
Service integration via target-transparent mediation

Mila Dalla Preda∗, Maurizio Gabbrielli∗, Claudio Guidi†, Jacopo Mauro∗ and Fabrizio Montesi‡
∗Lab. Focus, Department of Computer Science/INRIA, University of Bologna, Italy.

Email: dallapre | gabbri | jmauro @unibo.it
†italianaSoftware srl, Imola, Italy. Email: cguidi@italianasoftware.com
‡IT University of Copenhagen, Denmark. Email: fmontesi@itu.dk

Abstract—In the context of Service-Oriented Architectures
(SOA), the integration of services is an important aspect that
is usually addressed by using specific tools, such as Enterprise
Service Bus (ESB). In this paper we propose a framework
to perform service integration building on the extension of
service interfaces, capturing a class of service integrators
that are decoupled from the services they integrate in an
SOA. We show how our service integrators can be used in
practice by evaluating our approach with Jolie, a service-
oriented programming language. Finally, we present how our
methodology differs from the standard practice with ESB.

Keywords-SOC; SOA; integration of services; interfaces.

I. INTRODUCTION

Service-Oriented Computing (SOC) is a programming
paradigm for distributed systems based upon the compo-
sition of services. Services are autonomous computational
entities that can be dynamically discovered and invoked.

In the last decade, research and practice on SOC have led
to the stratification of service composition into three layers.

The first layer deals with the implementation of the
basic computational features of a service, usually obtained
through general-purpose programming languages such as
Java, C#, or Python. A service is a program deployed at
a given location (e.g., a URL) that can be used by external
parties to invoke the service and access its functionalities,
dubbed operations, by means of message passing. The list
of the operations provided by a service, dubbed interface,
is defined in a machine-readable document that reports their
respective names and expected message types.

The second layer composes the operations offered by
the services in a Service-Oriented Architecture (SOA) into
workflows, with the objective of supporting more high-level
features by reusing existing services. These workflows are
still implemented by services, dubbed orchestrators. In Web
Service infrastructures, orchestration is usually supported by
the WS-BPEL language [7].

The third, and last, layer covers the integration of different
SOAs. For instance, two (or more) systems may need some
kind of adaptation of their data formats or functionalities
in order to cooperate successfully, or they may need some
bridging between their respective network infrastructures.
This is usually obtained through an Enterprise Service Bus
(ESB). In this paper, we focus on this last layer.

From an abstract point of view, the integration of a service
S with another system can be obtained through a mediator
M : an entity that receives the invocations for S from any
client C and redirects them to S after performing some
adaptations. A mediator can perform different actions, such
as protocol conversion or the addition of specific features
(e.g., monitoring or authentication). In the sequel, we refer
to a service such as S as the target of the mediator M .

In this paper we identify two kinds of mediations: target
transparent and target dependent. Target-transparent me-
diation does not depend on the content of the message
expected by S. It is, for instance, the case for authentication
since M needs to check only the additional information
that it introduces (the authentication credentials). Target-
dependent mediation, instead, needs to inspect also the
original information required by S.

A notable problem of mediation is that the code for
integrating two systems is usually ad-hoc. Mediators, or
adaptors, are designed to specifically interact with their
targets and adapt them towards external systems. Therefore,
mediators are hardly reusable in most occasions. This paper
starts from the observation that target-transparent mediation
seems particularly suited for modularity. Specifically, since
a target-transparent mediator works only with its own added
information, it should be possible to develop program me-
diators that are completely decoupled from their targets. In
other words, we want to build target-transparent mediators
that can be reused with many different targets. To the best
of our knowledge, there have been no proposals of tools that
specifically deal with this problem.

We show that Jolie [3], a service-oriented program-
ming language, provides a framework for developing such
reusable target-transparent mediators simply allowing the de-
veloper to easily extend the service interfaces. We report how
using Jolie to obtain this objective elicits a programming
methodology that is different than that of other existing tools
for mediation, which leads to the design of mediators that
can be reused even when some parts of the SOA in which
they operate change.

II. PROGRAMMING MEDIATORS IN JOLIE

Writing a complex SOA in a cost-effective way requires
the knowledge of different languages and ad hoc tools.

Indeed, a SOA developer needs to know at least a general
programming language, a domain specific language like
WS-BPEL and one, but often more, integration tools. To
overcome this limitation, we propose to use an extension
of Jolie [3] - a fully-fledged service-oriented programming
language released as an open-source project. In this section
we briefly recall some basic Jolie constructs and then we
show the definition of a mediator in a simple case study.1.

A Jolie program defines a service as composed by two
parts: behaviour and deployment. A behaviour defines the
implementation of the functionalities offered by a service.
However, these do not deal with how communications are
supported: they abstractly refer to communication ports,
which are to be correctly defined in the deployment part.
The latter deals with the actual definition of the necessary
information for supporting communications.

The basic deployment primitives are input ports and out-
put ports, which support input and output communications
with other services. Input and output ports are dual concepts
and their syntaxes are quite similar. Ports are based upon
the three fundamental concepts of location and protocol,
that define the concrete binding information between a Jolie
program and other services, and the one of interface that
defines type information that is expected to be satisfied by
the behaviour that receives invocations through the port.

Communication ports require interfaces to be defined. An
interface I is a list of request-response and one-way opera-
tions. These are functionalities names with their arguments
types thay, in the request-response case, return a value.

Aggregation is the basic mechanism offered by Jolie
for programming mediation through the creation of proxy
services [13]. Aggregation allows to merge the function-
alities of one or more services called providers into one
service called aggregator that exposes all the interfaces of
the aggregated providers. In the presence of aggregation a
service consumer C sees the aggregator M as a unique
endpoint to exploit the functionalities of the aggregated
providers without knowing which provider implements the
functionalities exposed by the aggregator. In [13] we have
proposed an extension of the mechanism of aggregation,
called smart aggregation, that allows the aggregator to
manipulate the messages before forwarding them to the
providers (for example the aggregator could verify the
validity of a key). In general, the interface of the aggregator
is an extension of the interfaces of the aggregated services,
meaning that the aggregator could require some extra ar-
guments that it consumes before forwarding the message to
the corresponding aggregated service. The code that specifies
the manipulations that an aggregator has to perform before
forwarding the messages to the final provider is specified
by the so called courier code. The courier code differs

1The Jolie extensions and code of the example can be retrieved at {
TODO: fabrizio: aggiungi link al codice please }

from the code of the standard service behavior in the fact
that it cannot receive inputs. Figure 1 provides a graphical
representation of the mechanism of smart aggregation where
the incoming messages m1

+ and m2
+ are manipulated by

the courier code and then forwarded as m1 and m2 to the
corresponding providers. We denote the interfaces of the
aggregator as I+1 and I+2 , and the ones of the aggregated
services as I1 and I2 to highlight the fact that the aggregator
receives a message m+

1 or m+
2 with some extra arguments

that it processes before forwarding the messages m1 and m2

to the providers.
The concept of interface extension makes smart aggrega-

tion target-transparent. Indeed, if the target service exposing
I1 is redeployed with a new interface I ′1, the aggregator
M (implementing mediation) does not need to be modified.
This is because the differences between I1 and I+1 have
been explicitly encoded as an interface extension. Thus, the
interface extension can be automatically reapplied from the
execution engine to I ′1 in order to obtain the new aggregator
interface I ′1

+. Even the mediation logic (courier session
code) does not need to be changed, since our programming
practice forbids to manipulate the content of the message
that will be forwarded to the target service: a courier session
can only manipulate the data added through the interface
extender, and messages can be forwarded to the target
services only as black boxes.

Example: Printer System: We consider a company that
develops a service for internal usage that does not need
nor support authentication since it is accessible only through
the local network. Imagine, without loss of generality, that
this service allows the printing of jobs. Abstracting from
the implementation, let us suppose that the printer has the
following interface and input port for accessing it:
type P r i n t R e q u e s t : vo id { . doc : s t r i n g }
type P r i n t R e s p o n s e : vo id { . j o b I d : i n t }

i n t e r f a c e P r i n t e r I f a c e {
RequestResponse :

p r i n t (P r i n t R e q u e s t) (P r i n t R e s p o n s e) ,
d e l (De lReques t) (DelResponse) }

inputPor t P r i n t e r I n p u t {
Locat ion : ” s o c k e t : / / 1 9 2 . 1 6 8 . 1 . 2 5 : 8000 / ”
P r o t o c o l : sodep
I n t e r f a c e s : P r i n t e r I f a c e }

Afterwards, the company wants to allow for the printer
service to be used also through a public network provided
the authentication of non local users. This issue can be ad-
dressed by defining a service exposing a new input port that
aggregates, via the keyword Aggregates, the functionalities
of the printer. The aggregator deployment is:
outputPort P r i n t e r {
Locat ion : ” s o c k e t : / / 1 9 2 . 1 6 8 . 1 . 2 5 : 8000 / ”
P r o t o c o l : sodep
I n t e r f a c e s : P r i n t e r I f a c e }

inputPor t A g g r e g a t o r I n p u t {

Client

Aggregator

m1
+

Target
serviceI1m1

Courier Code

Target
serviceI2m2

m2
+

I1
+ I∪ 2

+

Interface Extension

Figure 1. Mediation in Jolie

Locat ion : ” s o c k e t : / /www. company . com : 8 0 / ”
P r o t o c o l : h t t p
Aggregates : P r i n t e r }

We assume that the aggregator runs on a machine that
has access to both the private network and to the Internet.
Notice that the printer and the aggregator use a different
protocol to be invoked (i.e. sodep for the printer and http
for the aggregator). The Jolie interpreter will automatically
take care of converting the incoming HTTP messages into
the SODEP protocol format. Hence, we can access the
aggregator by means of a common web browser. Browsing
the following URL would for instance invoke the print
operation: http://www.company.com/print?doc=Hello. Now
let us suppose that the access to the printer should be
restricted by means of an authentication system already
developed and deployed. This can be done allowing the
aggregator to manipulate the messages before forwarding
them to the printer using the smart aggregation [13]2. Our
aggregator code thus changes to the following:

type AuthReques t : vo id {
. username : s t r i n g
. password : s t r i n g }

type S e s s i o n I d : vo id { . s i d : s t r i n g }

i n t e r f a c e A u t h e n t i c a t o r I f a c e {
RequestResponse :

a u t h (AuthReques t) (AuthResponse)
throws A u t h F a i l e d (void)

c h e c k S e s s i o n (AuthReques t) (S e s s i o n I d)
throws I n v a l i d S e s s i o n (void)}

i n t e r f a c e e x t e n d e r S e s s i o n I d E x t e n d e r {
RequestResponse : ∗ (S e s s i o n I d) (void)

throws I n v a l i d S e s s i o n (void)}

outputPort A u t h e n t i c a t o r {
Locat ion : ” s o c k e t : / / 1 9 2 . 1 6 8 . 1 . 2 0 : 8080 / ”
P r o t o c o l : sodep
I n t e r f a c e s : A u t h e n t i c a t o r I f a c e }

outputPort P r i n t e r {
Locat ion : ” s o c k e t : / / 1 9 2 . 1 6 8 . 1 . 2 5 : 8000 / ”
P r o t o c o l : sodep
I n t e r f a c e s : P r i n t e r I f a c e }

2Note that the legacy printer and authenticator services do not require
modifications.

inputPor t A g g r e g a t o r I n p u t {
Locat ion : ” s o c k e t : / /www. company . com : 8 0 / ”
P r o t o c o l : h t t p
Aggregates : A u t h e n t i c a t o r ,

P r i n t e r w i th S e s s i o n I d E x t e n d e r }

c o u r i e r A g g r e g a t o r I n p u t {
[i n t e r f a c e P r i n t e r I f a c e (r e q u e s t) (r e s p o n s e)]
{ chk . s i d = r e q u e s t . s i d ;

c h e c k S e s s i o n @ A u t h e n t i c a t o r (chk) (chkRes) ;
f o r w a r d (r e q u e s t) (r e s p o n s e) } }

The aggregated authentication service Authenticator offers
two operations, auth and checkSession. The operation auth
allows a client to authenticate by sending a username
and password: if the authentication succeeds the invoker
receives back a session identifier, otherwise an AuthFailed
fault denoting invalid credentials is raised. The operation
checkSession is used to check if a session identifier is valid.
The session identifier is now required for accessing every
operation of the printer service through the aggregator.
Indeed the interface of the aggregator is extended by means
of the operator SessionIdExtender with the additional infor-
mation of type SessionId. When a message is received by
the aggregator the (courier) code courier AggregatorInput is
executed. Specifically, inside the courier code, every request
for an operation in the PrinterIface interface is intercepted
and its session identifier verified by calling the authenticator
service. If the session identifier is found to be invalid, the
generated InvalidSession fault from the authenticator will be
automatically sent back to the client. Otherwise, the call
is successfully forwarded to the printer through the forward
primitive. Jolie will automatically take care of removing
the additional authentication informations not expected by
the printer service exploiting the information given by the
interface extender SessionIdExtender.

Observe that our aggregator code is parametric on
PrinterIface : if the latter changes, the interface extension will

be simply reapplied to the new definition without requiring
any change in the aggregator. Modifications to aggregated
interfaces may be changing the set of exposed operations or
their data types (provided that the new data fields do not
have the same names as those introduced by the aggregator
through extension). For instance, suppose that the printer

service is upgraded to provide a new operation check status
and that the data type of operation print is changed to
require also an options parameter. Then, the aggregator above
could be simply redeployed as it is and continue working as
intended.

The task of integrating different services, or applications
in general, has been investigated for a long time in the
context of practical, commercial tools using Enterprise Ap-
plication Integration (EAI) frameworks [22]. Usually these
frameworks are implemented by enhancing standard middle-
ware products like the Enterprise Service Bus (ESB) [12].
On the market one can find several ESB mature products
developed by leading IT companies like IBM [9], Oracle
[4] and Microsoft [1]. However, contrary to what happens
for WS-BPEL, there is no standard that establishes what an
ESB should require or provide. An ESB usually is provided
with an ad hoc GUI that simplifies the development of
the service integration, while avoiding the need to make
sweeping changes to the existing applications or data struc-
tures. An ESB can be seen as an integration infrastructure
that facilitates the interaction between different entities, in
a possibly distributed system, through mediation. Service
providers and service consumers use the ESB to interact
with each other. Indeed the ESB is able to send requests
and receive responses to and from the integrated services
(invocation). The ESB also handles the message routing,
by deciding the final destination of a message based, for
example, on the content of the message. Thus, the ESB
allows the developer to process messages, handle protocol
transformations, filter messages, monitor or log activities,
and implement security policies. Hence, an ESB acts as a
proxy, implementing all the programmed mediation activities
such as message routing and transformation. The proxy also
exposes the functionalities of the service providers (possibly
augmented with some extra parameters used in the mediation
logic). In ESB tools, designers usually implement a mediator
M by first (i) importing the interface IS of the target service,
(ii) write the interface IM to be exposed to external invokers
for interacting with S through M , and finally (iii) by creating
the intermediate mediation logic through graphical tools that
allow for the programming of simple workflows.

The crucial point that we want to observe here is that
even if programmers usually start to define IM by modifying
IS , the ESB tools does not track in any way that IM is a
modification of IS . Moreover, in the mediation logic the
programmer may refer to and manipulate any part of the
messages received through IM . For this reason updates or
modifications of the target service S imply modifications of
the mediator definition and implementation, thus making the
ESB approach target-dependent.

Figure 2 provides a graphical representation of an ESB
infrastructure: service consumers and service providers are
connected to the bus that handles their interactions through
the proxy.

Let us compare the process of adding (or modifying) a
service provider to an ESB with the process of adding (or
modifying) a service provider to an aggregator in Jolie. The
operation chain has a lot of similarities. In both cases the
first task is to import the interfaces of the service providers.
This operation can be intuitively seen as creating a binding
that allows the use of the services implementing the basic
activities. In ESB this task is done by importing the WSDL
description of the service providers. In Jolie instead the
binding consists in the creation of output ports. Once the
service providers have been imported we have the first and
main difference between the ESB and Jolie approach. The
second task in the ESB methodology consists in creating or
modifying the proxy interface to support or modify existing
operations, while in Jolie the interface does not need to
be created from scratch. Existing interfaces can be properly
extended to arrange for the presence of new or modified
operations. This small difference impacts heavily in the SOA
design since being able to extend previous interfaces allows
a developer to build a SOA in an incremental way, being
more modular and less error prone since the number of
repetitive coding tasks decreases. After the definition of the
proxy interfaces there is a duality between the ESB and Jolie
integration approaches. Indeed, while in the ESB approach
before deploying the proxies the developer needs to program
their behaviour defining how the messages are mediated,
routed, enhance or filtered, in Jolie the same could be done
by defining the service courier code.

Even though ESBs are tools tailored specifically for ser-
vice integration and therefore are well suited for the majority
of service integration tasks other approaches are still possible
and used. For instance, since the ESB development is a
knowledge intensive task (i.e. even if there exists visual tools
to support the implementation phase an ESB programmer
requires a deep understanding of the multitude of fields and
flags provided by the common ESB solutions) and an ESB
license is usually expensive (especially for small compa-
nies), the service integration is obtained using BPEL or a
full purpose general language such as Java. In these cases
the programmer may have a deeper control of the message
flow, implement non standard service behaviors, and develop
faster and lighter service integration frameworks. However,
this advantages comes at the price that a lot of code needs
to be written in order to perform the same task that can be
easily written using a domain specific language or tools like
Jolie or ESBs.

Consequently when these approaches are used there is
no direct support for service integration operations and
therefore a features that allows or ease a developer to
propagate the changes of an interface throughout the entire
SOA is completely missing.

ht

Client

Proxy service

IM

m+
Target
serviceIS

m

Message flow
logic Figure 2. Mediation in ESB

III. CONCLUSION

We have proposed a mechanism based on interface ex-
tensions that can be used to develop target-transparent ser-
vice integration. When target-transparent mediators suit the
application scenario, our methodology leads to a simpler
and clearer definition of this kind of service integrators
than ESB. We envision that this simplicity will improve the
cost-effectiveness of the design of SOAs in the future. An
initial implementation of this mechanism has been obtained
extending the Jolie framework [13]. Through this extension,
the methodology described in this paper has been used in
production at italianaSoftware [2] to integrate medium-sized
SOAs (ranging from about 10 to 40 services). Given our
initial results, we deem that interface extension could be
considered an interesting feature to add to current ESB
frameworks, maybe exploiting semantically the new exten-
sion features of WSDL 2.0 [8]. In this sense, the formal
semantic specifications of the Jolie language for interface
extension [13] would serve as guidelines to reobtain the
same results.

The advantage of the interface extensions mechanism is
particularly relevant when considering SOAs which deal
with a continuously changing environment and therefore
have to address variability aspects [16]. Indeed, also the
recent 2.0 version of the WSDL language includes a form
of interface extension. Our notion of interface extension
however is more general: WSDL 2.0 for instance does not
allow the possibility to add arguments to service invocations
while in Jolie this is one of the basic building blocks that
allow target transparency.

The lack of the service extension primitives in the ESB
solutions prevent the design of complex EAI solutions
where different layers of services depend exclusively on
the functionalities of lower service levels. The possibility of
being able to extend the services will allow the development
of more modular and maintainable multi-tier solutions for
EAI since with service extensions the propagation of a low
level service modification is small or negligible.

Similarities to the approach presented in this paper can be
found also with delta models [21]: a technique developed in
the context of Software Product Lines to tackle and define
their variability. A delta defined how existing code should
be integrated, modified, or deleted to define the new features
of a Software Product Line. Interface Extension and courier

sessions can therefore be view as a delta for the Service
Oriented Computing.

Recently some papers have addressed the problem of a
more general, dynamic variability or adaptation of SOAs,
and some frameworks based on ESB technologies have been
considered in order to address this issue, see for example
[15], [17], [11]. We believe that our work on interface
extension in Jolie, which can be seen as a static form of
variability, can be considered as a first, beneficial step to
obtain dynamic adaptable SOA, and we are planning to
explore this direction of research in the future. Moreover, we
are also investigating a new interface extension-like primitive
for removing some operation fields, instead of adding new
ones. While adding fields to inputs is usually considered a
safe practice in a compositional setting [20], [14], removing
fields is not since understanding when it is safe to remove
operations, variables or methods is nontrivial [10].

From a more pragmatic point of view we would like to
perform an extensive study to determine how much the use
of interface extensions could speed up the development of
an SOA or reduce its maintainability burden, and evaluate
the performances and the scalability of our solution in Jolie
with respect to behaviorally equivalent ESB solutions.

REFERENCES

[1] BizTalk Server. Product Website: http://www.microsoft.com/
biztalk/en/us/default.aspx.

[2] italianaSoftware Website: http://www.italianasoftware.com.

[3] JOLIE: Java Orchestration Language Interpreter Engine.
Project Website: http://www.jolie-lang.org/.

[4] Oracle Enterprise Service Bus. Product Website:
http://www.oracle.com/technetwork/middleware/service-bus/
overview/index.html.

[5] SOAP Version 1.2 Part 1: Messaging Framework: http://www.
w3.org/TR/soap12-part1/.

[6] SODEP: Simple Operation Data Exchange Protocol. http:
//www.jolie-lang.org/wiki.php?page=Sodep.

[7] Web Services Business Process Execution Language Version
2.0: http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html.

[8] Web Services Description Language (WSDL) Version 2.0:
http://www.w3.org/TR/wsdl20/.

[9] WebSphere Process Server. Product Website: http://www-01.
ibm.com/software/integration/wps/\#.

[10] Marco Carbone and Fabrizio Montesi. Typed multiparty
global programming. Technical Report 149, IT University
of Copenhagen, 2011. http://www.itu.dk/people/fabr/papers/
multichor.

[11] Soo Ho Chang, Hyun Jung La, Jeong Seop Bae, Won Young
Jeon, and Soo Dong Kim. Design of a Dynamic Composition
Handler for ESB-based Services. In ICEBE, pages 287–294,
2007.

[12] David A. Chappell. Enterprise Service Bus - Theory in
practice. O’Reilly, 2004.

[13] Mila Dalla Preda, Maurizio Gabbrielli, Claudio, Guidi, Ja-
copo Mauro, and Fabrizio Montesi. Interface-based service
composition with aggregation. In ESOCC, 2012.

[14] Simon Gay and Malco Hole. Subtyping for session types in
the pi calculus. Acta Informatica, 42(2-3):191–225, Novem-
ber 2005.

[15] Laura González and Raúl Ruggia. Towards dynamic adap-
tation within an ESB-based service infrastructure layer. In
MONA ’10, pages 40–47, 2010.

[16] Hyun Jung La, Jeong Seop Bae, Soo Ho Chang, and
Soo Dong Kim. Practical Methods for Adapting Services
Using Enterprise Service Bus. In ICWE, pages 53–58, 2007.

[17] Yan Liu, Muhammad Ali Babar, and Ian Gorton. Middleware
architecture evaluation for dependable self-managing systems.
In QoSA ’08, pages 189–204, 2008.

[18] Fabrizio Montesi, Claudio Guidi, and Gianluigi Zavattaro.
Composing Services with JOLIE. In ECOWS, pages 13–22,
2007.

[19] Fabrizio Montesi, Claudio Guidi, and Gianluigi Zavattaro.
Service-oriented Programming with Jolie. Draft paper (sub-
mitted for publication), 2012. http://www.itu.dk/people/fabr/
papers/soc jolie/.

[20] Benjamin C. Pierce. Types and Programming Languages.
MIT Press, MA, USA, 2002.

[21] Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Dami-
ani, and Nico Tanzarella. Delta-Oriented Programming of
Software Product Lines. In SPLC, pages 77–91, 2010.

[22] Mostafa Hashem Sherif. Handbook of Enterprise Integration.
Auerbach Publishers, Incorporated, 2009.

