
Analyzing program dependencies for malware detection

Mila Dalla Preda Isabella Mastroeni Roberto Giacobazzi
Dipartimento di Informatica - University of Verona, Italy

{mila.dallapreda,isabella.mastroeni,roberto.giacobazzi}@univr.it

Abstract
Metamorphic malware continuously modify their code, while pre-
serving their functionality, in order to foil misuse detection. The
key for defeating metamorphism relies in a semantic characteriza-
tion of the embedding of the malware into the target program. In-
deed, a behavioral model of program infection that does not relay
on syntactic program features should be able to defeat metamor-
phism. Moreover, a general model of infection should be able to
express dependences and interactions between the malicious code
and the target program. ANI is a general theory for the analysis
of dependences of data in a program. We propose an high order
theory for ANI, later called HOANI, that allows to study program
dependencies. Our idea is then to formalize and study the malware
detection problem in terms of HOANI.

1. Introduction
One of the major challenge in computer security is the detection
and neutralization of metamorphic malware. A metamorphic mal-
ware is a malicious program equipped with a metamorphic engine
that takes the malware, or parts of it, as input and morphs it at run-
time to a syntactically different but semantically equivalent variant,
in order to foil traditional misuse malware detectors. Misuse de-
tectors are syntactic in nature as they identify malware infection
by comparing the byte sequence comprising the body of the mal-
ware against a signature database [34]. It is exactly this syntactic
characterization of the malicious code that makes standard misuse
malware detectors so vulnerable to metamorphism. Thus, in order
to handle metamorphism a malware detector should be able to rec-
ognize the metamorphic variants of a malware, namely the possible
evolutions of the malicious code. The metamorphic engine is typi-
cally implemented as a set of code obfuscations that preserve pro-
gram semantics to some extent. Thus, in order to handle metamor-
phism a malware detector should characterize infection in terms
of semantic properties rather than syntactic properties (like signa-
tures). For this reason researchers have started to investigate for-
mal approaches to malware detection where infection is specified
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in terms of behavioral properties of programs (e.g., [5, 6, 10, 24]).
As usual, the efficiency of these approaches is stated in terms of
soundness (no false positives) and completeness (no false nega-
tives) properties. In [10, 11] the authors present a general frame-
work based on program semantics and abstract interpretation for
proving soundness and completeness of malware detectors in the
presence of obfuscations. This semantic model for malware detec-
tion implicitly assumes that a malware appends its code and behav-
ior to the one of the target program (the victim) without interacting
with it. Hence, this formal model of malware infection is not ap-
propriate for the description and identification of malware whose
behaviors interferes with the one of the target program (either with
spurious or real dependences added to obstruct program analysis).

In order to develop a more general theory that is able to de-
scribe the interactions between the malware and the target program
we need a formal framework that is able to describe dependences
between fragments of the same program. It is well known that non-
interference [33] (NI) provides an ideal theory for reasoning on
data dependencies in a program and that abstract non-interference
consists in a generalization of the theory weakening the depen-
dency analysis between data [20]. Our idea is to lift the ANI frame-
work on programs and to define a sort of high-order ANI (HOANI)
that characterizes dependences and relations among functions, and
therefore programs, instead of data. The idea is that we detect in-
fection when the semantics of a program matches the overall se-
mantics of a target program corrupted by a malware. Indeed, if
the malware detector could observe differences it would say that
the specific malware has not infected the program, since we can-
not recognize its semantics in the semantics of the program.This
definition of malware detection allows to use HOANI for charac-
terizing both soundness and completeness of the malware detec-
tors, but allows even something more. We can inherits the attacker
model and maximal information release characterizations of ANI,
which lifted high order and instantiated to the malware detection
field seem to provide a way to certify which classes of metamor-
phic engines do not deceive the detector, and to make a training
of the detector depending on the metamorphic engine we aim to
unveil. Finally, we prove that HOANI is a generalization of the se-
mantic approach cited above [10, 11] to malware detection since
under specific conditions the two approaches collapse.

2. Background
Mathematical notation. If S and T are sets, then ℘(S) denotes
the powerset of S and S × T denotes the Cartesian product
of S and T . If f : S−→T , Y ⊆ S, and X ⊆ T then
f(Y )

def
= {f(y) | y ∈ Y } and f−1(X)

def
=
{
x
∣∣ f(x) ∈ X

}
. We



will often denote f({x}) as f(x) and use lambda notation for func-
tions. f◦g def

= λx. f(g(x)). 〈C,≤〉 denotes a poset C with ordering
relation ≤, while 〈C,≤,∨,∧,>,⊥〉 denotes a complete lattice C,
with ordering ≤, lub ∨, glb ∧, top and bottom element > and ⊥
respectively. id def

= λx. x and T def
= λx. >. The point-wise ordered

set of monotone functions, denotedC1
m−→C2, is a complete lattice

〈C1
m−→C2,v,t,u,T, λx.⊥〉. f : C1−→C2 is (completely) ad-

ditive if f preserves lub’s of all subsets of C1 (emptyset included).
Continuity, denoted c−→ , holds when f preserved lubs’s of chains.
Co-addittivity and co-continuity are dually defined.
Abstract interpretation. We use the framework of abstract interpre-
tation [7, 8] for modeling the observational capability of malware
detector and the invariant properties of metamorphic engines. Ab-
stract interpretation is used for reasoning on properties rather than
on (concrete) data values. Abstract interpretation is a general theory
for deriving sound approximations of the semantics of discrete dy-
namic systems, e.g., programming languages [7]. Approximation
can be equivalently formulated either in terms of Galois connec-
tions or closure operators [8]. An upper closure operator (uco for
short) ρ : C → C on a poset C, representing concrete objects,
is monotone, idempotent, and extensive: ∀x ∈ C. x ≤C ρ(x).
The upper closure operator is the function that maps the concrete
values to their abstract properties, namely with the best possible
approximation of the concrete value in the abstract domain. For-
mally, closure operators ρ are uniquely determined by the set of
their fix-points ρ(C), for instance Par = {Z, ev, od,∅}. For up-
per closures, X ⊆ C is the set of fix-points of ρ ∈ uco(C) iff X
is a Moore-family of C, i.e., X = M(X)

def
= {∧S | S ⊆ X} —

where ∧∅ = > ∈ M(X). The set of all upper closure opera-
tors on C, denoted uco(C), is isomorphic to the so called lattice
of abstract interpretations of C [8]. If C is a complete lattice then
uco(C) ordered point-wise is also a complete lattice, 〈uco(C),v
,t,u,>, id〉 where for every ρ, η ∈ uco(C), {ρi}i∈I ⊆ uco(C)
and x ∈ C: ρ v η iff ∀y ∈ C. ρ(y) ≤ η(y) iff η(C) ⊆ ρ(C);
(ui∈Iρi)(x) = ∧i∈Iρi(x); and (ti∈Iρi)(x) = x ⇔ ∀i ∈
I. ρi(x) = x. Given an abstraction, we want also to understand
whether the program computes accurately on the property. In gen-
eral, the abstract interpretation framework guarantees that the ab-
stract computation is sound, namely we can only lose information
by computing on abstract properties. On the other hand, the accu-
racy of the computation is modeled in terms of completeness: an
abstract domain is complete for a program if the computation of
the program, on the abstract properties, corresponds precisely to
the abstraction of the concrete computation. In other words, the ab-
stract domain is as precise as possible with respect to the program to
compute. The best correct approximation of f is fbca def

= α◦f◦γ (or
equivalently γ◦α◦f◦γ◦α). It is known that f ] is sound iff fbca v
f ] and this implies that α(lfp(f)) ≤ lfp(fbca) ≤ lfp(f ]) [8]. In
the following, if [[P ]] is specified as fix-point of (a combination of)
predicate-transformers FP : C c−→C, and ρ ∈ uco(C), we denote
by [[P ]]ρ the (fix-point) semantics associated with F bcaP = ρ◦FP ◦ρ.
[[P ]]ρ is the best correct abstract interpretation of P in ρ. In this case
ρ([[P ]]) ≤ [[P ]]ρ.
Abstract non-interference. Abstract non-interference (ANI) [20,
29] is a natural weakening of non-interference by abstract inter-
pretation. Suppose the variables of program split in private (H ) and
public (L ). Let η, ρ ∈ uco(VL ) and φ ∈ uco(VH ), where VL

and VH are the domains of L and H variables. η and ρ charac-
terise respectively the input and the output observation capability

of the attacker. Let φ ∈ uco(VH ), which states what, of the private
data, can flow to the output observation, the so called declassifi-
cation of φ [3, 28, 30]. A program P satisfies ANI, and we write
[η]P (φ⇒ ρ), if ∀h1, h2 ∈ VH , ∀l1, l2 ∈ VL :

η(l1) = η(l2) ∧ φ(h1) = φ(h2) ⇒
ρ([[P ]](h1, l1)L ) = ρ([[P ]](h2, l2)L ). (1)

This notion says that, whenever the attacker is able to observe the
input property η and the output property ρ, then the program does
not disclose anything more than the property φ of private input. It
is possible to systematically characterize the most concrete output
observation for a program, given the input one [20–22]. The idea
is that of abstracting in the same object all the elements that, if
distinguished, would generate a visible flow. On the other hand, we
can characterize the maximal information that a program semantics
allows to flow, namely which is the most abstract property that
needs to be declassified in order to guarantee the non-interference
of the program [20–22].

3. The Ingredients
3.1 Separability and Program Integration.

Let us recall the notions of interleave and separability introduced
in [31]. Consider two disjoint sets of variables X = {x1 . . . xn}
and Y = {y1 . . . yn}. We use notation x̄ to refer to the tuple
〈x1 . . . xn〉, notation xi to refer to the value stored in variable xi,
and notation x̄ to refer to the tuple of values x1 . . .xn. We define
the set of possible states over X and Y as follows:

ΣX:Y =

{
〈x1 . . .xn : y1 . . .yn〉

∣∣∣∣ X = {x1 . . . xn}
Y = {y1 . . . yn}

}
When Y = ∅ we referr to the set of states over X simply as ΣX .
Every trace σ ∈ Σ∗X:Y is of the form σ = 〈x̄1 : ȳ1〉〈x̄2 : ȳ2〉 . . .
with 〈x̄i, ȳi〉 ∈ ΣX:Y for every i. Let ε denote the empty
trace. We define the projection function πX : ΣX:Y → ΣX
as πX(ε) = ε, πX(〈x̄1 : ȳ2〉σ) = 〈x̄1〉πX(σ), and simi-
larly the projection function πY : ΣX:Y → ΣY . According to
[31] we define function interleave : Σ∗X:Y × Σ∗X:Y → Σ∗X:Y

such that interleave(σ1, σ2) = σ iff πX(σ) = πX(σ1) and
πY (σ) = πY (σ2). A set of traces Γ ∈ ΣX:Y satisfies separa-
bility iff it is closed under interleave, namely if ∀σ1, σ2 ∈ Γ then
interleave(σ1, σ2) ∈ Γ.

We model program integration as a function I : P×P−→P that
given two programs combines them into one. Let Var(P ) denote the
variables of programP . We interpret the notions of interleaving and
separability in the context of program integration.

DEFINITION 1. An integration function I : P × P−→P satisfies
separability if for every pair of programs Q and T with disjoint
variables, i.e., Var(Q)∩Var(T ) = ∅, the set of traces [[I(Q,T )]] ∈
℘(Σ∗Var(Q):Var(T )

) is closed for interleave.

This means that, when the integration function satisfies separabil-
ity, the behaviors of programs Q and T are kept separate and in-
dependent in the behavior of the integrated program I(Q,T ). In
other words an integration functions satisfies separability when it
does not add dependences between the programs it composes. In-
deed, when we have separability we believe that it is reasonable to
assume that the behavior of I(Q,T ) restricted to Q coincides ex-



actly with the behaviour ofQ, namely that if I satisfies separability
then ∀Q,T ∈ P : πVar(Q)([[I(Q,T )]]) = [[Q]].

3.2 The Malware Detection Problem.

A malware detector is a function D : P × P → {true, false}
that decides whether a program is infected with a malware or
a metamorphic variant of it. Given M,P ∈ P we denote with
M ↪→ P the fact that program P is infected with malware M . An
ideal metamorphic malware detector should be both sound (never
erroneously claim that a program is infected) and complete (detect
all metamorphic variants), namely it should satisfy the following:

D(M,P ) = true ⇔ ∃M ′ metamorphic variant of M : M ′ ↪→ P

The weaker notions of relative soundness/completeness are used to
certify soundness and completeness of a given malware detector
wrt a class of obfuscations [10, 11] .

DEFINITION 2. Let O be a set of obfuscations. A malware detector
D is sound for O ifD(P,M) = true ⇒ ∃O ∈ O : O(M) ↪→ P .
A malware detector D is complete for O if ∀O ∈ O : O(M) ↪→
P ⇒ D(P,M) = true .

In the following we formalize the notion of infection in terms of
program integration: M ↪→ P iff ∃T. [[P ]] = [[I(M,T )]]. Hence,
the integration function I models infection (we may have different
infection functions). For instance, if the malware is a standard file
infector appending its code to a target file, then the integration is
simply the concatenation of the codes involved and it would be
modeled by an integration function that satisfies separability.

3.3 Higher-order Abstract Noninterference.

In order to model non-interference in code transformations such as
code obfuscation and metamorphism, we consider an higher-order
version of ANI, where the objects of observations are programs in-
stead of values. Hence, we have a part of a program (semantics)
that can change and that is not observable, and the environment
which remains the same up to an observable property. The func-
tion analyzed by HOANI is a program integration function, which
takes the two parts of the program and provides a program as result.
The output observation is the best correct approximation of the re-
sulting program. Consider programs P ∈ P and the corresponding
semantics, i.e., [[P ]]. Hence, we define

η([[P1]]) = η([[P2]]) ∧ φ([[Q1]]) = φ([[Q2]]) ⇒
ρ([[I(Q1, P1)]]) = ρ([[I(Q2, P2)]]) (2)

Note that, the abstractions can be any abstract property on pro-
grams. In the following, we consider HOANI for a particular
family of abstractions, and in particular for semantics’ bca. In
other words, if we have ρ ∈ uco(℘(Σ)), then we consider ρρ ∈
uco(℘(Σ) m−→℘(Σ)) such that ρρ def

= λf. ρfρ [9]. By noting that,
ρρ([[P ]]) = [[P ]]ρ (defined in Sect. 2), we can rewrite Eq. 2 in the
following HOANI notion:

[[P1]]η = [[P2]]η ∧ [[Q1]]φ = [[Q2]]φ =⇒
[[I(Q1, P1)]]ρ = [[I(Q2, P2)]]ρ (3)

EXAMPLE 1. Consider the program fragments Q1, Q2, P1 and P2

in Figure 1, where 10! = 3628800.
Consider, as I (T = [[I]]) the integrating algorithm proposed by

[23], providing as resulting programs I(Q1, P1) and I(Q2, P2) in
Figure 1. Consider the abstract domain ι ∈ uco(℘([−m,m])) of

limited intervals, where m ∈ Z is the maximal integer. In this case
ι(x) = [min(x),max(x)]. Interval analysis is defined in [7], with
standard bca abstract interpretations for arithmetic operations on
intervals: �, ⊕, 	. Then we have that

[[Q1]]ι = [[Q2]]ι ∧ [[P1]]ι = [[P2]]ι =⇒
[[I(Q1, P1)]]ι = [[I(Q2, P2)]]ι

This HOANI property of the considered integration algorithm tells
us that we can vary the involved programs leaving unchanged the
variables’ intervals without inducing any variation in the interval
analysis of the resulting program.

4. Malware detection by analyzing program
dependencies

4.1 Abstract noninterference-based malware detector

In this section, we define a notion of malware detector inspired by
higher order abstract noninterference, let us call it ANIMD. The
idea is that a program P is infected with a possibly metamorphic
variant of malware M if it is (semantically) equivalent, at least
up to an observation (program analysis), to the integration of a
code segment T with the code of the malware M . Formally, given
ρ ∈ uco(℘(Σ∗Var(P )

)):

ANIMDρ(M,P ) = true ⇔ ∃T ∈ P : [[I(M,T )]]ρ = [[P ]]ρ

Namely a program P is infected with a malware M if it behaves
wrt ρ like a target program T infected with malware M .

Let φ ∈ uco(℘(Σ∗Var(M)
)) be property precisely characteriz-

ing the metamorphic engine of a malware. Namely suppose that
the metamorphic transformations due to a metamorphic engine ME
preserve the semantic property φ, and each transformation chang-
ing this property cannot be generated by ME. We can formalize
this concepts by considering the set of all the obfuscation transfor-
mations that being generated by the same metamorphic engine, are
precisely characterized by a property φ:

Oφ =
{
O
∣∣ ∀P,Q ∈ P. [[P ]]φ = [[Q]]φ ⇔ P = O(Q)

}
.

This are exactly all and only the transformations used by the mal-
ware as stealthing technique. We can either assume to know this
property, or given a set of metamorphic malware variants we can
derive it and then use it to model the ME (possibly catching also
unseen variants). Results in [13, 14] can be useful for deriving the
semantic property preserved by a set of obfuscating transforma-
tions. First of all, let us rewrite HOANI in the context of malware
detector: by changing the version of the malware, up to an observ-
able property φ, the malware detector analysing ρ is not deceived
by the differences between the versions and recognize the same in-
fection in both the analyzed programs. Hence, we define HOANIφρ :

[[M ]]φ = [[M ′]]φ =⇒ [[I(M,P )]]ρ = [[I(M ′, P )]]ρ (4)

At this point we study the precision of the malware detectors based
on HOANI in terms of soundness and completeness.

THEOREM 1 (Soundness). Consider the set

Oφ =
{
O
∣∣ ∀P,Q ∈ P. [[P ]]φ = [[Q]]φ ⇔ P = O(Q)

}
then ANIMDρ is sound for Oφ whenever:

[[M ]]φ = [[M ′]]φ ⇐= [[I(M,P )]]ρ = [[I(M ′, P )]]ρ (5)



Q1 :


prod = 1;x = 1;
while x < 11 {

prod = prod · x;
x = x+ 1};

Q2 :


prod = 10!;x = 11;

while x > 1 {
x = x− 1;
prod = prod/x};

P1 :


sum = 0;x = 1;
while x < 11 {

sum = sum+ x;
x = x+ 1};

P2 :


sum = 55;x = 11;

while x > 1 {
x = x− 1;
sum = sum− x};

I(Q1, P1) :


prod = 1; sum = 0;
x = 1;
while x < 11 {

prod = prod · x;
sum = sum+ x;
x = x+ 1};

I(Q2, P2) :


prod = 10!; sum = 55;
x = 11;

while x > 1 {
x = x− 1;
prod = prod/x;
sum = sum− x};

Figure 1. Example

PROOF. If ∃T ∈ P : [[I(M,T )]]ρ = [[P ]]ρ then we have to prove
that ∃O ∈ Oφ : O(M) ↪→ P . Then, suppose [[I(M,T )]]ρ = [[P ]]ρ,
then The executions of T are in P , therefore suppose M1 ∈ P
is such that P = I(M1, T ), hence [[I(M,T )]]ρ = [[I(M1, T )]]ρ,
which implies by hypothesis that [[M ]]φ = [[M1]]φ, namely ∃O ∈ O
such that M1 = O(M) and [[P ]] = [[I(M1, T )]] = [[I(O(M), T )]].
Hence, by definition we have O(M) ↪→ P . 2

THEOREM 2 (Completeness). If HOANIφρ holds, then ANIMDρ

is complete for Oφ.

PROOF. We have to prove that, if ∃O ∈ Oφ : O(M) ↪→ P then
∃T ∈ P : [[I(M,T )]]ρ = [[P ]]ρ, namely ANIMDρ is complete for
Oφ. Suppose that ∃O ∈ Oφ : O(M) ↪→ P , then ∃T ∈ P. [[P ]] =
[[I(O(M), T )]]. Now, since [[O(M)]]φ = [[M ]]φ by construction of
Oφ, then by hypothesis we have [[I(M,T )]]ρ = [[I(O(M), T )]]ρ

which implies [[P ]]ρ = [[I(M,T )]]ρ. 2

4.2 Certifying and Training Malware Detectors.

In this section we discuss how we can exploit the HOANI frame-
work in order to understand how we can certify the “power” of a
malware detector in terms of the classes of metamorphic engines
unable to deceive it, and how we can do a training of malware
detectors starting from a class of obfuscation techniques character-
izing a metamorphic engine that we aim to defeat. In this way we
could formally understand the relation between the metamorphic
invariant property and the analysis performed by the detector.
The ANI framework allows to describe two transformations, one
characterizing the most concrete output observation unable to ob-
serve interferences, and the other characterizing the maximal prop-
erty that do not cause interference [20]. We believe that these two
transformations, once lifted high order, would provide exactly a
way for certifying and training malware detectors. The main dif-
ference between ANI and HOANI is that while abstracting data
means to consider properties of data, i.e., sets of values; abstracting
programs means to consider the best correct approximation of their
semantics, i.e., the abstraction of a function is a more abstract func-
tion instead of a set of functions. This difference makes not so im-
mediate to extend ANI from data to functions and requires a deeper

analysis of a higher-order notion of abstract non-interference. Note
that, because the domain transformers introduced for ANI [20], ex-
tended to the definition above of HOANI would generate sets of
programs and therefore of semantics (i.e., functions), which in gen-
eral represent program/semantics properties, our idea is to show
how we can build a correspondence between semantic properties,
i.e., sets of semantic functions, and best correct approximations.
In other words, we can show that we can always associate a best
correct approximation with any set of functions, while we can con-
struct a set of functions corresponding to any given best correct
approximation of a given function.
Certification: Given ρ in HOANI we can characterize the max-
imal amount of information released φ. This property φ is non-
redundant, i.e., any change of φ do cause interference, and it is
such that when it is invariant then there is no interference in the ob-
servation ρ. Hence, if we start from a malware detector ANIMDρ,
we can characterize the property φ such that ANIMDρ is sound
and complete for Oφ.
Training: Given a property φ the HOANI framework allows to
characterize the most concrete observation unable to observe inter-
ferences when the property φ is unchanged. In other words, if we
start from a set of obfuscations O, whose semantic invariant is the
property φ then we can characterize the most concrete ρ such that
the corresponding ANIMDρ is complete for O. Namely, we can
modify the observation capability of the malware detector depend-
ing in the class of obfuscation we aim to defeat.

4.3 What’s new in ANIMD?

In this section we compare the prosed ANIMD with the closest
framework of semantic-based malware detectors based on abstract
interpretation [10, 11]. The two approaches are clearly related since
both model the malware detector as parametric on the program
analysis that it is able to perform. Moreover, in both the approaches
the malware code has in some way to be separated by the original
program and both the approaches characterizes classes of obfusca-
tion techniques, those used by a metamorphic engine, in terms of
the invariant property left unchanged by the transformations. This
means that we can quite easily compare these two approach and
therefore show that ANIMD generalize all these aspects by con-
sidering the best correct approximation of the program semantics



instead of the output abstraction, and by considering a generic in-
tegration function instead of the trivial composition of programs.
Hence, let us first recall the basic definitions of the first semantic
malware detector [10, 11].

4.4 Semantic Malware Detector

The idea of [10, 11] is to classify a program P as infected by
a possibly metamorphic variant of malware M if there exists a
portion of P whose abstract behavior corresponds to the abstract
behavior of M . This implicitly assumes that infection does not
add dependences between the malware and the target program,
namely that the integration function that models infection satisfies
separability. Given ρ ∈ uco(℘(ΣVar(M))), we can rewrite the
semantic malware detector of [10, 11] as:

SMDρ(M,P ) = true ⇔
∃Q,T ∈ P : [[P ]] = [[I(Q,T )]] ∧ ρ([[M ]]) = ρ([[Q]])

SMD vs ANIMD.

Observe that SMDρ decides infection by comparing the abstraction
of the concrete semantics of programs, i.e., ρ([[M ]]) = ρ([[Q]]),
while ANIMDρ decides infection by comparing the abstract se-
mantics of programs, i.e., [[I(M,T )]]ρ = [[P ]]ρ. The abstraction
of the concrete semantics and the abstract computation of the se-
mantics collapse when the abstract domain ρ is complete for the
computation of program semantics as shown by the following re-
sult.

LEMMA 1. If f is complete for ρ, i.e., ρ◦f = ρ◦f◦ρ then we can
apply the fix point Kleene transfer, namely ρ lfpf = lfp ρ◦f◦ρ.

PROOF. We prove that ∀n ∈ N. ρ◦fn = (ρ◦f◦ρ)n. The base is
trivial by the completeness hypothesis. Suppose it holds for n, let
us prove it holds also for n+ 1.

ρ◦fn+1 = (ρ◦fn)◦f = (ρ◦f◦ρ)n◦f
(By inductive hyp.)

= (ρ◦f◦ρ)n−1◦ρ◦f◦ρ◦f
= (ρ◦f◦ρ)n−1◦ρ◦f◦ρ◦(ρ◦f)

(By idempotence of ρ)
= (ρ◦f◦ρ)n−1◦(ρ◦f◦ρ)◦(ρ◦f◦ρ)

(By completeness hyp.)
= (ρ◦f◦ρ)n+1

2

Thus, in order to compare SMDρ and ANIMDρ we have to

assume the completeness of the domain ρ for the semantic compu-
tation, i.e., ∀P ∈ P : ρ([[P ]]) = ρ(lfpFP ) = lfpρ◦FP ◦ρ = [[P ]]ρ.

Another difference between SMD and ANIMD is given by the
computational domain that they consider: SMD observes proper-
ties of the behaviour of the malware, while ANIMD properties of
the behaviour of the whole infected program. Thus, in order to un-
derstand their relation we define the following domain extension:
Given ρ ∈ uco(℘(Σ∗Var(M)

)) we denote ρ̃ ∈ uco(℘(Σ∗Var(M)
))×

uco(℘(Σ∗Var(T )
)) any abstraction that is ρ on Var(M), i.e., ρ̃ =

ρ× η where η ∈ uco(℘(Σ∗Var(T )
)).

THEOREM 3. Consider an integration function I that satisfies sep-
arability, the abstract domains ρ and ρ̃ that are complete for the
computation of program semantics and assume that Equation 4 and
Equation 5 hold, then SMDρ(M,P )⇔ ANIMDρ̃(M,P ).

PROOF.

SMDρ(M,P )
⇔ ∃Q,T ∈ P : [[P ]] = [[I(Q,T )]] ∧ ρ([[M ]]) = ρ([[Q]])

(By Lemma 1)
⇔ ∃Q,T ∈ P : [[P ]] = [[I(Q,T )]] ∧ [[M ]]ρ = [[Q]]ρ

(By Equation 4 and Equation 5)
⇔ ∃Q,T ∈ P : [[P ]] = [[I(Q,T )]]

∧[[I(M,T )]]ρ̃ = [[I(Q,T )]]ρ̃

⇔ ∃T ∈ P : [[P ]]ρ̃ = [[I(M,T )]]ρ̃

⇔ ANIMDρ̃(M,P )

2

5. Related works
The results contained in this papers provide insights and ideas for
the development of new techniques for the detection of metamor-
phic malware, for the analysis of obfuscating code transformations,
for the analysis of similarity and dependences between different
code fragments.

There is a wide body of literature presenting techniques for mal-
ware detection that are resilient to common metamorphic transfor-
mations. These techniques typically study a certain number of pro-
grams infected with different malware variants and then build an
abstract behavioral model of a malware that abstracts from the de-
tails changes by the metamorphism, while attempting to consider
the invariant property among the different malware variants. Let
us briefly mention some of these works. In [24] the authors model
the malware as a formula in the logic CTPL, which is an extension
of CTL able to handle register renaming. They develop a model
checking algorithm for CTPL and use it to verify infection. In [6]
the authors model the malware as a template that expresses its mali-
cious intent. The template uses symbolic variable/constants to han-
dle variable and register renaming, and it is related to the malware
control flow graph in order to deal with code reordering. In [5]
the authors use finite state automata for approximating programs,
namely they approximate the set of possible execution traces of
a program with a regular language on an alphabet that expresses
some instruction properties (like being a system call). In order to be
independent from implementation details (and therefore cope with
metamorphism) the regular language is then abstracted with respect
to a set of predefined behavioral patterns. A behavioral pattern pro-
vides a specification of the set of strings that satisfy a high level
property. This detection strategy is able to recognize all the meta-
morphic variants that are considered by the behavioral patterns. In
[1, 2] the authors model malware as tree automata and then use tree
automata inference for capturing the essence of being malicious.
Their idea is to focus on the system call behaviour of the malware
and to use dynamic analysis in order to extract the data flow depen-
dences between system calls.

Some researchers have tried to detect metamorphic malware
by modeling the metamorphic engine as formal grammars and au-
tomata [18, 32, 35]. These works are promising but they all need
a deep analysis and understanding of the metamorphic engine. In
[15] the authors provide a forma framework for approximating the
metamorphic engine with no prior knowledge on the kind of trans-
formations it performs. The metamorphic engine is typically im-
plemented as a set of obfuscating transformations, thus in order to
understand the inner working of the metamorphic engine it is im-



portant to understand the obfuscating transformations that it adopts.
Code obfuscation has been formally studied with respects to the ef-
fects that it has on program semantics in [12–14, 16, 17]. Relevant
works on formal approaches to obfuscation include papers that dis-
cuss the impossibility and positive results on obfuscation based on
cryptography [e.g., [4, 27]], papers that discuss the existing defini-
tions of obfuscation such as [25], and many other works that can be
found in the literature.

Metamorphic malware variants have different syntax while
sharing the same semantics up to some level of abstraction, so they
have similar behaviors and different syntax. Thus, a possible way to
identify these code variants is to analyze differences and similarity
between code fragments. As regarding the detection of malware,
similarity and differences have to be studied at the binary level. For
this reason, recently, researchers have started to address this prob-
lem by developing tools for the analysis of binary code similarities
and differences. For example BinDiff [36] and BinHunt [19] are
tools that address the problem of finding differences in two binary
executables that are successive releases of the same program. The
comparison is motivated by the desire to find the location of bug
fixes in the latter version. They both work by constructing the CFG
of each function and by using graph isomorphism to pair match-
ing functions. To conclude we mention BinJuice [26], which is a
tool for recognizing equivalent binary fragments by extracting their
‘juice’. BinJuice symbolically interprets individual blocks of a bi-
nary to extract their semantics, namely the effect of the execution of
the block on the program state. The semantics is then generalized
to juice by replacing register names and literal constants by typed,
logical variables and by computing a kind of normal form of alge-
braic expressions. The juice is then use to decide the equivalence
of different binary code fragments.

To the best of our knowledge, this is the first attempt to lift the
non-interference theory high order in order to analyze the depen-
dences between the execution of different programs in the same
environment.

6. Conclusions and future works
In this work we have begun to investigate the possibility of exploit-
ing the ANI theory for detecting malware infection. To this end
we have started to reason on an high order version of the standard
ANI framework that allows to reason on dependences and inter-
ferences among programs (instead of data). We have formalized
the malware detection problem in terms of HOANI and we have
proved that the malware detector ANIMD based on HOANI gen-
eralizes the semantic malware detector SMD proposed in [10, 11].
An interesting feature of ANIMD is that it is parametric on the
infection strategy used by the malware and that it can model possi-
ble interactions between the malware and the target program. An-
other reason that makes our approach promising is the possibility to
develop systematic techniques for certifying and training malware
detectors. This can be done by lifting high order the ANI trans-
formations that characterize respectively the most concrete output
observation unable to detect interferences, and the maximal prop-
erty that do not cause interference. Indeed, the ability of certifying
the precision of a given malware detector, and the possibility of de-
riving the best malware detector wrt a metamorphic engine are two
important challenges in the battle against metamorphic malware.
To this end we have to deeply understand and develop the HOANI
theory beyond ANIMD.

Based on these results, our goal is to develop a systematic strat-
egy for the design of the best malware detector for a given class of
metamorphic code variants. To this end we first need to develop a
technique for learning the metamorphic engine ME that has gener-
ated the considered malware variants. Next we have to character-
ize the invariant property φ of all the generated variants in order
to derive the observation property ρ that characterizes detection for
ANIMDρ. We believe that this theoretical identification of the pro-
gram property ρ that the malware detector should consider in order
to handle metamorphism for ME can given useful insight in the de-
sign and implementation of a malware detector tool able to defeat
ME.
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