
On-Chip System Call Tracing:
A Feasibility Study and Open Prototype

Chengyu Zheng∗, Mila Dalla Preda†, Jorge Granjal‡, Stefano Zanero∗ and Federico Maggi∗
∗ DEIB, Politecnico di Milano, Italy

Email: {name.surname}@polimi.it
† Dipartimento di Informatica, University of Verona, Italy

Email: mila.dallapreda@univr.it
‡ CISUC, University of Coimbra, Portugal

Email: jgranjal@dei.uc.pt

Abstract—Several tools for program tracing and introspection
exist. These tools can be used to analyze potentially malicious or
untrusted programs. In this setting, it is important to prevent
that the target program determines whether it is being traced
or not. This is typically achieved by minimizing the code of the
introspection routines and any artifact or side-effect that the
program can leverage. Indeed, the most recent approaches consist
of lightly instrumented operating systems or thin hypervisors
running directly on bare metal.

Following this research trend, we investigate the feasibility
of transparently tracing a Linux/ARM program without mod-
ifying the software stack, while keeping the analysis cost and
flexibility compatible with state of the art emulation- or bare-
metal-based approaches. As for the typical program tracing task,
our goal is to reconstruct the stream of system call invocations
along with the respective un-marshalled arguments.

We propose to leverage the availability of on-chip debugging
interfaces of modern ARM systems, which are accessible via
JTAG. More precisely, we developed OpenST, an open-source
prototype tracer that allowed us to analyze the performance
overhead and to assess the transparency with respect to evasive,
real-world malicious programs. OpenST has two tracing modes:
In-kernel dynamic tracing and external tracing. The in-kernel
dynamic tracing mode uses the JTAG interface to “hot-patch”
the system calls at runtime, injecting introspection code. This
mode is more transparent than emulator based approaches, but
assumes that the traced program does not have access to the
kernel memory—where the introspection code is loaded. The
external tracing mode removes this assumption by using the
JTAG interface to manage hardware breakpoints.

Our tests show that OpenST’s greater transparency comes
at the price of a steep performance penalty. However, with a cost
model, we show that OpenST scales better than the state of the
art, bare-metal-based approach, while remaining equally stealthy
to evasive malware.

I. INTRODUCTION

With over 500 million devices and an estimated 84% mar-
ket share [1], Android-based devices are the cyber-criminals’
main target in the mobile world. In addition to the alarming
amount of malware families and samples [2], the evasive
techniques employed by malware are becoming more and more

This work has been partially supported by MIUR FACE Project No.
RBFR13AJFT

sophisticated. With the high amount of new applications being
released every month, researchers and app-store administrators
are striving to find reliable solutions to analyze apps in order
to recognize and isolate malicious ones.

Research Gap. Static analysis approaches [3] allow us to
obtain sound information on entire portions of an applica-
tion. However, Code obfuscation and dynamic code-loading
techniques are often used to obstruct static analysis—for both
benign and malicious purposes. The idea of these techniques
is to make the results of static analysis tools so imprecise
to become unusable in practice. As a result, the research
community has been very active in the area of dynamic
analysis, with the goal of reconstructing a precise picture of
the events occurring during program execution (e.g., operating
system procedures invoked, network-level events, content of
memory).In dynamic analysis approaches there is a well-
known trade off between transparency and semantic richness.
On the one hand, typical dynamic approaches, such as Trace-
Droid [4], instrument the runtime or the virtual machine (i.e.,
Dalvik machine, in the case of Android) and are able to capture
high-level events (e.g., API function calls) and data structures
(e.g., Java types). Higher-level behaviors, such as “sending a
spam email” or “opening a reverse shell on port X”, are then
reconstructed by using system calls as “basic blocks”. This
type of introspection is prone to evasion, due to the use of
instrumentation artifacts that a malicious program can leverage
to detect whether or not it is being traced. On the other hand,
attempting to mitigate this problem, researchers have proposed
virtual-machine introspection (VMI) techniques. For instance,
CopperDroid [5] and DroidScope [6] follow this approach
and move the introspection scope below the operating system,
in a full-system emulator. VMI-based approaches track the
occurrence of a system call by assuming that the traced
program uses the calling convention according to the operating
system’s application binary interface(ABI). This allows them
to reconstruct high-level events, as if the operating system
was instrumented directly, while keeping their visible footprint
low. Unfortunately, VMI-based approaches are not resilient to
evasion [7], [8]. For example, in [9] the authors show how
emulator-detection routines can be generated automatically.
For Windows/x86 platforms, the problem has been mitigated
by moving the dynamic analysis of malicious programs to the

bare metal [10], [11]. In these approaches, the introspection
task is performed in a thin hypervisor, or slightly modified
operating system. MALT [12] follows this approach by lever-
aging hardware support and BIOS modifications to further
reduce the introspection code base’s footprint. Recently, we
observe the same trend for the Linux/ARM platform. Bare-
Droid [13] elegantly leverage the SELinux layer to trap the
calls to operating-system procedures. In this way, BareDroid
effectively obtains a lightweight introspection system on un-
modified Android images running on real devices rather than
on emulators. However, in this solution, SELinux (i.e., the
kernel) is still assumed to be outside the attacker’s model.

Proposed Approach. Following the aforementioned trend, we
investigate the feasibility of moving the introspection code for
Android applications completely outside the analysis system.
In other words, we investigate the feasibility of porting the
current VMI-based approach in a hardware system, rather than
on an emulator. The main challenge is to be able to efficiently
introspect the machine state in order to observe events such
as instructions, interrupts, and registers, that are needed for
reconstructing the occurrence of a system call. Our idea is to
leverages the fact that ARM-based systems are more open than
x86-based systems, and thus offer built-in tracing functionality.
Indeed, on-chip debuggers for ARM are available in off-the-
shelf development boards at affordable prices and accessible
through standard JTAG interfaces.

In this work, we focus specifically on assessing the over-
head imposed by the tracing process, the resilience of the pro-
posed tracing approach to evasion techniques, and the technical
feasibility of the overall idea. To this end, we propose a set
of open-source tools and a working prototype, that we name
OpenST, to run an executable Linux/ARM application and
trace its system calls together with their arguments. OpenST
can trace system calls by running introspection routines in two
modes: external tracing and in-kernel dynamic tracing. The
external tracing mode consists in executing the introspection
code on an external computer. Observe that this mode is
conceptually equivalent to, but more stealthy than a VMI-based
approach. The in-kernel dynamic tracing mode executes the
introspection code on the target machine. For this reason, it
is faster but less transparent than the external tracing mode.
More specifically, in the external tracing mode, OpenST sets an
hardware breakpoint whenever a software interrupt is trapped;
the breakpoint handler pauses the CPU, inspects its registers
and the target process’ memory, and resumes once done
with collecting the necessary data. As part of our approach,
we generate the introspection code automatically, offline, by
parsing the system-call prototypes from the kernel binary (in
DWARF format). For each system-call definition we parse
the data structures of its input arguments and convert them
in offsets, which we use to instruct the stub code to un-
marshall the argument values from the main memory given a
base address. In the in-kernel tracing mode, the introspection
code is injected into the target machine at runtime. More
precisely, through an inline hooking mechanism of the SWI
handler, OpenST is able to dynamically detour the execution
to the introspection code, which will dump the system call and
its arguments and transfer its content over UDP packed to a
remote machine.

Evaluation. We implemented a testbed application that we
specifically developed to precisely measure the overhead at
the system call level. We performed a set of micro benchmarks
on OpenST. As a side result, these tests showed that OpenST
correctly intercepts the system calls and un-marshalls their
arguments.

We then tested the resilience of OpenST against real-world
malicious applications that are known to perform emulator eva-
sion (i.e., the Android.HeHe and Android.Pincher.A

malware families). When compared to a SELinux-based trac-
ing approach running in an emulator, OpenST was able to
observe two order of magnitude more system calls, confirming
its resiliency to emulator-based evasion techniques.

Finally we performed a macro benchmark to measure the
performance of OpenST. Our results show an overhead for the
external tracing mode, which in the worst cases can reach a
74× slowdown with respect to an emulator-based approach.
The in-kernel tracing mode, while less transparent than the
external mode, has nearly the same execution time of an
emulator-based approach, while being more evasion-resilient.

Original Contributions. In summary, in this paper we make
the following contributions:

• We are the first to investigate the feasibility of per-
forming precise process introspection using on-chip
debugging interfaces and low-cost equipment;

• We design, implement and release a working, open
prototype that other researchers and practitioners can
use to trace untrusted Linux/ARM programs;

In the spirit of open science, the source code of OpenST is
available at https://github.com/necst/openst.

II. BACKGROUND AND MOTIVATION

In this section we describe the limitations in the state of
the art of introspection techniques, their limitations (which
motivated our work) and our main goals.

A. Shortcomings in dynamic analysis

Dynamic analysis techniques are widely used to extract
the runtime behavior of programs. Dynamic analysis tools
typically use some form of instrumentation in order to in-
tercept the events of interest during execution (e.g., machine
instructions, kernel system calls, userland API functions). A
common technique is to modify of the kernel such that to
intercept the system calls. Recently, full-system emulators
and virtual machines (e.g., QEMU, XEN) are prefered for
dynamic analysis techniques, because they provide enough
visibility and control of memory and machine state (up to
the granularity of the single instruction), while ensuring great
transparency, sitting outside the monitored system. However,
it is well known that emulators and virtual machines do
not precisely reproduce the dynamics of real systems [14].
Indeed, most of the times, there are small discrepancies in
how instructions are implemented in real vs emulated sys-
tems. These discrepancies can be leveraged by the monitored
program in order to determine whether it is running in a

real or emulated system. Therefore, if the monitored program
realizes that it is executing in an emulated system, it can
refuse to exhibit its true (malicious) behavior. In complex
emulated systems, such as modern phones, endowed with GPS
and accelerometers, these discrepancies can be striking. For
example, in [7], [8] the authors show that the Android emulator
is vulnerable to evasion techniques based on hardcoded IMEI,
GPS coordinates, accelerometer activity, or caching behavior.
Moreover, evasion techniques can leverage instrumentation
code. For example, unavoidably leave artifacts in memory or
in the runtime behavior of the monitored system, which can
be exploited by the malicious program in order to compromise
the correctness and completeness of the analysis.

B. System Call Introspection in Linux/ARM

CopperDroid [5] and DroidScope[6] are sandboxes based
Android emulator. In these tools the “instrumentation” of
the emulator is performed at the virtual CPU level. More
precisely they modify the code that the emulator executes
when an exception or an interrupt occurs. In particular, they
insert introspection code that is able to analyze memory
content and dump it. This technique is called virtual machine
introspection (VMI). For example, with VMI it is possible
to use the emulator to inspect the memory and reconstruct
the PID, the task group identification (TGID), the executable
name (COMM), or the system call arguments. Through VMI,
CopperDroid and DroidScope are able to reconstruct both OS-
and Android-level semantics. User-space applications interact
with the operating system thought system calls, according
to the calling convention defined by the Application Binary
Interface (ABI). For example, when a system call takes a non
primitive type as argument, such as a struct, the pointer to
the structure is stored into a register according to the calling
convention. By introspecting the memory at the address given
by the CPU register, one can find the struct. By assuming
knowledge of the OS (e.g., structure definition or other type
information), the raw memory content can be un-marshalled,
so deriving the original, structured data.

C. Goal and Approach

VMI techniques are useful to analyze an application whose
source code is not available. However, when this technique is
applied to emulator, the presence of an instrumented emulator
can be easily spotted as discussed in Section II-A. There-
fore, we want to investigate the feasibility of porting VMI
techniques in hardware, and study if such an approach can
help analyze applications that are known to implement anti-
emulation techniques. We want to use VMI techniques with
hardware support, without requiring any kind of cooperation
from the operating system. For example, rebuilding the kernel
would immediately reveal to the malware that it is being
executed in a compromised non-real system. Currently, the
only architecture that has hardware debugging facilities that
offer the same visibility of an emulator are ARM processors.

Our approach is to rely on hardware debugging interfaces
present in development boards, which allows us to commu-
nicate with ARM-based CPUs and to intercept interesting
events such as system call invocations. This approach works

conceptually on any CPU, but we focus our prototype on ARM
processors due to the presence of JTAG interface. For the
benefit of the research community, we designed OpenST to
have an open design and implementation. Moreover, OpenST
has low deployment costs that allow it to scale by adding
more hardware as demanded by the throughput requirements.
Our prototype is one order of magnitude less expensive com-
pared to proprietary closed-source solutions, which hardware,
consisting of a board and a tracer, would cost $9,500 ($6,000
Juno VExpress Board and $3,500 of ARM DSTREAM Tracer)
and its relative software license with price tag of $6,000.
Thus, with OpenST we aim at providing a cost efficient open-
source system for the analysis of malware that employs evasive
techniques.

Our OpenST prototype is implemented on a development
board, but it can be adapted to other ARM-based devices with
minimal effort. Clearly, in order to use it on an arbitrary phone
or tablet, the JTAG pinout must be known. A typical use of
OpenST would be in the analysis of applications for which we
suspect the presence of evasive techniques.

III. SYSTEM IMPLEMENTATION

We implemented OpenST with two degrees of trans-
parency: In-kernel dynamic tracing and external tracing mode.
The in-kernel dynamic tracing mode uses the JTAG interface
to “hot-patch” the system calls’ at runtime, in the kernel code
region.

Both the In-kernel dynamic tracing and external tracing
mode divide the tracing process into three phases as illustrated
in Figure 1.

A. External Tracing Mode

In this mode, we set the breakpoints to intercept system
calls, then we perform a filtering on the process identification
(PID) or name (COMM) of the caller application, only if it
match with the one under analysis we inspect the memory in
order to reconstruct the system calls and its arguments.

1) Phase 1: Hardware Breakpoint Management: In this
phase, we want to instrument the target board to intercept
all the system calls. For this reason, we set a breakpoint to
the SWI exception vector. The SWI exception vector in Linux
(on which Android is based) is located eight byte after the
beginning of the vector table which, in 32-bit architecture,
is loaded into “0xffff0000” at boot time, thus we set the
breakpoint at address “0xffff0008”. Since halting the processor
for every system call of every process is expensive, we propose
an optimization that uses two breakpoints (hybrid breakpoint)
instead of a single breakpoint. The goal is to halt the processor
when the program counter (PC) matches the desired address
and the context ID matches the program under analysis. Ob-
serve that the context ID is revealed by inspecting the memory
when the first system call of the target application occurs.
Fortunately, ARM-based processors allow the use of hybrid
breakpoints as a composition of two Breakpoint Register Pairs
(BRPs), where a BRP is composed by a Breakpoint Control
Register (BCR) and a Breakpoint Value Register (BVR). Our
idea is to store in the first BCR the address location of the

primitives to low-level functionality to access the CPU state
and the physical memory. In particular, for the External
Tracing Mode, we modified the source code of OpenOCD
to instrument existing routines. For example, we added
systrace, a high-level function that allows the user to
upload an application and trace its behavior. In implementing
systrace, we used some of the routines already available
in OpenOCD including read, write, and breakpoint-
management routines (i.e., target_read_phys_memory,
target_write_phys_memory, breakpoint_*,
respectively). As mentioned before, we instrumented the
callback function, which would normally just halt the target
board, to automatically introspect, unmarshall, and dump
the system calls, its parameters and resume the execution.
The implementation of the In-kernel Dynamic Tracing Mode
was simpler: We used the JTAG interface to inject (using
the write command) the introspection code in the kernel
memory.

B. Workflow

The typical analysis workflow has three steps.

Boot. First, the target board boots from the SD card. More
precisely, its ROM contains the various boot-loading stages.
The last-stage bootloader (U-Boot) can continue the booting
process “remotely.” For example, it able to load the kernel
binary image from a TFTP server, and mount the root file
system over NFS. By leveraging this functionality, we make
the target board boot an Android system that actually resides
on a remote, NFS-served filesystem. This has the advantage
of making the restore procedure much simpler to handle,
minimizing the wearing of the NAND chips of the SD card,
thus ensuring scalable deployment. Notice that, at each boot,
a fresh copy of the filesystem is restored.

Tracing. Secondly, after the board has booted an Android
system, OpenST installs the target application (as an APK
file) though command line. To this end, we use the An-
droid debug bridge (adb) tool, a command line utility
that can be use to manage a running Android system.
More precisely, OpenST uses adb to install APKs (adb
install file.apk), and launch the respective appli-
cation (adb shell am start -n a.package.name

a.package.name.MainActivity). In External Tracing
Mode, since the actual tracing happens on the host PC, we
display the traced system calls to the standard output and/or
log them into a file. In In-kernel Tracing Mode, instead,
the injected instrumentation routines take care of sending the
traces via UDP to the host PC.

Restoring. Lastly, once the target application has been ana-
lyzed, OpenST issues a reboot command through JTAG and
restores the previously backed-up filesystem. This ensures that
any modification made by the target (malicious) application to
the filesystem do not affect the subsequent analyses.

V. EXPERIMENTAL EVALUATION

We have conducted experiments in order to evaluate both
the resilience of OpenST to evasion techniques commonly used
by malware and the overhead caused by our tracing system.

Fig. 3: The prototype of OpenST used in our experiments.

A. Experimental Settings and Dataset

We implemented OpenST in our lab, as shown in Figure 3,
using a PandaBoard ES equipped with the OMAP4460 SoC as
the target board ($200), running a Linaro Android version 4.4.4
build id KTU84P, and built on Sat Oct 25 19:41:39 UTC 2014.
We used the Bus Blaster v3 JTAG adapter ($50) to connect
the host PC to the PandaBoard, using a standard USB cable.
Moreover, the host PC is connected to the board via an ethernet
cable.

We obtained access to the BareDroid dataset, which com-
prises nine malicious applications, including six variant of An-
droid.HeHe [17] and one sample of Android.Pincer.A [18] that
are known to use evasive techniques against emulator-based
analysis environments. Note that, given the different Android
versions, some of the applications were incompatible with
the Linaro Android that supports the PandaBoard: We simply
excluded these APK files, ending up with seven applications
in total. Even though these malicious applications may rely on
simple heuristics that can be made ineffective by patching the
emulators, more sophisticated ones can rely on cache behavior
of the emulator or sensors, which cannot be circumvent easily.
However, these samples are sufficient to highlight resilience of
OpenST compared to the emulator.

B. Micro Benchmark Experiment

In this experiment we measured the execution time of the
top nine most popular I/O system calls and one utility system
call (i.e., read, write, open, close, getpid, mkdir, rmdir, dup,
ioctl, dup2). Specifically, we measured the performance hit of
OpenST compared to an unmodified environment. In order to
accurately measure the time spent by the system to execute
each system call, we used the CPU cycle counter, present in
the ARM processors, which provide us an high precision time
reference. More precisely, we read the clock counter register
and then divide by the CPU frequency in order to obtain the
time. We used system calls of the host PC to evaluate the time.

From the results of this experiment, summarized in Fig-
ure 4, it is clear that the External Tracing Mode is the most

demanding in terms of speed overhead. However, recall that
these results are micro benchmark. In the following section we
show that the overall slowdown imposed by OpenST, albeit
non negligible, is less substantial.

C. Macro Benchmark Experiment

In this experiment we show the overall impact of OpenST
on the entire execution of a traced executable file. To this end,
we measured execution time from the moment the application
starts (though adb) to the moment the application exits its
main activity. Since we do not want to introduce artifacts,
we did not instrument the APKs to measure time. Instead,
we measured the overall time using the time command line
utility. Table I shows the overall results.

D. Evasion Resiliency Experiment

The main advantages of OpenST (as well as any bare-
metal-based tracing approaches) is its resilience to evasive
techniques used by state-of-the-art malicious applications. To
asses its resilience, we conducted an experiment to monitor
the behavior of a malicious application while being traced by
OpenST.

We run the experiment in three different settings. In the
first setting, we obtained the Android image used by the
authors of BareDroid, containing the modified version of the
stock Android version that they used in their paper. This
Android image leverages SELinux policies to elegantly “trap”
system calls, without introducing any other modifications to
the system. As a result, the instrumentation mechanism itself is
not detected by the malicious applications. In fact, the malware
families that we used in this experiment (i.e., 6 variants of
Android.HeHe [17] and 1 of Android.Pincer.A [18]) only
detect the emulator, not the instrumentation technique. In other
words, by using these families we guarantee that whenever
we observe signs of “evasive” behavior, those must be due to
the fact that the malware has detected the emulator (e.g., by
inspecting the IMEI, phone number, or sensors, which have
bogus/default values in the emulator). In the second and third
setting, we used OpenST in both its tracing modes.

Table II compares the number of system calls observed in
the first setting (emulator-based tracer) with the ones observed
in the third setting (OpenST-based tracer). The table shows the
total number of read, write, open, and close system call
invocations traced by each approach. From the first column

TABLE I: Macro Benchmark Experiment (Section V-C). Over-
all time [s] spent during the macro benchmark experiment.

Family Name Emulator In-kernel Tracing External Tracing

Android.HeHe.1 11.5 10.6 832.7
Android.HeHe.2 11.3 12.6 794.5
Android.HeHe.3 10.7 10.7 902.9
Android.HeHe.4 10.8 11.0 815.2
Android.HeHe.5 11.8 10.5 805.4
Android.HeHe.6 11.7 11.9 839.6
Android.Pincer.A 7.7 7.7 635.3

Total 75.5 75.0 5625.6

TABLE II: Number of system-call invocations (read, write,
open, close) observed with an emulator-based tracer vs. an
OpenST-based tracer.

Sample Emulator OpenST

In-kernel External

Android.HeHe.1 3, 0, 0, 0 160, 187, 54, 67 165, 185, 54, 67
Android.HeHe.2 7, 1, 0, 0 171, 202, 54, 67 169, 200, 54, 67
Android.HeHe.3 11, 2, 0, 0 121, 143, 54, 67 131, 151, 54, 67
Android.HeHe.4 2, 0, 0, 0 155, 190, 54, 67 145, 181, 54, 67
Android.HeHe.5 3, 0, 1, 0 144, 166, 54, 67 155, 187, 54, 67
Android.HeHe.6 3, 0, 0, 0 167, 215, 54, 67 172, 232, 54, 67
Android.Pincer.A 1, 2, 0, 0 67, 54, 117, 96 66, 55, 117, 96

Overall 30, 5, 1, 0 985, 1157, 441, 498 1003, 1191, 441, 498

we notice that the malware is actively evading the emulator,
because it invokes only a handful of system calls (i.e., it is
hiding part of its program). With OpenST, instead, in both
modes we observe a significantly higher number of system
calls invocation.

E. Scalability Estimation

In Figure 5 we compare the scalability of OpenST with
respect to BareDroid [13] and emulator-based approach with
an hypothetical budget of $50,000, which is the same used in
BareDroid [13]. To this end we use the cost model proposed
in BareDroid. In particular the throughput X according to the
cost model used in BareDroid is:

X =
1

texec + trestore
·
TotalBudget

DeviceCost

by inserting the value for OpenST we obtain the Table III.

The experiment shows the resilience of OpenST in both
mode. External Tracing, which does not require modification
of the target OS, is 74× slower than an emulator-based
approach. In-kernel Dynamic Tracing, which does require
injection of introspection code into the kernel, is essentially
as fast as emulator-based approach.

VI. DISCUSSION

The goal of our work was to show the feasibility of
implementing a low-cost, open research tool for analyzing
untrusted programs at two levels of transparency (in kernel,
or externally). The results of our experiments suggest that
such a tool can be implemented and that, at the price of a
substantial overhead, even evasive programs can be traced in a
fully transparent way. Remarkably, given a budget of $50,000,
OpenST scales better than BareDroid, that is the current state
of the art.

TABLE III: Value used in our cost analysis.

Method Cost per device/CPU ($) Restore time (s)

OpenST 250 58
Emulator 300 1
BareDroid 349 32
BareDroid (Full Restore) 349 141

BareBox [10] is an VM-aware platform that implement
fast restore system. It has a Meta-OS running alongside with
the target OS to manage snapshotting and restoring of both
memory and disk. In addition it offers system call tracing
by hooking the System Service Descriptor Table (SSDT).
The major difference between OpenST and BareBox is where
introspection is conducted. BareBox does the introspection
inside the target system (similary to our In-kernel Dynamic
Tracing Mode). However, OpenST’s External Tracing Mode
is profoundly different from (and more transparent than)
BareBox.

BareDroid [13] is a device-based platform for analyzing
Android malware. The system is designed to be efficient, in
fact only the first partition (boot partition) is rewritten at each
analysis, while the rest of the partition is written if the boot
integrity chain fails. The major difference between OpenST
and BareDroid is the trusted code base. In BareDroid, the
kernel is assumed to be not compromised. Instead, with in-
kernel mode we do not require any modification to the kernel,
because we patch it dynamically when neede by the analysis.

In [19] the author implemented a Windows kernel driver
able to detect sign of exploitation. In particular, the kernel
driver is able to read the Hardware Performance Counters
(HPCs) of modern processors. This allows to sample the
performance of application. In their experiment, they show
accuracy of detecting 99.5% shellcode exploits. In OpenST,
we use hardware-level CPU features, uet with a different goal
(i.e., tracing) than in [19]. In fact, we believe that [19] is
complementatry to OpenST.

LO-PHI [20] contributed in the direction of hardware-
based taint analysis for increasing the transparency, making
it possible to analyze applications that use evasive techniques.
In particular, LO-PHI is capable of passively sniffing the disk
activity at SATA level, by bridging it though a double SATA
port of an FPGA based board. Additionally, LO-PHI is capable
of dumping the memory content by constantly pooling the
physical memory at high rate though the PCIe interface.

VIII. CONCLUSIONS

With the increasing number of applications developed for
Android, it becomes necessary to develop automated tools for
analyzing them in order to identify the possibly malicious
ones. These analysis tools typically perform dynamic analysis
of the applications by using emulator-based sandboxes. It is
well known that emulators do not faithfully reproduce every
aspect of the hardware, and that they leave artifacts exploitable
by malicious applications that can evade the analysis by
concealing their malicious behavior, once they realize that they
are executed in an emulated environment.

In this paper we addressed this problem by proposing
OpenST, an hardware based tracer. We have described in detail
its design and implementation. We have validated OpenST by
successfully tracing malware that are known to employ evasion
techniques. We have carefully evaluated the tracing overheads,
showing a trade-off between a completely transparent, external
tracing approach (although with severe performance impacts),
and a slightly less transparent in-kernel approach with an

overhead which is comparable with other state-of-the-art tech-
niques, while still improving upon their stealthiness.

We believe we demonstrated that OpenST can provide
automatic support for the dynamic analysis of malware that
employs evasion techniques, and that otherwise would need to
be manually inspected.

REFERENCES

[1] IDC. Smartphone os market share. [Online]. Available:
http://www.idc.com

[2] T. Micro. Security predictions: The fine line. [Online]. Available:
http://www.trendmicro.com

[3] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck,
“Drebin: Effective and explainable detection of android malware in your
pocket.” in NDSS, 2014.

[4] V. V. der Veen and C. Rossow. (2015) Tracedroid.

[5] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro, “Copperdroid:
Automatic reconstruction of android malware behaviors.” in NDSS,
2015.

[6] L. K. Yan and H. Yin, “Droidscope: seamlessly reconstructing the os
and dalvik semantic views for dynamic android malware analysis,” in
Presented as part of the 21st USENIX Security Symposium (USENIX

Security 12), 2012, pp. 569–584.

[7] T. Petsas, G. Voyatzis, E. Athanasopoulos, M. Polychronakis, and
S. Ioannidis, “Rage against the virtual machine: hindering dynamic
analysis of android malware,” in Proceedings of the Seventh European

Workshop on System Security. ACM, 2014, p. 5.

[8] T. Vidas and N. Christin, “Evading android runtime analysis via
sandbox detection,” in Proceedings of the 9th ACM symposium on

Information, computer and communications security. ACM, 2014,
pp. 447–458.

[9] Y. Jing, Z. Zhao, G.-J. Ahn, and H. Hu, “Morpheus: automatically
generating heuristics to detect android emulators,” in Proceedings of

the 30th Annual Computer Security Applications Conference. ACM,
2014, pp. 216–225.

[10] D. Kirat, G. Vigna, and C. Kruegel, “Barebox: efficient malware
analysis on bare-metal,” in Proceedings of the 27th Annual Computer

Security Applications Conference. ACM, 2011, pp. 403–412.

[11] ——, “Barecloud: bare-metal analysis-based evasive malware detec-
tion,” in 23rd USENIX Security Symposium (USENIX Security 14),
2014, pp. 287–301.

[12] F. Zhang, K. Leach, A. Stavrou, H. Wang, and K. Sun, “Using hardware
features for increased debugging transparency,” in Security and Privacy

(SP), 2015 IEEE Symposium on. IEEE, 2015, pp. 55–69.

[13] S. Mutti, Y. Fratantonio, A. Bianchi, L. Invernizzi, J. Corbetta, D. Kirat,
C. Kruegel, and G. Vigna, “Baredroid: Large-scale analysis of android
apps on real devices,” in Proceedings of the 31st Annual Computer

Security Applications Conference. ACM, 2015, pp. 71–80.

[14] R. Paleari, L. Martignoni, G. F. Roglia, and D. Bruschi, “A fistful
of red-pills: How to automatically generate procedures to detect cpu
emulators,” in Proceedings of the USENIX Workshop on Offensive

Technologies (WOOT), vol. 41, 2009, p. 86.

[15] A. I. Centre. Cortex-a9 technical reference manual. [Online]. Available:
http://infocenter.arm.com

[16] F. Electrons. Linux cross reference. [Online]. Available: http://lxr.free-
electrons.com/source/arch/arm/kernel/calls.S

[17] F. Blogs. Android.hehe: Malware now disconnects phone calls.
[Online]. Available: https://www.fireeye.com

[18] F-Secure. Android.pincer.a. [Online]. Available: https://www.f-
secure.com

[19] A. Tang, S. Sethumadhavan, and S. J. Stolfo, “Unsupervised anomaly-
based malware detection using hardware features,” in Research in

Attacks, Intrusions and Defenses. Springer, 2014, pp. 109–129.

[20] C. Spensky, H. Hu, and K. Leach, “Lo-phi: Low-observable physical
host instrumentation for malware analysis,” 2016.

