
Università Degli Studi di Verona

APPROXIMATIONS IN LEARNING &
PROGRAM ANALYSIS

a dissertation

submitted to the department of Computer Science

and the committee on graduate studies

of University of Verona

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Vivek Notani

February 2020

© Copyright by Vivek Notani 2020

All Rights Reserved

iii

Certificate

I certify that I have read this dissertation and that, in my opinion, it is fully adequate

in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Internal Committee:

(Roberto Giacobazzi) Principal Adviser

(University of Verona, Italy)

(Mila Dalla Preda)

((University of Verona, Italy)

(Alessandro Farinelli)

(University of Verona, Italy)

External Reviewers:

(Sébastien Bardin)

(Commissariat à l’Energie Atomique, France)

(Francesco Ranzato)

(University of Padova, Italy)

Defense Committee:

(Roberto Giacobazzi) Principal Adviser

(University of Verona, Italy)

(Roberta Gori)

(University of Pisa, Italy)

(Roberto Bruni)

(University of Pisa, Italy)

v

“God sometimes plays dice with whole numbers”

Gregory Chaitin

Preface

In this work we compare and contrast the approximations made in the problems of Data Com-

pression, Program Analysis and Supervised Machine Learning.

Gödel’s Incompleteness Theorem mandates that any formal system rich enough to in-

clude integers will have unprovable truths. Thus non computable problems abound, including,

but not limited to, Program Analysis, Data Compression and Machine Learning. Indeed, it

can be shown that there are more non-computable functions than computable. Due to non-

computability, precise solutions for these problems are not feasible, and only approximate so-

lutions may be computed.

Presently, each of these problems of Data Compression, Machine Learning and Program

Analysis is studied independently. Each problem has it’s own multitude of abstractions, algo-

rithms and notions of tradeo�s among the various parameters.

It would be interesting to have a unified framework, across disciplines, that makes ex-

plicit the abstraction specifications and ensuing tradeo�s. Such a framework would promote

inter-disciplinary research and develop a unified body of knowledge to tackle non-computable

problems.

As a small step to that larger goal, we propose an Information Oriented Model of Compu-

tation that allows comparing the approximations used in Data Compression, ProgramAnalysis

andMachine Learning. To the best of our knowledge, this is the first work to propose a method

for systematic comparison of approximations across disciplines.

The model describes computation as set reconstruction. Non-computability is then pre-

sented as inability to perfectly reconstruct sets. In an e�ort to compare and contrast the ap-

proximations, select algorithms for Data Compression, Machine Learning and Program Anal-

ysis are analyzed using our model.

We were able to relate the problems of Data Compression, Machine Learning and Program

Analysis as specific instances of the general problem of approximate set reconstruction. We

ix

demonstrate the use of abstract interpreters in compression schemes.

We then compare and contrast the approximations in Program Analysis and Supervised

Machine Learning. We demonstrate the use of ordered structures, fixpoint equations and least

fixpoint approximation computations, all characteristic of Abstract Interpretation (Program

Analysis) in Machine Learning algorithms.

We also present the idea that widening, like regression, is an inductive learner. Regression

generalizes known states to a hypothesis. Widening generalizes abstract states on a iteration

chain to a fixpoint. While Regression usually aims to minimize the total error (sum of false

positives and false negatives), Widening aims for soundness and hence errs on the side of false

positives to have zero false negatives. We use this duality to derive a generic widening operator

from regression on the set of abstract states.

The results of the dissertation are the first steps towards a unified approach to approximate

computation. Consequently, our preliminary results lead to a lot more interesting questions,

some of which we have tried to discuss in the concluding chapter.

x

Acknowledgments

I would like to express the deepest appreciation to Dr. Roberto Giacobazzi, Professor at the

University of Verona and my advisor, for without his guidance and persistent help this work

would not have been possible.

I would like to thank my committee members Dr. Mila Dalla Preda and Dr. Alessandro

Farinelli for their continual support and guidance throughout this endeavor.

I would also like to thank Dr. Damiano Zanardini, Associate Professor at Universidad

Politécnica deMadrid, Spain andDr. Francesco Ranzato, Professor at the University of Padova,

Italy for all the spirited discussions that helped shape some of the ideas presented here.

I would also like to extend my sincere gratitude to Dr. Arun Lakhotia, Professor at Uni-

versity of Louisiana at Lafayette, USA for introducing me to the world of cybersecurity and

encouraging me to pursue a Ph.D.

On a personal note, I would also like to thank all my family and friends. My parents Jaya

andRaj Notani andmy brother JayantNotani for being a constant source of inspiration and en-

couragement. My friends Leia Kagawa for the Cajun care packages and Domenico Mastronardi

for introducing me to the Italian way of life. Thanks are also due to Surbhi, Merle, Anjali,

Yamini, Konika, Prateek, Joachim, Vinodh, and Venky, for their presence was very important

in a process that often felt tremendously solitaire.

xi

Contents

Certificate v

Preface ix

Acknowledgments xi

List of Tables xvii

List of Figures xix

1 Introduction 3

1.1 A Brief Historical Review . 3

1.2 What is Provable ? . 3

1.3 Computation as a Physical Process . 5

1.4 Our Approach . 6

1.5 Outline . 7

1.6 Contributions . 8

2 Basics 13

2.1 Mathematical Notations . 13

2.1.1 Logic notations . 13

2.1.2 Set Notations . 13

2.1.3 Matrices and Vector Notations . 14

2.1.4 Context Specific Notations . 14

2.2 Order Theory . 15

2.2.1 Data Structures . 15

2.2.2 Operators and Fixpoints . 18

xiii

2.2.3 Galois Connections and Insertions 19

2.3 Probability Theory . 20

2.3.1 Origins of Probability . 20

2.3.2 Definitions and Axioms . 21

2.3.3 Random Variables and Probability Mass Functions 22

3 Program Analysis 27

3.1 The Problem . 27

3.2 Approximations . 28

3.3 Challenges . 30

3.4 Techniques & Applications . 31

3.5 Conclusion . 33

4 Abstract Interpretation 37

4.1 From Logic to Lattices . 37

4.2 Language and Least Fixpoint Semantics . 39

4.2.1 Syntax . 39

4.2.2 Concrete Semantics . 40

4.3 Abstract Domains . 43

4.3.1 Abstract Semantics . 49

4.4 Summary . 50

5 Common Numerical Domains 55

5.1 Sign Abstract Domain . 55

5.1.1 Representation . 55

5.1.2 Order Structure . 56

5.1.3 Abstract Operators . 56

5.1.4 Convergence Acceleration . 57

5.2 Polyhedra Abstract Domain . 57

5.2.1 Representation . 58

5.2.2 Order Structure . 59

5.2.3 Abstract Operators . 59

5.2.4 Convergence Acceleration . 60

5.3 Template Domain . 61

xiv

5.3.1 Representation . 61

5.3.2 Example: Interval Representation . 62

5.3.3 Example: Octagon Representation 63

5.3.4 Order Structure . 63

5.3.5 Normalization . 64

5.3.6 Abstract Operators . 64

5.3.7 Convergence Acceleration . 64

6 Supervised Learning 69

6.1 Learning Fundamentals . 69

6.1.1 What is Machine Learning ? . 69

6.1.2 Emperical Risk Minimization . 71

6.1.3 Agnostic PAC: A more general approach 72

6.1.4 Bias Variance Tradeo�s . 74

6.1.5 VC Dimension . 76

6.2 Learning in Practise . 77

6.2.1 Linear Regression . 78

6.2.2 Gradient Descent . 80

7 Information Oriented Model of Computation 85

7.1 Motivation . 85

7.2 Preliminaries . 87

7.2.1 Language Agnostic Approach . 87

7.2.2 Semantics and Program Properties 87

7.3 Information Theory . 89

7.3.1 Shannon Entropy . 89

7.3.2 Kolmogorov Complexity . 89

7.3.3 Algorithmic Information Theory . 90

7.4 Information Oriented Model of Computation 91

7.4.1 Relating Information Theory and Computability Theory 91

7.4.2 An Informal Introduction . 93

7.4.3 Going Formal . 94

7.4.4 Lossless Reconstruction . 97

7.4.5 Sound Reconstruction . 99

xv

7.4.6 Conjectured Reconstruction . 102

7.5 Application . 105

7.5.1 Hu�man Compression . 105

7.5.2 Monotone Compression Schemes . 107

7.5.3 Program Analysis: An extension to Compression Scheme 112

7.5.4 Conjectured Reconstruction via Widening 115

7.6 Conclusion . 116

8 Approximations in PL & ML 121

8.1 Overview . 121

8.2 Supervised Machine Learning: An Abstract Interpretation View 122

8.2.1 Introduction . 122

8.2.2 Fixpoints in Machine Learning . 126

8.3 A Regression Approach to Widening . 129

8.3.1 Preliminaries . 129

8.3.2 Learning Widening . 130

8.3.3 Examples . 132

9 Conclusion 139

9.1 Summary & Looking Ahead . 139

9.2 Learnability & Obfuscation . 139

9.2.1 Model . 140

9.2.2 Discontinuity Transformations . 141

9.2.3 Example . 141

Bibliography 143

xvi

List of Tables

4.1 Concrete Collecting Semantics of Expressions and Conditionals 41

4.2 Concrete Collecting Semantics of Program Statements 42

4.3 Abstract Semantics of Program Statements 49

5.1 Abstract Arithmetic Operators for Sign Domain 57

6.1 Training Data for learning Birth Rates per 1000 females that are 15 to 17 year

old, as a function of Poverty Rate of US States 79

7.1 Model Specification for Lossless Communication Scenario 99

7.2 Model Specification for Sound Communication Scenario 101

7.3 Model Specification for Estimating Hypothesis Scenario 104

7.4 Hu�man Encoding . 107

7.5 Summary: Program Analysis and Compression 114

8.1 Training Data for learning apartment Price as a function of Living Area . . . 124

xvii

List of Figures

2.1 Hasse Diagrams . 16

3.1 Program Verification using OverApproximation: [[P]] ⊆ [[P]]A 29

3.2 Program Verification using UnderApproximation: [[P]] ⊇ [[P]]A 30

3.3 Program Analysis Techniques and Tradeo�s 32

4.1 Syntax of Language . 40

5.1 Hasse Diagram of Sign Domain 〈D],v〉 . 56

6.1 Plot of Training Data for learning Birth Rates per 1000 females that are 15 to

17 year old, as a function of Poverty Rate of US States 79

6.2 Linear Regression on Data for learning Birth Rates per 1000 females that are

15 to 17 year old, as a function of Poverty Rate of US States 81

7.1 Information Oriented Model of Computation 96

7.2 Language for Conjectured Reconstruction . 102

7.3 Alice Bob Language . 109

7.4 Example Compression & Reconstruction in Turing Complete Language . . . 111

7.5 Improved Precision Language . 112

7.6 Magically Compressed Program P = σ(S) 114

8.1 Plot of Training Data . 124

8.2 Linear Regression . 128

9.1 Sample Programs . 142

9.2 Interval Analysis . 142

xix

“If I have seen further it is by standing on the shoulders
of Giants”

Isaac Newton

1
Introduction

1.1 | A Brief Historical Review

In 1931, Gödel presented his famous Incompleteness Theorems and layed to rest the question

that had occupied early 20th century mathematicians for decades: What constitutes a valid proof

in mathematics? and How is such a proof to be recognized? [8].

David Hilbert had earlier proposed to devise an artificial language in which valid proofs

can be found mechanically. He viewed mathematics as manipulation of symbols, in the sense

that once the rules of inference were known, deductions may be drawn using those rules, from

arbitrarily given system of postulates [14, page 2]. To that end, he even proposed the axiomati-

zation of Physics in his seminal talk at the International Congress of Mathematics, in the year

1900 [29].

It was only 30 years later that Gödel showed that no such perfect language exists. Gödel’s

Incompleteness Theorem stated that not all truths are provable.

Further, Nagel et al. [47] showed that Gödel’s Incompleteness Theorem applies to all formal

systems that deal with integers. This has profound implications since it implies that all these

formal systems will have unprovable truths.

This discovery shook the tenets of mathematical community. Voicing his concern, Her-

mann Weyl in 1946, commented that “[Gödel’s Theorem] is a constant drain on the enthusi-

asm and determination with which I pursued my research work” [8]. The mathematicians were

worried they may end up devoting entire careers trying to prove unprovable results. This then

led mathematicians to question: What is provable?.

1.2 | What is Provable ?

In 1936, Turing showed that Gödel’s Incompleteness Theorem is equivalent to the Halting

Problem—assertion that there can be no general method for systematically deciding if a com-

puter program halts [10]. Thus, from the Turing perspective, provable truths are functions

3

V. Notani 1.2. What is Provable ?

computable by a Turing Machine [65].

Indeed several mathematicians were working on the problem parallelly to come up with

their own definitions for computable functions. Prominent descriptions of computable func-

tions include lambda calculus [13], µ−recursive functions, Register Machines, etc. However, it

was shown that all these definitions are equivalent and correspond to the same class of func-

tions [33, 35]. Indeed this is the famous Church-Turing Thesis [34].

This brings us to the next question: What are some undecidable problems? Computer scientists

soon realized that it is not just the property of termination, but all non-trivial extensional code

properties are in general not decidable. This is also known as Rice’s Theorem [53].

Thus Program Analysis—the problem of automatically analyzing behavior of computer

programs regarding safety, security and/or other semantic properties, is undecidable.

Semantic properties are code extensional properties. Since one may reduce the problem of de-

ciding an extensional property to that of deciding termination, it follows that ProgramAnalysis

is also limited by Gödel’s Incompleteness Theorems. Mathematically, this limitation shows up

in the incompleteness of Hoare Logic- a popular method of Program Verification in the 20th

century [30].

In 1977, Cousot & Cousot presented their Abstract Interpretation [17] framework that

eventually changed the view of mathematicians towards Gödel’s results from dismay to ex-

citement. To quote Roberto Giacobazzi1, “Impossibility is opportunity [to design abstractions

that allow approximate computations]”. Indeed approximations abound in several disciplines

including Program Analysis, Machine Learning, Data Compression, etc.

Cousot’s key contribution was to provide a mathematical framework for controlled loss of

information, via abstractions to soundly approximate non-computable problems. Although it

has been applied almost exclusively to the problem of Program Analysis, our opinion is that

it should be extensively studied in the context of design of approximations for other non-

computable problems.

We discuss the problem of ProgramAnalysis in Chapter-3, and the Abstract Interpretation

framework at length in Chapter-4 and Chapter-5.

1Dr. Roberto Giacobazzi is my mentor and Ph.D. advisor.

4

Chapter 1. Introduction V. Notani

1.3 | Computation as a Physical Process

Around the 1950s, another approach to understanding the implications of Gödel’s Incom-

pleteness Theorem was proposed—that of Information Theory, in the works of Shannon [60],

Kolmogorov [36], Chaitin [6, 7], and Solomono�, among others.

Here computation concerns communication of information from a source to target over

some communication channel. The source has some object that it wants to transmit to the

target, using some description (of the object) over a communication channel. Gödel’s Incom-

pleteness Theorem shows up here in the form of limitations that apply on what constitutes

e�ective descriptions.

Consider a scenario with two people- Alice and Bob, where Bob wants Alice to send him

charts on diameter and area of circles. She can share a table with thousands of entries of

〈diameter, area〉, or, share the formula to build the table: area = π
(
d
2

)2
.

Now consider another example, where Bob wanted Alice to send him Indian Cricket team’s

run rate averaged over all games played in a year, for every year since 1990. No formula exists

to predict the Indian Cricket team’s performance in a given year. Hence, Alice has no choice

but to send a table with all the entries.

These examples allows us to intuitively define randomness as incompressibility; the idea be-

ing that random sequences do not follow any pattern, while non-random sequences do have a

pattern that can be used to compress them [8].

This may be understood as the fact that every bit in a random sequence adds information,

while non-random sequences have redundant bits that may be discarded without loss of infor-

mation. This raises the question- What is the least number of bits that are required to describe an

object?

Shannon supplied the answer. He viewed computation as a dynamic physical processand

described how Entropy may be used as information measure. Along the lines of Thermody-

namic Entropy of physical processes, Shannon defined the Information Entropy such that if

Alice wants to share some objects (selected via probabilistic measure p from a domain of ob-

jects) with Bob, then Shannon Entropy describes the width (number of bits needed) of the

channel to communicate.

Around 1964, Kolmogorov promoted the idea that for the case of digital communication,

it makes sense to consider descriptions that are Turing computable, as e�ective descriptions.

5

V. Notani 1.4. Our Approach

This combination of Computability and Information theories led to the birth of Algorith-

mic Information Theory (a term coined by Chaitin). Thus, Kolmogorov Complexity may be

understood as Shannon Entropy with the domain of objects restricted to Turing computable

sets.

Algorithmic InformationTheory forms the basis of the field of DataCompression. Namely,

the problem of encoding the data (set of objects) into a compressed object that has a cheaper

computer representation, yet can be used to reconstruct the original set of objects.

While Kolmogorov’s initial model was for objects to have a stand alone description that

describes the entire object under a universally shared domain of descriptions; Chaitin, on the

other hand, opened up this model for further generalization with his two-part description

model. The two part code (description) views Kolmogorov descriptions as a program and an

interpreter (the Turing Machine), that will execute the program to reconstruct the object. This

opens the door to experiment with Abstract Interpreters in Compression Schemes.

1.4 | Our Approach

The Turing Model of Computation views computations as proofs and non-computability as

impossibility of proving a truth. The Information Theory Model views computation as an

exchange of information between a source and a digital target, and non-computability as the

impossibility of exchanging certain information.

We aim to bridge together the ideas of Information Theory model of computation that

makes explicit measures on the amount of information, with that of Abstract Interpretation

framework that allows for controlled loss of information to allow for a generalized framework

that permits explicit measured and controlled loss of information when approximating non-

computable problems.

We present a small step in this work to serve that large goal. We start with Chaitin’s Two-

Part Code model as a low hanging fruit to bring Abstract Interpretation into the problem

of Compression Schemes. Next, since Learnability and Compressibility have been previously

studied together with interesting results [39], we study the problem of Supervised Machine

Learning and Program Analysis through the context of Information Theory and Abstract In-

terpretation.

We use Abstract Interpretation to answer the questions: What possible abstractions exist to

attack a specific problem? Is there a standardized approach to choosing the right abstraction for the given

6

Chapter 1. Introduction V. Notani

problem? What are the ensuing tradeo�s? How does one reason about the ensuing tradeo�s?

Simultaneously, we use Information Theory to answer questions such as: Is the proof problem

feasible?, or, Is the amount of information in the assertions su�cient to arrive at the implication? If not,

how much more information is required via assumptions?

Presently, each of the above mentioned disciplines- Data Compression, Program Analysis

and SupervisedMachine Learning, have their own intuitions, techniques, and formalizations to

answer these questions. We want a more generalized framework that allows to instantiate these

problems, thereby promoting cross-disciplinary use of ideas, tools and techniques, whenever

possible.

Work towards studying and comparing abstractions across disciplines has been disparate.

Since the 1980s, Machine Learning and Data Compression have been studied together leading

to some results relating Learnability Theory with Compressibility Theory [39]. Recently, it

was shown that the SAT Solvers may be viewed as Abstract Interpreters [19]. However, we are

not aware of any work comparing the approximations in Supervised Machine Learning with

those in Program Analysis. To the best of our knowledge, there are no works aiming to design

a method for systematic comparison of approximations across disciplines.

1.5 | Outline

In this work, we propose an Information Oriented Model of Computation that allows for a system-

atic comparison of the approximations made in various problems in computer science. This

is the first work to propose such a generalized framework that bridges Computability Theory,

Information Theory and Abstract Interpretation to view computation from an Information

Oriented perspective.

We then use our model to study and compare the approximations in Supervised Machine

Learning, Program Analysis and Data Compression problems.

Other than this Introduction, the dissertation has 8 more chapters. Chapters-2 through 6

describe the motivations and background, while Chapters-7 and 8 present our major contri-

butions, and finally Chapter-9 is the conclusion. We list here briefly the objectives and contri-

butions in each chapter.

The following chapter, Chapter-2, discusses the mathematical notations and necessary

mathematical background required for understanding the rest of the dissertation. Specifically,

we discuss Order Theory and Probability Theory.

7

V. Notani 1.6. Contributions

We begin the main body of the dissertation with the question: What is Program Analysis?

Chapter-3 presents an introduction to the problem, discusses the challenges, and presents a

systematic method to organize the techniques used for Program Analysis.

We then follow up with the next logical question: How do you analyze programs? Chapter-4

presents the Abstract Interpretation framework for Program Analysis. Chapter-5 describes

the most common abstract domains for numerical invariants. We will refer to some of these

domains for examples throughout the dissertation.

Another approach to Program Analysis is that via Machine Learning techniques. Chapter-

6 discusses the fundamentals of Machine Learning Theory, specifically the Supervised Machine

Learning, Regression, and the PAC learning model.

We then ask the question: How can we compare the approximations made by Program Analyzers

and Machine Learners? Chapter-7 addresses this question via our key contribution- an Infor-

mation Oriented Model of Computation that uses ideas from Information Theory and Abstract

Interpretation to allow examination of approximations made by an algorithm. We then ana-

lyze the problems of Data Compression, Program Analysis and Supervised Machine Learning

within our model and compare and contrast the available input information and approxima-

tions made in each problem.

In chapter-8, we further build upon the relationship between Program Analysis and Ma-

chine Learning. We first examine a Machine Learning problem through the lens of Abstract

Interpretation and demonstrate the similarities. We then examine Widening, an Abstract In-

terpretation construct, through the lens of Machine Learning, and once again, demonstrate the

relationship between the two problems of Program Analysis and Machine Learning.

Finally, we end the dissertation in Chapter-9 with a concluding discussion on our Informa-

tionOrientedModel of Computation, and avenues for futurework on relatingCompressibility,

Obfuscation and Learnability theories.

1.6 | Contributions

We present here the original contributions of this work in the form of questions examined,

solutions proposed and insights gained:

Question: What techniques are used for Program Analysis?

Answer: Since ProgramAnalysis is undecidable in general, numerous tools and techniques exist

for Program Analysis, each best suited for a specific (set of) application(s). The suitability of a

8

Chapter 1. Introduction V. Notani

specific method to a specific application is determined by the tradeo�s made by the technique

and the requirements of the application. In Section-3.4, we propose a novel technique to sys-

tematically study these techniques by way of arranging them on a cube such that the position

in the cube is determined by the tradeo�s made. This led to an insight: Abstract Interpretation

and Machine Learning are the two base techniques used for Program Analysis, and that other Program

Analyzers may be derived as some combination of abstract interpreters and learners.

Question: How can we compare the approximations made by Program Analyzers and Machine

Learners?

Answer:We investigate this in Chapter-7. We begin by proposing an Information Oriented Model

of Computation that bridges Computability Theory, Information Theory andAbstract Interpre-

tation into one framework that allows analysis of computation as a communication of infor-

mation. Information Theory permits measurement and comparison of information content in

inputs & expected output and classify problems into decidable, partially decidable and proba-

bilistic estimations.

We then use the framework to compare and contrast approximations in Data Compression, Su-

pervised Machine Learning and Program Analysis and demonstrate how all three techniques

solve the problem of set reconstruction, albeit with di�ering input quality and output quality.

Further, this is the first work to relate Compressibility, Learnability andAnalyzability. Though

it should be noted that Compressibility and Learnability have been studied together previously

beginning with [39]; we are the first to introduce Program Analysis into the mix.

Question: Do Abstract Interpretation and Machine Learning take fundamentally di�erent ap-

proaches to solving related problems, or can we demonstrate similarity in their approach to

solving these related problems?

Answer:We investigate this in chapter-8. We begin by examining SupervisedMachine Learning

through the lens of Abstract Interpretation. We demonstrate the presence of ordered structures

in Machine Learning hypothesis classes (abstract domains), the equivalence of ideal solution to

non-computable least fixpoint solution and computation of least fixpoint approximations by

Learning Algorithms.

We then examine Abstract Interpretation through the lens of Supervised Machine Learning.

We demonstrate that the problem addressed by widening in Abstract Interpretation Frame-

work: least fixpoint approximation in finite steps, is fundamentally a learning theory problem.

9

V. Notani 1.6. Contributions

We present a novel idea that widening, like regression, is an inductive learner. While regres-

sion generalizes known states to a hypothesis, widening generalizes abstract states on a iteration

chain to a fix point. We use this to design a generic learning theory based widening algorithm.

10

“My lattice-theoretic arguments seemed to me so much
more beautiful, and to bring out so much more vividly
the essence of the considerations involved, that they
were obviously the ‘right’ proofs to use”

Garrett Birkho�

2
Basics

This chapter describes the mathematical notations and discusses the basic mathematical theo-

ries that lay the foundation for the work presented in the rest of the dissertation.

We describe the notations first and then discuss Order Theory and, finally, Probability

Theory. Order Theory is fundamental to Abstract Interpretation way of describing abstrac-

tions as we will see in Chapter-4. Probability Theory lays the foundation for Machine Learning

Theory discussed in Chapter-6.

2.1 | Mathematical Notations

We introduce notations that will be used in the rest of dissertation.

2.1.1 — Logic notations

We use standard notations from first-order logic: disjunction ∨, conjunction ∧, logical nega-
tion ¬, implication =⇒, equivalence⇐⇒, as well as universal ∀ and existential ∃ quantifiers.
For definitions, we use def

= and def⇐⇒ . We use the notation a := b to denote the assignment

operation where variable a is set to be equal to the value of variable b or evaluation of the

expression b.

2.1.2 — Set Notations

We also use standard notations from set theory: the empty set∅, set union ∪ and intersection

∩: in binary form (S ∪ T) and (S ∩ T), or over a family
⋃
i∈I

Si and
⋂
i∈I

Si, for a family (Si)i∈I

of sets indexed by I , which may be finite or infinite.

Given two sets S and T , we denote the cartesian product of S and T with S × T , set

inclusion S ⊆ T , strict inclusion S ⊂ T , ownership S ∈ T , set di�erence S r T , set

complement S, and cardinality (the number of elements in S) by |S|.

13

V. Notani 2.1. Mathematical Notations

Set comprehension: {s ∈ S|P (s)} is the subset of elements from S that additionally

satisfy some logic predicate P . Given a set S, we denote as ℘(S) its powerset, i.e., the set of

all the subsets of S, including ∅ and S itself. We denote by [S]fin the set of all finite subsets

of S. Additionally, [S]n for n ∈ N represents the set of subsets of S with cardinality n.

Given two sets S and T , we denote as S −→ T the set of functions from S to T ; S is

called the domain of such a function, and T as its codomain.We will sometimes use the lambda

notation λx.f(x) to denote functions concisely. Alternatively, a function can be described in

extension as [x1 7→ v1, ..., xn 7→ vn], meaning that its domain is x1, ..., xn and it maps any

xi to the corresponding vi .

Given a function f , f [x 7→ v] denotes the function that maps x to v, and any y such that

x 6= y to f(y), i.e., it updates the function at point x to value v.

Given f : S −→ T and g : T −→ Q we denote with g ◦ f : S −→ Q their composition,

i.e., g ◦ f = λx.g(f(x)). Finally, f i denotes f composed i times, and id denotes the identity

function: f0 def
= id and f i+1 = f i ◦ f = f ◦ f i.

We denote respectively as N, Z, Q, R, R+ the sets of natural integers, integers, rationals,

reals and non-negative reals.

2.1.3 — Matrices and Vector Notations

Vectors are denoted as ~v , matrices as M, matrix-matrix and matrix-vector multiplications as

×, and the dot product of vectors is denoted as (a dot).

The i-th component of a vector ~v is denoted as vi . Moreover, the i-th line or i-th column

of a matrixM , depending on the context, is a vector denoted as ~Mi . The element at line i and

column j of a matrixM is denoted asMij .

We order vectors element-wise: ~v ≥ ~w means ∀i : vi ≥ wi . The zero vector is denoted as
~0.

2.1.4 — Context Specific Notations

Sometimes, in special context, we will use popular notations in common use for the specific

problems in a obvious way, or with explicit warning, as needed, to make the text easier to

comprehend.

For instance, in the context of Machine Learning, the set elements may be indexed, with

index denoted by superscript. For instance, we use x(i) to denote the “input” variables, also

14

Chapter 2. Basics V. Notani

called input features, and y(i) to denote the “output” variable, also called target variable, that

we are trying to predict. A pair (x(i), y(i)) is called a training example, and the dataset that

we use to learn:—a list ofm training examples {(x(i), y(i)) | i = 1, ...,m} -is called a training
set. The superscript “(i)” in the notation is simply an index into the training set. We will also

use X to denote the set of input values, and Y the set of output values. In this context, often
~x(i)’s and/or ~y(i)’s maybe multidimensional vectors.

For the sake of brevity, and when the context makes this obvious, we will skip the vector

notation and refer to multidimensional vectors ~x(i)’s and/or ~y(i) as simply x(i)’s and/or y(i).

Further, when dealing with n features (n ∈ N ∧ n ≥ 2), the jth element of the multi-

dimensional vector x(i) may be referenced as x(i)j for j ∈ [1, n]. Similarly, we may use Xj to

refer to the set {x(i)j | i = 1, ...,m}.

2.2 | Order Theory

Partial orders and lattices are the fundamental algebraic structures used to describe the various

abstractions in Abstract Interpretation. We describe here Order Theory su�cient for under-

standing and reading of this work. The definitions are standard material on the subject and

the reader is referred to [48] for further details on Order Theory and Lattices. The following

definitions were taken from a tutorial on basic Abstract Interpretation by Antoine Mine [45].

2.2.1 — Data Structures

Definition 2.2.1 (Partial Order, Poset). A partial orderv on a setX is a relationv ∈ X×X
that is:

1. reflexive: ∀x ∈ X : x v x

2. anti-symmetric: ∀x, y ∈ X : (x v y) ∧ (y v x) =⇒ x = y

3. transitive: ∀x, y, z ∈ X : (x v y) ∧ (y v z) =⇒ x v z.

Thev describes the ordering applied to the setX . The poset is called a total order i� the

ordering is defined for every pair of elements in the set: ∀x, y ∈ X , either x v y or y v x.
If there exist pairs of elements in X which are not comparable (ordering is not defined),

then the poset is strictly a partially ordered set, and not a totally ordered set.

15

V. Notani 2.2. Order Theory

Lower and Upper Bounds

Let P be an ordered set and S ⊆ P . We say x ∈ P is an upper bound of S i� x v s ∀s ∈ S.
An upper bound x need not belong in S. We say that x is the least upper bound for S if x is

an upper bound for S and x v y for every upper bound y of S. If the least upper bound of S
exists, then it is unique. Least upper bound, lub or join of two elements a and b is written as

at b. Likewise, the unique greatest lower bound of a and b, also called glb or meet, if it exists,

is the greatest element smaller than a and b, and it is denoted as a u b.
As t and u are associative operators, we will employ also the notations tS and uS to

compute lubs and glbs on arbitrary (possibly infinite) sets S of elements. Finally, we denote

respectively as ⊥ and > the least element and the greatest element in the poset, if they exist.

Hasse Diagrams

We say that x is covered by y in poset P , written x ≺ y, if x v y and there is no z ∈ P such

that x v z v y. It is clear that the covering relation determines the partial order in a finite

ordered set P . A Hasse diagram of a poset P has the elements of P represented by points on

a plane, with greater elements higher, and, a line is drawn from point x upto y when x ≺ y.

Figure-2.1 shows example Hasse Diagrams.

{a, b, c, d}

a b c d

∅

(a) Example Hasse Diagram of a Lattice

{a, b, c}

{b, c} {a, c} {a, b}

{c} {b} {a}

{∅}

(b) Example Hasse Diagram of a Com-
plete Lattice

Figure 2.1: Hasse Diagrams

Definition 2.2.2 (Chain). A chain (C,v) in a poset (X,v) is a subset C ⊆ X such that

∀x, y ∈ C, (x v y) ∨ (y v x)

16

Chapter 2. Basics V. Notani

Definition 2.2.3 (CPO). ACPO or Complete Partial Order is a poset such that every chain has

a least upper bound.

Theorem 2.2.4 (Zorn’s Lemma). If every chain in an ordered setX has an upper bound inX , then

X contains a maximal element.

Definition 2.2.5 (Lattice). A Lattice L(X,v,t,u) is a poset such that ∀x, y ∈ X,x t y and
x u y exist.

Definition 2.2.6 (Complete Lattice). A Complete Lattice L(X,v,t,u,⊥,>) is a poset such

that:

1. ∀A ⊆ X,tA exists.

2. ∀A ⊆ X,uA exists.

3. X has a least element ⊥.

4. X has a greatest element >.

Clearly, a complete lattice is a lattice and a CPO. Less obviously, to get a complete lattice,

either condition 1 or 2 is su�cient, as each one implies the other one, and both imply conditions

3-4. The proof involves Zorn’s Lemma as described in theorem-2.2.4.

Definition 2.2.7 (Distributive Lattice). A Lattice L(X,v,t,u) that satisfies equivalent defi-

nitions of the distributive law:

∀x, y, z ∈ X, (x t y) u z = (x u z) t (y u z) (2.1)

∀x, y, z ∈ X, (x u y) t z = (x t z) u (y t z) (2.2)

Definition 2.2.8 (SubLattice). A Lattice L′(X ′,v′,t′,u′) is a sublattice of L(X,v,t′,u′)
if:

1. X ′ ⊆ X

2. we use the same order v on bothX andX ′, and

3. X ′ is closed under t and u, i.e., lubs and glbs exist inX ′ and coincide with those inX :

tX = tX ′ and uX = uX ′

17

V. Notani 2.2. Order Theory

2.2.2 — Operators and Fixpoints

An operator is a function f : X −→ X with the same domain and codomain.

Definition 2.2.9 (Fixpoints, Prefixpoints, Postfixpoints). Given a Poset (X,v) and an operator

f : X −→ X :

1. x is a fixpoint of f if f(x) = x.

We denote as fp f def
= {x ∈ X | f(x) = x} the set of fixpoints of f .

2. x is a prefixpoint of f if x v f(x).

3. x is a postfixpoint of f if f(x) v x.

4. lfpx f
def
= min{y ∈ fp f | x v y}, if it exists, is the least fixpoint of f greater than x.

lfp f def
= lfp⊥ f , if it exists, is the least fixpoint of f .

5. Dually, gfpx f
def
= max{y ∈ fp f | y v x} is the greatest fixpoint of f smaller than x.

gfp f def
= gfp> f , if it exists, is the greatest fixpoint of f .

Definition 2.2.10 (Operator Properties).

1. Monotonicity: A function mapping two posets f : (A1,v1) −→ (A2,v2) is monotone

if ∀x, y ∈ A1 : x v1 y =⇒ f(x) v2 f(y).

2. Continuity: A function between two CPO f : (A1,v1,t1) −→ (A2,v2,t2) is con-
tinuous if for every chain C ⊆ A1, {f(c) | c ∈ C} is also a chain and the limits

coincide: f(v1 C) =v2 {f(c) | c ∈ C}.

3. Extensivity: An operator f : (A,v) −→ (A,v) on a poset is extensive if ∀a ∈ A :

a v f(a).

4. Reductivity: An operator f : (A,v) −→ (A,v) on a poset is reductive if ∀a ∈ A :

f(a) v a.

Theorem 2.2.11 (Tarski’s Theorem). If f ∈ X −→ X is a monotonic operator in the complete lattice

(X,v,t,u,⊥,>), then the set of fixpoints fp f is a non-empty complete lattice. In particular, lfp f

exists. Further, lfp f = u{x ∈ X | f(x) v x}.

Theorem 2.2.12 (Kleene’s Theorem). If f ∈ X −→ X is a continuous operator in a CPO (X,v
,t,>), then lfp f exists. Further, lfp f = t{f i(⊥) | i ∈ N}.

18

Chapter 2. Basics V. Notani

2.2.3 — Galois Connections and Insertions

Definition 2.2.13 (Upper Closure Operator). An operator f : X −→ X on a poset (X,v) is

called an Upper Closure Operator (uco) i� f is:

• extensive: ∀x ∈ X : x v f(x)

• monotonic: ∀a, b ∈ X : a v b =⇒ f(a) v f(b)

• idempotent: ∀x ∈ X : f(f(x)) = f(x)

We denote with uco(X) the set of all closure operators on the posetX . If L is a complete

lattice, then 〈uco(L),v,t,u,>>, id〉 forms a complete lattice [68] where the bottom is id =

λx.x, the top is>> = λx. >L, and for every ρ, η ∈ uco(L), ρ is more concrete than η i� ρ v η
i� ∀y ∈ L. ρ(y) ≤ η(y) i� η(L) ⊆ ρ(L), (ui∈Iρi)(x) = ∧i∈Iρi(x); (ti∈Iρi)(x) = x i�

∀i ∈ I. ρi(x) = x.

Definition 2.2.14 (Galois Connection). Given two posets (C,v1) and (A,v2), the pair (α :

C −→ A, γ : A −→ C) is a Galois connection i�:

∀a ∈ A, c ∈ C : c v1 γ(a) =⇒ α(c) v2 a (2.3)

which is denoted as (C,v1) −−→←−−α
γ

(A,v2). α and γ are said to be adjoint functions, where α is

the upper adjoint and γ is the lower adjoint.

Definition 2.2.15 (Galois Connection Properties). AGalois connection (C,v1) −−→←−−α
γ

(A,v2)

satisfies the following properties:

1. α ◦ γ and γ ◦ α are idempotent

2. γ ◦ α ◦ γ = γ and α ◦ γ ◦ α = α

3. ∀c ∈ C : α(c) = t2{a | c v1 γ(a)}

4. ∀a ∈ A : γ(a) = t1{c | α(c) v2 a}

5. αmaps corresponding lubs: ∀X v1 C : if t1X exists, then α(t1X) = t2{α(x) | x ∈
X}

6. γ maps corresponding glbs: ∀X v1 A: if u2X exists, then γ(u2X) = u1{γ(x) | x ∈
X}

19

V. Notani 2.3. Probability Theory

Definition 2.2.16 (Galois Insertion). A Galois Insertion is a galois connection with upper ad-

joint α and lower γ is called a galois insertion i� α ◦ γ = id.

Definition 2.2.17 (Galois Isomorphism). A Galois Insertion is a galois connection with upper

adjoint α and lower γ is called a galois insertion i� γ ◦α = id. Since both α ◦ γ and γ ◦α are

identity functions, it implies that α and γ are bijective.

2.3 | Probability Theory

Probability is a quantification of the degree of uncertainty. In this section we briefly describe

the terminology used, and discuss the fundamental axioms and principles of Probability Theory

that are required for understanding the text of the dissertation.

The definitions and examples are borrowed from [38] and [22]. However, the notation used

might be slightly di�erent from either sources. Interested readers may refer to [22] for quick

introduction to probability.

2.3.1 — Origins of Probability

Modern probability theory emerged from the letters of correspondence between Fermat and

Pascal in 1654, after the gambler Antoine Gombaud, Chevalier de Méré, reached out to Pascal

regarding a chance game- a dice game requiring a “double-six” in 24 throws [1].

Emerson’s notes [67] raise the question that although chance games have been around a

millennia, why was probability not studied by western mathematicians and philosophers until

the 17th century?

Emerson [67] postulates that one reason is that since the western world viewed science and

nature as deterministic, and chance as “divine intervention”, it made the study of probability

impious.

Another view, suggested by Hacking [26], is that western mathematics lacked the several

foundational aspects needed to build probability theory, such as the lack of a simple numerical

notation system in Greek mathematics.

Emerson, citing Hacking, notes that the Indian culture had a “science of dicing” as early as

400AD since the Indian culture had developed many mathematical aspects much before the

European culture [67]. For instance, the ancient Indian text of Yajurveda already used a place

value system, and gives names for numbers upto 1012, which was not possible in the Greek and

Roman numerals [52]. Emerson, citingHacking, then notes that it is not surprising that Italians

20

Chapter 2. Basics V. Notani

were the first probabilists in Europe who worked with Arabic numerals and mathematical

concepts [67].

The work of Raju [52] discusses a history of probability in Indian mathematics and points

out how several foundational probability concepts were well understood by Indians much ear-

lier, with a notion of fairness in dice game being referenced in the earliest of Hindu texts-

Mahabharata, to discussion of weighted averages in the context similar to dutch bets in Ganita

Sara Samgraha- 8th century text by Mahavira.

Raju [52] presents a fascinating discussion on how fundamental di�erences in Philosophy

between the East and West influenced their respective development of Mathematics and ulti-

mately Science.

2.3.2 — Definitions and Axioms

The calculus of Probability studies mathematical models of uncertain situations. Given an

uncertain situation, namely, the outcome is not deterministic, we call the set of all possible

outcomes as the sample space S. We then describe an event a as a subset of S.

Example 2.3.1. The tossing of two coins, gives a sample space S consisting of all pairs (i, j)

where i is the outcome of the first coin, and j is the outcome of the second coin. If a =

{(H,T), (H,H), (T,H)}, then a is the event that at least one coin gives H heads. If b =

{(H,T), (T, T), (T,H)}, then b is the event that atleast one coins gives T tails.

Intuitively, the probability of an event a is the apparent limit of the relative frequency of

outcomes in a in the long run in a sequence of independent repetitions of the experiment.

Note that not all a ⊆ S are events. IfA is the set of all events, thenA is a σ-algebra on S.

Definition 2.3.2 (σ-algebra and Measurable Space). A σ-algebra on a set S is a set of subsets

of S
(
A ⊆ ℘(S)

)
such that A contains the set S, is closed under complement and countable

unions. Thus:

• ∅ ∈ A
• a ∈ A =⇒ a ∈ A
• a1, a2, ... ∈ A =⇒

∞⋃
i=1

a1 ∈ A

The pair (S,A) is called a Measurable Space or Borel Space.

Definition 2.3.3 (Properties of Probability). The probability P(a) for an event a ∈ A satisfies:

• ∀a ∈ A : P(a) ≥ 0

21

V. Notani 2.3. Probability Theory

• P(S) = 1 is the certain event

• P(∅) = 0 is the impossible event

• If a and b are disjoint sets in A, then P(a ∪ b) = P(a) + P(b). This may be extended

to infinite events: if a1, a2, ... are pairwise disjoint, then P(
∞⋃
i=1

ai) =
∞∑
i=1

P(ai)

• For a decreasing sequence a1 ⊃ a2 ⊃ a3 ... of events with
⋂
n an = ∅, we have

limn→∞ P(an) = 0

For systems with finite events, the last axiom clearly follows from the preceding axioms.

However, for infinite events, the last axiom is independent of the preceding events.

Also note that given a set S, A = {∅,S} is the smallest σ-algebra, and A = ℘(S) is the

biggest σ-algebra on set S.
We call P a probability distribution and say that the distribution P, over the set of events

A, associates the measure P(a) with a. It has the following properties:

• ∀a ∈ A : 0 ≤ P(a) ≤ 1

• For any a, b ∈ A : a ⊆ b =⇒ P(a) ≤ P(b)

• if a is the complement set S− a, then P(a) = 1− P(a)

• P(a ∪ b) = P(a) + P(b)− P(a ∩ b).

Given two events a, b ∈ A, we say a and b are mutually independent events i� P(a ∩ b) =

P(a)× P(b). They are dependent events otherwise.

The idea of independence is that knowing that an event a has happened provides no addi-

tional information about the occurrence of event b.

For dependent events a and b, we define the conditional probability by Bayes’ Rule:

P(b|a) =
P(a ∩ b)
P(a)

(2.4)

The idea here is that while P(b) is the prior probability of event b, but after knowing that event a

happened, we can adjust the probability of event b fromP(b) toP(b|a), the posterior probability.

2.3.3 — Random Variables and Probability Mass Functions

ARandomVariable is a numberwhose value depends upon the outcome of a random experiment.

Mathematically though, a random variable is a real-valued function on the sample spaceS. They
are usually denoted asX,Y, Z .

22

Chapter 2. Basics V. Notani

Example 2.3.4 (Random Variable). Some examples of Random Variables:

1. Toss a coin 10 times and letX be the number of Heads.

2. Choose a random person in a class and letX be the weight of the person, in Kg.

3. LetX be value of the MSFT stock price at the closing of the next business day.

A discrete random variableX has finitely or countably many values xi, i = 1, 2, ... , and

p(xi) = P(X = xi)with i = 1, 2, ... is called the probability mass function ofX . Sometimes

X is added as the subscript of its p. m. f., p = pX .

Properties of Probability Mass Function:

• For all i, p(xi) > 0 (usually, we do not list values ofX which occur with probability 0)

• For any interval B, P(X ∈ B) =
∑

xi∈B p(xi)

• AsX must have some value,
∑

i p(xi) = 1

Assume that X is a discrete random variable with possible values xi, i = 1, 2, ..., then,

the expected value, also called expectation ofX is: E(X) =
∑
i
xip(xi).

For any function For any function, g : R −→ R: Eg(X) =
∑
i
g(xi)p(xi).

Definition 2.3.5 (Joint Probability and Marginal Probability). : Given two random variables

X,Y , the joint probability mass function p(x, y) is defined as: p(x, y) = P(X = x, Y = y),

so that:

P
(
(X,Y) ∈ a

)
=

∑
(x,y)∈a

p(x, y)

The marginal probability ofX and Y are defined as:

P(X = x) =
∑
y

P(X = x, Y = y) =
∑
y

p(x, y)

P(Y = y) =
∑
x

P(X = x, Y = y) =
∑
x

p(x, y)

23

“[. . .] it is not only the programmer’s responsibility to
produce a correct program but also to demonstrate its
correctness in a convincing manner .. .”

Edsger Wybe Dijkstra

3
Program Analysis

3.1 | The Problem

Informally, Program Analysis is the problem of automatically reasoning about the behavior of

computer programs. A better definition would be as the problem of automatically synthesizing

program invariants. Program Invariants are assertions on program properties that hold true

on all possible program executions (semantics). Thus, Program Analysis is the problem of

automatically generating true assertions about program semantics.

Program Analysis is one of the methods available to solve the problem of Program Verifi-

cation. Program Verification is the problem of proving that program execution is correct (with

respect to some program specification) in all specified environments.

What do we mean by that? Consider the set of natural numbers N. Natural numbers have

numerous interesting properties- they may be even, odd, prime, or, divisible by 20, and so on.

Let’s say we want to verify that a given set of numbersX = {2, 4, 6, 8} does not contain odd

numbers. One way to verify the assertion thatX does not contain odd numberswould be to check

if each element x ∈ X satisfies the assertion. Thus, we pick each element and check if it is odd,

and raise a flag if the assertion is violated. Once we have exhausted all elements without raising

the flag, we know the assertion holds true, and we have successfully verified the assertion. This

approach could be expensive if the setX is very large.

Another alternative way would be to use the set of all odd numbersO = {1, 3, 5, ...} and
see ifX∩O = ∅. If the set intersection is empty, meansX does not contain any odd numbers,

and we have once again verified the assertion.

A key idea in the second approach was to use the set of all odd numbersO as a representa-

tion for the property of being odd. Indeed we can extend the idea to any property, and define

a property by the set of all elements that all hold the property. Thus, the properties of natural

numbers are {p|p ∈ ℘(N)}. Further, given a set of natural numbersX ∈ ℘(N), we can verify

the assertion that X holds property p⇐⇒ X ⊆ p ⇐⇒ X ∩ p = ∅. Further, we can also

27

V. Notani 3.2. Approximations

provably demonstrate the verification failure: X does not hold property p⇐⇒ ∃x ∈ X such

that x /∈ p, or,X ∩ p 6= ∅.

The same idea can be extended to computer programs. Understand that computer pro-

grams are essentially functions on memory states E . In the example, properties of natural

numbers were described by sets in the power-set of natural numbers. Thus, just like the exam-

ple, properties of behaviors of computer programs (semantic properties) may be expressed by

power-set of all possible memory states ℘(E). Thus, the semantics (computed memory states)

of program P , denoted by [[P]], hold some property c ∈ ℘(E) i� [[P]] ⊆ c.

The problem with this, however, is that the semantics of programs in Turing Complete

Language is, in general, an infinite object and not computable. One may however compute

an approximation of [[P]] that has a cheaper representation, but loses some information about

[[P]]. And that is the problem of Program Analysis- to compute an approximation of [[P]], such

that one can still perform the verification, or any other application for which the analysis was

performed.

Abstract Interpretation is a mathematical framework that explains how to compute useful

approximations of program semantics. Indeed other methods exist for Program Verification,

including deductive methods, model checking and program typing. These methods are similar

and only di�er in their choices of approximations. Abstract Interpretation [17], as we show

in Chapter-4, formalizes this notion of controlled loss of information via approximation in a

unified framework.

3.2 | Approximations

Two types of useful approximations of program semantics are most common in Abstract In-

terpretation: Over-approximation and under-approximation. Over-approximation refers to

computing a superset of program semantics, while under-approximation refers to computing

a subset of the program semantics.

By “useful approximations” we mean that meaningful inferences drawn on these abstract

semantics, are also valid on the concrete semantics—the un-abstracted real world semantics. Note

that we will use the terms abstract and concrete in a relative context. This property of being

able to assert inferences drawn in the abstract world in the real/concrete world is referred to

as Soundness of program analysis.

Consider a program P with concrete semantics [[P]]. Typically, a program analyzer would

28

Chapter 3. Program Analysis V. Notani

X
a

[[P]]A

[[P]]

(a) No Alarms: [[P]]A ⊆ a

X

[[P]]A

[[P]]

a

True
Alarms

False Alarms

(b) Alarms: [[P]]A ∩ a

Figure 3.1: Program Verification using OverApproximation: [[P]] ⊆ [[P]]A

compute it’s approximate (abstract) semantics [[P]]A, in some space of semantic objects ℘(X).

Then, a program verifier would check the approximate semantics against some assertion (prop-

erty) a ∈ ℘(X). The verifier would raise alarms for all x ∈ [[P]]A ∩ a. Thus, the verification
is completed without raising alarms when [[P]]A ∩ a = ∅⇐⇒ [[P]]A ⊆ a.

Since approximation implies a loss of information, not all inferences will be sound, that is

to say that not all inferences drawn in the abstract world will be true assertions in the concrete

world.

Consider the set of concrete semantics [[P]], and it’s over approximation [[P]]A as shown in

Figure-3.1. Then, ∀x ∈ X, x ∈ [[P]] =⇒ x ∈ [[P]]A. Thus, if some assertion (property) a ∈
℘(X) holds true for [[P]]A ([[P]]A ⊆ a), then the property also holds true for [[P]] ([[P]] ⊆ a)

as shown in Figure-3.1a.

However, when the verification condition does not hold for the abstract, it does not im-

ply that the assertion fails in concrete as well. Namely, as [[P]]A is an over-approximation, it

contains extraneous semantic objects that do not exist in the concrete world [[P]]. These may

induce false alarms as shown in Figure-3.1b. Thus, an over-approximationmay be used to verify

absence of semantic objects, but not presence of semantic objects.

Dually, the under-approximation, may be used to draw sound inferences on negating as-

sertions. As can be seen in Figure-3.2, in the case of under-approximation ∀x ∈ X, x ∈
[[P]]A =⇒ x ∈ [[P]]. Thus, here, if an assertion does not hold for [[P]]A, it cannot be true on

[[P]]. This means that all alarms raised by verifier using under-approximation correspond to

29

V. Notani 3.3. Challenges

X

[[P]]

[[P]]A

a

Missed Alarms

(a) No Alarms: [[P]]A ⊆ a

X

[[P]]

[[P]]A

a

True Alarms

(b) Alarms: [[P]]A ∩ a

Figure 3.2: Program Verification using UnderApproximation: [[P]] ⊇ [[P]]A

property violations in the concrete world as well, as shown in Figure-3.2b.

However, when the verification condition does hold for the abstract, it does not imply

that the assertion holds in concrete. Namely, as [[P]]A is an under-approximation, it is missing

semantic objects that do exist in the concrete world [[P]]. These may cause the verifier to miss

some alarms as shown in Figure-3.2a. Thus, an under-approximation may be used to verify

absence of semantic objects, but not presence of semantic objects.

Thus, in Program Analysis, assertions are designed to describe security, correctness or

robustness properties, and over-approximation is used to verify these safety properties, and

under-approximation is used to provably demonstrate safety property violations.

3.3 | Challenges

Consider again the scenario of Figure-3.1 where the property a represents a desired property on

the concrete semantics, and using over-approximation of concrete semantics for verification.

This approximation [[P]]A loses information about the concrete world by adding additional

objects that did not exist in the concrete world. This loss of information with respect to the

concrete world is called loss of Precision or Incompleteness of the analysis.

Thus, the analyzer will either verify the property (as in Figure-3.1a) or raise alarms that

may be false alarms (as in Figure-3.1b), in the sense that although an unsafe state was arrived

in the abstract, the analyzer does not know whether the state was reachable in concrete world.

In common parlance, we often use the terms False Positives for these false alarms. That

30

Chapter 3. Program Analysis V. Notani

stems from the labeling where Positive implies an undesired states, negative means a desired

state. True and False refer to whether the label applied by analyzer in the abstract world, holds

merit in the concrete world.

Similarly, the under-approximation loses precision (demonstrates incompleteness) bymiss-

ing out on objects in the abstract that were present in the concrete world. This is why, here, the

analysis will either provably demonstrate the presence of undesired states (see Figure-3.2b), or

raise an unprovable property assertion because of the possible presence of false negatives (see

Figure-3.2a).

Indeed Rice’s Theorem states that program analysis is in general undecidable for all non-

trivial semantic properties. Thus it makes sense that an analyzer may not be both sound and

complete.

Thus, soundness, completeness and e�ciency are the three main challenges in automated

program analysis. The Abstract Interpretation framework guarantees soundness by design of

approximation, while completeness and e�ciency are traded.

3.4 | Techniques & Applications

The choice and design of approximation is fundamental to program analysis. It is heavily dic-

tated by application, as we will see in this section.

There exist a vast variety of tools and applications for program analysis developed over the

last half century, and any attempt to list them all shall be incomplete. It makes more sense

to study the techniques with respect to how they tackle the challenges in program analysis-

namely the Soundness, Completeness and E�ciency tradeo�s.

It should be noted, however, that Soundness and Completeness depend not just on the

method, but also the application. For instance, software testing is sound when used to demon-

strate a bug, but unsound when used to demonstrate the absence of bugs.

As such, we prefer to replace soundness and completeness with False Positives and False

Negatives- the errors produced by program analysis. Thus we study program analysis tech-

niques within the boundaries of a hypothetical cube of Program Analysis techniques, as shown

in Figure-3.3

The axis are labeled as 1−FP and 1−FN to denote that False Positive and False Negative

ratios decrease from 1 to zero as we move along the direction of the axis. E�ciency increases

as we move up along that axis. We denote e�ciency as time complexity w.r.t. size of program

31

V. Notani 3.4. Techniques & Applications

1-FP

Efficiency

1-FN

Plane of Zero
False Positives

Plane of Zero
False Negatives

Plane of Constant
Time Analysis

Figure 3.3: Program Analysis Techniques and Tradeo�s

semantics, in the bigO notation.

The cube may be useful when given a set of benchmark programs, it can be used to visualize

the tradeo�s made by any program analyzer available today, or in the future. The front and

back planes describe the boundaries for the best and the worst possible error ratios in analyzers

respectively.

The visible front planes refer to analysis that guarantee zero false positives (such as simula-

tion and testing), or zero false negatives (such as over-approximating Abstract Interpretation),

with respect to specified property. The back planes refer to False Positive and False Negative

ratios of 1, indicating the highest possible error rates.

The top plane for constant time analysis refers to non-semantic analyzers such as those

relying on filenames. The bottom plane is that of non-terminating analysis.

The region around the intersection of the front planes fades into white to indicate that no

analyzer may exist that guarantees zero false positives and zero false negatives ratios simulta-

neously (in the general case).

Inside the cube, we refer to analysis that merge some of these techniques to make bal-

ance tradeo�s as suited to the respective applications. For instance, Semantic Similarity anal-

ysis, that combines static analysis with learning techniques to trade errors for e�ciency. For

32

Chapter 3. Program Analysis V. Notani

Instance, the work of Sharma, Aiken et. al. to combine static analysis with learning tech-

niques [61,62] and several others. Finally there is also work from Ernst [20] that combine static

and dynamic techniques.

3.5 | Conclusion

To summarize, in this chapter we have discussed the question What is Program Analysis?. In

short, program analysis is problem of understanding program properties. It’s applications in-

clude Program Verification, Malware Analysis, Malware Classification, Software Protection

(obfuscation), Threat Intelligence, among others.

Program Analysis is an undecidable problem, and thus only approximate analyzers may

terminate in finite time. Namely, sound and precise analyzers are non-terminating. Thus,

Soundness, precision and e�ciency, are three main challenges in program analysis.

Abstract Interpretation and Machine Learning based methods form the bulk of program

analysis techniques. Over-Approximating abstract interpreters guarantee soundness (in the

sense that they analyze all possible programbehaviors), but are imprecise (generate false alarms),

and, trade precision and e�ciency. Under-approximating abstract interpreters guarantee pre-

cision (no false alarms), but are unsound (in the sense that they do not analyze all possible pro-

gram behaviors), and trade soundness (missed alarms) for e�ciency. Machine learning tech-

niques favor e�ciency over soundness and precision and thus may miss some alarms and/or

generate false alarms. Other techniques may use a combination of various abstractions and

machine learning techniques.

This forms a key motivation for us to search for an umbrella framework that allows to

express various Abstract Interpretations and machine learning techniques under one frame-

work. Such a framework would allow us to compare and contrast the approximations in these

techniques and answer questions like- How are approximations in Machine Learning and Abstract

Interpretation similar and/or in what ways are they di�erent?

In the following chapters, we first describe the details of these two techniques, namely Ab-

stract Interpretation in Chapter-4 andChapter-5, followed byMachine Learning in Chapter-6.

This is followed by Chapter-7 where we discuss our question.

33

“The reliance on the abstract is thus not a result of an
over-estimation but rather of an insight into the limited
powers of our reason”

Friedrich Hayek

4
Abstract Interpretation

4.1 | From Logic to Lattices

Recall the axiomatic approach of Hilbert discussed in the very beginning of Chapter-1. Tony

Hoare applied it to computer programming in his seminal paper titled “An axiomatic basis for

computer programming” [30], and presented Hoare Logic, in 1969, as one of the earliest methods

for program verification. Quoting the paper: “This involves the elucidation of sets of axioms

and rules of inference which can be used in proofs of the properties of computer programs”.

The key feature of Hoare Logic is a Hoare triple: 〈P, S,Q〉1 where P and Q are asser-

tions and S the program statement/command. Here, assertions P and Q are predicate logic

formulae, and describe the pre and post conditions respectively, with respect to the execu-

tion of the program statement S. Thus, the idea is that given a pre-condition and a program

statement, one may use the axioms and logic inference rules to derive a proof for checking the

post-condition.

Gödel’s incompleteness manifests here in the form of the inability of the proof system to

always prove termination. This is why, a hoare triple is often read as: “If P is the pre-condition

that holds before the execution of program S, then either Q is the post-condition that holds after the

execution of S or S does not terminate.”

We are not interested in describing the entire proof system in detail. However, to give a

sense of what it is about, we list some axioms and inference rules in examples:

Example 4.1.1 (Empty Statement Axiom). {P} skip {P}

Example 4.1.2 (Assignment Axiom). {P[E/x]} x:=E {P}

Example-4.1.1 describes the skip (empty) statement that does not change the state of pro-

gram, hence the post-condition is same as pre-condition. Example-4.1.2 describes the assign-

ment axiom that states given assertionP in which variable x is free, then, after the assignment,
1Hoare used the notation P{C}Q

37

V. Notani 4.1. From Logic to Lattices

any predicate that was previously true for the right-hand side of the assignment now holds for

the variable. Finally, Example-4.1.3 demonstrates an informal proof for a program to swap two

variables without using a third variable.

Example 4.1.3 (Proof Example with Hoare Logic).

Nr. Code Assertions
1. {a = A ∧ b = B}
2. a := a+ b;
3. {a− b = A ∧ b = B}
4. b := a− b;
5. {b = A ∧ a− b = B}
6. a := a− b
7. {b = A ∧ a = B}

The key takeaway is that P andQ are predicate logic formulae, and that there exist axioms

and inference rules for every possible program statement that describes the relation between

pre-condition and post-condition.

Following the approach of Chapter-3 where we described properties by sets of objects that

satisfy the property, we can describe the assertions here by the set of states that satisfy the

assertion. Thus,P,Q ∈ ℘(E)where E is the set of all possible program states; and the inference

rules maybe viewed as operators on the complete lattice (℘(E),⊆,∪,∩,∅, E).

Indeed lattices arise naturally in Logic. Dedekind was the first to recognize the connection

between algebra and Lattice Theory and remarked “There’s nothing new under the sun” [48].

It is not surprising then, that several works of that time leveraged Partial Orders and Lattices

for proving program properties [5, 50, 57, 58].

Consider a Hoare triple for Example–4.1.3: {a = A∧ b = B}a := a+ b; b := a− b; a :=

a− b{b = A ∧ a = B}. Notice that this semantics retains the sets of initial and final states,

but loses information on the intermediate states. Additionally, Hoare Logic semantics cannot

work with infinite computation since the final state is unknowable/does not exist.

We are, however, interested program invariants- assertions that hold true for all possible

executions, and hence must operate in semantics that can describe invariants. Such semantics

must include the initial, final and all intermediate states. Indeed concrete collecting semantics are

such a semantics. These may be understood as abstract semantics that retain the set of initial

states, final states and all the intermediate program states arrived at during the computation,

but loses all information about the transitions.

38

Chapter 4. Abstract Interpretation V. Notani

Given the partial order of collecting semantics (the concrete domain), the collecting pro-

gram semantics can be expressed as least fix-point solutions to fixpoint operators [40, 41]. In-

completeness manifests in the form of non-computability of the least fixpoint in the general

case.

Cousot and Cousot, in 1976, first presented the idea of approximating the least fixpoint

computation by using an abstract domain of intervals [16]. This approach was generalized into

the Abstract Interpretation framework in the seminal paper [17] in 1977.

Indeed one can also design Hoare-like logics that operate on these abstract domains, how-

ever, the idea of abstraction on the lattices is more intuitive. This makes it easier to under-

stand the proof using lattice arguments. Recall the quote from Garrett Birkho� printed before

Chapter-2.

4.2 | Language and Least Fixpoint Semantics

We describe the numeric toy language used by Mine in his tutorial [45]. Indeed the rest of this

chapter describes Abstract Interpretation framework as discussed in the tutorial and we do

not claim any original work in the following sections.

Although the toy language has limited constructs, it is Turing Complete. We first present

the syntax of our language. We then present its concrete collecting semantics.

4.2.1 — Syntax

We assume a fixed, finite set V of program variables, with numeric values. We denote by I the
domain of variables, and assume that I ∈ {Z,Q,R}. For simplicity, we assume these to be

numeric sets and not machine-integers or floating-point numbers.

Figure-4.1 describes the syntax of our language with program statements stat in Figure-4.1a,

Numeric expressions expr in Figure-4.1b, Conditions cond in Figure-4.1c.

The expressions include an interval construction: [c1, c2] to denote non-deterministic in-

puts. We assume that [c1, c2] is not empty, that is c1 ∈ I ∪ {−∞}, c2 ∈ I ∪ {+∞}, and
c1 ≤ c2. Note that this makes the semantics of program non-deterministic. Hence verifiers

must consider the set of all possible outcomes at these intervals. This helps model unavailable

code, external environment interactions, etc.

39

V. Notani 4.2. Language and Least Fixpoint Semantics

stat ::= V ←− expr (assignment, V ∈ V)
| stat;stat (sequence)
| if cond then stat else stat endif (conditional)
| while cond do stat done (loop)
| skip (no-op)
| assert cond (assertion)

(a) Syntax of Programs

expr ::= V (variable, V ∈ V)
| c (numeric constant, c ∈ I)
| − expr (negation)
| expr � expr (binary operator, � ∈ {+,−,×, /})
| [c1, c2] (input, c1, c2 ∈ I ∪ {−∞,+∞})

(b) Syntax of (numeric) Expressions

cond ::= b (boolean constant, b ∈ {b ∈ B})
| ¬cond (logic negation)
| cond ∨ cond (logic or)
| cond ∧ cond (logic and)
| expr ./ expr (comparison, ./∈ {≤,≥, <,>,=, 6=})

(c) Syntax of (boolean) conditions

Figure 4.1: Syntax of Language

4.2.2 — Concrete Semantics

We are interested in inferring program invariants, i.e., properties of the memory state a pro-

gram can be in at each program location. Hence, our concrete collecting semantics operates on

a domain of sets of memory states. A memory state, denoted as ρ ∈ E , is a function mapping

each variable to its value: ρ def
= (V −→ I). The concrete domain is thus the power-set complete

lattice:

(D,⊆,∪,∩, ∅, E) where D def
=℘(E) (4.1)

Given a single memory state ρ ∈ E , an expression e ∈ expr can evaluate to one or more

(due to non-determinism) values in I. The evaluation function, denoted as E[[e]] : E −→ ℘(I),
is defined in Table-4.1a by induction on the syntax.

Conditions, described in Table-4.1b, filter memory states. To simplify, we assume that all

negations ¬ have been removed using DeMorgan’s laws and usual arithmetic laws:¬(a ∨ b) =

40

Chapter 4. Abstract Interpretation V. Notani

E[[expr]] : E −→ ℘(I)
E[[V]]ρ def

= {ρ(V)}
E[[c]]ρ def

= {c}
E[[[c1, c2]]]ρ

def
= {x ∈ I | c1 ≤ x ≤ c2}

E[[−e]]ρ def
= {−v | v ∈ E[[e]]ρ}

E[[e1 + e2]]ρ
def
= {v1 + v2 | v1 ∈ E[[e1]]ρ, v2 ∈ E[[e2]]ρ}

E[[e1 − e2]]ρ def
= {v1 − v2 | v1 ∈ E[[e1]]ρ, v2 ∈ E[[e2]]ρ}

E[[e1 × e2]]ρ def
= {v1 × v2 | v1 ∈ E[[e1]]ρ, v2 ∈ E[[e2]]ρ}

E[[e1/e2]]ρ
def
= {v1/v2 | v1 ∈ E[[e1]]ρ, v2 ∈ E[[e2]]ρ, v2 6= 0}

(a) Concrete Collecting Semantics of Expressions

C[[cond]]R : D −→ D

C[[True]]R def
= R

C[[False]]R def
= ∅

C[[c1 ∧ c2]]R def
= C[[c1]]R ∩ C[[c2]]R

C[[c1 ∨ c2]]R def
= C[[c1]]R ∪ C[[c2]]R

C[[e1 = e2]]R
def
= {ρ ∈ R | ∃v1 ∈ E[[e1]]ρ, v2 ∈ E[[e2]]ρ : v1 = v2}

C[[e1 6= e2]]R
def
= {ρ ∈ R | ∃v1 ∈ E[[e1]]ρ, v2 ∈ E[[e2]]ρ : v1 6= v2}

C[[e1 < e2]]R
def
= {ρ ∈ R | ∃v1 ∈ E[[e1]]ρ, v2 ∈ E[[e2]]ρ : v1 < v2}

C[[e1 > e2]]R
def
= {ρ ∈ R | ∃v1 ∈ E[[e1]]ρ, v2 ∈ E[[e2]]ρ : v1 > v2}

C[[e1 ≤ e2]]R def
= {ρ ∈ R | ∃v1 ∈ E[[e1]]ρ, v2 ∈ E[[e2]]ρ : v1 ≤ v2}

C[[e1 ≥ e2]]R def
= {ρ ∈ R | ∃v1 ∈ E[[e1]]ρ, v2 ∈ E[[e2]]ρ : v1 ≥ v2}

(b) Concrete Collecting Semantics of Conditions

Table 4.1: Concrete Collecting Semantics of Expressions and Conditionals

(¬a) ∧ (¬b),¬(e1 = e2) = (e1 6= e2), etc.

Note that since e1 and e2 can evaluate to several values in ρ, an arithmetic comparison such

as e1 = e2 holds on a given memory state ρ when at least one possible value of E[[e1]]ρ equals

one possible value of E[[e2]]ρ. Thus, a state may simultaneously satisfy a condition and it’s

negation. Also interesting is the join morphism C[[c]](∪i∈IRi) = ∪i∈I(C[[c]]Ri) for arbitrary

families of (Ri)i∈I .

The semantic transfer function, denoted as S[[s]] : D −→ D, is an input/output relation that

maps the set of states before the execution of s to the set of states after the execution. It is

described in Table-4.2.

We can extend the idea to compound statements as well by induction on syntax. A sequence

of statements s1; s2 is simply composition of functions.

For conditionals, consider the statement “if cond then s1 else s2 endif” as applied

41

V. Notani 4.2. Language and Least Fixpoint Semantics

S[[stat]] : D −→ D

S[[V −→ e]]R def
= {ρ[V 7→ v] | ρ ∈ R, v ∈ E[[e]]ρ}

S[[assert cond]]R def
= C[[cond]]R

S[[skip]]R def
= R

S[[s1; s2]]R
def
= (S[[s2]] ◦ S[[s1]])R

S[[if cond then s1 else s2 endif]]R def
= S[[s1]](C[[cond]]R) ∪ S[[s2]](C[[¬cond]]R)

S[[while cond do s done]]R def
= C[[¬cond]] lfpF where F (X) def

=R ∪ S[[s]](C[[cond]]X)

Table 4.2: Concrete Collecting Semantics of Program Statements

to a set of states R. First, the condition filters R as R1 = C[[cond]]R and R2 = C[[¬cond]]R
for the then and else branches. Then the semantic transfer functions S[[s1]] and S[[s2]] are

applied to R1 and R2 respectively: R1′ = S[[s1]](R
1) and R2′ = S[[s2]](R

2). Finally, we

return R1′ ∪R2′ .

For loops, consider the statement “while cond do s done” as applied to a set of states R.

Also, consider loop invariant I as a set of states. Then, ρ ∈ I can be interpreted by induction

as:

• Either we have not performed any loop iteration yet, and ρ ∈ R;

• Or, we have performed one or more loop iterations and generated new state ρ from some

state ρ′ ∈ I . Thus, ρ′ satisfies the loop condition cond and produces ρ after executing

the loop body s, i.e., ρ ∈ S[[s]](C[[cond]]{ρ′}).

Thus, we have established the following equation: I = R∪S[[s]](C[[cond]]I), which can be

expressed as I = F (I) using our definition of F in Table-4.2.

Thus, fixpoints of F are loop invariants and the least fixpoint is the smallest, tighest loop

invariant we can derive. Finally, we keep only states that will exit the loop by applying the

filter C[[¬cond]] to lfpF .

Theorem 4.2.1 (Existence of lfpF). For any statement s ∈ stat, the semantic function S[[s]] :

D −→ D is a join morphism; hence, it is monotonic and continuous. As a consequence, the least-

fixpoints used in the semantics of loops are also well-defined, through both Tarski’s and Kleene’s fixpoint

theorems- Theorems-2.2.11 and 2.2.12.

Thus, we have described a language with syntax and concrete collecting semantics that if

computed, would infer the precise numerical invariants. Unfortunately, they cannot be com-

puted due to three reasons:

42

Chapter 4. Abstract Interpretation V. Notani

1. Non-representable Concrete Semantics: The concrete elements live in D def
=℘(E), and

so, are not all representable in a computer — even when restricting the domain of vari-

ables I to be finite machine-integers or floats, although D becomes finite, it remains

extremely large, so that a naive representation of sets in extension is not practicable;

2. Expensive Computations: The semantic operators for atomic statements S[[V ←− e]],

C[[cond]] and join ∪ are not computable — or, given a finite D, would be too costly to

evaluate individually on each memory state;

3. Non-Computability of Least Fixpoints: The iterations required in the semantics of loops

may not converge in finite time — or, for finite D, may require iterating on finite, yet

extremely long chains.

We now show how Abstract Interpretation tackles challenge 1 and 2 by leveraging abstract

domains and challenge 3 by using convergence acceleration.

4.3 | Abstract Domains

Abstract Interpretation replaces costly, expressive representations with cheaper, more simpler

ones. The idea is that since the properties in the concrete domain (C,⊆) are precise and

expensive to represent, we lose some details, not relevant to the intended application, and rep-

resent properties in some simpler abstract domain (A,v) that allows cheaper representation

of properties. The concrete and abstract world are related via a concretization function γ:

Definition 4.3.1 (Concretization Function). Concretization function γ ∈ (A,v) −→ (C,⊆)

is a monotonic function assigning a concrete meaning, in C , to each abstract properties in A.

Definition 4.3.2 (Soundness & Exactness of abstract properties). Given a concretization func-

tion γ connecting an abstract domain of objects (A,v), to it’s concrete domain of objects

(C,⊆), we say:

• a ∈ A is a sound abstraction of c ∈ C if and only if c ⊆ γ(a).

• a ∈ A is an exact abstraction of c ∈ C if and only if c = γ(a).

Additionally, we also replace expensive computations in concrete domainD with abstract

transfer functions inD].

43

V. Notani 4.3. Abstract Domains

Definition 4.3.3 (Soundness & Exactness of abstract transfer functions). Given a concretization

function γ connecting an abstract domain of objects (A,v), to it’s concrete domain of objects

(C,⊆), a concrete operator f : C −→ C and an abstract operator g : A −→ A, we say:

• g is a sound approximation of f if and only if ∀a ∈ A, (f ◦ γ)a ⊆ (γ ◦ g)a.

• g is an exact approximation of f if and only if ∀a ∈ A, (f ◦ γ)a = (γ ◦ g)a.

Just like concrete transfer functions, abstract transfer functions may also be composed to

handle sequence of statements:

Theorem 4.3.4 (Operator Composition). Given concrete operators f, f ′ : C −→ C and abstract

operators g, g′ : A −→ A:

1. if g and g′ are sound approximations (definition-4.3.3) of f and f ′, and f is monotonic, then

g ◦ g′ is a sound abstraction of f ◦ f ′.

2. if g and g′ are exact approximations of f and f ′, then g ◦ g′ is an exact abstraction of f ◦ f ′.

Finally, for approximating least fix-point in finite iterations, the framework introduces a

widening operator (see definition-4.3.7). The idea for widening is rooted in two fixpoint ap-

proximation theorems (Theorems-4.3.5 and 4.3.5) proved by Cousot & Cousot discussed below.

The theorems state the conditions under which the limit of the abstract operator F] is a

sound approximation of least fixpoint of the concrete operatorF . Widening, then is defined as

the operator that computes that limit in the abstract, in finite steps (see Theorem-4.3.8), and

hence computes a sound approximation of the least fix-point.

Theorem 4.3.5 (Kleene fixpoint Approximation). If f : C −→ C is continuous in a CPO

(C,⊆,∪,⊥), and g : A −→ A is a sound — not necessarily monotonic — abstraction of f in

a poset abstract domain (A,⊆,∪,⊥′), and the sequence gi(⊥′) has a limit x inA, then it is a sound

approximation of lfp f , i.e. , lfp f ⊆ γ(x).

Theorem 4.3.6 (Tarski fixpoint Approximation). Given a complete lattice concrete domain

(C,⊆,∪,∩,⊥,>), a monotonic concrete function f : C −→ C , and a sound — not necessarily

monotonic — abstraction g : A −→ A of f in a poset abstract domain (A,v), then any postfix-point

a of g, i.e. , g(a) v a, is a sound abstraction of lfp f , i.e. , lfp f ≤ γ(a).

Definition 4.3.7 (Widening). A binary operator ∇ : A × A −→ A in an abstract domain

(A,v) is a widening operator if and only if:

44

Chapter 4. Abstract Interpretation V. Notani

1. it computes upper bounds: ∀x, y ∈ A : x v x∇y and y v x∇y;

2. and it enforces convergence: for any sequence (yi)i∈N in A, the sequence (xi)i∈N com-

puted as x0 def
= y0, xi+1 def

= xi∇yi+1 stabilizes in finite time: ∃k ≥ 0 : xk+1 = xk .

Theorem 4.3.8. If f is a monotonic operator in a complete concrete lattice and g is a sound abstraction

of f , then the following iteration:

x0 def
= ⊥ (4.2)

xi+1 def
= xi∇g(xi) (4.3)

converges in finite time, and it’s limit x is a sound abstraction of lfp f : lfp f ⊆ γ(x).

We now formally discuss the elements of an abstract domain. An abstract domain is given

by:

1. Minimum Algebraic Structure: a setD] of computer-representable abstract values; and

an e�ective partial order ⊆] onD].

2. Concretization Function: amonotonic concretization function γ : D] −→ D (definition-

4.3.1).

3. a smallest element ⊥] and a largest element >] ∈ D] that represent respectively ∅ and
E

4. (optionally) a galois connection (D,⊆) −−→←−−α
γ

(D],⊆]) (definition-2.2.17)

5. sound and e�ective abstractions (definition-4.3.3) of assignments and atomic arithmetic

conditions:

S][[V ←− e]] : D] −→ D]

C][[e1 ./ e2]] : D] −→ D] such that:

∀X] ∈ D] : (S[[V ←− e]] ◦ γ)X] ⊆ (γ ◦ S[[V ←− e]])X]

∀X] ∈ D] : (S[[e1 ./ e2]] ◦ γ)X] ⊆ (γ ◦ S[[e1 ./ e2]])X
]

6. sound and e�ective abstractions (definition-4.3.3) of set union ∪ and set intersection ∩:
∪] : D] −→ D] and ∩] : D] −→ D] such that:

∀X], Y] ∈ D] : γ(X]) ∪ γ(Y]) ⊆ γ(X] ∪] Y])

∀X], Y] ∈ D] : γ(X]) ∩ γ(Y]) ⊆ γ(X] ∩] Y])

45

V. Notani 4.3. Abstract Domains

7. a widening operator∇ (definition-4.3.7)

Requirement-1 describe theminimumalgebraic structure needed as Posets. However, many

ordered sets have a richer structure, for instance the interval domain is a complete lattice (dis-

cussed in the next chapter, section-??) defined as:

({[a, b] | a ∈ Z ∪ {−∞}, b ∈ Z ∪ {+∞}, a ≤ b} ∪ {⊥},⊆,t,u,⊥, [−∞,+∞]) (4.4)

Indeed lack of structure often results in loss of precision.

Non-distributivity of abstract domain lattice, for instance, is a common cause of preci-

sion loss. A typical analysis design tends to join information, such as the result of di�erent

control-flow paths merging at some common program location, as early as possible, favoring

computations of the form (at b)u c. A formulation such as (au c)t (bu c), that delays the
join, requires more operators, and is thus more costly. The later is, however, always at least as

precise as the former, and it is strictly more precise if the lattice is not distributive. Yet, limiting

ourselves to distributive lattices would severely hinder our ability to choose the appropriate

domain for each task. When precision matters, we may consider a tradeo� where the later

formulation, delaying joins, is used parsimoniously. This phenomenon is well-known in the

field of data-flow analysis [32], where the second formulation leads to the meet-over-all-paths

algorithm, and the former leads to the least fixpoint algorithm.

Similarily, when abstract domain lattice is not a sublattice of the concrete domain lattice,

this lack of a strong algebraic property (sublattice), results in a loss of precision. But, again, lim-

iting ourselves to sublattices only would hinder our ability to use extremely useful abstractions,

such as intervals which is not a sublattice of concrete domain of integers. Consequently, result

of some operations, such as the join of two intervals, must be approximated to stay within the

abstract world of intervals.

We can already argue that Abstract Interpretation is particularly lax when it comes to

algebraic requirements, especially on the abstract world. It is required to be a poset, but not

necessarily a CPO nor a lattice. Even if D] is a lattice, we do not require that ∪] and ∩]

correspond to the lub t] and glb ∩]. It may be a key to its success, as it leaves abstractions

open to many possibilities.

Requirement-2 is for a concretization function γ that connects the abstract world to con-

crete, to bemonotone. Themonotonicity simply states that coarser abstract elements represent

coarser concrete elements. Also note that that γ does not need to be onto — i.e., injective. It

46

Chapter 4. Abstract Interpretation V. Notani

is possible to imagine an abstract world where several abstract elements represent the same

concrete element. Consider for instance a variant of Interval Lattice from Equation-4.4, where

we do not enforce a ≤ b: {(a, b) | a ∈ Z ∪ {−∞}, b ∈ Z ∪ {+∞}}. Here any pair such

that a > b is a representation for the empty set. This is mainly useful in the case of domains

where computing unique, normal forms for an abstract element is not possible or would be too

time-consuming.

Requirement-4 optionally requires a galois connection between the abstract and concrete

domain. Following theorem provides an alternate, but equivalent view of galois connections to

definition-2.2.17.

Theorem 4.3.9 (Alternate characterization of Galois connections). We have a galois connection

(C,⊆) −−→←−−α
γ

(A,v) if and only if the function pair (α, γ) satisfy the following properties:

1. γ is monotonic.

2. α is monotonic.

3. γ ◦ α is extensive i.e., ∀c ∈ C : c ⊆ (γ ◦ α)c.

4. α ◦ γ is reductive i.e., ∀a ∈ A : (α ◦ γ)a v a.

Property-3 states that, going through the abstract world A and back gives a result that

is either equal or less precise than staying in the concrete. The result is strictly less precise

when the original concrete element has no exact representation in the abstract, so that we lose

information during the conversion between the concrete and the abstract.

Property-4 states that coming from the abstract and going back to the abstract through

the concrete, we may end up with a smaller abstract element. In fact, this happens only when a

concrete element has several di�erent abstract representations, in which case α will naturally

choose the smallest for the abstract order v.
Galois connection should be viewed as another strong algebraic relationship between con-

crete and abstract domains, which is not required, but if it exists, provides additional gains.

In this case, galois connection can be used to derive optimal abstract operators. Definition-

2.2.15-3 states a very important property relating Galois connections, soundness, and optimal-

ity. Indeed, c ≤ γ(a) means, by definition-4.3.2, that a is a sound abstraction of c. Hence,

α(c) = ∪{a | c ≤ γ(a)} is, literally, the best (i.e., smallest) sound abstraction of c. We can

additionally generalize this notion of best abstraction to operators:

47

V. Notani 4.3. Abstract Domains

Definition 4.3.10 (Best operator abstraction). Given a galois connection (C,⊆) −−→←−−α
γ

(A,v),

an operator f : C −→ C , the best abstraction of f is given by (α ◦ f ◦ γ).

Definition-4.3.10 is a powerful tool as it allows deriving the abstract semantics systemati-

cally from the concrete one and a Galois connection. Note, however, that this is a constructive

mathematical definition that cannot generally be implemented as is, as neither its components

α, f, γ are likely to be computable. Rather, it is the designer’s responsibility to turn this math-

ematical definition into an algorithm. Sometimes, it is not easy to derive such an algorithm, or

the algorithmmight not be su�ciently e�cient. Finally, there is always the case of abstract do-

mains without a Galois connection- example polyedra domain [18]. In those cases, the designer

has to rely on intuition to invent a suitable abstract operator, several choices being possibles,

and then prove its soundness through definition-4.3.3.

Theorem 4.3.11 (Non-Composability of Optimality). Given concrete operators f, f ′ : C −→ C

and their best abstract operators g, g′ : A −→ A, g ◦ g′ is a sound approximation of f ◦ f ′, but not
necessarily the best abstract operator.

Proof. As best abstract operators are sound, then by theorem-4.3.10 g and g′ are sound ap-

proximations of f and f ′ respectively. Using theorem-4.3.4, composition of sound abstract

operators results in sound approximation of composition of corresponding concrete opera-

tors. Thus g ◦ g′ is a sound approximation of f ◦ f ′. By definition-4.3.10, g = α ◦ f ◦ γ
and g′ = α ◦ f ′ ◦ γ. Thus, g ◦ g′ = α ◦ f ◦ γ ◦ α ◦ f ′ ◦ γ, while the best abstraction for

f ◦f ′ = g′′(say) = α◦f ◦f ′◦γ. We know by property of galois connection (definition-4.3.9-3

that γ ◦ α is extensive, hence g′′ v g ◦ g′.

The lack of general composability for the notion of best abstraction has rather important

practical ramifications. The precision of an analysis depends on the granularity of the decom-

position of the program semantics into atomic operations abstracted independently. The finer

the decomposition, the larger the risk of some imprecision appearing. A coarser decomposition

allows, on the other hand, optimal abstractions for larger code blocks. It may not be practi-

cable, however, as the number of possible blocks grows in a combinatorial fashion with block

size. There is generally a trade-o� to achieve.

48

Chapter 4. Abstract Interpretation V. Notani

S][[stat]],C][[cond]] : D] −→ D]

S][[V −→ e]]R] def
= given

C][[c1 ./ c2]]R] def
= given

S][[assert cond]]R def
= C][[cond]]R]

S][[skip]]R] def
= R]

S][[s1; s2]]R] def
= (S][[s2]] ◦ S][[s1]])R]

S][[if cond then s1 else s2 endif]]R] def
= S][[s1]](C][[cond]]R]) ∪] S][[s2]](C][[¬cond]]R])

S][[while cond do s done]]R] def
= C][[¬cond]](limF]) where

F](X]) def
=X]∇(R] ∪] S][[s]](C][[cond]]X]))

C][[True]]R] def
= R]

C][[False]]R] def
= ⊥]

C][[c1 ∧ c2]]R] def
= C][[c1]]R] ∩] C][[c2]]R]

C][[c1 ∨ c2]]R] def
= C][[c1]]R] ∪] C][[c2]]R]

Table 4.3: Abstract Semantics of Program Statements

4.3.1 — Abstract Semantics

Table-4.3 presents the abstract version of the concrete semantics presented in Table-4.2. The

semantics now operates only in abstract domainD]. It uses the abstract version of assignments,

tests, join, andmeet operators we assume givenwith the domain. It composes them to construct

the semantics of more complex statements and tests by induction on the syntax, and we can

see that it follows very closely the concrete definition, up to the use of] symbols.

Another key di�erence is that the concrete least fixpoint lfpF used in the semantics of

loops has been replaced with limF] , which computes the limit of the iterates of F] from⊥]:

limF] def
=F]δ(⊥])

where δ is the minimal value such that F]δ+1(⊥]) = F]δ(⊥]).

The definition of the widening, definition-4.3.7, ensures that this limit is always reached

after a finite number of iterations. The result of the analysis is sound: it is the composition of

sound abstractions (theorem-4.3.4) and sound fixpoint abstractions with widening (theorem-

4.3.8), so:

Theorem 4.3.12 (Termination and soundness). S][[p]] always terminates, and is sound: ∀p ∈ stat,

I] ∈ D] : S[[p]](γ(I])) ⊆ γ(S][[p]](I])).

49

V. Notani 4.4. Summary

4.4 | Summary

To summarize, Cousot & Cousot, during the late 20th century, presented a theory of Abstract

Interpretation [17] for reasoning about the semantics of discrete dynamic systems, e.g., pro-

gramming languages, at di�erent levels of abstraction.

We showed how Abstract Interpretation is used as a mathematical framework to soundly

approximate the concrete program semantics into various abstract domains.

The framework consists of three key steps:

1. Describe the concrete and abstract semantics as interpretations on concrete and abstract

(approximate) domains. The domains are specified as partial orders.

Consider [[P]] is the concrete semantics mapping programs P into properties of com-

puted states in E , namely [[P]] ∈ ℘(E), where (℘(E),⊆,∪,∩,∅, E) is a complete lat-

tice concrete semantic domain. An abstract domain (A,v) of approximate properties

a ∈ A such that γ(a) ∈ ℘(E) is the concrete property represented by a, abstract se-

mantics [[P]]A is specified as an approximate interpreter forP on approximate (abstract)

denotations in domain of objects A.

2. Concrete and abstract semantics are specified as least-fixpoint solutions to a correspond-

ing fixpoint operators on the concrete and abstract domain.

The concrete interpretation is usually specified as the solution of fix-point equations of

the form X = FP (X), i.e., [[P]] = lfpFP of a continuous predicate transformer FP ∈
℘(S) −→ ℘(S). It is known that lfpFP =

⋃
n∈N F

n
P (∅) of the iteratesFnP (∅) defined

by F 0
P (X) = X and Fn+1

P (X) = FP (FnP (X)) for all X ∈ ℘(S). Similarily, [[P]]A is

defined as approximate fix-point computations of an approximate operation FAP on A.

3. Finally, it provides a way to approximate these least fixpoint solutions in an e�cient

manner.

Since the lfpFP is not computable in the general case, it may be soundly approximated

by limFAP which is computable. Additionally, when the computation of limFAP re-

quires large number of iterations, Widening operations∇ are used to accelerate conver-

gence to the limit inA. Widening also guarantees finite convergence of the approximate

iterates in A. A widening ∇ ∈ A × A → A is such that: ∀x, y ∈ A : x, y v x∇y
and for all increasing chains x0 v x1 v . . . in A, the increasing chain defined by

50

Chapter 4. Abstract Interpretation V. Notani

y0 = x0, . . . , yi+1 = yi∇xi+1, . . . has a finite limit. In this case the approximate it-

erates ā0 = ⊥, āi+1 = āi∇FAP (āi) is ultimately stationary and it’s limit ā is a sound

upper approximation of [[P]]. Soundness here means that [[P]] ⊆ γ([[P]]A).

51

“The purpose of abstraction is not to be vague, but to
create a new semantic level in which one can be
absolutely precise”

Edsger Wybe Dijkstra

5
Common Numerical Domains

We have described Abstract Interpretation in the previous chapter without describing specific

abstractions leveraged by Abstract Interpretation users. This chapter describes some common

numerical abstract domains. Although, there exist non-numerical abstract domains as well, we

focus on numerical domains because the approximations involved are easier to relate to, as we

compare Abstract Interpretation with other disciplines.

We have described Sign domain- a simple numerical non-relational domain, Polyhedra

Domain- a complex relational numerical domain and Template Domain- that presents a tem-

plate for intervals, octagons and others.

The contents of this chapter are standard material in the study of Abstract Interpretation.

We borrow the definitions and examples from Mine’s tutorial on the subject [45] and do not

claim any original work in this chapter.

5.1 | Sign Abstract Domain

Sign domain is one of the simplest abstract domains. It abstracts numerical values to signs,

namely ≤ 0, ≥ 0 or 0. Additionally, it contains a bottom element ⊥] to map undefined/un-

reachable variable values, dead code etc., and, a top element >] that signifies a value of un-
known sign (may be either positive, negative or zero).

5.1.1 — Representation

The domain has a small number of possible abstract values: D] def
= {⊥], ≤ 0, ≥ 0, 0, >]}.

Consequently, an abstract value d ∈ D] may be represented simply with above notation.

55

V. Notani 5.1. Sign Abstract Domain

>]

≤ 0

0

≥ 0

⊥]

v

Figure 5.1: Hasse Diagram of Sign Domain 〈D],v〉

5.1.2 — Order Structure

The hasse diagram for the sign abstract domain is shown in Figure-5.1. The orderv is defined

implicitly by the diagram. Next, we define the abstraction operation α : ℘(Z) −→ D] and

concretization function γ : D] −→ ℘(Z). It should be noted that 〈D],v〉 −−→←−−α
γ
〈℘(Z),⊆〉.

α(C) def
=

⊥] if C = ∅

0 if C = {0}

(≤ 0) if ∀c ∈ C : c ≤ 0

(≥ 0) if ∀c ∈ C : c ≥ 0

>] otherwise

γ(d) def
=

∅ if d = ⊥]

{0} if d = 0

{c ∈ Z|c ≤ 0} if d = (≤ 0)

{c ∈ Z|c ≥ 0} if d = (≥ 0)

Z if d = >]

5.1.3 — Abstract Operators

The abstract operators for arithmetic operations are described in Table-5.1. Intuitively, one

may understand the sign domain abstracts out the absolute values and only retains the sign.

Thus, the arithmetic operations are described by rules of signs.

Similarly, assignment operations can be designed by following the sign of the constants or

interval bounds.

The abstractions for join and meet (set union and intersection) are exact operations in the

sign domain.

56

Chapter 5. Common Numerical Domains V. Notani

+ ⊥] 0 ≤ 0 ≥ 0 >]
⊥] ⊥] ⊥] ⊥] ⊥] ⊥]
0 ⊥] 0 ≤ 0 ≥ 0 >]
≤ 0 ⊥] ≤ 0 ≤ 0 >] >]
≥ 0 ⊥] ≥ 0 >] ≥ 0 >]
>] ⊥] >] >] >] >]

(a) Addition

× ⊥] 0 ≤ 0 ≥ 0 >]
⊥] ⊥] ⊥] ⊥] ⊥] ⊥]
0 ⊥] 0 0 0 0
≤ 0 ⊥] 0 ≥ 0 ≤ 0 >]
≥ 0 ⊥] 0 ≤ 0 ≥ 0 >]
>] ⊥] 0 >] >] >]

(b) Multiplication

/ ⊥] 0 ≤ 0 ≥ 0 >]
⊥] ⊥] ⊥] ⊥] ⊥] ⊥]
0 ⊥] ⊥] ⊥] ⊥] ⊥]
≤ 0 ⊥] 0 ≥ 0 ≤ 0 >]
≥ 0 ⊥] 0 ≤ 0 ≥ 0 >]
>] ⊥] 0 >] >] >]

(c) Division

Table 5.1: Abstract Arithmetic Operators for Sign Domain

5.1.4 — Convergence Acceleration

Since sign domain is finite, convergence is guaranteed and no special widening operators are

needed.

5.2 | Polyhedra Abstract Domain

The Polyhedra domain is a relational numerical domain. Introduced in 1978 [18] to infer a�ne

inequalities among variables:

∧
j

|V|∑
i=1

αijVi ≥ βj , αij , βj ∈ I (5.1)

Algorithms for this domain are based on the field of linear programming and convex poly-

hedra. Reader interested in these theories may refer to [56] for proofs and details on results we

use here. Since we are working with linear programming, we assume I ∈ {Q,R}.

57

V. Notani 5.2. Polyhedra Abstract Domain

5.2.1 — Representation

Equation-5.1 describes a convex, topologically closed polyhedra. The Polyhedronmay be bounded

or unbounded (eg.X ≥ 0):

D] ' {closed convex polyhedra of P}

where P def
= I|V|.

Polyhedra have two common representations: the constraint representation and generator

representation. Chernikova’s algorithm [12] and it’s modern versions [37] can be used to convert

the representations from one form to the other.

Constraint Representation

This representation involves a�ne inequality constraints in matrix form: 〈M, ~C〉 with matrix

M ∈ Im×n and vector ~C ∈ Im, wherem is number of constraints and n is number of variables

|V|. 〈M, ~C〉 represents the set:

γ
(
〈M, ~C〉

)
def
= {~V ∈ P|M× ~V ≥ ~C}

Thematrix representation is equivalent to the constraint set notation {
∑

i αijVi ≥ βj |j ∈
[1,m]}, and, logical notation:

∧m
j=1

∑
i αijVi ≥ βj . We may also use dot product notation:

{~αj .~V ≥ βj |j ∈ [1,m]} and
∧m
j=1 ~αj .

~V ≥ βj .

Generator Representation

This representation involves generators, that is vectors representing vertices or rays. The idea is

that a polyhedron is represented by [P,R]where setP = { ~P1, ~P2, ..., ~Pp} ⊆ P is a finite set of

vertices, and R = { ~R1, ~R2, ..., ~Rr} ⊆ P is the finite set of rays. The polyhedron represented

by [P,R] is described as:

γ
(
[P,R]

)
def
=

 p∑
j=1

αj ~Pj

+

 p∑
j=1

βj ~Rj

| ∀j : αj , βj ≥ 0,

p∑
j=1

αj = 1

Note that neither generator representation, nor constraint representation is unique. A

polyhedra has multiple representations in both constraint and generator representations. We

58

Chapter 5. Common Numerical Domains V. Notani

can also have minimal representation in either form by, for instance, removing redundant con-

straints. However, even minimal representations are not unique. For the empty set, we will

always use ⊥].

5.2.2 — Order Structure

The ordering in the abstract X] v Y] corresponds to set inclusion in the concrete:γ(X]) ⊆
γ(Y]). Implementation involves verifying that each generator ofX] satisfies every constraint

of Y]:

X] v Y] def
=

 ∀~P ∈ PX] : MY] × ~P ≥ ~C]

∀~P ∈ PX] : MY] × ~P ≥ 0

Equality testing involves verifying double inclusion:X] = Y] ⇐⇒
(
X] v Y] ∧ Y] v X]

)
.

Although v] is not anti-symmetric, by identifying elements in D] with the same con-

cretization, we obtain a partial order. We may even derive a lattice (D],v],∪],∩]), but it
will not be complete since the infinite join of polyhedra are discs.

5.2.3 — Abstract Operators

We define the various abstract operators for polyhedra domain.

Meet: Abstract Intersection ∩] def
=u] is obtained by simply combining the constraints. It

is exact operation (sound and precise):

X] u] Y] def
=

〈[
MX]

MY]

]
,

[
~CX]

~CY]

]〉

Join: The set union of two polyhedra is not necessarily a polyhedra. Hence the abstract

union∪] def
=∩] is necessarily an approximate operation. It involves joining the vertices and rays

from the generator representation:

X] t] Y] def
= [[PX] PY]] , [RX] RY]]]

Note that both join and meet may introduce redundant generators or constraints, and

hence Chernikova algorithm may be used to remove them.

Abstract Conditions: We can filter states by simply adding the condition to the constraint

59

V. Notani 5.2. Polyhedra Abstract Domain

representation:

C][[ΣiαiVi ≥ β]]X] def
=

〈[
MX]

α1, ..., αn

]
,

[
~CX]

β

]〉

Abstract Assignments: We use generator representation for assignments. we apply a�ne

transformation to the vertices and the associated linear transformation to rays.

Consider Non-deterministic assignment Vj ←− [−∞,+∞]:

S][[Vj ←− [−∞,+∞]]]X] def
= [PX] , [RX] ~vj (−~vj)]]

For A�ne Assignments S][[Vj ←− ΣiαiVi + β]]X]:

• αj 6= 0: Case of invertible assignment. In every constraint, replace Vj with (Vj −
Σi 6=jαiVi − β)/αj that expresses old value of Vj as function of new value.

• αj = 0: Case of non-invertible assignment. We forget the value ofVj and add an equality

constraint modelled as pair of inequalities:

S][[Vj ←− ΣiαiVi + β]]X] def
= C][[Vj = ΣiαiVi + β]] ◦ S][[Vj ←− [−∞,+∞]]]

5.2.4 — Convergence Acceleration

Widening is needed since polyhedra domain infinite strictly increasing chains. We use ideas

similar to interval widening, except instead of removing bounds, we remove unstable con-

straints.

Naive Widening:

X]∇Y] def
= {c ∈ X]|Y] v {c}} (5.2)

This widening does terminate since iterations with widening necessarily as the set of con-

straints decreases. However, it is not as precise and also is not semantic. Namely, it depends

on the choice of constraints used to represent the polyhedra and does not treat the polyhedra

as the set of points (the semantics).

Semantic Widening:

X]∇Y] def
=

{
c ∈ X]|Y] v {c}

}
∪
{
c ∈ Y]|∃c′ ∈ X] : X] =]

(
X] r {c′}

)
∪ {c}

}
where X] =] Y] means X] v] Y] ∧ Y] v] X]

(5.3)

60

Chapter 5. Common Numerical Domains V. Notani

This widening takes into account the constraints on both the left and right arguments. X]∇Y]

keeps stable constraints from X] and also keeps constraints from Y] if they can be swapped

with a constraint fromX] without changing γ(X]). This widening can be proven to be inde-

pendent of chosen representation [2]

5.3 | Template Domain

The Template domain is a weakly relational domain, in-between in terms of cost and preci-

sion between intervals [16] and polyhedra [18]. The template domain, introduced by Sankara-

narayanan et al. [55], infers conjunctions of a�ne inequalities, a constraint setCS = M×~V ≤
~C , but unlike the polyhedra domain, only the right-hand side ~C i.e., the upper bounds are in-

ferred. The left-hand side M, i.e., the coe�cients of the variables in the constraints, are fixed

before the analysis is run, and not inferred during the analysis.

Concerning the expressive power, we can see the zone [43] and the octagon domains [44]

(and even the interval domain) as special cases of the template domain, for specificM. However.

unlike those domains, the shape of the left-hand side M is not fixed by the domain, but can be

configured freely by the user before the analysis.

This is key reason we choose this to be the standard domain we use for the rest of this work.

Since Intervals, Zones and Octagons domains are instances of template domain, any results

we derive on template domain, are automatically valid for those other domains, modulo the

algorithmic cost for operations that are actually representation dependent.

This domain has two unique features. Firstly, its expressiveness is fully parameterized, so

that a user can decide on a cost versus precision trade-o� within the domain, and also adapt

the domain to the requirements of a specific program analysis. Secondly, its algorithmic core is

based on linear programming, which is a change from polyhedra based on the double descrip-

tion method, and from zones and octagons based on shortest path closure.

As we use general linear algebra, we assume that I ∈ {Q,R}.

5.3.1 — Representation

We assume that a matrix M ∈ Im×n is fixed. n =| V | is the number of variables, whilem is

arbitrary. Intuitively, the set and number of linear expressions on the left-hand of constraints

can be freely chosen. We callM the template. An abstract elementX] ∈ D] is given by setting

the upper bound of each linear expression, which we store as am-dimensional vector ~C . Note,

61

V. Notani 5.3. Template Domain

however, that we need a way to state that a linear expression inM is unbounded, hence we live

in (I∪+∞)m. As usual, we also add a⊥] element, which is a canonical representation of the

empty set, thus:

D] def
= {⊥]} ∪ (I ∪ {+∞})m (5.4)

and the concretization is naturally:

γ(~C) def
= {~V ∈ P | M× ~V ≤ ~C} (5.5)

As stated above, the template domain generalizes the interval, zone, and octagon domains,

which become special cases for a fixed templateM. More precisely:

• for intervals,m = 2n: there is an a�ne expression Vi and an a�ne expression −Vi for
every variable Vi ∈ V;

• for zones,m = n2 +n: there is an a�ne expression Vj−Vi for every i 6= j, in addition

to the a�ne expressions representing intervals.

However, from an algorithmic point of view, the domains are implemented quite di�er-

ently, and are much less e�cient than the native interval and zone domains we presented in

previous sections. The template domain is useful when M remains small but has a complex

structure, featuring more varied expressions, out of the scope of octagons.

5.3.2 — Example: Interval Representation

Consider P : x = 1; y = 0; while x < 10 {x + +; y + +}. We use the domain of intervals

[16] I to infer the invariant that defines the bounds on x and y. Intervals in two dimensions are

conjunction of four lines: a1 6 x 6 a2 ∧ a3 6 y 6 a4 where integer valued a1, a2, ..., a4.

For instance, during the second (i = 2) and third (i = 3) iteration inside the loop (point

2), the respective intervals as below:

point2(i = 2) = point2(i = 3) =

1 6 x 6 2 ∧ 0 6 y 6 1 1 6 x 6 3 ∧ 0 6 y 6 2

62

Chapter 5. Common Numerical Domains V. Notani

We may use our constraint system to represent these intervals as below:

CSi=2 =

1 0

−1 0

0 1

0 −1

×
[
x

y

]
6

2

−1

1

0

 CSi=3 =

1 0

−1 0

0 1

0 −1

×
[
x

y

]
6

3

−1

2

0

5.3.3 — Example: Octagon Representation

Consider P : x = 1; y = 0; while x < 10 {x + +; y + +}. We must use the domain of

octagons [44] O to infer the invariant that relates x and y. Octagons are conjunction of eight

lines: a1 6 x 6 a2 ∧ a3 6 y 6 a4 ∧ a5 6 a6x + y 6 a7 ∧ a8 6 −a6x + y 6 a9 where

integer valued a1, a2, ..., a9.

For instance, during the second (i = 2) and third (i = 3) iteration inside the loop (point

2), our constraint system may be used to describe the respective octagons as below:

point2(i = 2) = point2(i = 3) =

1 6 x 6 2 ∧ 0 6 y 6 1 1 6 x 6 3 ∧ 0 6 y 6 2

1 6 x+ y 6 3 1 6 x+ y 6 5

−1 6 −x+ y 6 −1 −1 6 −x+ y 6 −1

We may use our constraint system to represent these octagons as below:

CSi=2 =

1 0

−1 0

0 1

0 −1

1 1

−1 −1

−1 1

1 −1

×

[
x

y

]
6

2

−1

1

0

3

−1

−1

1

CSi=3 =

1 0

−1 0

0 1

0 −1

1 1

−1 −1

−1 1

1 −1

×

[
x

y

]
6

3

−1

2

0

5

−1

−1

1

5.3.4 — Order Structure

We extend the natural total order on bounds (I ∪ {+∞},≤) to vectors, pointwise, to get our

partial orderv] onD] . We actually get a lattice structure (D],v],t],u],⊥],>]), where t]

63

V. Notani 5.3. Template Domain

is the point-wise maximum, u] is the point-wise minimum, and>] maps all a�ne expressions

to +∞. The lattice is complete if I = R, and we can define an abstraction function. It

associates to each a�ne expression ~Mi at line i inM, the tightest upper bound:

∀i ≤ m : [α(S)]i = max{ ~Mi.~V | ~V ∈ S} when S 6= ∅ and α(S) = ⊥] otherwise

5.3.5 — Normalization

The concretization γ is not one-to-one: there exist di�erent abstract elements that represent

the same polyhedron. We define a normal form ~C∗ the constraints as much as possible, until

they saturate (i.e., touch) the polyhedron γ(~C). We have indeed ~C∗ = α(γ(~C)).

The normal form can be e�ectively computed using linear programming LP:

∀i ≤ m : [~C∗]i
def
=LP (〈M, ~C〉, ~Mi)

where

LP (〈M, ~C〉, ~V) def
= max{~P .~V | M× ~P ≤ ~C} (5.6)

Additionally, standard LP algorithms are able to determinewhether the set of a�ne constraints

M× ~V ≤ ~C is satisfiable and, if it is not, we return ⊥]

5.3.6 — Abstract Operators

Using the normal form, we can decide equality and inclusion exactly:

γ(X]) = γ(Y])⇐⇒ X]∗ = Y]∗

γ(X]) ⊆ γ(Y])⇐⇒ X]∗ v Y]∗ (5.7)

We can model the union and the intersection by taking, respectively, for each a�ne ex-

pression, the loosest or the strictest of the constraints from both arguments. The intersection

∩] def
=u] is exact. The union ∪] is not exact and, for it to be optimal, we must use the normal

form, i.e., we stateX] ∪] Y] def
=X]∗ t] Y]∗. The result is naturally in normal form.

Tests, conditions, assignments are not of interest to us, so we skip those for now.

5.3.7 — Convergence Acceleration

The template domain features infinite increasing and decreasing chains. It is composed of a

finite number of bounds of fixed a�ne expressions. We can thus construct widenings and

64

Chapter 5. Common Numerical Domains V. Notani

narrowing independently on each bound. We define:

∀i ≤ m : [~C∇ ~D]i
def
=

Ci if Ci ≥ Di

+∞ otherwise
(5.8)

∀i ≤ m : [~C4 ~D]i
def
=

Di if Ci = +∞

Ci otherwise
(5.9)

Finally, note that the result of the widening should not be put in normal form between two

iterations, as it may jeopardize the convergence.

65

“When you’re fundraising, it’s AI / When you’re hiring,
it’s ML / When you’re implementing, it’s linear
regression / When you’re debugging, it’s printf()”

Baron Schwartz

6
Supervised Learning

This chapter discusses the fundamentals of Machine Learning. We start from the basics, lead-

ing upto formal theoretical models for learning and finally present some algorithms used com-

monly in practise. The goal is to build a foundation to support easier reading and understand-

ing of the dissertation, rather than providing a full or in-depth course on the subject matter.

We follow the notations and formalizations of Shalev-Shwartz and Ben-David [59]. We

borrow most of the definitions and examples from the same book. Some definitions and exam-

ples are also borrowed from the book of Bishop [4]. To the readers interested in reading more

about theoretical machine learning, we recommend the book by Shalev [59]. Those interested

in more practical aspects, or a more in depth look at the probabilistic approach to machine

learning, we recommend the book by Bishop [4].

6.1 | Learning Fundamentals

6.1.1 — What is Machine Learning ?

Informally, Automated Learning, or Machine Learning (ML) is the process by which comput-

ers turn “experience” into “knowledge”. By “experience”, we refer to the input of the learner

(machine learning program), and by “knowledge” we refer to another computer program that

generalizes the input experience to better perform a “task”.

“A computer program is said to learn from experience E with respect to some task T and some

performance measure P, if its performance on T, as measured by P, improves with experience E.”

——Tom M. Mitchell

For instance, consider the archtypical example where we want to learn how to predict if a

choco-chip cookie is tasty or not (the task). First we decide on the features that our prediction

will be based on: say Radius of the cookie, and choco-chip density (number of choco-chips per

69

V. Notani 6.1. Learning Fundamentals

unit area). The input is a sample of choco-chip cookies. We analyze for the features and then

taste. We now analyze this learning task.

To be more formal, we begin by introducing some terminology as it relates to the problem:

• The Domain set X : An arbitrary set X that we may wish to learn about (the choco-

chip cookies). The domain instances are represented by a feature (radius and choco-chip

density) vector.

• The Label set Y : The possible labels. For our example, Y = {0, 1} where 0 implies not

tasty, and 1 implies tasty.

• Training Data S: We describe S = {(x1, y1), (x2, y2), ..., (xm, ym)} as a finite se-

quence ofm labeled data-points in X × Y . This is the sampled cookies that we tasted

to find out if they were tasty or not. Note that despite the name “set”, S is a sequence,

implying the same data-point may repeat, and also some algorithms take the order of

the sequence into account.

• Prediction Rule h: The learner learns h : X −→ Y . hmay also be referred as a hypoth-

esis, or a classifier. We use the notation A(S) to denote the hypothesis that a learning

algorithm, A, returns upon receiving the training sequence S.

• Data-generation Model: We assume that instances are generated by some arbitrary prob-

ability distribution D over X . We also assume that there exists a true labeling function

f : X −→ Y . Pairs in S are generated by first sampling from X usingD then applying

f .

• Measures of success: Success is actually measured by error, where error is the probability

that the predictor makes incorrect predictions: Probability that for a random instance

x drawn according to distribution D, h(x) 6= f(x).

Thus, given some A ⊂ X (more precisely, A in some σ-algebra on X), D(A) is the

probability of the event A. Therefore, A = {x ∈ X : π(x) = 1} where π : X −→
{0, 1}. We may also denote D(A) as Px∼D[π(x)].

Error of Prediction rule h : X −→ Y , denoted by L(D,f), and sometimes also referred

to as generalization error, true error, or risk is defined as:

L(D,f)(h) def
= P

x∼D
[h(x) 6= f(x)] def

= D{x : h(x) 6= f(x)} (6.1)

70

Chapter 6. Supervised Learning V. Notani

Thus, we can describe a learner A as a program that takes as input the domain set X , the
training data S and the label set Y . It is blind to the distribution D and the true labeling

function f : X −→ Y . The goal is to approximate f with a hypothesis hS : X −→ Y while

minimizing the error L(D,f). The subscript S denotes that the hypothesis was learned using

training set S.

6.1.2 — Emperical Risk Minimization

As a first learning strategy, we look into solving for h that minimizes the generalization error.

Since we do not know the D and f , the true error is not calculable.

Hence, we use another useful notion of error: the emperical risk, also referred to as the

emperical error or the training error, described as:

LS(h) def
=
|{i ∈ [m] : h(xi) 6= f(xi)}|

m
(6.2)

where [m] = {1, 2, ...,m}.

The learning strategy to derive the predictor h : X −→ Y that minimizes the emperical

risk is called Emperical Risk Minimization.

However, this approach su�ers from the problem of overfitting. Namely, the strategy may

give a predictor that fits perfectly with the training data, but performs poorly in the real world.

This may be so because the predictor (h) only minimizes LS(h), but not L(D,f)(h).

One way to address the challenge of overfitting is to restrict the search space. Namely,

instead of searching all possible predictors, we restrict the search to a finite set of hypothesis

H. That is:
ERMH(S) ∈ argmin

h∈H
LS(h)

whereargminfiltersH for hypothesis that achieveminimumLS(h) overH. These restrictions
cause the learner to bias towards a particular set of hypothesis, and hence are referred to as

inductive bias.

Intuitively, a more restrictive hypothesis class lowers the risk of overfitting, while simulta-

neously increases the inductive bias. Thus, there exist a tradeo� bias vs overfitting. We discuss

this later.

This brings us to a fundamental question in Machine Learning: How to restrict a hypothesis

classH so that ERMH does not overfit ?

71

V. Notani 6.1. Learning Fundamentals

It can be shown that any finite hypothesis class H will not overfit if the Realizability

(Definition-6.1.1) and the i.i.d. (Definition-6.1.2) assumptions hold, and the training set is large

enough (Theorem-6.1.3).

Definition 6.1.1 (Realizability Assumption). There exists h? ∈ H s.t. L(D,f)(h
?) = 0.

Definition 6.1.2 (The i.i.d Assumption). The data-points in the training set are independently

and identically distributed (i.i.d.) according to the distribution D. Namely, S ∼ Dm.

Theorem 6.1.3. For any labeling function, f , and for any distribution,D, for which the realizability
assumption (Definition-6.1.1) holds, then with probability of at least (1− δ), where

(
δ ∈ (0, 1)

)
, over

the choice of an i.i.d. sample S of sizem ≥ log(|H|/δ)
ε , we have that for every ERM hypothesis, hS ,

it holds that:

L(D,f)(hS) ≤ ε where ε > 0

The Theorem-6.1.3 says that for a su�ciently large m, the ERMH rule over a finite hy-

pothesis class, under the realizability and iid assumptions, will be probably (with confidence

1− δ) approximately (up to an error of ε) correct.

Definition 6.1.4 (PAC Learnability). A hypothesis class H is PAC learnable if there exist a

functionmH : (0, 1)2 −→ N and a learning algorithm with the following property: For every

ε, δ ∈ (0, 1), for every distribution D over X , and for every labeling function f : X −→
{0, 1}, if the realizable assumption holds with respect to H,D, f , then when running the

learning algorithm on m ≥ mH(ε, δ) i.i.d. examples generated by D and labeled by f , the

algorithm returns a hypothesis h such that, with probability of at least 1− δ (over the choice
of the examples), L(D,f)(h) ≤ ε.

The definition of PAC includes two approximation parameters-δ and ε for confidence

and accuracy. The accuracy parameter ε describes the distance between learned hypothesis h

and true labeling function f , while the confidence parameter δ indicates the probability of

hypothesis h satisfying the accuracy condition.

6.1.3 — Agnostic PAC: A more general approach

In practical applications, the Realizability Assumption of Definition-6.1.1 can be too restric-

tive. Futhermore, the feature set may not be complete. Thus, the realizability assumption may

be relaxed in favor of a probabilistic labeling function. Namely, from this point on, we consider

D to be a joint probability distribution over X × Y .

72

Chapter 6. Supervised Learning V. Notani

Consequently, we now revise the true risk of hypothesis h:

LD(h) def
= P

(x,y)∼D
[h(x) 6= y] def

= D({(x, y) : h(x) 6= y}) (6.3)

Note that the emperical risk function did not change:

LS(h) def
=
|{i ∈ [m] : h(xi) 6= yi}|

m
(6.4)

where [m] = {1, 2, ...,m}.
As before, the goal is to find the predictor h : X −→ Y that probably approximately min-

imizes the true risk LD , however, withD being unknown, we may only calculate the emperical

risk.

Indeed, if we knew the distributionD over X ×Y , then the Bayes predictor would be the
optimal predictor:

fD
def
=

1 if P[y = 1|x] ≥ 1/2

0 otherwise
(6.5)

Clearly, no learning algorithm may find a hypothesis better than the bayes optimal pre-

dictor. As such, we try to bound the distance between learned hypothesis and the optimal

predictor:

Definition 6.1.5 (Agnostic PAC Learning). A hypothesis class H is agnostic PAC learnable

if there exist a function mH : (0, 1)2 −→ N and a learning algorithm with the following

property: For every ε, δ ∈ (0, 1) and for every distribution D over X × Y , when running the

learning algorithm onm ≥ mH(ε, δ) i.i.d. examples generated by D, the algorithm returns a

hypothesis h such that, with probability of at least 1 − δ (over the choice of the m training

examples),

LD(h) ≤ min
h′∈H

LD(h′) + ε

Clearly when the realizability assumption holds, the Agnostic PAC leaner gives the same

guarantees as the PAC learner. The model may be generalized by further by allowing Y to be

larger finite set or even the set of all reals R. A larger, but finite, set Y is useful for Multiclass

Classification problems, while the continuous set Y is applied in Regression problems.

We thus generalize the loss function ` : H × Z −→ R+ where Z is some domain deter-

mined by the application. Note that for prediction problems we have Z = X × Y , however,

73

V. Notani 6.1. Learning Fundamentals

that may not be the case for all applications.

We define two of the most commonly used loss functions here:

• 0-1 Loss: Here Z : X × Y .

`0−1
(
h, (x, y)

)
def
=

0 if h(x) = h(y)

1 if h(x) 6= h(y)
(6.6)

• Squared Loss: Once again, Z : X × Y .

`sq
(
h, (x, y)

)
def
=
(
h(x)− y

)
2 (6.7)

Definition 6.1.6 (Uniform Convergence). We say that a hypothesis class H has the uniform

convergence property (w.r.t. a domain Z and a loss function `) if there exists a functionmUC
H :

(0, 1) −→ N such that for every ε, δ ∈ (0, 1) and for every probability distributionD over Z,
ifS is a sample ofm ≥ mUC

H (ε, δ) examples drawn i.i.d. according toD, then, with probability
of at least 1− δ, S is ε-representative. Namely,

∀h ∈ H : |LS(h)− LD(h)| ≤ ε

It can be shown that for finite H, and ` : H × Z −→ {0, 1}, the uniform convergence

property holds for:

mUC
H (ε, δ) ≤

⌈
log(2|H|/δ)

2ε2

⌉
Theorem 6.1.7 (UC Property implies Agnostic PAC Learnability). If a class H has the uniform

convergence property with a functionmUC
H then the class is agnostically PAC learnable with the sam-

ple complexity mH(ε, δ) ≤ mUC
H (ε/2, δ). Furthermore, in that case, the ERMH paradigm is a

successful agnostic PAC learner forH.

6.1.4 — Bias Variance Tradeoffs

In Section-6.1.2 we discussed the need to restrict the hypothesis class H to avoid overfitting.

The idea was that without some prior knowledge, the learner would overfit on the training

set S and not generalize. Thus, we were imposing some prior belief about the distribution D
with our choice of selected class of Hypothesis H. However, too restrictive hypothesis class

also implies an induced bias error. Hence, there exist a tradeo�. In this section we formalize

these notions.

74

Chapter 6. Supervised Learning V. Notani

We begin by describing the No Free Lunch Theorem that states proves the impossibility of

the existence of a universal learner.

Theorem 6.1.8 (No Free Lunch). LetA be any learning algorithm for the task of binary classification

with respect to the 0−1 loss over a domainX . Letm be any number smaller than |X |/2, representing
a training set size. Then, there exists a distribution D over X × {0, 1} such that:

• There exists a function f : X −→ {0, 1} with LD(f) = 0.

• With probability of at least 1/7 over the choice of S ∼ Dm we have that LD
(
A(S)

)
≥ 1/8.

This theorem implies that for every learner, there exists a task on which it fails, while there

exists another learner that will succeed.

No Free Lunch theorem implies that an ERM predictor chosen over an infinite hypothesis

class, without prior knowledge, that is over all possible f , will fail on some learning task. Hence

it is not a PAC Learnable class.

Corollary 6.1.9. Let X be an infinite domain set and letH be the set of all functions from X
to {0, 1}. Then,H is not PAC learnable.

Thus, we must restrict the hypothesis class. However, we also do not want to bias the

learner to hypothesis class. On the other hand, we also cannot learn without any prior knowl-

edge. Hence, we need to balance this tradeo�.

To better understand the error induced by restricting and not-restricting the hypothesis

class, we begin by decomposing the learning error intoApproximation Error and Estimation Error:

Let hS be an ERMH hypothesis. Then,

LD(hS) = εapp + εest where εapp = min
h∈H

LD(h), εest = LD(hS)− εapp (6.8)

• Approximation Error: This measures the inductive bias, namely the error induced as a

consequence of restricting ourselves to the domain. Under the Realizability Assump-

tion, this is 0. In general, this error increases with reduction in size and complexity of

hypothesis classH.

• Estimation Error: This is the error induced as a consequence of using the training error

(emperical risk) to estimate the true risk. This error decreases with increase in the train-

ing set size |m|, and, increases with the increases in size and complexity of hypothesis

classH.

75

V. Notani 6.1. Learning Fundamentals

The equation-6.8 demonstrates the bias-variance tradeo�. Namely, we want to reduce the total

risk, but reducing the complexity of H reduces the estimation error, but increases the esti-

mation error. Hence, a balance must be achieved to avoid underfitting (bias) and overfitting

(variance). A great choice for H would be containing only the Bayes optimal classifier, how-

ever, that classifier depends on the unknown distribution D, which we do not know. Indeed

learning would have been unnecessary if we knew the distribution D.

6.1.5 — VC Dimension

The error of the ERMH rule depends on the choice of hypothesis class H. Indeed the ap-

proximation error depends on how well our choice ofH fits with the underlying distribution

D. In contrast, the definition of PAC learnability requires that estimation error be bounded

uniformly over all possible D.
The question is then which classes are learnable, and how to characterize the sample com-

plexity of learning a given hypothesis class.

It can be shown that while finiteness of a hypothesis class is a su�cient condition for

learnability, it is not a necessary condition. We describe now the VC-Dimension, a property of

the hypothesis class that gives a correct characterization of it’s learnability.

Definition 6.1.10 (Shattering). Hypothesis classH shatters a finite setC = {x1, ..., xm} ⊂ X
if, the set of functions from C to {0, 1} that can be derived fromH, denotedHC , is the set of
all functions C −→ {0, 1}. That is, |HC | = 2|C|.

Definition 6.1.11 (VCDimension). TheVC-dimension of a hypothesis classH, denotedVCdim(H),
is the maximal size of a set C ⊂ X that can be shattered by H. If H can shatter sets of arbi-

trarily large size we say thatH has infinite VC-dimension.

Theorem 6.1.12. LetH be a class of infinite VC-dimension. Then,H is not PAC learnable.

For finite hypothesis class H and any set C , we have |HC | ≤ |H|. Thus C cannot be

shattered if |H| < 2|C|. Therefore, VCdim(H)≤ log2(|H|).
OftenVCdim is equal to the number of parameters, however, this is not always the case. For

instance, for domain X = R, Hypothesis classH = {hθ : θ ∈ R} where hθ : X −→ {0, 1}
is defined by hθ(x) = d0.5sin(θx)e. It can be shown that VCdim(H)=∞.

Theorem-6.1.12 implies that hypothesis classes with infinite VC-dim are not learnable. We

present below the fundamental theorem of statistical learning that says the converse is also

true, namely, finite VCdim is su�cient condition for learnability of a hypothesis class.

76

Chapter 6. Supervised Learning V. Notani

Theorem 6.1.13 (Fundamental Theorem of Statistical Learning). Let H be a hypothesis class of

functions from a domain X to {0, 1} and let the loss function be the 0 − 1 loss. Then, the following

are equivalent:

1. H has the uniform convergence property

2. Any ERM rule is a successful agnostic PAC learner forH

3. H is agnostic PAC learnable

4. H is PAC learnable

5. Any ERM rule is a successful PAC learner forH.

6. H has a finite VC-dimension

Theorem 6.1.14 (Fundamental Theorem of Statistical Learning - Quantitative Version). LetH
be a hypothesis class of functions from a domainX to {0, 1} and let the loss function be the 0− 1 loss.

Assume that VCdim(H)= d <∞. Then, there are absolute constants C1, C2 such that:

1. H has the uniform convergence property with sample complexity:

C1
d+ log (1/δ)

ε2
≤ mUC

H (ε, δ) ≤ C2
d+ log (1/δ)

ε2

2. H is agnostic PAC learnable with sample complexity:

C1
d+ log (1/δ)

ε2
≤ mH(ε, δ) ≤ C2

d+ log (1/δ)

ε2

3. H is PAC learnable with sample complexity:

C1
d+ log (1/δ)

ε
≤ mH(ε, δ) ≤ C2

d log (1/ε) + log (1/δ)

ε

6.2 | Learning in Practise

Given a training set of data: (Input,Output) pairs (x, y)wherex ∈ X, y ∈ Y , learn a hypothesis

function h : X −→ Y such that h(x) is a good predictor of target variable y. As previously

discussed, when Y is a set of continuous values, we call the problem a regression problem; when

the set of target values Y is discrete, we call it a classification problem.

77

V. Notani 6.2. Learning in Practise

6.2.1 — Linear Regression

Consider the data shown in Table-6.1 that lists the poverty rate, which is the percent of the

state’s population living in households with incomes below the federally defined poverty level

and the corresponding birth rate per 1000 females 15 to 17 years old.

A typical supervised machine learning problem is to figure out a relationship between the

poverty rate and birth rate, given the data in the Table-6.1, that can then be used to predict the

birth rates in other areas, when the poverty rate is known.

Figure-6.1 shows a scatter plot of the data in Table-6.1. We must define a computer repre-

sentation of the hypotheses. For simplicity, let’s say we decide to approximate birth rate (y) as

a linear function of poverty rate (x):

hθ(x) = θ0 + θ1x

In general, the domain of Linear Hypothesis from the space of input features X to target

Variable Y is parameterized by the parameters θj ’s. Hence the general form of the equation:

hθ(x) =

n∑
j=0

θjxj = θTx (6.9)

where n is the number of input features, x0 = 1 is the intercept term. Note that the form on

the right hand side treats both θ and x as vectors.

We compute the parameters θ by minimizing the distance between h(x) and y for the

training data. This is achieved by defining a cost function J(θ), that, given a θ, computes

the distance between h(x(i))’s and corresponding y(i)’s. Thus reducing the problem to an

optimization problem, where the goal is to compute θ that minimizes the cost function (also

sometimes referred to as the loss function) J(θ).

78

Chapter 6. Supervised Learning V. Notani

Location Poverty Rate Brth15to17
Alabama 20.1 31.5
Alaska 7.1 18.9
Arizona 16.1 35
Arkansas 14.9 31.6
California 16.7 22.6
Colorado 8.8 26.2
Connecticut 9.7 14.1
Delaware 10.3 24.7
District of Columbia 22 44.8
Florida 16.2 23.2
Georgia 12.1 31.4
Hawaii 10.3 17.7
Idaho 14.5 18.4
Illinois 12.4 23.4
Indiana 9.6 22.6
Iowa 12.2 16.4
Kansas 10.8 21.4
Kentucky 14.7 26.5
Louisiana 19.7 31.7
Maine 11.2 11.9
Maryland 10.1 20
Massachusetts 11 12.5
Michigan 12.2 18
Minnesota 9.2 14.2
Mississippi 23.5 37.6
Missouri 9.4 22.2
Montana 15.3 17.8
Nebraska 9.6 18.3
Nevada 11.1 28
New Hampshire 5.3 8.1

Location Poverty Rate Brth15to17
New Jersey 7.8 14.7
New Mexico 25.3 37.8
New York 16.5 15.7
North Carolina 12.6 28.6
North Dakota 12 11.7
Ohio 11.5 20.1
Oklahoma 17.1 30.1
Oregon 11.2 18.2
Pennsylvania 12.2 17.2
Rhode Island 10.6 19.6
South Carolina 19.9 29.2
South Dakota 14.5 17.3
Tennessee 15.5 28.2
Texas 17.4 38.2
Utah 8.4 17.8
Vermont 10.3 10.4
Virginia 10.2 19
Washington 12.5 16.8
West Virginia 16.7 21.5
Wisconsin 8.5 15.9
Wyoming 12.2 17.7

Table 6.1: Training Data for learning Birth Rates per 1000 females that are 15 to 17 year old, as
a function of Poverty Rate of US States

6 8 10 12 14 16 18 20 22 24

10

15

20

25

30

35

40

Poverty Rate

B
i
r
t
h
R
a
t
e

Figure 6.1: Plot of Training Data for learning Birth Rates per 1000 females that are 15 to 17
year old, as a function of Poverty Rate of US States

79

V. Notani 6.2. Learning in Practise

6.2.2 — Gradient Descent

Gradient Descent is a first order iterative optimization algorithm for finding the minimum of

a function. The idea is to start with some initial θ and:

repeat until convergence: {

θj := θj − β
∂

∂θj
J(θ) (for every j)

} (6.10)

where β is called the learning rate. The algorithm basically takes repeated steps in the direction

of the steepest decrease of J(θ).

A common choice for the loss function is the least squared cost function defined as:

J(θ) =
1

2

m∑
i=1

(
hθ(x

(i))− y(i)
)2 (6.11)

Substituting this J(θ) into Equation-6.10 and expanding:

θj := θj − β
∂

∂θj

(
1

2

m∑
i=1

(
hθ(x

(i))− y(i)
)2)

θj := θj −
1

2
.2.β

m∑
i=1

((
hθ(x

(i))− y(i)
)∂(hθ(x(i))− y(i))

∂θj

)

substituting the expansion forhθ(x(i)) from Equation-6.9 into the above for partial derivation:

θj := θj − β
m∑
i=1

((
hθ(x

(i))− y(i)
)∂(∑n

j=0 θjx
(i)
j − y(i)

)
∂θj

)

θj := θj − β
m∑
i=1

(
hθ(x

(i))− y(i)
)
.x

(i)
j

θj := θj + β
m∑
i=1

(
y(i) − hθ(x(i))

)
.x

(i)
j (6.12)

The update rule of Equation-6.12, derived by using Mean Squared Loss (Equation-6.11) in

Gradient Descent (Equation-6.10) is also known as the least mean squared algorithm. Also, note

80

Chapter 6. Supervised Learning V. Notani

5 10 15 20 25

10

15

20

25

30

35

40

Poverty Rate

B
i
r
t
h
R
a
t
e

Figure 6.2: Linear Regression on Data for learning Birth Rates per 1000 females that are 15 to
17 year old, as a function of Poverty Rate of US States

that this method looks at every example in the training set on every step, hence the name batch

gradient descent.

An alternative method is to cycle through the training data-set and for-each training ex-

ample, update the parameters (θj ’s) according to the gradient of the error with respect to that

one single training example only. This is known as stochastic gradient descent or incremental

gradient descent:

repeat until convergence: {

for i = 1 to m {

θj := θj + β(y(i) − hθ(x(i))).x
(i)
j (for every j)

}

} (6.13)

In the general case, gradient descent is susceptible to local minima. However, the opti-

mization problem we have here is attempting to minimize a convex quadratic function (Least

Squared Cost Function), which has only one global minima and no other local optima. Thus,

this gradient descent will always converge to the global minima (assuming the learning rate α

is not too large).

Applying batch gradient descent to the data in Table-6.1, we get θ0 = 4.27 and θ1 = 1.37.

Figure-6.2 shows the resultant plot.

81

“For Wiener, entropy was a measure of disorder; for
Shannon, of uncertainty. Fundamentally, as they were
realizing, these were the same”

James Gleick

7
Information Oriented Model of

Computation

7.1 | Motivation

In Chapter-3, we presented a new way to systematize Program Analysis techniques in a cube

(Figure-3.3). This allowed a new insight that Abstract Interpretation and Machine Learning

are two base techniques for program analysis. And that other methods maybe derived by a

combination of various abstract interpreters and learning approaches.

Next, as we described in Chapter-4 through Chapter-6, both techniques leverage abstrac-

tions to e�ciently compute approximate solutions.

This brings us to the question: Can we compare these techniques? More specifically, the prob-

lem: How does one compare abstractions used by Abstract Interpretation and Machine Learning? A

rather more general version of this problem would be: Given two techniques for approximating

undecidable problems, How should one approach comparing their abstractions/approximations?

One way to make such a comparison would be to have a more generalized framework that

allows to instantiate these problems. It is reasonable to expect such that such a framework

would help not only in better understanding of the general problems solved by these tech-

niques, but also with promoting cross-disciplinary use of ideas, tools and techniques, whenever

possible.

We posit two key requirements for such a framework:

1. Generalization Requirement (Req-1): Notice that bothAbstract Interpretation, andMa-

chine Learning, are considered to be very generic techniques, applicable to a large body

of problems. Thus, a framework that instantiates such generic techniques, needs to be

abstract enough to allow instantiating any computation problem.

85

V. Notani 7.1. Motivation

2. Information Comparison Requirement (Req-2): Since our stated goal with the frame-

work is to be able to compare the approximations, the framework would need to take a

more information oriented approach that permits drawing conclusions on the need and

level of approximations being made.

To that end, in this chapter, we present a framework that bridges Abstract Interpretation

with Information Theory to create an Information Oriented Model of Computation. Abstract

Interpretation allows for controlled loss of information, namely, explicit specification of ab-

stractions that lets control what information is being lost. Information Theory allows explicit

measurement of the amount of information available, namely how much information is avail-

able.

Recall from our introductory discussion in Chapter-1, that the Turing Model of Com-

putation views computations as proofs and non-computability as impossibility of proving a

truth. The Information Theory model views computation as exchange of information between

a source and a target, and non-computability as the impossibility of exchanging certain infor-

mation. Additionally, Information Theory also provides a rich mathematical framework for

making explicit measurements on information.

Thus by building our model of computation atop the Information Theory model, allows

us to compare the amount of information in inputs and desired outputs for a problem and

explain:

• if the problem is decidable,

• if the problem is only partially decidable, or,

• if only probabilistic inferences may be drawn.

We begin with a section on preliminaries describing our language agnostic approach for

the rest of the chapter, followed by a brief description of Information Theory concepts needed

to understand our work. This is followed by a description of our Information Oriented Model

of Computation and a discussion of problems from the field of Data Compression, Program

Analysis and Machine Learning as viewed under our model. We will use these problems to

demonstrate the three cases listed above. Finally, the chapter ends with a conclusion that sum-

marizes the discussion and lists possible directions for future research.

86

Chapter 7. Information Oriented Model of Computation V. Notani

7.2 | Preliminaries

7.2.1 — Language Agnostic Approach

We consider a language agnostic approach to programming, where the code is assumed to be writ-

ten in a given programming language L. Programs represent n-ary partial recursive functions

over some infinite denumerable domain S of semantic objects. These can be values, traces, data

structures etc., as computed by the programming language L. Because both S and L are in-

finite e�ectively denumerable, in the following sections we will make no distinction between

N, L, Z, and S. All the following notions apply therefore to properties of arbitrary infinite

denumerable sets. Two partial functions f and g are extensionally equivalent, denoted f ∼= g, if

dom(f) = dom(g) and for any x ∈ dom(f) : f(x) = g(x).

7.2.2 — Semantics and Program Properties

Given a program P ∈ L we denote by ϕP : S → S ∪ {⊥} the partial function computed by

P , where ϕP (x) = ⊥ means that ϕP (x) is undefined. Being L Turing complete, a property

S ⊆ S is recursive enumerable (r.e. for short) if there exists P ∈ L such that S = dom(ϕP)

[51]. S is recursive when both S and S are r.e. . We denote by WP
def
= dom(ϕP). Recall that

the set of all r.e. sets is ℘re(S) def
=

{
WP

∣∣∣ P ∈ L }
. It is known that ℘re(S) is e�ectively

denumerable and, whenever ordered by set inclusion, it forms a distributive lattice with ∅
and S as respectively bottom and top elements. Correspondingly, the set of all recursive sets

℘rec(S) is a Boolean algebra [49, 54, 63].

Programs P ∈ L are intended to provide an intensional representation (coding) of prop-

erties (or concepts) of concrete semantic objects in ℘(S). An e�ective (partial recursive) pro-

cedure that associates with each program P its corresponding semantic property is called a

semantics for L: [[·]] : L → ℘(S):

[[P]] =
{
ϕP (x)

∣∣∣ x ∈ S ∧ ϕP (x) 6= ⊥
}

In the following we denote with [[P]]i/o the input/output relational (denotational) semantics

of P . It is well known that [[P]]i/o can be specified by Abstract Interpretation of a trace-based

semantics of P [15]. It is known that in general [[P]] is a r.e. for any P ∈ L.
We need concrete semantic objects in a measurable space, since probability is a measure,

making this a requirement for Learning on the concrete objects (see discussion in Section-6.1.1).

87

V. Notani 7.2. Preliminaries

Thus, our concrete domain will always be a σ-algebra E on some set S.

Because there exist denumerable sequences of recursive sets whose union is not recursive

(but r.e.)1 we consider a σ-algebra of recursive events E ⊆ ℘rec(S) as an observable measurable

space 〈S, E〉.

These can be (recursive) sets of execution traces, program control graphs, sets of numbers.

Typically these are obtained by a further abstraction of a given concrete semantics.

This can be achieved by assuming that programs in our language are circuits or always ter-

minating programs, or by considering the Abstract Interpretation of [[·]] in an abstract domain

A: [[·]]A.

Note that while the correct terminology is to refer to the pair 〈S, E〉 as the measurable

space; we will, however, use the term space to refer to S (like the sample space from probability

parlance) and the term domain to refer to E (like the concrete domain from abstract interpreta-

tion parlance). A set S ∈ E is referred to as an event in probability parlance, and as a property

in Abstract Interpretation parlance.

Example 7.2.1. The standard denotational input/output semantics of a programming language

is defined for S = Z and ϕP : Z → Z ∪ {⊥} is defined as usual. Other static semantics can

be defined analogously. For instance the control-flow graph (CFG) semantics of an imperative

language L corresponds to choose S as the set of all graphs 〈V,E〉 with V ⊂ Π, where Π is

the set of single statements expressible in L, i.e., the possible program points of any program

P ∈ L, and E ⊆ V × V . Denote by Π(P) the set of all statements (program points) in P . In

this case we have:

ϕP (〈V,E〉) =

{
〈V ′, E′〉 if V ⊆ Π(P) ∧ c′ ∈ V ′ ∧ (c, c′) ∈ E′ ⇔ c; c′ in P

⊥ otherwise

is the function associating with each program P the corresponding CFG, where c ; c′ rep-

resents that the control flow may flow from statement c to c′. In this case the property of a

program P is the set of all subgraphs of the CFG of P . In this case [[P]] is always a recursive

set.

1It is enough to consider the sequence of Tn =
{
P
∣∣ ϕP is defined in n-steps

}
andK = ∪n∈NTn.

88

Chapter 7. Information Oriented Model of Computation V. Notani

7.3 | Information Theory

7.3.1 — Shannon Entropy

Hartely [28] first proposed the idea of a quantitative measure of information based on physical

considerations, as opposed to psychological considerations. He quickly realized that a logarith-

mic function can be an intuitive measure of information.

The idea was further expanded upon and generalized by Shannon, who was the first to

propose Entropy, a physical concept, as a measure of the information in his seminal paper

in 1948 [60]. The ideas of Information theory based on Ergodic theory were then further

developed and popularized also by the work of Shannon.

The Entropy of a discrete random variable X with probability distribution P (x) is de-

fined asH(X) def
= −

∑
x∈X

P (x)log2P (x) [42]. Shannon showed that the EntropyH(X) of the

random variable X describes the minimum length in bits of the binary sequence needed by a

receiver to reconstruct the object x [23].

Entropy is sometimes called the missing information: the larger the Entropy, the less a

priori information one has on the value of the random variable [42, page 3].

When the random variableX in the above definition is a uniform probability distribution,

implying that any object x ∈ X may be selected with equal probability, the EntropyH(X) =

log2|X|.
This explains the key idea of Information Theory, that the information content of an object

depends on the domain fromwhich the object is to be selected. The bits are required, in essence,

to uniquely identify the index for the object in the domain which is shared by both the sender

and the receiver.

7.3.2 — Kolmogorov Complexity

The notion of Kolmogorov Complexity has its roots in Probability Theory, Computability,

and Information Theory [38]. The idea is that a sequence (string) may be compressed consid-

erably provided that it exhibits enough regularity. This is captured by the size of the smallest

program that can produce the string. The Kolmogorov Complexity K(X) of a set of objects

is the smallest program that may produce X as its semantics: [[P]] = X . The importance

of Kolmogorov Complexity is its invariance property: Kolmogorov Complexity is recursively

invariant between acceptable enumerations of partial recursive functions, i.e., programs in L.

89

V. Notani 7.3. Information Theory

That means that it is known thatK(X) is not in general computable.

7.3.3 — Algorithmic Information Theory

Algorithmic Information Theory is a term coined by Gregory Chaitin, describes the intersec-

tion of Information Theory with Computability Theory. The idea being to study Information

Theory in the context of Turing Machines that may only decide upto recursive sets and enu-

merate r.e. sets.

A key idea here is that while Shannon’s Entropy Measure and Kolmogorov’s Complexity

Measurement are di�erent on the surface—the former being dependent on the domain of ob-

jects, while the latter dependent on the object itself; they are equivalent (upto a constant term)

when considering a universal probability distribution that assigns a probability of c ∗ 2−K(x) for

any object x, where c is a constant andK(x) denotes the Kolmogorov Complexity of the ob-

ject. In general, for any recursive probability distribution, the expected value of Kolmogorov

Complexity equals it’s Shannon Entropy, upto a constant [38, 64].

Vereshchagin [66] showed that Kolmogorov ComplexityK(x) of a string x ∈ {0, 1}∗ may

be expressed as:

K(x) = min
i,p
{K(i) + l(p) : Ti(p) = x}+O(1)

where the minimum is taken over p ∈ {0, 1}∗ and i ∈ {1, 2, ...}. The equation expresses that
K(x) is the sum of the description lengthLN(i) of some Turingmachine iwhen encoded using

the standard code for integers, plus the length of a program p such that Ti(p) = x. LN(i) may

be replaced byK(i): the shortest e�ective description of i.

Intuitively, one may understand that Shannon’s idea was to describe an object in the con-

text of some domain. In Kolmogorov and Chaitin’s view of the two-part code description, the

Turing Machine describes the domain, and the program describes the object in the context of

the referenced domain [24].

This implies the existence of a universal domain of descriptions that all senders and re-

ceivers must refer to in the absence of apriori information on the restriction of the domain.

This domain is the domain of all partial recursive functions, because they are formally e�ective

descriptions [38, page 3].

Chaitin was able to compute the Entropy and information content of sets under this do-

main [9]. The idea was that given a Universal Turing Machine U , and a r.e. set S, let p be a bit

sequence where each bit is obtained by independent toss of unbiased coin. Then he defined

90

Chapter 7. Information Oriented Model of Computation V. Notani

PU (S) as the Algorithmic Probability that U(p) enumerates S. The Algorithmic Entropy

is defined as HU (S) = − log2(PU (S)), and Algorithmic Information IU as the length in

bits of the smallest string p such that U(p) enumerates S. Clearly, IU (S) is nothing but the

Kolmogorov Complexity of set S.

Given a Turing complete language L, all recursively enumerable sets will have atleast one

finite description in the language—the program P ∈ L that enumerates the set. Thus, for

r.e. sets have IU < ∞. Indeed this has been used as a definition for r.e. sets [9]. IU bits is

the absolute minimum information that is needed to communicate the set, modulo a constant

term for the choice of L, in the absence of apriori information that restricts the domain.

7.4 | Information Oriented Model of Computation

7.4.1 — Relating Information Theory and Computability Theory

We begin by relating the Entropy in Information Theory to decidability in Computability

Theory. Namely, we present the idea: To know a set, is to decide a set.

Our goal with the framework is to be able to describe computation as communication of

information. Information to be communicated is represented by a set S drawn from a space S
using a probability distribution P .

We will use Information Theory to measure how much information is being communicated,

and, Computability Theory to describe what information is being transmitted.

Information Theory uses Entropy as a measurement of information. Shannon Entropy

is defined for a random variable that selects sets from a domain of sets via some specified

probability distribution. Thus the information content is dependent upon the probability

distribution and the domain.

For a given space S, the domain will be a σ-algebra on S. We assume the domain to be℘(S).

Thus, all sets of elements in S are in the domain, and may be selected by a random variable

using some probability distribution.

Next, we assume a uniform probability distribution. The uniform probability distribution

places a restriction that all sets have the same probability for being selected. Thus, no infor-

mation is available apriori about the set, from the distribution. Indeed, any other distribution

would provide information about which elements are likely (or unlikely) to be in a set. This is

why uniform probability distribution has the highest entropy for a given domain [4, section-

1.6].

91

V. Notani 7.4. Information Oriented Model of Computation

Entropy for a random variable X that may select any set S from the domain ℘(S) with a

uniform probability distribution is given byH(X) = log2
(
|℘(S)|

)
bits.

Notice that the Entropy is dependent on the domain, rather than a specific set itself. This

implies that under a uniform probability distribution, that is with no apriori information pro-

vided, all sets in the domain have the same amount of information: log2
(
|℘(S)|

)
bits.

Now that we know how much information is needed to describe a set, we want to know

what that information is.

A key idea from Information Theory, is that the amount of information within an object

(or rather amount of information needed to describe an object), is the information needed to

uniquely identify it from all other objects in consideration.

For example, consider a set S selected via uniform probability distribution from the do-

main ℘(S), where S = {1, 2, 3, 4, 5, 6, 7, 8}. Here the number of possible sets is 28. Entropy

is defined as H(℘(S)) = log2(2
8) bits2. Thus, an 8 bit vector is needed to uniquely identify

a specific set, in essence using 1 bit to mark the presence of absence of every element in the S.
Thus, the information contained within a set S ∈ ℘(S) is: ∀s ∈ S, Is s ∈ S or not.

Indeed that is essentially the concept of decidability in Computability Theory. A function

ϕP : S −→ S ∪ {⊥} is computable by program P in Turing Complete Language L implies

that the set S = dom(ϕP) is decidable by the Turing Machine represented by program P .

While in general, there may exist denumerable number of Turing Machines that decide a

language, however, consider an abstract Turing Machine that abstracts out details on transi-

tions and retains only the set of all reachable states, namely semantics are the concrete col-

lecting semantics (refer discussion in Chapter-4, specifically Section-4.2.2), then, each such

abstract Turing Machine uniquely describes the set it decides.

Note that a more concrete semantics would include extraneous details, other than just the

elements in the set, and a more abstract domain will necessarily lose some information about

the elements in the set.

Hence, the information communicated by a set S in some domain of recursive objects D, D ⊆
℘rec(S) is that of an Abstract Turing Machine (abstracted at the concrete collecting semantics level)

that decides the set S.

This is a central idea in our model where we infer whether communication was lossless

based on our ability to decide the set at the receiver end.

2Note the abuse of notation. Entropy is defined over the random variable, not the domain. However we used
the domain to emphasize that the probability distribution did not provide any useful information.

92

Chapter 7. Information Oriented Model of Computation V. Notani

7.4.2 — An Informal Introduction

We present here an informal introduction to our model, and will introduce formalization as

we proceed. We begin with the traditional Information Theory use case of information com-

munication.

Consider two people- Alice and Bob that want to exchange some information. The infor-

mation is represented by a set S of objects in domain ℘(S), i.e. S ∈ ℘(S). The idea is that

Alice may choose any set from the domain℘(S)with equal probability, and send it to Bob over

a communication channel according to some “pre-agreed strategy”.

Recall the Chaitin two-part code descriptions. The idea was that an object may be de-

scribed using a two part code- a program, and, a Turing Machine that when fed the program,

generates the object. Intuitively, the Turing Machine part of the code describes the regular as-

pects of the description, and the program describes the irregular (random) aspects with respect

to the Turing Machine [38, Section 2.1.1].

While Kolmogorov and Chaitin focused on the question of how to split the description to

minimize description length. Namely, which Turing Machine to use to describe an object. The

answer being to select the Turing Machine that squeezes out regularities only so far that the

reduction in length of random aspects (program length) is more than increase in description

of Turing Machine. Indeed this spawned the idea of Minimum Description Length principle in

statistics and inductive reasoning.

We, on the other hand, have a di�erent goal- that of describing computation through com-

munication (lossless and otherwise). Thus, we generalize the idea of two-part codes from pro-

gram and interpreter (Turing Machine) to include also abstract interpreters. Thus, we blend

Abstract Interpretation into the scenario by letting the “pre-agreed strategy” be an abstract

domain.

So let Alice and Bob’s “pre-agreed strategy” be that of a shared abstract domain. Alice then

sends a program in some language accepted by Bob the interpreter. Thus, Bob reconstructs the

information by interpreting the program under the agreed upon abstract domain.

We discuss three possible communication scenarios:

1. Lossless Reconstruction: We say the information exchange is lossless if ∀s ∈ S, Bob can
confirm whether s ∈ S with a “yes” or “no”. Essentially, we say Bob demonstrates that

he knows the set S by deciding the set S.

2. Sound Reconstruction: Sound information exchange is a lossy information exchange.

93

V. Notani 7.4. Information Oriented Model of Computation

Namely, that some information has been lost and Bob may only decide partially whether

s ∈ S. Thus when asked whether s ∈ S, Bob will answer with a (“no” or “maybe”). In

the dual case, with a (“yes” or “maybe”).

3. Conjectured Reconstruction: Conjectured Reconstruction is another lossy information

exchange. Namely, only incomplete information is available such that Bob cannot make

any sound judgements regarding s ∈ S, except the trivial judgement where he answers

“yes” to all queries of the type “Is s ∈ S?”. A possible approach is where he makes some

assumptions/hypothesis to try to estimate the set.

7.4.3 — Going Formal

We now describe the scenario more formally. The model consists of five components listed

below:

1. A measurable space 〈S, ℘(S)〉. If S is some arbitrary set, then we consider concrete do-

main as the σ-algebra on set S. Namely, the collection of subsets of S that includes S
itself, is closed under complement, and is closed under countable unions. As a choice,

for the set S, we fix the concrete domain as the largest σ-algebra on S: ℘(S), to allow

Alice the widest possible choice of objects to communicate. Let sets be drawn from this

domain, via some probability distribution, for communication.

2. A finite communication channel for Language L to share the “Program”, the irregular

part of description.

3. A pre-agreed abstract domainA consisting of only decidable sets, for describing the reg-

ular part of object description. The concrete and abstract domains are related by a con-

cretization function γ and an abstraction function α.

4. Alice: the program synthesizer. Let Alice optionally have an oracle that can decide the

halting problem.

5. Bob: the abstract computation. Bob is thus the abstract interpreter.

Assumption-1 states that concrete objects exist in a measurable space. It is a basic require-

ment for describing probabilistic distributions used in Machine Learning. Note that while

we have set the domain to be ℘(S), it is not a restriction, since Alice can always tweak the

94

Chapter 7. Information Oriented Model of Computation V. Notani

probability distribution in a way that sets probability 0 for sets she wants to exclude from con-

sideration, and alter the e�ective domain.

Often, we will let S ⊆ N as it allows for simplicity without restricting the applicability of

results. Recall our language agnostic approach from section-7.2. Even if we use S ⊆ N, objects
in domain ℘(S) can just as easily represent values, traces, data-structures, or any other seman-

tic objects computed by the language L of the channel, and our results would still apply. The

choice of probability distribution has to do with specific applications. We discuss this later in

the section.

Assumption-2 dictates a finite communication channel, namely only finite amount of in-

formation may be communicated using the channel. In Programming Languages parlance, any

program P ∈ L communicated over the channel is limited to finite program syntax. From an

information theory perspective, it is known that a Turing Complete Language will be the most

expressive language permitted on the channel, and it can represent upto r.e. sets in finite bits

as discussed in Section-7.3.3.

Assumption-3 Let γ : A −→ ℘(S) and α : ℘(S) −→ A are the concretization and

abstraction functions relating the abstract and concrete domains. The assumption that objects

in abstract domain are decidable, is important because it allows verification on the abstract.

Note that decidable here means that we want a TuringMachine to be able to compute whether,

for any given element s ∈ S, is s ∈ a? where a is any abstract object in A. The answer to
this question has no bearing on whether s ∈ S, the set being communicated. Conditions for

that relationship are derived separately and are the subject of investigation here. Note that this

assumption is quite general, since it is also a requirement in program verification by abstract

interpretation, and for classification by Machine Learning.

Assumptions-4 and 5 describe Alice and Bob. The assumption-4 optionally provides Alice

with access to an oracle that decides halting problem. This is needed so Alice can synthesize

programs P ∈ L for any set (upto r.e.) that she may choose. Discussion of S /∈ ℘re(S) does

not make sense since even a Turing Complete Language may only express upto r.e. sets in finite

syntax. Since Bob is limited by Turing Computability (Assumption-5), Bob may only accept

Turing Complete or more abstract languages.

From an Information Theory perspective, Alice is the source and Bob is the target. The

information to be sent is divided into two parts- the abstract domain A, and the program

P . The choice of probability distribution for selecting sets to be communicated has a direct

95

V. Notani 7.4. Information Oriented Model of Computation

σ : ℘(S) −→ L

Alice: Oracle

η(P) = [[P]]A

Bob: Interpreter

S = N a ∈ A = [p, q]

Program P
Finite

Comm. Channel L

Figure 7.1: Information Oriented Model of Computation

impact on the choice of abstract domain and consequently the design of the language. These

choices are implicit to Alice.

Consider for instance the domain℘(N) and say sound communication is required. A prob-

ability distribution that favors sets representable as intervals, for instance, over other sets man-

dates that abstract domain be that of intervals to maximize precision of communication most

of time. Thus, the design of the language has to be such that it can represent intervals e�ciently.

Ofcourse, this assumes that the application in question favors precision.

We will discuss this more with appropriate examples. For now, su�ce it to say that we have

built an intuitive understanding that the choice of probability distribution, in conjunction

with the application requirements, a�ects how the information transfer is split between the

abstract domain and the program. The choice of uniform probability distribution, for instance,

is a generic one because it favors all sets equally.

From an Abstract Interpretation perspective, Alice is a program synthesizer. We denote the

work done by Alice by the functions: σ : ℘(S) −→ L.

Bob’s task is to reconstruct the information, and then answer decidability questions of

the type For given s ∈ S, is s ∈ S?. We denote the work done by Bob with the function

Ω : L × S −→ {0, 1}. We view this as a two part job, first of reconstruction: η : L −→ A,
and second for supporting verification- ω : A× S −→ {0, 1}. Note that sometimes we have

A : S −→ {0, 1}, in which case ω is id.

96

Chapter 7. Information Oriented Model of Computation V. Notani

We can use Bob to explain any program or algorithm in our model.In the Applications

section section-7.5), we explain Data Compression (lossless and sound compression schemes),

Abstract Interpretation and Machine Learning through Bob. Thus, we vary η to correspond to

a decompression algorithm, an abstract interpreter and a machine learner, respectively, all to

do the same task of reconstructing the information sent by Alice.

We thus demonstrate the connection between these fields by showing that they solve in-

stances of an abstract problem of set reconstruction. We will compare the input information

quality, the tradeo�s on various abstractions, and output information quality in these various

η.

We summarize the model in Figure-7.1. Let a concrete domain ℘(S), abstract domain A
and communication language L. Then, let Alice select sets S ∈ ℘(S) via a probabilistic distri-

butionD and communicate to Bob. We then describe three possible cases on the reconstruction

of the set S, by way of the output information quality:

1. Lossless Reconstruction: Here the information contained in the set S is equal to the

information sent via the program and abstract domain. η describes the algorithm applied

by Bob for reconstruction. For all s ∈ S, Bob is certain whether ω(s) = 0 or 1.

2. Sound Reconstruction: This is a lossy communication. η describes the algorithm applied

by Bob for reconstruction. For all s ∈ S, Bob is certain if ω(s) = 0. Bob’s assertions

of ω(s) = 1 are meaningless. Note that the case where Bob is certain if ω(s) = 1 and

assertions of type ω(s) = 0 are meaningless is the dual. We will not discuss this case

separately, because the duality is well understood in Abstract Interpretation community.

3. Conjectured Reconstruction: This is a lossy communication. η describes the algorithm

applied by Bob for reconstruction. For all s ∈ S, Bob answers, with some confidence

1− δ (where δ ∈ (0, 1)), whether ω(s) = 0 or 1, with some non-zero error rate.

7.4.4 — Lossless Reconstruction

If S = γ([[P]]A), then reconstruction is lossless. We begin with some elementary results and

then describe the model specifications that guarantee a lossless communication. We will defer

the discussion of applications until after the discussion on all three scenarios of interest.

Theorem 7.4.1. [Lossless Communication implies Decidability]: For any set S in domain of objects E ,
if it is possible to communicate S in a lossless fashion, then there exist a Turing Machine that can decide

S.

97

V. Notani 7.4. Information Oriented Model of Computation

Proof. Lossless communication implies that that there exist a program P such that S has

a precise representation in the abstract domain: γ(η(P)) = S. Then, since elements in the

abstract domainA are always decidable (refermodel assumption-3), η(P) can be used to decide

membership in S.

Remark 7.4.2 (Sets selected from a finite domain can be communicated in a lossless fashion).

Proof. It is known that 〈S, E〉, where E is a σ-algebra on S, has |E| finite. Since |E| is finite, the
domain has finite Entropy. Thus, consider an abstract domain with |E| unique descriptions,
then it is possible to communicate precisely, every set in E using a finite number of bits.

Theorem 7.4.3. Decidability does not imply lossless communication, except for trivial sets.

Proof. Consider a decidable set S ∈ ℘(S) that Alice wants to communicate to Bob. Every

abstract domain must contain at the very least, a > element representing precisely the set S.
Hence theminimal abstract domainmay only comprise of this>. Analysis of any set (including
all decidable sets), except the trivial set S, that is the concrete representation of >, over the
abstract domain {>} will be incomplete; hence lossy communication.

We now want to find the conditions such that communication between Alice and Bob is

guaranteed to be always lossless.

From Theorem-7.4.1 we know that only total recursive sets may be communicated in a

lossless fashion. As such, we restrict the domain ℘(S) to E ⊆ ℘rec(S). This ensure that sets

in concrete domain are always decidable. Alice can then select sets from the domain E with a
uniform probability distribution.

From an Information Theory perspective, for the communication to be always lossless be-

tween the concrete and abstract domains, it implies that there exists a bijection between the

domains. Namely, every concrete set has a precise image in the abstract domain. Thus, α and

γ are both injective and surjective functions.

This elaborates upon a fundamental feature of Information Theory. It is bijection blind.

Namely, Information Theory is blind to the specific content of information. It only measures

the amount of information. It’s analogous to a weighing scale in that respect. It can measure

the weight in a box as 5kg, but can’t tell if it’s weighing gold or tomatoes.

Theorem 7.4.4 (Under the assumption of uniform probability distribution and finite channel

limit, Lossless communication of all sets in a domain implies finite domain).

98

Chapter 7. Information Oriented Model of Computation V. Notani

Proof. Under the uniform probability distribution, if all sets in a domain can be communi-

cated losslessly, it implies that the abstract domain has a unique description for each set in

concrete domain. Hence, there exists a bijection between the domains. This also means that

knowing the abstract domain does not provide any meaningful information about the sets

being communicated. Hence, the entire information in the set S, that is log2|E| is being com-

municated via the program. The finite channel width assumption implies log2|E| is finite.

The communication between Alice and Bob can then be viewed as a compression scheme.

Alice, the compressor, can optimize the Language syntax to allow for a cheaper encoding of

concrete objects, and Bob, the decompressor, can reconstruct the object. We discuss the Hu�-

man Encoding as a practical realization of the lossless communication scenario in section-7.5.1.

We can also view the communication as a program analysis problem. Let the concrete

domain be ℘(S). Then Alice selects sets for communication via a probability distribution D.
The distributionD assigns a set S ∈ ℘rec(S) some non-zero probability, and S /∈ ℘rec(S) have

a selection probability of zero. Then consider an abstract domain A, abstraction function α

and concretization function γ such that α, γ are bijections mapping ℘rec(S) to A and vice-

versa. The encoding from Alice can be considered a program. Bob will then be an abstract

interpreter and perform a complete analysis to reconstruct S.

Thus we summarize themodel specifications discussed for lossless communication scenario

in Table-7.1

Space S Domain E ⊆ ℘rec(S): |E| <∞ Finite domain constraint
The finite communication channel L ∀P ∈ L, P is an always terminating program

The abstract domainA H(A) = H(E)⇐⇒ α, γ are bijective
Alice: Program Synthesizer σ : E −→ L σ is computable
Bob: Abstract Interpreter η : L −→ A η(P) = [[P]]A

Table 7.1: Model Specification for Lossless Communication Scenario

7.4.5 — Sound Reconstruction

When S ⊆ γ(η(P)), then reconstruction is sound. This scenario allows for some loss of

information during the communication. However, the key idea is that the loss is in a controlled

fashion, and hence the soundness guarantee.

99

V. Notani 7.4. Information Oriented Model of Computation

Theorem 7.4.5. [Sound Communication implies r.e. set]: For any set S in domain of objects ℘(S), if

it is possible to communicate S in a sound fashion, then there exist a Turing Machine that can partially

decide S.

Proof. Sound communication implies that that there exist a program P such that S has a

sound approximation in the abstract domain: S ⊆ γ
(
η(P)

)
. Since elements in the abstract

domainA are always decidable (refermodel assumption-3), hence, η(P) can be used to partially

decide S. Namely, ∀s ∈ S, if ω(s) = 0, then s /∈ S. If ω(s) = 1, then membership of s in S

is indeterminate. Dual case is can be proved in the same fashion.

The last scenario was restricted to circuits and always terminating programs. Theorem-

7.4.5 shows that here we are not bound by that restriction, and can communicate partial-

recursive sets as well. From an Information Theory perspective, we are restricted to sets with

finite algorithmic information (IU (S) <∞), namely r.e. sets.

Since we permit r.e. sets, we set S = N. Although this implies the domain includes all the

sets in ℘(N), once again, we can use the probability distribution to restrict the domain. Let

Alice select sets S ∈ ℘(S) via the universal probability distribution discussed in Section-7.3.3.

This distribution assigns a non-zero probability only to r.e. sets because the shortest program

length (Kolmogorov Complexity) is finite for only r.e. sets.

Since Program Synthesis is now undecidable, it means σ is not computable. Thus we allow

Alice having an oracle. Thus Alice is the program synthesizer that can compress any r.e. set

into a finite program in L.

Theorem 7.4.6 (Sets selected via the universal probability distribution from the domain ℘(N)

can be communicated in a sound fashion by an Oracle).

Proof. The domain ℘(N) is a superset of all computably enumerable sets. The universal prob-

ability distribution (discussed in Section-7.3.3) assigns a non-zero probability to r.e. sets and 0

probability to all other sets. Thus, a random variable that selects sets from the domain via this

probability distribution, will only select r.e. sets. For all r.e. sets, there exist atleast one program

in Turing Complete Language. Program synthesis is in general undecidable, hence an Oracle is

needed to synthesize the program, that can be communicated by Alice to Bob over the finite

channel. Bob can then follow standard abstract interpretation to derive sound approximations

in chosen abstract domain.

Corollary 7.4.7 (All r.e. sets can be communicated in a sound fashion by an Oracle).

100

Chapter 7. Information Oriented Model of Computation V. Notani

Proof. For every r.e. set, there exist a finite program in a Turing Complete Language, that

can be synthesized by an Oracle. Abstract interpretation provides a sound communication

strategy.

From an Information Theory perspective, after accounting for the probability distribution,

there exist |N| objects in concrete domain to be communicated. For lossless communication,

Bob needs a domain with equal cardinality to support a bijection (See Table-7.1). However,

only finite bits may be communicated over the channel. Hence the communication will be

lossy.

We discuss this case in application toMonotone Compression Schemes in Section-7.5.2 and

to Abstract Interpretation in Section-7.5.3. Indeed, we will use this communication scenario

to demonstrate the connection between Data Compression and Program Analysis in Section-

7.5.3.

We also describe in this scenario a precision vs e�ciency tradeo�. The idea is that while

Alice first splits the information into a program and abstract domain, Bob may decide to fur-

ther abstract the abstract domain. Abstract Interpretation describes the techniques needed to

design sound approximate semantics to the language so that Bob can then reconstruct soundly.

For instance, Let Alice choose to send programs describing intervals. For this she has al-

ready told Bob to interpret the program under an abstract domain of intervals. Since the

program Alice will send will only be describing an interval, Bob can either interpret under this

domain, or choose a more abstract domain where sets contain even less information. Let Bob

decide to interpret in the sign domain. Then Abstract Interpretation Framework provides Bob

with the abstract semantics needed to soundly approximate the interval in the sign domains.

We discuss these tradeo�s in detail in the Application Section-7.5.2

Space S Domain E ⊆ ℘re(S)

The finite communication channel L ∀P ∈ L, dom(ϕP) ∈ ℘re(S)

The abstract domainA H(℘(S)) > H(A)

Alice: Program Synthesizer σ : ℘(S) −→ L η is not computable. Hence Alice has Oracle
Bob: Abstract Interpreter η : L −→ A η(P) = [[P]]A

Table 7.2: Model Specification for Sound Communication Scenario

101

V. Notani 7.4. Information Oriented Model of Computation

7.4.6 — Conjectured Reconstruction

Once again, consider the scenario of S = N. Previously, Alice leveraged the universal proba-

bility distribution to selectively send only r.e. sets.

We now remove that restriction and allow Alice sending arbitrary sets. Since it is not

possible to encode arbitrary sets in Turing Complete Language, any finite representation will

only represent a finite subset of the arbitrary set. We describe a Language to communicate

arbitrary sets (partially) over the channel in Figure-7.2

stat ::=
(
s, f(s)

)
(s ∈ S, f : S −→ {0, 1})

prog ::= stat; stat; {stat; } (sequence ofm statements. |m| <∞)

(a) Syntax

[[prog]] : statm −→ (S −→ {0, 1})

fD : S −→ {0, 1} def
=

1 if PD(s) ≥ 1
2

0 if PD(s) < 1
2

(b) Concrete Semantics

Figure 7.2: Language for Conjectured Reconstruction

Clearly, lossless communication would require Bob to evaluate f on all points in the space

S. However, that is not possible with the partial program with finite lengthm.

Let Alice select a set in the domain℘(S) . Alice then sends a finite subset of points selected

i.i.d. from the space S, along with the knowledge of membership of these point w.r.t. her

selected set S, using some probability distribution D. Hence the program is a finite sequence

of type S× {0, 1}, with lengthm as shown in Figure-7.2a.

The semantics of the program, as shown in Figure-7.2b, essentially describe the indicator

function for set S using the expected value for membership under the probability distribution

D. The probability distribution D is unknown to Bob.

The problem is that we need infinite length program (denumberable data points) to recon-

struct f accurately, but we have only finite program of lengthm.

In such limited information scenario, sound assertions are not possible, and Bob may only

make conjectures regarding the set S. Recall from Chapter-6 that this is a traditional learning

theory problem. Should Bob choose to use the concrete domain, he will risk overfitting. It

makes sense to choose some abstract domainH with finite VCdim(H)= d.

102

Chapter 7. Information Oriented Model of Computation V. Notani

Learning Theory results specified in the Fundamental Theorem of Statistical Learning (re-

fer Theorem-6.1.14), when interpreted in an Information Theoretic perspective, express the

length of programs (amount of information needed for successful learning) as a function of

VC-Dimension of the Hypothesis class. Thus, given a program, the theorem describes the vi-

able Abstract Domains that Bob can learn under.

Hence the theorem state that Bob can learn a predictor h : S −→ {0, 1} from an abstract

classH of hypothesis with VCdim(H)= d, using programs of lengthm, such that:

m ≥ d+ log (1/δ)

ε2
(7.1)

or , if the classH contains a hypothesis with zero error, then,

m ≥ d+ log (1/δ)

ε
(7.2)

where δ, ε ∈ (0, 1) with usual meanings from learnability theory. Namely, Bob will learn

the predictor with confidence 1− δ and

• bounded by small error rate ε for programs with length m specified as function of

δ, ε,VCdim(d) by equation-7.2 if the Realizability Assumption holds, or,

• bounded by small error rate ε from the Bayes Optimal Predictor for programs with

length m specified as function of δ, ε,VCdim(d) by equation-7.1 if the Realizability

Assumption does not hold.

For most problems, we cannot assume the Realizability assumption since Alice does not

provide any additional information other than the program. Hence it makes sense to use the

Agnostic PAC learning as viable strategy for communication.

We discuss the archtypical program analysis problem of lfp approximation with widening,

as a conjectured reconstrution problem in section-7.5.4.

We know that an agnostic PAC learner will approximate the set S by approximating the

indicator function for S: fS : S −→ {0, 1} with some confidence (1 − δ) and small error ε

from the best possible bayes optimal predictor.

We can demonstrate the impossibility of evaluating f with finite programs of this language

using an information theory metric known as Relative Entropy. Relative Entropy is used, when

approximating a distribution with another, (also calledKullback-Leibler divergence) to know how

103

V. Notani 7.4. Information Oriented Model of Computation

much more information Bob needs:

KL(D||H) = −
∫
D(x) log2

{
H(x)

D(x)

}
dx

Note that the KL divergence is a Relative Entropy measure, that computes the amount

of average additional amount of information3required to specify the value of x (assuming we

choose an e�cient coding scheme) as a result of using an approximate distributionH(x) rather

than the true distribution D(x). Always, KL(D||H) ≥ 0, with equality only when D(x) =

H(x).

Following the approach from Chapter-6, in the absence of true (unknown) distributionD,
we approximate it with the available training data:

KL(D||H) '
m∑
n=1

{− log2H(xn|θ) + log2D(xn)}

The best estimation would require least amount of additional information, and thus min-

imize this function. Only the left term depends upon θ. Incidentally, that is also the negative

log likelihood for θ under the distributionH(x|θ) evaluated using the training set. Thus we see
that minimizing this Kullback-Leibler divergence is equivalent to maximizing the likelihood

function, a traditional Machine Learning technique.

Thus Agnostic PAC learning provides a viable technique for estimating the set in this

scenario. We summarize the model spec in the table below.

Sample Space S |S| = |N| Denumerable Space constraint
The finite communication channel L P ∈ L is a sequence ofm data-points: (s, f(s))

The abstract domainH Realizability Assumption does not hold
Alice: Program Synthesizer σ : ℘(S) −→ L m data-points selected iid using distribution D over S× {0, 1}
Bob: Agnostic PAC Learner η : L −→ H η(P) = hP : with confidence (1− δ): LD(hP) ≤ min

h′∈H
LD(h′) + ε

Table 7.3: Model Specification for Estimating Hypothesis Scenario

3measured in bits, since we have taken logarithm base 2.

104

Chapter 7. Information Oriented Model of Computation V. Notani

7.5 | Application

7.5.1 — Huffman Compression

Compression is encoding the data (set of objects) into a compressed object that has a cheaper

computer representation, yet can be used to reconstruct the original set of objects. Information

Theory, or rather Algorithmic Information Theory, discussed in sections-7.3.1,7.3.2, and 7.3.3

forms the theoretical framework for Data Compression.

Compression maybe lossless or lossy. A lossless compression algorithm compresses data

such that it can be decompressed to achieve exactly what was given before compression. A

lossy compression algorithm, on the other hand, loses data that cannot be recovered.

We start with describing the general problem of Data Compression within our model and

then discuss lossless compression and lossy compression schemes.

The Problem

The authors in [27], building upon the work [3], describe a monotone compression scheme as

defined below. [S]n denotes the family of n-element subsets ofX .

Definition 7.5.1 (Monotone Compression Scheme). Letm and d be two natural numbers with

m > d. An m → d monotone compression scheme for a family [S]fin of finite subsets of a

set S is the pair functions: σ : [S]m → [S]d and η : [S]d → [S]fin such that whenever S is an

m-element subset of S: S ⊆ (η ◦ σ)(S)

The problem of compression and reconstruction of finite sets has been presented as a two

person game in [3].

Definition 7.5.2 (The finite superset reconstruction game). There are two players: Alice (“the

compressor”) and Bob (“the reconstructor”). Alice gets as input a finite set S ⊆ X . She selects

a subset σ(S) = S′, S′ ⊆ S and sends it to Bob, according to a pre-agreed strategy. Bob then

outputs a finite set η(S′) ⊆ X . Their goal is to find a strategy for which S ⊆ η(S′) for every

S.

Notice that the goal of the game is to find a strategy for sound reconstruction of finite sets.

However, we want to examine lossless and sound compression schemes separately. Hence, in

this subsection, we will assume the goal is to have lossless compression: S = γ(η(S′)) for every

S. We will discuss sound compression schemes in the next subsection.

105

V. Notani 7.5. Application

Indeed the game was an inspiration for our Information Oriented Model. Hence, we use

the game description of Lossless Compression Schemes and assume the roles of compressor and

decompressor for Alice and Bob.

Following the scenario described in Table-7.1, we assume |S| = n for some finite n ∈
N, n < ∞. Then we know that lossless communication from concrete domain ℘(samples)

to abstract domain A is a lossless compression scheme. Lossless communication for all sets,

under a uniform probability distribution, requires that ℘(S) and A share a bijection with

abstraction and concretization functions α and γ.

Note that under these conditions, the minimum cost of representation of a set in ℘(S)

and A is bound by Shannon Entropy of these domains. Hence, true compression is realized

when we release the assumption of uniform probability distribution. Namely, we either assume

that only some subset E ⊂ ℘(S) will be sent, in which case the information cost savings

H
(
℘(S)

)
− H(E) can be realized by adjusting A to have a bijection with E , the e�ective

domain. Or, we consider the possibility that all sets from ℘(S) are to be communicated, albeit

with a non-uniform probability distribution.

The second situation is quite common in text compression where di�erent alphabets occur

with di�erent frequency (non-uniform probability) in text. Consider that regular text has every

character taking 1 byte (8-bits). However, compression can be realized by having variable

length codes, namely shorter length codes for characters that appear more frequently (higher

probability of occurrence) and longer codes for characters that occur infrequently.

Hu�man Compression

We discuss one such lossless compression algorithm: Hu�man Compression [31] and try to

understand it via our model.

Consider alphabet S = (s1, s2, . . . , sn) of finite size n. Let the probabilities be defined

byW = (w1, w2, . . . , wn). What this means in the model is that Alice selects some text (a set

S), the probability that si ∈ S = wi.

The hu�man encoding can be used to generate an e�cient language, namely the code-

words: LHuffman = (c1, c2, . . . , cn), which is the tuple of (binary) codewords, where ci is

the codeword for si, 1 ≤ i ≤ n.

Thus, instead of using the generic language that assigns log2|n| bits per alphabet, we use

the e�cient language that uses an average of −
n∑
i=1

wi log2wi bits.

106

Chapter 7. Information Oriented Model of Computation V. Notani

Input (S,W) Symbol (si) a b c d e f g h sum
Probability Weight (wi) 0.25 0.25 0.05 0.15 0.10 0.05 0.05 0.10 1
Codewords (ci) 01 10 11110 110 000 11111 1110 001
Codeword length (in bits)(li) 2 2 5 3 3 5 4 3
Contribution to weighted path length(li.wi) 0.5 0.5 0.25 0.45 0.30 0.25 0.20 0.30 2.75
Contribution to Entropy(−wi log2wi) 0.332 0.411 0.521 0.423 0.518 H(L) = 2.72

Table 7.4: Hu�man Encoding

Alice will share the Hu�man Language with Bob, and send him text encoded into this

language, that Bob can interpret to decompress. Consider as example the hu�man encoding

generated by S = {a, b, c, d, e, f, g, h} in Table-7.4. An ine�cient language would allocate 4

bits per symbol. Hu�man builds an e�cient language that minimizes Entropy (2.72), namely

weighted average bits per character to 2.75. The di�erence between Entropy and weighted

average bits per character is due to the fact that hu�man requires integer bits per character.

Thus, Alice can use theTable-7.4 to synthesize program for any selected setS intoLHuffman
by translating each character to it’s binary encoding. For instance, consider S = {a, b, d},
then σ(S) = { 01 10 110} is sent to Bob as a program. Bob then reconstructs, by in-

terpreting the program back to concrete domain ℘(S). The semantics are described in the

table:[[{ 01 10 110}]] = {a b d}.
Thus we have demonstrated Hu�man Encoding as lossless communication by abstraction

and reconstruction. Further, we have also shown how choice of language e�ects e�ciency of

representation cost.

It is not only specific algorithms, but general problem frameworks may also be expressed

under ourModel. Next we discussMonotone Compression Schemes as an instance of the sound

communication scenario.

7.5.2 — Monotone Compression Schemes

Once again consider the general monotone compression scheme described in previous subsec-

tion.

The authors in [3] and [27] restrict S to a finite set and vary the cardinality of S and arrived
at the following conclusions:

1. Trivial Case: Alice and Bob set σ and η to id.

2. Case S is finite: Alice sends ∅, and Bob outputs S.

107

V. Notani 7.5. Application

3. Case S = N (Countably infinite S): Alice sends xmax = max(S), and Bob outputs

interval [1, xmax].

4. Case |S| ≥ ℵ1: Proving the existence of compression scheme for finite S requires prov-

ing continuum hypothesis to be true.

We fill keep S = N fixed, and vary the cardinality of set S from empty, to finite, and,

finally include infinite r.e. sets. We will then show that Abstract Interpretation presents a valid

strategy for sound monotone data compression schemes. Namely, we will show that Alice’s se-

lecting and sending of the subset of data-points, is actually a program synthesis problem, where

program is in some deterministic language implicit in the problem. Next, we will show that Re-

construction is indeed an abstract interpretation of the given program. Thus we will demonstrate

an implicit Abstract Domain assumed in the sound compression scheme problem; and thereby

demonstrate that the pre-agreed strategy, together with the subset S′ communicated to Bob, in

essence, form the two-part code as introduced in section-7.3.3 and referenced throughout our

model. Finally, we will show that for the case of S ∈ ℘re(S), we automatically go from Data

Compression to Program Analysis.

So, consider S = N, and let Alice select a set S ∈ ℘(S):

Case S = ∅

Compression: When Alice gets as input an empty set ∅, there is indeed no information to

compress. She simply sends the empty set to Bob.

σ(∅) = ∅

Reconstruction: With no information on S, the soundness condition requires Bob to output

the entire space. For each element x ∈ S, Bob simply has no information whether x ∈ S or

not. So to err on caution, for soundness guarantee, Bob outputs x.

η(∅) = S

From an Information Theory perspective, the program provides the information to select

a set within the domain. In the absence of the program, only the information provided by the

domain is available, which is that selected set S is anything in the domain.

108

Chapter 7. Information Oriented Model of Computation V. Notani

Case S ∈ [S]fin

As already discussed above, a trivial solution to the sound strategy problem for the case of

finite S exists where Alice sends the single element xmax = max(S) and Bob reconstructs

the interval {1, ..., xmax}.

We examine this reconstruction via the two part code description strategy. To that end, we

view this compression scheme as leveraging an abstract interpreter and programs in a language

L]. The concrete domain is the poset 〈℘(S),⊆〉. The abstract domain is a set of intervals

I = {[1, x]|x ∈ N} ordered by ⊆ relation. We also describe the corresponding abstraction

function α : ℘(N) −→ I as α(S) def
= [1,max(S)], and a concretization function γ : I −→

℘(N) as γ([1, x]) def
= {n|1 ≤ n ≤ x, n ∈ N}. The language L] and the abstract semantics are

defined in Figure-7.3.

stat ::= d (numeric constant, d ∈ N)

(a) Syntax
[[stat]] : N −→ I
[[d]] def

= [1, d]

(b) Abstract Semantics
Uncompressed Set S {5, 7, 9, 11}
Compressed Program P = σ(S) 11
Reconstructed Set η(P) {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

(c) Example Compression & Reconstruction

Figure 7.3: Alice Bob Language

Compression: The compression function σ : ℘(N) → L] is a program synthesizer for

language L]. It takes as input the concrete semantics (uncompressed object) and outputs a

program. Note the compressed object has a two part description. The program is only one

part; the other part is the abstract interpreter.

Reconstruction: The reconstruction function η : L] → ℘(N) is an interpreter that takes

input a program P ∈ L] and output the abstract semantics which are then concretized by

applying γ. Thus, η(P) def
= γ([[P]]I). Concrete semantics is a finite object and is computer

representable since the language is Turing Incomplete.

109

V. Notani 7.5. Application

Proving the Need for Abstract Domain

In the Definition-7.5.1, this concept of abstract interpreter and the language, in which the

compressed object is encoded, is unclear and only informally referred to as the “strategy” used

by Alice and Bob to communicate in the game (Definition-7.5.2).

In the example, the concrete domain for Alice is ℘(N). Let Alice select a finite set S ∈
℘(N). Then let Alice select a subset S′ ⊂ S. Let Alice communicate S′ to Bob and Bob

provably reconstruct a sound approximation: X . Thus, S ⊆ X for any finite set S selected by

Alice (assume uniform distribution over all finite S).

From an information theory perspective, it is known that without apriori communication

regarding an abstract domain, Bob will reconstruct set S in the concrete domain ℘(N). This

domain has Entropy H
(
℘(N)

)
= log2|℘(N)|. Hence, Bob cannot reconstruct soundly with

finite information contained in S′. Hence an abstract domain is required.

Hence the monotone compression scheme problem is an instance of the sound reconstruc-

tion scenario from section-7.4.5. A feature of this scenario is the precision e�ciency tradeo�

by choice of abstract domain. We examine the tradeo�s in the context of sound monotone

compression schemes.

Precision vs E�ciency Tradeo�s

We use precision as an inverse measure of False Positives or extraneous elements that arise upon

reconstruction. E�ciency has context specific meaning. For Program Analysis community,

e�ciency is inverse measure of computation costs- time & space. By e�cient compression we

will refer to a cheaper representation of compressed object.

In abstract interpretation, soundness is guaranteed by design. Precision and e�ciency are

traded. For sound compression strategies, we observe a similar behavior.

The two-part code description of interpreter and program gives two points of providing

information—via the abstract domain, and via the program. Ergo, two points of attack for

precision vs e�ciency tradeo�s—the Language Syntax and the Abstract Domain.

A complex abstract domain will have a lower Conditional Entropy for the compressed

object and hence require a higher Entropy program. That is to say that if the abstract domain

has precise representations for a large number of objects, it does not tell much to Bob as to

which object to expect. As such, he needs more information in the program, and hence a wider

communication channel—more expressive language.

110

Chapter 7. Information Oriented Model of Computation V. Notani

Hence, a complex abstract domain implies higher precision in general, but contributes

to an increase in length of both components of the description since the interpreter is more

complex and also the program is more complex. Hence the precision e�ciency trade-o�s.

For instance, a Turing Complete Language will be both sound and precise for all [S]fin.

However, the expressivity of the language (and hence abstract domain) comes at a cost of ef-

ficiency. Hence it may be desirable to explore Turing Incomplete Languages (more abstract

domains) to achieve higher compressibility at the cost of imprecision in the general case.

Revisit the example in Figure-7.3. While reconstruction was sound, it is imprecise in the

general case. This is because several concrete objects do not have a precise representation in

the abstract world. The compression function σ is a many-to-one map.

Thus Alice and Bob may decide to use a Turing Complete Language, with standard C-like

syntax and semantics. The resulting encoding is shown in Figure-7.4. Clearly this approach is

significantly less e�cient. Thus, Alice and Bob may decide to use a more balanced approach

Uncompressed Set S {5, 7, 9, 11}
Reconstructed Set η(P) {5, 7, 9, 11}
(a) Example Compression & Reconstruction

begin
d← 5 ;
while d ≤ 11
do
d← d+ 2 ;

end
end

(b) Compressed Program P = σ(S)

Figure 7.4: Example Compression & Reconstruction in Turing Complete Language

by using a Turing Incomplete Language that is more expressive language than the first attempt.

For instance, by including a lower bound in the language:

B def
= {[a, b]|a ∈ N, b ∈ N, a ≤ b}

Thus, there is a tradeo� between language expressivity (reconstruction precision) and e�ciency-

cost of representation of compressed object.

111

V. Notani 7.5. Application

stat ::= [a, b] (interval, a ∈ N, b ∈ N, a ≤ b)
(a) Syntax

[[stat]] : B −→ ℘(N)

[[[a, b]]] def
= {a, ..., b}

(b) Concrete Semantics

Uncompressed Set S {5, 7, 9, 11}
Compressed Program P = σ(S) [5, 11]
Reconstructed Set η(P) {5, 6, 7, 8, 9, 10, 11}

(c) Example Compression & Reconstruction

Figure 7.5: Improved Precision Language

Program Analysis community makes the tradeo� by varying the abstract domains from

more abstract to more complex until the property of interest can be decided. This is possible

because abstract interpreters are designed to parse specific language syntax and allow varying

abstract semantics. For instance an abstract interpreter may accept all C language syntax and

allow interpretation of all C program in various abstract domains.

In compression, however, in practise, once the abstract domain is decided upon, for e�-

ciency, the syntax is also adapted. This is so because having a more cumbersome syntax would

increase the description length for any object, making the compression scheme ine�cient.

Recall the Hu�man encoding from section-7.5.1. The concrete and abstract domain have

the same number of total objects. However, Hu�man provides compression by way of language

e�ciency.

In the future, it would interesting to experiment following the abstract interpretation ap-

proach in compression. It may be possible to have a compressed object that could be fed to a

variety of decompressing algorithms that may perform decompression of increasing quality at

increasing computation costs. Ofcourse, such a compressed object would have a longer than

minimum possible description length.

7.5.3 — Program Analysis: An extension to Compression Scheme

So far we have been restricted to finite S. Here we discuss compressing infinite S: namely,

S ∈ ℘re(S).

Here, we use a Turing Complete Language with C-like syntax with standard notations for

112

Chapter 7. Information Oriented Model of Computation V. Notani

syntax and semantics. This is required because only Turing Complete Languages may have a

finite description (program syntax) for r.e. sets.

Strategy: Let Alice and Bob decide to use a Language with C-like syntax. Further, let the

abstract interpreter be standard interval analysis [17] and assume appropriate abstraction and

concretization functions.

Compression: Since S ∈ ℘re(S), it follows that there exist a program P ∈ L such that

[[P]] = S for some program P in Turing Complete Language L. S is indeed compressible in

our language L, as it has finite syntax.

Indeed there may be denumerable P with concrete semantics S. Thus, we use Kolmogorov

Complexity to define the best (cheapest) representation. We define σK : ℘(S) → L such

that |σK(S)| = K(S) where K(S) is the Kolmogorov Complexity of the set S, modulo the

constant term due to choice of languageL. It should be noted thatK(S) and σK are in general

not computable.

Recall that the sound reconstruction scenario of section-7.4.5 addresses the computability

issue with an Oracle for Alice.

Thus, to proceed further, we assume anOracle synthesizer that generates a ProgramP such

that [[P]] = S.

Reconstruction: Bob’s goal is to deconstruct P into a set η(P) such that S ⊆ η(P) in

finite time. Since S ∈ ℘re(S), S is not decidable in the general case. Bob’s problem is the

typical problem of sound program analysis, for which we know abstract interpretation to be a

viable strategy. Widening operators guarantee finite time computation of abstract semantics

for infinite domains.

Example 7.5.3. Consider S to be the space of natural numbers N. Then, let Alice select an
infinite set of odd numbers: {5, 7, 9, ...,∞}. As a matter of strategy, Alice and Bob decide

to use language L, a Turing Complete Language with standard C-like syntax and semantics,

for communication. Assume Alice is then (magically) able to translate S into the program in

Figure-7.6.

Bob would apply standard interval analysis and reconstruct the set as the interval [5,∞].

The γ allows for Bob to enumerate the set if needed.

113

V. Notani 7.5. Application

begin
i← 5 ;
while True do

i← i+ 2 ;
end

end

Figure 7.6: Magically Compressed Program P = σ(S)

Relating Program Analysis & Compression

Thus we have successfully demonstrated using Program Analysis for Data Compression. Al-

though, the compression is non-computable, the idea that program analysis and compression

are instances of the same general problem is rather interesting in itself.

When we restrict ourselves to always terminating programs only, concrete semantics is

a finite object. Then both Program Synthesis and Interpretation (Computing Concrete Se-

mantics) is decidable. Thus, a program synthesizer σ and Program Analyzer η form a viable

compression scheme that guarantees soundness and precision for all S ∈ [S]fin by encoding

in a Turing Complete Language.

With that in mind, we re-define a compression scheme as:

Definition 7.5.4 (Compression Scheme). Amonotone compression scheme is the pair function

〈σ, η〉 for some subset S of the space S if there exist the pair functions: σ : ℘re(S) → L that

compresses (cheaply encodes) S in some language L, and η : L → ℘re(S) that can be used to

reconstruct S.

We further summarize the relationship between program analysis and data compression

via the Table below.

Space of Semantic Objects S |S| = ℵ0
Alice Input Set S S ∈ ℘re(S)
Compression Scheme σ Program Synthesizer σP : ℘(S)→ L
Bob’s Input Program P [[P]]A ⊇ α(S)
Reconstruction Scheme η Abstract Interpreter ηA : P → [[P]]A

Table 7.5: Summary: Program Analysis and Compression

Finally, we examine the widening problem as an instance of the conjectured reconstruction

scenario.

114

Chapter 7. Information Oriented Model of Computation V. Notani

7.5.4 — Conjectured Reconstruction via Widening

Abstract Interpretation relies on Widening to accelerate convergence to compute the limit

of the abstract operator. The widening operator for a template numerical domain, is binary

operator∇ on the constraint set CS = M× ~V ≤ ~C as follows:

∇ : CS × CS → CS such that:

CS1∇CS2 ⊇ CS1, CS2 and

∀{CSi} ⊆ CS chain {CS∇i } is stable finitely (7.3)

It has very weak algebraic properties, and requires strong guarantees of converging to a

fixpoint in finite computation steps. Although widening operators are essential to all abstract

domains that allow large computation chains, or infinite domains, there does not exist a stan-

dard algorithm for designing new widening operator.

In this section, we examine the widening problem from our Information Oriented Model

of Computation, to understand how widening makes it’s approximations. We will show, that

from an Information Perspective, widening input information quality corresponds to the con-

jectured reconstruction scenario of Section-7.4.6, even though the output quality is eventually

comparable to the sound reconstruction scenario of Section-7.4.5.

Note that while Cousot & Cousot’s widening defintion described above describes only a

binary operator that given two arguments produces a sound approximation, we use the term

widening to refer to the larger goal of widening that is to approximate the lfpF with F is the

semantic transfer function for a loop.

Recall, the concrete collecting semantics for a loop: S[[while cond do s done]]R is defined

as a lfp solution to a semantic transfer function F : F (X) def
=R ∪ S[[s]](C[[cond]]X). Refer

Table-4.2.

Sound abstract semantics for the loop statement: S][[while cond do s done]]R] are de-

fined as C][[¬cond]](limF]) where F](X]) def
=X]∇(R] ∪] S][[s]](C][[cond]]X]))

The template widening operator, thus, takes as input two abstract collecting states gener-

ated by subsequent iterations, and generates a sound approximate abstract collecting state. It

then checks to see if the new approximation is stable, and if not, will use the new of abstract col-

lecting state to perform another widening operation. This cycle continues until either stability

is achieved or the top element is reached, in which case also stability is achieved.

115

V. Notani 7.6. Conclusion

This iterative process of approximating the lfp can be viewed as an instance of the conjec-

tured reconstruction scenario. Consider that input are two abstract states similar to receiving

two data points.

After which, the operator learns a sound approximation (hypothesis) of abstract states. We

call this a learning of hypothesis and not a proof, because it is necessarily a hypothesis and

may not actually be a sound approximation of lfpF . Indeed typical abstract interpretation

process requires checking the hypothesis for correctness, and failing which, more data points

are generated.

The goal is to learn the target, a sound approximation of lfpF with finite data points.

Indeed the problem of approximating a function with finite data points is the hallmark of

conjectured reconstruction scenario.

The presentation of widening problem as a learning problem opens up to experimentation

with machine learners for systematic designing of new widening operators. Indeed we build

upon this intuition and present a novel learning based widening algorithm in the next chapter.

It also opens up a framework for experimenting with learning program invariants. Al-

though learning program invariants, and checking is an established technique in program anal-

ysis [61]. However, the idea of learning on abstract states is a novel idea.

7.6 | Conclusion

Themodel successfully combines Computability Theory, Information Theory andAbstract In-

terpretation into a framework that allows comparing and contrasting the information available

and approximations made.

We connect Computability Theory with Information Theory by relating Entropy with de-

cidability. By itself, Information Theory allows measurement of information, but makes no

mention of the content of the information. A Turing Machine on the other hand describes ex-

actly the information contained within by means of the language it decides. However, it does

not provide for a way to measure that information. Our model addresses that limitation by

bridging the two together.

Next, the model makes explicit the approximations with simultaneous description of the

concrete and abstract representations via an Oracle (Alice) and a Turing Machine (Bob). Fur-

ther, by means of the “pre-agreed strategy” of abstract domain, and the specified Language, we

make explicit the study of precision and e�ciency tradeo�s.

116

Chapter 7. Information Oriented Model of Computation V. Notani

While Turing Model of computation views problems as computable and non-computable,

Abstract Interpretation allows viewing them as precise computations and approximate com-

putations. Our model adds a third category for “conjectures” by bringing in Machine Learning

techniques under the umbrella.

To summarize, we measure how much information is to be communicated with Information

Theory. The feasibility of communication, or rather, What information is communicated, is

understood with Computability Theory. The mechanism of communication is then described

by the algorithm under consideration.

We have demonstrated a study comparing approximations in the field of Data Compres-

sion, Program Analysis and Machine Learning in this chapter and opened up promising direc-

tions for cross disciplinary study of tools and techniques across these disciplines. The next two

chapters build upon the insights here to further develop those ideas.

A possible future work may include extending the model with fuzzy sets and/or probabilis-

tic approximations. It would be interesting to see what insights may be gathered by looking at

works in these directions through the lens of the InformationOrientedModel of Computation.

A yet another interesting direction of research would be to see if it is possible to describe

quantum computations in the model. The TuringModel of Computation is based on the classi-

cal physics laws and does not provide opportunity to observe the e�ect of change of those laws.

While in our model, the classical laws of physics are represented explicitly by means of Entropy.

System Entropy behaves di�erently in the quantum world and hence quantum teleportation

allows transferring infinite amounts of information across a quantum communication channel

while using finite classical bits. It would be interesting to see if this model is able to describe

quantum computation at all; and if so, then if it demonstrates any new insights in the quantum

world.

117

“Mathematics is the study of analogies between
analogies. All science is. Scientists want to show that
things that don’t look alike are really the same. That is
one of their innermost Freudian motivations. In fact,
that is what we mean by understanding”

Gian-Carlo Rota

8
Approximations in PL & ML

8.1 | Overview

In the last chapter, we presented a comparison between the approximations in Data Compres-

sion, Abstract Interpretation andMachine Learning. Wewere able to show all three techniques

to be solving the problem of set reconstruction, albeit under di�erent inputs and di�ering out-

puts.

Specifically, we saw that Abstract Interpretation receives superior input information (a

complete program), while machine learning receives a weaker input (an incomplete program).

The di�erence in input quality is reflected in output quality as well. Namely, while Abstract

Interpretation output can be used to partially decide the set under reconstruction, Machine

Learning output provides uncertain set reconstruction with probabilistic confidence (confi-

dence less 1).

Motivated by these developments, we ask the question: Are there any other instances of Ma-

chine Learning and Abstract Interpretation being used to solve related problems?

In POPL-2015, Sumit Gulwani in his keynote address [25] presented an interesting way

to look at the program synthesis problem. Paraphrasing Gulwani, consider a hoare-triplet

< P, S,Q > where P is a pre-condition, S is a program or statement, and Q is the post-

condition, then we define the following problem:

1. Forward Program Analysis: Given P and [[S]], approximateQ

2. Backward Program Analysis: GivenQ and [[S]], approximate P

3. Program Synthesis: Given P andQ, approximate [[S]]

The last one being Gulwani’s contribution, led to a surge in the research of ideas in Program

Synthesis in the following years.

It is interesting to note that Abstract Interpretation (Forward and Backward) solves two

of these problems, and, Machine Learning techniques are used for the third problem. Hence,

121

V. Notani 8.2. Supervised Machine Learning: An Abstract Interpretation View

set reconstruction is not the only case where abstract interpretation and machine learning are

solving related problems.

This brings up another interesting question: Are Abstract Interpretation and Machine Learning

solution techniques also instances of a single generalized framework?

We attempt to answer that question in this chapter. We begin by exploring examples to

demonstrate similarity in work-flows and follow up with mathematical generalization of su-

pervised machine learning problem as approximating solutions to non-computable fix-point

equations by computing monotonic abstract operators in a sound abstract domain- an abstract

interpretation characteristic.

Next, we explore if abstract interpretation constructs such as join, meet and widening can

be expressed as optimization problems. Finally, we discuss and compare the various challenges

and overcoming techniques, observed and employed under either frameworks.

8.2 | Supervised Machine Learning: An Abstract Interpretation View

8.2.1 — Introduction

The Problem

Consider the archtypical example for Prediction Modeling by Supervised Machine Learning

(Regression)- Say Alice wants to model the price of apartments in her city as a function of

living area. A little bit of market research allows her to collect the data tabulated in Table-

8.1. For simplicity, we assume that the price of apartments may not be a�ected by any other

variables and the data collected is indeed accurate.

Consider H = {h : Area −→ Price} to be the set of all maps from Area to Price. A

naive approach would be to evaluate each h ∈ H for fitness against the known data in Table-

8.1. This approach is not feasible, as in general, such a set of all maps will have cardinality

≥ ℵ0 which makes the method non-terminating at best and non-computable in general (when

cardinality is strictly greater than ℵ0-the cardinality of set of all programs.. Thus, keeping in

line with the philosophy of abstract interpretation, we start abstracting the domain until the

problem becomes feasible.

We begin by making two key abstractions:

1. We reduce the domain of maps from all maps to a restricted domain of model class that

is parameterized on some ~θ.

122

Chapter 8. Approximations in PL & ML V. Notani

2. We choose to approximate the real parameter(s) in the model class to fixed precision

reals, which are computable [69].

The first approximation is necessary to allow for a cheap representation of the model. With

a model parameterized on ~θ, the memory cost for model representation is proportional to size

of ~θ:O
(
sizeof

(
~θ
))

.

The second assumption is necessary because reals are not computable.

Concrete Domain

One way to build an intuition towards choosing an appropriate domain (or model class as ma-

chine learning community calls it) is to plot a graph of the data (Table-8.1). A plot of the data in

Table-8.1 is shown in Figure-8.1. After observing the plots, say Alice decides on a linear model

for the purpose. If the data is too large and/or too many independent variables (features), Alice

may choose to work with more complex models like Neural Networks.

Alice models the relationship between Living Area and Price as:

h
(
X, θ

)
= θ0(x0) + θ1(x1) (8.1)

where X =
(
x0, x1

)
T with x0 = 1, x1 is Living Area(feet2), prediction function h

(
X, θ

)
estimates the Price(1000$) and θ =

(
θ0, θ1

)
T , with θ0, θ1 ∈ R being the parameters.

Now the question is how to select the best hypothesis from the restricted set of linear hy-

pothesis. For this, Alice must decide on how she chooses to describe the accuracy or correctness

of a map. So she defines a cost function J : H −→ R that maps a hypothesis to a R, typi-
cally such that lower cost value corresponds to a more accurate (correct or usually best fitting)

choice of hypothesis. A common choice for cost function in these type of problems is the Least

Squared Cost function (Equation-6.11):

J

(
T, h

(
X, ~θ

))
=

1

2

m∑
i=1

(
y(i) − h

(
X(i), ~θ

))
2

where the set T = {
(
x(i), y(i)

)
| 1 ≤ i ≤ m} represents the training data.

The cost function induces a partial order on the set of hypotheses, thus creating the con-

crete domain poset
(
H,v

)
, where v def

= h1 v h2 ⇐⇒ J(h1) ≤ J(h2), where h1, h2 ∈ H .

123

V. Notani 8.2. Supervised Machine Learning: An Abstract Interpretation View

1,500 2,000 2,500 3,000 3,500 4,000

300

400

500

600

700

Living Area

P
ric

e

Figure 8.1: Plot of Training Data

Living Area (feet2) Price (1000$)
1,416 232
1,600 330
1,700 310
1,800 330
1,900 350
2,104 400
2,300 500
2,400 410
2,600 450
2,695 495
2,815 520
2,935 530
3,000 540
3,109 592
3,300 610
3,368 652
3,504 710
3,555 702
3,600 740
3,612 695
4,000 790

Table 8.1: Training Data for learning
apartment Price as a function of Living
Area

124

Chapter 8. Approximations in PL & ML V. Notani

Infact, by Definition-2.2.2, the poset is a chain since ∀h1, h2 ∈ H :
(
J(h1) ≤ J(h2)

)
∨(

J(h2) ≤ J(h1)
)
.

Fixpoint Equation

This reduces the problem of finding the best fitting curve in the hypothesis class to an opti-

mization problem:— find the hypothesis that minimizes this cost function. A naive way to find the

optimal hypothesis would be to evaluate the cost function J on every hypothesis h ∈ H and

then output the hypothesis with least cost function. This is very expensive operation and not

a feasible approach.

An alternate approach is the adjoint matrix method, which is also expensive operation and

is to be avoided.

Gradient Descent is an algorithm for computing minima of function. Gradient descent

with Least Squared Cost function as described in Equation-6.12:

~θ0 = ~θinit

repeat until convergence: {

θp0 := θ
(p−1)
0 + β(

m∑
i=1

(y(i))− hθ(x(i)))

θp1 := θ
(p−1)
1 + β(

m∑
i=1

(y(i))− hθ(x(i))).x(i)

} (8.2)

where β is the learning rate, x is the Living Area, ~θ(p) represents ~θ after the p-th iteration and

(p ∈ N). ~θinit is assigned randomly.

Convergence implies ~θ(p) = ~θ(p−1), or equivalently, the derivative of cost function to be

zero:
∂

∂θj

(
1

2

m∑
i=1

(
y(i) − h(X(i), ~θ)

)2)
= 0

Clearly, such points are fixpoint solutions to this fixpoint equation:

~θp := F (~θ(p−1)) (8.3)

125

V. Notani 8.2. Supervised Machine Learning: An Abstract Interpretation View

where F : H −→ H is an operator on the poset (H,v) described as:

F (θ
(p−1)
j) = θ

(p−1)
j + β(

m∑
i=1

(y(i))− hθ(X(i))).x
(i)
j (for j ∈ {0, 1})

8.2.2 — Fixpoints in Machine Learning

The reduction of our predictionmodeling example to a fixpoint problem is not an isolated case.

We show next that infact Regression with Gradient Descent fits naturally into our model. We

begin by describing the general problem statement, listing our assumptions and finally reduce

the problem to that of solving a fixpoint equation. Further, we show that our method can

be generalized to several other most common ML structures and algorithms just as well and

present the first formal mathematical connection between the fields of Program Analysis and

Machine Learning.

Problem Statement

We begin by describing the general PredictionModeling problem where given a set of Training

Data T = {(~xi, yi) | 1 ≤ i ≤ m} where ~x is input feature vector of n features | ~x |= n ≥ 1,

~x ∈ X, y ∈ Y whereX and Y represent the domain and co-domain of a hypothesis h(~x, ~θ) ∈
H , where H is set of all hypotheses parameterized by ~θ. The goal is to find the hypothesis

h ∈ H , or rather the ~θ that minimizes the cost function J(θ) when evaluated on dataset T .

Further, we make the following assumptions:

1. Absence of latent and hidden features

2. Absence of noise in Training Data

3. Learnable Training Data: It is feasible to learn the parameters θ from T . We do not care

for ill-formed problems, for instance, where we have only two training data points and

we want to learn a cubic curve.

Our assumptions essentially refer to the completeness, accuracy and learnability of input data.

These are essential to guarantee that given the right approximations, there exists su�cient

information to learn the distribution from which the training data was sampled.

126

Chapter 8. Approximations in PL & ML V. Notani

Concrete Domain

We define the concrete domain C(H,v) as the poset with objects as the hypotheses in the set

H , ordered by the cost function J(θ) : H −→ D, with (D,vD) as the co-domain:

v def
= h1 v h2 ⇐⇒ J(h1) vD J(h2) (8.4)

Remark 8.2.1. The algebraic structure of the concrete domain is the same as the algebraic

structure of co-domain of the cost function.

This is easy to prove since for any h1, h2 ∈ H , there exist corresponding images in D

ordered by vD and the Equation-8.4 uses the same ordering for h1, h2. Intuitively, the cost

function defines the notion of better or worse hypothesis and hence is providing a way of

comparing two hypotheses. Typically in Machine Learning, J(θ) maps hypotheses onto the

set of Reals, which are a chain, and hence the concrete domain is a chain. However, strictly

speaking from an Abstract Interpretation point of view, there is no such requirement for the

co-domain of J to beR and can be any arbitrary poset (D,vD). However, what Equation-8.4

is telling us is that algebraically, the posetC(H,v) has the similar structure as poset (D,vD).

Fixpoint Equation

Gradient Descent algorithm for minimizing a function:

θ̄0 = θ̄init

repeat until convergence: {

θpj := θ
(p−1)
j − β ∂

∂θj
J(θ) (for every j)

} (8.5)

where β is the learning rate, θ̄(p) represents θ̄ after the p-th iteration and (p ∈ N). θ̄init is

assigned randomly.

Convergence implies θ̄(p) = θ̄(p−1). Indeed, this is a fixpoint equation and the Least

Fixpoint of F (lfpF) is the best fitting hypothesis in the domainH :

θ̄p := F (θ̄(p−1)) (8.6)

127

V. Notani 8.2. Supervised Machine Learning: An Abstract Interpretation View

1,500 2,000 2,500 3,000 3,500 4,000

300

400

500

600

700

800

Living Area

P
ric

e

Figure 8.2: Linear Regression

where F : H −→ H is an operator on the poset (H,v) described as:

F (θ
(p−1)
j) = θ

(p−1)
j + β

∂J(~θ)

∂θj
(for j ∈ [1, | ~θ |])

Remark 8.2.2 (Input Dependent Domain). In abstract interpretation, the ordering in the do-

main v is independent of the input to the analyzer. Here in machine learning, the domain

changes the ordering of the abstract objects based on the particular training set input.

In abstract interpretation, concrete domain, and abstract domains for that matter, are

unique to a language being analyzed and are independent of the input program. Here, the

ingredients used to define the concrete domain:

1. The set of HypothesesH(x, θ)

2. The Cost function J(θ)

3. The Training Set T = {(~xi, yi) | 1 ≤ i ≤ m}

While the first two ingredients are apparent from Equation-8.4, the last ingredient- The train-

ing set, is not obvious. It is however needed to evaluate J(θ) on hypotheses. This is a key

di�erentiation from Abstract Interpretation since it implies that the computation of limF is

not straightforward as in the case of abstract interpretation.

128

Chapter 8. Approximations in PL & ML V. Notani

8.3 | A Regression Approach to Widening

8.3.1 — Preliminaries

Given a partial order P , we define-

Definition 8.3.1 (Width of Poset). Width of a partial order P is defined asw(P) = sup{| A |:
A is an antichain in P}.

Sincew(P) does not distinguish, for example, between ordered sets that contain arbitrarily

large finite antichains and those that contain a countably infinite antichain. So additionally,

we define µ(P) as the least cardinal κ such that κ+ 1 >| A | for every antichain A of P .

Definition 8.3.2 (Chain covering number). We define c(P) to be the least cardinal γ such that

P is the union of γ chains in P .

Theorem 8.3.3. In general, w(P) ≤ c(P); More specifically, if P is finite, then w(P) = c(P).

Definition 8.3.4 (Dimensions of Abstract Domain). The minimal set of objects use to describe

an abstract set forms the set of dimensions of that abstract domain. For example, an interval

has two dimensions- lower and upper limit. In general, each row of the template matrix M

corresponds to a di�erent dimension.

Definition 8.3.5 (Dimension Chain). A dimension chain CD is a maximal chain (X ′,v) ex-

tracted from a poset P (X,v) such that X ′ ⊆ X is constant in all dimensions other than

D.

Definition 8.3.6 (Dimension Limit). A dimension limit LD is the greatest element of dimen-

sion chain CD .

For abstract domains with infinite abstract objects, abstract interpretation may go on for-

ever when for instance in case of non-terminating loops that produce a new abstract state on

every iteration. To guarantee termination of analysis in finite steps for all programs being

interpreted under an infinite abstract domain, abstract interpretation relies on Widening.

Cousot and Cousot defined Widening operator ∇ as a binary operator on the constraint

set CS = M× ~V ≤ ~C as follows:

∇ : CS × CS → CS such that:

CS1∇CS2 ⊇ CS1, CS2 and

∀{CSi} ⊆ CS chain {CS∇i } is stable finitely (8.7)

129

V. Notani 8.3. A Regression Approach to Widening

Intuitively, this definition presents widening as a binary operator that takes as input the

collection of abstract states (collecting semantics) at the end of two subsequent iterations and

results in a set of abstract states that contains both the input sets and performing another

iteration with this set of abstract states as starting point does not result in addition of any new

abstract states.

This definition provides very weak algebraic properties, requires strong termination guar-

antees and provides no systematic way to design such an operator. This is partly why even

though design of a widening operator is an integral step in the design of an abstract inter-

preter using an infinite domain, not much work has been done to systematize the design of

widening operator. While there exist works that derive widening of higher-level domains by

lifting the widening of the base-level domain, the design of widening for base-level domains

remains largely creative process, especially for numerical domains.

We propose an algorithmic approach to design of widening operator for numerical domains

that can be represented with our constraint system model.

8.3.2 — Learning Widening

Intervals was the first infinite abstract domain introduced by Cousot [16]. Next came the

polyhedra [18] and octagons [44]. Thewidening for polyhedra has since been improved upon [2].

We observe that all of these widening work by dropping constraints unstable w.r.t. iteration

count. For example [1, 2]∇[1, 3] = [1,∞].

We view the problem of identifying unstable constraints as a learning theory problem. We

thus view widening as a two step process-

1. Learn: Here, widening operator uses the abstract states, from two consecutive itera-

tions, to learn a transformer (hypothesis in machine learning terminology) that relates

iteration count (i) to an approximation of the set of abstract states collected upon i

iterations. Thus the long chain is approximated to a single approximate transformer.

2. Stabilization: For each dimension in the abstract representation, we learn if the dimen-

sional constraint is stable w.r.t. iteration count i. If stable, we keep the constraint. If

unstable, we weaken the constraint to the dimension limit.

130

Chapter 8. Approximations in PL & ML V. Notani

Learning Stability

To learn the instability, we use the linear model to learn the relationship between an element in

vector ~C (andmatrixM) and the iterator i. Note that the matrixM is constant as it is the shape

template. Regression onM in such case may be skipped. Note that the domain of polyhedra is

an example of a domain whereM is not constant. We explain such domains in later sections of

the chapter.

A linear model will always learn the element of ~C as either a constant or some linear func-

tion of i. Clearly, a constant element corresponds to a constant co-e�cient w.r.t. iterations in

the chain. Any other linear function corresponds to an instability as we move along the chain.

Given two points, linear regression simply learns the straight line joining the two points.

Hence, given two constraint sets CSi=1 = {M × ~V 6 ~C} and CSi=2 = {M × ~V 6 ~D},
the learned constraint set would be: CSi = {M× ~V 6 ~I} where ~I is defined below:

~Ix
def
= (~Dx − ~Cx).(i− 1) + ~Cx (8.8)

Note that since collecting semantics are join morphism, ∀x : ~Dx ≥ ~Cx.

Stabilization

A stable constraint implies that input iterations do not produce new abstract states along the

dimension under consideration. It thus makes sense to preserve the constraint for precision.

Instability implies that abstract set grows in this dimension as interpretation proceeds

through the two input iterations. Hence, by taking the limit of the chain, we replace the input

dimensional constraints with the weakest constraint possible in the dimension.

Thus, CSi=1∇CSi=2 = {M× ~V 6 (~C∇ ~D)} where

[~C∇ ~D]x =

~Cx when ~Dx = ~Cx

dimension limit Lx otherwise
(8.9)

Intuitively, since we do not know how many times the loop iterates and how the set of

abstract states is growing with each iteration, we add all possible states along the dimension.

This is what makes widening imprecise.

131

V. Notani 8.3. A Regression Approach to Widening

Data: Arrays CSi=1 , CSi=2 , DimensionLimits[D]
Result: CS∇ = CSi=1∇CSi=2

begin
// initialize empty constraint set
CS∇ ← φ ;
d← 0 ;
while d < D do

newConstraint← LinearRegression(CSi=1[d], CSi=2[d]) ;
if newConstraint is stable then

pass ;
else

// newConstraint is unstable
newConstraint← CSi=2[d].copy() ;
newConstraint.updateConstraintLimit(DimensionLimits[d]) ;

end
CS∇.addToSet(newConstraint) ;
d+ + ;

end
end

Algorithm 1: Template Widening Algorithm

Algorithm-1 summarizes our template widening algorithm.

Correctness

Note that Regression based TemplateWidening Equation-8.9 is the same result as described by

Equation-5.8 describing the standardwidening for the template abstract domain fromChapter-

5 of fixed shape polyhedra. In addition to fixed shape polyhedra, the domain can also be used

to model intervals, zones, octagons, etc. Hence, it is straightforward to prove the validity of

our widening on this domain and also for intervals, zones and octagons as well.

8.3.3 — Examples

Example: Interval Widening

Consider P : x = 1; y = 0; while x < 10 {x + +; y + +}. We use the domain of intervals

I to infer the invariant that defines the bounds on x and y [16]. Intervals in two dimensions

are conjunction of four lines: a1 6 x 6 a2 ∧ a3 6 y 6 a4 where real valued a1, a2, ..., a4. In

order to compute [[P]]I during the fourth iteration inside the loop (point 2), we use widening

132

Chapter 8. Approximations in PL & ML V. Notani

to generalize observations: intervals at i = 2 and i = 3 are described below.

point2(i = 2) = point2(i = 3) =

1 6 x 6 2 ∧ 0 6 y 6 1 1 6 x 6 3 ∧ 0 6 y 6 2

point2(i = 2)∇point2(i = 3) =

1 6 x ∧ 0 6 y (8.10)

The widening on intervals extrapolates unstable bounds to infinity (equation-8.10). In this case

abstract interpretation finds a1, a2, ..., a4 such that the interval is a sound program invariant.

With linear regression we can automatically determine unstable bounds and therefore de-

sign the corresponding widening operation. The constraint sets at i=2 and i=3 can be expressed

in the matrix form as:

CSi=2 =

1 0

−1 0

0 1

0 −1

×
[
x

y

]
6

2

−1

1

0

CSi=3 =

1 0

−1 0

0 1

0 −1

×
[
x

y

]
6

3

−1

2

0

Given the two constraint sets as input to the linear regressor, we obtain the new constraint

set as a linear function of the iterator i as defined by equation-8.8:

CSi =

1 0

−1 0

0 1

0 −1

×
[
x

y

]
6

i

−1

i− 1

0

133

V. Notani 8.3. A Regression Approach to Widening

Next, we drop all rows with i in either matrix to obtains the widening.

CS2∇CS3 =

[
−1 0

0 −1

]
×

[
x

y

]
6

[
−1

0

]

Clearly the widening obtained above from regression is the same as that obtained by tra-

ditional methods in equation-8.10.

Example: Octagon Widening

Consider P : x = 1; y = 0; while x < 10 {x + +; y + +}. We must use the domain of

octagons O to infer the invariant that relates x and y [44]. Octagons are conjunction of eight

lines: a1 6 x 6 a2 ∧ a3 6 y 6 a4 ∧ a5 6 a6x + y 6 a7 ∧ a8 6 −a6x + y 6 a9

where real valued a1, a2, ..., a9. In order to compute [[P]]O during the fourth iteration inside

the loop (point 2), we use widening to generalize observations: octagons at i = 2 and i = 3

are described below.

point2(i = 2) = point2(i = 3) =

1 6 x 6 2 ∧ 0 6 y 6 1 1 6 x 6 3 ∧ 0 6 y 6 2

1 6 x+ y 6 3 1 6 x+ y 6 5

−1 6 −x+ y 6 −1 −1 6 −x+ y 6 −1

point2(i = 2)∇point2(i = 3) =

1 6 x ∧ 0 6 y

1 6 x+ y

−1 6 −x+ y 6 −1 (8.11)

The widening on octagons extrapolates unstable bounds to infinity (equation-8.11). In this case

abstract interpretation finds a1, a2, ..., a9 such that the octagon is a sound program invariant.

With linear regression we can automatically determine unstable bounds and therefore de-

sign the corresponding widening operation. The constraint sets at i=2 and i=3 can be expressed

in the matrix form as:

134

Chapter 8. Approximations in PL & ML V. Notani

CSi=2 =

1 0

−1 0

0 1

0 −1

1 1

−1 −1

−1 1

1 −1

×

[
x

y

]
6

2

−1

1

0

3

−1

−1

1

CSi=3 =

1 0

−1 0

0 1

0 −1

1 1

−1 −1

−1 1

1 −1

×

[
x

y

]
6

3

−1

2

0

5

−1

−1

1

Given the two constraint sets as input to the linear regressor, we obtain the new constraint

set as a linear function of the iterator i as defined by equation-8.8:

CSi =

1 0

−1 0

0 1

0 −1

1 1

−1 −1

−1 1

1 −1

×

[
x

y

]
6

i

−1

i− 1

0

2i− 1

−1

−1

1

135

V. Notani 8.3. A Regression Approach to Widening

Next, we drop all rows with i in either matrix to obtains the widening.

CS2∇CS3 =

−1 0

0 −1

−1 −1

−1 1

1 −1

×

[
x

y

]
6

−1

0

−1

−1

1

Clearly the widening obtained above from regression is the same as that obtained by tra-

ditional methods in equation-8.11.

136

“We can only see a short distance ahead, but we can see
plenty there that needs to be done.”

Alan Turing

9
Conclusion

9.1 | Summary & Looking Ahead

We have presented an Information Oriented Model of Computation that allows to compare

and contrast approximations across disciplines. We have successfully compared and related

the problems of Data Compression, Machine Learning and Program Analysis as instances of

set reconstruction problem, with varying input and output information quality.

Further, we have analyzed Supervised Machine Learning through the lens of Abstract In-

terpretation and demonstrated the Lattice Abstractions and Fixpoint Equations characteristic

of Abstract Interpretation in Machine Learning.

We have also explainedWidening, an Abstract Interpretation construct as a Learning The-

ory problem. Further, we have provided a learning based generic method to automatically

develop widenings for new domains.

A next step would be study compressibility, learnability and analyzability (or the inverse-

obfuscation) as related topics. Indeed learnability and compressibility have beeen studied to-

gether since the 1980s with the work of Warmuth et. al. [39]. Indeed this relationship was used

recently in the seminal paper demonstrating independence of learnability to ZFC axioms [3].

Thus, we are hopeful that relating obfuscation with learnability and compressibility will also

lead to positive strides in all disciplines. We present next a sketch of how obfuscation may be

related to learnability. Namely, we conclude the dissertation with some ideas on how breaking

learnability may lead to obfuscation.

9.2 | Learnability & Obfuscation

We have demonstrated widening to be a sound machine learner. This in turn implies that the

regression limitations apply to this widening as well. This has significant impact on limits of

abstract interpretation that depends on this widening for termination:

139

V. Notani 9.2. Learnability & Obfuscation

1. The noise independent of training data: The inability of the abstract domain to de-

scribe the complexity of trends in program states is fairly common in abstract inter-

pretation. Researchers address this by switching to more precise domains. However

switching to more precise domains does not necessarily result in stronger invariant [46].

Indeed, Sharma et. al. have explained this as a Bias Variance Trade-o� [62].

2. Continuous and Global Nature of Learning: Hypothesis learned by regression is always

continuous. Global nature implies that point discontinuity in one region may lead to

errors all over the space.

Note however, that the above limitations hold if and only if the all of the below conditions

are hold:

1. Domain has infinite chain condition and uses widening for termination.

2. Widening used is the template widening described above.

Condition-1 holds for most of the traditional domains in abstract interpretation litera-

ture. Condition-2 appears to be more restrictive. However, in practice, the implementation

for widening for several domains can be shown to follow our regression template widening

operator, such as:- Intervals, Octagons, and Polyhedra. Given the widespread use of the listed

domains and their widening, the results are significant for practitioners.

9.2.1 — Model

Obfuscation is a semantic preserving transformation that makes an abstract interpreter impre-

cise while inducing no more than polynomial slowdown. For a compiler (semantic preserving

transformer) τ to successfully obfuscate a program P implies [[P]]ρ ⊂ [[τ(P)]]ρ [21]. That is,

there is some loss of information when analyzing τ(P), as compared to analysis of P , under

the same abstraction ρ. The attacker is an abstract interpreter and a successful attack is a com-

plete analysis ρ([[P]]) = [[P]]ρ. In this model of obfuscation, attacker ρ is known and fixed

at the time of designing the obfuscation which is targeted at making the specific abstraction

incomplete.

Alternatively, we propose a newmodel of obfuscation that targets an entire class of abstract

interpreters: those that rely on our template widening operator for termination. As previously

explained, due to the global nature of model, discontinuities induce errors in analysis which is

the definition of obfuscation described above.

140

Chapter 9. Conclusion V. Notani

Giacobazzi [21] measures the strength of an obfuscation by the size of set of domains made

incomplete by the transformation. Since our obfuscation targets an entire class of analysis, it

is a better obfuscation.

9.2.2 — Discontinuity Transformations

For this discussion, we restrict ourselves to program continuity model described by Chaudhari

et. al. [11] . Following them, we consider only IMP numerical programs that terminate on all

inputs. The semantic function for a program P is then map [[P]] of type Σ −→ Σ such that for

all states σin, [[P]](σin) is the terminal state of P for execution starting from state σin.

We present three points to introduce discontinuity in programs:

1. Discontinuous Operation: e.g. x/y at y=0, +-* with ⊥

2. Branch Conditions: Discontinuity at the “flip” point.

3. Loop Guards:

Further, we describe proof rules for sound discontinuity judgements.

9.2.3 — Example

Consider the program shown in Figure-9.1[left]. Interval analysis on the program using In-

terproc Analyzer is shown in Figure-9.2[left]. Note that the interval analysis is a successful

attack (complete analysis). To obfuscate, we make the computation of i in the loop discon-

tinuous. At i = 5, we jump the value by 100 and immediately after, drop the value back to

5. Figure-9.1[right] shows the transformed program. Note that the transformation is semantic

preserving and does not induce more than polynomial slowdown. Figure-9.2[right] shows that

interval analysis on the transformed program is incomplete. Thus, we successfully obfuscated

the program by introducing discontinuity in computation. Additionally, the transformed pro-

gram is incomplete for octagon and convex polyhedra domain as well.

141

V. Notani 9.2. Learnability & Obfuscation

Figure 9.1: Sample Programs

Figure 9.2: Interval Analysis

142

Bibliography

[1] Tom M Apostol. Calculus, volume ii: Multi-variable calculus and linear algebra, with

applications to di�erential equations and probability. 1969.

[2] Roberto Bagnara, Patricia M Hill, Elisa Ricci, and Enea Za�anella. Precise widening

operators for convex polyhedra. Science of Computer Programming, 58(1-2):28–56, 2005.

[3] Shai Ben-David, Pavel Hrubeš, Shay Moran, Amir Shpilka, and Amir Yehudayo�. Learn-

ability can be undecidable. Nature Machine Intelligence, 1, 01 2019.

[4] Christopher M Bishop. Pattern recognition and machine learning. Springer Science+ Business

Media, 2006.

[5] Rod M Burstall. Proving properties of programs by structural induction. The Computer

Journal, 12(1):41–48, 1969.

[6] Gregory J Chaitin. On the length of programs for computing finite binary sequences.

Journal of the ACM (JACM), 13(4):547–569, 1966.

[7] Gregory J Chaitin. On the length of programs for computing finite binary sequences:

statistical considerations. Journal of the ACM (JACM), 16(1):145–159, 1969.

[8] Gregory J Chaitin. Randomness andmathematical proof. Scientific American, 232(5):47–53,

1975.

[9] Gregory J Chaitin. Algorithmic entropy of sets. Computers &Mathematics with Applications,

2(3-4):233–245, 1976.

[10] Gregory J Chaitin. Randomness in arithmetic. Scientific American, 259(1):80–85, 1988.

[11] Swarat Chaudhuri, Sumit Gulwani, and Roberto Lublinerman. Continuity analysis of

programs. In ACM Sigplan Notices, volume 45, pages 57–70. ACM, 2010.

143

V. Notani Bibliography

[12] NVChernikoba. Algorithm for discovering the set of all the solutions of a linear program-

ming problem. USSR Computational Mathematics and Mathematical Physics, 8(6):282–293,

1968.

[13] Alonzo Church. An unsolvable problem of elementary number theory. American journal

of mathematics, 58(2):345–363, 1936.

[14] Leo Corry. David Hilbert and the axiomatization of physics (1898–1918): From Grundlagen der

Geometrie to Grundlagen der Physik, volume 10. Springer Science & Business Media, 2004.

[15] Patrick Cousot. Constructive design of a hierarchy of semantics of a transition system by

abstract interpretation. Theor. Comput. Sci., 277(1-2):47–103, 2002.

[16] Patrick Cousot and Radhia Cousot. Static determination of dynamic properties of pro-

grams. In Dunod, 1976.

[17] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for

static analysis of programs by construction or approximation of fixpoints. In Proc. of the

4th ACM Symp. on Principles of Programming Languages (POPL ’77), pages 238–252. ACM,

1977.

[18] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints among

variables of a program. In Proceedings of the 5th ACM SIGACT-SIGPLAN symposium on Prin-

ciples of programming languages, pages 84–96. ACM, 1978.

[19] Vijay D’Silva, Leopold Haller, and Daniel Kroening. Satisfiability solvers are static analy-

sers. In International Static Analysis Symposium, pages 317–333. Springer, 2012.

[20] Michael D Ernst. Static and dynamic analysis: Synergy and duality. InWODA 2003: ICSE

Workshop on Dynamic Analysis, pages 24–27. New Mexico State University Portland, OR,

2003.

[21] Roberto Giacobazzi. Hiding information in completeness holes: New perspectives in code

obfuscation and watermarking. In 2008 Sixth IEEE International Conference on Software

Engineering and Formal Methods, pages 7–18. IEEE, 2008.

[22] Janko Gravner. Lecture notes for introductory probability. Chapter, 13:151–160, 2010.

144

Bibliography V. Notani

[23] Robert M Gray. Entropy and information theory. First Edition, Corrected. Springer Science &

Business Media, 2013.

[24] Peter D Grünwald, Paul MB Vitányi, et al. Algorithmic information theory. Handbook of

the Philosophy of Information, pages 281–320, 2008.

[25] Sumit Gulwani. Automating repetitive tasks for the masses. In ACM SIGPLAN Notices,

volume 50, pages 1–2. ACM, 2015.

[26] IanHacking. The emergence of probability: A philosophical study of early ideas about probability,

induction and statistical inference. Cambridge University Press, 2006.

[27] Klaas Pieter Hart. Machine learning and the continuum hypothesis. arXiv preprint

arXiv:1901.04773, 2019.

[28] Ralph VL Hartley. Transmission of information 1. Bell System technical journal, 7(3):535–

563, 1928.

[29] David Hilbert. The problems of mathematics. In The Second International Congress of

Mathematics, 1900.

[30] Charles Antony Richard Hoare. An axiomatic basis for computer programming. Com-

munications of the ACM, 12(10):576–580, 1969.

[31] David A Hu�man. A method for the construction of minimum-redundancy codes. Pro-

ceedings of the IRE, 40(9):1098–1101, 1952.

[32] Gary A Kildall. A unified approach to global program optimization. In Proceedings of the

1st annual ACM SIGACT-SIGPLAN symposium on Principles of programming languages, pages

194–206. ACM, 1973.

[33] SC Kleene. Introduction to metamathematics, new york (vannostrand), 1952.

[34] SC Kleene. Mathematical logic wiley & sons. 1967.

[35] Stephen Cole Kleene et al. λ-definability and recursiveness. Duke mathematical journal,

2(2):340–353, 1936.

[36] AndreiNikolaevichKolmogorov. Three approaches to the definition of the concept “quan-

tity of information”. Problemy peredachi informatsii, 1(1):3–11, 1965.

145

V. Notani Bibliography

[37] Hervé Le Verge. A note on chernikova’s algorithm. 1992.

[38] Ming Li and Paul M. B. Vitányi. An Introduction to Kolmogorov Complexity and Its Applica-

tions, 4th Edition. Texts in Computer Science. Springer, 2019.

[39] Nick Littlestone and Manfred Warmuth. Relating data compression and learnability.

1986.

[40] Zohar Manna, Stephen Ness, and Jean Vuillemin. Inductive methods for proving proper-

ties of programs. Communications of the ACM, 16(8):491–502, 1973.

[41] Zohar Manna and Jean Vuillemin. Fixpoint approach to the theory of computation. Tech-

nical report, STANFORD UNIV CA DEPT OF COMPUTER SCIENCE, 1972.

[42] Marc Mezard, Marc Mezard, and Andrea Montanari. Information, physics, and computation:

Part-A Basics. Draft Version. Oxford University Press, 2009.

[43] Antoine Miné. A new numerical abstract domain based on di�erence-bound matrices. In

Programs as Data Objects, pages 155–172. Springer, 2001.

[44] Antoine Miné. The octagon abstract domain. Higher-order and symbolic computation,

19(1):31–100, 2006.

[45] Antoine Miné et al. Tutorial on static inference of numeric invariants by abstract inter-

pretation. Foundations and Trends® in Programming Languages, 4(3-4):120–372, 2017.

[46] David Monniaux and Julien Le Guen. Stratified static analysis based on variable depen-

dencies. Electronic Notes in Theoretical Computer Science, 288:61–74, 2012.

[47] Ernest Nagel and James R. Newman. Gödel’s proof. Scientific American, 194(6):71–84,86,

1956.

[48] James B Nation. Notes on lattice theory, 1998.

[49] P. Odifreddi. Classical Recursion Theory. Studies in logic and the foundations of mathe-

matics. Elsevier, 1999.

[50] David Park. Fixpoint induction and proofs of program properties. Machine intelligence, 5,

1969.

146

Bibliography V. Notani

[51] E.L. Post. Recursively enumerable sets of positive integers and their decision problems.

Bulletin of the American Mathematical Society, 50:284–316, 1944.

[52] CK Raju. Probability in ancient india. In Philosophy of Statistics, pages 1175–1195. Elsevier,

2011.

[53] Henry Gordon Rice. Classes of recursively enumerable sets and their decision problems.

Transactions of the American Mathematical Society, 74(2):358–366, 1953.

[54] H. Rogers. Theory of recursive functions and e�ective computability. The MIT press, 1992.

[55] Sriram Sankaranarayanan, Henny B Sipma, and Zohar Manna. Scalable analysis of linear

systems using mathematical programming. In International Workshop on Verification, Model

Checking, and Abstract Interpretation, pages 25–41. Springer, 2005.

[56] Alexander Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1998.

[57] Dana Scott. Outline of a mathematical theory of computation. Oxford University Computing

Laboratory, Programming Research Group, 1970.

[58] Dana Scott and J.W. deBakker. A theory of program. Unpublished Memo, August 1969.

[59] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to

algorithms. Cambridge university press, 2014.

[60] Claude Elwood Shannon. A mathematical theory of communication. Bell system technical

journal, 27(3):379–423, 1948.

[61] Rahul Sharma. Data-driven Verification. PhD thesis, Stanford University, 2016.

[62] Rahul Sharma, Aditya V Nori, and Alex Aiken. Bias-variance tradeo�s in program anal-

ysis. ACM SIGPLAN Notices, 49(1):127–137, 2014.

[63] R. I. Soare. Recursively Enumerable Sets and Degrees. Springer-Verlag, 1980.

[64] Andreia Teixeira, Armando Matos, André Souto, and Luís Antunes. Entropy measures

vs. kolmogorov complexity. Entropy, 13(3):595–611, 2011.

[65] Alan Mathison Turing. On computable numbers, with an application to the entschei-

dungsproblem. Proceedings of the London mathematical society, 2(1):230–265, 1937.

147

V. Notani Bibliography

[66] Nikolai K Vereshchagin and Paul MB Vitányi. Kolmogorov’s structure functions and

model selection. IEEE Transactions on Information Theory, 50(12):3265–3290, 2004.

[67] Byron Emerson Wall. The history of probability, lecture slides for math 5400, 2007.

[68] M. Ward. The Closure Operators of a Lattice. Annals of Mathematics, 43(2):191–196, 1942.

[69] Martin Ziegler and Vasco Brattka. Turing computability of (non-)linear optimization. In

Proceedings of the 13th Canadian Conference on Computational Geometry (CCCG’2001), pages

181–184, 2001.

148

	Certificate
	Preface
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	A Brief Historical Review
	What is Provable ?
	Computation as a Physical Process
	Our Approach
	Outline
	Contributions

	Basics
	Mathematical Notations
	Logic notations
	Set Notations
	Matrices and Vector Notations
	Context Specific Notations

	Order Theory
	Data Structures
	Operators and Fixpoints
	Galois Connections and Insertions

	Probability Theory
	Origins of Probability
	Definitions and Axioms
	Random Variables and Probability Mass Functions

	Program Analysis
	The Problem
	Approximations
	Challenges
	Techniques & Applications
	Conclusion

	Abstract Interpretation
	From Logic to Lattices
	Language and Least Fixpoint Semantics
	Syntax
	Concrete Semantics

	Abstract Domains
	Abstract Semantics

	Summary

	Common Numerical Domains
	Sign Abstract Domain
	Representation
	Order Structure
	Abstract Operators
	Convergence Acceleration

	Polyhedra Abstract Domain
	Representation
	Order Structure
	Abstract Operators
	Convergence Acceleration

	Template Domain
	Representation
	Example: Interval Representation
	Example: Octagon Representation
	Order Structure
	Normalization
	Abstract Operators
	Convergence Acceleration

	Supervised Learning
	Learning Fundamentals
	What is Machine Learning ?
	Emperical Risk Minimization
	Agnostic PAC: A more general approach
	Bias Variance Tradeoffs
	VC Dimension

	Learning in Practise
	Linear Regression
	Gradient Descent

	Information Oriented Model of Computation
	Motivation
	Preliminaries
	Language Agnostic Approach
	Semantics and Program Properties

	Information Theory
	Shannon Entropy
	Kolmogorov Complexity
	Algorithmic Information Theory

	Information Oriented Model of Computation
	Relating Information Theory and Computability Theory
	An Informal Introduction
	Going Formal
	Lossless Reconstruction
	Sound Reconstruction
	Conjectured Reconstruction

	Application
	Huffman Compression
	Monotone Compression Schemes
	Program Analysis: An extension to Compression Scheme
	Conjectured Reconstruction via Widening

	Conclusion

	Approximations in PL & ML
	Overview
	Supervised Machine Learning: An Abstract Interpretation View
	Introduction
	Fixpoints in Machine Learning

	A Regression Approach to Widening
	Preliminaries
	Learning Widening
	Examples

	Conclusion
	Summary & Looking Ahead
	Learnability & Obfuscation
	Model
	Discontinuity Transformations
	Example

	Bibliography

