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The olfactory neuroepithelium is located in the upper vault of the nasal cavity, lying on the
olfactory cleft and projecting into the dorsal portion of the superior and middle turbinates
beyond the mid-portion of the nasal septum. It is composed of a variety of cell types
including olfactory sensory neurons, supporting glial-like cells, microvillar cells, and basal
stem cells. The cells of the neuroepithelium are often intermingled with respiratory and
metaplastic epithelial cells. Olfactory neurons undergo a constant self-renewal in the
timespan of 2–3 months; they are directly exposed to the external environment, and thus
they are vulnerable to physical and chemical injuries. The latter might induce metabolic
perturbations and ultimately be the cause of cell death. However, the lifespan of olfactory
neurons is biologically programmed, and for this reason, these cells have an accelerated
metabolic cycle leading to an irreversible apoptosis. These characteristics make these
cells suitable for research related to nerve cell degeneration and aging. Recent studies
have shown that a non-invasive and painless olfactory brushing procedure allows an
efficient sampling from the olfactory neuroepithelium. This approach allows to detect
the pathologic prion protein in patients with sporadic Creutzfeldt–Jakob disease, using
the real-time quaking-induced conversion assay. Investigating the expression of all the
proteins associated to neurodegeneration in the cells of the olfactory mucosa is a
novel approach toward understanding the pathogenesis of human neurodegenerative
diseases. Our aim was to investigate the expression of α-synuclein, β-amyloid, tau,
and TDP-43 in the olfactory neurons of normal subjects. We showed that these
proteins that are involved in neurodegenerative diseases are expressed in olfactory
neurons. These findings raise the question on whether a relationship exists between
the mechanisms of protein aggregation that occur in the olfactory bulb during the early
stage of the neurodegenerative process and the protein misfolding occurring in the
olfactory neuroepithelium.
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INTRODUCTION

Olfactory brushing is a novel and non-invasive procedure for
sampling neurons of the olfactory mucosa (OM). OM sampling
is useful for the in vivo diagnosis of human prion diseases.
In fact, OM samples obtained from patients with Creutzfeldt–
Jakob disease and tested using the real-time quaking-induced
conversion (RT-QuIC) assay provides a diagnostic accuracy of
nearly 100% (Orrú et al., 2014; Zanusso et al., 2016). The amount
of cells collected by a single sampling was one million of the
total cells, and around 30% of them were immunopositive for the
olfactory marker protein (OMP) (Orrú et al., 2014).

Olfactory mucosa is composed of neural cells; these originate
from stem neural cells, which mature as glial or neuronal
cells under the influence of specific growth factors. The
pseudostratified neuroepithelium is made up of olfactory
sensory neurons (ONs), supporting cells, microvillar cells,
basal stem cells, and Bowman’s gland ductal components. The
underlying connective lamina propria includes Bowman’s gland
bodies, axonal fibers, and blood vessels (Welge-Lussen and
Hummel, 2014). Olfactory neurons have an average lifespan of
approximately 60 days (Sultan-Styne et al., 2009; Brann and
Firestein, 2014) and are constantly replaced by younger neurons
deriving from basal stem cells.

The ONs are slender bipolar cells with modified, non-
motile sensory cilia, which have a primary role in the
olfactory transduction process. ON axons, passing through
the cribriform plate, project to the olfactory bulb, which is
the first relay of the olfactory information. The second-order
neurons (mitral and tufted cells) project to different olfactory
areas (i.e., anterior olfactory nucleus, pyriform cortex, amygdala,
and entorhinal cortex). The olfactory information spreads to
associated neocortical areas involved in higher-order information
processing (e.g., orbitofrontal cortex).

In the healthy aging population, olfactory dysfunction is
commonly due to different causes such as multiple damages
to the olfactory epithelium by microbial and/or environmental
factors, age-related epithelial atrophy, and ossification of the
foramina of the cribriform plate (Doty et al., 2014; Pinto
et al., 2015). However, recent studies showed that an impaired
olfactory function might predict a cognitive decline associated
with a subclinical neurodegenerative process among older adults
(Dintica et al., 2019). In most neurodegenerative diseases,
hyposmia or anosmia occurs long before the onset of clinical
signs. In patients with Parkinson’s disease (PD), the olfactory
impairment might precede the motor dysfunction by many

years (Haehner et al., 2007; Doty, 2012) and correlates with
a decline in cognition (Cecchini et al., 2016, 2019; Iannilli
et al., 2017; Masala et al., 2018). Furthermore, in Alzheimer
disease (AD), the extent of olfactory dysfunction might
predict the conversion of mild cognitive impairment to AD
(Devanand et al., 2008). Thus, in the aforementioned conditions,
olfactory deficit might be considered a prodromal symptom of
neurodegeneration.

Several neuropathologic studies showed that the aggregation
and deposition of proteins, such as α-synuclein, β-amyloid,
hyperphosphorylated tau, and transactive response DNA-binding
protein 43 (TDP-43) may occur within different parts of the
olfactory system (Rey et al., 2018). In healthy individuals, protein
misfolding may occur early in life, and chronic exposure to
air pollutants might accelerate the protein aggregation. It has
been also suggested that AD and PD pathology may occur in
the olfactory bulbs as a result of inhalation of air pollutants
(Calderón-Garcidueñas et al., 2019).

All together, the above data support the concept that ONs may
serve as an ideal model for the analysis of early molecular stages of
neurodegeneration. Earlier morphological studies of human OM
were carried out using preparations of bioptic or autoptic mucosa
(Morrison and Costanzo, 1990; Talamo et al., 1991; Trojanowski
et al., 1991; Paik et al., 1992; Lee et al., 1993; Brouillard et al.,
1994; Crino et al., 1995; Feron et al., 1998; Witt et al., 2009;
Hummel et al., 2010; Holbrook et al., 2011; Funabe et al.,
2013; Tanos et al., 2017). However, inherent to the technique
of nasal biopsy, there are several limitations, for example,
invasiveness, technical difficulties, and medical complications.
Thus, to harvest ONs, we have used the technique of olfactory
brushing, a harmless and non-invasive procedure. Using this
approach, we are able to bypass the potential complications of a
biopsy procedure.

The aim of the present study is to characterize specific
phenotypic markers of the human olfactory cells by
immunocytochemistry, which is the detection of the OMP,
β-tubulin III (TUJ-1), protein gene product 9.5 (PGP 9.5), and
the cytokeratins. Furthermore, with the aid of these markers, we
determined the expression pattern of the following proteins, well
known to be involved in neurodegenerative diseases: α-synuclein,
β-amyloid, tau, and TDP-43.

To our knowledge, the present study is the first to investigate,
in living healthy young and elderly human subjects, the
phenotypes of primary ONs, relative to the specific proteins that
may be involved in the neurodegenerative cascade, during aging,
and in dementia.

TABLE 1 | Primary antibodies used for immunophenotypic characterization of olfactory brushing samples.

Antibody Host Antigen Code (clone) Company Working dilution

Anti-OMP Rabbit polyclonal Olfactory marker protein sc-67219 (FL-163) Santa Cruz 1:400

Anti-OMP Mouse monoclonal Olfactory marker protein sc-365818 (B-6) Santa Cruz 1:400

Anti-OMP Goat polyclonal Olfactory marker protein 544-10001-WAKO Wako 1:400

Anti-β-tubulin III Rabbit polyclonal aa residues 441–450 of β-tubulin class III T2200 (TUJ-1) Sigma-Aldrich 1:400

Pan-cytokeratin Mouse monoclonal All isoforms of cytokeratin protein MA5-15507 Thermo Fisher Scientific 1:300

PGP 9.5 Rabbit polyclonal Ubiquitin carboxy-terminal hydrolase L1 Z5116 DAKO 1:300
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TABLE 2 | Primary antibodies used for characterizing the expression of distinct neurodegeneration-associated proteins.

Antibody Host Antigen Code (clone) Company Working dilution

Anti-α-synuclein Mouse monoclonal Full-length human α-synuclein ab1903 (4D6) Abcam 1:750

Anti-APP Mouse monoclonal aa residues 1–16 of β-amyloid precursor protein SIG-39320 (6E10) Covance 1:200

Anti-tau 5 Mouse monoclonal Total microtubule-associated protein tau AHB0042 (tau-5) Thermo Fisher Scientific 1:500

Anti-4R tau Rabbit monoclonal aa residues 250–350 of 4R isoform of tau ab218314 (EPR21725) Abcam 1:500

Anti-3R tau Mouse monoclonal aa residues 209–224 residues of 3R isoform of tau 05-803 (8E6/C11) Merck Millipore 1:500

Anti-TDP 43 Rabbit polyclonal aa residues 1 to 260 of TAR DNA-binding protein 43 10782-2-AP Proteintech 1:200

FIGURE 1 | Pattern of immunolabeling by olfactory marker protein (OMP) and β-tubulin III (TUJ-1) in cell obtained by olfactory brushing. Sample harvested by
olfactory brushing and analyzed following centrifugation. Double immunostaining with OMP (green) and TUJ-1 (red). Several cells with different morphology showed a
cytosolic positivity to OMP. Most of round cells and non-neural-shaped cells show an intense positivity in the cytoplasm, while olfactory neurons show a faint granular
pattern. In contrast, TUJ-1 stains mainly the neural processes, in particular, the axonal hillock of cells, identified as olfactory neurons [outlined square in (A) details in
(B)]. Weak cytosolic positivity is also observed in the apical portion of supporting-like cells. Scale bar (A): 20 µm. Scale bar (B): 10 µm.

MATERIALS AND METHODS

Recruitment and Eligibility
Thirty healthy volunteers underwent nasal swabbing. These
included 15 males (mean age: 50.4 years; range: 22–78 years)

and 15 females (mean age: 54.2 years; age range: 19–79 years).
Exclusion criteria were the presence of pathologies affecting the
olfactory function (e.g., recent head trauma, rhinitis or chronic
sinus infection, diabetes, stroke, history of smoking, and alcohol
consumption). Olfactory brushing was performed following the
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approval of the ethical committee of the University Hospital
of Verona (Prot. n. 28917, June 15, 2012). OM sampling was
performed after each subject gave a written informed consent.

Olfactory Brushing and
Immunocytochemistry Procedures
Olfactory mucosa samples were obtained by nasal brushing,
as reported (Orrú et al., 2014; Bongianni et al., 2017). Briefly,
following nasal inspection using a rigid endoscope, olfactory cells
were collected by means of a specifically designed flocked nasal
brush (FLOQBrushTM, Copan Italia Spa, Brescia, Italy).

After sampling, the swab was immediately immersed in a 15-
ml Falcon tube containing fixative solution (Diacyte, Diapath,
Italy). A brief treatment with mucolytic CytoRich Red (Diapath
S.p.A., Italy) was carried out to solubilize the proteins.

The cellular pellet was washed by serial passages in
phosphate-buffered saline solution (PBS) and the cell suspension
cytocentrifuged (CYTOSPIN IV, AHSI, Italy) onto microscope
slides. Slides were preincubated for 1 h in a blocking solution
(5% of normal serum of the same animal species of secondary
antibody generation, 0.3% of Triton X-100 in 0.1 MPBS).
Primary antibodies (listed in Tables 1, 2) were diluted in
blocking solution and incubated overnight at 4◦C. After three
washings of 5 min each, goat anti-mouse and goat anti-rabbit
or donkey anti-goat and donkey anti-rabbit secondary antibodies
Alexa Fluor-conjugated (diluted 1:1,000; Life Technologies,
Carlsbad, CA, United States) were incubated for 1 h at room
temperature. Nuclear DAPI counterstain (1:2,000) at 405-nm
emission wavelength was supplied directly before mounting the

slides with ProLong Antifade Mountants for fixed cells (Thermo
Fisher Scientific Inc., Italy). The non-specific immunostaining
of secondary antibodies was controlled in each immunostaining
session by omitting the first antibody. Slides were observed at
confocal inverted Leica TCS SP5 AOBS microscope using 40×

and 63× oil immersion objectives (1.25 NA). Images were saved
as tiff files; brightness and contrast were adjusted with the Leica
Application Suite Advanced Fluorescence (LAS AF) Software
(Leica Mycrosystems, Wetzlar, Germany), with ImageJ (NIH,
Bethesda, MD, United States) or ImarisX64 7.2.1 (Bitplane AG,
Zurich, Switzerland).

RESULTS

The immunocytochemical characterization was carried out in
OM samples obtained from all the subjects included in the study.
Although inter- and intra-subject variability was observed in the
number of collected cells, the quality of immunocytochemical
pattern was identical and reproducible in all samples analyzed.
This evidence was consistent relative to the expression patterns
of the specific ON proteins as well as for α-synuclein, β-protein,
tau, and TDP-43.

Phenotypic Characterization of the
Epithelial Cellular Samples
To ensure that the cellular collection was done on the olfactory
area, we first assessed the cellular expression of OMP and neuron-
specific class III β-tubulin. OMP immunoreactivity was mainly
intracytoplasmic with a homogenous distribution array, while

FIGURE 2 | Immunocytochemical analysis of a cytocentrifuged sample of olfactory mucosa (OM) using OMP (green) and PCK (red). While OMP stains round and
non-neuronal-shaped cells, PCK preferentially stains the whole apical dendritic projection of olfactory neurons [outlined square (A) up to the cilia boundary (detail B)].
Interestingly, in ONs, the immunopositivity with PCK is distributed on the opposite side of that obtained with β-tubulin III. In the other cells, PCK expression is
distributed on the boundary of the cell body, all along the plasma membrane (arrows) of cells that have a round shape. Scale bar (A): 20 µm. Scale bar (B): 10 µm.
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TUJ-1 showed a main axonal pattern tracking the extension of
the neural process emerging from the axonal hillock (Figure 1).
Further, non-neuronal-shaped cells, most likely the supporting
cells, showed positivity to the OMP antibody.

In addition, we examined the expression of pan-cytokeratin
(PCK), a typical epithelial marker, and that of the PGP 9.5, a
cytoplasmic protein in neurons and neuroendocrine cells. PCK
antibody revealed a positive signal in all the epithelial cells
(Figure 2). In neuronal-shaped cells, PCK was more intense
in the cytosolic compartment, and the main positivity was
observed on the superior dendritic projection. In contrast, non-
neuronal-shaped cells showed more evident staining on the
plasma membrane (Figure 2). The sample characterization had
been last achieved by the combination of both PCK and PGP
9.5 markers (Figure 3). PGP 9.5 positivity sporadically revealed

a coin-shaped staining pattern in the cytosolic apical pole of
supporting cells (Figure 3). The morphology of these large
and columnar cells is different from the thin and fused-shaped
ONs whose apical part clearly shows the dendritic knob. A few
neuronal-shaped cells showed a less intense PGP 9.5 positivity
(Figure 3B, asterisk).

Neurodegeneration-Associated Protein
Expression Pattern
α-Synuclein
The α-synuclein is an unfolded 140-amino acid protein encoded
by the SNCA gene and with a function not completely known.
The distribution of the protein is ubiquitous, but it is mainly
expressed at the tips of neurons as a pre-synaptic protein.

FIGURE 3 | Distribution pattern of PGP 9.5 and PCK. PGP 9.5 (red) shows a dotted positivity mostly in the cytosol of cells with sustentacular-like morphology and
less intensely in olfactory neurons (*, square detail). PCK (green) positivity is also identified in the cytosolic compartment of olfactory neurons and on the plasma
membrane of other cells with non-neuronal morphology (arrows). Scale bar (A): 20 µm. Scale bar (B): 10 µm.
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The expression of α-synuclein in the olfactory samples was
determined by 4D6, a monoclonal antibody that, generated from
the non-modified full length of α-synuclein, binds all the isoforms
of the protein, regardless of the post-translational modification.
As shown (Figure 4), the expression pattern of α-synuclein
in non-neuronal-shaped cells was detected around the cellular
membrane, while in neuronal-shaped cells, α-synuclein showed
a predominantly granular positivity, which was visualized in
the cytosol, in particular, at the level of the dendritic knob
(Figure 4B, arrow).

β-Amyloid
APP gene encodes for the amyloid precursor protein, a
transmembrane glycoprotein of 770 amino acids, which is
processed through sequential cleavages performed by different
secretases. The peptide β-amyloid derives from APP by sequential
cleavages of β- and γ-secretase. APP is widely expressed in human

tissues with preferential expression in the central nervous system
(Wang et al., 2017). The 6E10 mAb reacts to residues 1–16
of β-amyloid.

We found that the 6E10 immunoreacted with TUJ-1-positive
ONs showing a dot-like distribution, around the nucleus and at
the level of the surface tip of the cell (Figures 5A,B, arrows). Some
non-neuronal-shaped cells show a faint positivity.

Tau
Tau is a microtubule-associated protein (MAP) and its function
is that of binding to the microtubules and stabilizing them. In the
adult human brain, six tau isoforms are generated from MAPT,
the tau gene, through alternative messenger RNA (mRNA)
splicing. Alternative splicing of exon 10 gives rise to three
isoforms with three microtubule-binding repeats (3R) each and
three isoforms with four microtubule-binding repeats (4R) each
(Goedert et al., 1989).

FIGURE 4 | Immunocytochemical pattern of α-synuclein distribution in OM samples. Alpha-synuclein (4D6, red) shows a diffuse cytosolic distribution as well as a
granular labeling around the margin of the plasma membrane of olfactory neurons and non-neuronal-shaped cells. Particularly, olfactory neurons show a thin
granular labeling particularly localized at the dendritic knob [outlined square in (A), arrow in detail in (B)]. In the other cells, OMP-positive (green) α-synuclein shows a
positivity around the plasmatic membrane. Scale bar (A): 20 µm. Scale bar (B): 10 µm.
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FIGURE 5 | Distribution pattern of β-amyloid. Double immunostaining with TUJ-1 (green) and mAb to β-amyloid (red). Beta-amyloid shows a focal expression
(dot-like) in the proximity of the nucleus and at the level of the surface tips of the olfactory neurons [outlined square in (A), details in (B), arrows]. Scale bar (A):
20 µm. Scale bar (B): 10 µm.

Using immunostaining, total tau mAb (tau-5) was detected
in the neuronal-shaped cells TUJ-1 positive with a cytosolic
localization (Figure 6). The tau expression pattern was
intracellular with a patched distribution along the cell body.
Conversely, using antibodies to distinct tau isoforms, a positivity
for 4R tau isoform in olfactory neurons was observed. This
was remarkable within the area underlying the olfactory knob
(Figures 7A,B, arrows). In contrast, 3R tau expression was
unevenly clustered only in some rare round cells, which were
likely to be basal stem cells (Figures 7C,D, asterisks).

TDP-43
TDP-43 is a protein involved in the regulation of RNA processing.
TDP-43 plays a role in transcription, alternative splicing, and
mRNA stability. It is involved in various cellular processes,
including apoptosis, cell division, and axonal transport. It is
reported that in addition to being expressed in neurons, TDP-
43 is abundantly expressed also in glia, as well as in many other
cell types (Kawakami et al., 2019). TDP-43 immunostaining was

detected in the nucleus. The intranuclear distribution of TDP-43
was intense; however, the immunolabeling revealed also weaker
positive grains in the cytosol around the nucleus (Figure 8).

DISCUSSION

Olfactory impairment is recognized as a prodromal symptom
in patients with neurodegenerative diseases. Thus, the olfactory
system, and particularly the OM, may be considered as a
peripheral neural tissue sentinel that allows exploring the
trajectory of neurodegeneration in vivo and its pathogenesis.

In the present study, we showed that the human olfactory
neuroepithelium might be easily sampled by the olfactory
brushing technique. Through the latter, it is easy to collect ONs
and other cells from neuronal lineage that can be used for
cytological and immunocytochemical investigations. Olfactory
brushing allows a gentle collection of OM, is easily performed,
non-invasive, non-traumatic, and painless. The collected cells
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FIGURE 6 | Distribution pattern of tau-5. Tau protein (tau-5) expression (red) is mainly detected in the cytosol of β-tubulin III-positive cells (green). Tau-5
immunopositivity is distributed along the neuronal body with particular intensity in the perinuclear region [outlined square in (A); detail in (B), arrows]. Scale bar (A):
20 µm. Scale bar (B): 10 µm.

show a well-preserved morphology, enabling the recognition of
ONs, which are characterized by a typical bipolar slender shape
and are different from other harvested cellular components.
In addition, it is noteworthy that the characterization of the
cell components of the OM in humans and in animal models
is important because it may provide novel insights about
interspecies differences (Hodge et al., 2019). Since the types of
harvested cells in each sample may vary, and the cell number
may not be sufficient for the identification of cell types by
morphological criteria, the first aim of our study focused on the
search of specific neuronal markers that characterize the cytologic
immunophenotype of the ONs; such markers would allow a
distinction between ONs and other cellular components.

The following three important results (A, B, and C) were
obtained from our studies directed to the first aim. (A) We
confirmed that TUJ-1 directed to anti-class III β-tubulin is a
reliable marker to identify ONs, as previously reported by studies
of biopsy and autopsy tissue (Holbrook et al., 2011; Tanos et al.,
2017). (B) We showed that PGP 9.5, a neuronal-specific marker,
labeled ONs. Punctate staining was detected in the cytoplasm.

This pattern appears to be different in other ciliated and tubular
cells that showed a round staining in the cytoplasm. This
labeling pattern confirms previous results obtained in human
tissue (Johnson et al., 1997; Witt et al., 2009; Holbrook et al.,
2011). These showed that both β-tubulin IV, a marker of the
respiratory epithelium, and PGP 9.5 labeled non-neuronal cells.
However, it cannot be ruled out that these cells that do not
have a neuronal-shape but are found to be PGP 9.5 positive
might be immature neurons or isolated metaplastic ONs. (C)
Polyclonal antibodies directed to the OMP-labeled cytosol of ONs
as previously reported (Witt et al., 2009; Holbrook et al., 2011);
however, non-neuronal-shaped cells were also immunolabeled by
the same antibodies. Although the physiological roles of OMP
are not fully understood (Nakashima et al., 2019), it is widely
accepted as a marker of mature ONs, even though OMP is also
detectable in some non-olfactory tissues that are not classified as
classical chemosensory (Kang et al., 2015).

Since our OM samples were obtained from the middle
turbinate, we cannot exclude that OMP expression in some cells
that do not have neuronal morphology might be related to a
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FIGURE 7 | Distribution pattern of 4R and 3R tau isoform expression. Double
immunostaining with TUJ-1 (red) and mAb to 4R tau isoform (A,B, green) and
3R tau isoform (C,D, green). (A,B) The 4R tau isoform (green) is mainly
localized in the cytosolic apical portion of TUJ-1-positive olfactory neurons,
(red) in the proximity of the dendritic knob (arrows). As opposite,
TUJ-1-positive cells are negative to the 3R tau isoform (green), which is
unevenly distributed as granules in rounded cells, likely in differentiated stem
cells, negative for the TUJ-1 antibody (C,D, *). All scale bars: 10 µm.

modulatory paracrine activity of these cells for the olfactory
function of the ONs. In the middle turbinate, ONs are unevenly
distributed, compared to the epithelium covering the cribriform
plate in which neurons are densely present. Furthermore, in
humans, the boundary of the olfactory epithelium is not sharply
demarcated from that of the non-olfactory tissue, in contrast to
rodents where the boundary appears to be well defined (Welge-
Lussen and Hummel, 2014). In addition, in the human airway
system, it was shown that ciliated cells have chemosensory
features (Shah et al., 2009; Merigo et al., 2012), and as reported
recently in the rat trachea, it is possible that the various epithelial
cell populations having different chemosensory properties work
together as a complex cellular network (Lasconi et al., 2019).
Considering the dynamic properties of the olfactory epithelium,
the OMP immunolabeling in non-neuronal-shaped cells might
also suggest that these cells have yet to complete their maturation
process. Indeed, in harvesting cells from a heterogeneous tissue,
the olfactory brushing affects the architectural integrity of the
epithelial surface. Therefore, recognizing the stages of neuronal
maturation in cells that have been separated from the original
environment may be challenging.

As a second aim of the present study, the expression pattern
of proteins involved in neurodegenerative diseases was analyzed
in human ONs of healthy individuals. Limited information
is available on this aspect of the biology of this cell group.
Studies carried out in rodents and in human tissue obtained at
autopsy or by biopsy are available at this time (Rey et al., 2018).
Indeed, in some neurodegenerative disorders such as AD or
PD, different studies have shown the presence of neurofibrillary
tangles, β-amyloid deposits, or Lewy neurites in the ONs (Talamo
et al., 1989, 1991; Trojanowski et al., 1991; Lee et al., 1993;
Crino et al., 1995; Funabe et al., 2013; Saito et al., 2016).
These findings might suggest the hypothesis that abnormally
conformed proteins may be transported from ONs to the
glomeruli of the olfactory bulb where they accumulate, aggregate,
and assemble into fibrils. In ONs, it might be difficult to observe
the pathological changes typically seen in the neurons of the
brain, since ONs undergo a complete cycle every 3 months,
and this short time may be insufficient for visualizing mature
aggregates. Thus, the step of demonstrating the expression
of neurodegeneration-associated proteins in ONs from healthy
subjects has significant implications.

We showed that ONs constitutively express proteins involved
in neurodegenerative diseases; however, we observed that
α-synuclein and TDP-43 can be detected not exclusively in ONs
but also in other cells lacking the shape of neurons.

At present, a few studies defined the normal expression
pattern of α-synuclein in human olfactory brain regions (Rey
et al., 2018). However, in elderly healthy subjects, high levels of
α-synuclein were seen in olfactory brain areas (Freer et al., 2016).
Furthermore, it has been shown that α-synuclein is expressed
in human OM and, specifically in ONs, supporting cells and
Bowman’s gland component (Duda et al., 1999). Our results are
consistent with the previous findings.

TDP-43 is widely present in nuclei, particularly in ONs;
however, it appears to be also present in supporting cells. Indeed,
this protein has been reported to be abundantly expressed in
both neurons and glia (Gao et al., 2018). Two previous studies
investigated TDP-43 in the olfactory system. The first study
showed immunopositive inclusions in autopsy specimens of
olfactory bulb and primary olfactory cortex of patients that
had amyotrophic lateral sclerosis (ALS) and also olfactory
dysfunction (Takeda et al., 2015). A second autopsy study, in
a patient with ALS and olfactory dysfunction, showed TDP-43
immunopositive inclusions in the lower motoneurons and in
neurons of the limbic system (Takeda et al., 2014).

Beta-amyloid revealed a dot-like pattern in the nerve cell
terminals and in the cytoplasm of the neuronal perikarya. There
are no data available relative to the β-amyloid expression in ONs
in healthy humans; however, in the rat, it has been reported in the
olfactory bulb and in cortical olfactory regions (Rey et al., 2018).

Tau protein expression had not been studied in olfactory
structures in humans (Rey et al., 2018). The olfactory regions
of rats revealed that tau is strongly expressed in ONs and
in their axons within the olfactory bulb (Viereck et al., 1989;
Schoenfeld and Obar, 1994). In the present study, we showed
that tau immunolabeling was present around the nuclear
compartment and in the apical region of the ONs; 4R tau
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FIGURE 8 | Distribution pattern of TDP-43. Double immunostaining of OM sample with OMP (green) and TDP-43 (red). TDP-43 shows granular staining in the
nucleus (arrow) of almost all types of cells, albeit sparing rounded globular cells (A, detail in B). In particular, neuronal-shaped cells, OMP positive, shows an intense
TDP-43 positivity in the nucleus and also a weak staining in the cytosol (*). Scale bar (A): 40 µm. Scale bar (B): 10 µm.

immunopositivity was found under the knob, while 3R tau
immunopositivity was absent. Conversely, 3R tau was detectable
in some basal stem cells.

In conclusion, the evidence of constitutive expression, in
normal human OM, of those proteins that become misfolded
as neurodegenerative processes occur offers a promising
new research direction. Since the olfactory neuroepithelium,
including the ONs and neighboring supporting cells, is highly
exposed to microbial, viral, and toxic/environmental insults,
it is conceivable that such events might have some role in
disrupting the physiological interaction of different cell types,
potentially leading to olfactory signal impairment and even to
protein misfolding. Thus, if protein misfolding occurs, oligomers
or complex assemblies may also form; then, aggregates might
be transported through the axonal anterograde pathway to the
olfactory bulb where they can assemble into fibrillary structures
and β–amyloid deposits. Research on the main pathological
conditions, in which the aforementioned proteins are involved,
is needed to further understand the role of ONs and supporting
cells in neurodegenerative human diseases.
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