduced pressure. The 

desired product has been obtained in a good yield as yellowish powder upon 

extraction in dichloromethane (5 mL) followed by the removal of the solvent 

under reduced pressure. [SmL1(L2)2(H2O)]∙NO3: Yield 95%. Elemental Anal. 

Calc. for C34H28F6N5O7S2Sm (isomer R,R; MW 947.1): C, 43.12; H, 2.98; N, 

7.39; O, 11.83. Found: C, 42.94 ; H, 2.90; N, 7.33; O, 11.69. In acetonitrile, ε 

(279 nm): 26750 M
-1

cm
-1

(pyridine ring absorption); ε (347 nm): 34870 M
-1

cm
-1 

(tta absorption). 

 

1.4.3.3. Luminescence and decay kinetics 

Room temperature luminescence was measured with a Fluorolog 3 (Horiba-Jobin 

Yvon) spectrofluorometer, equipped with a Xe lamp, a double excitation 

monochromator, a single emission monochromator (mod. HR320), and a 

photomultiplier in photon counting mode for the detection of the emitted signal. 

All the spectra were corrected for the spectral distortions of the setup.  

In decay kinetics measurements, a Xenon microsecond flashlamp was used and 

the signal was recorded by means of multichannel scaling method. True decay 

times were obtained using the convolution of the instrumental response function 
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with an exponential function and the least-square-sum-based fitting program 

(SpectraSolve software package).  

The spectra were recorded on CH3CN (0.4 mM) and methanol (0.4 mM) 

solutions, as for the CPL spectra (see below). 

1.4.3.4. Circularly Polarized Luminescence (CPL) 

CPL spectra were recorded with the home-made spectrofluoropolarimeter 

described previously.
55

 The spectra were recorded on CH3CN (0.4 mM) and 

methanol (0.4 mM) solutions in a 1 cm-cell. The samples were excited at 365 nm, 

with a 90° geometry between the detector and the light source. 

1.4.3.5. Electronic Circular Dichroism (ECD)  

ECD spectra were recorded with a Jasco J710 spectropolarimeter on CH3CN 2 

mM and CH3OH 2 mM solutions in a 0.02 cm-cell. 
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CHAPTER 2-Lanthanide complexes: applications for 

sensing in biomedicine  

 Introduction 2.1.

Since the optical imaging represent a fundamental component of several 

biomedical techniques, the need to satisfy the requirements of the modern 

bioanalysis and bioimaging is becoming of outstanding importance. The various 

advantages of using the lanthanide complexes as bioprobes, is the main 

explanation for justifying the continuous exploiting over the last 35 years.  

One of the first uses goes up to the end of the 1970s, in which the aim of 

lanthanide luminescence was to replace radio-analyses. In these bioassays, some 

lanthanide macrocyclic complexes based on polyaminocarboxylates are 

conjugated to specific antibodies and the luminescence is detected after the 

biochemical reaction is completed, by involving a fluoro-immunoassays DELFIA 

(dissociation-enhanced lanthanide fluorescence immunoassay) or a FRET 

(Fluorescence resonance energy transfer)-based protocol.
1
 

The convenience of lanthanide luminescent bioprobes for immunoassays, was a 

consequent extension to imaging purposes.
2 

As already discussed, since the intraconfigurational f-f transitions are forbidden, 

the lifetime of the excited state are long (ms range) by allowing the use of time 

gated detection which increases the sensitivity of the optical response. 

The time-resolved measurements use a time delay td between an excitation pulse 

and the time at which the emission is detected. In this technique, the sample is 

illuminated with a pulsed light source, commonly a cheap flash lamp or LED.  

The detector is turned on or off depending on the advancement of the experiment. 

At the initial pulse t=0, the detector is switched on after a delay time, then the 

luminescence of the probe is measured. The complete experiments last just 1-4 

ms, for this reason the light measurements could be repeated several times for 

second, by enhancing the signal-to-noise ratio and therefore the sensitivity of the 

technique. 

In this way, the td allows to discriminate the emission of lanthanide probe from 

the shorter-lived background signals, whose signal rapidly decays.
3
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Besides the large Stokes’ shift (difference between excitation and emission 

wavelengths) and the narrow emission peaks, another fundamental advantage 

justifying the employment of lanthanide complexes as probes is their high 

stability. In fact, since they are not easily oxidized or photobleached, they can be 

stored at room temperature for years. 

As widely described, the lanthanide luminescence involves the antenna process; 

since the sensitization by the ligands via the energy transfer mechanism to the 

metal center is considerably fast, the photodegradation of the ligand is 

substantially overcame.
4
 

 

 Toolkit of the lanthanides luminescent bioprobes 2.2.

The specific targeting to vehicular the probes toward a selective compartment 

remains one of the major challenges to solve. The possibility to get more 

versatility in vivo or in vitro experiments could be influenced by the impact of the 

hydrophobicity and charge of the lanthanide metal complexes on the cell viability 

and cell association
5
, including their membrane permeability.

6-10
 

Furthermore, the in vivo or in vitro localization of the optical probe affects the 

type of analytes that can be detected. A probe with an extracellular location is 

particularly suitable to detect analytes such as group I ions, polysaccharides, 

hormones, or other signaling molecules.
5
 

In order to get a suitable lanthanide luminescent bioprobe, a list of crucial 

requirements rules the design of the metal complex, as listed below. 

 

2.2.1. Water solubility 

Since usually an organic antenna is composed by an extended system of 

heteroaromatic rings, the complete solubilization of the Ln-complex in aqueous 

system is not trivial.  

The development of a water-soluble compound could be obtained by employing 

hydrophilic groups on the ligand backbone. With this in mind, some cationic 

groups (e.g., ammonium substituents), anionic groups (e.g., phosphonates or 

sulfonates), or hydrophilic groups can be conveniently exploited for this aim. The 
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insertion of hydrophilic groups based on polyethylene glycol (PEG) is of huge 

interest and has been already reported. For instance, the well-known texaphyrin 

lutetium or gadolinium complex (Figure 1) designed by Sessler and co-workers 

consisted in a porphyrin containing these solubilizing PEG-moieties, which was 

exploited in the development of active anticancer agents.
11

 

 

Figure 1. Ln = Gd: the gadolinium texaphyrin is an effective radiation sensitizer active toward tumor cells. 

Ln = Lu: the lutetium complex has potentiality for photodynamic therapy, active for breast cancer or brain 

tumor cells. 

On the other hand, the solubility in water could be ensured by inserting also 

carboxylic groups, as demonstrated in my PhD project. 

In this context, it is important to know the speciation curves of the functional 

groups sensitive the pH environment, in order to study the chemical equilibria of 

the ligands under investigation. With this in mind, it is possible to calculate the 

formation constants of the Ln(III)-complexes by following the absorbance 

changes with acid-base spectrophotometric titrations. 

In addition, the possibility to introduce amine and carboxylic pendants represents 

a convenient way to easily form bioconjugates, by exploiting the chemistry of the 

coupling reactions. One of the most traditional coupling reactions is performed 

with water-soluble carbodiimide crosslinker such as 1-ethyl-3-[3-

dimethylaminopropyl]carbodiimide hydrochloride (EDC), sometimes followed by 

a second activation process in the presence of N-hydroxsuccinimide (NHS) or 

sulfo-NHS, prior to coupling with an amine. Furthermore, the excess of activating 

agents can be easily removed by acidic aqueous treatments. These NHS additives 

commonly enhance the yields and decrease the amount of collateral byproducts. 
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2.2.2. Stability and Selectivity 

Another fundamental feature it is the high stability in solution, more precisely a 

high thermodynamic stability and the kinetic inertness at physiological pH 

(around 7.4) is required. 

Especially, in biomedical field, one of the most usual drawbacks is the 

transmetallation process, more precisely the possibility to have cation exchange 

with some endogenous cations present in the biological environment. This could 

be a serious issue in the case of Zn
2+

 and Ca
2+

 that are present in high 

concentration (10
−3

 M) in lysosomes.
12

 

In addition, low complex stability could give rise to the release in solution of free 

toxic metal ion. 

An efficient bioprobe should show tunable luminescence properties as a function 

of the presence in solution of a particular analyte showing a sort of selectivity in 

experiments on complex matrix. It should be also underlined that a precise 

excitation wavelength must be selected. Optical probes characterized by an 

excitation wavelength lower than 300 nm are useless, since the majority of the 

biomolecules strongly absorb UV light in that spectral range. Furthermore, the 

irradiation in the UV/blue spectral range is rather phototoxic.  

  

 Classification and applications of lanthanide probes 2.3.

in bioimaging 

The luminescent molecular probes have attracted great interest owing to their high 

sensitivity with broad dynamic range in the detection of specific bio-analytes.  

Commonly, the analytes are detected thanks to considerable changes in the 

luminescence intensity or wavelength. Nevertheless, in biological applications, 

where the analyte could be in low concentration or many other interfering 

biochromophores could response, the accuracy of the detection is drastically 

reduced by evidencing the necessity of another approach to overcome this 

drawback. As previously described at the beginning of this chapter, such purpose 

is reached by employing the time-gated luminescence, an efficient spectroscopic 

technique already cited at the beginning of this chapter. 
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In this section, the main classes of probes employed in bioimaging are reviewed.  

 

 

2.3.1. β-Diketonate Probes 

The main representative β-diketonates used as ligands for Ln
3+

 ions are depicted 

in Figure 3. 

The β-diketonate-based lanthanide complexes efficiently emit not only visible but 

also near-infrared luminescence.
13, 14

 

The quantum yields efficiency of some ternary Eu(III) complexes reach values up 

to 85%.
15

 

Most probably, the β-diketonates induce an appreciable mixing of ligand orbitals 

into 4f wave functions. Consequently, the Laporte’s forbidden f-f transitions 

become more probable, and the observed lifetimes are shorter.
16

 

 

 

 

 

Figure 3. β-diketonates and ancillary ligands used in biosensing. 

 

Several applications involve the employment of lanthanide β-diketonates 

complexes.
17-19
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In particular, they are broadly used in the field of micro-organism imaging. In the 

research of Yuan and co-workers, the initial chlorosulfonil derivative (BHHCT) 

was conveniently coupled to an aminoacidic residue of the BSA (Bovine Serum 

Albumin) by obtaining the sulfonylaminopropyl-ester-N-succinimide Moiety 

(BHHST). The luminescent properties are improved by inserting the triazine 

derivative (dpbt), an excellent antenna for Eu(III). The obtained conjugate 

[Eu(BHHCT)(dpbt)]
+
 complex-protein displays a wide excitation range up to 387 

nm, a relatively long lifetime around 460 μs, and a quantum yield of 27% in 

NaHCO3 0.05 M, pH 8.5. The remaining primary amino acids of BSA are cross-

linked to SA (Streptavidin) with glutaraldehyde to produce an active bioconjugate 

(Figure 4) capable to chelate various microorganisms such as the Giardia lamblia, 

also known as  Giardia intestinalis, which is 

a flagellated parasitic microorganism, that colonizes and reproduces in the small 

intestine, causing giardiasis.
20 

 

 

 

 

Figure 4. Active bio-conjugate for Giardia lamblia imaging. 

 

The use of the BHHCT complexes has been also successfully employed in the 

agriculture field, in the investigation of the interaction between oligochitosan and 

tobacco cells. 

This natural polysaccharide (poly β-N-acetyl-D-glucosamine) derived from chitin, 

has a wide spectrum of antibacterial activity, effective fungicides, inhibiting spore 

germination and mycelial growth, so it is an interesting alternatives to chemicals 

https://en.wikipedia.org/wiki/Flagellate
https://en.wikipedia.org/wiki/Parasitism
https://en.wikipedia.org/wiki/Microorganism
https://en.wikipedia.org/wiki/Small_intestine
https://en.wikipedia.org/wiki/Small_intestine
https://en.wikipedia.org/wiki/Giardiasis
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for controlling post-harvest diseases and prolonging fruit and vegetable storage 

life.
21

 

 

2.3.2. Encapsulated probes 

The lanthanide complexes could be encapsulated in different matrices. In the field 

of optical imaging, several visible
22-25

 and NIR-emitting
26-28

 organic dyes have 

been successfully encapsulated and employed in in vivo experiments.  

In addition, multifunctional nanoparticles capable to carry both drugs and dyes 

have been designed for multimodal theranostic purposes.
29-32

 

One of the most common biopolymer used for this purpose is the Poly(lactic-co-

glycolic acid) PLGA, as reported by Naik and co-workers. In these -PLGA based-

nanoparticles, is possible to control the release of drugs thanks to a local heating 

by microwave irradiation of a magnetic iron core contained inside the 

nanoparticles, that it is capable to increase the rate of a dye release.
33

 

Another interesting application which exploits the encapsulation of the probe in 

nanoparticles is reported in the work of Moreira and co-workers (Figure 5). The 

nanoparticles are conjugated to an IgG monoclonal antibody for target-specific 

bioassays. 

In particular, two receptors, the estrogen receptors (ERs) and Her2/neu (human 

epidermal growth factor receptor) are overexpressed in breast cancer cells and 

located on the nuclear membrane or on the cell membrane, respectively. The goal 

is to take advantage of red-emitting Eu-bioprobe and green-emitting Tb-bioprobe 

for detecting simultaneously both receptors.
34
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Figure 5. Her2/neu detected by green-emitting Tb-bioprobe and ER stained with red-emitting Eu-bioprobe 

 

2.3.3. Aliphatic Polyaminocarboxylate and Carboxylate  Probes 

It is surely one of the most exploited classes of Ln-complexes for biosensing and 

imaging applications. The main representative compounds are certainly the 

lanthanides complexes bearing the ligand frameworks of DTPA 

(diethylenetriaminepentaacetic acid) and DOTA (1,4,7,10-

Tetraazacyclododecane-1,4,7,10-tetraacetic acid), as the well-known 

[Gd(DTPA)(H2O)]
2-

 was approved as contrast agent for magnetic resonance 

imaging in 1988, followed one year later by [Gd(DOTA)(H2O)]
-
  (Figure 6). 

 

Figure 6. Gd(III) complexes based on DOTA and DTPA ligands for imaging. 

The easy derivatization of the core opens the possibility to get a wide number of 

derivatives well studied for their thermodynamics and kinetics properties.
35

 

As far as the bio-applications are concerned, many luminescent tags are designed 

with the aim of imaging various analytes and proteins within living cells. 

An interesting approach was reported by Soini and co-workers for the 

identification of blood leukocytes, by using the luminescent properties of four 

different metal complexes.
36
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The final aim of this proposed assay it is the identification of neutrophils, 

eosinophils and T-lymphocytes by time-resolved microscopy with the help of the 

metal chelates (Figure 7), while Syto 25TM is a green nucleus stain which works 

with all cells (Figure 7). Afterwards, the leucocyte mixtures are incubated in a 

one-step procedure in phosphate buffered saline (pH 7.4) buffer with a 

combination of luminophore-conjugated antibodies recognising neutrophil and 

lymphocyte-specific markers. 

 

 

 

 

Figure 7. Luminescent bioprobes used for detection of leucocytes. 

 

Another interesting application for this class concerns the influence of the pH 

environment on the emission intensity ratio and variation of the excited state 

lifetime.  
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With this in mind, the probes that can report changes to the pH environment of 

certain cellular compartments could be used in the monitoring of several 

pathological and physiological cellular processes. A similar purpose was reported 

in the work of McMahon and co-workers
37

 in which the Europium probes were 

used for determination of pH change within the endoplasmic reticulum of living 

cells. 

A family of Eu(III) complexes based on the 1,4,7,10-tetraazacyclododecane 

macrocyclic framework incorporating either an azathiaxanthone or azaxanthone 

sensitizing moiety were mainly employed (Figure 8). As result of the pH 

fluctuations, the metil-sulphonamide pendant can bind reversibly to the lanthanide 

ion, by changing the metal coordination environment.  

 

 

 

Figure 8. pH dependency of the sulphonamide moiety.37 

 

The modification around the first coordination sphere has a big influence also on 

the hydration number (q) of the lanthanide, by affecting the overall emission 

quantum yield. In Figure 9, the Eu(III) emission spectra  as a function of pH (0.1 

M NaCl, 298 K) is reported revealing a substantial and reversible changes in the 

fine splitting of the ∆J = 1 transition and also in the form of the ∆J = 2 and ∆J = 4 

spectral bands. In addition, upon basification, two new bands at 625 nm and 688 

nm were also observed.  
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Figure 9. Variation of the Eu(III) emission of EuL complex depicted in fig.8, as a function of pH. 37 

 

In a previous work reported by Kim and co-workers it was demonstrated that the 

large proton permeability of the endoplasmic reticulum membrane allows a 

noticeable correlation between the pH within the cytoplasm and the endoplasmic 

reticulum. In this context, it is possible a preliminary study to predict the 

capability of the probe to respond to pH changes in cellulo. The experiment is 

performed by altering the pH of endoplasmatic reticulum from 7.7 to 6.0 (by 

varying the pH of the growth medium and adding nigericin (0.2 mM) to allow 

K
+
/H

+
 exchange), where the consequent response is detected by microscopy.

38
 

A similar purpose to investigate  the pH changes within the cellular compartment, 

it was also performed by D.G. Smith and co-workers by employing a family of Eu 

and Tb complexes based on azaxanthone sensitiser (Figure 10) to measure the 

equilibrium of bicarbonate concentrations directly human serum and in cellular 

mitochondria of bicarbonate in several different cell types with confocal 

microscopy.
39

 

As far as the biomedical applications are concerned, a rapid method to detect 

bicarbonate levels in serum is crucial either in emergency medicine for evaluating 

metabolic acidosis and in chronic kidney disease patients.
40-42
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Figure 10. An example of the EuL complex structure to detect the bicarbonate ion in mitochondria upon 

displacement of water molecules.39 

 

In order to consider the effect of the natural interferents composing the 

extracellular fluid, the intrinsic binding affinities for the bicarbonate anion were 

evaluated with the simultaneously presence of biocomponents such as: lactate, 

citrate, phosphate and serum albumin. The triphosphate, ATP, was also included 

in these studies, since it is present at 1 mM concentrations within mitochondria, 

and it is also capable of binding to the lanthanide complexes. The investigated 

anions were used at their typical extracellular concentrations, and HSA (Human 

Serum Albumin) was present at its normal extracellular concentration of 0.4 mM.  

Since, the normal concentration of bicarbonate in extracellular fluid is around 24-

27 mM
43

 they were added increasing amount of the analyte in a range within 10-

35 mM, by obtaining a noticeable increase of the emission intensity and a slight 

shift in the ∆J=2 maximum from 614 to 616 nm, which it is essentially due the 

displacement of the water molecules from the metal center (Figure 11). 
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Figure 11. Variation of the Eu(III) emission spectrum for [Eu·L2]3+, in a background solution containing 

HSA (0.4 mm), citrate (0.13 mm), lactate (2.3 mm), phosphate (0.7 mm) and ATP (1 mm), following by 

addition of sodium bicarbonate up to 30 mM (pH 7.40, 50 µM complex, 298 K, I=0.1 M NaCl, λexc=332 nm). 

From [39]. 

 

In addition to the polyaminocarboxylate probes sensitive to the pH changes of the 

environment, the literature reports many examples for controlling the lanthanide 

luminescence. Several applications concerned the modulation of the electron 

transfer to the metal center or the capture of the antenna by endogenous ions. This 

latter is described by Kotova
44 

and co-workers who developed a luminescent  

lanthanide sensor based on 4,7-diphenyl-1,10-phenanthroline-disulfonate (BPS) as 

antenna (Figure 12), which was capable to modify the europium emission upon 

the coordination with Fe(II). In biology, the possibility to detect the presence of 

metals plays a crucial role, since several biomolecules composing the human 

proteome contains metal cations, as catalyst of some metabolic pathways, or as 

cofactors. Furthermore, a reliable qualitative and quantitative method to detect the 

biometals it is fundamental, since the metal imbalance in tissues and cells are 

correlated to a noticeable number of diseases.
45-47
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Figure 12. Structure of the Eu(BPS) complex used for detection of Fe(II). From [44]. 
 
 

The principle of the assay method is based on the removal of the antenna BPS due 

to the higher affinity for Fe(II) ion for the coordination with the metal center, by 

“switching off” the luminescence signal. The resulting displacement generates a 

consistent decrease of the hypersensitive 
5
D0-

7
F2 transition (Figure 13), by 

allowing a detection limit of the BPS for the Fe(II) ions around 10 pM, which it is 

significantly above the traditional employed colorimetric methods.
48-50

 

 

 

Figure 13. Variation of the Eu(III) emission of Eu-BPS complex depicted in fig.8, upon addition of Fe(II), (0-

4 equiv.) in Hepes-buffered solution (pH 7.4). 

 

On the other hand, the presence of metal ions could also promote the 

luminescence emission, as reported in the work of Weitz
51

 and co-workers. 

In biology, the alkali metal ions are essential for the regulation of membrane 

polarization and osmotic pressure. For this reason, the possibility to get activation 
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or a deactivation of the luminescence emission in relationship with the flux of the 

alkali ions is very important in neuroimaging applications. 

The above mentioned purpose was reached by employing the Eu(III) emission of 

a probe based on a macrocyclic DOTA like supported by a crown ether to enhance 

the stability in biological means and phenanthridine ring as antenna conjugated to 

the crown ether at the 4 position (Figure 14). 

The cation-π interaction of the K
+ 

ions towards the electron-rich π phenanthridine 

ring influences the excited energy levels of the antenna resulting in a enhance of 

the energy transfer process.  
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Figure 14. Turn-on response of the luminescence emission in the presence of K+ ion. [Ref. 51] 

 

The double capability to enhance or interrupt the signal is essentially due to the 

fast kinetics of binding and dissociation of the adduct K
+
-probe, in addition to the 

high sensitivity and selectivity. Since the affinity of the K
+
 ions is higher for the 

phenanthridine’s nitrogen than the crown ether, the detection of the ion within the 

typical extracellular range 3.5–5.3 mM
52

 under physiological condition was 

successfully performed by allowing the future application in imaging field. 

Post-modifications of the antenna could opportunely modulate the transfer of the 

electrons on the lanthanide, by signaling the presence of specific analytes. Such 

purpose was exploited in the study of Lippert and co-workers for detecting the 

presence of reactive oxygen species (ROS) like the hydrogen peroxide (H2O2).
53
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In biology, the ROS species cover a wide family of molecules essential for the 

human health.
54-63

 

As far as the H2O2 is concerned, it is involved in several physiological stimuli, in 

the regulation of cellular processes, like growth and proliferation
64-66

 

differentiation
67, 68  

migration
69, 70

 and phagocytosis
71, 72

  in addition to aging 
73, 74

 

and diseases involving cancer
75-77

 diabetes
78-80

 and neurodegenerative disorders.
81-

83
 

A 7-fold coordinating DOTA-like core is functionalized with a boronate ester 

which upon chemoselective interaction with hydrogen peroxide, it is conveniently 

converted to the electron-rich phenol group. The electron-withdrawing boronate 

group acts as a cage, by hampering the sensitization of the Tb
3+

 ion (Figure 15).  

The “turn-on” switch of the luminescence is due to the phenol ring that, upon 

deprotection of boronate unit, is now available to act as a suitable antenna for Tb 

luminescence.  
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Figure 15. Turn-on response of the luminescence emission, upon oxidation of the antenna with H2O2. [Ref. 

53] 
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The above-mentioned compound is also employed for the detection of hydrogen 

peroxide in living systems. In such applications, the main strategy is the time-

gated luminescence detection of hydrogen peroxide, due to the obtained long-

lived lanthanide emission (Φ= 0.054, t = 1.23 ms) upon conversion of the initial 

complex in the oxidative product.
53

 

 

The capability to modulate the electrons transfer to the lanthanide is a property 

not only employed in the above-mentioned work of Lippert, but it is widely 

exploited in many biology assays. The electron transfer from a “chemotype-

masking ” to the metal center is known as Photo Induced Electron Transfer (PeT), 

with the secondary effect to influence the antenna effect. If the photoexcitation of 

the antenna induces the electron transfer from the HOMO orbital of the cage (or 

Pet switch) to S0 level of the antenna, the Ln(III)-sensitization is lost.  The 

presence of the hydrogen peroxide reported in the Lippert’s work oxidizes the 

antenna and then the PeT switch is not capable to transfer electrons to S0 anymore. 

Therefore, the Ln(III)-sensitization is restored (Figure 16).  

With this in mind, the photoexcited molecule can act as a good oxidizing agent or 

a good reducing agent, according to the chemical structure and the nature of the 

analytes in the environment. 

 

 

Figure 16. Schematic mechanism of the Photo Induced electrons transfer (PeT) 

https://en.wikipedia.org/wiki/Oxidizing_agent
https://en.wikipedia.org/wiki/Reducing_agent
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Chen
84

 and co-workers developed a probe to detect the presence of Nitric oxide 

(NO), a reactive species containing one unpaired electron. In biology, it is 

important since it is involved in many processes.
85-88

 

In humans, the nitric oxide is a signaling molecule in many physiological and 

pathological processes; moreover, it is an efficient vasodilator in the blood, with a 

half-life of a few seconds.
89

 

NO is lipid-soluble and thus it is easily dispersed from the sited where it is 

produced
90

 for this reason a reliable and real-time method plays a crucial role. The 

strategy involved is to employ a probe bearing an electronrich o-diaminophenyl 

group. The interaction with the NO under aerobic conditions generates the 

corresponding benzotriazole derivative, and the photoinduced electron transfer 

(PeT) is interrupted, resulting in the turn-on of the probe (Figure 17). 

 

 

Figure 17. Structure of the Eu(III) complexes used to detect the NO through inhibition of PeT. [Ref. 90] 

 

A selective probe to detect the presence of Cu(II) and Hg(II) ions in water is 

described in the work of McMahon and Gunnlaugsson.
91

 

A sensitive method to reveal that ions, is of great importance for both 

environmental and biomedical purposes.
92-106

 

https://en.wikipedia.org/wiki/Signaling_molecule
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In biomedicine, many Cu(II)-adducts play a crucial role in several enzymatic 

processes, whilst free Cu(II) can be fatal for various biological processes, such as 

Wilson and Menkes diseases.
107, 108

 

As far as the Hg(II) ion is concerned, it is well known that it can accumulate in the 

blood–brain barrier resulting in severe neurological disorders.
100-105

 

The above mentioned purposes employ a Tb(III) macrocycle DOTA like bearing 

as antenna an aniline moiety opportunely functionalized with a iminodiacetate 

unit suitable to bind the Cu(II) and Hg(II) in aqueous solution. The coordination 

results in a substantial decrease of the Tb(III) emission for both metal transitions 

(Figure 18). 

 

 

Figure 18. Structure of the Tb(III) complex to detect Cu(II) and Hg(II) ions. From [91] 

 

2.3.4. Helicates 

As far as the helicates class is concerned, some representative compounds are 

constituted of a tridentate ligands, such as bis(benzimidazole)pyridines
109

 or 

dipicolinates (DPA)
110

, which wrap around Ln(III) ions to yield saturated 9-

coordinate complexes whose the ligand strands are hold together by weak 

intramolecular π-π interactions. Lanthanide tris(dipicolinates) are quite stable in 

water at physiological pH, a fundamental feature for biosensing application, in 

particular, after suitable derivatisation, as multi-photonexcited stains.
111

 

 

These molecules bearing two lanthanide ions have been successfully employed for 

protein structure investigation as reported in the work of Barthelmes and co-

workers, where a library of water-soluble hexadentate dinuclear helicates with 

DPA core fitted with two benzimidazole chromophoric units has been obtained in 

good yields (Figure 19).
112
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Figure 19. Hexadentate ligands for the self-assembly of lanthanide dinuclear helicates. [From 112] 

 

The most important photophysical features for the [Eu2(L)3] helicates are 

summarized in Table 1. The most impressive features are surely the large molar 

absorption coefficients, around 85.000 M
-1

 cm
-1 

, that they are far larger than those 

exhibited by most lanthanide bioprobes, long lifetimes, in addition to sizeable 

quantum yields in aqueous solution.  

 

 

Table 1. Photophysical properties of solutions of the helicates [Eu2(L30i)3] (i = a-f)_ and [Eu2(L31)3]6_ in 
aqueous solution (Tris-HCl 0.1 M) at pH 7.4 and 295 K. [Data from references: 16, 34, 113]. 
 

Since theses probes are binuclear, the cytotoxicity is an important prerequisite to 

consider for the sensing and imaging of live biomaterials. 
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The collected data demonstrate that the cytotoxicity of all the tested helicates is 

negligible, with half inhibitory concentration IC50> 500 μM. Some of these 

results were also confirmed by the lactase dehydrogenase (LDH) test, which 

allows an evaluation of damages caused to the cell membrane by determining the 

LDH leakage out of the cell. In the case of [Eu2(L30e)3], this leakage was found 

to be less than 4% for three tested cell lines. 
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CHAPTER 3- EXPERIMENTAL RESULTS: New 

Ln(III) complexes as luminescence bioprobes  

 

 Complexes of rare earth ions embedded in 3.1.

Poly(lactic-co-glycolic acid) (PLGA)  nanoparticles 

3.1.1. Introduction 

Optical probes based on lanthanide complexes are certainly one of the most 

important classes of molecules in the field of molecular medicine, because of their 

properties such as high sensitivity, and easy detection. 

Furthermore, compared to organic dyes, they possess longer lifetimes, and lower 

sensitivity to photobleaching. These lanthanide bioprobes should be highly stable 

in water, small propensity to dissociation at low concentration and analyte-

dependent luminescence properties (e.g., biosensing in vitro or in vivo 

applications).  

If the probe cannot be directly used in aqueous solution, the encapsulation in 

different matrices (e.g., biocompatible nanoparticles) could be a good strategy to 

exploit also water unsoluble Ln-complexes, as shown in the following study. The 

optical properties of these probes can be also used to visualize organs, cells, etc. 

such as in the field of bioimaging applications. 

 

 Water insoluble Eu(III) complexes: encapsulation 3.2.

in PLGA for bioimaging purposes   

In this context, a lipophilic and water-insoluble luminescent Eu(III) complex has 

been encapsulated in the biocompatible Poly(lactic-co-glycolic acid (PLGA) 

polymer,
1
 by using two compositions: Poly(lactic(50%)-co-glycolic acid(50%), 

PLGA 50:50 and Poly(lactic(75%)-co-glycolic acid(25%), PLGA 75:25. As 

clearly discussed, the efficiency of both encapsulation and Eu(III) luminescence 

are strongly dependent on the nature of the complex.  

PLGA is one of the most successfully developed biodegradable and biocompatible 

polymers. Furthermore, they are FDA (Food and Drug Administration) and EMA 
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(European Medicine Agency) approved in drug delivery systems for parenteral 

administration and there are several well described formulations and methods of 

production adapted to various types of drugs i.e. hydrophilic or hydrophobic small 

molecules or macromolecules. PLGA is also capable to protect drug and dye from 

degradation
2
 and to guarantee a sustained release and its surface properties can be 

modified to provide better interaction with biological materials and to target 

nanoparticles to specific organs or cells.
3,4

 

Moreover, the PLGA nanoparticles (NP’s) can be seen as very efficient 

“nanocarrier” both for drugs and contrast agents. In the field of optical imaging, 

several visible
5-8

 and NIR-emitting
9-11

 organic dyes have been successfully 

encapsulated and employed in in vivo experiments.  

In order to obtain excellent brightness a strong dye loading without aggregation-

caused quenching (ACQ) is required.
12

 ACQ is a considerable problem and it is 

responsible for conflicting interpretations of data in the quantitative analysis of 

whole-body optical imaging.
13

 In order to prevent false observations in whole-

body fluorescence imaging of NP distribution, it is important to verify that 

fluorescence dyes do not quench in NPs and the fluorescence intensity increases 

linearly with the NP concentration. Only recently several strategies of dye design 

were proposed to overcome ACQ in polymer NPs. In particular, aggregation 

induced emission (AIE) and dye modification with bulky side groups and use of 

bulky hydrophobic counterions.
14

 Most of the fluorophores are organic molecules 

that show significant overlap between the excitation and emission spectra [in 

particular, near-infrared (NIR) ones] and therefore exhibit high fluorescence 

backgrounds during in vivo imaging. To overcome this drawback, two dyes have 

been incorporated in the same PLGA nanoparticle and the energy transfer process 

from the donor to the acceptor dye is employed. The larger gap between the 

excitation and emission maxima (>100 nm) ensures a reduction of the background 

signal.
15 

A similar process is exploited when conjugated polymer nanoparticles 

(CPNs) capped with PLGA transfer its excitation energy to a hydrophobic NIR 

dye, which is encapsulated within the nanoparticles.
16
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All the above mentioned drawbacks could be overcame by using the luminescent 

Ln(III) complexes as emitting species. Even though these compounds have been 

poorly employed to date,
17

 we believe that they should have a bright role in this 

field. As already described in previous parts, the Eu(III) and Tb(III) complexes 

show several advantages: i) they can emit visible light with a large gap between 

the excitation and emission maxima, thanks to the well-known ligand to metal 

energy transfer (antenna effect); ii) they do not usually suffer from ACQ 

phenomenon and iii) by using a time-gated detection it is possible to isolate their 

emission (excited state lifetimes in the ms range) from autofluorescence (excited 

state lifetimes in the ns-ps range) in complex microenvironments such as cells, 

tissues or living animals. In addition, due to the close similarity between the ionic 

radii of Y(III) and Ln(III), also isostructural Y(III) complexes could be 

conveniently entrapped in PLGA nanoparticles. Radioactive Y(III) species 

embedded in biocompatible nanoparticles could be used in nuclear medicine as 

Positron Emission Tomography (PET) contrast agents.
18

 Precisely, we mainly 

discuss the synthesis, the characterization and the spectroscopic study of PLGA 

nanoparticles containing an Eu(III)-based complex where two anionic tta (2-

Thenoyltrifluoroacetyl-acetonate), one chiral tetradentate Schiff base NNNN 

ligands surround the Eu(III) ion (Figure 1). 
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Figure 1. Complexes based on L1 (=N, N’-bis(2-pyridylmethylidene)-1,2-(R,R+S,S)-cyclohexanediamine) and 

L2 (=2-thenoyltrifluoroacetyl-acetonate, L3 (N, N’-bis(2-quinolylmethylidene)- 1,2-(R,R+S,S)-

cyclohexanediamine),  L4 (N-quinolyl-N,N’,N’-trans-l,2-cyclohexylenediaminetriacetic acid) under 

investigation. 

Two different polymeric compositions [Poly(lactic(50%)-co-glycolic acid(50%) 

and Poly(lactic(75%)-co-glycolic acid(25%)] were employed, and the Eu(III) 

luminescence in correlation with time and temperature was studied. A similar 

purpose involving the use of PLGA NP’s as host material was also performed for 

the analogous Y(III) complex ([Y(L1)(L2)2(H2O)]∙CF3SO3).  

 

3.2.1. PLGA luminescent nanoparticles: physical characterization 

As already mentioned, two composition of PLGA nanoparticles containing 

different Ln(III) complexes (Ln = Y and Eu) were used: 1) (50:50) more 

hydrophilic and 2) (75:25) more hydrophobic. According to the protocol 

previously set up by our research groups for the synthesis of the ligand L1,
19

 the 

new rac-[Y(L1)(L2)2(H2O)]∙CF3SO3 complex has been obtained in a good 

chemical yield and high degree of purity.  
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Both complexes [Eu(L1)(L2)2(H2O)]∙CF3SO3 and [Y(L1)(L2)2(H2O)]∙CF3SO3 

Eu(L3)(NO3)3 and Eu(L4) have been encapsulated in PLGA to get six different 

samples called:  

 Sample 1 (S1): [Eu(L1)(L2)2(H2O)]∙CF3SO3 embedded in PLGA 50:50  

 Sample 2 (S2): [Eu(L1)(L2)2(H2O)]∙CF3SO3 embedded in PLGA 75:25  

 Sample 3 (S3): [Y(L1)(L2)2(H2O)]∙CF3SO3 embedded in PLGA 50:50  

 Sample 4 (S4): [Y(L1)(L2)2(H2O)]∙CF3SO3 embedded in PLGA 75:25  

 Sample 5 (S5): Eu(L4) embedded in PLGA 50:50  

 Sample 6 (S6) : Eu(L3)(NO3)3 embedded in PLGA 50:50  

In Figure 2, the DLS diagram of [Eu(L1)(L2)2(H2O)]∙CF3SO3 embedded in PLGA 

75:25 (sample S2) dispersed in Phosphate buffered saline (PBS) is depicted. 

 

 

Figure 2. DLS diagram of  [Eu(L1)(L2)2(H2O)]∙CF3SO3 embedded in PLGA 75:25 (sample S2) dispersed in 

PBS. The Z-size reported in table 1 is the average value calculated on three different samples. 

A family of nanoparticles whose diameters are distributed around 193 nm with a 

standard deviation of 54 nm was efficiently obtained. The synthesis of the 

[Ln(L1)(L2)2(H2O)]∙CF3SO3 (Ln = Y and Eu) embedded in PLGA gives rise to 

nanoparticles whose dimensions range between 130 and 250 nm when PLGA 

50:50 is employed (Table 1); whereas the same nanoparticles obtained with 

PLGA 75:25 are slightly bigger (145-279 nm range).  
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Table 1. Size (nm), Z-potential (mV) and melting temperature (Tm; °C) of PLGA 50:50 and 75:25 

nanoparticles: empty or embedding [Eu(L1)(L2)2(H2O)]∙CF3SO3 and [Y(L1)(L2)2(H2O)]∙CF3SO3 complexes.  

The particle size estimated in PBS (with Dynamic Light Scattering-DLS 

technique) is in agreement with the one determined by Atomic Force Microscopy-

AFM (Table 1) and Z-potential shows, as expected, negative values for all the 

synthetized nanoparticles. In fact, on the PLGA nanoparticles surfaces there 

should be residual carboxylic groups, which are deprotonated at the working pH
20

. 

As far as the shape of the obtained nanoparticles is concerned, in Figure 3 the 

AFM analysis is depicted showing a regular spherical shape of the nanoparticles 

radii (range: 180-200 nm). 

 

Figure 3. AFM images of [Y(L1)(L2)2(H2O)]∙CF3SO3 complex embedded in PLGA 75:25 
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In Table 1, the melting temperature (Tm) of the PLGA polymer is also reported. 

This temperature is connected to the stability of the system as a function of the 

temperature and it is related to the breaking of weak interactions such as dipole-

dipole, Van Der Walls and hydrogen bond interactions responsible of the 

assembly of the nanoparticles. It is worth noting that, the NP’s (75:25, sample 

S2), containing a higher quantity of the poly-lactic component, are more thermally 

resistant than the 50:50 ones (sample S1), since they show a melting temperature 

around 37-38°C (Tm is around 33°C for the 50:50 system, Table 1 and Figure 4). 

(a) 

 

(b) 

 

Figure 4. Superimposition of DSC diagram for (a) S1 (Eu(L1(L2)2(H2O)]∙CF3SO3 complex embedded in 

PLGA 50:50, red line) and S2 (Eu(L1)(L2)2(H2O)]∙CF3SO3 complex embedded in PLGA 75:25, blue line), 

and (b) S3 (Y(L1)(L2)2(H2O)]∙CF3SO3 complex embedded in PLGA 50:50) and S1.  

The thermal stability of these nanoparticles is a very important feature, as far as 

biomedical applications such as bioimaging are concerned. The empty PLGA 
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nanoparticles show a melting temperature of 34°C and 29°C, for the 75:25 and 

50:50 compositions, respectively. In conclusion, the presence of the complexes 

inside the PLGA nanoparticles gives rise to an increased thermal stability of the 

assembly.  

The UV-Visible electronic absorption spectra of Y(III) and Eu(III) complexes are 

very similar (Figure 5). 

 

Figure 5. UV-Visible electronic absorption spectrum of [Eu(L1)(L2)2(H2O)]∙CF3SO3 and 

[Y(L1)(L2)2(H2O)]∙CF3SO3 dissolved in acetonitrile.  

Besides to the (Eu or Y)tta-complexes, even the complexes Eu(L3)(NO3)3 (S6) 

and Eu(L4) (S5) were investigated with the same purposes of encapsulation in 

PLGA polymer, although with very low efficiency (Figure 6b and 8).  

The luminescence excitation and emission spectra of Eu(III)-based complexes 

embedded in PLGA nanoparticles suspended in a buffered phosphate aqueous 

solution are shown in Figure 6.  
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(a) 

 

(b)  

 

Figura 6. (a) Luminescence excitation spectra (normalized) and (b) Luminescence emission spectra of S1 

(Eu(L1)(L2)2(H2O)]∙CF3SO3 complex embedded in PLGA 50:50, S2 (Eu(L1)(L2)2(H2O)]∙CF3SO3 complex 

embedded in PLGA 75:25, and S5 Eu(L4) complex embedded in PLGA 50:50, all suspended in phosphate 

buffer aqueous solution.  

The excitation spectra recorded in aqueous solution for the nanoparticles 

containing [Eu(L1)(L2)2(H2O)]∙CF3SO3 complex synthesized with the different 

PLGA composition (50:50, sample S1 and 75:25, sample S2) are identical and 

superimposable with the excitation spectra of the complex alone.
19 

The presence 

of two excitation bands centered at around 280 nm and 350 nm is a clear 

indication of a ligand to metal energy transfer from the ligands L1 and L2 
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respectively. It is interesting to note that the sensitization of the Eu(III) 

luminescence can be achieved upon excitation in a wide UV spectral range (250-

400 nm). Potentially, this gives the opportunity to choose the more suitable 

excitation wavelength. In particular, the excitation peak around 350 (in the N−UV 

region) is particularly attractive for biomedical application since this wavelength 

is hardly absorbed by interfering biomolecules necessarily present in a real matrix. 

Otherwise, in the case of embedded Eu(L4) complex in PLGA 50:50 (sample S5) 

formulation, only a peak centered around 320 nm is detected (Figure 6b). 

A close inspection of the luminescence emission spectra for 

Eu(L1)(L2)2(H2O)]∙CF3SO3 complex embedded in the two different PLGA 

formulations reveals that the two spectra are virtually identical, except for the 

intensity of 
5
D0→

7
F2 emission peak around 615 nm, which is slightly higher for 

the 75:25 PLGA assembly (Figure 6b). Consequently, the values of the 

asymmetry ratio, R
21, 22

 in (1): 

  R = 
)(

)(

1

7

0

5

2

7

0

5

FDI

FDI




   (1) 

indicative of the degree of asymmetry of the coordination polyhedron around the 

Eu(III) ion, is slightly higher in the case of the 75:25 composition (R = 6.0 for 

75:25 and 5.6 for 50:50). On the other hand, even though the 
5
D0→

7
F2 emission 

band dominates the spectrum also when the complex alone is dissolved in organic 

solvent such as acetonitrile and methanol, we calculate a considerable different 

value of the asymmetry ratio (R around 12, Figure 7), compatible with a higher 

asymmetry of the Eu(III) coordination sphere.  
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Figure 7. Luminescence emission spectra of S2 ([Eu(L1)(L2)2(H2O)]∙CF3SO3 complex embedded in PLGA 

75:25) suspended in phosphate buffer aqueous solution and [Eu(L1)(L2)2(H2O)]∙CF3SO3 dissolved in 

acetonitrile; λexc = 350 nm. 

This discrepancy underlines the non-innocent role of the environment, once the 

complex is embedded in PLGA polymer. We also detect, for both compositions, 

the presence of a small broad peak above 400 nm, attributable to ligands 

fluorescence (Figure 6b). Also this finding is in agreement with the presence of a 

polymer-complex interaction, which affects the luminescence properties of the 

coordination compound. Since no ligand fluorescence has been observed for the 

complex alone in solution
19

  and the fluorescence band is almost absent in the case 

75:25 composition, we can suppose that the Eu(III) complex is less perturbed 

when embedded in PLGA containing a higher amount of poly-lactic acid.  

As far as the complexes Eu(L3)(NO3)3 and Eu(L4) 4 are concerned, when Eu(L4) 

is embedded in the PLGA nanoparticles, upon excitation in the ligand absorption 

band, only a very low luminescence intensity is detected (Figure 6b) and the 

emission band around 420 nm, due to the quinoline fluorescence
23

 dominates the 

spectrum. Moreover, whereas the characteristic absorption peaks of 

[Ln(L1)(L2)2(H2O)]∙CF3SO3 (Ln = Eu, Y) are clearly detectable in the electronic 

absorption spectra of the PLGA NP’s (Figure 8), in the case of Eu(L4), the 

absorption peak of the complex is covered by the PLGA absorption. This is a 

clear indication of ineffective incorporation of Eu(L4) in the polymer NP’s.  
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Figure 8. Electronic absorption spectra of S1 (Eu(L1)(L2)2(H2O)]∙CF3SO3 complex embedded in PLGA 

50:50), S2 (Eu(L1)(L2)2(H2O)]∙CF3SO3 complex embedded in PLGA 75:25), S5 Eu(L4) complex embedded in 

PLGA 50:50, S3 (Y(L1)(L2)2(H2O)]∙CF3SO3 complex embedded in PLGA 50:50), S4 

(Y(L1)(L2)2(H2O)]∙CF3SO3 complex embedded in PLGA 75:25), S6 (Eu(L3)(NO3)3 embedded in PLGA 

50:50) and empty PLGA nanoparticles; all compounds are suspended in phosphate buffer aqueous solution.  

Furthermore, as already mentioned, the Eu(L4) molecules embedded in PLGA 

NP’s (Figure 6b) undergoes structural changes of the metal complex, due to 

polymer-complex interaction, which affects the luminescence properties of the 

coordination compound, and thus the efficiency of ligand to metal energy transfer. 

In this context, it is worth remembering that when the complex is dissolved in 

water, the antenna effect properly works and the ligand fluorescence was not 

observed at all.
24

 The same behaviour was recorded also for Eu(L3)(NO3)3, since 

the high Eu(III) emission intensity detected for Eu(L3)(NO3)3 complex in the 

solid state
23

 is completely quenched when it is embedded in PLGA polymer and 

only the ligand fluorescence is recorded. The small quantity of embedded 

Eu(L3)(NO3)3 complex maybe undergoes a de-coordination of the metal ion 

giving rise to a “free” Eu(III) ion bound to water molecules and/or carboxylic 

groups belonging to PLGA nanoparticles. 

In the case of [Y(L1)(L2)2(H2O)]∙CF3SO3, only the fluorescence of the L1 ligand 

is detected in the emission spectrum, upon excitation around 280 nm.
25 

Because of 

the very inefficient Eu(III) luminescence emission for Eu(L4) and Eu(L3)(NO3)3, 

these complexes are not further investigated.   
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The total quantum yield (ΦTot), that it is the number of photons emitted by the 

lanthanide ion/number of photons absorbed by the ligand was calculated for 

[Eu(L1)(L2)2(H2O)]∙CF3SO3 complex embedded in 50:50 and 75:25 PLGA NP’s. 

The total quantum yields (ΦTot) have been obtained by secondary methods 

described in literature
26

 by measuring the visible emission spectrum of quinine 

bisulfate in 1N H2SO4 solution, a fluorescence quantum yield reference sample (Φ 

= 54.6%). ΦTot for the complexes has been calculated by [(As∙Fu∙n
2
)/( Au∙Fs∙no

2
)]∙ 

Φs equation; were: u subscript refers to unknown and s to the standard and other 

symbols have the following meanings: Φ is quantum yield, A is absorbance at the 

excitation wavelength, F the integrated emission area across the band and n’s are 

respectively index of refraction of the solvent containing the unknown (n) and the 

standard (n0) at the sodium D line and the temperature of the emission 

measurement (Figure 9). 

  

 

Figure 9. Overlap of the emission spectra of the reference standard and [Eu(L1)(L2)2(H2O)]∙CF3SO3 for the 

Quantum Yield measurement. Slits width was adjusted as 2/2  nm for excitation and 1.5/1.5 nm for emission. 

As = 0.06; Au = 0.14 and 0.13 for the PLGA 50:50 and 75:25, respectively. λexc = 347 nm and 350 nm, for 

the standard and the embedded complexes, respectively.  

Both samples show a good ΦTot value (20% for the former, 25% for the latter). In 

the field of bioimaging applications, these results are quite encouraging, since the 

quantum yield of many lanthanide and d-block compounds employed for cellular 

imaging is in the 4-10% range.
27,28

 The slightly higher ΦTot recorded for the 

complex embedded in the 75:25 PLGA composition is consistent with the lower 
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intensity of the emission band attributable to the ligand fluorescence than in the 

case of PLGA 50:50 (Figure 6b). 

3.2.2. Thermal stability of the luminescent PLGA NP’S 

In order to check the stability of these NP’s over the time and temperature, the 

evolution of the luminescence emission spectra at 20°C and 37°C (Figure 10) of 

the most promising embedded Eu-based complexes ([Eu(L1)(L1)2(H2O)]∙CF3SO3) 

(both the 50:50 and 75:25 compositions) was monitored. 

 

Figure 10. Evolution over the time of the Eu(III) integrated emission intensity for Eu(L1)(L2)2(H2O)]∙CF3SO3 

complex embedded in PLGA 50:50 and PLGA 75:25 at two different temperature (20 and 37 °C).  

In the first hours (0-6 h), the Eu(III) integrated emission intensity decrease at both 

temperatures. This behaviour is justified with the breaking of the PLGA 

framework and the release of the complex in solution, which it is more significant 

at higher temperatures (37°C), in particular in the case of PLGA 50:50, whose 

melting temperature (33°C) is significantly lower than the one of PLGA 

75:25(37°C). After 6h, the kinetic of the luminescence decrease is slower either 

for the different temperature and compositions. It is worth noting that, at 37°C, 

after 24 h, a significant Eu(III) emission signal from the 75:25 system is still 

detected, by evidencing that the more thermally stable 75:25 PLGA framework 

ensures better luminescent properties for a possible employment of this compound 

in in vitro optical imaging applications. Considering the 75:25 compositions, in 

order to justify a reasonable explanation for the progressive decrease of the 

Eu(III) luminescence over the time, both the excitation spectra (Figure 11) and the 
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luminescence decay curves of the 
5
D0 excited state of Eu(III) (Figure 12a) were 

recorded at 37°C and followed up to 24h. 

 

Figure 11. Evolution of the excitation spectra of Eu(III) over the time (0→24 h) for 

[Eu(L1)(L2)2(H2O)]∙CF3SO3 complex embedded in PLGA 75:25 at 37°C, in phosphate buffer aqueous 

solution. The excitation spectra at t=0 is superimposable to the one of the complex alone in the solid state or 

dissolved in an organic solvent. 

 

(a) 
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(b) 

 

Figure 12. Evolution of the decay curves of the 5D0 excited state of Eu(III) over the time (0→24 h) for 

[Eu(L1)(L2)2(H2O)]∙CF3SO3 complex embedded in (a) PLGA 75:25 at 37°C, in phosphate buffer aqueous 

solution (λexc= 350 nm; λem= 615 nm); (b) PLGA 50:50 at 37°C, in phosphate buffer aqueous solution 

(λexc= 350 nm; λem= 615 nm). The decay curve of the complex in methanol is also reported as a reference 

[26]. 

Whereas the decay profile of the complex alone [Eu(L1)(L2)2(H2O)]∙CF3SO3 

dissolved in organic solvents
19

 is perfectly fitted by a single exponential function, 

the same was not possible for the decay profiles of its assembly with PLGA. In 

these cases, the best estimation of the excited state lifetime is given by the 1/e 

folding time, which decreases over the time at 37°C (0.55 ms, t=0; 0.48 ms, t= 3h 

and 0.37 ms, t=24h for the 75:25 formulation). The decay time for the Eu(III) 

complex embedded in PLGA 50:50 is similar at t=0 (0.52 ms) but it decreases 

quickly over the time (0.40 ms, t=3h and 0.30 ms, t=24h; Figure 12b). Probably, 

upon breaking of the PLGA assembly, more significant at higher temperatures and 

for PLGA 50:50, the water molecules from the solvent may have access to the 

metal center and they activate the well-known multiphonon relaxation process,
29,30 

shortening the Eu(III) lifetime. In addition, the donating groups of PLGA polymer 

(i.e. OH and COOH) could chelate the metal ion and a de-coordination (even in 

part) of the L1 and L2 ligands should also occur. Both phenomena (de-

coordination and multiphonon relaxation process) are compatible with the 

evolution of the excitation spectrum over the time shown in Figure 11. Moreover, 

a further proof of the partial de-coordination from the PLGA np’s is the 

progressive turbidity of the solution due to the low solubility and stability in 

aqueous solution of either [Eu(L1)(L2)2(H2O)]∙CF3SO3 and its ligands. 
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Concluding, it has been evidenced that the nature of the embedded Eu(III) 

complex can affect the efficiency of complex encapsulation into biocompatible 

PLGA NP’s. In particular, it is well known that the present PLGA formulations 

are suitable for embedding hydrophobic rather than hydrophilic complexes.
31

 By 

means of luminescence spectroscopy, the non-innocent role of the PLGA polymer 

was demonstrated. In particular, as a consequence of the PLGA-complex 

interaction, Eu(III) undergoes de-coordination that compromises an efficient 

luminescence emission of Eu(III) in Eu(L3)(NO3)3 and Eu(L4) complexes. On the 

contrary, [Eu(L1)(L2)2(H2O)]∙CF3SO3 is efficiently internalized and the Eu(III) 

luminescence emission quantum yield reaches good a value (total quantum yield; 

ΦTot = 25%) for the composition PLGA 75:25. This composition guarantees also a 

higher value of Tm (38 °C instead of 33°C, in the case of PLGA 50:50), which 

ensure a slower release of the complex at the temperature of 37°C.  

Finally, by using the same ligands, PLGA is also capable to efficiently embed the 

analogous [Y(L1)(L2)2(H2O)]∙CF3SO3 complex where, if Y(III) is radioactive, 

could be employed in the field of nuclear imaging, as PET contrast agent. With 

this in mind, PLGA(75:25)-[Eu(L1)(L2)2(H2O)]∙CF3SO3 and PLGA(75:25) 

[Y(L1)(L2)2(H2O)]∙CF3SO3 systems can be respectively considered promising 

candidates for optical and nuclear imaging applications.  

 Water soluble Ln(III) complexes: toward biosensing 3.3.

applications 

3.3.1. Design and Synthesis 

All the members of the new library of water soluble Eu(III) and Tb(III) complexes 

are constituted by a chiral 1,2-diaminocyclohexane (DACH) in the ligand moiety. 

This feature allows to generate CPL (Circularly Polarized Luminescence) from 

the lanthanide, which has found interesting applications in chirality sensing
32,33

 

and medical imaging techniques.
34

 

In the past, our research group have designed and synthetized several ligands 

based on the chiral DACH (1,2-cyclohexanediamine) motif and pyridine or 
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furan
35,36

 or quinoline
23

 as heteroaromatic antennae, capable to efficiently 

sensitize the Eu(III) luminescence (Figure 13). 
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Figure 13. Ligands for sensitizing Eu(III) luminescence 

As can be seen from the structure, whilst the molecule L1, L3, L7 and the 

corresponding Ln(III) complexes are perfectly soluble in organic solvents like 

acetonitrile or dichloromethane, they are not soluble in water; therefore, unless 

they are not embedded in biocompatible nanoparticles, the direct employment in 

biological fluid is not possible. For this reason, some more hydrophilic and water 

soluble Eu(III) and Tb(III) complexes bearing two (Eu(L9)Cl, Tb(L9)Cl, Figure 

14)
37

 or one (Eu(L10), Tb(L10) Figure 14) Pyridine ring as sensitizer have been 

obtained in good yield and purity.
24
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Figure 14. Eu and Tb complexes based on Pyridine rings, where H2L9= N,N′-bis(2-pyridylmethyl)-trans-1,2-

diaminocyclohexane-N,N′-diacetic acid, L10 = N-picolyl-N,N’,N’-trans-l,2 cyclohexylenediaminetriacetate. 

 

 

The above reported Ln-complexes are i) soluble in water, thanks to the presence 

of two carboxylate groups that also increase the stability of the complex in protic 

polar solvents. On the other hand, the typical excitation wavelengths around 

265/270 nm strongly interfere with the absorption wavelengths of the biological  

background. This drawback has been successfully overcame during my PhD 

project, by extending the library with further ligands suitable to absorb in a 

different spectral range. In particular, the Eu(III)-complexes containing quinoline 

(3, 4-Figure 15) or isoquinoline (5, 6-Figure 15) whose excitation wavelengths 

(318 nm in the case of quinoline derivatives and 325/330 nm in the case of 

isoquinoline ones) are quite far from the typical values of the common 

biochromophore absorptions  

 

 



 

98 
 

N

N

N

N

OHO

OHO

N

N

N

N

OO

OO

Eu(X)

H2L11 Eu(L11)X

X=Cl-, -OSO2CF3

N

N

N

OH

O
OHO

OHO

N

N

N

O

O
OO

OO

Eu

H3L4 Eu(L4)

N

N

N

N

OHO

OHO

N

N

N

N

OO

OO

Eu(X)

H2L12

Eu(L12)X

X=Cl-, -OSO2CF3

N

N

N

OH

O
OHO

OHO

N

N

N

O

O
OO

OO

Eu

H3L13

Eu(L13)

 

Figure 15. Eu(III) complexes based on Quinoline and Isoquinoline rings, where L11= N,N′-bis(2-

quinolinmethyl)-trans-1,2-diaminocyclohexane N,N′-diacetate); L4= N-quinolyl-N,N’,N’-trans-1,2-

cyclohexylenediaminetriacetate; L12= N,N′-bis(2-isoquinolinmethyl)-trans-1,2-diaminocyclohexane N,N′-

diacetate); L13= N-isoquinolyl-N,N’,N’-trans-1,2-cyclohexylenediaminetriacetate. 
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While the pyridine ring is capable to sensitize both Eu(III) and Tb(III) 

luminescence,
25

 the quinoline
23

 and isoquinoline rings effectively sensitize only 

Eu(III) ion. Another crucial feature that must be considered during the design of 

the luminescent probes concerns the choice of the metal center. 

In principle, all the lanthanide ions showing f-f emission can be employed in the 

design of a probe, but in practice only few are really used.  

The main rare earths adopted for sensing purposes are usually Eu(III), Tb(III), 

Dy(III), Nd(III), Yb(III) and Sm(III), due to their emissions in the Visible-NIR 

range, where the detection of the signal can be obtained with high sensitivity and 

low scattering.  Nevertheless, Eu(III) and Tb(III) are the most employed in virtue 

of their i) longer luminescent lifetime (millisecond range), ii) the less sensitive 

quenching by singlet oxygen and  iii) the lower efficiency of the multiphonon 

relaxation process. Moreover, the non-degeneracy of the 
5
D0 emissive state of the 

Eu
3+

 permits to have simple emission spectra which can be easily related to the 

local symmetry around the metal ion. 

The narrow emission of lanthanides offers advantages for the quantification of the 

analytes by means of ratiometric analysis. For these purposes, a common 

ratiometric method is based on the employment of Eu(III) and Tb(III) ions by 

recording the intensity at two or more wavelengths, with the final results of 

extreme sensitivity and correction for interfering factors even at low level of 

absolute intensities. If the ratio of the recorded intensities changes upon the 

interaction with the targets of interest, it could be conveniently used as a self-

referenced signal.
38,39

 

As far as the coordination number is concerned, although the lanthanide organic 

chemistry commonly involves 7-9 as coordination number, it was conveniently 

adopted a not saturated core scaffold bearing a 6-fold coordination ability for 

sensing purpose. In fact, in the vast majority of cases, the sensing process is due to 

the binding of the analyte to the metal center. For these reasons not all the metal 

coordination sites should be occupied by the ligand but by easily displaceable 

solvent molecules.  

Moreover, since all the trivalent lanthanide ions present high charge densities and 

smaller ionic sizes, they are classified as Hard acids and, according to the "hard” 
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and “soft” (Lewis) acids and bases" (HSAB) theory they interact more strongly 

with hard bases than soft bases. Typically, hard bases are nitrogen or negatively 

charged oxygen atoms. 

As clearly depicted in the above mentioned Ln(III)-complex structures, the donor 

atoms involved in the chelation with the metal center show a typical “soft” 

characteristic. They are nitrogen or negatively charged oxygen atoms. 

The synthesis, characterization and biosensing applications of the luminescence 

probes depicted in Figure 14 and 15 will be widely discussed in Chapter 4.  

 

3.3.2. New Eu(III)-based complex with a C1 symmetric chiral 

ligand. 

During the design of the protocol for the synthesis of L11, I came across an 

interesting discovery. In particular, the deprotection of the tert-butyl ester function 

can be performed selectively on only one group. The relative Eu(III) complex is 

soluble in an aqueous-alcoholic solution (water:MeOH=9:1).
40

 

  

3.3.2.1. Synthesis 

The synthesis of the new chiral ligand N,N’-bis[(2-quinolylmethyl]-

cyclohexanediamine-N-tert-butylacetate N’-acetic acid L14 and its Eu complex 

(Eu(L14)Cl) is presented (Figure 16). 

The compound L6 has been prepared following literature procedure.
41

 The 

synthesis of the other compounds is discussed in detail in the experimental 

section. As far as the synthesis of the compound HL14 is concerned, it is worth 

noting the uncommon selective deprotection of only one tert-butyl group. This has 

been possible thanks to the employment of mild conditions, such as the use of a 

weak acidic molecule (formic acid). This selective deprotection is already known 

in the literature.
42

 Although natural products containing tert-butyl groups are 

considered rare,
43

 several different substance classes such as peptides, terpenes, 

carbinols, esters and even a ketone bearing a tert-butyl group have been widely 

described in the literature.
44
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Moreover, the occurrence of tert-butyl groups in natural products may induce 

specific geometries that are essential for further biotransformation, or (in the case 

of toxins) render biotransformation impossible to the predator; in the latter case, 

the tert-butyl structure could be viewed as a protecting group.  

As far as the coordination chemistry toward trivalent lanthanides is concerned, the 

presence of EDG groups (Electron donating group) which induces coordination 

bonds with lanthanide metal ions is quite reported in literature.
45

  

The tert-butyl function is a moderate EDG group, but besides this feature, 

especially in the coordination chemistry field, a noticeable steric effect should be 

also considered. Nevertheless, the aforesaid Eu(III) complex was obtained in good 

yield, purity and it shows a good coordination stability even in protic solvents.  

 

 

 

Figure 16. Synthetic protocol discussed in this paper. The configuration of the stereogenic centers is (R,R). 

Reagents and conditions: (1a) tert-butyl bromoacetate 3 eq, K2CO3 3.2 eq, acetonitrile, rt, 12 h; (1b) 

HCOOH 99%, rt, overnight; (1c) EuCl3·6H2O 1.2 eq, H2O:MeOH 9:1, rt, 12h.  
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3.3.2.2. Optical spectroscopy  

The UV absorption spectrum of a solution of the ligand L14 in ethanol (5∙10
-5

 M) 

is presented in Figure 17a, together with the one of the Eu(III) complex (10
-4

 M in 

ethanol). In both cases, strong absorptions are detected in the 260-320 nm spectral 

range. In particular, a broad band peaking around 270 nm, and several narrower 

components around 290, 295, 305, 310 and 320 nm, are clearly visible. All these 

absorptions can be attributed to the electronic transitions involving the quinoline 

ring (i.e. π→π* and n→π*).
46

 Upon complexation with Eu(III) ions a 

hyperchromic effect of the absorption bands is observed. This behaviour has been 

already observed in the case of similar ligands containing the pyridine 

chromophore instead of the quinoline one.
52 

 

(a) 

 

(b)  

 

Figure 17. (a) UV Absorption spectra of HL14 and Eu(L14)Cl.  [HL14] = 5∙10-5 M; [Eu(L14)Cl] = 10-4 M. 

(b) Excitation spectrum of Eu(L14)Cl, ([Eu(L14)Cl]  = 10-4 M, λem. = 618 nm). All the solutions are in 

ethanol.  
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As clearly showed from examination of Figure 30b, the excitation spectrum of the 

complex monitoring the Eu(III) emission around 620 nm, is similar to its 

absorption spectrum (Figure 17a), apart from the relative intensity of the peaks. 

This is a clear evidence of the sensitization of the Eu(III) luminescence by the 

quinoline ring of the ligand HL14. Consequently, upon excitation at 317 nm, the 

typical luminescence emission of Eu(III), due to f-f transitions, was detected both 

in the solid state and in ethanol solution (Figure 18).  

 

Figure 18. Luminescence emission spectra of Eu(L14)Cl in the solid state and in ethanol solution (10-4 M). 

The spectra are normalized to the area of the 5D0→
7F1 band.  

In principle, the examination of the Eu(III) emission spectrum allows to get 

several conclusions about the geometric environment of the metal ion.
47

 In 

particular, in the complex Eu(L14)Cl, both in the solid state and in solution, the 

Eu(III) ion is located in a very distorted environment, as the 
5
D0→

7
F2 band, 

whose intensity is hypersensitive to the lack of inversion symmetry, is dominant 

in the spectrum. In addition, the presence of only one component in the region of 

5
D0 →

7
F0 transition, calls for the existence of a dominant Eu(III) species. The 

sizable intensity of this band (in particular for the complex in solution) is in 

agreement with an axial symmetry of the Eu(III) environment (compatible with 

C1, Cs, C2 or C2v  point groups).
47

 As the ligand around the metal ion is C1 

symmetric, it is reasonable to expect the same point symmetry for Eu(III) in the 

complex.  

Nevertheless, as clearly reported in Figure 18, even though the two emission 

spectra are similar they are not exactly superimposable. The values of the 

asymmetry ratio
21,22

 are slightly different in the two cases (4.73 for the solid 
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sample and 4.16 in solution). Most probably two slightly different geometric 

environments are involved for the two cases. 

The luminescence decay curves of the Eu(III) 
5
D0 excited state (Figure 19) have 

also been recorded upon excitation at 317 nm, i.e. in the ligand absorption 

transitions. In both cases, the decays show an initial fast component, followed by 

a long exponential tail. The exponential tails are well fitted by a single 

exponential function and the calculated observed lifetimes are 0.84 ms in the solid 

state and 0.79 ms in solution. This result suggests, in agreement with the 

conclusions arising from the inspection of the luminescence emission spectra, the 

presence of a dominant emitting complex, whose nature is similar in the solid 

state and in solution. On the other hand, the presence of a faster component with a 

decay time in the μs range cannot be neglected. This is probably related to the 

presence of a diluted emitting impurity.  

 

Figure 19. Eu(III) 5D0 decay curves of Eu(L14)Cl in the solid state and in ethanol solution (10-4 M). 

Concluding, we synthesized an uncommon C1-symmetric chiral ligand, N, N’-

bis[(2-quinolylmethyl]-cyclohexanediamine-N-tert-butylacetate N’-acetic acid, 

which is capable to efficiently sensitizes the red luminescence of Eu(III) ion. 

Moreover, the Eu(III) ion is located in a strongly distorted geometric 

environment, both in the solid state and in ethanol solution, as documented by the 

inspection of the Eu(III) luminescence emission spectra, and the decay time of the 

5
D0 Eu(III) luminescence falls in the ms range. All these features promote this 

complex as good candidate for applications in the biomedical field where stability 
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and solubility in protic polar solvent is strongly required. In addition, as the 

complex is chiral, it may display chiroptical phenomena, such as CPL (Circularly 

Polarized Luminescence).  

3.3.3. Complexes of rare earth ions embedded in Poly(lactic-co-

glycolic acid) (PLGA)  nanoparticles: procedures, 

techniques and characterization 

3.3.3.1. Materials 

PLGA (poly[D/L-lactide-co-glycolide], 50:50/75:25 lactide-glycolide ratio, CAS 

26780-50-7),  ethanol (≥99% purity, CAS 64-17-5), PVA (poly[vinyl alcohol], 

CAS 9002-89-5), Glycine (CAS 56-40-6), Dichloromethane (CAS 75-09-2) were 

purchased from Sigma Aldrich. Acetone (≥99% purity) was purchased from 

Merck. Eu(CF3SO3)3 and Y(CF3SO3)3∙6H2O (Aldrich, 98%) was stored under 

vacuum for several days at 80°C and then transferred in a glove box.  

 

3.3.3.2. Synthesis 

N,N’-bis(2-pyridylmethylidene)- 1,2-(R,R+S,S)-cyclohexanediamine (L1) and rac-

[Eu(L1)(L2)2(H2O)]CF3SO3 were already described in the experimental part of 

Chapter 1. As far as the synthesis of the new Rac-[Y(L1)(L2)2(H2O)]∙CF3SO3 

complex is concerning, it has been obtained by following the same approach used 

for the analogous Eu(III) derivative, accordingly to Scheme 1. 

 

N

N

N

N

++
S

O O

CF32

r.t.

1. MeOH/KOH
2. DCM N

N

N

N

Y+(L2)2
-Otfa

L2H

H2O n

Y(OSO2CF3)3

L1
 

Scheme 1. Synthesis of complex [Y(L1)(L2)2(H2O)n]∙CF3SO3 

Rac-[Y(L1)(L2)2(H2O)]∙CF3SO3: Yield 65%. 
1
H-NMR (CDCl3) δ (ppm): 8.74 (s, 

2H HC=N), 8.69 (d, J=4.70 Hz, 2H Py), 8.07 (m, 4H, Py), 7.69 (d, J=4.92 Hz, 2H, 
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Py), 7.64 (d, J=3.13 Hz, 2H, thiophene), 7.56 (d, J=4.25 Hz, 2H, thiophene), 7.13 

(t, J=4.25 Hz, 2H, thiophene), 4.27 (m, 2H, “CH” cyclohexane), 3.51 (m, 1H, 

cyclohexane), 2.75 (m, 2H, cyclohexane), 2.21 (m, 2H, cyclohexane), 1.89-1.50 

(m, 3H; cyclohexane). UV-Vis absorption spectroscopy (ACN): ε(280 nm): 64600 

M
-1

cm
-1

; ε(350 nm): 65600 M
-1

cm
-1

.  

Apart the new Eu-complex Eu(L4) whose synthesis and characterization have 

been described in literature
24

 as well as herein in the experimental part of Chapter 

4. The N, N’-bis(2-quinolylmethylidene)- 1,2-(R,R+S,S)-cyclohexanediamine 

(L3)
23

 (Scheme 2) as well as the Eu(L3)(NO3)3
23

 (Scheme 3) were synthetized in 

the past from our research group and the new ligand N-quinolyl-N,N’,N’-trans-l,2-

cyclohexylenediaminetriacetic acid (L4) was obtained by following the 

procedures reported in our recent literature
24

 (refer to experimental part of Chapter 

4 for details). 

 

N

N

N

N

NH2

NH2
N

O
2+

EtOH

 

Scheme 2. Synthesis of ligand L3 
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N

N

N

+

N

N

N

N

Eu(NO3)3
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CH3CN/CH2Cl2

Eu(NO3)3

 

Scheme 3. Synthesis of Eu(L3)(NO3)3 

 

L3 (bis(2-quinolylmethylidene)- 1,2-(R,R+S,S)-cyclohexanediamine): In a flask 

containing an ethanol solution (2mL) with 1,2-diamminocyclohexane (1.3 gr, 

0.01167 mol), a ethanolic solution (2 mL) of quinoline-2-carbaldehyde) (3.6 gr, 
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0.023 mol) has been slowly added at 0°C. After the adding, the ice-bath has been 

removed to establish the room temperature for overnight. The white product 

precipitating has been filtered and washed three times with cold ethanol (5 mL). 

To increase the yield the ethanol solution can be concentrated to obtain other 

precipitate. 

L3: White solid. Yield 85%. 
1
H NMR (600 MHz, CDCl3) δ (ppm): 8.52 (s, 2H), 

8.11 – 8.04 (m, 4H), 8.03 (d, J = 8.5 Hz, 2H), 7.74 (d, J = 8.0 Hz, 2H), 7.66 (dd, J 

= 11.2, 3.9 Hz, 2H), 7.49 (t, J = 7.4 Hz, 2H), 3.78 – 3.56 (m, 2H), 2.00 – 1.77 (m, 

6H), 1.64 – 1.46 (m, 2H). 
13

C (50 MHz, CDCl3) δ (ppm): 24.58, 32.93, 74.06, 

118.76, 127.33, 127.82, 128.91, 19.67, 136.55, 147.90, 155.15, 162.07. 

 

Eu(L3)(NO3)3 : a DCM solution (0.5 mL) containing imine ligand ( 50 mg , 0.17 

mmol) was added to ACN solution (5 mL) containing lanthanum nitrate salts 

(77.18 mg , 0.17 mmol). After few minutes of the adding, a white precipitate was 

formed and the solution has been kept under stirring overnight. Before the work-

up, the solution has been cooled at 0°C to increase the recovery of precipitate 

which has been collected with filtration and washed three times with a cooled 

ACN/DCM (1:1) solution. White solid.  Yield: 72%. Elemental Analysis 

Calculated: C28H27EuN8O9 (MW: 771.53) C, 43.59; H, 3.53; N, 14.52; O, 18.66. 

Founded: C, 43.51; H, 3.47; N, 14.46; O, 18.60. 

 

3.3.3.3. Preparation of PLGA nanoparticles (PLGA-Nps) 

PLGA-Nps were prepared by modified classic single emulsion method (o/w) at 

20°C.
56

 10 mg of PLGA were dissolved in 1 mL of organic solution (85% acetone 

and 15% ethanol), then the obtained solution was added dropwise to 10 mL of 

aqueous solution (PVA 1%, Glycine 100 mM, pH 9) and emulsified through 3 

cycles of sonication (power 8 RMS for 10s with rest 5s/cycle). The emulsion was 

stirred (2000 RPM) overnight at 20°C to evaporate the organic phase.  

Afterwards, samples were centrifuged at 4°C 11000 rpm for 15 minutes 

(Eppendorf Centrifuge 5804 R): the pellet was suspended in 5mL of Milli-Q water 
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and centrifuged again. Finally, the purified nanoparticles were suspended in 1 mL 

of PBS solution pH 7,4 (or Milli-Q water) for the subsequent analysis and the 

storage at 4°C, otherwise suspended in 1 mL of PBS added with mannitol 4% as 

cryoprotectant for lyophilisation. Nanoparticles with both polymeric combinations 

Poly(lactic(50%)-co-glycolic acid(50%), briefly PLGA 50:50 and 

Poly(lactic(75%)-co-glycolic acid(25%), briefly PLGA 75.25, were prepared 

using the same method. 

In the case of PLGA nanoparticles with entrapped complexes, 10
-3

 mmol of each 

complex were dissolved together with 10 mg of PLGA in the organic solution 

(85% acetone and 15% ethanol). The following steps were the same of the method 

above. Only in the case of PLGA nanoparticles with entrapped complexes, a 

MICROSONTM Ultrasonic Cell Disruptor was used as emulsification system.  

3.3.3.4. Elemental analysis  

Elemental analyses were carried out by using a EACE 1110 CHNOS analyzer. 

3.3.3.5. Differential Scanning Calorimetry (DSC)  

These analysis were performed in Milli-Q water to evaluate the melting 

temperature (Tm) of the polymeric matrix containing the Eu(III) complexes. In 

particular, 700μL of each sample were loaded in the sample cell, while the same 

volume of Milli-Q was loaded in the reference one. A scanning was performed 

from 10°C to 90°C (2°C/min): finally, Tm was calculated using the program 

Lauch NanoAnalyze. Data were fitted with the sum between Gaussian function 

and General function to calculate the relative melting point with 99% of 

confidence. 

3.3.3.6. Atomic Force Microscopy (AFM) 

20μL of each sample (described in the above section) was loaded on a bracket 

covered by inert mica surface. After 15 minutes for solvent evaporation, the 

analysis was performed using semi contact mode with different scanning 

frequencies (3 to 1 Hz) in order to produce an optimized AFM image; finally, the 
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images were elaborated by the Gwyddion program for AFM analysis and a 

statistical study was performed to compare results to DLS data. 

3.3.3.7. Dynamic Light Scattering (DLS) and Zeta Potential (ZP) 

A first analysis was performed at room temperature with a Zeta NanoSizer in PBS 

buffer to measure the size and Z-potential. The samples were diluted 10 times 

from the stock solutions to perform each analysis.  

3.3.3.8. Luminescence and decay kinetics 

Room temperature luminescence was measured with a Fluorolog 3 (Horiba-Jobin 

Yvon) spectrofluorometer, equipped with a Xe lamp, a double excitation 

monochromator, a single emission monochromator (mod. HR320) and a 

photomultiplier in photon counting mode for the detection of the emitted signal. 

All the spectra were corrected for the spectral distortions of the setup.  

In decay kinetics measurements, a Xenon microsecond flashlamp was used and 

the signal was recorded by means of multichannel scaling method. True decay 

times were obtained using the convolution of the instrumental response function 

with an exponential function and the least-square-sum-based fitting program 

(SpectraSolve software package). The total quantum yields (ΦTot) have been 

obtained by secondary methods described in literature
26

 by measuring the visible 

emission spectrum of quinine bisulfate in 1N H2SO4 solution, a fluorescence 

quantum yield reference sample (Φ= 54.6%). ΦTot for the complexes has been 

calculated by [(As∙Fu∙n
2
)/( Au∙Fs∙no

2
)]∙ Φs equation; were: u subscript refers to 

unknown and s to the standard and other symbols have the following meanings: Φ 

is quantum yield, A is absorbance at the excitation wavelength, F the integrated 

emission area across the band and n’s are respectively index of refraction of the 

solvent containing the unknown (n) and the standard (n0) at the sodium D line and 

the temperature of the emission measurement.  
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3.3.4. New Eu(III)-based complex with a C1 symmetric chiral 

ligand: a spectroscopic study: procedures, techniques and 

characterization  

3.3.4.1. Materials 

EuCl3·6H2O, Dichloromethane (DCM), Methanol (MeOH), Deuterated 

Chloroform (CDCl3), Cyclohexane and Ethyl acetate were purchased from Sigma-

Aldrich; Acetonitrile (ACN), Ethanol (EtOH) and Formic acid 99% were 

purchased from Carlo Erba Reagents; activated neutral alumina (Al2O3), tert-butyl 

2-bromoacetate, (1R, 2R)-trans-cyclohexane-1,2-diamine and quinoline-2-

carbaldehyde were purchased from Alfa Aesar. Acetonitrile (ACN) was got from 

Proligo Reagents and Potassium carbonate anhydrous (K2CO3) were bought from 

Baker Reagents. 

3.3.4.2. Synthesis 

N, N’-bis[(2-quinolylmethyl]-cyclohexanediamine-N, N’-tert-butyldiacetate (1). 

The diamine L6 (1.44 g, 3.64 mmol, 1eq) was dissolved at room temperature in a 

mixture of anhydrous ACN (60 mL) and anhydrous K2CO3 (11.65 mmol, 1.61 g, 

3.2 eq) under Argon atmosphere; then a solution of tert-butyl 2-bromoacetate (11 

mmol, 1.6 ml, 3 eq) in anhydrous ACN (10 mL) was added dropwise with a 

syringe over 5 min. The reaction was stirred at room temperature for 24h, and the 

formation of the desired product was monitored by TLC (Thin Layer 

Chromatography) on alumina (Rf: 0.65, DCM:MeOH 95:5). The reaction mixture 

was quenched by a Brine solution (30 mL) and the crude product was extracted 

with DCM, and the solvent was then removed under vacuum to yield brownish oil 

(∼2.87 g). The desired product was purified by chromatography on activated 

neutral alumina (Al2O3), in gradient elution (Cyclohexane: Ethyl acetate = 

8:2→7:3). The product 1 was obtained as yellowish oil [1.61 g, 2.58 mmol, Yield: 

71%, purity ≥ 80% (
1
H-NMR)]. 

1
H-NMR (CDCl3) δ (ppm) 8.07 (d, J=7.76 Hz, 2H), 8.03 (d, J= 7.90 Hz, 2H), 7.92 

(d, J=7.76 Hz, 2H), 7.75 (d, J= 7.10 Hz), 7.70 (m, 2H), 7.50 (m, 2H), 4.16 (m 2H), 

3.86 (d, JGEM=14 Hz, 2H), 3.49 (d, JGEM=17.22 Hz, 2H, H), 3.31 (d, JGEM=17.22 
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Hz, 2H), 2.71 (m, 2H), 2.18 (m, 2H), 1.74 (m, 2H), 1.46 (s, 18H), 1.28 (m, 2H), 

1.12 (m, 2H).  

N,N’-bis[(2-quinolylmethyl]-cyclohexanediamine-N-tert-butylacetate N’-acetic 

acid (HL14). The diester 1 (248 mg, 0.40 mmol) was dissolved at room 

temperature in formic acid 99% (4.2 mL), and the obtained dark solution was 

stirred for 24h. The formation of HL14 was monitored by TLC on Al2O3 

(DCM:MeOH 95:5; Rf: 0.32). The pH of the reaction mixture was adjusted to ∼ 7 

by using NaOH 10 M aq, and the product was extracted with DCM. The solvent 

was removed under vacuum to obtain a yellowish solid, which was purified by 

chromatography on activated neutral alumina (Al2O3) in gradient elution 

(DCM:MeOH = 95:5 → 90:10). The product HL14 was obtained as a white solid 

(69.6 mg, 0.123 mmol; Yield: 30%). 
1
H-NMR (CDCl3) δ (ppm) 8.09 (d, J=8.24 

Hz, 2H), 7.97 (m, [doublet overlapped], 1H), 7.94 (m [doublet overlapped], 

J=8.24 Hz, 1H),  7.82 (d, J=8.24 Hz, 1H), 7.77 (t, [doublet overlapped],   2H), 

7.73 (t, J=7.27 Hz, 2H), 7.56 (d, J=7.27 Hz, 2H), 7.17 (d, J=8.24 Hz, 1H), 4.13 (d, 

J=13.38 Hz, 1H), 4.07 (d, J=15.15 Hz, 1H), 3.94 (d, J=13.38 Hz, 1H), 3.52 (m, 

1H), 3.33 (m, 4H), 2.89 (m, 1H), 2.27 (m, 1H), 2.17 (m, 2H), 1.83 (m, 2H), 1.78 

(m, 2H), 1.46 (s, 9H), 1.12 (m, 2H). ESI-MS(Scan ES+; m/z): 569 [M+H]
+
, (Scan 

ES-; m/z):  567 [M-H]
-
  

Eu(L14)Cl : the Eu(III) complex was synthetized at room temperature by addition 

of a slight excess of lanthanide salts (EuCl3·6H2O, 1.2 equiv.) to a warm solution 

(70°C) of the ligand HL14 in a mixture of H2O: MeOH 9:1. After the adjustement 

of the pH value to ∼ 7 by means of KOH aq 2M, a white solid was formed and 

collected by filtration (22.6 mg, Yield: 32%). 

3.3.4.3. 1
H and 

13
C-NMR spectroscopy 

Unless a special NMR instrument is available, the traditional NMR spectroscopy 

is limited to diamagnetic metals. Since the paramagnetic Eu(III) and Tb(III) ions 

would give 
1
H-NMR spectra characterized by broad resonances, the NMR 

characterization was limited to the intermediates of the synthetic routes and to the 

final ligands.  
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Nuclear magnetic resonance (NMR) experiments were performed at 298.15 K 

using a 600 MHz Bruker Avance III spectrometer equipped with a triple 

resonance TCI cryogenic probe. Spectra were usually recorded in CDCl3 and, 

unless otherwise noted, chemical shifts are expressed as ppm and referenced to 

the internal standard tetramethylsilane (TMS). One dimensional NMR spectra 

were recorded with 8 or 16 scans and a spectral width of 12019 Hz. All spectra 

were manually phased and baseline corrected using TOPSPIN 3.2 (Bruker, 

Karlsruhe, Germany). Chemical shift, multiplicity (s, singlet; d, doublet; t, triplet; 

m, multiplet; b, broad), coupling constants and integration area are reported.  

 

3.3.4.4. ESI-MS measurements 

Electrospray ionisation mass spectrometry (ESI-MS) was performed with a 

Finnigan LXQ Linear Ion Trap (Thermo Scientific, San Jose, CA, USA) operating 

in positive ion mode. The data acquisition was under the control of Xcalibur 

software (Thermo Scientific). A MeOH solution of sample was properly diluted 

and infused into the ion source at a flow rate of 10 μL/min with the aid of a 

syringe pump. The typical source conditions were transfer line capillary at 275 

°C; ion spray voltage at 4.70 kV; sheath, auxiliary and sweep gas (N2) flow rates 

at 10, 5 and 0 arbitrary units, respectively. Helium was used as the collision 

damping gas in the ion trap set at a pressure of 1 mTorr. 

3.3.4.5. Luminescence and decay kinetics 

Room temperature luminescence was measured with a Fluorolog 3 (Horiba-Jobin 

Yvon) spectrofluorometer, equipped with a Xe lamp, a double excitation 

monochromator, a single emission monochromator (mod. HR320) and a 

photomultiplier in photon counting mode for the detection of the emitted signal. 

All the spectra were corrected for the spectral distortions of the setup.  

In decay kinetics measurements, a Xenon microsecond flashlamp was used and 

the signal was recorded by means of multichannel scaling method. True decay 

times were obtained using the convolution of the instrumental response function 
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with an exponential function and the least-square-sum-based fitting program 

(SpectraSolve software package).  

3.3.4.6. UV Absorption spectroscopy  

Room temperature absorption spectra were measured with a Cary 60 UV-Vis 

spectrophotometer, equipped with a Xenon lamp single source (80 Hz), Czerny-

Turner monochromator and a photomultiplier (dual silicon diode detectors). 

Employed scan rate: 300 nm/min in the 200-800 nm range. 
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CHAPTER 4- Interaction of new Ln(III) complexes with 

relevant bioanalytes 

 Introduction 4.1.

The new library of Eu(III) and Tb(III) (Figure 2, pag.124) designed and developed 

in this PhD project has been successfully employed for studying the interaction 

with relevant bioanalytes, in  physiological buffer as well as in a simulated 

extracellular solution, (refer to Chapter 5).  

In principle, although several organic fluorophores could be used for the above- 

mentioned purpose, the well-known properties of the lanthanides such as long 

excited state lifetimes (usually in the milliseconds range), large energy shift 

between absorbed and emitted radiations (in the case of ligand sensitization) and 

very narrow emission bands are more useful in this context.  

In the field of the lanthanides complexes, several ways could be employed to 

signal the presence of a specific analyte. Among the main methods, one 

particularly exploited is the change in the emission intensity, as well as the 

variation in the asymmetry ratio R, indicative of the degree of asymmetry of the 

coordination polyhedron around the Eu(III) ion. The direct chelation of the 

biomolecules to the metal center, can decrease the number of quenchers, usually 

solvent molecules within the coordination sphere of the metal ion, resulting in a 

decrease of the multiphonon relaxation process. This gives rise to an increase of 

the observed lifetime of metal ion and a concomitant increase of the luminescence 

intensity. In this context, the capability of the complex to bind the analytes of 

interest can be partially predicted by the determination of the hydration number q, 

indicative of the free sites accessible around the metal center (Chapter 1). 

The application of the lanthanide luminescence in the biological field is 

particularly challenging, since several features should be considered for an 

efficient and selective probe-analyte interaction. 

One of the main drawbacks to overcome is surely the i) competition with other 

biomolecules present in the environment. In a real biological sample, the total 

enhancement or decrease of the intensity of the luminescence signal could not 
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only due to the analyte under investigation, since many other interferents could 

generate an analogous response.  

Another important concern is the ii) biocompatibility of the complex (i.e. no 

release of the toxic metal ion).This can be partially predicted by the determination 

of the stability constants in biological environment. Usually, any decomposition 

or exchange reaction of the Ln ions would result in a loss of the luminescence 

intensity and a possible toxic exposure of the cells to the free Ln ions. In the 

biological field, also the iii) localization/permeability of the probe is another 

fundamental feature to consider and it is difficult to predict precisely in advance. 

In the purposes of this PhD project, the main biological targets concern the 

components of the extracellular fluid (ECF). The current Chapter and the next 

Chapter 5 are devoted to the study of the interactions between our luminescent 

probes and the selected bioanalytes. 

In this Chapter, a complete structural and spectroscopic characterization of the 

Ln(III)-complexes under investigation is presented.  

The major part of the mass body is made of water; the total body distribution of 

the water in mammals is classified in intracellular and extracellular compartment.  

About two thirds of the total fluids is intracellular fluid within cells, and one third 

is the extracellular fluid.
1
  

The main part of the ECF is the interstitial fluid that surrounds cells, while the 

remaining parts are blood plasma and, even less the cerebrospinal fluid (Scheme 

1). 

 

Scheme 1. Schematic representation of the body fluids composition 

https://en.wikipedia.org/wiki/Intracellular_fluid
https://en.wiktionary.org/wiki/interstice
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In a simplified model where just the main bioanions (Table 1) and the most 

abounded serum proteins (0.4 mM) are considered, it has been possible to 

investigate the luminescence response of our Ln(III)-complexes under 

physiological conditions. These experiments show promising results for 

bicarbonate ion, the serum protein (BSA) and the citrate ion whose study referred 

to Chapter 5, it has involved a more sophisticated and productive screening (High 

throughput screening, HTS) in microplate reader. 

 

 

Table 1. Typical concentration ranges (mM) of selected anions in humans (intracellular values vary 

considerably with cell type). From 2 

The reversible anion binding at lanthanide centres in aqueous media has emerged 

as an effective means of signalling and sensing the presence of selected anions by 

modulating different charge density on the metal, and ligand modification, this 

latter responsible of the local steric demand around the metal centre. In this 

context, the selectivity for a target anion can be engineered, and the affinity 

constant modulated to target the desired concentration range.  

 

A future application within the living cells should be surely attractive, but up to 

now, the current biological information concerning permeability, localization, 

toxicity and excretion of our complexes is not sufficient to allow biosensing in in 

cellulo experiments. 
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 Complexes structure: synthesis and characterization 4.2.

4.2.1. Synthesis  

The synthesis of the ligands and the relative Ln(III) complexes discussed in this 

chapter are presented in Schemes 2-6. 

The chemistry of the bis-Pyridine derivatives Eu(L9)Cl and Tb(L9)Cl (Scheme 

3) was already described,
3
 as well as that one of the bis-Quinoline derivative 

Eu(L11)OTf which exploits the N-alkylation of the amine L6 (Scheme 2), whose 

synthesis has been reported previously,
4
 in addition to the synthesis of 2 whose 

synthesis has been performed as known in literature.
5
 The synthesis of tris acidic 

ligand H3L10 (Scheme 3) and H3L4 (Scheme 4) with C1-symmetric ligands, 

involves the straightforward chemistry of the t-Butyloxycarbonyl (BOC) 

protective group. In this context, the derivative 2 (scheme 3) can be obtained in 

good yield as previously reported.
5
 All the ligands (H3L10 and H3L4) and the 

relative Ln complexes (Eu and Tb(L10) and Eu(L4)) have been obtained in good 

yield and with a high degree of purity (see the experimental section for details). 

NH
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b

N
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N

N

OHO

OHO

c

N

N

N

N

OO

OO

Eu

H2L11

Eu(L11)(H2O)x(OTf)

(CF3SO3)
(OH2)x

x = 2 or 3

 

Scheme 2. Synthetic protocol for the synthesis of H2L11 and Eu(L11)(CF3SO3). (a) tert-butyl bromoacetate 3 

eq, K2CO3 3.2 eq, CH3CN, room temperature, 12 h; (b) HCl 6M aq. 80°C, 12h; (c) Eu(OTf)3 1 eq, 2-

propanol, room temperature, 12h. 
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Scheme 3. Synthetic protocol for the synthesis of the ligand H3L10, and the relative Ln(III) complexes 

Eu(L10) and Tb(L10). (a) Pyridine-2-carbaldehyde 1eq, absolute ethanol, room temperature, 12h; NaBH4 

1.2 eq, MeOH, room temperature, 12h; (b) Trifluoroacetic Acid:dichloromethane (1:3), room temperature, 

12h; (c) tert-butyl bromoacetate 3.5 eq,  N,N-Diisopropylethylamine 3.5 eq, CH3CN, room temperature, 12 h; 

(d) HCl 6M aq. 80°C, 12h; (e) Eu(OTf)3 1 eq, 2-propanol:ethanol (1:1), room temperature, 12h or (f) 

TbCl3∙6H2O 1 eq, water, room temperature, 12h. 
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Scheme 4. Synthetic protocol for the synthesis of the ligand H3L4 and the relative Eu(III) complex Eu(L4). 

(a) Quinoline-2-carbaldehyde 1eq, absolute ethanol, room temperature, 12h; NaBH4 1.2 eq, MeOH, room 

temperature, 12h (b) Trifluoroacetic Acid:dichloromethane (1:3), room temperature, 12h; (c) tert-butyl 

bromoacetate 3.5 eq,  N,N-Diisopropylethylamine 3.5 eq, CH3CN, room temperature, 12 h; (d) HCl 6M aq. 

80°C, 12h; (e) Eu(OTf)3 1 eq, 2-propanol:ethanol (8:2), room temperature, 12h. 

As far as the synthesis of Eu(L12)OTf and Eu(L13) complexes are concerned 

(Scheme 5 and 6), we adapted the synthetic route reported in Scheme 2, 3 and 4 to 

the synthesis of Eu(L12)OTf and Eu(L13). Worth mentioning is the use of the 

cheaper methyl ester 9 to obtain the initial aldehyde 10 by means of selective 
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reduction with Diisobutylaluminium hydride (DIBALH) 1M in toluene (Scheme 5 

and 6, see experimental part for more details). 

NH2
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O 10
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O 9
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O O
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13
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N

N

N
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O O
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N

N

N
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d

 

Scheme 5. a) Diisobutylaluminium hydride (DIBAL-H) 1M in toluene 1.7 eq, -78°C; b) Isoquinoline-3-

carbaldehyde ≈1.1 eq, absolute ethanol, room temperature, 12h; c) NaBH4 1.8 eq, MeOH, room temperature, 

5h; d) tert-butyl bromoacetate 2.7 eq,  K2CO3 2.7 eq, CH3CN, room temperature, 12 h; e) HCl 6M aq. 80°C, 

12h; f) Eu(OTf)3 1 eq, 2-propanol, room temperature, 12h; (For more details see experimental part). 
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Scheme 6. a) Diisobutylaluminium hydride (DIBAL-H) 1M in toluene 1.7 eq, -78°C; b) Isoquinoline-3-

carbaldehyde 1 eq, absolute ethanol, room temperature, 12h; c) NaBH4 1.2 eq, MeOH, room temperature, 

5h; d) tert-butyl bromoacetate 3.5 eq,  N,N-diisopropylethylamine 3.5 eq, CH3CN, room temperature, 12 h; e) 

HCl 6M aq. 80°C, 12h; f) Eu(OTf)3 1 eq, water: methanol (9:1), room temperature, 1h. (For more details see 

experimental part). 

 

4.2.2. Characterization: Stability constant 

The intrinsic stability of the metal complex is a fundamental requirement for all 

kind of application, and in biological field plays a crucial role.  

The stability constant (binding constant or formation constant) is an equilibrium 

constant for the formation of a complex in solution, and it is a measure of the 

thermodynamic stability of the complex.  

In this work, two different notations are used for the equilibrium constant: K is 

used to describe the stepwise equilibrium constant, and β for the overall 

equilibrium constant or formation constant.  

Potentiometric and spectrophotometric acid-base titrations have been performed 

in order to obtain all the equilibrium constants found in this work. Potentiometric 

https://en.wikipedia.org/wiki/Equilibrium_constant
https://en.wikipedia.org/wiki/Equilibrium_constant
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titration allows an easy determination of the protonation constants of the each 

ligand.     

A progressive number of equilibrium constant (K1, K2 and K3) could be recovered 

in a stepwise protonation of the same molecule. The mathematical relation 

between K and β values is depicted in Figure 1, where the logarithm log β of the 

constants are deduced from the equation below.
6
 

  

 
Figure 1. Stability constant of a triacidic-ligand. 

 

 

The ligands and Ln-complexes studied by acid-base potentiometric or 

spectrophotometric titrations (T = 298.2 K and μ = 0.1 M NaCl) have been 

summarized in Figure 2. 
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Figure 2. Ligands and Ln-complexes studied by Potentiometric and Spectrophotometric acid-base titrations. 

Charges and water molecules omitted for clarity. 
 

The best fit of the data is performed by either Hyperquad and Hypspec program 

(for potentiometry or spectrophotometry, respectively).  

The pH/mV trend of the potentiometry and the UV-Vis absorbance changes in the 

spectrophotometry both associated to the speciation curves of the protonated 
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species LH to LHn-1 are complementarily techniques used for studying the 

chemical equilibria of the ligands under investigation. 

Since the potentiometry technique is more accurate and precise was mostly 

preferred with respect to the spectrophotometric acid-base titrations. The 

recommended concentration of ligand is around 1 mM
6
 but when it was not 

possible to reach this value (essentially for solubility issues), the 

spectrophotometric acid-base titrations have been performed. This technique 

required a smaller amount of ligand.  

The stability constants of the Ln-complexes Eu(L9)Cl and Tb(L9)Cl (Figure 2) 

based on N,N′-bis(2-pyridylmethyl)-trans-1,2-diaminocyclohexane-N,N′-diacetic 

acid (L9) ligand have been obtained by acid-base potentiometric titration, 

whereas the derivatives Eu(L4), Eu(L10) and Tb(L10), Eu(L11)OTf, 

Eu(L12)OTf and Eu(L13) (Figure 2) have been determined by acid-base 

spectrophotometric titrations.  

 

4.2.2.1. Potentiometric acid-base titrations  

In this method, the electromotive force (emf) between two electrodes in contact 

with a solution is measured by means of Nernst equation (eq.1). 

 

 
Equation 1. Nernst equation of a generic species S simplified with concentrations instead of activity a; E is 

the observed emf, E0 is the standard emf for the redox couple oxidized specie/reduced specie, n is the number 

of electrons involved in the reduction of S, R is the gas constant and F is the Faraday constant.  

 

 

This emf is affected by temperature and the species in solution, and is correlated 

to their activity, for this reason a thermostatic bath (T 298.15 K) and μ (0.1 M) are 

kept constant in order to use concentrations instead of activities (Figure 3). The 

principle of method is based on one electrode of reference and a second one used 

as measuring electrode sensitive towards the analyte of interest. In our case, upon 

calibration of the electrode, the initial solution inside the cell contains the ligand 

dissolved in HCl 0.1 M (pH≈2) for the first acid-base titration up to pH≈11, 
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afterwards the solution was acidified again and the right amount of metal was 

added in order to prepare the system for the complexation studies. 

Moreover, a combined glass electrode has been used as reference and indicator 

electrode at the same time, for measuring the activity of H
+
 ions.  

 

 

 
 
Figure 3. Principle of method for potentiometric (without UV probe) and spectrophotometric acid-base 

titrations.  

 

Afterwards, the additions and the measurements were controlled by a personal 

computer. All the titrations were performed on solutions containing the ligand in 

concentrations range 0.6-1 mM, depending on the experiment, and for the 

complexation studies in solution, a 1:1 ligand to metal mole ration was employed.  

All the data collected from the potentiometric titration (the emf, the 

concentrations of the initial species, the initial volume, the calibration data 

obtained previously) are processed with Hyperquad program
7,8

 in order to get the 

speciation model which better fits the experimental data.  

The best fit of the potentiometric data was obtained for all ligands (L4, L9, L10, 

L11, L12 and L13) when four protonated species were considered (Figure 4).  

The obtained protonation data logKn are reported in Table 2 along with the 

constants for similar ligand containing the chiral DACH backbone: (i.e. CDTA
9
 

(1,2-cyclohexanediaminetetraacetic acid) (Figure 4). 
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Figure 4. The four species model adopted for simulation in Hyperquad program; bped=N,N′-bis(2-

pyridylmethyl)ethylenediamine- N,N′-diacetate; N-(pyrid-2-yl-methyl)-ethylenediamine-N,N',N’-triacetic 

acid=PEDTA; ethylene-diaminetetraacetic acid=EDTA; CDTA=trans-1,2-diaminocyclohexane-N,N,N',N'-

tetraacetic acid  

 

 

 
H2L11 

 

H3L10  

 

H3L4  

 

H2L12 

 

 

H3L13* 

 

 

H2L9a 

 

CDTAb 

 

logK1 9.37(3)  10.26(2)  10.53(3)  9.22(2)  10.53(3)  9.72(2)    9.43(2)  

logK2 5.85(7)  6.33(7)  6.29(9)  5.76(6)  6.29(9)  5.87(7)  6.01(2) 

logK3 3.5(1) 3.7(1)  3.6(2) 3.27(7)  3.6(2) 2.9(1)  3.68(2)  

logK4 1.8(3) 2.0(1)  2.8(2) 1.77(7)  2.8(2) 2.2(2) 2.51(5)  

a) ref.3 ; b) ref.9, μ = 0.15 M NaCl   

Table 2. Protonation constants (logKn, Kn = [LHn]/([H]·[LHn−1]) of the ligands L4, L9, L10, L11, L12 and 

L13 with their confidence intervals (T = 298.15 K and μ = 0.1 M NaCl,). Additional protonation data for 

similar ligands are also reported. * It was assumed that the tris Isoquinoline L13 had the same protonation 

constants of the bis Isoquinoline derivative L12. Charges omitted for clarity 

 

The potentiometric titration curve for all the ligands are displayed in Figure 5 

along with the speciation, calculated with the Hyss program
7
 by using the 

experimental conditions and the protonation constants found.  

It is worth noting a similar trend in the speciation of all the ligands under 

investigation. Two clear inflection points at 2 and 3 equivalents of free OH
- 
are 

detected corresponding to the maximum concentration for the generic species LH2 

and LH respectively.  
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c)  

  

d)  

  

Figure 5 a) Speciation and Titration curve ( observed and  calculated pH) for the ligand L11 obtained at 

T = 298.15 K and μ=0.1 M NaCl ([L] = 0.9 mM), a = (moles of free OH-) / (moles of L); b) Speciation and 

titration curve (● observed and  calculated data) for the ligand L9, ([L] = 0.6 mM),  c) Speciation and 

titration curve (● observed and  calculated data) for the ligand L4, ([L] = 0.7 mM); d) Speciation and 

titration curve (● observed and  calculated data) for the ligand L12 and L13 ([L] = 0.72 mM). This latter 

plot assumed that the tris Isoquinoline L13 had the same protonation constants of the bis Isoquinoline 

derivative L12. Charges and water molecules omitted for clarity.  

 

As can be clearly seen from the inspection of the logK values, the presence of two 

weakly basic (logK1 and logK2) and two quite strong acidic (logK3 and logK4) 

sites are present in each ligand. As previously reported for CDTA
10

, the first 
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protonation constant can be assigned to a tertiary amine (logK1 ≈6.9 - 10.7, 

depending on the substituents).
11

 

The following order of protonation concerns the heteroaromatic rings (logK2 and 

logK3) since they are in line with the protonation constants of 2-methylpyridine 

(picoline) and quinoline (logK = 6.06 for picoline, logK = 4.97 for quinoline).
12, 13  

Assuming that the protonation constants of Quinoline ring are the same of 

Isoquinoline one, the remaining protonation constants (logK4 for L11 and L12, 

logK3 and logK4 for L10, L4 and L13) could be ascribed to acetate moieties.
14

  

This sequence of protonation is in agreement with those suggested for H2bped via 

UV-vis and NMR spectroscopy study.
15

  

4.2.2.2. Spectrophotometric acid-base titrations  

As already mentioned, the potentiometric acid-base titrations are preferable for the 

higher accuracy and precision. Nevertheless, even the spectrophotometric acid-

base titrations have been performed as a complementary technique for the 

acquisition of further information.  

The formation constants of the Eu(III) and Tb(III) complexes with the ligands L4, 

L10, L11, L12 and L13 (Figure 2) have been determined by acid-base 

spectrophotometric titration. The Figure 6 show the absorbance changes of the 

ligand (L10) upon addition of base to an equimolar solutions of a) Eu(L10) or b) 

Tb(L10) (Figure 6).  

Figure 6. UV-Vis absorption spectra changes during the acid-base titration (in the pH range 2.3-11.5) for the 
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ligand: a) L10 (0.13 mM), b) L10 (0.15 mmol dm-3), in the presence of equimolar Eu(III) and Tb(III) 

respectively. T = 298.15 K and μ = 0.1 M NaCl.    

The changes of the absorption spectra during the titration of complexes containing 

the quinoline rings are reported in Figure 7. During the titration a decrease of the 

absorbance is recorded for all the complexes. 

 

 

Figure 7. UV-Vis absorption spectra changes during the acid-base titration (pH∼2.3-11.5) in the presence of 

equimolar Eu(III) for the ligands a) L11 (0.08 mmol dm-3), and b) L4 (0.09 mmol dm-3). All spectra at T = 

298.15 K and μ = 0.1 mol dm-3 NaCl.   

 

On the other hand, in the case of the Isoquinoline derivatives L12 and L13 a 

significant shift of the peak around 340 nm is noticed (Figure 8 a-b).  

a) 
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b) 

 

 

 

Figure 8. UV-Vis absorption spectra changes during the acid-base titration (pH∼2.3-11.5) in the presence of 

a) equimolar Eu(III) for the ligand L12 (0.045 mmol dm-3) and b) equimolar Eu(III) for the ligand L13 (0.090 

mmol dm-3)  at T = 298.15 K and μ = 0.1 mol dm-3 NaCl.   

 

The evolution of the absorbance data with the pH can be used to determine the 

speciation in solution in the 2-11 range of pH (Figure 9).  
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b)   
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e)  

 
 
 
f)  

 
 

Figure 9. Species distribution of the complexes for the ligands a) L11 (0.08 mM), b) L10 (0.13 mM) c) L10 

(0.15 mM), d) L4 (0.09 mM) e) L12 (0.045 mM) and f) L13 (0.09 mM) with Eu(III) (ratio 1:1 M:L, or with 

Tb(III) in ratio 1:1 M:L, with a little excess of metal), along with the molar absorbance values at λ=318nm 

(for the ligands L11 and L4), λ=265 nm (for ligand L10) and λ=328nm (for the ligands L12 and L13) 

obtained by acid-base spectrophotometric titration at T = 298.15K and μ = 0.1 M. Charges and negligible 

species (below 5%) omitted for clarity.  

 



 

135 
 

The same plot for the Tb(L10) complexes is very similar to its Eu(III) analogous. 

(Figure 9 b-c). For all the Eu(III) and Tb(III) complexes reported in Figure 9, the 

formation of the coordination compound is accompanied by a fast decrease of ελ.  

The best fit of the data has been obtained when only the ML species was 

considered; the formation constants obtained for Eu(III) and Tb(III) are reported 

in Table 3a along with those available for similar ligands (Table 3b, for sake of 

comparison). According to this model, at pH = 7.4 the ML
 
species is largely 

predominant in all cases (>99%).  

 

a) 
 

 

  

 

b) 
 

 

 
 

 

 
 

 

 
 

 

 

a) ref.3; b) ref.16, μ = 0.16 M NaCl; c) HEDTA: N-Carboxymethyl-N'-(2-hydroxyethyl)-N,N' 

ethylenediglycine, ref. 17; d) ref.18 

Table 3. a) Formation constants (logβ) complexes of the ligands L11, L10, L4, L12 and L13 (with Eu(III) and 

Tb(III) at T = 298.15 K and μ = 0.1 M NaCl); b) other similar complexes have been added for comparison. 

Charges omitted for clarity. 

As expected on the basis of the strong oxophilicity of Ln(III) ions
19

 the stability 

constants for the triacetate ligands (L4, L10 and L13) are higher than their 

diacetate analogues (L11, L9 and L12, respectively). Moreover, the stability 

constants of the Ln(III) complexes with the quinoline-substituted ligands (L4, 

Complex 

 

L11 

 

 

L10 

 

 

L4 

 

 

L9 
(a)

 

 

L12 

 

L13 

Eu(III)L 9.97(8) 15.68(1) 12.6(2) 11.2(3) 10.62(2) 15.1(3) 

Eu(III)L(OH) - - - 2.2(6) - - 

Tb(III)L - 15.70(2) - 11.4(2) - - 

Tb(III)L(OH) - - - 2.0(3) - - 

Gd(III)L - - - - - - 

Gd(III)L(OH) - - - - - - 

Complex bped
b
 PEDTA

 d 
 CDTA

 d 
 HEDTA

 c
 

Eu(III)L - - 19.6 15.4 

Eu(III)L(OH) - - - - 

Tb(III)L - - 20.0 - 

Tb(III)L(OH) - - - - 

Gd(III)L 12.37 15.56 19.6 - 

Gd(III)L(OH) 2.1 - - - 



 

136 
 

L11) and isoquinoline substituted ligands (L12, L13) are lower than for their 

pyridine analogues (L10 and L9 respectively). This result could be due to a 

weaker interaction with the metal ion, in particular in the case of the quinoline 

complex Eu(L11)OTf. This can be related to an increased steric hindrance, due to 

the size of the heteroaromatic fragment. In the perspective of in vitro application 

experiments, the values of these formation constants appear promising, in 

particular for triacetate-based ligands (L10 and L4) whose stability is close to that 

of macrocyclic ligands possessing similar coordination ability and already 

employed in molecular imaging applications (i.e. DO3A derivatives with logβ 

values in the 18-21 range).
20

  

4.2.2.3. Characterization: UV-visible Absorption and Luminescence 

Upon complexation of the ligand with the metal center two main effects could be 

observed: i) a hyperchromic effect, which involves evident enhancements of the 

the molar extinction coefficient (ɛ), and/or ii) a bathochromic or red shift towards 

upper values of maximum absorption wavelength. 

In our case, the major part of the Ln-complexes showed both effects, with a higher 

molar extinction coefficient and red shifted peaks of 3-4 nm respect to the ligand. 

The UV-Vis electronic absorption spectra in aqueous solution for complexes 

Eu(L11)OTf, Eu(L10), Tb(L10), and Eu(L4) are depicted in Figure 10a, 

whereas the  complexes Eu(L12)OTf and Eu(L13) are presented in Figure 10b. 
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a) 

 

b)  

 

Figure 10. UV-Vis absorption spectra for complexes a) Eu(L11)OTf, Eu(L10), Tb(L10), Eu(L4) and b) 

Eu(L12)OTf, Eu(L13) in water. Charges and water molecules omitted for clarity. 

 

The spectra of the complexes containing the same heteroaromatic antenna 

[complexes with L11 or L4 (quinoline fragment), complexes with L10 (pyridine 

fragment)] are superimposable, whereas the complex with L12 is rather red 

shifted respect to the complex with L13.  
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When the number of chromophoric units is different, the main differences concern 

the values of the molar extinction coefficient (ɛ), as well as observed for complex 

Eu(L11)OTf and Eu(L4), and a red shifted maximum absorption wavelength, 

such as the case of complex Eu(L12)OTf and Eu(L13) (Figure 10). For example, 

the ɛλ value of the complex Eu(L11)OTf [ɛ(318 nm) = 8800 M
-1

cm
-1

] is about twice 

as much as the one of complex Eu(L4) [ɛ(318 nm) = 3800 M
-1

cm
-1

]. Comparing the 

absorption spectra of the pyridine ones derivatives with the other complexes 

(Figure 10), it is worth noting that the more extended π electronic cloud gives rise 

to a red-shift of the main absorption band of the two quinoline complexes 

Eu(L11)OTf and Eu(L4). This phenomenon is even more evident for the 

isoquinoline derivatives Eu(L12)OTf and Eu(L13) (Figure 10b).  

Excitation spectra of the complexes Eu(L11)OTf, Eu(L10), Eu(L4) and 

Eu(L9)Cl dissolved in water upon monitoring the 
5
D0 →

7
F2 transition of Eu(III) 

(λem = 612-615 nm) are shown in the Figures 11 and 12 (left). In the case of 

Tb(III) complex Tb(L10), the excitation spectrum has been recorded monitoring 

the 
5
D4 →

7
F5 transition of Tb(III) (λem = 545 nm, Figure 12). As all the spectra are 

superimposable with the corresponding absorption ones, an efficient ligand to 

metal energy transfer mechanism works in all the complexes under investigation. 

Whereas the pyridine ring is capable to sensitize both Eu(III) and Tb(III) 

luminescence
3
 the quinoline and isoquinoline rings effectively sensitize only 

Eu(III) ion. 
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a)  

 

b) 

 

c) 

λexc 330 nm  

nmnm 
λem 615 nm  

nmnm 
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Figure 11. Luminescence excitation spectra (left) and emission spectra (right) of a) Eu(III) complex Eu(L4) 

and Eu(L11)OTf b) complex Eu(L12)OTf, c) complex Eu(L13), in water solution (10-4 M) at 298 K. Charges 

and water molecules omitted for clarity. 

 

Figure 12. Luminescence excitation spectra (left) and emission spectra (right) of  Eu(III) complex Eu(L10) 

and Eu(L9)Cl and Tb(III) complex Tb(L10)  in water solution (10-4 M) at 298 K. *data from ref.3. Charges 

and water molecules omitted for clarity. 

The luminescence emission spectra depicted on the right of Figures 11 and 12 

show the presence of the typical f-f transitions of the Eu(III) or Tb(III). 

Upon excitation of the pyridine ring (λexc = 265 nm) the complexes Eu(L10) and 

Eu(L9)Cl showed a visual red luminescence while the complex Tb(L10) a green 

λexc 326 nm  

nmnm 
λem 615 nm  

nmnm 
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one. Upon excitation of the quinoline ring (λexc = 319 nm) a red luminescence is 

detected for the complexes Eu(L11)OTf and Eu(L4). Besides the hypersensitive 

5
D0 →

7
F2 transition which dominates the spectrum in all the Eu(III) emission 

spectra, one strong 
5
D0 →

7
F0 band is also detected (in particular in the case of 

quinoline-based complexes). All this is compatible with the presence of emitting 

species where the point symmetry of Eu(III) deviates from the inversion 

symmetry and is characterized by an axial character.
21

  

The Cn (Cn is a 360°/n-fold rotation axis), Cnv (when a plane of symmetry 

contains the rotational axis) or Cs (plane of symmetry) are the only possible point 

symmetry in the presence of sizeable intensity of the 
5
D0 →

7
F0 transition.

21
  

In our case, the Cs symmetry can be ruled out due to the presence of the chiral 

ligand. As far as the luminescence decay curves of the 
5
D0 and 

5
D4 excited states 

of Eu(III) and Tb(III) are concerning, all measurements of the complexes under 

investigation were recorded in aqueous solution. As clearly observed in one of the 

representative examples reported in Figure 13, all the curves are well fitted by a 

single exponential function by confirming the existence of a main emitting species 

in solution. 

 

Figure 13. Luminescence decay curves from 5D0 excited state of Eu(III) in Eu(L11)Cl complex (λexc = 318 

nm; λem = 612 nm) and from 5D4 excited state of Tb(III) in Tb(L9)Cl and Tb(L10) complexes (λexc = 265 nm; 

λem = 543 nm) in H2O. Charges and water molecules omitted for clarity. 
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The observed lifetimes, in water and deuterium oxide, are summarized in Table 4, 

together with the values of the hydration number (q), the radiative lifetime, the 

intrisic and the total quantum yields (already defined in Chapter 1). 

 

 

Table 4.  Observed and radiative excited state lifetimes (ms) for Eu(III) and Tb(III) complexes along with the 

number of water molecules (q) obtained from data fitting. Intrinsic (ɸLn), total (ɸTot) quantum yields and ηsens 

(=ɸtot /ɸLn) are also reported. a) estimated from the analysis of the Eu(III) emission spectra by using the 

formula reported by Werts et al.22 b) calculated by τrad = τobs /ɸLn;  τobs and ɸLn have been determined in H2O. 

c) estimated in aqueous solution thanks to the formula τobs/τrad. d) determined by using the reference standard. 

 

The number of water molecules in the inner coordination sphere of the metal ion 

in each complex is, in practice, the same (around 2.5).  

The intrinsic quantum yield of the lanthanide ion (ɸLn), defined by number of 

emitted/absorbed photons, when lanthanide ions is directly excited,  is around 

10% and 16% for the Eu(III) and Tb(III) complexes, respectively (Table 4). The 

higher values of the intrinsic quantum yield for the Tb(III)-based complexes is 

due to the energy gap between the emitting level and the lower lying ones, that is 

bigger in the case of Tb(III) so as to limit the multiphonon relaxation process. As 

already mentioned in chapter 1, for the estimation of ηsens we need to know the 

total quantum yield (ɸTot) is defined by the number of photons emitted by the 

lanthanide ion/number of photons absorbed by the ligand. Since, ɸTot = ηsens∙ ɸLn,  

ηsens = ɸTot/ ɸLn. ΦTot for all the complexes has been determined by using a 

reference standard of known quantum yield (quinine bisulfate; ɸ = 54.6%; see 

experimental section for details). ηsens is in the 60-70% range for Eu(III) and 

Tb(III) complexes containing the pyridine chromophore, whilst the Eu(III) 

Complex 
τobs 

τrad q ɸLn(%) ɸTot(%) ηsens(%) 
H2O D2O 

Eu(L9)Cl 0.30(1) 1.70(1) 3.00a 2.7(1) 10.0c 6.1 61 

Eu(L11)Cl 0.29(1) 1.68(1) 3.22 a 2.8(1) 9.0 c 2.6 29 

Eu(L10) 0.33(1) 3.56(1) 3.66 a 2.7(1) 9.0 c 5.67 63 

Eu(L4) 0.33(1) 2.15(1) 3.34 a 2.5(1) 9.9 c 4.0 40 

Tb(L9)Cl 0.94(1) 2.15(1) 5.98 b 2.6(5) 15.7 d 10.0 64 

Tb(L10) 1.16(1) 3.53(1) 6.86 b 2.4(5) 16.9 d 11.2 66 

Eu(L12)OTf 0.28(1) 1.30(1) 3.74 2.7(1) -- -- -- 

Eu(L13) 0.29(1) 1.87(1) 4.59 2.8(1) -- -- -- 
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complexes containing the quinoline fragment show a significantly lower 

sensitization efficiency (in particular for Eu(L11)OTf, ηsens = 29%). This seems to 

be related to the longer Y-Nheterocycle bond distances found by DFT calculations 

(see below), in the case of quinoline-based complexes. In this context, it is useful 

to remember that the probability of the energy transfer from an antenna ligand (S 

= sensitizer) to a metal ion (A = acceptor) is strongly dependent on the S-A 

distance, for both the most common energy transfer processes taking place in 

lanthanide-based complexes (dipole-dipole and exchange mechanisms).
23

  

In particular, the longer is the distance, the lower is the energy transfer probability 

and the sensitization efficiency.  The seemingly low total quantum yields (ɸTot in 

the 3-11% range) must be reassessed in the light of the following statements: i) 

the quantum yield of many lanthanide and d-block compounds used for cellular 

imaging is in the 4-10% range;
24, 25

 ii) the total quantum yield of our complexes, is 

expected to grow upon interaction of the complex with a target analyte thanks to 

the concomitant displacement of water molecules from the metal ion. For these 

reasons, we believe that the class of complexes under investigation can be 

considered a promising family of optical probes for sensing application. 

4.2.3. Data elaboration and computational models 

4.2.3.1. DFT calculations  

As single crystals suitable for X-ray diffraction experiments was not obtained, all 

the complexes under investigation (Figure 2) have been studied by means of the 

density functional theory (DFT) calculations, in order to get the most probable 

structures in solution. Since the paramagnetic Eu(III) and Tb(III) complexes are 

rather difficult to model computationally, the analogues of the diamagnetic Y(III) 

ion have been studied. It has been shown that Y(III) complexes may serve as 

suitable models for the Eu(III) analogues,
3,26,27,28

 in agreement with the fact that 

for the lanthanide contraction
29

 its ionic radius differs from the one of Eu(III) ion 

by only about 0.05 Å [and less for Tb(III)]. 

Solvent effects were considered by using the polarizable continuum model 

(PCM). Calculations have been carried out by using either Gaussian 09 or 

Gaussian 16.
30
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All final geometries were checked in order to get the conformation with the 

minimal vibrational energy. 

The complexes studied were the ones based on the L11 and L12 bisacetate 

ligands. Among the possible coordination geometries, the cis-O,O; cis-N,N one 

has been demonstrated to be much less stable, in the case of bpcd, than the other 

trans -O,O and trans -NPy,Npy geometries (Figure 14).
3
 For this reason, we have 

taken into account only these more stable coordination modes, also in the case of 

L11 and L12 ligands.  

 
 

 
Figure 14. Hypothetical Coordination Geometries of L92− 

 

When five water molecules have been considered at the beginning of the 

calculation, only two of them were retained in the first coordination sphere of the 

metal ion at the end. 

Also in the case of the complexes with the triacetate ligands: ([Y(L10)(H2O)2] 

[Y(L4)(H2O)2]) and [Y(L13)(H2O)2]), only two water molecules are bound to the 

metal ion at the end of the calculation. Therefore, the more stable coordination 

geometries are reported in Figure 15. 
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Figure 15. The more stable coordination geometries of L103- and L43- ligands (same conclusion apply also 

for the ligand L133-). 

As well as observed for the Ln-complexes based on bpcd as ligand,
3  

the number 

of water molecules (2) revealed by the DFT calculation are in partial agreement 

with the ones calculated by luminescence spectroscopy (around 2.5, see above). In 

this context, this discrepancy is not so dramatic, although the Horrock’s equation, 

used for the calculation of the hydration number q, is also a little bit sensitive to 

water molecules in the second coordination sphere.
31

 

Finally, in Figure 16, we report the minimum energy structures of L11, L10 and 

L4
 
based Y(III) complexes. Each complex structure shows a 8-fold coordination 

at the metal center due to the presence of a 6-fold coordinating ligand and two 

water molecules.  

 

a) b) 
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c) d) 

 
 

Figure 16. Minimum energy structures of (a) [Y(trans-O,O-L11)(H2O)5]
+; (b) [Y(trans-N,N –L11)(H2O)5]

+; 

(c) [Y(trans-O,O-L10)(H2O)3]; (d) [Y(trans-O,O-L4)(H2O)3].  Labels: blue= nitrogen atom; red=oxigen 

atom; light blue= yttrium atom; white=hydrogen atom; grey=carbon atom. 

The increase of steric crowding when passing from pyridine to the quinoline -

substituted ligands can be clearly seen in Figure 17 (c-d and g-h respectively for 

the L11 and L4 derivatives) where the C-H bond(s) in position 8 of the quinoline 

ring point(s) towards the metal center cavity.  

 

 

  a) b) c)    d) 

  

 

 

 

 

  e) f) g)   h) 
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i) 

 

 

  l) 
 

 

 

 

 

m)  n) 
 

 

 

 

Figure 17. Minimum energy structures of (a) [Y(trans-O,O-L9)(H2O)2]
+; (b) [Y(trans-N,N-L9)(H2O)2]

+; (c) 

[Y(trans-O,O-L11)(H2O)2]
+; (d) [Y(trans-N,N-L11)(H2O)2]

+; (e) [Y(trans-O,O-L10)(H2O)2]; (f) [Y(trans-

N,O-L10)(H2O)2]; (g) [Y(trans-O,O-L4)(H2O)2]; (h) [Y(trans-N,O-L4)(H2O)2]; (i) [Y(trans-O,O-

L12)(H2O)2]
+; (l) [Y(trans-N,N-L12)(H2O)2]

+; (m) [Y(trans-O,O-L13)(H2O)2]; (n) [Y(trans-N,O-

L13)(H2O)2]. Labels: blue= nitrogen atom; red=oxigen atom; light blue= yttrium atom; white=hydrogen 

atom; grey=carbon atom. 

From the inspection of the obtained bond distances (Table 5) it is clearly evident 

that the substitution of pyridine by quinoline or isoquinoline has nearly no effect 

on the Y(III)-Oacetate bonds and Y(III)-Namine distances.  

The Y(III)-Owater bonds are slightly longer in the pyridine triacids (2.539 Å) as it 

could be justified by the lower charge on the metal ion, while in the quinoline and 

isoquinoline complexes they are only slightly affected.  

On the other hand, the aforemnetioned steric hyndrance at the metal ion in the 

case of bulky quinoline ring could be responsible for the lengthening of the 

Y(III)-Nheterocycle bond, which increases significantly when Py is replaced by 
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quinoline (∆Py→Q ~ +0.11 Å). This indicates the weaker interaction of the 

quinoline with respect to pyridine ligands with the metal ion.  

This evidence should contribute to the loss of stability of the quinoline complexes 

respect to the pyridine analogues (an average difference of ~1.4 and 3.4 log units 

for the di and tri-acetate ligands). The isoquinoline complexes possess a stability 

which is in the middle between the one of Py and quinoline complexes. It is 

expected that quinoline has also a notable impact on the solvation properties of 

the complex which often have a strong influence on the stability.  

Complex Y-Oacetate Y-Namine Y-Nheterocycle Y-Owater 

[Y(trans-O,O L9)(H2O)2]
+ 2.262 2.550 2.525 2.448 

[Y(trans-N,N L9)(H2O)2]
+ 2.292 2.610 2.503 2.492 

[Y(trans-O,O L11)(H2O)2]
+ 2.268 2.557 2.661 2.464 

[Y(trans-N,N L11)(H2O)2]
+ 2.284 2.567 2.594 2.482 

[Y(trans-O,O L10)(H2O)2] 2.286 2.568 2.550 2.474 

[Y(trans-N,O L10)(H2O)2] 2.300 2.595 2.546 2.539 

[Y(trans-O,O L4)(H2O)2] 2.286 2.574 2.654 2.458 

[Y(trans-N,O L4)(H2O)2] 2.290 2.576 2.642 2.478 

[Y(trans-O,O L12)(H2O)2]
+ 2.262 2.577 2.526 2.451 

[Y(trans-N,N L12)(H2O)2]
+ 2.283 2.565 2.614 2.463 

[Y(trans-O,O L13)(H2O)2] 2.259 2.554 2.525 2.505 

[Y(trans-N,O L13)(H2O)2] 2.262 2.578 2.548 2.508 

Table 5 Selected bond distances (Å) of the complexes in Figure 17.  

 

4.2.3.2. cEST and Solverstat  

Equilibrium speciation tool (cEST)
32

 is an Excel add-in for the simulation of 

chemical equilibria in solution. This statistical software calculates the 

concentrations in equilibrium of species in non-aqueous and aqueous systems. It is 

exploited for complexation, acid-base, redox and solubility equilibria. The 

computational models obtained with cEST are effectively used for homogeneous 

or heterogeneous equilibrium systems.
33, 34

 

Also, SolverStat
35

 is an Excel add-in that performs advanced statistical tests on 

least squares regression data, and in the present PhD thesis it was employed for 
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the fitting of the formation constants of some Ln(III) complexes with the 

bioanalytes under investigation. 

The optimization of the data has been performed by minimizing the sum of the 

squares differences between the experimental and the calculated data. In order to 

decide the most reliable model, some statistic parameters have been taken into 

account; the best model for each system should present the lowest confidence 

interval (obtained from the standard deviation of the refined constants, 95% 

confidence) and Akaike Information Criteria Corrected (AICc).
36

  

The AICc parameter is a correction of the AIC parameter for populations <10, and 

is based on the least-squares approach.  

 

 Sensing of HCO3
- 
: the screening in cuvette with Ln-4.3.

complexes based on Pyridine and Quinoline rings 

4.3.1. Introduction 

The bicarbonate ion plays a crucial role in several cellular processes, including pH 

homeostasis, kidney function and sperm maturation. In this context, an abnormal 

decrease of the HCO3
-
 anion is the cause of the metabolic acidosis. Patients with 

chronic kidney disease due to metabolic acidosis show low serum bicarbonate 

concentrations.
37,38

  

Moreover, the knowledge of the concentration and distribution of HCO3
-
 is 

fundamental for understanding the control of many biological processes such as 

cyclic-AMP regulation, through reversible binding to a soluble adenylyl cyclase 

enzyme. 

Moreover, the mis-expression (def. Incorrect expression of a gene) of carbonic 

anhydrase (CA) is associated with a variety of tumour types. CA-II deficiency 

syndrome in humans can give rise to renal tubular acidosis, osteoporosis and 

mental retardation.
2
 

The necessity of a new method to detect the bicarbonate ion is due to the 

limitations of the current methods mostly relying on gross measurement of 

H
14

CO3
_
 uptake or the intracellular pH, which can be subject to systematic error. 
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4.3.2. Ln(III)-complexes-HCO3
-
 adducts: luminescence and 

affinity constants 

The increasing addition of the analyte to one of the Ln-complex under 

investigation Eu(L10) (Figure 2) gives rise to a consistent enhance of the 

luminescence intensity, in particular the intensity band of the transition 
5
D0→

7
F2 

(Figure 18).  

It is reasonable to assume that HCO3
- 
anion coordinates the Eu(III) ion, displacing 

the quenchers water molecules from the inner coordination sphere. Besides to this 

effect, a concomitant decrease of the transition 
5
D0→

7
F0 has been detected, 

resulting in a minor axial geometry of the Eu(III) environment. Upon coordination 

to Eu(III), the HCO3
-
 anion is capable to increase the degree of the asymmetry 

around the metal ion, as ruled by the increase of the asymmetry ratio R (Chapter 

3). 

 

Figure 18. Eu(III) luminescence emission spectra of the complex Eu(L10) (limited to 570-640 nm range) 

upon addition of bicarbonate ion. The concentration of the anion is reported. MOPS-buffered solution (pH 

7.4) 

Actually, all the Eu(III) complexes under investigation (Figure 19) showed 

increasing value of R, during the titration with bicarbonate ion.
39
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Figure 19. Asymmetry ratio (R) for the Eu(III) complexes vs. [HCO3
-] concentration plots. MOPS-buffered 

solution (pH 7.4).  

In all cases, a logarithmic-like trend is observed, and an asymptote is reached after 

the addition of 10 mM of anion for Eu(III) complex with L9 ligand (Figure 19). 

On the other hand, the asymptotic value is reached only after the addition of 

hydrogen carbonate at 15-20 mM, in the case of all the other complexes 

[Eu(L11)OTf, Eu(L10) and Eu(L4)]. The sensitivity of the optical response to the 

HCO3
- 
concentration can be qualitatively evaluated by analyzing the slope of the 

graph in the range of biological interest where the hydrogen carbonate 

concentration is related to serious metabolic acidosis (0-10 mM). As can be seen 

in Figure 19, Eu(L9)Cl and Eu(L4) complexes show the best sensitivity. The 

binding interactions between hydrogen carbonate and the Eu(III) complexes were 

studied using the Benesi-Hildebrand equation adapted to the values of the 

asymmetry ratio, as described in the experimental section. Since, there is linearity 

in the plot of R0/(R – R0) vs. [HCO3
-
]

−2
 for Eu(L9)Cl and Eu(L11)OTf (Figure 20 

and 21) and in the plot of R0/(R – R0) vs. [HCO3
-
]

−1
 for Eu(L10) and Eu(L4) 

(Figure 22), the stoichiometry of the hydrogen carbonate adducts is 1:1 for 

Eu(L10) and Eu(L4) complexes and 1:2 for Eu(L9)Cl and Eu(L11)OTf ones. 
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Figure 20. Benesi–Hildebrand plot vs [HCO3
-]2- (M-2) for (a) [Eu(L9)]+ and (b) [Eu(L11)]+ complexes. R0 is 

the asymmetry ratio of the starting complex; R is the asymmetry ratio after each addition of the analyte. R 

and R0 have been calculated from the relative Eu(III) luminescence emission spectrum.  

 

 

 

Figure 21. Benesi–Hildebrand plot of R0/(R-R0) vs [HCO3
-] in the case of [Eu(L11)]+ complex: the non-

linear trend points out that the stoichiometry of the probe/HCO3
- adduct is different from 1:1.  

 

Figure 22. Benesi–Hildebrand plot vs [HCO3
-]−1 (M-1) for (a) Eu(L10) and (b) Eu(L4)  complexes. R0 is the 

asymmetry ratio of the starting complex; R is the asymmetry ratio after each addition of the analyte. R and R0 

have been calculated from the relative Eu(III) luminescence emission spectrum.  
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The apparent (def. conditions dependent) affinity constants log(K) calculated by 

the intercept/slope ratio of the Benesi-Hildebrand equations are summarized in 

Table 6.  

 

Complex n logK 

Eu(L9)Cl/Tb(L9)Cl 2 5.76(8)/5.94(8) 

Eu(L11)(CF3SO3) 2 4.62(8) 

Eu(L10) 1 2.06(8) 

Eu(L4) 1 3.11(8) 

 

Table 6. Apparent affinity constants (logK) constant for the formation of the adducts with bicarbonate 

(HCO3
-), [complex]+n∙bicarbonate ⇆ [complex(bicarbonate)n] (T = 298 K, pH 7.40 (±0.05), I = 0.1M NaCl, 

40 μM complex), determined through fluorimetric titration. Charges omitted for clarity 

 

Since the affinity of the anion for the Ln(III) centre is mainly determined by 

coulombic attraction it is not surprising that the cationic complexes Eu(L9)Cl and 

Eu(L11)OTf can coordinate the hydrogen carbonate anion with high affinity 

constants. To the best of our knowledge, a value of logK higher than 4, in the case 

of hydrogen carbonate ion, is unprecedented in the literature and this is probably 

related to the unusual number of target anions bound to the metal center. The 

Eu(III) in these complexes can bind up to 2 hydrogen carbonate units. This could 

be mainly due, as discussed in the introduction, to the lower number of donating 

atoms in the ligand (6-fold coordination) than in the case of ligands commonly 

employed for Ln(III)-based luminescence anion sensing (NOTA and DOTA-like 

possessing 7-fold coordination). Two possible structures of the 1:2 hydrogen 

carbonate adducts, differing by the bicarbonate coordination, have been 

investigated (Figure 23). The bis-monodentate hydrogen carbonate seems to be 

the only possible isomer being 10.3 kcal mole
-1

 more stable than the bis-bidentate 

one (also the latter presents an imaginary vibrational mode corresponding to the 

opening of two Y-O bonds). The optimization of the 1:2 adduct with both 

hydrogen carbonate coordination modes (one bi- and one mono-dentate) led 

always to a bis-monodentate structure. 
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a) b) 

  

 

Figure 23. Minimum energy structures of the [Y(trans-O,O-L9)(HCO3)2]
- complexes obtained in PCM water 

with a) bis-monodentate and b) bis-bidentate hydrogen carbonate coordination modes. Labels: blue= 

nitrogen atom; red=oxigen atom; light blue= yttrium atom; white=hydrogen atom; grey=carbon atom. 

 

Due to the neutral charge of Eu(L10) and Eu(L4) complexes, it is not surprising to 

find in their adducts with hydrogen carbonate a lower binding constants and a 1:1 

stoichiometry. It is also reasonable to assume that the negative charge of the 1:1 

adduct hampers the formation of the bis-anionic 1:2 species. Furthermore, it is 

worth to be underlined that the presence of the quinoline ring affects the stability 

of the adduct with hydrogen carbonate. In the case of cationic complexes, the 

adduct with quinoline is less stable than the one with pyridine. On the contrary, an 

opposite trend is observed for the neutral complexes. The reasons of such 

behavior in the case of the diacid ligand could be found in the high steric 

hindrance of the heteroaromatic ring which, at least for the trans-O,O-L11 isomer 

(Figure 17c), presents two hydrogen atoms pointing towards the inner 

coordination sphere, thus likely to hinder the coordination of hydrogen carbonate 

and maybe giving rise to an affinity constant one order of magnitude lower than 

for the pyridine-based analog. Here, we demonstrate how, thanks to a modulation 

of the steric hindrance at the metal ion using Ln(III)-complexes (Ln=Eu,Tb) based 

on Pyridine and Quinoline rings, it is possible to tune the affinity (and the 

selectivity) of the complexes towards HCO3
-
. 

As far as the affinity of the analogous Tb(III) complexes towards bicarbonate is 

concerned, we expect a behavior similar to the one observed for Eu(III) 

derivatives, since Eu(III) and Tb(III) complexes are often isostructural due to the 

similarity of their ionic radii.
19

 As expected, the calculated affinity constant for 
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Tb(L9)Cl complex, chosen as representative example, is similar to the one of 

Eu(L9)Cl (Table 6 and Figure 24).   

 

Figure 24. Benesi–Hildebrand plot vs [HCO3
-]−2 (M-2) for the [Tb(L9)]+ complex. I0 is the emission intensity 

at 546 nm of the starting complex; I is the emission intensity at 546 nm after each addition of the analyte. 

 

4.3.3. Conclusions: general remarks on Bicarbonate ion 

The most efficient and selective optical probes for hydrogen carbonate, capable to 

detect this anion in cellulo or in extracellular fluid, are based on charged and 

neutral Eu(III) and Tb(III) complexes of heptadentate ligands.
40–43

 

The cationic Ln(L9)
+ 

and Ln(L11)
+
 complexes, and the neutral Ln(L10) and 

Ln(L4) ones are highly stable in aqueous solution (9.97 < log < 15.68) and they 

exist as a couple of isomeric compounds differing by the ligand stereochemistry 

(trans-N,N and trans-O,O for L9
2-

 and L11
2-

; trans-O,O and trans-N,O for L10
3-

 

and L4
3-

).  

The efficient antenna effect observed for both derivatives of Quinoline 

[Eu(L11)OTf,
 
Eu(L4)] and Pyridine rings [Ln(L9)Cl, Ln(L10), Ln=Eu

3+
, Tb

3+
] 

could be exploited for promising application in the detection of bicarbonate 

concentration in physiologic solution.  

The unprecedented affinity towards this anion, found for Eu(L9)
+ 

and Eu(L11)
+ 

(logK 5.76 and 4.62, respectively) candidates these molecules for the detection of 

the bicarbonate ion also in the presence of competitive species, typical of a real 

biological sample, where the measurement of the HCO3
-
 concentration is critical 

in assessing metabolic acidosis. In this context, since both the enantiomers of the 
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analog Tb(L9)Cl weakly interact with L-lactate (logK = 1.3 - 1.45),
26

 a strong  

selectivity for hydrogen carbonate is expected in a solution containing both 

analytes.   

As far as the Isoquinoline derivatives are concerned, their application for 

signaling the target ion will be widely discussed in Chapter 5. 

 Sensing of Serum albumin (BSA): the screening in 4.4.

cuvette with Ln-complexes based on Pyridine and 

Isoquinoline rings (1R, 2R) 

4.4.1. Introduction 

One of the most important proteins type in biological fluids belong to the family 

of serum albumins, which represent 52% of the protein composition in the 

circulatory system. They play many physiological and pharmacological 

functions.
44

 Moreover, these proteins have the peculiar properties to bind a wide 

variety of hydrophobic ligands such as fatty acids, bilirubin, drugs, steroids, 

anaesthetics and several dyes.
45-47

 

They possess a limited number of binding sites with high specificity
48

 which 

confers a crucial role in the transport and deposition of a variety of endogenous 

and exogenous substances in the blood.
49

 

Human serum albumin (HSA) and Bovine serum albumin (BSA) are the most 

extensively studied serum albumins, and they are classified as homologous 

proteins.
50 

Human serum albumin (HSA) is the most important and wide 

constituent of the human blood plasma and works as a protein storage component. 

Changes of the albumin levels in blood could be induced by several disorders, 

including liver disease, neoplasia, nephrotic syndrome, severe dehydration and 

more.  

It is therefore important in clinical diagnosis to design an analytical method for 

the quantification of these proteins. Serum albumin has previously been shown to 

bind to lanthanide complexes
50-52

 and often, as a consequence of the interaction, 

significant changes of the Eu(III) and Tb(III) luminescence emission features
43, 53-

56
 as well as of the protein fluorescence

57-61
 have been observed. Such evidences 
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offer the possibility to detect these proteins by means of optical spectroscopy 

techniques. 

In the present PhD thesis, the interaction of two water soluble Eu(III) luminescent 

complexes towards BSA has been deeply investigated by means of optical 

spectroscopy, and the binding constants of the adducts in aqueous solution have 

been obtained. In addition, the docking calculations have been also performed to 

get structural details on the complex-protein species.  

As far as the coordination chemistry of the complexes under investigation is 

concerned, the two probes are quite similar but differ in the nature of the 

heteroaromatic antenna (pyridine vs isoquinoline; Figure 25). 

N

N

N

N

O O

O O

Eu(OTf)

17

Eu(L12)OTf
(1R, 2R)

N

N

N

N

O O

O O

Eu(Cl)

Eu(L9)Cl
(1R, 2R)  

Figure 25. Molecular structure of the Eu(III) complexes for BSA detection 

 

4.4.2. Luminescence: evolution of the emission spectra during the 

titration 

Upon titration of the Eu(III) complexes with BSA, two opposite trends have been 

obtained: in the case of Eu(L9)Cl a gradual decrease of the Eu(III) luminescence 

intensity is observed; on the other hand, a noticeable enhancement of the 

lanthanide emission has been observed for Eu(L12)OTf  (Figure 26). 
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(a)                                                                    

 

(b) 

 

Figure 26. Evolution of the Eu(III) luminescence emission of (a) Eu(L9)Cl complex (80 µM) in MOPS-

buffered solution (pH 7.4) upon addition of BSA in the 0-2.4∙10-5 M concentration range and (b) Eu(L12)OTf 

complex (80 µM) upon addition of BSA in the 0-1.8∙10-4 M concentration range, at 298 K. 

 

The relative binding constants Eu(III) complexes-protein have been determined 

through cEST/Solverstat program reported in Table 7.  

 

Complex-BSA n Log(K) 

Eu(L12)OTf 1    4.03 ± 0.74 (0.07%) 

Eu(L9)Cl 1    2.88 ± 0.58 (5.08%) 

 

Table 7. Apparent affinity constants (logK) constant for the formation of the adducts with BSA: 

[complex]+n∙BSA ⇆ [complex(BSA)n] (T = 298 K, pH 7.40 (±0.05), I = 0.15 M NaCl, 0.1 mM complex), 

determined through cEST/Solverstat fitting. Charges omitted for clarity. 
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In the case of Eu(L9)Cl, the overlap in the UV spectral region between the BSA 

(280 nm) and the complex (270 nm) has limited the addition of the protein up to 

2.4∙10
-5 

M, concentration whose absorbance value is within the Lambert-Beer law. 

On the contrary, the concentration limit of BSA can be extended to 1.8∙10
-4 

M in 

the case of Eu(L12)OTf complex, whose excitation wavelength is quite red-

shifted (328 nm). It is worth evidencing that for the absorption measurements with 

microplate reader has been possible to raise to concentration of the protein up to 

typical extracellular range (0.4 mM), essentially for the lower optical path of the 

instrumentation.  

4.4.2.1. Luminescence: excitation spectra and 
5
D0 lifetimes 

measurements 

In order to study in detail the BSA-Ln(III)complexes interaction, the 

luminescence decay of the 
5
D0 excited state have been also collected. The 

Eu(L9)Cl complex has not showed any significant change in the observed lifetime 

(fixed around 0.30 ms) during the titration with the protein, whilst for the 

Eu(L12)OTf complex the lifetime increases considerable (Figure 27).  

 

Figure 27. Luminescence decay curves of the 5D0 excited state of Eu(III) for Eu(L12)OTf complex (80M)  

upon addition of BSA.  

When BSA and the complex are both present in solution, the decay curves cannot 

be easily fitted by a single exponential function since more than one emitting 

species (complex/protein adducts) is present in solution. Upon addition of the 

protein, the increase of the 
5
D0 excited state lifetime [0.28 ms for the complex 

alone, 0.34 ms and 0.50 ms after the addition of BSA (2.4∙10
-5

M and 1.8∙10
-4

M, 
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respectively)] is possibly due to the displacement of the water molecules around 

the metal ion by the coordinating groups of the protein, which gives rise to weaker 

multiphonon relaxation process.
62,63

 

This phenomenon is also accompanied by an increase of the luminescence 

quantum yield which gives rise to an increase of the Eu(III) luminescence 

intensity. In the literature, it has been found that Ln(III) complexes in which the 

metal ion is bound to two water molecules (such as in our case) are susceptible to 

displacement of these molecules by competitive binding of endogenous serum 

anions such as carbonate or protein carboxylic acid residues.
64

 On the contrary, 

in the case of Eu(L9)Cl complex, the protein-complex interaction does not affect 

the number of water molecules bound to the metal ion and the decrease of the 

Eu(III) emission intensity could be due to aspects related to the efficiency of the 

ligand to metal energy transfer. In literature, the decrease in sensitization of 

Eu(III) in complexes upon interaction with BSA, due to a less efficient energy 

transfer mechanism, where the tryptophan residues in the protein found in domain 

I and II (Trp-134 and Trp-213) are involved
45

 (Figure 28).  

 

Figure 28. Secondary structure of BSA. From ref.65 

 

Upon addition of the protein, the excitation spectrum of Eu(L9)Cl showed a 

progressive decrease of the peak around 265 nm, indicative of a decreased 

sensitization of Eu(III) luminescence by pyridine rings.  However, the absence of 
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peaks around 280 nm ruled out the involvement of the tryptophan rings in the 

sensitization mechanism (Figure 29 a). 

a) 

  

b) 

 

Figure 29. Excitation spectra of  Eu(III) for: (a) Eu(L9)Cl complex (80 µM) in MOPS-buffered solution (pH 

7.4) upon addition of BSA in the 0-2.4∙10-5 M concentration range (λem = 614 nm; and (b) Eu(L12)OTf 

complex (80 µM) upon addition of BSA in the 0-1.8∙10-4 M concentration range at 298 K  (λem = 611 nm).  

The unusual behavior of the Eu(L9)Cl complex pointed out a different nature of 

the protein-complex interaction, where the Trp-134 and 213 are not significantly 

involved in the bond with Eu(III) and the coordination sphere of the metal ion is 

preserved. On the contrary the excitation spectra of the Eu(L12)OTf complex 
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showed an opposite trend with an increase of the emission intensity for the peak 

around 330 nm (Figure 29 b). 

In addition, the increase of the asymmetry ratio R upon addition of the protein 

(from 3.80 at the begin of the titration to 4.20 at the end, data not shown) in the 

case of Eu(L12)OTf complex, is indicative of the direct involvement of the 

coordination sphere of the metal center in the interaction with the protein. On the 

contrary, the R values (around 1.55) do not changed during the titration with the 

Eu(L9)Cl complex. 

4.4.2.2. Luminescence: fluorescence of the protein 

The intrinsic fluorescence of BSA is mainly due to tryptophan residues, Trp-134 

and Trp-213, and to a much lesser extent to tyrosine and phenylalanine residues. 

Trp-134 is located at the surface of the protein, in domain I, while Trp-213 is 

located inside the protein structure in domain II.  

In order to get more insights for the protein-complex interaction mechanism, the 

evolution of the protein fluorescence upon addition of the Eu(III) complex has 

been also investigated. 

The Lambert-Beer law applies in a wide concentration range of the 

Eu(III)complexes (up to 0.2 mM), in a fixed background solution of the protein (5 

µM). The titrations with the two Eu-complexes evidenced a decrease of the 

fluorescence intensity, which was particularly marked in the case of Eu(L12)OTf 

complex and almost negligible for Eu(L9)Cl (Figure 30 a-b).  

(a) 
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(b)  

 

Figure 30. Evolution of then fluorescence spectrum of BSA (5µM solution) upon addition of increasing 

amount of (a) Eu(L9)Cl and (b) Eu(L12)OTf complexes. MOPS buffer (pH 7.4).  

The maximum emission peak of the protein remained mostly unchanged for the 

Eu(L9)Cl complex, whereas a red shift of ≈10 nm has been detected for the 

Eu(L12)OTf complex (up to 340 nm). 

In accordance to the literature, the red shift of the emission wavelength is 

probably due to conformational changes in protein structure upon binding with 

the Eu(L12)OTf complex, with concomitant increase of the polarity and 

hydrophilicity around the tryptophan residues.
66

  This finding is in agreement with 

a direct interaction between Trp fragments and the complex. 

The protein fluorescence quenching by the complexes can result from a variety of 

phenomena including molecular interactions such as collisional (or dynamic) 

quenching and static quenching.
67

 

As a consequence of collisional quenching, the excited-state fluorophore is 

deactivated upon contact with some other molecules in solution (the Eu(III) 

complex, in our case). Alternatively, fluorophore can form non-fluorescent 

adducts with the complex, at the ground-state. This process is referred to a static 

quenching. In order to discriminate between static or dynamic quenching, we 

should measure the lifetime of the protein excited state. The fluorescence decay of 

BSA was best fitted to a biexponential function, and the corresponding averaged 

lifetimes, ˂τav˃ remained unaltered upon addition of both complexes (around 7.5 
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ns). This indicated that the quenching of the fluorescence follows a static 

mechanism and a ground-state complex between BSA and each Eu(III) complex 

should be present in solution.
67

 

Concerning docking calculations, since the paramagnetic Eu(III) complexes are 

rather difficult to model computationally, the analogues of the diamagnetic Y(III) 

ion have been studied.  

We can conclude that the Y(III) complex with L9 ligand does not remain in the 

binding sites where Trp 213 and 134 are located (very high G for this 

interaction). On the other hand, the complex finds different available cavities on 

the surface protein (Figure 31). 

 

Figure 31. Structural cavities on the BSA surface (in red), explored by the Y(L9)+ complex. 

It remains in these cavities for the last 50 ns of the simulation (half of the total 

simulation time). Finally, the metal ion is capable to exchange water molecules of 

the inner coordination sphere with other water molecules located at the surface of 

the protein without changing the “hydration state” of the complex. This in 

agreement with data reported in Figure 32, which shows that the number of inner 

sphere water molecules in bulk water and in the adduct with BSA remained 

unchanged. 
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Figure 32.  Graphical representation of the radial distribution function and the number of water molecules in 

function of the interaction distance between the YL9+ and water, during a simulation in bulk water and in the 

simulation with BSA, black and red respectively.  

Regarding the Eu(L12)
+
 (=YL12) docked to the binding sites of TRP-134 and 

213, we observed that the complex remains only in the TRP-134 binding site, 

through all the simulation time. As it can been seen on Figure 33, the distance 

between YL12 and the side chain of TRP-134 remains constant around 6.8 Å over 

the simulated 100 ns. 
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Figure 33. Graphical representation of the distance between the side chain of TRP-134 and the YL12 (black) 

and GLU-17 and Y3+ atom (red). 

This result is in agreement with the experimental results with respect to the 

interaction that was observed between the complex and one of the tryptophan’s.  

Additionally, it was also experimentally observed that the complex loses one of 

coordinated waters, which is possibly substituted by a closed amino acidic 

residue. The radial distribution analysis in Figure 34, revealed that while in bulk 

water the complex has two molecules of water in its first solvation sphere ( 2.45 

Å), when it is docked to the binding site of TRP-134 the complex has just one 

molecule of water in the first solvation sphere. 

 

Simulation time (ns) 
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Figure 34. Graphical representation of the radial distribution function (RDF) and the number of water 

molecules in function of the interaction distance between the Y(L12)+ and water, in bulk water and docked in 

the binding site of TRP-134, black and red respectively 

At this point, a closer look on which amino acid residues are closer to the complex 

revealed that the side chain of a glutammic acid (GLU17, in the fragment E17) 

distances on average 3.1 Å from the Y
3+

 ion and it is bound to the metal ion 

through the carboxylic group (Figure 35). 
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Figure 35. Close-up on the Eu(L12)+ bound to BSA 

4.4.3. Conclusions  

Concluding, the luminescence changes observed upon the Eu(L12)OTf complex-

BSA interaction foresee the displacement of one water molecules from the metal 

center by the coordinating groups of the protein (the carboxylic group of the 

GLU17 residue), by ehnancing emission intensity and lifetimes of the Eu(III) in 

the complex. The interaction occurs close to the indole ring of the TRP-134 unit 

(distance Y-TRP134 ~6.8 Å).Upon interaction, the structural changes of the 

protein get worse the efficiency of the fluorescence emission, as clearly reported 

in Figure 30b. 

On the other hand, the luminescence changes in the case of the Eu(L9)Cl 

complex have been explained by a protein/complex interaction which takes place 

on the surface of the protein, far from the Tryptophan units, without a direct 

involvement of the Eu(III) inner coordination sphere. These remarks have been 

also confirmed in the quite low evolution of the protein fluorescence during 

titration with the Eu(L9)Cl complex (Figure 30 a). 
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The overall hydration state remained constant, by resulting in unchanged emission 

lifetime of the Eu(L9)Cl. As far as the decrease of the lanthanide luminescence is 

concerned, two main effects could occur: i) the interaction of the Pyridine 

fragments with the external residue of the protein cavities that influences the 

antenna-metal center distance, and ii) a change in the excited state energy of the 

ligand by resulting in a lower efficiency of the energy transfer to the metal center. 

 Experimental part: procedures, techniques and 4.5.

characterization 

4.5.1. Materials 

EuCl3·6H2O, Dichloromethane (DCM), Methanol (MeOH), Deuterated 

Chloroform (CDCl3), Cyclohexane and Ethyl acetate were purchased from Sigma-

Aldrich; Acetonitrile (ACN), Ethanol (EtOH) and Formic acid 99% were 

purchased from Carlo Erba Reagents; tert-butyl 2-bromoacetate, (1R, 2R)-trans-

cyclohexane-1,2-diamine and quinoline-2-carbaldehyde were purchased from Alfa 

Aesar. Acetonitrile (ACN) were get from Proligo Reagents and Potassium 

carbonate anhydrous (K2CO3) were bought from Baker Reagents. 

Solvents were dried when required using an appropriate drying agent. As far as 

the reactions in anhydrous conditions are concerned, the Schlenk-line technique 

was carried out using an atmosphere of dry Argon.  

The water used was obtained in high purity from the ‘Millipore Elix 10’ 

purification system. Eu(CF3SO3)3 and (Aldrich, 98%) were stored under vacuum 

for several days at 80°C and then transferred to the glove box. All other chemicals 

were purchased from Alfa Aesar and Acros Organics. 

4-Morpholinepropanesulfonic acid (MOPS) buffer 15 mM was dissolved in 

purified bi-distillate water, followed by addition of NaCl 0.9% m/v for obtaining 

the ionic strength of physiological conditions. The pH value was corrected to 

physiological range by dropwise addition of freshly prepared NaOH 10 M until 

pH≈7.4. Stock solution of Bovine Serum Albumin (BSA) (purity ≥ 99%, 

purchased from Roth) was freshly prepared by dissolving the protein in MOPS 

buffer (pH≈7.4). The complete dissolution of BSA was reached without 

mechanical shaking, but just after 20-25 min with spontaneously diffusion in 
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buffer. Upon dissolution, the protein solution was kept in the dark at 4
◦
C before 

use.  

All other anionic solutions were freshly prepared by dissolving in buffer with 

using the sonication so far as was required. 

Thin-layer chromatography was carried out on neutral alumina plates (Fluka 

Analytical) or silica plates (Sigma-Aldrich) and visualized under UV lamp (254 

nm). The cationic exchange chromatography was performed on SCX cartridges 

(1g or 2g) purchased from “Agilent Technologies-sample Prep solutions”. 

4.5.2. Synthesis 

The synthesis of the ligands and the relative Ln(III) complexes discussed in this 

chapter are presented in Schemes 2-6. 

The synthesis of L9 ligand and the relative Eu(III) and Tb(III) complexes have 

been widely presented in the past from our research group.
3
 For more simplicity, 

the synthesis of the corresponding Eu(L9)Cl and Tb(L9)Cl is recalled herein. 

Eu/Tb(L9)Cl: The chloride lanthanum salts (45 mg, 0.121 mmol) has been added 

to aqueous solution (2 mL) of diacetic acid (50 mg, 0.121 mmol). Under 

vigorously stirring, the initial acid pH has been raised to neutral pH (almost 6.5) 

using aqueous solution (4 mL) of KOH (27 mg, 0.484 mmol). After 8 hours all the 

water has been removed under reduce pressure and the resulting residue has been 

suspended in Ethanol (10 mL). The solution has been cooled to -18°C and kept to 

this temperature overnight to increase the precipitation of inorganic salts. The 

suspending solid has been removed by filtration and the clear ethanol solution has 

been concentrated to obtain the desiderated complexes. Europium Chloride 

complex.  Yield: 51%. MS(ESI) m/z: 563.18 [M-Cl], 580 [M-Cl+H2O], 

594.85 [M-Cl+MeOH]; Terbium Chloride complex.  Yield: 53%. MS(ESI) 

m/z: 596.25[M-Cl], 600.92 [M-Cl+MeOH]. 

N,N′-bis(2-quinolinmethyl)-trans-1,2-diaminocyclohexane N,N′- tert-butyl 

diacetate (1R, 2R)(1): Ligand L6 (1.8 g, 4.54 mmol) already described in 

literature,
4
 was dissolved in a mixture of anhydrous acetonitrile (80 mL) and 

anhydrous potassium carbonate under inert condition (Argon). Then, a solution of 

tert-Butyl 2-bromoacetate (1.68 ml, 11.4 mmol), in anhydrous acetonitrile (15 
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mL) was added dropwise over ten minutes. After stirring 12 h at room 

temperature dichloromethane was added and the reaction mixture was washed 

with brine solution. The organic phase was evaporated under reduced pressure to 

give 3.3 g of yellowish oil.  The crude product was purified by chromatography 

on activated neutral alumina (Al2O3, Cy:AcOEt  from 9:1 to 1:9) giving 2.50 g of 

a yellowish oil (yield: 88%). 
1
H-NMR (CDCl3) δ (ppm) 8.07-8.04 (m, 4H, 

quinoline), 7.92 (d, J=7.76 Hz, 2H, quinoline), 7.75 (d, J= 7.10 Hz, 2H, 

quinoline), 7.69 (7, J=7.68 Hz, 2H, quinoline), 7.50 (t, J=7.40 Hz, 2H, quinoline), 

4.16 (m, 2H, methylene-ester), 3.86 (d, JGEM=13.75 Hz, 2H, methylene-ester), 

3.49 (d, JGEM=17.22 Hz, 2H, methylene-quinoline), 3.31 (d, JGEM=17.22 Hz, 2H, 

methylene-quinoline), 2.71 (m, 2H, methylene-cyclohexane), 2.18-1.12 (m, 8H, 

cyclohexane), 1.46 (s, 18H). Elemental Anal. Calc. for C38H48N4O4 (MW 624,8): 

C, 73,05; H, 7,74; N, 8,97; O, 10,24 Found: C, 72.89 ; H, 7.51; N, 9.03; O, 10.36 

N,N′-bis(2-quinolinmethyl)-trans-1,2-diaminocyclohexane N,N′-diacetic acid (1R, 

2R) (H2L11, as ammonium salt): 1 (1.20 g, 1.92 mmol) was dissolved in HCl aq 

(6 M, 30 ml); the obtained reaction mixture was stirred for 12 h at 80°C. The 

reaction mixture was washed with ethyl acetate and the aqueous phase was 

evaporated under reduced pressure. The obtained brownish oil (2.47 g) was 

suspended in 10 ml of methanol, aqueous ammonia solution was added until pH 

8-9 was reached and 1.05 g of a yellowish solid were obtained after 

chromatography [(C18 column; eluent H2O:Acetonitrile 4:6 +0.1% NH4OH aq 

30% w/w (50 ml)]. This solid was further purified by trituration in 

DCM:AcOEt:EtOH 1:2:2 at 80 °C for 30 minutes, obtaining 548 mg of a 

yellowish solid (ligand 3, yield: 52%). UV-Vis absorption spectroscopy 

(water:methanol 9:1): ε(316 nm): 6728 M
-1

cm
-1

.
 1
H-NMR (CD3OD) δ (ppm) 8.05-

7.48 (m, 12H, quinoline), 3.74-3.55 (m, 8H, methylene-ester/quinoline), 2.39 (m, 

2H, cyclohexane), 1.98 (m, 2H, cyclohexane), 1.67-1.28 (m, 6H, cyclohexane). 

UV-Vis spectroscopy: 316 nm)= 6248 M
-1

cm
-1

 (methanol). Elemental Anal. 

Calc. for C30H38N6O4 (MW 546.7): C, 65,91; H, 7,01; N, 15,37; O, 11,71 Found: 

C, 65.79 ; H, 7.09; N, 15.27; O, 11.59. 

The cationic complex Eu(L11)OTf has been synthesized as follows: the 

ammonium salt of Ligand H2L11 (100 mg, 0.182 mmol) was dissolved in hot 
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(60°C) 2-propanol (7 ml). Upon cooling, Europium(III) trifluoromethanesulfonate 

98% (109 mg, 0.182 mmol) was added portion-wise, and a yellowish suspension 

was formed. After neutralization with KOH 2M aq (pH ≈7), the reaction mixture 

was stirred at room temperature for 2h. The suspension was centrifuged, and the 

solid collected was suspended in methanol (5 ml). The resulting solid was 

removed by centrifugation, and the filtrate was concentrated under reduced 

pressure to give 44 mg of the desired product as a beigeish solid (yield: 30%). 

UV-Vis spectroscopy: (319 nm): 8808 M
-1

cm
-1 

(water). Elemental Anal. Calc. 

for C31H30EuF3N4O7S∙(H2O)2 (MW 847.6): C, 43,93; H, 4,04; N, 6,61; O, 16,99; 

S, 3,78 Found: C, 43,87; H, 4,00; N, 6,48; O, 17.04; S, 3,89.  

 

{2-[(Pyridyl-2-ylmethyl)-amino]-cyclohexyl}-carbamic acid tert-butyl ester (3): 

Compound 2 (0.670 g, 3.13 mmol) was added to a solution of 2-

pyridinecarboxyaldehyde (3.13 mmol) in ethanol (35 ml) and stirred at room 

temperature for 12h. Sodium borohydride was slowly added to the mixture. The 

reaction was monitored by TLC (SiO2, Cyclohexane:Ethyl acetate 7:3+ NH4OH 

30% w/w) and after 4h the mixture was extracted twice with dichloromethane and 

the solvent removed under reduced pressure to give the compound 3 as yellowish 

oil, in quantitative yield, which were used in next step without further 

purification. 

 

N-Pyridyl-2-ylmethyl-cyclohexane-1,2-diamine (4): Compound 3 (3.13 mmol) 

was added to a trifluoroacetic acid 98% w/w (13 ml) and dichloromethane (40 ml) 

solution and stirred at room temperature for 12h. The solvent was removed under 

reduced pressure, and the obtained trifluoroacetate salt (≈3 g) was purified by 

cationic exchange chromatography (eluent: NH3 3M in MeOH) to give the free 

amine 4. Yield 38%.  
1
H-NMR (CDCl3) δ (ppm) 8.52 (m, 1H), 7.62 (t, J= 7.54 Hz, 

1H), 7.34 (d, J= 7.70 Hz, 1H), 7.13 (t, J= 5.90 Hz, 1H), 4.03 (dd, JGEM= 14.09 Hz, 

1H), 3.83 (dd, JGEM= 14.09 Hz, 1H), 3.64 (m, 1H), 2.43 (m, 1H), 2.18 (m, 2H), 

1.88 (m, 1H), 1.75 (m, 1H), 1.70 (m, 1H), 1.35-1.04 (m, 5H). Elemental Anal. 

Calc. for C12H19N3 (MW 205.3): C, 70,20; H, 9,33; N, 20,47 Found: C, 70.15 ; H, 

9.19; N, 20.44. 



 

173 
 

    

N-picolyl-N,N’,N’-trans-l,2-cyclohexylenediamine-tert-butyl triacetate (5). Under 

inert atmosphere, compound 4 (1.94 mmol) was dissolved in an anhydrous 

acetonitrile (40 ml) solution of N,N-Diisopropylethylamine (6.8 mmol). Then, 

tert-Butyl 2-bromoacetate (6.8 mmol) in anhydrous Acetonitrile (10 mL) was 

added dropwise. The reaction was monitored using TLC (SiO2, Rf: 0.47, 

DCM:MeOH 95:5+ 0.5% NEt3) and after 12 h, water (approx. 25 mL) was added 

and the reaction mixture was extracted twice with dichloromethane. The 

combined organic phases were dried on anhydrous Na2SO4 and the solvent was 

evaporated under reduced pressure to give 0.580 g of crude product which was 

purified by chromatography (on Silica gel, DCM/MeOH 95:5 + 0.5% 

Triethylamine, Rf: 0.47) giving rise to compounds 5 (yield 58%). Compound 5:  

1
H-NMR (CDCl3) δ (ppm) 9.97 (d, J=6.56, 1H),  8.79 (d, J=7.91, 1H), 8.34 (t, 

J=7.91, 1H), 7.94 (t, J=6.56, 1H), 6.30 (dd, JGEM= 17.64 Hz, 1H), 5.94 (dd, JGEM= 

17.64 Hz, 1H), 4.55 (dd, JGEM= 16.93 Hz, 2H), 3.53 (m, 2H), 3.44 (dd, JGEM= 

16.93 Hz, 2H), 2.66 (m, 3H), 2.08 (m, 2H), 1.78 (m, 2H), 1.45 (s, 27H), 1.12 (m, 

3H). Elemental Anal. Calc. for C30H49N3O6 (MW 547): C, 65,78; H, 9,02; N, 

7,67; O, 17,53 Found: C, 65,70; H, 8,95; N, 7,73; O, 17,41 

 

N-picolyl-N,N’,N’-trans-l,2-cyclohexylenediaminetriacetic acid (H3L10 as 

ammonium salt). Compound 5 (1.12 mmol) was added to an aqueous HCl (6M, 22 

ml) solution and stirred at ≈80°C for 12h. After neutralization with NaOH, 

extraction with DCM was performed and the resulting aqueous solution was 

evaporated under reduced pressure. The solid was washed with ethanol for 1h at 

80°C. Upon cooling, the suspension was filtered to remove all the insoluble 

inorganic salts and the resulting solution was evaporated under reduced pressure 

and the crude product was purified by ionic exchange chromatography to give the 

corresponding product H3L10 (yield = 24%). Compound H3L10 : UV-Vis 

spectroscopy: ε(262 nm): 4830 M
-1

cm
-1

 (water). ESI-MS(Scan ES+; m/z): 468 

(100%); 469 (20%) ([Na4(L10)]
+
). Elemental Anal. Calc. for C18H34N6O6 (MW 

430.5): C, 50,22; H, 7,96; N, 19,52; O, 22,30 Found: C, 50.18 ; H, 7.90; N, 19.47; 

O, 22.18. 
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Eu(L10) has been synthesized as follows: Ligand H3L10 (60 mg, 0.140 mmol 

was partially dissolved in a mixture of 2-propanol:ethanol 1:1 (4 ml) by heating at 

≈60°C. Then, europium(III) trifluoromethanesulfonate 98% (83.6 mg, 0.140 

mmol) was added portion-wise and the pH of the solution was carefully adjusted 

to 7 by addition of KOH 2M aq. The obtained suspension was stirred at room 

temperature for 12h. The collected solid (≈94 mg) was re-crystallized in methanol 

(≈10 ml) and Et2O (≈30 ml) solution to yield 70 mg (yield 95%) of a whitenish 

solid Eu(L10). UV-Vis spectroscopy: ε(265 nm): 3390 M
-1

cm
-1

 (water). ESI-

MS(Scan ES+; m/z): 552 (100%); 550 (90%) ([NaEu(L10)]
+
). Elemental Anal. 

Calc. for C18H22EuN3O6∙(H2O)2 (MW 564.4): C, 38,31; H, 4,64; N, 7,45; O, 22,68 

Found: C, 38.28; H, 4,54; N, 7.40; O, 22.51.  

Tb(L10): Ligand H3L10 (27 mg, 0.063 mmol) was dissolved in water (3 ml), then 

Terbium(III) chloride hexahydrate (23.5 mg, 0.063 mmol) was added portion-wise 

and the pH of the solution was carefully adjusted to 7 by addition of KOH 2M aq. 

The obtained solution was stirred at room temperature for 12h. The solvent was 

removed under reduced pressure and the residue was re-crystallized in methanol 

(≈2 ml) and Et2O (≈15 ml) solution yielding a white solid after centrifugation (34 

mg of Tb(L10), quantitative yield). UV-Vis spectroscopy: ε(266 nm): 4008 M
-

1
cm

-1
 (water). ESI-MS(Scan ES+; m/z): 558 (100%) ([NaTb(L10)]

+
). Elemental 

Anal. Calc. for C18H22TbN3O6∙(H2O)2 (MW 571.3): C, 37,84; H, 4,59; N, 7,35; O, 

22,40 Found: C, 37.78; H, 4,50; N, 7.30; O, 22.37. 

 

{2-[(Quinolyl-2-ylmethyl)-amino]-cyclohexyl}-carbamic acid tert-butyl ester (6): 

Compound 2 (0.670 g, 3.13 mmol) was added to a solution of 2-

quinolinecarboxyaldehyde (3.13 mmol) in ethanol (35 ml) and stirred at room 

temperature for 12h. Sodium borohydride was slowly added to the mixture. The 

reaction was monitored by TLC (SiO2, Cyclohexane:Ethyl acetate 7:3+ NH4OH 

30% w/w) and after 4h the mixture was extracted twice with dichloromethane and 

the solvent removed under reduced pressure to give the corresponding compound 

6 as yellowish oil, in quantitative yield, which were used in next step without 

further purification. 
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N-Quinolyl-2-ylmethyl-cyclohexane-1,2-diamine (7): Compound 6 (3.13 mmol) 

was added to a trifluoroacetic acid 98% w/w (13 ml) and dichloromethane (40 ml) 

solution and stirred at room temperature for 12h. The solvent was removed under 

reduced pressure, and the obtained trifluoroacetate salt (≈3 g) was purified by 

cationic exchange chromatography (eluent: NH3 3M in MeOH) to give the desired 

product 7. (Yield 61%) 
1
H-NMR (CDCl3) δ (ppm) 8.13 (d, J= 8.33 Hz, 1H), 8.08 

(d, J= 8.56 Hz, 1H), 7.81 (d, J= 8.33 Hz, 1H), 7.71 (t, J= 7.74 Hz, 1H), 7.55-7.48 

(m, 2H), 4.25 (dd, JGEM= 14.55 Hz, 1H), 4.07 (dd, JGEM= 14.55 Hz, 1H), 3.71 (m, 

1H), 2.50 (m, 1H), 2.18 (m, 2H), 1.92 (m, 1H), 1.75 (m, 1H), 1.70 (m, 1H), 1.35-

1.04 (m, 5H). Elemental Anal. Calc. for C16H21N3 (MW 255.4): C, 75,26; H, 8,29; 

N, 16,46 Found: C, 75.21 ; H, 8.22; N, 16.39.    

    

N-quinolyl-N,N’,N’-trans-l,2-cyclohexylenediamine-tert-butyl triacetate (8). 

Under inert atmosphere, compound 7 (1.20 mmol) was dissolved in an anhydrous 

acetonitrile (25 mL) solution of N,N-Diisopropylethylamine (4.19 mmol,). Then, 

tert-Butyl 2-bromoacetate (4.19 mmol) in anhydrous Acetonitrile (5 mL) was 

added dropwise. The reaction was monitored using TLC (SiO2, Rf: 0.47, 

DCM:MeOH 95:5+ 0.5% NEt3) and after 12 h, water (approx. 25 mL) was added 

and the reaction mixture was extracted twice with dichloromethane. The 

combined organic phases were dried on anhydrous Na2SO4 and the solvent was 

evaporated under reduced pressure to give 0.580 g of crude product which was 

purified by chromatography (on Silica gel, DCM/MeOH 95:5 + 0.5% 

Triethylamine, Rf: 0.47) giving rise to compounds 8 (yield = 55%). 
1
H-NMR 

(CDCl3) δ (ppm) 8.12 (m, 2H), 8.07 (d, 1H), 7.81 (d, J=7.92, 1H), 7.67 (t, J=7.71, 

1H), 7.51 (t, J=7.29, 1H), 4.32 (dd, JGEM= 13.79 Hz, 1H), 3.94 (dd, JGEM= 13.79 

Hz, 1H), 3.60 (m, 2H), 3.52 (m, 4H), 2.81 (m, 1H), 2.67 (m, 1H), 2.15 (m, 1H), 

2.09 (m, 1H), 1.74 (m, 2H), 1.45 (s, 27H), 1.14 (m, 4H). Elemental Anal. Calc. for 

C34H51N3O6 (MW 597.8): C, 68,31; H, 8,60; N, 7,03; O, 16,06 Found: C, 68,27; 

H, 8,51; N, 7,00; O, 15.97. 

 

N-quinolyl-N,N’,N’-trans-l,2-cyclohexylenediaminetriacetic acid (H3L4 as 

ammonium salt).  Compound 8 (0.652 mmol) was added to an aqueous HCl (6M, 
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13 ml) solution and stirred at ≈80°C for 12h. After neutralization with NaOH, 

extraction with DCM was performed and the resulting aqueous solution was 

evaporated under reduced pressure. The solid was washed with ethanol for 1h at 

80°C. Upon cooling, the suspension was filtered to remove all the insoluble 

inorganic salts and the resulting solution was evaporated under reduced pressure 

and the crude product was purified by ionic exchange chromatography to give the 

corresponding product H3L4, (yield = 40%). UV-Vis spectroscopy: ε (316 nm) = 

2908 M
-1

cm
-1

(water). ESI-MS (Scan ES+; m/z): 513 (100%); 514(25%) 

([(NH4)Na3(L4)]
+
). Elemental Anal. C22H36N6O6 (MW 480.6): C, 54,99; H, 7,55; 

N, 17,49; O, 19,98 Found: C, 54.90 ; H, 7.46; N, 17.42; O, 20.01. 

 

Eu(L4) has been synthesized as follows: ligand H3L4 (60 mg, 0.125 mmol) was 

partially dissolved in a mixture of 2-propanol:ethanol 8:2 (6 ml) at ≈ 60°C. Then, 

Eu(CF3SO3)3 98% (75 mg, 0.125 mmol) was added portion-wise followed by 

KOH 2M aq until pH ≈ 7. The obtained suspension was stirred at room 

temperature for 12h. The solid was removed under centrifugation, and the solution 

were dried under reduced pressure to give ≈112 mg of a white solid, which was 

re-crystallized in ethanol (≈10 ml) and Et2O (≈40 ml) solution, yielding a white 

solid after centrifugation (55 mg; yield 76%). UV-Vis spectroscopy: ε (319 nm) = 

3725 M
-1

cm
-1

(water). ESI-MS(Scan ES+; m/z): 602 (100%); 600 (92%) 

([NaEu(L4)]
+
). Elemental Anal. Calc. for C22H24EuN3O6∙(H2O)2 (MW 614.4): C, 

43,00; H, 4,59; N, 6,84; O, 20,83 Found: C, 42.97; H, 4,54; N, 6.74; O, 20.76. 

 

Isoquinoline-3-carbaldehyde (10):  Under inert conditions, Diisobutylaluminium 

hydride (DIBAL-H) 1M in toluene (54.5 mL, 55 mmol) was added dropwise to a 

stirred solution of the methyl ester 9 (6 g, 32 mmol) in anhydrous toluene (200 

mL) at -78° C. The mixture was stirred at this temperature for 50 minutes and then 

allowed to reach 0 °C. Under an Argon flow, 1 M HCl (48 mL) was added by 

slowly dropwise addition and the resulting suspension was filtered through celite 

pad. The filtrate was diluted with water (350 mL) and extracted with Ethyl 

Acetate (3 · 350 mL). The combined organic phases were washed with saturated 

aqueous NaCl, dried over Na2SO4 and the solvents were evaporated in vacuo to 
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give 3.44 g of a reddish solid, which was used in the next step without further 

purification. Yield: 68%, purity: 80% mol. 
1
H-NMR (CDCl3) δ (ppm) 7.78 [2H, t, 

J=7.74 Hz]; 7.99 [1H, d, J=7.74 Hz]; 8.05 [1H, d, J=7.74 Hz]; 8.36 [1H, s]; 9.35 

[1H, s]; 10.25 [1H, -CHO]. 
13

C-NMR (CDCl3): 121.78 (CH-Ar), 127.79 (CH-Ar), 

128.62 (CH-Ar), 130.21 (CH-Ar), 130.52 (-C-Ar), 131.44 (CH-Ar), 135.24 (-C-

Ar), 146.81 (-C-CHO), 153.25 (CH-N-CHO), 193.35 (CHO). 

N,N'-Bis-isoquinolin-3-ylmethyl-cyclohexane-1,2-diamine (12): Trans-

Cyclohexane 1,2-diamine (11) (1.55 g, 13.56 mmol) was added at RT to a stirred 

solution of Isoquinoline-3-carbaldehyde (2.34 g, 14.9 mmol) in EtOH absolute 

anhydrous (145 ml). The yellowish reaction mixture was stirred to room 

temperature for 12h; then, upon cooling at ≈0°C sodium borohydride (0.923 g, 

24.4 mmol) was directly added one pot to the mixture to get a clear reddish 

solution, and was left under stirring at room temperature for 5h. 

The reaction mixture was quenched with water, followed by liquid extraction of 

the product with dichloromethane. The collected organics were washed with brine 

in order to clarify the phases, and dried over sodium sulfate; upon removal of the 

solvent under reduced pressure, 3.47 g of yellowish oil was obtained, which was 

used as such in the following reaction. Yield: 65%, purity: 80% mol. 

1
H-NMR (CDCl3) δ (ppm) 9.17 (s, 2H, isoquinoline), 7.88 (m, 2H, isoquinoline), 

7.74 (d, J= 8.27 Hz, 2H, isoquinoline), 7.64 (s, 2H, isoquinoline), 7.61 (m, 2H, 

isoquinoline), 7.51 (m, 2H, isoquinoline), 4.16  (d, JGEM=13.70 Hz, 2H, 

methylene),  4.06  (d, JGEM=13.70 Hz, 2H, methylene),  2.51 (d, 2H, “CH” 

cyclohexane), 2.22 (m, 2H, cyclohexane), 1.77 (m, 3H, cyclohexane), 1.14-1.41 

(m, 2H, cyclohexane), 1,00 (m, 1H, cyclohexane). 
13

C-NMR (CDCl3) δ (ppm) 

25.21 (2 CH2), 25.39 (CH2), 31.38 (CH2), 52.42 (CH), 55.35 (CH),  57.60 (2 

CH2), 118.02 (-2CH Ar), 126.42 (-2CH), 126.78 (-2CH), 127.54 (-C), 127.62 (-C-

), 130.45 (-2CH), 136.40 (-2C-), 152.22 (-2CH), 153.59 (-2CH), 153.85 (-C-N), 

154.35 (-C-N). 

 

{[2-(tert-Butoxycarbonylmethyl-isoquinolin-3-ylmethyl-amino)-cyclohexyl]-

isoquinolin-3-ylmethyl-amino}-acetic acid tert-butyl ester (13): Amine 12 (0.844 

mmol) was dissolved in a mixture of anhydrous acetonitrile (13 mL) and 
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anhydrous potassium carbonate (0.315 g, 2.28 mmol) under inert condition 

(Argon). Then, a solution of tert-Butyl 2-bromoacetate (0.312 ml, 2.11 mmol), in 

anhydrous acetonitrile (5 mL) was added dropwise over 5 minutes. After stirring 

12 h at room temperature dichloromethane was added and the reaction mixture 

was washed with brine solution. The organic phase was evaporated under reduced 

pressure to give 0.588 g of yellowish oil.  The product was purified by 

chromatographic column on activated neutral alumina (Al2O3). Conditioning with 

Cy:AcOEt 7:3, elution with Cy:AcOEt 6:4 to 1:9 (Rf: 0.35), for removing the 

more apolar impurities, followed by complete collection of the product with 

AcOEt:MeOH 9:1, giving 380 mg of a yellowish solid. Yield:72% Purity: ≈70% 

mol. 
1
H-NMR (CDCl3) δ (ppm) 9.04 (s, 1H), 8.10 (s, 1H), 7.98 (m, 1H), 7.88 (d, 

J= 7.39 Hz, 2H), 7.74 (m, 3H), 7.56 (m, 4H), 4.26 (m, 6H), 4.04 (m, 1H), 3.62 (m, 

1H), 2.79 (m, 1H), 2.31 (m, 2H), 1.83 (m, 3H), 1.46 (s, 18H), 1.28-1.02 (m, 4H). 

{[2-(Carboxymethyl-isoquinolin-3-ylmethyl-amino)-cyclohexyl]-isoquinolin-3-

ylmethyl-amino}-acetic acid (H2L12, ligand as ammonium salt): the previous tert-

butyl ester 13 (crude, ≈5.15 mmol) was dissolved in HCl aq (6 M, 80 ml); the 

obtained reaction mixture was stirred for 12 h at 80°C. The reaction mixture was 

reduced under reduced pressure until around half volume; the remaining residue 

containing the trifluoroacetate salt was purified by cationic exchange 

chromatography SCX (eluent: NH3 3M in MeOH, 2g X 14) giving 1.55 g of the 

desired product as a brownwish solid. Yield: 55%, purity: ≈70% mol. 
1
H-NMR 

spectrum (DMSO) δ ppm: 9.31-9-21 (m, 2H), 8.15-8.05 (m, 2H), 8.01-7.89 (m, 

2H), 7.80-7.71 (m, 2H), 7.69-7.58 (m, 2H), 4.96-4.71 (m, 1H, CH2), 4.30-3.63 

(m, 4H, CH2), 3.56-3.21 (m, 3H, CH2), 2.30-1.82 (m, 3H, Cy), 1.76-1.50 (m, 3H, 

Cy), 1.37-0.96 (m, 4H, Cy). UV-Vis absorption spectroscopy (methanol): ε(322 

nm): 5174 M
-1

cm
-1

.
 
 ESI-MS (Scan ES+; m/z): 573 (100%)=510 (deprotonated 

ligand) + K
+
 + Na

+
. 

The cationic complex Eu(L12)OTf has been synthesized as follows: Ligand 

H2L12 (60 mg, 0.110 mmol) was dissolved in hot (55°C) 2-propanol (4 ml). Upon 

cooling, europium(III) trifluoromethanesulfonate 98% (66 mg, 0.110 mmol) was 

added portion-wise, and a yellowish suspension was formed. After neutralization 
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with KOH 2M aq (pH ≈7), the reaction mixture was stirred at room temperature 

for 12h. The suspension was centrifuged, the filtrate was concentrated under 

reduced pressure, and the resulting solid (105 mg) was purified by dissolution in 

methanol, followed by precipitation in diethyl ether. Upon centrifugation, 28.6 mg 

of the desired complex as a beigeish solid was collected. Yield: 32%. UV-Vis 

spectroscopy: ε(323 nm): 4510 M
-1

cm
-1

 (water); ε(323 nm): 7251 M
-1

cm
-1

 

(methanol). ESI-MS(Scan ES+; m/z): 663 (100%); 661 (90%); (MW deprotonated 

ligand [510]+Eu [151]= 661, ESI+:661/663). 

 

N-Isoquinolin-3-ylmethyl-cyclohexane-1,2-diamine (15): trans-1,2-(2-Amino-

cyclohexyl)-carbamic acid tert-butyl ester (2) (1.45 g, 6.75 mmol) was added at 

RT to a stirred solution of isoquinoline-3-carbaldehyde 10 (1.06 g, 6.75 mmol) in 

anhydrous EtOH (80 ml). The orangish reaction mixture was stirred to room 

temperature for 12h; then, upon cooling at ≈0°C sodium borohydride (0.306 g, 

8.10 mmol) was directly added one pot to the mixture to get a clear yellowish 

solution. After 4h, the reaction mixture was quenched with water and the product 

was extracted with dichloromethane. The collected organics were washed with 

brine solution and dried over sodium sulfate; upon removal of the solvent under 

reduced pressure, 2.40 g of a brownish oil was used as well as without further 

purification (quantitative yield, purity≈ 75% mol). {2-[(Isoquinolin-3-ylmethyl)-

amino]-cyclohexyl}-carbamic acid tert-butyl ester: 
1
H-NMR (CDCl3) δ (ppm) 

9.18 (s, 1H), 7.92 (d, J=7.85 Hz, 1H), 7.76 (d, J=8.26 Hz, 1H), 7.64 (m, 2H), 7.53 

(t, J=7.45 Hz, 1H), 4.15 (d, J=14.30 Hz, 1H), 3.96 (d, J=14.30 Hz, 1H), 3.36 (m, 

1H, Cy), 3.11 (m, 1H, Cy, 2.31 (m, 2H, Cy), 2.10 (m, 2H, Cy), 1.94 (m, 2H, Cy), 

1.74-1.58 (m, 2H, Cy), 1.43 (s, 9H). 
13

C-NMR (CDCl3) δ (ppm) 24.81 (CH2), 

25.011 (CH2), 25.18 (CH2), 28.403 (3-CH3), 32.84 (CH2), 51.72 (-2CH), 57.87 

(CH2), 79.17 (C –CH3), 118.16 (CH-Ar), 126.38 (CH-Ar), 126.81 (CH-Ar),  

127.53 (-C-Ar), 127.63 (-C-Ar), 130.53 (CH-Ar), 136.41 (CH-Ar), 152.13 (-CH-

Ar), 153.38 (N-C-Ar), 156.22 (C=O). {2-[(Isoquinolin-3-ylmethyl)-amino]-

cyclohexyl}-carbamic acid tert-butyl ester (6.75 mmol) was added to a 

trifluoroacetic acid 98% w/w (26 ml) and dichloromethane (52 ml) solution and 

stirred at room temperature for 12h. The solvent was removed under reduced 
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pressure, and the obtained residue was purified by cationic exchange 

chromatography (eluent: NH3 3M in MeOH) to give 880 mg of the free amine 

NH-BOC deprotected 15. Yield=51%, Purity=93% mol. 
1
H-NMR (CDCl3) δ 

(ppm) 9.18 (s, 1H), 7.91 (d, J=8.3 Hz, 1H), 7.76 (d, J=8.3 Hz, 1H), 7.66-7.61 (m, 

2H), 7.53 (t, J=7.4 Hz, 1H), 4.17 (dd, JGEM= 13.69 Hz, 1H), 3.95 (dd, JGEM= 

13.69 Hz, 1H), 2.49-2.40 (m, 1H), 2.26-2.20 (m, 1H), 2.20-2.09 (m, 2H), 1.91-

1.77 (m, 2H), 1.74-1.59 (m, 2H), 1.31-1.15 (m,1H), 1.15-1.02 (m, 1H). 
13

C-NMR 

(CDCl3) δ (ppm) 25.30 (CH2), 31.36 (CH2), 35.38 (CH2), 35.87 (CH2), 52.35 (–

CH), 55.29 (–CH), 63.49 (-CH2), 118.10 (CH-Ar), 126.41 (CH-Ar), 126.77 (-C-

Ar), 127.53 (-C-Ar), 127.60 (CH-Ar), 130.50 (CH-Ar), 136.42 (CH-Ar), 152.25 (-

CH-Ar), 153.46 (N-C-Ar). 

 

{tert-Butoxycarbonylmethyl-[2-(tert-butoxycarbonylmethyl-isoquinolin-3-

ylmethyl-amino)-cyclohexyl]-amino}-acetic acid tert-butyl ester (16): the previous 

deprotected amine 15 (3.45 mmol) was completely dissolved in anhydrous 

acetonitrile (50 mL). Afterwards, N,N-Diisopropylethylamine (2.10 ml, 12.08 

mmol) was added dropwise over 10 minutes under inert condition (Argon). Then, 

a solution of tert-butyl 2-bromoacetate (1.78 ml, 12.08 mmol), in anhydrous 

acetonitrile (10 mL) was added dropwise over 10 minutes. After stirring 12 h at 

room temperature dichloromethane was added and the reaction mixture was 

washed with brine solution. The organic phase was evaporated under reduced 

pressure to give 2.2 g of brownish oil.  The product was used as well as without 

further purification. Crude, purity: ≈55% mol. 
1
H-NMR (CDCl3) δ (ppm) 9.16 

(broad, 1H), 8.79 (d, 1H; J=7.77 Hz); 8.63 (s; 1H); 8.12 (d, 1H; J=8.40 Hz); 8.07 

(t, 1H; J=7.14 Hz); 8-7.83 (broad, 1H); 6.42 (d, 1H; J=17.22 Hz, CH2);  6.21 (d, 

1H; J=17.22 Hz, CH2); 4.48 (d, 2H; J=15.96 Hz, CH2); 4.30 (d, 2H; J=15.96 Hz, 

CH2); 4.08-3.94 (broad, 2H, Cy); 3.71 (m, 2H, Cy); 3.63-3.37 (broad, 2H, CH2); 

3.35-3.31 (m, 1H, Cy); 3.15 (m, 1H, Cy); 2.66-2.57 (broad, 1H, Cy); 2.04 (m, 1H, 

Cy); 1.43 (s; 27H, tBu); 1.15-1.04 (broad, 2H, Cy). 

{Carboxymethyl-[2-(carboxymethyl-isoquinolin-3-ylmethyl-amino)-cyclohexyl]-

amino}-acetic acid (H3L13, ligand as ammonium salt): the previous tert-butyl 
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ester 16 (crude, ≈1.90 mmol) was dissolved in HCl aq (6 M, 80 ml) and stirred for 

15 h at 80°C. The volume of the reaction mixture was halved under reduced 

pressure and the product was purified by cationic exchange chromatography SCX 

(eluent: NH3 3M in MeOH, 2g cartridges x 7) giving 313 mg of the desired 

product as a brownish solid. Yield: 34%, purity: ≈65%. 
1
H-NMR (DMSO) δ ppm: 

9.88 (s, 1H), 8.17-8.04 (m, 2H), 7.97-7.87 (m, 2H), 7.68-7.54 (m, 1H), 5.21-5.10 

(d broad, 1H, CH2), 4.44-4.32 (d broad, 1H, CH2), 4.30-4.22 (d broad, 1H, CH2), 

4.15-4.03 (m, 2H, CH2), 4.00-3.91 (m, 1H, CH2), 3.56-3.19 (m, 2H, CH2), 2.28-

2.13 (m, 1H, Cy), 2.04-1.86 (m, 2H, Cy), 1.76-1.54 (m, 3H, Cy), 1.35-1.06 (m, 

4H, Cy). UV-Vis absorption spectroscopy (methanol): ε(332 nm): 3420 M
-1

cm
-1

.
 
 

ESI-MS (Scan ES+; m/z): 512 (100%)= [Na2KHL]
+
; L = L13

3-
. 

The complex Eu(L13) has been synthesized as follows: ligand H3L13 (300 mg, 

0.625 mmol) was dissolved at room temperature in a mixture of water: methanol 

9:1 (10 ml). Then, europium(III) trifluoromethanesulfonate 98% (374 mg, 0.625 

mmol) was added portion-wise, and a yellowish suspension was formed. After 

neutralization with KOH 2M aq (pH ≈7), the reaction mixture was stirred at room 

temperature for 1h. The suspension was centrifuged to furnish 187 mg of the 

desired complex 7 as a yellowish solid. Yield: 52%. UV-Vis spectroscopy: ε(328 

nm): 2851 M
-1

cm
-1

 (methanol). 

 

As far as 
1
H and 

13
C-NMR spectroscopy; ESI-MS measurements; Luminescence 

and decay kinetics and UV Absorption spectroscopy are concerning: see the 

experimental part of Chapter 3 for technical information. 

 

4.5.3. Elemental analysis  

The analyses were carried out by using a EACE 1110 CHNOS analyzer. 

 

4.5.4. Potentiometric titrations  

The protonation constants of the all ligands (L4, L10, L11, L12 and L13) and the 

formation constants of the L9 derivatives have been determined by acid-base 

potentiometric titrations.  
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The titration cell was maintained at constant temperature (298.15 ± 0.1 K) using a 

circulatory bath. A computer-controlled potentiometer (Amel Instruments, 338 pH 

Meter) collected the electromotive force (emf) values measured by means of a 

combined glass electrode (Metrohm Unitrode 6.0259.100). Before each titration 

the electrode was calibrated by an acid-base titration with standard HCl and 

NaOH solutions and the carbon dioxide contamination in solution was checked by 

Gran method.
68  

Titrations were performed in duplicate on solutions containing the 

ligand (typical concentration around 0.6-0.9 mM) and an excess of standard HCl 

by adding standard NaOH solution. The pH range was varied from an initial 

approximate value of 2.3 to about pH 11.5. All the solutions were prepared with 

ultrapure water (>18 MΩ cm) from a Milli-Q system (ELGA Purelab Option-Q) 

and the ionic strength (μ) was adjusted to 0.1 M by using appropriate amounts of 

NaCl (Sigma-Aldrich).  Among 50-70 points were collected in each titration and 

processed with Hyperquad.
8
 

4.5.5. Spectrophotometric titrations  

The formation constants of the remaining Ln(III) complexes (Eu(L4), Eu(L10), 

Tb(L10), Eu(L11)OTf, Eu(L12)OTf and Eu(L13), Figure 2) were determined by 

UV-Vis spectrophotometric acid-base titrations.
69

 A Varian Cary 50 instrument 

equipped with a fibre optic (optical path of 10mm) was used. The wavelength 

range investigated was 240-300 nm for L10 and 275-355 nm for L4 and L11 in 

the same pH range and μ as in the potentiometry. The titration cell was maintained 

at T = 298.15 ± 0.15 K by means of a circulatory bath, and contained both the 

ligand (ligand L11, 0.08 mM with Eu(III); ligand L10, 0.13 mM  with Eu(III), 

0.15 mM with Tb(III); ligand L4, 0.09 mM with Eu(III)) and Ln(III) (1:1 

L:Ln(III) ratio, with a slight metal excess). The NaOH and HCl stock solutions 

were the same used during the potentiometric titrations. The stock solutions of 

Eu(III) and Tb(III) were prepared by dissolving their chloride hexahydrate salts 

(Sigma-Aldrich). The lanthanide content in the stock solutions was determined by 

EDTA titration, using xylenol orange as indicator.
70

 Free acid concentrations in 

lanthanide solutions were checked by Gran’s method.
68

 Formation constants were 
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calculated by simultaneous fit of the absorbance values at several wavelengths 

using HypSpec.
8
   

4.5.6. Luminescence and decay kinetics 

Room temperature luminescence was measured with a Fluorolog 3 (Horiba-Jobin 

Yvon) spectrofluorometer, equipped with a Xe lamp, a double excitation 

monochromator, a single emission monochromator (mod. HR320) and a 

photomultiplier in photon counting mode for the detection of the emitted signal. 

All the spectra were corrected for the spectral distortions of the setup.  

In decay kinetics measurements, a Xenon microsecond flashlamp was used and 

the signal was recorded by means of multichannel scaling method. True decay 

times were obtained using the convolution of the instrumental response function 

with an exponential function and the least-square-sum-based fitting program 

(SpectraSolve software package). The total quantum yields (ɸTot) have been 

obtained by secondary methods described in the literature
71

 by measuring the 

Visible emission spectrum of quinine bisulfate in 1N H2SO4 solution, a 

fluorescence quantum yield reference sample (ɸ = 54.6%). ɸTot for the complexes 

has been calculated by [(As∙Fu∙n
2
)/(Au∙Fs∙no

2
)]∙ ɸs equation; were: u subscript 

refers to unknown and s to the standard and other symbols have the following 

meanings: ɸ is quantum yield, A is absorbance at the excitation wavelength, F the 

integrated emission area across the band and n’s are respectively index of 

refraction of the solvent containing the unknown (n) and the standard (n0) at the 

sodium D line and the temperature of the emission measurement (Figures 36-41). 
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Figure 36. Overlap of the emission spectra of the reference standard and Eu(L9)Cl for the Quantum Yield 

measurement. Slits width was adjusted as 3/3 nm for excitation and 1.5/1.5 nm for emission. As = 0.06; Au = 

0.073. λexc = 347 nm and 270 nm, for the standard and the complex, respectively.  

 

Figure 37. Overlap of the emission spectra of the reference standard and Eu(L11)OTf for the Quantum Yield 

measurement. Slits width was adjusted as 4/4 nm for excitation and 2/2 nm for emission. As = 0.06; Au = 

0.09. λexc = 347 nm and 319 nm, for the standard and the complex, respectively.  

 

 

Figure 38. Overlap of the emission spectra of the reference standard and Eu(L10) for the Quantum Yield 

measurement. Slits width was adjusted as 3/3 nm for excitation and 3/3 nm for emission. As = 0.06; Au = 

0.088. exc = 347 nm and 266 nm, for the standard and the complex, respectively. 
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Figure 39. Overlap of the emission spectra of the reference standard and Eu(L4) for the Quantum Yield 

measurement. Slits width was adjusted as 3/3 nm for excitation and 1.5/1.5 nm for emission. As = 0.06; Au = 

0.0875. exc = 347 nm and 319 nm, for the standard and the complex, respectively.  

 

Figure 40. Overlap of the emission spectra of the reference standard and Tb(L9)Cl for the Quantum Yield 

measurement. Slits width was adjusted as 3/3 nm for excitation and 3/3 nm for emission. As = 0.06; Au = 

0.072. exc = 347 nm and 270 nm, for the standard and the complex, respectively. For the measurement of 

the intrinsic quantum yield (ɸLn), direct excitation of Tb(III) was performed (exc = 377 nm) on a solution 

of the complex with Au = 0.03.  

 

Figure 41. Overlap of the emission spectra of the reference standard and Tb(L10) for the Quantum Yield 

measurement. Slits width was adjusted as 3/3 nm for excitation and 3/3 nm for emission. As = 0.06; Au = 

0.068. λexc = 347 nm and 270 nm, for the standard and the complex, respectively. For the measurement of the 

intrinsic quantum yield (ɸLn), direct excitation of Tb(III) was performed (λexc = 377 nm) on a solution of the 

complex with Au = 0.011. 
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4.5.7. Luminescence sensing of HCO3
- 

The binding interactions between hydrogen carbonate and the Eu(III) complexes 

were studied using the double reciprocal plot following the Benesi-Hildebrand 

equation
72

 adapted to the values of the asymmetry ratio (R) of the Eu(III) emission 

spectra: 

  

    
=

  

     
 

  

{ (     )[    
 ]𝑛}

 

where R0, R, and R∞ are the asymmetry ratio of Eu(III) in the complexes 

considered in the absence of hydrogen carbonate, at an intermediate hydrogen 

carbonate concentration and at a concentration of complete interaction, 

respectively. In the above equation, K is the binding constant and n the number of 

hydrogen carbonate anion bound to the metal center and [HCO3
-
] is the hydrogen 

carbonate concentration. 

4.5.8. Molecular Docking (MD)  

4.5.8.1. Methods 

Eu
+3

 complexes, Figure 1,  were docked against the bovine serum albumin crystal 

structure (PDB code: 4F5S) using the Autodock suite version 4.2.6.
73

 Two 

flexible docking experiments for each complex against two binding sites were 

performed. These were chosen in order to include the two tryptophan residues of 

the structure. The flexible residues were selected according a cut-off of 6Å of the 

each tryptophan residue: R194, L197, R198, S201, W213, N217, A341, V342, 

S343, D450, L454 and E16, E17, F126, K127, A128, D129, E130, K132, F133, 

W134, N158, N161, Q165 around W213 and W134, respectively. Since, 

Autodock suite doesn’t include by default the Eu
+3

 parameters in its force-field, 

those were manually added to the parameter’s library. For each Autodock run a 

cluster analysis over 100 binding poses were performed. 

 

 



 

187 
 

4.5.8.2. MD Simulations 

From each docking cluster analysis, a docked structure from the better cluster was 

chosen for perform small molecular dynamics simulations. All MD simulations 

were carried out using the GROMACS program, version 2016.5.
74

  

Since the Eu
+3

 parameters are not included by default in the most commonly used 

force-fields, they had to be included manually into the force-field. Also, because 

Eu
+3

 interacts in a non-covalent way with the remaining molecular structure, it 

was treated as an ion.  Therefore, the parameters of each component of the docked 

structured was prepared differently. The molecule without Eu
3+

 was parametrized 

with the ANTECHAMER suite,
75

 the protein was parametrized using the 

pdb3gmx form GROMACS with the AMBER99SB force-field, and the Eu
+3

, as 

was mentioned above, was treated as an ion. Eu
+3

 parameters were included 

manually in the force-field.
76

 Water and ion molecules (0.154 M of Na
+
/Cl

-
 to 

mimic physiological conditions) were added to complete the system. The system 

was then equilibrated through a complete workflow: steepest descents 

minimization of 5000 steps, NVT equilibration of 100 ps, NPT equilibration of 

100 ps, and MD production under the NPT ensemble for 100 ns at room 

temperature. A pull code with 5000 kJ mol
-1

 nm
-2

 of force between the nitrogen, 

oxygen, and Eu
3+

 atoms was included in the MD production to keep the integrity 

of the complexes. All calculations were performed within a GPU node available 

by the computational platform from the “Centro Piattaforme Tecnologiche” of 

the University of Verona. 
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CHAPTER 5- High Throughput Screening (HTS) for 

detection of bioanalytes by means of Eu(III)-complexes 

based on Isoquinoline. 

 Introduction 5.1.

As already discussed, one of the main drawbacks concerning the biosensing is the 

overlap between the absorption wavelengths of the probe and the biomolecules in 

the biological fluid under investigation.  

An efficient luminescent bioprobe should be excited at least above 300 nm. Below 

this excitation wavelength, the majority of the biochromophores absorbs light by 

hampering the use of optical probes with an excitation wavelength below 300 nm. 

Furthermore, the irradiation in the far UV spectral region is rather phototoxic for 

cells, an additional reason to prefer bioprobes with longer excitation wavelength.  

Among the several Ln(III)-complexes described in Chapter 4, the most promising 

bioprobes are surely the Isoquinoline di- and tri-acidic derivatives (Figure 1), 

whose excitation wavelength around 325 nm is quite red-shifted with respect to 

the analogous Quinoline (318 nm), and even more to the Pyridine derivatives (265 

nm). 
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Figure 1. Eu(III)-complexes employed for sensing with HTS techniques, in accordance with similar 

physiological conditions (pH 7.4, ionic strength 0.9% NaCl w/v, T:25°C). Reference label from.Chapter 4. 

In order to find out a promising target capable to detect important analytes in the 

medical field, the possibility to explore simultaneously the interaction of a 

promising compound towards several biological targets is fundamental for 

reducing waste and time of analysis. In that context, the HTS is a method for 
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evaluating new target candidates by exploiting the microplates containing 

different biomolecules for a rapid and efficient screening. With this mind, 

whereas in the Chapter 4, all the luminescence measurements have been 

performed in a quartz cuvette with a traditional fluorometer, in this chapter the 

HTS has been used as alternative method to evaluate the luminescence response 

of the complexes Eu(L12)OTf and Eu(L13), in the presence of bioanalytes 

contained in the extracellular fluid (ECF). 

The main advantages to use a microplate reader instead of a traditional 

fluorometer concern the major i) efficiency and the ii) reproducibility of the data, 

since the addition have been quickly performed with an Eppendorf Multipette, 

with at least 6 measurement replicas. Moreover, the overall well volume of the 

microplate is around 250 µl, by requiring iii) a minor quantity of sample to 

analyze. This is convenient when expensive molecules are used.  

 Sensing of the main components of ECF 5.2.

5.2.1. The oxophilic anions 

The main components of the ECF have been already listed in Table 1 of Chapter 

4, but for sake of clarity are summarized again. Their typical extracellular 

concentration ranges are also reported: 

 Bicarbonate ion (24-27 mM)  

 Citrate ion (0.1-0.3 mM) 

 Serum albumins (≈0.4 mM) 

 L-lactate ion (0.6-2.3 mM) 

 Sulphate ion  (0.4-0.6 mM) 

 Phosphate ion (1.2-1.3 mM) 

It is worth evidencing that the extracellular matrix denotes all body fluid outside 

of cells, and consists of plasma, interstitial, and transcellular fluid.  

The above biological composition is referred to the more simplified composition 

of the interstitial and transcellular fluids, which it is mainly composed by cations 

and anions, whereas the plasma contains mostly water but also, hormones, clotting 
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factors, glucose and different proteins.
1 

As far as the protein contribution is 

concerned, only the major albumins have been considered, in their typical 

extracellular concentration range of 0.4 mM. Some other electrolytes, like NaCl 

are in a typical ECF (concentration ~ 100 mM). We take into account its 

contribution, since NaCl is present in the working buffer solution.  

As already discussed in Chapter 3, all the trivalent lanthanide ions are classified as 

Hard acids and according to the "hard and soft (Lewis) acids and bases" (HSAB) 

theory they should preferentially interact with oxophilic ions like bicarbonate, 

citrate, lactate. 

 

5.2.2. The Bicarbonate ions: luminescence and binding constants 

The sensing experiments towards bicarbonate ion have been already discussed in 

Chapter 4, for Pyridine and Quinoline-based complexes. Some interesting results 

have been also observed in the case of Isoquinoline derivatives. 

The increasing addition of the analyte to the complex Eu(L12)OTf, is capable to 

modify considerably the geometric environment around the metal center (change 

of R value from the initial value of 2.88 to 5.05 in the presence of 28 mM of 

NaHCO3). This is related to a consistent enhancement of the 
5
D0→

7
F2 

luminescence intensity (Figure 2). The HCO3
- 

anion coordinates the Eu(III) ion, 

possibly displacing the water molecules from the inner coordination sphere, by 

reducing the undesiderable multiphonon relaxation process. A decrease of the 

emission intensity of the 
5
D0→

7
F0 transition has been also detected, resulting in a 

minor axial geometry of the Eu(III) environment.  
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Figure 2. Eu(III) luminescence emission spectra of the complex Eu(L12)OTf [0.1 mM] in MOPS buffer 15 

mM pH≈7.4, NaCl 0.15 mM; Excitation wavelength: 328 nm; Bandwidth Emission wavelength:  3 nm, 

Bandwidth Excitation wavelength:  10 nm, Gain: 109. The concentration of the anion is reported. 

It is worth evidencing the trend of the average maximum intensity as a function of 

the target anion concentration. For both complexes Eu(L12)OTf and Eu(L13), 

we observe an increase of this intensity, even if some discrepancies should be 

analyzed (Figure 3). In particular, i) the different relationship between intensities 

values and concentration of the target ion. A rapid parabolic enhancement has 

been obtained for the complex Eu(L12)OTf, whereas a linear increase has been 

observed for the complex Eu(L13). ii) the differences in the absolute emission 

intensity due to the number of chromophoric units in the complex. In fact, upon 

the same experimental conditions, complex Eu(L12)OTf shows higher maximum 

luminescence intensity than complex Eu(L13). Another important feature 

concerns iii) the different sensitivity of the complexes Eu(L12)OTf and Eu(L13) 

in the working concentration range of the ion. The bis-Isoquinoline complex 

Eu(L12)OTf showed the best sensitivity in the concentration range of HCO3
-
 

connected with the metabolic acidosis disease (2-10 mM, ref. Chapter 4). In fact, 

in complex Eu(L12)OTf, we detect an intensity increase of the luminescence 

around 120% (≈10 mM HCO3
-
), whilst for complex Eu(L13) only around 30% 

(≈10 mM HCO3
-
).  
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a) 

 

b)  

 

Figure 3.  Average * maximum intensity vs. [HCO3
-] concentration plots  for the complexes a)Eu(L12)OTf, I 

max≈1.47 fold increase, LOD=0.123 mM and b)Eu(L13), I max≈0.85 fold increase, LOD=2.32 mM .* It is 

referred to an average of luminescence intensity upon 6 replicas. Emission wavelength:  615 nm, 

bandwidth:20 nm, Excitation wavelength:  328 nm, bandwidth: 20 nm, Gain: 109.  
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The affinity constants have been calculated by means of cEST/Solverstat
2,3 

software (Table 1, see Chapter 4, for details).  

 

Complex-HCO3
-
 n Log(K) 

Eu(L12)OTf 2    4.60 ± 0.15 (1.58%) 

Eu(L13) 1    3.38 ± 0.05 (0.78%) 

 

Table 1. Apparent affinity constants (logK) constant for the formation of the adducts with bicarbonate 

(HCO3
-), [complex]+n∙bicarbonate ⇆ [complex(bicarbonate)n] (T = 298 K, pH 7.40 (±0.05), I = 0.15 M 

NaCl, 0.1 mM complex), determined through cEST/Solverstat fitting. Charges omitted for clarity 

 

As observed for the cationic complexes described in Chapter 4, two bicarbonate 

anions can bind the metal center also in the case of cationic complex Eu(L12)OTf. 

This results in a higher affinity constant (Table 1).  

 

5.2.3. The promising Citrate ion: luminescence and binding 

constants 

5.2.3.1. Introduction 

Citrate is a water soluble tricarboxylic acid and is characterized by an important 

roles in many biological processes. 

In fact, it is well known that low levels of citrate in urine (usually around 10 - 12 

μmol/g) may involve several kidney dysfunctions and even prostate cancer (1 - 3 

μmol/g).
4
 

Moreover, Citrate serum levels were abnormally high in patients with primary 

hyperparathyroidism (pHPT) which is characterized by skeletal involvement 

and/or renal lithiasis (RL) as main complications, essentially for the ability to 

subtract calcium salts.
5
5.  

The most important roles involve the glycolysis and the Krebs cycle, where the 

Citric acid is produced in the mitochondria by the donation of a 2-carbon residue 

from acetyl-CoA to oxaloacetic acid. The excess of citric acid formed in the 

mitochondria during the Krebs cycle can also be transported to the cytoplasm 

where is converted into oxaloacetate and acetyl-CoA. The resulting acetyl-CoA is 

used in fatty acids and isoprenoid synthesis.
4,6
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Many examples in literature reports studies on citrate as a mere interfering agent
7-

15
 or as analytes to be quantified.

16-18
 

Some affinity constants found in literature for luminescent adducts between 

lanthanide complexes and citrate are listed in Table 2, where the positively-

charged Ln(III) complexes interact stronger with the target anion. 

 

Ref.  
[19]

  
[20]

  
[17]

 
[18]

  
[21]

 
 [16]

 

Log(K) 3.65 3.95⁂ 4.80* 5.21 5.26⁑ 6.02 

 

Table 2. Apparent affinity constants of some Ln(III) complexes towards citrate, T = 298.15 K, μ = 0.1 M 

NaCl, pH = 7.4. * T = 295 K, ⁑ 0.1 M NaCl, 4 mM KCl, 0.1 M HEPES and 0.9 mM NaH2PO4, ⁂ 10 mM 

ZnCl2.  

5.2.3.2. Ln(III)-complexes-Citrate adducts: effects of the interferents 

The simple calculation of the ratio [A
-
]/[HA] by means of the Henderson-

Hasselbach equation (1a) furnishes the predominant  species under investigation, 

at the physiological pH=7.4. 

 

    
[  ]

[  ]
=      𝑎  (  . 1 ) 

The already discussed bicarbonate possesses the following protonation constants 

pKa1 = 6.11 and pKa2 = 9.87 at 298.15 K, whereas the Citrate has three pKa 

values: 3.13, 4.76 and 6.40 at T = 298.15 K.
6
  

Thus, under physiological conditions, the citrate is fully deprotonated. 

On the other hand, according to the equation 1b, the predominant form of the C- 

based oxoanion is HCO3
-
. 

[  ]

[  ]
= 1 (     𝑎) (𝑒𝑞. 1 ) 

 

Where [A
-
] and [HA] are respectively the concentration of the conjugate base and 

the acid of the species under investigation. 

As far as the carbonate ion is concerning the equations are: 
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[   
  ]

[    
 ]

= 1 ( .   .  ) =
1

1  .  
 1      (𝑒𝑞.  ) 

 

 

[    
 ]

[     ]
= 1 ( .   .  ) =

1  .  

1
    1  (𝑒𝑞.  ) 

 

In first analysis, just considering the electronic density of the target analyte, citrate 

shows a higher value. Since the probe-analyte interaction is mainly ruled by 

electrostatic interactions, we expect a higher affinity constant in the case of citrate 

adduct. This conclusion applies in the case of Eu(L13), where a 1:1 complex to 

analyte molar ratio is noticed for both citrate and HCO3
-
 anions (compare Table 1 

and 3).  

Complex-Citrate n Log(K) 

Eu(L12)OTf 1    4.11 ± 0.26 (2.92%) 

Eu(L13) 1    4.06 ± 0.15 (1.79%) 

 

Table 3. Apparent affinity constants (logK) constant for the formation of the adducts with Citrate: 

[complex]+n∙citrate ⇆ [complex(citrate)n] (T = 298 K, pH 7.40 (±0.05), I = 0.15 M NaCl, 0.1 mM complex), 

determined through cEST/Solverstat fitting. Charges omitted for clarity 

 

Regarding the different stoichiometry in the adducts with HCO3
-
 and citrate 

involving Eu(L12)OTf, several remarks should be pointed out. In particular, upon  

interaction between the charged complex Eu(L12)OTf and the bicarbonate ion, the 

neutral resulting adduct could bind another bicarbonate molecules, whereas the 

adduct of the same complex Eu(L12)OTf with citrate ion would assume a double 

negative charge. This hampers the coordination of additional citrate molecules, 

according to columbic repulsions. 

As far as the luminescence trends are concerned, both complexes Eu(L12)OTf and 

Eu(L13) showed a considerable enhancement of the average maximum intensity, 

due to the already discussed displacement of the water molecules bound to the 

metal center (Figure 4). The increase of the luminescence emission intensity for 

Eu(L12)OTf complex upon titration with citrate is around 1.44 fold; almost the 

same increase observed in for the bicarbonate ion.  
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a) 

 

b)  

 

Figure 4.  Average * maximum intensity vs. [Citrate] concentration plots  for the complexes a)Eu(L12)OTf 

0.1 mM, I max≈1.44 fold increase, LOD=0.028 mM and b)Eu(L13) 0.1 mM, I max≈0.95 fold increase, 

LOD=0.011 mM.* It is referred to an average of luminescence intensity upon 6 replicas. Emission 

wavelength:  615 nm, bandwidth: 20 nm, Excitation wavelength:  328 nm, bandwidth: 20 nm, Gain: 109. 
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The study of the interaction on the Serum albumins, in our case represented by the 

more accessible and cheaper BSA, has been described in Chapter 4. In that 

contest, the complexes Eu(L9)Cl and Eu(L12)OTf were analysed in traditional 

quartz cuvettes in a lower concentration range for the protein (around 0.2 mM), 

due to the major optical path respect to the microplate one.  

Since the protein is chiral, the interaction of the enantiopure complexes 

Eu(L12)OTf and Eu(L13) would generate two different diastereoisomeric 

adducts. With this in mind, both enantiomer forms (1R, 2R/ 1S, 2S) of the 

complexes have been investigated but similar increases of the luminescence 

response are detected. Upon the progressive addition of the protein up to its 

extracellular concentration range (0.4 mM, Abs 328 nm[Eu(L12)OTf, Eu(L13)]<1), upon 

excitation at 328 nm, an overall enhancement of the signal around 25-30% (Figure 

5 a-d) has been detected for both enantiomers of the complexes Eu(L12)OTf and 

Eu(L13). 

 

a)  
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b)  

 

 

c)  
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d)  

 

Figure 5.  Average * maximum intensity  vs. [BSA] concentration plots  for the complexes a)Eu(L12)OTf (1R, 

2R), Luminescence increase ≈27%; b) Eu(L12)OTf (1S, 2S), Luminescence increase ≈25%; c)Eu(L13) (1R, 

2R), Luminescence increase ≈27%; d) Eu(L13)  (1S, 2S), Luminescence increase ≈31%.* It is referred to an 

average of luminescence intensity upon 6 replicas. Emission wavelength:  615 nm, bandwidth: 20 nm, 

Excitation wavelength:  328 nm, bandwidth: 20 nm, Gain: 109. 

As well as observed for the two adducts of the complex Eu(L12)OTf with the 

bicarbonate or citrate ion, it is not possible to correlate the major affinity constant 

for the analyte with the most selective and sensitive probe. In fact, even if the 

affinity constants of the Isoquinoline complexes (Eu(L12)OTf and Eu(L13)-

protein adducts (Table 4) are similar to the corresponding adducts with the citrate 

ion (Table 3) the higher sensitivity is still maintained for the citrate. These 

remarks are clearly showed in Figure 10, where the luminescence enhancements 

in the present of the protein were just 25-30%, respect to the ≈150%-100% 

emission increases obtained upon the interaction of the complexes Eu(L12)OTf 

and Eu(L13) with the citrate ion. Another crucial experiment has been reported in 

(Figure 6 a-b), where the final emission intensity of the complex Eu(L12)OTf in a 

background solution of the protein (0.4 mM) and increasing citrate (up to 0.3 

mM) is 0.68 fold increased. On the other hand, when the protein concentration is 
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increasing in a background solution of citrate (0.3 mM), the final emission 

intensity is just 0.28 fold increased, by evidencing the major affinity for the anion.  

Complex-BSA n Log(K) 

Eu(L12)OTf 1    4.03 ± 0.74 (0.07%) 

Eu(L13) 1    4.15 ± 0.35 (3.82%) 

 

Table 4. Apparent affinity constants (logK) constant for the formation of the adducts with BSA: 

[complex]+n∙BSA ⇆ [complex(BSA)n] (T = 298 K, pH 7.40 (±0.05), I = 0.15 M NaCl, 0.1 mM complex), 

determined through cEST/Solverstat fitting. Charges omitted for clarity. 

 

a) 
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b)  

 

Figure 6.  Average * maximum intensity  vs. [BSA] or [Citrate] concentration plots  for the complexes 

a)Eu(L12)OTf (1S, 2S) 0.1 mM, Luminescence increase ≈68%, in a fixed background of BSA:0.4 mM ; b) 

Eu(L12)OTf (1S, 2S) 0.1 mM, Luminescence increase ≈28%, in a fixed background of Citrate:0.3 mM;* It is 

referred to an average of luminescence intensity upon 6 replicas. Emission wavelength:  615 nm, bandwidth: 

20 nm, Excitation wavelength:  328 nm, bandwidth 20 nm, Gain: 100. 

 

It is worth noting that the bicarbonate and citrate adducts with complex 

Eu(L12)OTf show similar emission intensity (close to 40000 arb.un.) (Figure 7).  

What is different is the slope of the curves: in particular, in the same range of 

concentration (i.e. 0-2 mM) the optical response towards citrate is much more 

sensitive. In fact, the final emission intensities are the same, but with very 

different slopes in the working range of the target analytes, where the citrate 

concentration is almost ten times lower than the one of bicarbonate ion.  On the 

other hand, also the complex Eu(L12)OTf in the presence of BSA gave 

unexpected results, by revealing the lowest sensitivity, even if its affinity constant 

around 4, is close to citrate one (Figure 7, orange line). In fact, the sensitivity of 

the optical response towards a particular analyte is related not only to the probe-

analyte affinity but also to the overall luminosity of the adduct. The adducts with 

citrate and bicarbonate show higher overall luminosity than the BSA adduct.     
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Figure 7.  Emission intensity vs. [Citrate] (blue curve), or [Bicarbonate] (red curve) or [BSA] (orange curve) 

for the complex Eu(L12)OTf 0.1 mM, pH=7.4 in MOPS, T=25°C, NaCl: 0.15 M, [Complex]:0.1 mM. 

Emission wavelength:  615 nm, bandwidth: 20 nm; Excitation wavelength:  328 nm, bandwidth: 20 nm, Gain: 

109. 

 

5.2.3.3. Minor interferents: luminescence studies 

As for the other main components of the ECF, the decrease in sensitivity for both 

complexes Eu(L12)OTf and Eu(L13) is represented by the following order: 

HPO4
2- 

> SO4
2- 

≈ L-lactate. This can be evinced by the inspection of the changes 

of the overall luminescence intensity upon titration with these analytes (Table 5). 

 

Complex-analyte Luminescence Changes % 

Eu(L12)OTf-HPO4
2-

 + 9 

Eu(L13)- HPO4
2-

 - 7.5 

Eu(L12)OTf (1R,2R; 1S, 2S)-lactate  + ≈6 

Eu(L13) (1R,2R; 1S, 2S)-lactate - <1 

Eu(L12)OTf-SO4
2-

 - 4 

Eu(L13)-SO4
2-

 - 2 

 

Table 5. Luminescence changes recorded for the isoquinoline-based complexes upon titration with HPO4
2- , 

lactate and SO4
2- . Changes + or – indicates respectively an increase or decrease of the signal. 
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Despite the negligible effect of the L-lactate on the luminescence spectra of the 

Eu(III)-complexes based on the Isoquinoline ring (Table 5), it is worth evidencing 

that the sensitivity of the Ln-complexes (actually the one based on L9 ligand) 

towards the L-lactate has been already investigated in the past from our research 

group.
22

 In this case, the progressive addition of the L-lactate produced a 

consistent increase of the total luminescence. Moreover, a different CPL 

(Circularly Polarized Luminescence) activity in the presence of the metabolite has 

been observed for the two enantiomers, by revealing the highest CPL sensitivity 

for the enantiomer 1R, 2R. 

 

5.2.3.4. Citrate: the detection in extracellular fluid 

In order to simulate the real extracellular conditions, the sensing experiments of 

all the relevant analytes of ECF have been performed in complex matrix. All the 

following sensing experiments presupposed that the Total luminescence intensity 

(Itot) is due to the sum of the individual intensities (Ii) referred to the adducts of 

each species (i) present in solution, weighed for their relative percentage molar 

composition (mol % i). (Eq. 4) 

 

  𝑡𝑜𝑡 = ∑(    ) ∗    
 

 (𝑒𝑞.  ) 

In order to get reliable measurements, and thus a real comparison among the 

components of the ECF, all the sensing experiments have been performed with the 

same instrumental conditions and concentration of the starting complex, with an 

average luminescence response obtained upon at least six replicas of 

measurements. 

With this in mind, several sensing experiments have been planned, in particular, 

1) citrate has been added to a matrix containing bicarbonate and BSA at their 

typical extracellular concentration (Figure 8). 

In this context, it is worth evidencing that for each point of the titration plot, 

where the citrate is added in a fixed background of bicarbonate (25 mM) and 

protein (0.4 mM), the luminescence should be considered as the overall 

contribution of all luminescent adducts (EuLbic2, EuLBSA, EuL and progressive 
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EuLcit) each weighed for their relative amount (Figure 9). This speciation plot has 

been obtained by using Hyss program. 23 

The obtained luminescence increase around 30% (Figure 8) is explained with the 

evident increase of the EuL-citrate adduct concentration (blue line, Figure 9), 

whose final formation (around 10%, blue line in Figure 9) foresaw a slight 

decrease of the EuL-BSA adduct (≈3%) and EuLbic2 adduct (≈4%).  

Moreover, since the final emission intensities of citrate (0.3 mM) and bicarbonate 

(25 mM) adducts are quite comparable (Figure 7) the effective luminescence 

change is mainly attributed the displacement of the BSA by citrate from the 

complex that produces a luminescence increase around 30%.  

 

 

Figure 8.  Plot of average * maximum intensity  vs. [Citrate] in a fixed background of BSA 0.4 mM and 

Bicarbonate 25 mM for the complex Eu(L12)OTf (1S, 2S), where the appreciated luminescence increase has 

been around 30%.  * It is referred to an average of luminescence intensity upon 6 replicas. Emission 

wavelength:  615 nm, bandwidth: 20 nm, Excitation wavelength:  328 nm, bandwidth: 20 nm, Gain: 100.  
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Figure 9.  Estimated* speciation of the adducts between the Eu(III)-complex Eu(L12)OTf (red line) with 

Bicarbonate (orange line) BSA (green line) and Citrate (Blue curve) during citrate addition. * By using the 

Hyss program. 

 

This result could be compared with the theoretical plot (Figure 10) of the total 

luminescence calculated by using equation 4 at three different citrate 

concentration (0, 0.15 and 0.3 mM). As mentioned before the percentage of each 

species has been estimated by Hyss program,23
 whilst the luminescence intensity 

for each adducts has been evinced from the plot reported in Figure 7.  

 

Figure 10.  Theoretical plot obtained by equation 4. 
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It is worth noting that the theoretical luminescence enhancement around 20% is 

quite comparable with the experimental luminescence variation depicted in Figure 

8; the slight discordance with the observed value could be attributed to matrix 

effects. 

In a second experiment, 2) the bicarbonate was added up to the physiological 

range (25 mM), in a matrix with fixed concentration of BSA (0.4 mM) and citrate 

(0.3 mM) (Figure 11).  

 

 

Figure 11.  Plot of average * maximum intensity vs. [Bicarbonate] in a fixed background of BSA 0.4 mM and 

Citrate 0.3 mM for the complex Eu(L12)OTf (1S, 2S), where the luminescence response has been mostly 

unchanged.  * It is referred to an average of luminescence intensity upon 6 replicas. Emission wavelength:  

615 nm, bandwidth: 20 nm, Excitation wavelength:  328 nm, bandwidth: 20 nm, Gain: 100. 

 

In this case, during the progressive addition of bicarbonate, the increase of the 

EuLbic2 adduct concentration (orange line, Figure 12) is related to a concomitant 

decreasing amount of the EuL-BSA, EuL-citrate adducts and EuL (Figure 12) so 

as to give rise to a compensation in the total emission intensity. In conclusion, the 

overall luminescence intensity does not change during the titration, since the main 

initial contribution to the luminescence is due to the EuL-citrate, whose decrease 

during the titration (blue curve, Figure 12) is compensated by the EuL-bicarbonate 

adduct formed. The formation of this adduct compensates also the loss of 

luminescence intensity due to the decreasing amount of EuLBSA adduct (Figure 
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12). This is also in agreement with the theoretical plot obtained by equation 4 

(Figure 13). 

 

Figure 12.  Estimated* speciation of the adducts between the Eu(III)-complex Eu(L12)OTf (red line) with 

Bicarbonate (orange line) BSA (green line) and Citrate (Blue curve) during bicarbonate addition. * By using 

the Hyss program. 

 

 

Figure 13.  Theoretical plot obtained by equation 4. 

 

Another experiment has been performed by 3) adding the BSA (up to 0.5 mM) in 

a fixed background of citrate (0.3 mM) and bicarbonate (25 mM). In this case a 
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slight decrease (≈10% at 0.4 mM BSA) of the luminescence intensity has been 

appreciated (Figure 14). 

This can be explained by an increase of the EuL-BSA adduct concentration 

(≈13%) accompained by a concomitant decrease of the EuL-bicarbonate (≈7%) 

and EuL-citrate (≈3%) adducts (Figure 15). 

Since the overall luminosity of the EuL-BSA adduct is the lowest one compared 

to the adducts with citrate and bicarbonate in extracellular range, a slight loss in 

luminescence intensity is noticed. This is also in partial agreement agreement with 

the theoretical plot obtained by equation 4 (Figure 16). 

 

 

 

Figure 14.  Plot of average * maximum intensity vs. [BSA]mM in a fixed background of Bicarbonate 25 mM 

and Citrate 0.3 mM for the complex Eu(L12)OTf (1S, 2S), where a decrease of  the luminescence response 

around 12% has been appreciated.  * It is referred to an average of luminescence intensity upon 6 replicas. 

Emission wavelength:  615 nm, bandwidth: 20 nm, Excitation wavelength:  328 nm, bandwidth: 20 nm, Gain: 

109. 
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Figure 15.  Estimated* speciation of the adducts between the Eu(III)-complex Eu(L12)OTf (red line) with 

Bicarbonate (orange line), Citrate (green curve) and BSA (pink curve) during BSA addition. * By using the 

Hyss program. 

 

 

Figure 16.  Theoretical plot obtained by equation 4. 

 

A last experiment was performed by 4) adding citrate (0-3.5 mM) to a simulated 

serum fluid containing BSA (0.4 mM), Sodium hydrogen carbonate (28 mM), di-
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Sodium hydrogen phosphate (1.3 mM), L-lactate (2.3 mM) and Sodium Sulfate 

(0.6 mM). After each addition of a solution containing the Eu(III)-complex, 

immediate HTS analysis with the microplate reader has been performed. (Refer to 

experimental part for more details). 

As far as the luminescence emission spectra are concerned, upon progressive 

addition of the citrate, the final emission reached a moderate increase around 23% 

and 16% respectively for complex Eu(L12)OTf and Eu(L13) (Figure 17). 

 

a)  

     

 

 

b)  

 

Figure 17. Average * maximum intensity  vs. [Citrate] concentration plots  for the complexes a) 

[Eu(L12)]OTf 0.1 mM, right: extended range of Citrate up to asympthote, left: citrate up to 0.3 mM 

(Increase≈23%) and b) Eu(L13) 0.1 mM, citrate up to 0.3 mM (Increase≈16%). Emission wavelength:  615 

nm, bandwidth: 20 nm; Excitation wavelength:  328 nm, bandwidth:20 nm, Gain: 109. Fixed background: 

BSA (0.4 mM), Sodium hydrogen carbonate (28 mM), di-Sodium hydrogen phosphate (1.3 mM), L-lactate 

(2.3 mM) and Sodium Sulfate (0.6 mM). * It is referred to an average of luminescence intensity upon 6 

replicas. 
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5.2.4. Sensor membrane for citrate in biosamples 

5.2.4.1. Principle of method 

The last part of my PhD thesis was carried out in the research group of the Dr. A. 

Duerkop (University of Regensburg, Germany) in order to design a sensor 

membrane containing the lanthanide complexes for continuous detection of citrate 

over the time in a flow cell. A preliminary study by means of the high throughput 

screening (HTS) on microplate has been performed to select the most promising 

polymers and Ln-complexes. 

The requirements to select the best couple Ln-complex/polymer must ensure 

several requirements, such as: 1) co-miscibility of the complex (MeOH, DCM 

typically) and the polymer (N,N-DMF, Acetone, MeOH, EtOH, e.g) into the 

solvent to form homogenous mixtures. 2) The suitable polymer strongly protect 

the Ln-complex from the intrusion of the water molecules by reducing the 

quenching and the leakage, over the time. As far as the interaction with the target 

analytes are concerned, since the final purpose is the application in flow cell, 3) a 

short time luminescence response and reversibility of the binding Ln-complex-

analyte are necessarily required.  

The analysis in flow cell involves a suitable spectrofluorimeter equipped with a 

flow cell device. The final application of the analytes in continuos mode by flow 

cell is usually the crucial step for the fabrication of a sensor membrane (def. Ln-

complex on polymeric support). The membranes are cut with a hole puncher 

mounted and protected by a quartz glass inside the flow cell, where the buffer and 

the target solution are alternately introduced by a pump with a speed of 1.5 

mL/min. The response time of the sensor membrane can be reduced, by using 

thinner membranes (up to 30 μm). An indicative example of the response obtained 

with flow cell is depicted in Figure 18. 
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Figure 18. Reversibility of pH sensor membrane from [24] 

 

5.2.4.2. Fabrication of sensor membrane 

In order to produce a sensor membrane, the first requirement is the encapsulation 

of the europium complex in a suitable polymer capable to retain the luminescence 

properties over the time under the physiological conditions (pH, interferents, 

aqueous solution, e.g). The embedding of the probe in polymers should improve 

the overall emission intensity as consequence of lower fluorescence background 

and reduced quenching by the water molecules. In fact, the Ln-complex is 

“protected” towards the effects of the environment. If the analyte of interest is the 

only one molecule capable to diffuse through the polymer, a specific diagnostic 

method is defined, by overcoming the drawback of poor specificity when the 

probe is in solution. 

The procedure for the shallow absorption of the complex on the polymeric support 

involves the so-called “Knife Coating”. The sensor cocktail (≈300 µl; Ln-complex 

0.1-0.2% w/w dissolved in polymer) is homogenously spread on a transparent 

polyester film by means of a metal slat (Knife), in order to get the sensor foil 

(thickness around 30-90 µm) for the measurements. 

The typical polymers should be water-permeable like e.g. hydrogels, Eudragits 

(copolymer of ethyl acrylate, methyl methacrylate and a low content of 

methacrylic acid ester with quaternary ammonium groups), cellulose-based 

polymers or various copolymers of polyurethane (PU), poly ehtyleneglycol (PEG) 

and poly acrylonitrile (PAN).  
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Upon the complete evaporation of the solvent at room temperature (for 12 h) or in 

stove (max 40 °C), the sensor film is treated with the sample solution, in our case 

the citrate solution.  

Another feature to consider is the percentage of leaking of the complex from the 

sensor membrane, which is normally accepted below <10% over a period of 2-3h 

in continuous analysis.  

In order to estimate the leakage, it is possible to simulate the condition of the 

diffusive exchange in flow cell, by means of a microplate whose diameter wells is 

the same of the membrane disc. Several discs are cut from the sensor foil for 

improving the reproducibility, and they are fixed to the bottom of each wells with 

previous leaching of the plate with 10 µl of acetone (Figure 19). 

Upon complete fixing of the membrane discs, the MOPS buffer solution (pH 7.4) 

is added and a fresh measurement of the microplate is performed as initial “zero 

point” of the luminescence. After 2h of hydration, the final leakage is evaluated 

by measuring the overlying buffer solution in a new microplate, and the 

luminescence response is compared with the initial luminescence for calculating 

the percentage of leakage. 
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Figure 19. Left (above): Sensor foil containing a Eu(III)-complex upon illumination with a UV lamp [24], 

right: (above) membrane disc (d:20 mm) for analysis in microplate reader, and (right below) sampler for 

flow cell. Center below: bottom microplate. 

The last requirement for a good sensor membrane is the permeability of the target 

analyte through the sensor membrane, allowing the interaction with the Ln-

complex and thus the luminescence response. With this in mind, a preliminary test 

by using microplate reader could be exploited with the same philosophy of the 

leakage study. The excess of water used for evaluating the leakage is accurately 

removed from the membrane discs and a fresh solution of the target ion (in our 

case a citrate solution) is added for each wells. The plate is immediately analyzed 

to the microplate reader. The new luminescence responses are compared with the 

initial values of the membrane discs without the analyte (after hydration) in order 

to calculate the percentage of emission changes.  

 

5.2.4.3. Results and discussions 

The polymers containing electron- rich acetate groups showed the lower leakage 

over the time (2h) of the Ln-complexes, as already reported in the literature.
25

 

Polymers like polymethyl meta acrylate (PMMA), polyvinyl acetate (PVA) or 

Eudragit (copolymer of ethyl acrylate, methyl methacrylate and a low content of 
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methacrylic acid ester with quaternary ammonium groups)
26

 furnished an efficient 

embedding of the Eu(III) complexes with negligible percentage of leakage (≈5%). 

The most homogeneous distribution of the sensor cocktail on the polyester 

support was obtained by employing a sensor foil thickness of 60 µm. The 

entrapment of the Ln-complex and the interaction with the analyte are supposed to 

involve a diffusive mechanism through the membrane. With this in mind, a 

sufficient swelling of the polymer is crucial: this is hampered when the sensor foil 

thickness is too small (30 µm) or too big (90 µm), since an inhomogeneous 

distribution of the sensor cocktail mostly occurred. Moreover, bigger the thickness 

is, higher is the amount of solvents residue, especially of high boiling solvents, by 

requiring higher temperature in stove or longer evaporation times, not always 

compatible with the stability of the Ln-complex. With this in mind, the 

intermediate thickness value of 60 µm is a good compromise.  

The experimental remarks summarized in Table 6 revealed that the crucial step 

concerning the diffusion of the citrate ion through the sensor membrane, in order 

to ensure the interaction with the embedded Eu-complex. 
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Polymers (P) Solvents (P) Structure (P) Sensor cocktail: 

[Ln-complex]; 

Thickness foils 

% Leakage 

 

∆Lum-Citrate 

Polyvinyl- 

Pyrrolidone 

(PVP) 

10% w/w H2O 

 

Eu(L12)OTf: 0.1 % 

w/w; 60  µm, 90 µm 

>85% Unchanged 

Polyurethane 

(hydrogels): D4, 

D7, D640 

D4: 10% w/w 

EtOH:H2O (9:1); 

D7: 20% w/w 

CHCl3; D640: 10% 

w/w CHCl3 

 

Eu(L12)OTf: 0.1 % 

w/w; 60  µm, 90 µm 

D4: >80% ; D7: 

>70%; D640: >65%; 

 

 

Unchanged 

Polymethyl- 

Methacrylate 

(PMMA) 

 

10 %  w/w CHCl3 

 

Eu(L12)OTf: 0.1 % 

w/w; Eu(L13): 0.2 

% w/w; 60  µm, 90 

µm 

≈2%  

Unchanged 

Polyvinylacetate 

(PVA) 

10 %  w/w CHCl3 

 

Eu(L12)OTf: 0.1 % 

w/w;  Eu(L13): 0.2 

% w/w; 60  µm, 90 

µm 

<2% Unchanged 

Cellulosa 

Acetate 

(CA) 

5 %  w/w N,N-DMF 

 

Eu(L12)OTf: 0.1 

and 0.2 % w/w;  

Eu(L13): 0.2 % 

w/w; 60  µm, 90 µm 

≈2% Unchanged 

PVA/ CA (1:99) 10 %  w/w N,N-

DMF:H2O (9:1) 

 Eu(L12)OTf: 0.18, 

0.5, 0.9, 1.25 % 

w/w; 60  µm, 90 µm 

0.18 w/w: <2%; 0.5 

w/w: <5%; 0.9 and 

1.25 w/w: 25%; 

Unchanged 

D4/ CA (20:80) 10 %  w/w Acetone  Eu(L12)OTf: 0.25 

% w/w; 60  µm. 

25% Unchanged 

D640/ CA 

(10:90);  D640/ 

CA (2:98); 

10 %  w/w CHCl3  Eu(L12)OTf: 0.20 

% w/w; 60  µm. 

20%; 10% Unchanged 

Eudragit RL 

100 

10 %  w/w Acetone 

 

Eu(L12)OTf: 0.10 

% w/w; 60  µm. 

70% Unchanged 

Eudragit RS 100 10 %  w/w Acetone  Eu(L12)OTf: 0.10, 

0.2 % w/w;  

Eu(L12)Cl: 0.10% 

w/w; Eu(L12)OTf: 

0.10% w/w; 

Eu(L9)Cl: 0.10% 

w/w. 60  µm. 

<3% Eu(L12)OTf: (0.2% 

w/w ) fresh sample 

in buffer: 5%; after 

20h in buffer: 30%; 

after 20h in matrix: 

23%; 

Eudragit RS:RL 

100 (90:10) 

10 %  w/w Acetone  Eu(L12)OTf: 0.10, 

0.2, 0.3 % w/w. 60, 

90  µm. 

5% Unchanged 

Table 6. Sensor membrane in polymers. Ln-complex.: dissolved in MeOH 2% v/v; % Leakage respect to the 

Luminescence of polymeric residue after 2h in MOPS buffer (pH: 7.4, NaCl: 0.9% w/v); [Citrate]: 

[Complex] ≈(1:3). 

Upon several attempts, the major part of the obtained results ruled out an 

instantaneous luminescence response upon the interaction of the Eu-complex with 

the Citrate ion. Nevertheless, as long as the more water-permeable Eudragit RS-
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100 is used as polymeric support, the prolonged time reaction allowed the 

diffusion, by furnishing a moderate luminescence increase around 30% (Figure 

20). 

This promising results obtained for the Eu(L12)OTf complex, unfortunately, 

must be re-evaluated in the light of the required short time of response and 

reversibility of the probe-analyte interaction. In fact, prolonged and vigorous 

washings with buffered solution are not sufficient to displace citrate molecule 

from the inner coordination sphere of the metal ion.  

In each disk of sensor foil settled in the bottom of the microplate, just a part of the 

initial starting solution of the complex (0.2 % w/w) dissolved in polymer is 

capable to stay in the polyester support. The fraction of embedded Eu-complex is 

estimated by comparing its luminescence response in polyester support (upon 

addition of fresh buffer above the sensor foil disk) with the emission intensities of 

a solution of the same Ln-complex at known concentration, rigorously upon the 

same instrumental conditions. Afterwards, upon the estimation of the real 

concentration of the embedded Eu-complex, both citrate solution and components 

of extracellular fluid have been proportionally added according to their 

physiological concentration in complex matrix.        
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a) 

 

 b) 

 
Figure 20. Response of the sensor cocktail containing the Eu(L12)OTf upon 19 h of interaction with Citrate 

solution. Ratio Ln-complex:citrate (1:3). a) Background solution: MOPS buffer pH 7.4, NaCl 0.9% w/v; b) 

Background solution: buffered mixture of the ECF containing BSA, NaHCO3, L-lactate, Na2HPO4, Na2SO4]. 

Thickness sensor foil: 60 µM, d: 20 mm. The concentration of each components has been added at the same 

ratio used for the sensing experiment in solution without embedding the complex in polymer Eudragit RS-

100. 
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5.2.4.4. Conclusions 

The experimental remarks have revealed the Eu(III)-complexes based on 

isoquinoline  rings are the most promising optical probes for detection of citrate 

ion both in buffer and in extracellular fluid.  

The luminescence responses of the two probes have been proved in the presence 

of the main interferents of the ECF. The effect of the citrate on the luminescence 

changes has been studied in the simultaneous presence of other interferents by 

revealing that the overall luminescence intensity is the sum of the individual 

intensities of the adducts present in solution, and the changes in the luminescence 

response should take into account the change of the concentration of the adducts 

during the titration.  

As far as the sensing experiment with the complex Eu(L12)OTf embedded in 

Eudragit RS-100 (0.2 % w/w of Eu(L12)OTf in polymer), upon addition of 

citrate, a moderate luminescence increase around 25% has been detected both in 

buffer and in ECF. Probably the encapsulation in polymer decreases the overall 

change of the emission intensity as observed when the probe was a complex 

solution for the detection of citrate. In addition to the low data reproducibility of 

the technique, even the long time response to citrate (at least 20 h) and the non-

reversibility of the probe-analyte interaction also after prolonged and vigorous 

washings in buffered solution are other important drawbacks to overcome. 

Concluding, an innovative optical probe for citrate, based on the advantageous 

lanthanide luminescence has been discovered by revealing a good response both 

in simple buffered solution (pH 7.4; NaCl 0.15 M) that in a simulated human 

extracellular fluid, with an average binding constant comparable with the values 

reported in literature. Nevertheless, a reliable sensor membrane for continuous 

detection of citrate is quite far to be obtained. Further studies should improve 

features such as: i) the permeability of the membrane towards the analytes, ii) the 

rate of diffusion through the membrane and iii) the homogeneousity of the sensor 

foils often suffering of a low data reproducibility. With this in mind, some 

improvements could be obtained by using robotic equipment to get higher quality 

sensor film. 
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 Experimental part: procedures, techniques and 5.3.

characterization 

5.3.1. Materials 

The main suppliers were Roth, Merck and Sigma-Aldrich; the purity of reagents 

and solvents was predominantly above 99%. 

The water was obtained in high purity from the ‘Millipore Elix 10’ purification 

system.  

4-Morpholinepropanesulfonic acid (MOPS) buffer 15 mM was dissolved in 

purified bi-distillate water, by adding 0.9% m/v NaCl for obtaining the ionic 

strength in physiological conditions. The pH value was corrected to physiological 

range by dropwise addition of freshly prepared NaOH 10 M until pH≈7.4. Stock 

solution of Bovine Serum Albumin (BSA) (purity ≥ 99%, purchased from Roth) 

was freshly prepared by dissolving the protein in MOPS buffer (pH≈7.4). The 

complete dissolution of BSA was reached without mechanical shaking, but just 

after 20-25 min with spontaneously diffusion in buffer. Upon dissolution, the 

protein solution was kept in the dark at 4
◦
C before use.  

All other anionic solutions were freshly prepared by dissolution in MOPS buffer 

by means of sonication so far as was required. 

 

5.3.2. Luminescence and decay kinetics measurements 

In Regensburg Biosensor Department: a Synergy Neo 2 Hybrid Multi-Mode 

(Biotek company) plate reader was used for all the luminescent measurements. 

The main read methods used were mostly endpoint and spectra scanning. The first 

one to collect the maximum luminescence intensity in a specific wavelength 

emission (612-615 nm), upon excitation in the antenna wavelength of the Eu-

complexes employed (328 nm). The spectra scanning were exploited to get the 

complete emission spectra between 550-730 nm. 

All measurements were collected with temperature control between 23-25 °C. 

The instrument is equipped with a light source based on a Xenon flash lamp, and 

the detector is constituted by a top/bottom monochromator system, for this reason 

no filters were used to avoid the second orders of the light. The monochromator 
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bandwidths used are variable, from 3 to 50 nm with 1 nm of increment. The 

emission and excitation bandwidth were respectively 20/20 nm. 

The plates were purchased from Greiner Bio-One GmbH (code 655809) and were 

made of COC (Cyclic Olefin Copolymer). The 96 wells (d:0.6 mmm) black plates 

with transparent bottom were mostly employed for acquiring also the absorbance 

measurements, since they were suitable to avoid interference excitation in our 

antenna wavelengths excitation (λ: 325-328 nm, Abs≈0.06). Furthermore, in order 

to increase the efficiency and the reproducibility of the measurements, an 

Eppendorf Multipette 20-200 µl equipped with 8 channels volume was adopted 

for all the luminescence experiments. The TPP (Tissue Culture Test Plates, 

polystyrene) 24 wells (d: 20 mm) transparent plates were used for measuring the 

sensor foils luminescence.  

 

5.3.3. Sensing experiments 

All the luminescence measurements employed a fresh solution 0.4 mM of the 

Eu(III) complex previously dissolved in 1.5% v/v of MeOH and diluted in MOPS 

buffer (pH:7.4, 0.9% m/v NaCl) up to 0.1 mM. All titrations were performed with 

the addition of the metal complex as last component of the sample, and readily 

measured with Biotek microplate reader. 

Bicarbonate sensing in MOPS buffer 15 mM, pH=7.4, 0.9% p/v NaCl: a starting 

solution 50 mM of Sodium hydrogen carbonate (Merck) was opportunely diluted 

as well as was required. Since the typical concentration of the analyte in 

extracellular fluid is between 24-27 mM
27

 an extended range between 1.7-35 mM 

was examined until the complete saturation of the complex for the calculations of 

the binding constants.  

Citrate sensing in MOPS buffer 15 mM, pH=7.4, 0.9% p/v NaCl: a mother 

solution of the tri-Sodium citrate dihydrate (Merck) 10 mM was opportunely 

diluted as well as was required. A wide range for the addition of the citrate 

between 0.001-5 mM including the extracellular concentration 0.3 mM
27

 was 

narrowly explored to reach the complete saturation of the complex for the 

calculations of the binding constants.  
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Citrate sensing in artificial extracellular fluid (inorganic components mostly) in 

MOPS buffer 15 mM, pH=7.4, 0.9% p/v NaCl: the affinity of the most promising 

bioanalyte for the Eu(III) complexes was pushed in a multicomponent 

environment. A background containing a mixture of anions and serum albumin 

(BSA) was fixed in all the experiment.  

The investigated anions were in their typical extracellular concentrations, and the 

serum albumin was present at its normal concentration of 0.4 mM. Incremental 

additions of Sodium Citrate were made up to a limit of 2 mM, in the emission 

intensity of the bands at 550-730 nm (red-emission of trivalent Europium). Thus, 

an 0.1 mM total concentration of the Eu(III) complex was added to a background 

solution containing BSA (0.4 mM), Sodium hydrogen carbonate (28 mM), di-

Sodium hydrogen phosphate (1.3 mM), L-lactate (2.3 mM) and Sodium Sulfate 

(0.6 mM) and immediately analyzed on microplate reader. 
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Final Conclusions 

The new library of luminescent Ln(III)-complexes (Ln=Eu, Tb) synthetized and 

characterized in this PhD project revealed interesting properties for biosensing 

applications. All the complexes are water soluble and stable at physiological ionic 

strength and pH. The overall stability constants found are quite high and in 

accordance with values found in literature for similar complexes and conditions. 

On the other hand, when the Ln-complexes were not water soluble, the 

encapsulation in biocompatible PLGA nanoparticles (Chapter 3) were used as a 

useful study for imaging purposes.  

The combined thermodynamic and DFT studies show that the tri-acetate ligands 

form more stable lanthanide complexes than the di-acetate ones. This is 

essentially due to the oxophylic character of Ln(III) ions, which prefer to bind 

ligands containing more oxygen donating atoms. The steric hindrance at the metal 

ion is also important and it reduces the stability of the di-acetate complex with 

quinoline rings. On the other hand, the Isoquinoline complexes possess a stability 

which is in the middle between the one of Pyridine and Quinoline complexes. 

All complexes in aqueous solution are 8-fold coordinated, showing two water 

molecules in the first coordination sphere and one 6-fold coordinating chiral 

ligand. These water molecules are usually displaced by the target biomarkers, by 

modulating the luminescent intensity stemming from the optical probe.  

As far as the sensitization mechanism is concerned, while the pyridine ring is 

capable to sensitize both Eu(III) and Tb(III) luminescence, the quinoline and 

isoquinoline rings effectively sensitize only Eu(III) ion. With this in mind, a 

crucial feature to consider during the design of the luminescent probes concerns 

the choice of the metal center and of the heteroaromatic antenna. 

The number of components of the Eu(III) 
5
D0 →

7
F0 transition (only one) and the 

luminescence decay curves, properly fitted by a single exponential function 

confirm the existence of one main emitting species in solution. 
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Moreover, as far as the total quantum yields of our optical probes are concerned, 

their values are in agreement with the values found in literature for cell imaging 

with either lanthanide or d-block complexes (around 10%). Even the sensitization 

efficiency (ηsens) are higher for pyridine- (61-66%) than for quinoline-based (29-

40%) complexes, which may be attributed to the longer Ln(III)-Nheterocyclic bonds 

in the latter ones, which get worse the probability of the ligand to metal energy 

transfer. In fact, the significant increase of the Y(III)-Nheterocycle bond distance, 

when Py is replaced by quinoline (∆Py→Q ~ +0.11 Å), indicates the weaker 

interaction of the quinoline with respect to pyridine ligands with the metal ion.  

(DFT calculations, Chapter 4).  

As far as the potential application in biosensing field, all the Ln-complexes have 

been designed with 6–fold coordinating ligands with displaceable solvent 

molecules by target molecules present in the biological fluids. It is worth noting 

that except the Isoquinoline and quinoline derivatives, the other pyridine-based 

Ln-complexes gave a luminescence response upon excitation around 270 nm. This 

excitation wavelength is not suitable for sensing experiments in biological fluid, 

since the majority of the bio-chromophore absorbs light around 300 nm.  

Moreover, the chiral DACH backbone allowed a further characterization by 

means of CPL spectroscopy, as shown in the chapter 3 where the results of a study 

on tta-based complex of Eu(III) and Sm(III) are presented.  

The bioanalytes under investigation have been the components of the extracellular 

fluid at their typical concentration range. Among the main components of the 

ECF, the first encouraging response has been obtained for the sensing of the 

bicarbonate ion. The diacetate Eu/Tb(L9)Cl and Eu(L11)OTf complexes show a 

logK values higher than 4, an unprecedented value in the literature. In addition, 

the luminescence response towards HCO3
-
 is particularly selective in the 2-10 mM 

concentration range of the analyte. This range of concentration is related to 

serious kidney disease (metabolic acidosis).  

Another investigated component of the ECF has been the serum albumin, for 

simplicity the homologous Bovine Serum Albumin (BSA) was used. In this study, 
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the Eu(L9)Cl (1R, 2R) and Eu(L11)OTf (1R, 2R) complexes revealed an opposite 

trend of the Eu(III) luminescence response despite the same experimental 

conditions. The Eu(L9)Cl complex showed a drastic decrease of the luminescence 

intensity during the progressive addition of the protein, whereas the Eu(L12)OTf 

complex revealed a considerable luminescence increase (≈80%) with the 

increasing addition of the BSA. Docking studies revealed that the luminescence 

changes observed for Eu(L12)OTf complex interacting with BSA foresee the 

displacement of one water molecules from the metal center by the coordinating 

groups of the protein (the carboxylic group of the GLU17 residue). On the other 

hand, the luminescence changes in the case of the Eu(L9)Cl complex have been 

explained by a protein/complex interaction which takes place on the surface of the 

protein, that influences the efficiency of the energy transfer from Py to lanthanide 

ion.  

The diacetate and triacetate complexes based on Isoquinoline rings have been 

particularly promising for signalling the citrate ion at its typical extracellular 

concentration. A considerable enhance of the emission intensity ≈1.5 fold the 

initial luminescence emission has been detected for both Eu(L12)OTf and 

Eu(L13) complexes, with higher probe-citrate binding constant for the diacetate 

complex. Although the drastic decrease of the luminescence signal respect to the 

trials in simple buffer, a moderate increase of the intensity of the 
5
D0→

7
F2 

transition (≈20%) is still appreciated for both Eu(L12)OTf and Eu(L13) 

complexes when citrate is added to a background matrix simulating a real serum 

fluid. 

The embedding and the diffusion of the citrate through the most permeable 

Eudragit RS-100 polymer could be the key points for prolonging the stability of 

the Eu(L12)OTf over the time in view of the design of a reusable sensor 

membrane for citrate ion. Nevertheless, the low data reproducibility of the sensor 

membrane and an average low luminescence increase (around 25%) for both 

experiments in buffer and in extracellular matrix are strong drawbacks to 

overcome for obtaining a competitive method to detect the citrate ion in biological 

samples. 
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As far as the detection of the other main components of the ECF, a negligible 

contribution has been evidenced for phosphate, sulphate and L-lactate. 

In the future, it is worth developing new optical probes containing antennae 

capable to absorb around 350-400 nm, such as Ln-complexes based on coumarin 

or azaxanthone rings. With this in mind, a reliable inspiration for Tb(III)- 

complexes based on azaxanthone as antenna is widely discussed in the work of 

Atkinson and co-workers.
28
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