
World Journal of
Stem Cells

World J Stem Cells  2019 November 26; 11(11): 904-1019

ISSN 1948-0210 (online)

Published by Baishideng Publishing Group Inc



W J S C World Journal of
Stem Cells

Contents Monthly  Volume 11  Number 11  November 26, 2019

REVIEW
904 Unexpected encounter of the parasitic kind

Matthews H, Noulin F

920 Colon cancer stemness as a reversible epigenetic state: Implications for anticancer therapies
Vincent A, Ouelkdite-Oumouchal A, Souidi M, Leclerc J, Neve B, Van Seuningen I

937 CRISPR/Cas system: An emerging technology in stem cell research
Valenti MT, Serena M, Carbonare LD, Zipeto D

957 Cytokine interplay among the diseased retina, inflammatory cells and mesenchymal stem cells - a clue to

stem cell-based therapy
Holan V, Hermankova B, Krulova M, Zajicova A

968 Developments in cell culture systems for human pluripotent stem cells
Liu W, Deng C, Godoy-Parejo C, Zhang Y, Chen G

MINIREVIEWS
982 Monitoring maturation of neural stem cell grafts within a host microenvironment

Kopach O

ORIGINAL ARTICLE

Basic Study

990 Ameliorating liver fibrosis in an animal model using the secretome released from miR-122-transfected

adipose-derived stem cells
Kim KH, Lee JI, Kim OH, Hong HE, Kwak BJ, Choi HJ, Ahn J, Lee TY, Lee SC, Kim SJ

SYSTEMATIC REVIEW
1005 In vitro differentiation capacity of human breastmilk stem cells: A systematic review

Pacheco CMR, Ferreira PE, Saçaki CS, Tannous LA, Zotarelli-Filho IJ, Guarita-Souza LC, de Carvalho KAT

WJSC https://www.wjgnet.com November 26, 2019 Volume 11 Issue 11I

https://www.wjgnet.com


Contents
World Journal of Stem Cells

Volume 11  Number 11  November 26, 2019

ABOUT COVER Editorial Board Member of World Journal of Stem Cells, Ko-Tung Chang,
PhD, Associate Professor, Department of Biological Science and
Technology, National Pingtung University of Science and Technology,
Pingtung 91201, Taiwan

AIMS AND SCOPE The primary aim of World Journal of Stem Cells (WJSC, World J Stem Cells) is
to provide scholars and readers from various fields of stem cells with a
platform to publish high-quality basic and clinical research articles and
communicate their research findings online.
  WJSC publishes articles reporting research results obtained in the field of
stem cell biology and regenerative medicine, related to the wide range of
stem cells including embryonic stem cells, germline stem cells, tissue-
specific stem cells, adult stem cells, mesenchymal stromal cells, induced
pluripotent stem cells, embryoid bodies, embryonal carcinoma stem cells,
hemangioblasts, hematopoietic stem cells, lymphoid progenitor cells,
myeloid progenitor cells, etc.

INDEXING/ABSTRACTING The WJSC is now indexed in PubMed, PubMed Central, Science Citation Index

Expanded (also known as SciSearch®), Journal Citation Reports/Science Edition,

Biological Abstracts, and BIOSIS Previews. The 2019 Edition of Journal Citation

Reports cites the 2018 impact factor for WJSC as 3.534 (5-year impact factor: N/A),

ranking WJSC as 16 among 26 journals in Cell and Tissue Engineering (quartile in

category Q3), and 94 among 193 journals in Cell Biology (quartile in category Q2).

RESPONSIBLE EDITORS FOR
THIS ISSUE

Responsible Electronic Editor: Yan-Xia Xing

Proofing Production Department Director: Yun-Xiaojian Wu

NAME OF JOURNAL
World Journal of Stem Cells

ISSN
ISSN 1948-0210 (online)

LAUNCH DATE
December 31, 2009

FREQUENCY
Monthly

EDITORS-IN-CHIEF
Tong Cao, Shengwen Calvin Li, Carlo Ventura

EDITORIAL BOARD MEMBERS
https://www.wjgnet.com/1948-0210/editorialboard.htm

EDITORIAL OFFICE
Jin-Lei Wang, Director

PUBLICATION DATE
November 26, 2019

COPYRIGHT
© 2019 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS
https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS
https://www.wjgnet.com/bpg/GerInfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH
https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION MISCONDUCT
https://www.wjgnet.com/bpg/gerinfo/208

ARTICLE PROCESSING CHARGE
https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS
https://www.wjgnet.com/bpg/GerInfo/239

ONLINE SUBMISSION
https://www.f6publishing.com

© 2019 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA

E-mail: bpgoffice@wjgnet.com  https://www.wjgnet.com

WJSC https://www.wjgnet.com November 26, 2019 Volume 11 Issue 11II

mailto:bpgoffice@wjgnet.com


W J S C World Journal of
Stem Cells

Submit a Manuscript: https://www.f6publishing.com World J Stem Cells  2019 November 26; 11(11): 937-956

DOI: 10.4252/wjsc.v11.i11.937 ISSN 1948-0210 (online)

REVIEW

CRISPR/Cas system: An emerging technology in stem cell research

Maria Teresa Valenti, Michela Serena, Luca Dalle Carbonare, Donato Zipeto

ORCID number: Maria Teresa Valenti
(0000-0003-1166-8033); Michela
Serena (0000-0002-4697-2003); Luca
Dalle Carbonare
(0000-0003-3263-6671); Donato
Zipeto (0000-0002-2168-4144).

Author contributions: All authors
equally contributed to this paper
with conception and design of the
study, literature review and
analysis, drafting, critical revision
and editing, and final approval of
the final version.

Conflict-of-interest statement:
Authors declare no conflict of
interests for this article.

Open-Access: This article is an
open-access article which was
selected by an in-house editor and
fully peer-reviewed by external
reviewers. It is distributed in
accordance with the Creative
Commons Attribution Non
Commercial (CC BY-NC 4.0)
license, which permits others to
distribute, remix, adapt, build
upon this work non-commercially,
and license their derivative works
on different terms, provided the
original work is properly cited and
the use is non-commercial. See:
http://creativecommons.org/licen
ses/by-nc/4.0/

Manuscript source: Invited
manuscript

Received: March 23, 2019
Peer-review started: March 23, 2019
First decision: August 1, 2019
Revised: August 12, 2019
Accepted: September 11, 2019
Article in press: September 11, 2019
Published  online:  November  26,
2019

P-Reviewer: Li SC ,Tanabe S

Maria Teresa Valenti, Luca Dalle Carbonare, Department of Medicine, Section of Internal
Medicine D, University of Verona, Verona 37134, Italy

Michela Serena, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United
Kingdom

Donato Zipeto, Department of Neurosciences, Biomedicine and Movement Sciences,
Laboratory of Molecular Biology, Verona 37134, Italy

Corresponding author: Maria Teresa Valenti, BSc, PhD, Research Fellow, Department of
Medicine, University of Verona, Ple Scuro 10, Verona 37100, Italy.
mariateresa.valenti@univr.it
Telephone: +39-45-8128450
Fax: +39-45-8027403

Abstract
The identification of new and even more precise technologies for modifying and
manipulating the genome has been a challenge since the discovery of the DNA
double helix. The ability to modify selectively specific genes provides a powerful
tool for characterizing gene functions, performing gene therapy, correcting
specific genetic mutations, eradicating diseases, engineering cells and organisms
to achieve new and different functions and obtaining transgenic animals as
models for studying specific diseases. Clustered regularly interspaced short
palindromic repeats (CRISPR)/Cas9 technology has recently revolutionized
genome engineering. The application of this new technology to stem cell research
allows disease models to be developed to explore new therapeutic tools. The
possibility of translating new systems of molecular knowledge to clinical research
is particularly appealing for addressing degenerative diseases. In this review, we
describe several applications of CRISPR/Cas9 to stem cells related to
degenerative diseases. In addition, we address the challenges and future
perspectives regarding the use of CRISPR/Cas9 as an important technology in
the medical sciences.
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Core tip: The possibility of translating new molecular knowledge systems to clinical
research is particularly appealing for counteracting degenerative diseases as well as
infective pathologies and cancer. A novel gene-editing technique, CRISPR/Cas9, has
recently emerged for inducing targeted genetic modifications. Therefore, in this review,
we describe recent applications of CRISPR/Cas9 to stem cells for counteracting
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INTRODUCTION

Gene editing
The development of gene targeting by homologous recombination (HR) was one of
the fundamental steps forward in the field of genome editing, allowing site-directed
specific  mutation  of  a  desired  locus  by  exploiting  homology  arms  to  facilitate
recombination at the donor site[1]. HR-mediated gene targeting led to the generation of
both knock-in and knock-out cell lines as well as many transgenic animal models.
However,  one  of  the  weaknesses  of  this  technology  is  that  the  frequency  of
recombination events is low (one in 106-109 cells)[1], thus limiting its application for
large-scale experiments. A subsequent fundamental discovery was the observation
that targeted DNA double-strand breaks (DSBs) could directly induce homology-
directed repair (HDR)[2,3]. It was also shown that in the presence of a DSB without any
homology repair template, the error-prone nonhomologous end-joining (NHEJ) repair
pathway induces insertion or deletion mutations (indels) at the break site.  These
observations led to the development of programmable nuclease-based genome editing
strategies based on the design of molecular machines composed of a specific DNA-
binding domain and an effector domain to induce a DSB, thus increasing the rate of
gene editing at the desired locus.

In particular, the zinc-finger nucleases (ZFNs; based on eukaryotic transcription
factors)[4] and the transcription activator-like nucleases (TALENs) from Xanthomonas
bacteria[5], which consist of individual modules targeting three or one nucleotides of
DNA, respectively, can be assembled in different combinations and attached to the
FokI nuclease domain to direct DSBs at a specific desired genomic site. Both types of
proteins can be easily engineered due to the possibility of customizing the DNA-
binding  domain  to  recognize  any  sequence  in  the  genome.  A  ZF  consists  of
approximately 30 amino acids and can recognize 3 bp in the major groove of DNA.
The possibility of developing synthetic arrays containing more than three zinc-finger
domains allows the targeting of 9-18-bp-long DNA sequences, thus conferring enough
targeting specificity  within  the  human genome[6].  A TALEN consists  of  a  DNA-
binding domain composed of a series of 33-35-amino acid modular repeats (each
recognizing a single base pair) that are linked together to recognize contiguous DNA
sequences. TALEN specificity is based on the exploitation of two hypervariable amino
acids,  known as repeat-variable  di-residues[7].  Compared to zinc-finger proteins,
TALEN array engineering requires more technical work due to the extensive identical
repeat sequences involved, but many strategies have been developed to overcome this
issue.

ZFNs and TALENs applications
Both ZFNs and TALENs have been used to edit a number of genes and to introduce
genome modifications. ZFN engineering has been applied to correct X-linked severe
combined immune deficiency[4], haemophilia B[8] and sickle cell disease[9,10]. ZFNs have
also been applied for disease eradication via DSB-induced NHEJ, particularly in the
field of acquired immune deficiency syndrome (AIDS). They were exploited to disable
the human immunodeficiency virus 1 (HIV-1) co-receptor C-C chemokine receptor
type 5 (CCR5), thus conferring virus resistance in T cells[11] and haematopoietic stem
cells[12]; both approaches are currently in clinical trials. Another approach consists of
the targeted integration of anti-HIV-1 restriction factors into the CCR5 locus to obtain
T cells that are resistant to both CCR5-tropic (R5-tropic) and CXCR4-tropic HIV-1[13].
The CCR5 deletion has twice been proven to be a powerful and effective way to
eradicate HIV-1 from the human body. The first case dates back to a decade ago[14]: the
so-called  “Berlin  patient”,  who  was  receiving  treatment  with  highly  active
antiretroviral therapy (HAART) after the diagnosis of HIV-1 infection, underwent two
allogeneic haematopoietic stem cell transplantations from a donor with a homozygous
mutation in the HIV-1 co-receptor  CCR5 (CCR5Δ32/Δ32)  to  treat  acute  myeloid
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leukaemia.  The  newly  implanted  cells  no  longer  supported  R5-tropic  HIV-1
replication, and even after interruption of HAART, no active HIV-1 has since been
detected in this patient. The second case, the so-called “London patient”, was actually
very recent[15]: An HIV-1-infected adult underwent allogeneic haematopoietic stem cell
transplantation to treat Hodgkin’s lymphoma, again from a CCR5Δ32/Δ32 donor, but
via a less aggressive and toxic approach, avoiding total body irradiation. At present,
HIV-1 remission has been maintained in this patient. These two cases suggest that
CCR5Δ32 bone marrow stem cell transplantation represents a possible strategy for
achieving HIV-1 remission and should be deeply investigated in the future.

Similar to ZFNs, TALENs have been used to perform homologous recombination-
based gene correction in induced pluripotent stem cells (iPSCs) from patients with β-
thalassemia[16]. TALENs were also exploited to induce point mutations in the Oryza
sativa genome to obtain a new rice variety with enhanced resistance to herbicides[17].
The first clinical application of TALENs consisted of a cell therapy approach based on
the generation of universal chimeric antigen receptor 19 (CAR19) T cells by depletion
of both TCR and CD52 molecules to eliminate the risk of graft-versus-host disease[18].

However, the engineering of site-specific nucleases such as ZFNs and TALENs
requires a great deal of effort, since the nucleases need to be de novo reengineered
through a very labour-intensive and time-consuming procedure.

The CRISPR/Cas9 technology
A novel gene-editing technique, clustered regularly interspaced short palindromic
repeats (CRISPR)/Cas9, has recently emerged as an efficient alternative to ZFNs and
TALENs for inducing targeted genetic modifications. The revolutionary feature of this
technology is that Cas9 is an RNA-guided nuclease containing an HNH nuclease
domain that cleaves the target strand of DNA and a RuvC-like nuclease domain that
cleaves the non-target strand. Target sequence specificity arises from Watson–Crick
base pairing between the guide RNA and the target DNA site[19]. As a consequence,
unlike previous strategies based on DNA-binding proteins, the CRISPR/Cas9 system
can be easily programmed to target new sites by merely changing its guide RNA
sequence, thus making it a suitable tool for high-throughput gene editing in many cell
types and organisms.

The discovery of the CRISPR/Cas system originates in 1987, from mysterious 29-nt
repetitive elements identified downstream of the iap  gene in E. coli.  Interestingly,
these repeats were interspaced with five intervening 32-nt nonrepetitive sequences[20].
During the following 10 years, the same pattern of repeated elements was reported in
the genomes of different bacterial  and archaeal strains,  and in 2002 the acronym
CRISPR was introduced to specify microbial genomic loci consisting of an interspaced
repeat array[21,22]. In parallel, a series of CRISPR-associated (Cas) genes adjacent to
these repeat elements were identified[22]. It was subsequently shown that CRISPR loci
are actually transcribed[23], and that bacteriophages are unable to infect archaeal cells
carrying spacers corresponding to their own genomes[24]. The first evidence that the
CRISPR  system  serves  as  a  microbial  molecular  immune  memory  and  defence
mechanism against viruses came from the Danisco company, where researchers were
working to improve the lifespan of bacterial cultures for manufacturing yogurt and
ice cream[21]. Thus far, at least six types (I–VI, with types I-III the most characterized)
of CRISPR/Cas systems have been identified in many Bacteria and in the majority of
characterized Archaea; these systems consist of a cluster of CRISPR-associated (Cas)
genes, noncoding RNAs and a distinct array of repetitive elements.

In general, a CRISPR system functions via three steps that are necessary to achieve a
full immune response against foreign DNA[25]. In the first stage, the invading DNA is
fragmented into short sequences that are incorporated into the host crRNA array as
spacers  between the CRISPR RNA (crRNA) repeats.  This  stage is  mediated by a
complex of the Cas1 and Cas2 proteins, which are shared by all known CRISPR/Cas
systems. In the second stage, the CRISPR array is transcribed into pre-crRNA, which
is then cleaved and processed into mature crRNAs by Cas proteins and host factors[26].
This  crRNA acts  as  a  guide  containing  the  spacer  sequence  necessary  to  target
specifically the Cas proteins to the invading genome upon recognition of the crRNA
by the Cas proteins themselves. In particular, in type II CRISPR systems, the presence
of a noncoding transactivating crRNA (tracrRNA) that hybridizes with the pre-crRNA
is  necessary  for  crRNA  processing,  Cas  binding  and  target  cleavage[27].  crRNA
maturation  is  mediated  by  either  a  Cas6-related  ribonuclease  (in  type  I  and  III
systems) or housekeeping RNaseIII (type II system) that specifically cleaves double-
stranded RNA hybrids  of  pre-crRNA and tracrRNA.  In  the  third  stage,  the  Cas
proteins recognize the target DNA and induce cleavage of the invading genome, thus
protecting the host cells from infection.

In the most recent classification, the various CRISPR/Cas systems are divided into
two simple classes: class 1 CRISPR systems (types I, III, IV) utilize several Cas proteins
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and crRNAs to form an effector complex, whereas class 2 CRISPR systems (types II, V,
VI)  exploit  a  large single-component Cas protein in conjunction with crRNAs to
mediate  interference[28].  The  type  II  CRISPR system is  currently  one  of  the  best
characterized, consisting of the Cas9 nuclease, a crRNA array that encodes guide
RNAs and the required auxiliary tracrRNA, which helps to process the crRNA array
into discrete units containing a 20-nt guide sequence and a partial direct repeat[27].
Within the DNA target, each spacer is always associated with a protospacer-adjacent
motif (PAM), which can vary depending on the specific CRISPR system[29,30].

To simplify the system and make it  utilizable for genome editing,  the crRNA-
tracrRNA duplex  can  be  fused  into  a  chimeric  single  guide  RNA (sgRNA)  and
expressed in a plasmid under the control of the human U6 polymerase III promoter,
whose only requirement for transcription initiation is the presence of a G nucleotide,
which can eventually  be  added at  the  5’  end of  the  guide[27,31].  A human codon-
optimized version of Cas9 fused to the C-terminal SV40 nuclear localization signal has
also been generated for the mammalian expression system[31]. As a consequence, the
Cas9-sgRNA complex can specifically target the DNA sequence that base pairs with
the sgRNA and is adjacent to the PAM sequence and induce a DSB. Cas9 can therefore
be targeted to any genomic locus only by customizing an approximately 20-nucleotide
sequence complementary to  the target  DNA, making it  an easily  programmable
platform for high-throughput gene targeting[32].

Indeed, the CRISPR/Cas9 system has been used for both NHEJ- and HDR-induced
gene editing in eukaryotic cells[31,33-35]. Direct embryonic injection of sgRNA and Cas9
mRNA allowed transgenic mice with multiple modified alleles to be obtained[36]. To
improve the specificity of CRISPR/Cas9-mediated HDR, a nickase version of Cas9
(Cas9n) was generated by aspartate-to-alanine mutation in the RuvC catalytic domain
to nick rather than cleave DNA, leading to a single-strand break[19,27,37]. It has been
reported  that  the  combination  of  Cas9n  together  with  a  pair  of  offset  sgRNAs
complementary to opposite strands of the target DNA induces a double nick (one per
DNA strand), leading to a DSB and NHEJ-based indels[32]. Due to the combination of
two sgRNAs, Cas9n shows fewer off-target effects than does Cas9, since possible
individual single-stranded nicks are repaired by the high-fidelity base excision repair
mechanism. Recently, the type V CRISPR/Cas system was discovered[38], based on the
Cpf1 ribonucleoprotein (CRISPR from Prevotella and Francisella 1), containing only the
RuvC-like domain and not the HNH domain. In contrast to Cas9, Cpf1-mediated
DNA  cleavage  is  guided  by  only  a  crRNA  and  does  not  require  a  tracrRNA.
Additionally, Cpf1 requires a short T-rich PAM preceding the target sequence, unlike
the G-rich PAM downstream of the target sequence required for Cas9, and the seed
region is within approximately the first five nucleotides at the 5’ end of the target
sequence.

Within the past few years, the RNA-targeting type VI CRISPR/Cas system was also
discovered and characterized. This system is based on the Cas13 protein, which forms
a crRNA-guided RNA-targeting effector complex when assembled with crRNA. The
type VI CRISPR/Cas system can be divided into four subtypes (A–D) based on the
phylogeny of the effector complexes[39-41]. However, all type VI systems are based on
Cas13,  which  exhibits  two  enzymatically  distinct  ribonuclease  activities:  One
responsible for pre-crRNA processing and one provided by two Hhigher Eeukaryotes
and Pprokaryotes Nnucleotide-binding (HEPN) domains, which are required for the
degradation  of  the  target  RNA[42-44].  These  properties  of  Cas13  led  to  the  rapid
development of a new generation of RNA-targeting tools for many applications. In
particular,  Cas13  has  been  tested  for  human  RNA  knockdown,  showing  high
specificity and fewer off-targets compared to RNAi[45,46,51].

Source of human stem cells for genome editing
The possibility of combining the potential of human pluripotent stem cells (hPSCs)
with this new genome-editing technique makes important applications in biomedical
research possible. hPSCs can be generated either from human embryonic stem cells
(hESCs), arising directly from embryos[47], or from iPSCs. iPSCs are generated from
fibroblasts or other somatic cells by the transfection of “reprogramming genes”[48,49]. In
addition, by transferring a nucleus from differentiated cells to a de-nucleated ovum,
the third type of stem cell (SCNT stem cells) can be obtained[50]. hPSCs generally share
several characteristic features, such as the possibility of being maintained in culture
for  many  passages  with  the  same  karyotype  without  genomic  loss.  hPSCs  are
pluripotent cells and can differentiate into different somatic cell types based on the
protocol used[51]. The ability of hPSCs to self-renew indefinitely and differentiate into
different types of somatic cells represents an important tool for regenerative medicine.
With this tool, mutations can be introduced in cell lines to generate disease models,
and genetic defects can be corrected to rescue pathological conditions.

iPSC technology has provided appealing tools to the field of degenerative disease
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research. iPSCs can be produced by injecting several key transcription factors into
somatic cells. Initially, Takahashi et al[52] were able to reprogram murine fibroblast
cells by injecting several transcription factors, such as octamer-binding transcription
factor 4 (Oct4),  sex-determining region Y-box 2 (Sox2),  Krüppel-like factor 4 and
cMyc.  In  particular,  Oct4  prevents  the  expression  of  genes  involved  in  the
differentiation of ESCs and can reprogram somatic cells[53,54]. In 2007, Yu et al[55] applied
this  technique  to  human  somatic  cells.  Thus,  human  somatic  cells  can  be
reprogrammed to  iPSCs by combining factors  such as  Oct4,  Sox2,  NANOG and
LIN28[52,55].

Moreover, this technology has been improved by using newly defined factors as
well as different delivery systems. It has been demonstrated that in the absence of the
Oct4 and Sox2 factors, genes involved in mesendodermal (i.e. GATA3, GATA6, and
SOX7) and ectodermal commitment (i.e. SOX1, SOX3, and GMNN) can induce cell
reprogramming[56,57]. Additionally, the use of miRNAs such as miR-291-3p, miR-294,
miR-295  and  the  miR-302/367  cluster,  has  been  suggested  for  enhancing  the
reprogramming cells[58,59]. In addition to fibroblasts, other kinds of cells can be induced
to undergo reprogramming; the cells  include B lymphocytes;  neural progenitors;
keratinocytes; cells arising from amniotic fluid, the liver, the stomach, or the pancreas;
or cells harvested from blood or urine[60].

Importantly, as iPSCs originate from the somatic cells of patients, they represent a
specific  source for  transplantation therapy that  prevents immunologic reactions.
iPSCs have the same background as the patients from whom they are harvested.
Because they carry the same genetic mutations as the patient, these cells provide a
perfect disease model, which is important for understanding pathological conditions
or identifying personalized therapeutic tools.

CRISPR/CAS9 APPLICATIONS IN DEGENERATIVE
DISEASES

Haematological disorders
By improving the development of experimental models, CRISPR/Cas9 technology
has  contributed  to  a  deep  understanding  of  haematological  disorders.  The  first
haematological disorder to which CRISPR/Cas 9 was applied was sickle cell disease
(SCD). SCD is caused by a single-nucleotide polymorphism in one of the haemoglobin
genes  and induces  severe  organ  complications[61,62].  Dewitt  et  al[61]  corrected  the
mutation in CD34+ haematopoietic stem/progenitor cells (HSPCs). In particular, they
delivered a ribonucleoprotein complex containing the Cas9 protein, an unmodified
single guide RNA and a single-stranded DNA oligonucleotide donor to replace the
mutation in HSPCs[61].  When these cells were differentiated to erythroblasts, they
produced low mRNA and protein levels of sickle haemoglobin and increased levels of
wild-type haemoglobin. Also, when transplanted into mice, the cells maintained the
edited gene for 16 wk and showed improved clinical characteristics[61].

Recently,  an  in  vivo  model  for  studying  myeloid  malignancies  by  using
CRISPR/Cas9 technology was proposed[63]. Patients affected by these malignancies
harbour  three  or  five  mutations  contributing  to  a  poor  diagnosis.  By  using
CRISPR/Cas9, researchers inactivated eight different alleles in a single HSPC; cells
arising from this HPSC were able to induce leukaemia after transplantation in mice[64].
Bejar et al[65] also used engineered CRISPR/Cas9 HSPCs carrying specific mutations to
demonstrate that these cells are sensitive to azacitidine.

CRISPR and HIV
HIV-1  infection  is  currently  treated  with  HAART,  involving  a  combination  of
antiretroviral  drugs  that  help  to  control  viral  load,  thus  delaying or  preventing
progression towards AIDS. This therapy does not eradicate the virus from the body,
and it has to be continued throughout a patient’s life. One of the main problems in
achieving an effective HIV-1 cure is the persistence of latent viral reservoirs that
cannot be cleared by current treatments. The establishment of these reservoirs is due
to the integration of HIV-1 DNA into the cellular genome[66],  and the only way to
eradicate them would be to delete directly or deactivate proviral DNA. To this end, it
has  been reported that  the  CRISPR/Cas9  system can be  exploited  to  target  and
inactivate HIV-1 integrated DNA in Jurkat cells, resulting in no difference between
active and inactive HIV-1 DNA transcription, suggesting a promising strategy for
addressing  latently  infected  cells[67].  Other  studies  have  demonstrated  that  it  is
possible to apply the CRISPR/Cas9 system to remove entirely the HIV-1 genome by
using specific gRNAs directed at the long terminal repeats of the integrated HIV-1
genome in latently infected cells[68-70]. The efficacy of adeno-associated virus (AAV)
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vectors in the delivery of the CRISPR/Cas9 system into transgenic HIV-1-infected
mice  and  rats  through  tail-vein  injection  to  excise  proviral  DNA  has  also  been
shown[69,71]. Additionally, the CRISPR/Cas9 system has been applied to reactivate the
latent HIV-1 reservoir by using catalytically deficient Cas9-synergistic activation
mediator technology[72]. Zhang et al[73] showed that reactivation of the HIV-1 provirus
was achieved in latently HIV-1-infected TZM-bl, Jurkat and CHME5 microglial cells,
indicating the potential application of CRISPR/deficient Cas9-synergistic activation
mediator as a “shock and kill” strategy to reactivate and induce cell death of latently
HIV-1-infected cells.

Neurodegenerative diseases
Neurodegenerative diseases are severe pathological conditions with critical social
outcomes. Unfortunately, the available therapeutic approaches are not able to treat
effectively these degenerative disorders. In fact, the molecular and cellular defects
causing neurodegeneration are not entirely understood, and specific  therapeutic
targets  are  lacking.  Therefore,  to  identify  the  cellular  and  molecular  pathways
involved in neurodegenerative diseases, genetic screening performed by applying
CRISPR  technology  has  been  proposed.  Different  targets  involved  in
neurodegenerative diseases have been identified using CRISPR technology applied to
human neurons  obtained  from iPSCs.  Based  on  this  strategy,  Nakamoto  et  al[74]

investigated the role of coenzyme Q10 in patients with multiple-system atrophy, a
neurodegenerative  disorder  characterized  by  various  combinations  of  neuronal
dysfunction[74]. Their findings demonstrated that a reduction in coenzyme Q10 levels,
particularly in patients with COQ2 variants, contributes to neuronal apoptosis in
patients affected by multiple-system atrophy, suggesting an effective therapy[74]. The
benefit of using CRISPR technology in studies related to Alzheimer’s disease (AD) is
under  debate  because  most  AD  cases  are  sporadic  and  have  different  causes.
Mutations in  the gene encoding amyloid precursor  protein are  found in a  small
percentage of patients (> 0.1%) even when overexpression of beta-amyloid peptide is
detected  in  all  AD  patients[75].  However,  CRISPR  technology  can  be  useful  for
correcting autosomal-dominant mutations in presenilin 1 and presenilin 2 (PSEN2)
that are found in the early onset AD[76]. In fact, CRISPR/Cas9 has been employed to
correct PSEN2 in iPSC neurons from a patient with a PSEN2N141I mutation[77].

The APOE4 isoform is involved in the development of late-onset AD[78]. In contrast,
the  APOE2  isoform  seems  to  reduce  the  risk  of  developing  AD  by  up  to  40%.
Therefore, the application of CRISPR/Cas9 to replace APOE4 with APOE2 may be
considered a useful tool for treating patients carrying the APOE4 variant[79].

Huntington’s disease (HD) is characterized by muscular, psychiatric and cognitive
disorders due to heterozygous expanded (CAG)n trinucleotide repeats in the gene
that encodes huntingtin (HTT). This disorder causes alteration of the medium spiny
neurons. Cellular strategies have been suggested for the generation of an HD disease
model and the identification of therapeutic tools for treating HD. Therefore, therapies
based on stem cell  transplantation have been indicated as promising therapeutic
tools[80]. In addition, iPSC lines originating from patients with juvenile HD have been
generated[81]. In this context, the application of the CRISPR technique to target the
HTT locus in iPSCs has given rise to new perspectives for the treatment of HD[82]

Bone and musculoskeletal disorders
The application of CRISPR technology to iPSCs originating from patients with skeletal
disorders  has  been suggested to  explore  bone diseases.  This  approach has  been
applied to investigate cleidocranial dysplasia (CCD), a skeletal disease caused by a
mutation in the transcription factor RUNX2. In particular, the CRISPR/Cas9 system
has been applied to  two iPSC lines  generated from CCD patients  with different
RUNX2 mutations to restore the normal phenotype[83]. The CRISPR-edited cells were
then evaluated in vitro and in a rat model, and correct osteo-induction was observed,
thus  indicating  the  molecular  mechanism  involved  and  suggesting  a  novel
therapeutic approach for treating CCD[83]. The most abundant non-collagenous protein
found in bone is  osteocalcin,  and an in  vivo  osteocalcin deficiency model  shows
impaired skeletal structure[84]. To understand better the role of osteocalcin in skeletal
disorders, a rat model was generated by Lambert et al[85]. Specifically, these researchers
injected CRISPR/Cas9 to knock out osteocalcin in the pronuclei of Sprague-Dawley
embryos. With the development of this system, the authors provided a model of the
disease that can be used in the field of osteoporosis and osteoarthritis research.

Duchenne muscular dystrophy (DMD) is a severe disease that affects skeletal and
cardiac muscles in childhood. The absence of the dystrophin protein, encoded by the
dystrophin gene (Dmd), prevents the muscular sarcolemma from being protected
from injuries due to contractions, causing DMD[86]. Mutations in the Dmd gene are
frequent,  among which frameshift  mutations are the most common, although in-
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frame and out-of frame mutations may also occur; frameshift mutations generally
result in a premature stop codon by altering the reading frame[87]. Therefore, as DMD
is a genetic disorder, the possibility of identifying a therapeutic approach for DMD
based on the application of CRISPR/Cas9 technology to stem cells appears intriguing.

To repair damaged muscle by correcting the dystrophin gene, CRISPR/Cas9 has
been  applied  in  mdx  mice,  a  model  of  DMD[86].  By  using  this  technique,  the
researchers obtained genetically mosaic animals with heterogeneous percentages of
DMD  gene  correction  (from  2%  to  100%).  These  different  percentages  of  gene
correction allowed comparison of  the  percentage  of  correction with  the  level  of
muscular rescue[86]. Interestingly, the dystrophin protein has also been restored in
iPSCs obtained from patients affected by DMD by using CRISPR/Cas9 technology[88].
However, five off-target sites were affected by the procedure in this model[88].

Musculoskeletal disorders also occur in lysosomal storage diseases (LSDs). LSDs
include different genetic diseases characterized by deleterious mutations causing the
disruption of lysosomal enzymes. Therapeutic approaches for counteracting LSDs
include  enzyme  replacement  therapy,  pharmacological  chaperone  therapy  and
haematopoietic stem cell  transplantation. However,  all  of these treatments cause
secondary side  effects[89].  To  identify  new therapeutic  approaches,  experimental
models using CRISPR/Cas9 and iPSCs have been adopted. Pompe disease is an LSD
caused by mutations in the gene that encodes the lysosomal hydrolase acid-alpha
glucosidase and is characterized by a severe myopathy[90] . Possible therapy for these
patients is provided by the enzyme replacement therapy Myozyme®; unfortunately,
this  therapy  is  expensive.  Therefore,  a  useful  therapeutic  approach  involving
targeting the mutation in hematopoietic stem cells (HSCs) derived from the same
patient via the CRISPR/Cas9 system has been suggested[91]. Other LSDs can certainly
also be considered prospective targets for this therapy based on the CRISPR/Cas9-
and iPSC system.

Cardiovascular diseases
CRISPR/Cas9 editing has emerged as a useful technology in the cardiovascular field.
Cardiovascular disorders affect a large number of patients, and the incidence of these
pathologies has increased considerably in recent decades. Therefore, an important
challenge is to understand the molecular mechanisms that affect vascular and cardiac
systems  and  determine  cardiovascular  mortality[92].  Among  the  pathological
conditions  affecting  the  cardiovascular  system,  cardiomyopathies,  arrhythmias,
rheumatic heart disease, stroke and congenital cardiac defects have been reported.
Molecular tests and bioinformatics analyses allow the identification of individuals
predisposed to cardiac disorders. However, there are some limitations to a complete
understanding  of  the  molecular  signalling  causing  these  pathologies  because
mechanistic studies aimed at understanding the causes of the diseases are limited by
the  complexity  of  culturing  human cardiomyocytes[93].  However,  CRISPR/Cas9
technology has allowed cardiac disease models to be generated, and it is possible to
study cardiovascular diseases by injecting the CRISPR/Cas9 system components into
the embryos of  rats,  rabbits  and primates[94,95].  In  addition,  the  coupling of  iPSC
technology with the application of the CRISPR/Cas9 system has provided useful cell
models  for  better  understanding the  molecular  mechanisms involved in  cardiac
pathologies and for recovering specific mutations causing cardiovascular diseases.
The combination of iPSCs and CRISPR/Cas9 technologies has allowed the generation
of a cellular model characterized by mitochondrial  dysfunction originating from
patients affected by Barth syndrome. By introducing a mutation in the tafazzin gene
with the CRISPR/Cas9 system, the authors demonstrated that this mutation caused
the  mitochondrial  phenotype  and  that  normal  mitochondrial  function  could  be
recovered by the administration of specific antioxidants[96].

CRISPR/Cas9 technology has also allowed the analysis of titin gene mutations in
cardiomyopathy. By introducing either missense or frameshift mutations in the titin
gene, researchers were able to generate contractile deficits in iPSCs that differentiated
into cardiomyocytes (iPSC-CM)[97].  Similarly, iPSC-CMs have been obtained from
patients  affected  by  Jervell  and  Lange-Nielsen  syndrome,  a  severe  cardiac
arrhythmia[98], and iPSCs carrying a mutation in the CALM2 gene reproducing long
QT syndrome have been generated with the same technique[99]. As CRISPR/Cas9 may
introduce changes in noncoding regions,  Beaudoin et  al[100]  were able  to  delete  a
sequence in an intronic region in the PHACTR1  gene (associated with premature
myocardial infarction) in iPSCs to generate a cell model of the pathology.

Hypertrophic cardiomyopathy is a severe cardiovascular disease with different
clinical  aspects  characterized  by  cardiac  arrhythmias.  To  identify  therapeutic
strategies  for  rescuing  arrhythmias,  hPSCs-MC  have  been  engineered  by  using
CRISPR/Cas9. In particular, Mosqueira et al[101] generated in three hPSC lines carrying
11 variants of the c.C9123T-MYH7 mutation, which affects the myosin heavy chain to
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cause  hypertrophic  cardiomyopathy.  By  using  this  disease  model,  the  authors
demonstrated the possibility of correcting arrhythmias by pharmacological treatment
and  identified  the  ratio  between  MHY7:  MYH6  and  mutant:  wild-type  MYH7
isoforms as a diagnostic tool[101].

Diabetes
Stem cell  therapy  has  been  proposed  for  the  treatment  of  diabetes,  a  metabolic
disorder characterized by the disruption of insulin production. Two different types of
diabetes are known: type 1 diabetes (T1D), which is an autoimmune disease, and type
2 diabetes (T2D), which is the most common and heterogeneous form of diabetes[102].
Both T1D and T2D are characterized by the disruption of pancreatic β-cell function[102].

The generation of pancreatic cells followed by their transplantation in patients with
T1DM  has  been  proposed.  In  this  context,  the  use  of  iPSCs  and  the  concurrent
application of CRISPR/Cas9 technology can improve the generation of pancreatic
organs[103]. In addition, this system avoids the controversial use of hESCs. Despite the
advantages of using hESCs, such as the ease of differentiating these cells into β cells in
vivo, the reduction in viral transgene incorporation and the greater efficiency of these
cells in producing insulin compared to iPSCs, ethical concerns due to the induction
process restrict their use[103].

T2D  pathophysiology  is  complex  because  various  factors,  such  as  genetic,
epigenetic and lifestyle factors, can contribute to the development of this disease. iPSC
lines generated from T2D patients have allowed the detection of several mutations in
transcription  factors  involved  in  pancreas  development  (HNF1B,  HNF4A  and
HNF1A), genes encoding enzymes related to insulin secretion and proteins devoted to
exocrine  pancreas  function[104].  Interestingly,  genome-wide  association  studies
(GWAS) revealed a robust statistical association between T2D and genetic variants
located in noncoding regions. Therefore, in association with GWAS, CRISPR/Cas9
has been suggested to be a useful tool for improved understanding of the molecular
factors  involved  in  the  pathogenesis  of  T2D[105].  A  form  of  diabetes  caused  by
mutations in the gene encoding insulin can appear during neonatal life (neonatal
diabetes)[106].  Recently,  Balboa et  al[106]  demonstrated that insulin mutations cause
abnormal  β-cell  differentiation  in  a  neonatal  diabetes  model.  In  particular,  the
researchers  obtained  iPSCs  from  affected  patients.  Then,  by  applying  the
CRISPR/Cas9 system, they corrected a missense mutation in the insulin gene and
compared these corrected iPSCs to mutant iPSCs. Interestingly, by single-cell RNA
sequencing,  these authors  observed increased endoplasmic reticulum stress  and
reduced proliferation[106] in mutant cells compared to corrected cells.

Cancer
iPSCs can be generated from cancer cells. Therefore, this technology will allow the
molecular  bases  of  malignant  transformation  to  be  identified.  In  addition,  this
approach can result in the screening of therapeutic formulations and the identification
of useful biomarkers. The generation of iPSCs via the application of CRISPR/Cas9
methodology is particularly important to identify genetic disruptions that induce
cellular transformation and have not yet been found, e.g., in the case of glioblastoma
(GBM). GBMs belong to the gliomas, a heterogeneous type of cancer, and originate
from cells showing neural stem and progenitor cell characteristics[107]. Even though
GWAS have allowed the identification of many genetic and epigenetic targets, other
key molecular targets still need to be identified. For example, the PKMYT1 gene has
been identified as a candidate target for therapy in GBM patients by the application of
CRISPR/Cas9 libraries to stem cell-like cells originating from GBM patients[108].

T cell-based immunotherapy represents a useful tool for the treatment of malignant
cells. These cells show a reduced proliferative ability, but the possibility of using
iPSCs  from  antigen-specific  T  cells  overcomes  this  limit.  Unfortunately,  the
rearrangement of the T cell receptor chain gene during reprogramming causes loss of
their  antigen  specificity.  However,  Minagawa et  al[109]  were  able  to  prevent  this
additional rearrangement by obtaining functional iPSCs from antigen-specific T cells
via the application of CRISPR.

In the context of precision oncology, the application of CRISPR/Cas9 combined
with iPSC technology offers effective tools for identifying appropriate therapies.
Recently, this system allowed the investigation of the individual roles of two co-
recurrent genetic lesions involved in myeloid malignancy: A mutation in the SRSF2
factor and a chromosome 7q deletion[110]. The authors found that the SRSF2 mutation
induces dysplasia, whereas the chromosome 7 deletion prevents differentiation and is
associated with disease progression[110].

The use of CRISPR/Cas9 technology associated with iPSC generation has been
applied  to  the  study  of  RET  mutations  in  multiple  endocrine  neoplasm  type  2
(MEN2). MEN2 is a rare syndrome that affects organs originating from neural crest
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and endoderm and causes medullary thyroid cancer, pheochromocytoma, cutaneous
lichen  amyloidosis  and primary  hyperparathyroidism.  In  addition,  it  can  cause
Hirschprung disease[111]. iPSCs from a MEN2 patient with the most frequent mutation
in RET (RETC634Y) have been used to better understand the molecular mechanism by
which the RET mutation causes MEN2[112].  These researchers generated CRISPR-
corrected isogenic counterparts  of  these cells  and,  by performing transcriptomic
analyses, identified early growth response 1 as a key molecular target in MEN2A[112].

In  addition  to  the  work  described  above,  many  other  studies  related  to  the
application of the CRISPR/Cas9 System in stem cell  research have been recently
performed (Table 1).

CHALLENGES
As previously  described,  CRISPR/Cas9  has  become a  powerful  technology that
allows the manipulation of almost any biological organism. The relative simplicity of
the technique has made it possible to develop new models for studying the effect of
mutations in genetic diseases and for revealing previously unknown gene functions,
among many other applications.

Despite the enormous therapeutic potential of the technique, it will be necessary to
address various challenges before it can be safely used in the field of gene therapy and
in clinical applications.

Off-target
The specificity of CRISPR/Cas9 is fundamental for its clinical application. Off-target
mutations can impair the fitness and/or the functionality of edited cells and, even
more problematically, can generate potential oncogenic cell clones[113].

Initial reports of the whole-genome sequencing of edited cells indicate a low rate of
off-target mutations, supporting the good specificity of the system[114-116].  A study
published  in  2017  raised  concerns  about  the  extent  of  unexpected  mutations
introduced by Cas9[117], but the study was retracted in 2018 due to insufficient data to
support the claim[118].

Subsequent studies based on whole-genome sequencing addressed concerns about
potential  off-target  effects,  reporting  no  unexpected  off-target  activity  of
CRISPR/Cas9[119,120]. Another study indicated that by appropriately designing gRNAs,
it  is  possible  to  achieve  efficient  in  vivo  editing  with  no  detectable  off-target
mutations[121].

A  recent  study  revealed  that  sgRNAs  are  very  sensitive  to  chromatin  state,
suggesting  that  off-target  effects  are  inhibited  by  chromatin,  thus  favouring
specificity[122].

Overall, CRISPR/Cas9 appears to be a very specific tool for genome editing, and
the initial discordant reports might have been more closely related to the appropriate
choice of  sgRNAs, rather than to Cas9 activity[113].  Similar to PCR protocols,  it  is
possible to envision that in the future, when sufficient data are available, a database of
optimal sgRNAs can be generated to be used in different cellular models, paired with
improved computational analysis, for gene editing.

Despite these reassuring data, new methods are being developed to detect potential
off-target CRISPR mutations, as well as new systems and protocols to reduce further
the risk. These approaches include the development of better in silico computational
prediction  tools,  the  use  of  more-specific  nucleases,  such  as  Cpf1,  and  the
development of cell-free genomic DNA assays to detect double-stranded breaks based
on sequencing, such as Digenome-seq[123] (in which Cas9 cleavage is followed by next-
generation sequencing) and newer, more-sensitive methods such as CIRCLE-Seq and
SITE-Seq. Additional methods are being developed using cell-based assays and are
aimed at identifying potential off-target sites in specific cell types; these methods
include GUIDE-Seq[124] and LAM-HTGTS[125], the latter of which is aimed at identifying
genomic rearrangements following DSBs[126].

It has been reported that high concentrations of Cas9 nucleases may increase the
rate of off-target mutations[127,128]. To address this issue, new strategies such as the
double nickase system[32] or the use of high-fidelity recombinant Cas9 variants have
been  developed[128-131].  In  addition,  the  discovery  and  characterization  of  Cas9
orthologues from other prokaryotic organisms may help to identify Cas variants with
higher specificity[132,133].

Recently, protocols based on the transfection of Cas9-coding mRNA and gRNA as
well as gRNA-Cas9 complexes have been proposed as systems to reduce further off-
target effects[134]. The delivery of CRISPR/Cas9 components as RNA ands gRNA-Cas9
complexes may present an additional advantage, since circular plasmid DNA may
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Table 1  Recent studies related to the gene-editing technology applied to stem cells research on
degenerative diseases

Authors and year Disorder

Zhou et al[163], 2018 Spinal muscular atrophy

Calvo-Garrido et al[164], 2019 Neuronal

Dong et al[165], 2019 Hereditary hearing loss

Zhao et al[166], 2019 Breast cancer

Yanagihara et al[167], 2019 Skeletal diseases

Vrugt et al[168], 2019 Fanconi anemia

Blanas et al[169], 2019 Colorectal cancer

Sun et al[170], 2019 Glioblastoma

Jelinkova et al[171], 2019 Duchenne muscular dystrophy

Hurtado et al[172], 2018 Renal

Tang et al[173], 2019 Cardiac hypertrophy

Tian et al[174], 2019 Pediatric biliary atresia

Wang et al[175], 2018 Werner syndrome

Barnes et al[176], 2018 Neuronal

Frasier et al[177], 2018 Cardiac arrhythmia

Sasaki-Honda et al[178], 2018 facioscapulohumeral muscular dystrophy

Wang et al[179], 2018 Hepatoma

Moghaddas et al[180], 2018 Autoinflammatory

Liu et al[181], 2018 Colon cancer

Jiao et al[182], 2018 Cardiac disorders

Lyu et al[183], 2018 Haemophilia

Deng et al[184], 2018 Retinitis pigmentosa

Wattanapanitch et al[185], 2018 Thalassemia

Suda et al[186], 2018 Parkinson's disease

(presumably only rarely) be randomly integrated into the host genome[135].

Cellular challenges
The editing of a specific gene sequence relies on HDR rather than NHEJ. HDR is
selectively expressed during mitosis and is downregulated after cell division[136]. For
this reason, gene editing may be very difficult to achieve in non-dividing cells, such as
neurons. Different strategies are currently under study to address this issue[137].

In vivo delivery challenges
Some genetic diseases may be treated by collecting, modifying and reinfusing stem
cells, but others will require the correction of many cells in formed tissues in the
patient’s body.

An ex vivo strategy based on the collection of stem cells from a patient (usually from
bone marrow), followed by their modification and reimplantation, presents almost the
same  general  risks  previously  described  for  genome  editing  in  cell  cultures.
Additional  challenges  clearly  remain  concerning  the  in  vivo  delivery  of  the
CRISPR/Cas9 system. Lentiviral vectors have been widely and successfully used in
different applications.

However, permanent integration of lentiviral vectors in the host cell genome will
most likely cause permanent expression of the Cas9 nuclease, increasing the potential
for off-target effects in vivo and the related oncogenic risk, which adds to the intrinsic
risk of random insertion of these vectors in the cell genome.

Unlike lentiviral vectors, adenoviral (AV) vectors do not integrate into the host cell
genome, thus avoiding permanent expression and reducing the risk of off-target
effects.  AV vectors  also  allow the insertion of  larger  DNA fragments,  making it
possible to include additional sgRNA sequences or reporter genes. On the other hand,
AV vectors present risks of immunotoxicity due to cellular immune responses, and
studies are consequently needed to define the immunogenicity of Cas9 for in vivo
applications[138].

AAV vectors have been proposed as more suitable and less risky viral vectors, and
these vectors have been approved for use in clinical trials[139]. Problems due to the
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small genome size of AAV vectors have been addressed by using a smaller Cas9
variant  from  Streptococcus  aureus,  Streptococcus  thermophilus [37]  or  Neisseria
meningitidis[37],  rather  than  the  commonly  used  Streptococcus  pyrogenes  Cas9
(SpCas9)[140].

Even if  AAV vectors  are  used,  the  problem of  the  persistent  Cas9  expression
remains,  as  do  the  potential  risks  of  a  lower  editing  efficiency  due  to  previous
immunity against AAV.

Delivery to embryos to generate knock-out or other mutants is possible through
direct  microinjection,  which  is  a  costly  and  technically  challenging  procedure,
although it is useful in generating permanent germline modifications. This approach
is the most common tool used by researchers to generate new animal models.

Recently, different approaches based on the development of non-viral vectors have
been developed. Such delivery alternatives involve the use of lipid-based vectors,
polymeric cationic vectors and chitosan[141].

These methods are characterized by lower immunogenicity and higher safety,
reducing the risk of short and long-term adverse effects. However, a low delivery
efficiency remains the principal problem[141]. Studies in the field of nanotechnology
will  most  likely  result  in  new,  optimized  synthetic  delivery  systems  based  on
nanoparticles that will facilitate the delivery of CRISPR/Cas9 components in vivo.

Immunity against Cas9
Other issues that will need to be addressed include the risk of an immune response
against Cas9, a prokaryotic protein, when used in gene therapy applications and how
this may impact the application of the technique in a clinical context[142].

A recent study[143] of human donors documented a high frequency of antibodies and
anti-Cas9 cytotoxic T-lymphocytes (CTLs) against SaCas9 and SpCas9; these Cas9
orthologues are the most widely used and are derived from Staphylococcus aureus and
Streptococcus pyogenes,  respectively. Since these are two common bacterial species
infecting humans, the study raises concerns about the impact of pre-existing humoral
and cellular immune responses to Cas9 in future clinical trials. A possible solution
may be to use Cas9 orthologues derived from bacterial species that do not commonly
infect humans, to avoid the destruction of cells “treated” using CRISPR/Cas9 due to
pre-existing anti-Cas9 cellular immunity.

HIV resistance
In  the  field  of  AIDS,  the  advantage  of  CRISPR/Cas9  engineering  consists  of
conferring permanent protection against HIV-1, which is not achieved with antiviral
drugs,  but an important unanswered question is  whether and how HIV-1 might
escape from this genome editing system. HIV-1 evolution experiments have been
performed in CD4+ T cells expressing both Cas9 and sgRNAs targeting different
regions of the HIV-1 genome[144,145], showing that although there was apparent initial
virus inhibition, viral replication re-bounded over time, resulting in high levels of
HIV-1 production. In particular, rapid escape was observed when non-conserved
HIV-1 sequences were deleted, while a longer time was needed to escape in the case
of  more  conserved  sequences.  When  the  targeted  viral  DNA  was  sequenced,
mutations  were  specifically  identified  in  the  sgRNA  complementarity  region,
suggesting  that  HIV-1  can  adapt  its  genome  to  escape  CRISPR/Cas9-mediated
editing.  In  particular,  most  of  the  identified  resistance  mutations  were  indels
matching the specific site at which Cas9 was expected to cleave viral DNA, suggesting
that a variety of mutations at the cleavage site might actually be induced by NHEJ:
some of these mutations would not be selected because of abolishing viral replication,
while other mutations would be selected because they are not deleterious to the virus,
thus generating CRISPR/Cas9-resistant viral particles[145].

To overcome this unique viral escape mechanism, one solution may be to exploit
multiple  sgRNAs  to  target  conserved  proviral  regions.  It  has  been  shown  that
multiplexed targeting of HIV-1 DNA leads to much stronger suppression of HIV-1
infection, although possible viral escape cannot be excluded[146]. Another approach
might involve modified versions of Cas9 that can cleave the DNA outside of the target
sequence, so that any mutation generated by NHEJ will not prevent the CRISPR/Cas9
machinery from rebinding and cleaving proviral DNA again. The newly discovered
Cpf1 that cleaves DNA in the more distal region of the target sequence[38] may provide
a possible strategy for addressing this issue. Another solution could be to suppress
the NHEJ machinery enzymes through the use of specific anticancer drugs[147].

Other  possible  strategies  for  the  suppression  of  viral  infections  are  based  on
targeting host cell factors necessary for HIV-1 replication, such as inactivation of the
co-receptor genes CXCR4 and CCR5. Several studies have already demonstrated the
feasible application of CRISPR/Cas9 to inactivate both receptors[148-150], thus generating
HIV-1 resistant cells. CXCR4 or CCR5 knock-out T cells have also been produced by

WJSC https://www.wjgnet.com November 26, 2019 Volume 11 Issue 11

Valenti MT et al. Valenti MT et al. CRISPR/Cas and stem cells

947



direct  electroporation  of  the  CRISPR/Cas9  ribonucleoproteins[151],  which  is  a
particularly useful strategy for cells that are difficult to transfect, such as primary
cells. The immediate activity of the proteins is observed following transfection, and
this  approach  may  limit  off-target  effects,  since  the  protein  complex  is  quickly
degraded within the cell.

Despite the promising efficacy of CRISPR/Cas9 for genome editing, the procedure
is  still  too  unsafe  to  be  applied in  human embryos  because  unwanted germline
mutations might be passed to future generations, with unpredictable effects.

The first trial was carried out by Chinese researchers who used the CRISPR/Cas9
system to modify genetically the human β-globulin gene, whose mutation causes β-
thalassemia, in human embryos[152]. Unfortunately, a higher frequency of mutations
was detected in the CRISPR/Cas9-treated human embryos compared to the results
observed in modified adult mouse or human cells. This result confirmed that the
fidelity and specificity of the CRISPR/Cas9 system still require further investigation,
which will be a prerequisite for any clinical applications of genome editing. Despite
these ethical concerns, the first genetically modified babies were recently reported to
have been generated in China, giving rise to strong international criticism[153].  He
Jiankui,  a  genome-editing  researcher  at  the  Southern  University  of  Science  and
Technology of China in Shenzhen, injected the CRISPR/Cas9 machinery into human
embryos to disable the CCR5 gene, thus generating R5-tropic HIV-1-resistant human
babies.  When the embryos were 3-5 five days old, a few cells were removed and
checked for editing. Sixteen of 22 embryos were actually found to have been edited,
and 11 of them were used in six implantation attempts before a twin pregnancy was
achieved. Genetic tests suggest that both CCR5 alleles had been correctly modified in
one twin, while the other twin is heterozygous for the modification. At present, this
type of gene editing is prohibited in most countries, as the CRISPR/Cas9 technology
is still experimental. The rate of off-target mutations is still too high, which might lead
to long-term unexpected side effects, including the development of cancers that may
be  passed  to  future  generations.  Furthermore,  CCR5 depletion  provides  higher
susceptibility to other viral infections, such as West Nile and influenza viruses, and if
a working vaccine against HIV-1 is found in the future, harbouring the CCR5 deletion
will provide no benefits[154].

P53 mutations
hPSCs are very difficult to treat using CRISPR/Cas9 and exhibit a very low efficiency
of genome editing compared to laboratory tumour cell lines[155]. These characteristics
are due to the toxicity of DSBs induced by Cas9 in hPSCs, which appear to be p53
dependent[155].  Since stem cells may acquire p53 mutations[156],  clonal expansion of
stem  cells  that  are  more  tolerant  to  DNA  damage  poses  severe  risks  of  cancer
development. A careful genetic analysis of hPSC-treated cells, therefore, needs to be
carried out before clinical use.

Nature spread
Homing gene drives based on CRISPR/Cas9 may be used to design mutations that
will spread within a target population or species, for instance, to confer resistance to a
parasite[157]. Such drives have been studied as a potential tool for the eradication of
mosquitos to prevent diseases such as malaria[158,159] or other vector-borne diseases.
This possibility, though fascinating, raises many concerns, since it may potentially
cause  the  genetic  modification  of  an  entire  species  if  modified  organisms  are
accidentally  released  in  the  environment.  Safeguarding  strategies  are  under
development to avoid the risk of premature release in the wild[157].

Ethical concerns
The technique needs to be used carefully and responsibly. Where does a cure end and
improvement start?

A committee of the National Academy of Science addressed clinical, social, ethical
and  legal  issues  linked  to  genome  editing,  releasing  a  report  entitled  “Human
Genome Editing: Science, Ethics, and Governance” in 2017[160]. Permanently editing
germlines raises many concerns[161,162]. While there is no doubt that the correction of a
genetic defect may help to eradicate, or at least significantly reduce, the burden of
severe genetic diseases in the general population, the technical shortcomings of the
technique will  necessitate  the discarding of  embryos or  even recurrent  selective
abortion when the editing procedure does not succeed, raising ethical, religious and
practical concerns when applied to humans.

In  addition,  it  may  be  difficult  to  distinguish  between  the  correction  of  a
detrimental mutation and genetic enhancement. For this reason, the use of genome
editing technologies in human embryos may result in unexpected, unpredictable and
potentially  harmful  consequences  for  future  generations,  since  it  may  result  in
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reduced human genetic variability and cross the borders of eugenics, baby design and
the removal of certain characteristics, to be substituted with others that are more
desirable[161,162].

Thus, the boundaries between a cure and eugenics applications are becoming very
thin.  It  may be fundamental  to  promote general,  worldwide-accepted protocols,
which  will  require  close  interaction  between  the  regulatory  agencies,  scientific
communities and governments of different countries. It is for this reason that a global
moratorium  on  the  use  of  genome  editing  technologies  for  human  germline
modification has recently been called for[154],  to allow time to discuss the relevant
scientific and ethical issues.

In conclusion, the potential of CRISPR/Cas9 is enormous, but researchers need to
proceed with caution. It is very likely that new discoveries, data and protocols will
help  to  address  the  many  obstacles  involved,  and  CRISPR  will  lead  to  a  new
revolution in the field of molecular biology, similar to polymerase chain reaction in
the 1980s.
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