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Fioravante Capone,1,2 Sandra Miccinilli,3 Giovanni Pellegrino,4 Loredana Zollo,5

Davide Simonetti,5 Federica Bressi,3 Lucia Florio,1 Federico Ranieri,1 Emma Falato,1

Alessandro Di Santo,1 Alessio Pepe,1 Eugenio Guglielmelli,5 Silvia Sterzi,3

and Vincenzo Di Lazzaro1,2

1Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma,
Via Álvaro del Portillo 21, 00128 Rome, Italy
2Fondazione Alberto Sordi-Research Institute for Ageing, Via Álvaro del Portillo 5, 00128 Rome, Italy
3Unit of Physical and Rehabilitation Medicine, Department of Medicine, Università Campus Bio-Medico di Roma,
Via Álvaro del Portillo 21, 00128 Rome, Italy
4San Camillo Hospital IRCCS, Venice, Italy
5Unit of Biomedical Robotics and Biomicrosystems, Department of Engineering, Università Campus Bio-Medico di Roma,
Via Álvaro del Portillo 21, 00128 Rome, Italy

Correspondence should be addressed to Fioravante Capone; f.capone@unicampus.it

Received 12 June 2017; Revised 21 October 2017; Accepted 26 October 2017; Published 10 December 2017

Academic Editor: Dario Farina

Copyright © 2017 Fioravante Capone et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is properly cited.

The efficacy of standard rehabilitative therapy for improving upper limb functions after stroke is limited; thus, alternative strategies
are needed. Vagus nerve stimulation (VNS) paired with rehabilitation is a promising approach, but the invasiveness of this
technique limits its clinical application. Recently, a noninvasive method to stimulate vagus nerve has been developed. The aim
of the present study was to explore whether noninvasive VNS combined with robotic rehabilitation can enhance upper limb
functionality in chronic stroke. Safety and efficacy of this combination have been assessed within a proof-of-principle, double-
blind, semirandomized, sham-controlled trial. Fourteen patients with either ischemic or haemorrhagic chronic stroke were
randomized to robot-assisted therapy associated with real or sham VNS, delivered for 10 working days. Efficacy was evaluated
by change in upper extremity Fugl–Meyer score. After intervention, there were no adverse events and Fugl–Meyer scores were
significantly better in the real group compared to the sham group. Our pilot study confirms that VNS is feasible in stroke
patients and can produce a slight clinical improvement in association to robotic rehabilitation. Compared to traditional
stimulation, noninvasive VNS seems to be safer and more tolerable. Further studies are needed to confirm the efficacy of this
innovative approach.

1. Introduction

Upper limb impairment is a common consequence of stroke
with a deep impact on patient’s quality of life. Since the effi-
cacy of standard rehabilitative therapy is limited, alternative
strategies are needed. Robot-assisted rehabilitation can be
useful in stroke patients because it allows an intensive as well
as task-specific training characterized by high repetition of

movements in a strongly motivating environment [1–3].
Several studies have explored the possibility to potentiate
the effect of robotic therapy by the association with nonin-
vasive human brain stimulation techniques, such as repet-
itive transcranial magnetic stimulation (rTMS), that can
induce neuroplasticity via long-term potentiation-/depres-
sion- (LTP-/LTD-) like phenomena [4]. Although intriguing,
the evidence in support of this strategy remains low [5, 6].
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Indeed, the literature analysis of the published data seems to
demonstrate that the association of rTMS with robotic train-
ing has the same clinical gain derived from robotic therapy
alone. Moreover, rTMS is contraindicated in patients who
suffered from haemorrhagic stroke for the risk of inducing
seizures [7]. For these reasons, there is great interest in the
development of alternative techniques of neuromodulation
that can foster the effect of robotic therapy.

Vagus nerve stimulation (VNS) is approved as adjunctive
treatment for refractory epilepsy and depression but is cur-
rently under investigation for a wide range of neurological
diseases [8]. In particular, recent studies have demonstrated
that VNS paired with rehabilitation significantly improves
forelimb strength and movement speed in rat models of
ischemic [9] and haemorrhagic stroke [10]. VNS is believed
to enhance the benefits of rehabilitation by promoting neuro-
plasticity [11]. Preliminary data [12] have showed that such
approach is also feasible in patients; however, the diffusion
of this technique is limited by its invasiveness. Indeed, VNS
requires the surgical implantation of a stimulator of the cervi-
cal branch of the vagus nerve. Recently, it has been proposed a
noninvasive technique that consists of transcutaneous stimu-
lation of the vagus nerve (tVNS) in external auditory channel
at the inner side of the tragus. Both neuroimaging [13] and
neurophysiological [14] studies have demonstrated that the
effect of tVNS on brain activity is quite similar to the effect
induced by traditional, invasive VNS.

The aim of the present study was to explore whether
tVNS can enhance the benefit induced by robotic rehabilita-
tion on motor function of the upper limb in chronic stroke.
Safety and efficacy of this combination have been assessed
within a proof-of-principle, double-blind, semirandomized,
sham-controlled trial.

2. Material and Methods

The study was performed accordingly to the Declaration of
Helsinki and was approved by the Local Ethics Committee.
The study was proposed to patients attending the outpatient
clinic for cerebrovascular disorders of Campus Bio-Medico
University Hospital. Inclusion criteria were as follows: (a)
first-ever, ischemic or haemorrhagic stroke at least 1 year ear-
lier; (b) hand function impairment; (c) and ability to give
informed consent and comprehend instructions. Exclusion
criteria were as follows: (a) previous surgical intervention
on vagus nerve; (b) low hearth rate (<60 bpm); (c) cognitive
impairment or any substantial decrease in alertness, language
reception, or attention that might interfere with understand-
ing instructions for motor testing; (d) apraxia; (e) excessive
pain in any joint of the paretic extremity; (f) advanced liver,
kidney, cardiac, or pulmonary disease; (g) history of signifi-
cant alcohol or drug abuse; (h) depression or use of neuropsy-
chotropic drugs such as antidepressants or benzodiazepines;
(i) and pregnancy.

Fourteen patients with either ischemic or haemorrhagic
chronic stroke were randomized to robot-assisted therapy
associated with real or sham tVNS, delivered for 10 working
days. Efficacy was evaluated by change in upper extremity
Fugl–Meyer assessment (FMA) score. To assess safety,

during the stimulation, heart rate (HR) and blood pressure
(BP) were monitored. Moreover, to test the tolerability of
tVNS, subjects were questioned about the presence of
unpleasant sensations or other discomforts. Each day,
patients received a session of robotic therapy immediately
following the real or sham stimulation. All patients were eval-
uated at baseline (baseline) and just after the two weeks of
treatment (post). At baseline, to evaluate neurological
impairment and disability, we also included the following
scales: National Institute of Health Stroke Scale (NIHSS),
Rankin Scale, Barthel Index, and Modified Ashworth Scale.
Spasticity was assessed by Modified Ashworth Scale at four
different joints of affected arm: the shoulder, elbow, wrist,
and fingers. For each patient, a cumulative score was
obtained by summing the scores obtained in the four joints.
The cumulative score ranges from 0 (no spasticity) to 16
(maximum spasticity, i.e., score 4 in all the considered joints).

The stimulation of the auricular branch of the vagus
nerve was performed through an electric stimulator (Twis-
ter—EBM) and two Ag-AgCl electrodes (5mm in diameter)
placed in the left external acoustic meatus at the inner side
of the tragus. For sham stimulation, electrodes were attached
to the left ear lobe, an anatomical area that is outside the inner-
vation of the auricular branch of the vagus nerve. tVNS was
delivered as trains lasting 30 s and composed by 600 pulses
(intratrain pulse frequency=20Hz; pulse duration=0.3ms)
repeated every 5min for 60min. The intensity of stimulation
was individually adjusted to a level ranging above the detec-
tion threshold and below the pain threshold. To reduce the
risk of cardiac side effects, only the left ear was stimulated
because vagal fibers to the heart are supposed to originate
from the right side [15].

Robotic therapy was delivered at proximal or at distal
segment of the affected limb according to the degree of
impairment and the choice of the physician. The InMotion2
shoulder-elbow system (Interactive Motion Technologies
Inc.) [16] was used for proximal limb segments and the
InMotion3 wrist system (Interactive Motion Technologies
Inc.) [17] for the treatment of distal segments. InMotion2
robot consists of a direct-drive mechanism that provides
two translational degrees of freedom for elbow and forearm
motion. Robot movement is enabled thanks to an impedance
control that guides or perturbs the patient’s movement. The
InMotion3 robot enables unilateral wrist training character-
ized by low endpoint inertia and friction. Flexion-extension
and radial-ulnar deviation are guaranteed thanks to two
side-mounted actuators connected to a differential mecha-
nism, while pronation-supination is actuated by another
DC motor. An impedance control is implemented to assist
patient’s movement. Each day of robotic treatment consisted
of three sessions of 320 assisted point-to-point movements,
from the center to eight outbound targets, interspersed by
four sessions of 16 unassisted recorded point-to-point move-
ments. Robot assistance at each session was tuned on
patients’ performance during the 16 point-to-point sessions.
During training, patients were required to move with a self-
paced speed in a maximum time slot of 3 s. Robotic treatment
was delivered daily for 10 consecutive working days, immedi-
ately after the end of real or sham tVNS. A physical and
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rehabilitation medicine doctor attended and assisted patients
during treatment. During the intervention period, patients
did not receive any additional physical therapy. Pharmaco-
logical therapy was also unchanged. Researchers randomiz-
ing patients and researchers delivering tVNS were not
involved in outcome assessments and data analysis; more-
over, rehabilitation doctors, patients, and researchers
involved in data analysis were blind to the type of tVNS deliv-
ered (i.e., sham or real), in order to obtain a double-blind
study design.

2.1. Statistics. Statistical analysis was performed using the
IBM SPSS Statistics (Ver. 24). After checking that the base-
line clinical measures were not different between groups,
postintervention FMA of the two groups was expressed as
percentage of baseline scores and compared by means of
Mann–Whitney test.

In order to assess the safety of the stimulation, we mea-
sured systolic blood pressure, diastolic blood pressure, and
heart rate, before and after each stimulation, every day, for
ten days. For each of these measures, we performed a
mixed-model repeated ANOVA with days (ten levels) and
prepost (2 levels) as within subject factors and group (two
levels: real and sham) as between subject factor. Correction
for sphericity violations and multiple comparisons were
applied as needed.

3. Results

Seven patients were randomized to robot-assisted therapy
associated with real tVNS and seven patients to robot-
assisted therapy associated with sham tVNS. One sham
patient withdrew consent before the first session of treatment.
Another sham patient withdrew because of difficulty in reach-
ing the hospital after the second day of treatment. Data of
these patients were not included in the analysis. Thus, a total
of 12 patients completed the study: 7 real (mean age: 53.7
± 15.6 years, 4males) and 5 sham (mean age: 55.6± 15.9 years,
3 males). The real and sham groups were not significantly dif-
ferent regarding age, sex, type of stroke (haemorrhagic versus
ischemic), and side of lesion. Time elapsed from stroke onset
and clinical status at baseline (in particular, FMA score) were
different between the two groups, but this difference was not
statistically significant (p > 0 200 consistently) (Table 1).

The treatment was safe and tolerable. There were no
adverse events, unpleasant sensations, or other discomforts.
None of the patients required to stop stimulation. For systolic
BP, the ANOVA mixed model showed no significant main
effects nor significant interactions with the factor days (p >
0 200 consistently). We however found a significant prepost
by group interaction (F(1.9) = 7.335, p = 0 024) which was
largely related to the intergroup systolic pressure difference
(F(1.9) = 9.986, p = 0 012), as no prepost significant differ-
ences were found within each group. This analysis unveiled
that the two groups had an average significant systolic blood
pressure differences but the stimulation has no significant
effect on this parameter (Figure 1). Similar behaviour showed
the diastolic blood pressure, for which we only found a signif-
icant prepost ∗group interaction (F(1.9) = 7.328, p = 0 024).

No significant group differences nor prepost differences in
each group were found (Figure 2). For the HR measure, we
only found a significant prepost main effect (F(1.9) = 32.497,
p < 0 001) that was confirmed in both groups and corre-
sponded to a mild and not clinically relevant reduction of
heart rate (2.3 bpm in the real group and 4.7 bpm in the sham
group) (Figure 3).

After intervention, FMA scores were significantly better
in the real group as compared to the sham group (Mann–
Whitney U = 5 00, p = 0 048) (Figure 4). Individual data,
including the kind of treatment (robotics and VNS), the
intensity of VNS, and the changes in FMA, HR, and blood
pressure are reported in Table 2.

4. Discussion

This is the first study that has evaluated the feasibility of
tVNS in chronic both ischemic and haemorrhagic stroke

Table 1: Demographic and clinical characteristics of the patients at
baseline.

Real (N = 7) Sham (N = 5) p value

Age (years) 53.71± 5.88 55.60± 7.12 1.00a

Sex (M) 4 3 0.447b

Months since stroke 93.71± 38.81 46.00± 21.85 0.432a

Fugl–Meyer 22.29± 3.51 32.60± 6.43 0.268a

NIHSS 6.14± 1.50 4.80± 0.74 0.639a

Barthel Index 72.14± 9.81 81.00± 9.00 0.639a

Modified Rankin 2.86± 0.40 2.20± 0.58 0.432a

Modified Ashworth Scale
cumulative score

6.86± 1.16 5.40± 1.32 0.343a

All data are expressed as mean ± standard error. aMann–Whitney test;
bchi-square test.
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Figure 1: The effect of tVNS on systolic BP.
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patients. Our data demonstrate that tVNS is safe and, com-
bined to robot-assisted rehabilitation, can induce a slight
but significant improvement of arm functionality. The treat-
ment was well tolerated, and no adverse events or discom-
forts were reported from patients. In particular, we have
not recorded any side effect that can occur with invasive
VNS such as vocal cord palsy, dysphagia, nausea, taste distur-
bance, hoarseness, or neck tingling [12]. Since vagus nerve
influences cardiac activity [18], we have carefully monitored
HR and BP during tVNS session in order to identify any
potential cardiovascular harm. We have not observed any
clinically significant change in cardiovascular parameters
throughout the stimulation. A slight and asymptomatic

reduction of HRwas observed both in the real and in the sham
groups. Because this was present in both groups, it was not
related to tVNS and thus represents an unspecific change that
might be related to different causes such as patient relaxation
during the course of the study. In a previous, randomized, pla-
cebo-controlled, double-blind study on ten healthy subjects
[14], we have showed that tVNS does not change HR and
BP. Similar results have been obtained from Shim et al. [19]
that have treated thirty patients with refractory chronic tinni-
tus. Taken together, these findings suggest that tVNS is a safe
technique that does not negatively influence cardiac function-
ality and can be used in stroke patients.

Even though this was a proof-of-principle study
mainly aimed to demonstrate the feasibility of tVNS, our
results suggest that the combination of vagal stimulation
and robotic rehabilitation can improve arm functionality
in chronic stroke patients. Indeed, both real and sham
patients improved after the intervention but the change
in FMA was significantly higher for the real group (5.4
versus 2.8 points; p = 0 048). This change, although slight,
is considered clinically significant in chronic patients [20],
especially in those with severe impairment of upper limb
function [2]. A potential benefit of invasive VNS in
chronic stroke has been recently described both in animal
model [21] and in patients [12]. In a rat model of chronic
stroke, Khodaparast et al. [21] have demonstrated that VNS
paired with rehabilitative training significantly improves
recovery of forelimb function compared to rehabilitation
alone. Interestingly, ischemic lesion size is not reduced by
VNS. According to the authors, this finding suggests that,
in chronic stroke, VNS promotes recovery through a mech-
anism independent of neuroprotection, most likely by
inducing neuroplasticity. This idea is further supported by
additional experimental data showing that VNS increases
levels of brain-derived neurotrophic factor (BDNF) and
neurotransmitters such as noradrenaline linked to neuro-
plasticity and recovery after brain lesion [22, 23].

The feasibility of VNS in chronic stroke patients has
been recently evaluated by a clinical trial involving twenty-
one patients randomized to VNS plus rehabilitation or
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rehabilitation alone [12]. VNS has been performed by a sur-
gically implanted device producing stimulation paired with
rehabilitative exercises. The authors reported some minor
adverse effects related to stimulating device, but no serious
adverse events were observed. Arm functionality, measured
by FMA, improved in both groups but more in the VNS
group (between-group difference, 5.7 points). In this trial,
VNS was delivered simultaneously with the rehabilitative
training. Indeed, animal studies [21] have demonstrated that
the timing of VNS-rehabilitation coupling is essential
because recovery does not improve when VNS follows reha-
bilitation. This result supports the idea that the synergistic
effect of VNS and rehabilitation depends on neuroplasticity,
a timing-dependent phenomenon. Our study extends this
concept demonstrating that also noninvasive VNS delivered
before rehabilitation can ameliorate arm functionality. As
described for rTMS, tVNS could increase the effect of reha-
bilitation by producing a priming effect on subsequent
motor training [24].

Although intriguing, the results of our study, in particular
the effect on FMA, should be considered cautiously. Indeed,
the present study has some important limitations such as
the small sample size, the use of different kind of robotic
training, and the lack of a long-term follow-up.

5. Conclusions

Our pilot study confirms that VNS is feasible and safe in
stroke patients and can produce a slight clinical improve-
ment in association to robotic rehabilitation. Compared to
traditional, invasive stimulation, tVNS seems to be safer
and more tolerable. Further studies are needed to confirm
efficacy and unveil the mechanisms of action of this innova-
tive approach.
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