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Abstract

Sleep science is entering a new era, thanks to new data-driven analysis approaches that,

combined with mouse gene–editing technologies, show a promise in functional genomics

and translational research. However, the investigation of sleep is time consuming and not

suitable for large-scale phenotypic datasets, mainly due to the need for subjective manual

annotations of electrophysiological states. Moreover, the heterogeneous nature of sleep,

with all its physiological aspects, is not fully accounted for by the current system of sleep

stage classification. In this study, we present a new data-driven analysis approach offering a

plethora of novel features for the characterization of sleep. This novel approach allowed for

identifying several substages of sleep that were hidden to standard analysis. For each of

these substages, we report an independent set of homeostatic responses following sleep

deprivation. By using our new substages classification, we have identified novel differences

among various genetic backgrounds. Moreover, in a specific experiment with the Zfhx3

mouse line, a recent circadian mutant expressing both shortening of the circadian period

and abnormal sleep architecture, we identified specific sleep states that account for geno-

typic differences at specific times of the day. These results add a further level of interaction

between circadian clock and sleep homeostasis and indicate that dissecting sleep in multi-

ple states is physiologically relevant and can lead to the discovery of new links between

sleep phenotypes and genetic determinants. Therefore, our approach has the potential to

significantly enhance the understanding of sleep physiology through the study of single

mutations. Moreover, this study paves the way to systematic high-throughput analyses of

sleep.
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Author summary

Sleep is a heterogeneous process determined by a number of genetic and epigenetic fac-

tors. To investigate the biology of sleep, animal models, such as mice, are extensively used

in sleep studies, and large-scale phenotypic datasets are required to reach meaningful con-

clusions. Currently, manual annotations of electrophysiological states by a researcher is

the gold-standard approach to classifying sleep stages. Only a few sleep states are identi-

fied through such manual annotations, namely non-rapid-eye-movement (NREM) and

rapid-eye-movement (REM) sleep. In this work, we present a new computational

approach that identified multiple new substages of sleep based on standard electroenceph-

alography (EEG)/electromyography (EMG) features. Using this new approach, we studied

each individual identified state and discovered that many of these states respond to the

basic principles of sleep physiology: for example, some states homeostatically respond to

sleep deprivation. We also applied our method to different mouse strains and to a circa-

dian mutant line of mice. In all experimental groups, we were able to refine our under-

standing by associating specific substages with the genetic variations. We conclude that

our new unbiased computational approach can help refine the study of sleep by further

dissecting sleep biology.

Introduction

Sleep is a physiological, metabolic, and behavioral state of the organism that plays an impor-

tant role in many biological functions. It is described by 2 different states—namely, non-rapid-

eye-movement (NREM) sleep and rapid-eye-movement (REM) sleep. In laboratory settings,

sleep is conventionally defined by properties of electrophysiological signals, and many features

of these biological signals are shared across species. For this reason and thanks to the advances

in mouse genetics, the study of sleep in mice has become popular in many laboratories.

A guideline for sleep scoring was developed for human studies as a tool for visual analysis

of electroencephalography (EEG) and electromyography (EMG) traces according to a prede-

fined set of rules [1]. Based on these rules, a simplified catalog of electrophysiological proper-

ties was determined for rodents as well. Differently from humans, in rodents NREM sleep is

considered to be a single state. It is characterized by low EEG frequencies (below 5 Hz) with a

progressive reduction of muscular tone, and it is usually referred to as deep sleep. On the other

hand, REM sleep is characterized by EEG frequencies in the range 5–9 Hz. This makes it an

electrophysiologically active state, similar to wakefulness in many aspects, even though the

muscle tone decreases dramatically during this state. Due to this fact, REM sleep is also called

paradoxical sleep. These basic criteria and some additional properties (i.e., periodic

electrophysiological phenomena that occur in EEG) are used to manually classify long series of

time epochs (each epoch usually lasts 4 seconds) into either one of the two aforementioned

sleep states or into the wakefulness state.

Visual scoring of the different time epochs is the current gold-standard approach that pro-

vides fundamental insights into sleep regulation and physiology; however, it is a time-consum-

ing process that can be affected by errors and misjudgments across different scorers. This is

caused by the subjective decisions that can easily bias the labeling process. Indeed, inter- and

intrascorer variability is always present, and studies evaluating the consistency between scorers

have shown an average agreement of about 80%, which varies significantly across different

sleep states [2,3,4]. In addition to the difficulties related to manual scoring, it is well recognized

that sleep states are nonhomogeneous units representing an aggregation of different substages
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[5]. For example, NREM sleep in humans is typically characterized by 3 substages, and in

some animals, it can be divided into 2 substages (slow-wave sleep I and II) [6]. However,

whether sleep stages should be divided into multiple substages, each one having a physiological

relevance, remains an open question in sleep biology.

In this scenario, we attempted to go beyond the current state of knowledge in the study of

sleep in mice, trying to extrapolate unforeseen phenomena from the data. Our study is driven

by the assumption that a richer structure of electrophysiologically derived properties can be

discovered from standard datasets. Thus, we present here a different conceptual and technical

framework for the analysis of sleep in mice based on the adoption of unsupervised machine

learning. The proposed scheme has the potential to represent a paradigm shift in the study of

sleep, allowing for an investigation without prior assumptions on the different states, thus

facilitating an agnostic exploratory data analysis. Indeed, employing models that are capable of

detecting regularities in large datasets, we can discover many sleep substages that a human

scorer would never detect by a standard visual inspection of signals.

The class of latent (hidden) variable models have proven to be very effective in capturing

hidden regularities in the data, due to their ability to encode rich structured priors and infer

latent properties of the data without requiring human annotations [7]. Out of all potential

models, we decided to adopt the mean-covariance restricted Boltzmann machine (mcRBM)

[8] to model brain and muscle activities. This model is capable of learning the joint distribu-

tion between a set of continuous observed random variables and a set of binary unobserved

(latent) ones, modeling complex (multimodal) distributions from Gaussian-like data (like in

our case, see Fig 1A), and exploiting correlations between the input variables. Specifically, it

allows inferring a set of latent representations (namely, latent states) describing different

modes in the input data distribution, each one ideally corresponding to a cluster associated

with a reoccurring sleep pattern. These latent states can be therefore interpreted as model

descriptors identifying different sleep substages. For this reason, in the following text, we will

interchangeably refer to them as latent states or substages.

This model has been demonstrated to be capable of learning such regularities and discover-

ing meaningful phenomena [7]. Indeed, thanks to the unsupervised nature of the approach,

we were able to study unforeseen complex phenomena appearing in electrophysiological data

that cannot be studied with common rule-based and supervised learning approaches

[9,10,11,12] just because such phenomena are not entirely modeled or described by the

experts’ prior knowledge. This approach, for the first time, allowed the identification of multi-

ple substages both in sleep and wakefulness phases. Thus, we explored the variability in the

sleep behavior between different mouse genotypes. In particular, we performed a multisubject

analysis applied on groups of mice with different genetic backgrounds, i.e., a classical pure

inbred mouse strain, an outbred strain, and a strain with mixed background. From this multi-

subject data analysis, we identified a repertoire of novel substages that characterize the differ-

ent physiological states of mouse sleep. Taking this as a starting point, we identified novel

sleep-behavioral differences among mouse genotypes. Indeed, the results of our experiments

robustly show that there are several substages that are characteristic of 1 strain, and this can be

informative of the genetic differences across mice.

In an effort to further investigate the use of our approach, we applied our analysis to the

recently identified Zfhx3Sci/+mouse strain, which presents a shortening of the circadian clock

and alterations in sleep homeostasis [13]. Our new approach provides a deeper understanding

of the sleep abnormalities in this circadian mutant mouse line, revealing specific EEG anoma-

lies and circadian modulations. We assessed the physiological relevance of each new stage by

testing the homeostatic response to a perturbation (i.e., sleep deprivation). Thus, we identified

a general heterogeneous homeostatic response, suggesting that these states carry a potentially
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unique physiological role. Yet we observed that specific substages show distorted responses in

mutants’ sleep, which may indicate the presence of subtle microstructures in the sleep of mice

that are governed by single genes.

It is important to highlight that, beyond being a novel approach to the analysis of complex

sleep phenomena, the proposed method allows management of sleep longitudinal studies,

transferring the inferred knowledge across experiments. In addition, it can also be applied to

other investigations in any biological domain involving the analysis of similar data (i.e., time

series), such as other behavioral studies.

Fig 1. Multisubject data analysis pipeline. (A) Data collection and preprocessing per subject; FFT was applied to EEG signals to derive the power histogram of 5

bands (Alpha, Beta, Delta, Gamma, and Theta), and the ratios between all possible pairwise combinations of the 5 EEG bands were computed. For the EMG, we used

its integral values. Each individual dataset was preprocessed by taking the natural logarithm of the data and zeroing the mean of each feature separately. (B) Scatter plot

of the log-(Delta/Theta) and the log-EMG features showing the existence of more clusters in the samples of one subject. Notice that REM sleep is characterized by at

least 2 substages. Data points belong to a single-subject time series. Blue, green, and red samples are associated with wakefulness, NREM sleep, and REM sleep,

respectively, as hand-labeled by the expert. (C) Data modeling: time series of EEG/EMG data of all subjects were concatenated into a unique dataset and modeled with

an mcRBM, resulting in a set of latent variables’ representation of the input data. (D) Evolution of mcRBM’s latent variables activity while processing an input time

series in which, for a visualization purpose, the sequence of states has been grouped according to the 3 known stages, i.e., NREM (NR), REM (R), and wakefulness (W),

as defined by the manual scoring. Time flows from left to right, with each pixel-wide column representing 1 time step (4 s epoch) and each pixel-wide row representing

1 latent variable. Black pixels represent nonactive units, while white pixels represent active ones. It is interesting to see how the model mostly gives similar

configurations to epochs that belong to the same sleep stage. For this reason, blocks that belong to the same stage look similar to each other. Notice that units that are

active in REM are generally not active in NREM and wakefulness (units in yellow frame). With the mcRBM, we are fitting Gaussian distributions to the data. Hence,

each single binary representation is associated with a multivariate normal distribution [8]. EEG, electroencephalography; EMG, electromyography; FFT, fast Fourier

transformation; mcRBM, mean-covariance restricted Boltzmann machine; NREM, non-rapid eye movement; REM, rapid eye movement.

https://doi.org/10.1371/journal.pbio.2003663.g001
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Results

Identification of new sleep–wakefulness substages

We explored the homogeneity of the 3 standard physiological states (NREM sleep, REM sleep,

and wakefulness) using a cohort of 46 animals from 3 different strains: (i) a common inbred

mouse strain (C57BL/6J); (ii) a mixed background strain (BALB/c × C3H/HeH × C57BL/6J);

and (iii) an outbred mouse line (CD1). We investigated the existence of substages that are

common across animals through a multisubject data analysis pipeline. To deal with the sub-

ject-to-subject variability, each individual dataset was preprocessed separately, obtaining a uni-

form representation across subjects (see Fig 1A). After preprocessing, it was possible to

observe the presence of nonhomogeneous state distributions. For example, Fig 1B shows in

one animal that REM sleep episodes are distributed across at least 2 main clusters.

Since we were looking for co-occurring regularities in the data, aiming at discovering com-

mon sleep substages across subjects and across groups, all individual datasets of the aforemen-

tioned 3 mouse lines were modeled jointly with a single mcRBM (Fig 1C). This allowed us to

search for regularities within the dataset, inferred through the states of the model’s latent vari-

ables (Fig 1D). As a result, approximately 190 different latent states (i.e., binary configurations

of latent variables) were identified, most of which were strongly representative of the labeling

performed by manual scoring. In Fig 2A, we provide a visual representation of this relation-

ship, showing the probability for each latent state (rows) to correspond to each of the 3 manu-

ally scored sleep states (columns). From this probability matrix, we can observe that a

significant number of latent states map with high probability to only 1 of the 3 known states.

There are also some latent states that could be associated with approximately equal probability

Fig 2. Evaluation of the observed substages. (A) Probability matrix of LS being associated with the known sleep stages. Rows refer to LS and columns to wakefulness,

NREM, and REM sleep stages. Color shades range from blue, representing low probability, to red, representing high probability, for the corresponding LS to belong to

each of the 3 known stages. The order of the substages in the graph has been achieved using agglomerative hierarchical clustering. (B) Analysis of the NMI between the

observed substages and the 3 stages. Each bar represents the NMI per stage. The right bar corresponds to ratio assuming as 2 random variables the “substages” and the

“three stages.” (C) Examples of distributions of the input features associated with 3 substages corresponding with high probability to the NREM stage. The top row

shows the distributions of the input samples in a box plot. The bottom row shows the covariance between the input variables. EMG, electromyography; LS, latent

states; MI, mutual information; NMI, normalized mutual information; NREM, non-rapid eye movement; REM, rapid eye movement.

https://doi.org/10.1371/journal.pbio.2003663.g002

Unsupervised analysis of sleep substages

PLOS Biology | https://doi.org/10.1371/journal.pbio.2003663 May 29, 2018 5 / 23

https://doi.org/10.1371/journal.pbio.2003663.g002
https://doi.org/10.1371/journal.pbio.2003663


(whitish color in the graph) to at least 2 states. For example, there are latent states mapping to

both wakefulness and REM and others mapping to both NREM and REM. While these latter

latent states are likely to be misclassified in the classical scoring system—for example, by differ-

ent scorers—in our unbiased classification, they are independent states with a specific fre-

quency and timing.

We also measured how informative the different latent states are about the 3 states by esti-

mating the normalized mutual information (NMI) [14], which measures how well the learnt

latent states have encoded the sleep states. In our case, it was approximately 0.6, indicating a

good informativeness of the latent states. Mutual information (MI) and state entropy were also

computed for each state separately and, as shown in the graph in Fig 2B, the observed latent

states are highly informative about the 3 states (i.e., NMI > 0.5).

Thanks to the fact that the mcRBM is a generative model, we were able to further investigate

the variability of the input data distributions associated with each inferred latent state. Specifi-

cally, a multivariate normal distribution (represented by its mean vector and covariance

matrix) over the input variables was inferred for each latent state (see Fig 1D). Different latent

states correspond to different distributions in the input data, even when they can be statisti-

cally associated with the same sleep stage (see Fig 2C and S1 Fig). This result points to the exis-

tence of a more elaborate electrophysiological characterization of sleep than expected, showing

that the 3 main states are nonhomogeneous entities. This supports our hypothesis that the

known 3 sleep stages can be described by multiple latent states in the model, hence by different

sleep substages that experts cannot detect by a simple visual inspection of the signals.

Substages discriminate mouse genotypes

In light of the findings described in the previous section, we investigated whether there are

substages that are characteristic of specific mouse genotypes. Indeed, we observed that a signif-

icant number of substages are mostly associated to 1 of the 3 strains. In order to determine

those that best describe each strain, we used the 2-sample independent t test, comparing the

distributions of the substages across the mouse genotypes. Three examples are shown in Fig 3,

in which the graphs depict for each strain the statistics on the number of epochs in which

each latent state is observed. The arrows below each graph show the p-values of the 2-sample

Fig 3. Examples of 3 substages that are characteristic of the 3 mouse genetic backgrounds. Box plots describing the statistics on the

number of epochs each strain falls in the corresponding substage. Arrows below each graph show the p-values for the 2-sample

independent t test computed on the top distributions. (A) A substage associated with the wakefulness stage for which the C57BL/6J

mouse group is significantly different from the other 2 groups (p-values< 0.05). (B) A substage mapping to the NREM stage that is

characteristic for the CD1 strain. (C) A substage associated with NREM sleep that is characteristic for the mixed background group. LS,

latent stage; NREM, non-rapid eye movement; REM, rapid eye movement.

https://doi.org/10.1371/journal.pbio.2003663.g003
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independent t test, giving a picture of the difference between each combination of 2 distribu-

tions. This approach allows determining analytically the sets of all latent states that best charac-

terize each single genotype.

Prompted by the variability of sleep among mouse groups, we attempted to test whether we

can use the substages to discriminate between the mouse genetic backgrounds with a super-

vised machine-learning approach. Each group and each subject is described by a discrete prob-

ability distribution over the observed latent states. In a leave-one-subject-out classification

framework and using a majority-voting criterion, we achieved a discrimination performance

of 85.11%. The resulting confusion matrix is shown in S2 Fig, in which we can see that only 2

subjects for each strain have been misclassified. We can also observe that both misclassified

subjects of the mixed background strain have been classified as belonging to the C57BL/6J

group, which is interesting because the C57BL/6J background and mixed background groups

are genetically related. This experiment highlights the power of our study in detecting genetic

background effects. Since different genetic backgrounds are associated with specific traits, our

capability to discriminate between mouse groups indicates that some latent states we identified

depend on specific genetic components.

Transitions across substages show a robust clustering of sleep and

wakefulness

Transitions between different substages can be informative in the analysis of sleep over 24

hours. We computed the transition probabilities between the latent states for the entire data-

set. As expected, latent states mapping to a certain sleep stage among NREM, REM, and

wakefulness have higher probability to be followed by latent states mapping to the same

stage. We visualized the transition probabilities in a graph where nodes (the latent states) are

clustered according to their overall connectivity using a multidimensional scaling algorithm

(Fig 4 top). The absolute position of each node in this graph is not relevant; the overall group-

ing of nodes is what can give us useful insight. Indeed, as a first result, we noticed that cluster-

ing the latent states according to their connectivity surprisingly also results in a meaningful

grouping of nodes in terms of the 3 known sleep stages. The clustered graph confirms basic

knowledge regarding the transitions across sleep states. For example, the cluster of latent

states mapping to NREM sleep is near to the cluster of latent states mapping to REM sleep,

and both are far away from the cluster of latent states associated with wakefulness. Interest-

ingly, latent states not having a clear mapping to any of the 3 known sleep stages (whitish sub-

stages in Fig 2A) are usually interleaving substages positioned between the 3 overall clusters

and associated with a transitional state between the 3 known sleep stages (see purple nodes in

Fig 4).

In a deeper investigation of the differences among mouse genetic backgrounds, we also

built the graphs for each strain separately, following the same principle (see graphs in S3 Fig

and interactive graphs at http://pavis.iit.it/datasets/mouse-sleep-analysis). This allowed us to

look for possible differences among the 3 groups. We searched for nodes assuming a different

role in the 3 strains (e.g., nodes that are central to a cluster in a group and become transitional

between 2 clusters in another graph). Indeed, even though the general clustering is common

across graphs, there are some nodes whose role changes significantly. For instance, node 53,

while being associated with REM sleep according to human labeling, seems to be a transitional

state between wakefulness and NREM sleep in the graph generated from the CD1 strain. On

the contrary, the same node in the graphs generated from both C57BL/6J and mixed back-

ground groups has transitions only with NREM and REM sleep nodes (see black arrows point-

ing out this node in each graph in S3 Fig). Similarly, node 174 in the mixed background group
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appears as a transitional state between wakefulness and sleep, while in the other groups, it has

transitions only with nodes associated with wakefulness (see orange arrows pointing out this

node in each graph in S3 Fig). These results imply that specific substages can have different

roles according to a specific genetic background and cannot be considered as isolated stages.

Fig 4. Transitions’ probabilities between substages and daily profiles analysis. Top: state-transition graph in which nodes have

been clustered according to the transition probabilities. Nodes correspond to the substages, and edges identify the transitions

between stages. Nodes’ size is related to their in-degree. Blue, green, and red nodes are associated with substages mapping with high

probability to wakefulness, NREM sleep, and REM sleep, respectively. Purple nodes correspond to substages that do not have a clear

mapping to 1 of the 3 known stages (probability lower than 0.6 for any stage). Edges’ weight is related to the corresponding

transition probability, and their color is related to the source node. Graphs were built using the ForceAtlas2 algorithm [15,16] (see

also interactive graphs at http://pavis.iit.it/datasets/mouse-sleep-analysis). Bottom: examples of daily profiles associated with NREM

sleep, in which the profile of C57BL/6J mouse group is slightly shifted. Histograms describe the distribution of epochs using bins of

1 hour. Polynomial curves are fitted to the histograms to obtain a simplified visual representation of daily oscillations. LS, latent

state; NREM, non-rapid eye movement; REM, rapid eye movement; ZT, zeitgeber time.

https://doi.org/10.1371/journal.pbio.2003663.g004
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This offers an unprecedented dynamic aspect in studying sleep physiology within multiple

sleep microstructures.

Substages follow daily variations

To investigate how substages develop over time, we analyzed the daily behavior over the 24

hours for each genotype. Specifically, we computed the histogram of the 4-second epochs that

fall in each single latent state using bins of 1 hour, starting from 7:00 AM. Histograms are com-

puted for each latent state and for each group separately. A polynomial curve is fitted to the

histogram to obtain a representation of daily oscillations. We observed that some latent states

show different daily profiles across mouse genotypes. For example, the profile of the C57BL/6J

strain in latent state 104 (see Fig 4 bottom left) is shifted compared to the other 2 strains. Inter-

estingly, the latter state (as well as latent state 110 in S4B Fig) is quite numerous within the

dataset and particularly in NREM sleep, suggesting that the daily distribution of the latent

states is an additional powerful discriminator of mouse genotypes. A similar shift in the profile

of C57BL/6J was observed in many other latent states, including those that do not have a clear

mapping to only 1 of the 3 known sleep stages, like latent state 19 (see Fig 4 bottom right). In

S4 and S5 Figs, we report further examples of daily profiles of specific latent states and the

manually annotated known sleep stages, respectively. This shift in the profile of C57BL/6J is

present in almost all the latent states, as well in the 3 known stages, and it is due to its genetic

background that, to the best of our knowledge, it has not been described in literature before.

During the subjective night, latent states are divided in early and late peaks

We further analyzed the latent states having maximum peaks during the subjective night (light

phase: 7:00–19:00). We observed that there is a group of latent states having maximum peak in

the first half of the light phase, while some others have a peak in the second half of the light

phase. Interestingly, we observed that 91% of the latent states mapping with high probability to

REM have peaks in the second half of the light phase (see Fig 5A). This compartmentalization

of REM-like sleep substages across the subjective night resembles the classical distribution of

REM sleep in humans, in which the majority of REM sleep occurs in the second part of the

night. Our result, suggesting that a microstructure of REM-like sleep occurs in the second part

of the subjective night of a mouse, was never described before. Thus, we can speculate that the

temporal profile of these latent states could be informative of the full REM-like sleep in mice.

Indeed, REM sleep is often reported to be 5%–10% of sleep in mice, while in humans, it

reaches up to 20%. In Fig 5B, we compared the percentage of REM sleep annotated with man-

ual scoring versus the percentage of REM-like sleep, considering all latent states that present a

profile that peaks in the second half of the subjective night. Remarkably, the account of latent

states is close to the percentage (in range of 20%–30%, see Fig 5B) of REM sleep reported in

humans. These results may suggest that this new method has the potential to describe a micro-

structure of REM-like sleep states in mice that resemble the human one.

The latent states are homeostatically regulated and genetically determined

In order to explore in more detail the idea of using specific latent states as biomarkers for the

identification of single gene determinants (i.e., in circadian clock alterations), we also per-

formed an additional sleep analysis of the Zfhx3Sci/+mutant strain, which is characterized by a

reduced circadian period and some other differences in their sleep architecture compared to

their littermate control Zfhx3+/+mice [13].

Following the same processing pipeline as in the previous experiment, all datasets of the 2

groups were modeled jointly with an mcRBM. Analyzing the daily profile of the inferred
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configurations, we observed the existence of latent states where Zfhx3Sci/+mutants have a

reduced profile (see Fig 6B and 6C left). This is also evident from the analysis of the profiles of

the 3 known states using the manually scored epochs (see Fig 6A), as was already shown in

[13]. Moreover, some latent states show flat profiles during the dark phase for both strains (see

Fig 6B right and Fig 6C right), showing more specific information in the data that is not evi-

dent when only relying on standard scoring. Looking at the mean of the distributions over the

input data (see bottom plots in Fig 6B and 6C), we also observed that such states have different

data distributions compared to the previous cases. Finally, we also noted that for some latent

states, mainly associated with REM or NREM stages, the profile of Zfhx3Sci/+mutants has a for-

ward shift compared to their littermate control group (see Fig 6D, first 2 top graphs).

A further validation of the physiological value of each latent state came from the study of

how each substage responds to sleep deprivation. Indeed, sleep is a homeostatic process that is

best described by its rebound response following sleep deprivation; hence, we tested it for each

latent state. In Fig 7A, we show the distribution of rebound responses in Zfhx3 wild-type and

mutant mice. In particular, we classified between immediate (i.e., at zeitgeber time [ZT] 6),

intermediate (i.e., within ZT 6 and ZT 12), and late (i.e., beyond ZT 12) responses over the 6

hours following sleep deprivation. The dynamic of rebound responses in the 2 groups of mice

is similar, with both groups having similar peaks at different times along the recovery phase

(Fig 7A). Then, we looked at the rebound for each latent state by assessing the different

response compared to its baseline value for the same time of the day (Fig 7B shows the amount

of rebound of latent states for the 2 models). This analysis provides an initial screening of

Fig 5. Temporal profile of REM-like states. (A) Analysis of the peaks during the light phase (07:00–19:00) identified 2 populations of latent states, presenting peaks

either in the first or the second half of the subjective night. Top graphs are associated with the first experiment (data coming from the 3 wild-type genetic

backgrounds). Bottom graphs are associated with the second experiment (Zfhx3Sci/+mutant strain versus Zfhx3+/+ littermate controls). In both experiments, the

majority of the substages that map into the second half of the light phase has a high probability to be classified as REM (therefore REM-like). The substages classified as

NREMs are equally divided into the first and second half of the light phase. (B) Comparison between manually annotated REMs versus REM-like states generated by

our approach, which peak in the second half of the light phase, in the 2 experiments. Graph shows the percentage of epochs labeled as REM (refer also to S1 Data).

NREM, non-rapid eye movement; REM, rapid eye movement; ZT, zeitgeber time.

https://doi.org/10.1371/journal.pbio.2003663.g005
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Fig 6. Daily behavior analysis in the circadian mutants. (A) Profiles per sleep stage of Zfhx3Sci/+ versus Zfhx3+/+, using the manually scored epochs. (B)

Examples of substages mapping with high probability to wakefulness. Left: the Zfhx3Sci/+ mutants show a reduced profile compared to the Zfhx3+/+. Right: the

profiles of both groups are flat during the dark phase. As can be observed from the graphs on the bottom, also the distributions of the input variables across the

2 substages are different. (C) Examples of substages mapping with high probability to NREM. Similarly to C, there are substages where the Zfhx3Sci/+ mutants

show a reduced profile compared to the Zfhx3+/+ (left), as well as substages where the profiles of both groups are flat during the dark phase (right). Also, in this
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latent states that present similar responses in the 2 groups (i.e., linearly correlated in Fig 7B

corresponding to quadrants 1 and 3) and latent states that respond differently according to the

genotype (i.e., nonlinearly correlated in Fig 7B corresponding to quadrants 2 and 4). Thus, we

performed a more detailed analysis of individual responses to sleep deprivation, and this pro-

vided a set of heterogeneous behaviors across different latent states, ranging from high-fre-

quency states (e.g., >17,000 epochs) to low-frequency ones (e.g., <1,000 epochs). As we can

appreciate from Fig 7C, some latent states respond equally in the 2 groups of mice. The analy-

sis also revealed specific latent states in which the homeostatic rebound following sleep depri-

vation is attenuated or fully suppressed in mutants compared to wild-type mice (Fig 7D). We

also identified states in which the response to deprivation is increased in mutants (Fig 7E) or

not present in both groups (Fig 7F). Overall, the results of applying our approach to a per-

turbed condition such as sleep deprivation indicate that the latent states we have identified are

independent states that can differentially respond to homeostatic rebound and that single gene

change may influence each state separately.

Discussion

Our study presents an advancement in the methodologies allowing the study of EEG-based

sleep physiology in mice. Using our approach, we were able to identify sleep substages using

standard electrophysiological data collected from mice. The observed sleep substages are well

contained within the standard NREM sleep, REM sleep, and wakefulness categories, providing

a preliminary validation of the proposed approach. Moreover, this new unbiased method also

provides a rich repertoire of substages in wakefulness, which are, however, difficult to charac-

terize because they correspond to a large range of behaviors. Therefore, we focused our study

mainly on the latent states that emerge within sleep. Our method, by its own nature, can be

used independently from classical NREM/REM annotation, offering an unbiased approach to

the analysis of sleep states.

In order to validate the biological relevance of the learnt latent states, we applied our

method to a multisubject analysis framework including different groups of mice. Specifically,

we used 3 groups of mice representing the most commonly used genetic backgrounds in

mouse genetics. Our study has shown that a number of latent states are characteristic of spe-

cific genotypes, and this greatly enriches the study of the genetic components of EEG sleep.

Indeed, the results of our study advocate for a new set of endophenotypes that can be studied

in mice by reanalyzing electrophysiological data. Interestingly, we also observed that the

majority of the latent states follow a circadian-like profile and are homeostatically regulated,

which adds further information in the physiological relevance of states determined by our

approach. Furthermore, the definition of latent states according to the circadian phase in

which they are expressed or according to their homeostatic response after sleep deprivation

generates new scientific questions to be investigated. For example, our study on the Zfhx3 cir-

cadian mutants refined the understanding of the sleep patterns affected by the mutation. In

particular, we identified specific states that can account for increased sleep episodes in the

dark phase of mutants. Within the NREM alterations reported for this line, we were also able

to identify specific latent states that are characteristic of the mutants. Moreover, the oscillation

of specific mutant states over 24 hours is shortened compared to littermate control mice,

case, the distributions of the input variables across the 2 substages are different (bottom graphs). (D) Top left and middle graphs: examples of substages

mapping with high probability to REM, in which we observed that the profile of Zfhx3Sci/+ has an advance compared to the one of Zfhx3+/+. Top right:

example of a substage in which no difference is observed across the 2 groups. Bottom: Differences in the input data distributions can be observed across the 3

examples. EMG, electromyography; LS, latent state; NREM, non-rapid eye movement; REM, rapid eye movement; ZT, zeitgeber time.

https://doi.org/10.1371/journal.pbio.2003663.g006
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Fig 7. Homeostatic responses of latent states. (A) Percentage of peak rebounds at ZT 6 (immediate), within ZT 6 and ZT 12 (intermediate), and beyond

ZT 12 (late). Within each category, the distribution of wake (blue), NREM (green), and REM (red) stages according to the manual annotation is represented

(refer also to S2 Data). (B) Analysis of responses in Zfhx3 mutants versus wild-type mice. Each dot describes the difference between the rebound and the

baseline phase of a latent state for the same period of the day. Examples of latent-state occurrences are presented for states presenting no differences between

mutants and wild-types (C); for states in which mutants present reduced response (D); for states in which mutants present higher response compared to

wild-types (E); and for states in which both groups are not responding, then not homeostatically regulated (F). Note that the shaded region in the plots C-F

corresponds to the period of sleep deprivation. NREM, non-rapid eye movement; REM, rapid eye movement; ZT, zeitgeber time.

https://doi.org/10.1371/journal.pbio.2003663.g007
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suggesting a specific correlation between sleep physiology and circadian clock. Yet, reanalyzing

the homeostatic defect of this mutant line by means of the proposed analysis framework, we

noticed that some specific latent states can account for the genotype differences, while this is

not possible considering the whole NREM stage. Moreover, the mutation may be characterized

by various latent states presenting either reduced rebound or increased rebound; therefore, the

overall effect we observe in the mutants is the result of a highly dynamic sleep structure. This

latter example indicates that our approach may be applied to additional datasets of sleep and

circadian mutants. The general outcome emerging from our study is that, as expected, sleep in

mice is more complex than what was analyzed so far, and applying our multistage dissection of

sleep may highlight different dynamic structures of sleep that are physiologically relevant and

genetically determined.

In the future, our methodological pipeline can be applied to datasets coming from different

mouse mutants, promising a deeper understanding of the influence of genetic variations on

specific physiological processes in sleep.

Last but not least, our method can naturally cope with a large dataset, allowing it to be

employed in the analysis of high-throughput experiments, which are very much needed in

large-scale screening in mouse genetics and drug discovery. Indeed, despite its unsupervised

nature, the presented analysis pipeline can easily be turned into an automatic tool for scoring

sleep in mice. Moreover, although it was out of the scope of the current work, the proposed

approach allows the study of the physiological role of specific latent states corresponding to

interesting modes, i.e., multivariate normal distributions over the input variables. In principle,

it is possible to label relevant modes, creating a set of ground-truth distributions that can be

used to identify and label the substages in new experiments.

Methods

Ethics statement

All animal procedures were approved by our institutional animal committee (“Organismo pre-
posto al benessere degli animali”, OPBA, IIT, Genova) and by the ethical national committee in

Italy for IIT Genova. All procedures were done under the Italian Policy (license issued on 19

June 2009, decreto No106/2009-B). The study followed ARRIVE guidelines (http://www.nc3rs.

org.uk/arrive-guidelines, see S1 Checklist). All mice were anesthetized IP with Ketamine/Xila-

zine, 90-150K/7.5-16X and implanted with telemetry transmitters (Data Sciences, F20-EET,

Gold system) for recording EEG.

Animals

We analyzed EEG/EMG recordings coming from 46 male mice of 3 different groups:

• a classical inbred strain: C57BL/6J (n = 13 subjects),

• an outbred strain: CD1 (n = 14 subjects),

• and a mixed background group (BALB/c × C3H/HeH × C57BL/6J; n = 19 subjects).

Isogenic C57BL/6J mice are the most widely used mice in neuroscience due to the fact that,

as with any other inbred genetic background model, it reduces variability in phenotypic

expression. Moreover, a number of mouse mutant models have been developed and are avail-

able on C57BL/6J background. However, in the study of mouse models for translational medi-

cine, the testing of mutations on mixed background models (e.g., BALB/c × C3H/HeH ×
C57BL/6J) or outbred mice (CD1), which resemble human genetic variations better, brings a

great value.

Unsupervised analysis of sleep substages

PLOS Biology | https://doi.org/10.1371/journal.pbio.2003663 May 29, 2018 14 / 23

http://www.nc3rs.org.uk/arrive-guidelines
http://www.nc3rs.org.uk/arrive-guidelines
https://doi.org/10.1371/journal.pbio.2003663


To test whether our approach could be a valuable tool for the identification of specific

electrophysiological alterations and circadian modulations, in a second experiment, we ana-

lyzed EEG/EMG recordings coming from 14 male mice:

• a circadian mouse mutant strain: Zfhx3Sci/+ (n = 7 subjects)

• and its wild-type littermate control group: Zfhx3+/+ (n = 7 subjects).

All Zfhx3Sci/+ and Zfhx3+/+mice were genotyped as described in [17]. For more details

regarding animals’ breeding and maintenance, please refer to [13].

Animal husbandry and data acquisition

Mice (10–14 weeks of age) were anesthetized with Ketamine/Xylazine (65/5 mg/kg, 2 ml/kg,

IP) and implanted with a subcutaneous transmitter that records EEG and EMG with 2 biopo-

tential channels (Data Sciences, F20-EET, Gold system). Electrodes (1 mm diameter) were

placed on the parietal cortex of the mouse, only on 1 hemisphere. EEG electrodes were

implanted on the dura, and EMG electrodes were attached to the muscle in the nape of the

neck to acquire signals (Dataquest A.R.T. software, DSI) while the animals freely move in their

home cage. EEG activity was sampled at 500 Hz with a 50 Hz cut-off filter. EEG signals were

band-pass filtered at 0.3 Hz (low-pass filter) and 0.1 kHz (high-pass filter). After 10 days of

postsurgery recovery, continuous electrophysiological signals were recorded for 24 hours (first

experiment—light/dark cycle 12:12 with light switched off and on at 7 PM and 7 AM, respec-

tively) and for 72 hours (second and third experiment—same light/dark condition with

6-hour sleep deprivation after the first 48 hours). Sleep deprivation was performed by intro-

ducing novel objects in the home cage of the animal and/or by gentle touch. All data was ana-

lyzed in 4-second epochs (the total number of epochs per subject was 21,600). The range 0.25–

50 Hz was partitioned into 5 frequency bands: Delta (0.25–5 Hz), Theta (5–9 Hz), Alpha (9–12

Hz), Beta (12–20 Hz), and Gamma (20–50 Hz). Each epoch was subject to a fast Fourier trans-

formation (FFT) with 0.48-Hz resolution using the Hanning window method. The EMG inte-

gral was exported as a measure of the muscular activity. Semiautomatic sleep scoring to

annotate the 3 sleep stages (wakefulness, NREM sleep, REM sleep) was performed using the

SleepSign software followed by visual inspection and correction by experts. This hand labeling

was used as ground truth to better characterize our experiments. Epochs associated with arte-

facts (i.e., 6.74% of the dataset in the first experiment, 0.835% in the second experiment—first

24 hours of baseline; 0.655% in the third experiment—second 24 hours of baseline plus 18

hours of recovery) were excluded from the analysis.

The resulting visual scoring statistics in terms of the 3 sleep stages were as follows:

• Experiment 1: wakefulness = 56.3%, NREM sleep = 38.09%, REM sleep = 5.61%;

• Experiment 2: wakefulness = 57.17%, NREM sleep = 37.77%, REM sleep = 5.06%;

• Experiment 3 (i.e., 24 hours of baseline plus 18 hours of recovery after 6 hours of sleep depri-

vation): wakefulness = 54.3%, NREM sleep = 40.38%, REM sleep = 5.32%.

Data preprocessing

A common issue to address in multisubject analysis is the variability across subjects’ physiol-

ogy, which is reflected in different ranges of EEG/EMG signal for different subjects. This issue

can be solved with a proper preprocessing of data. In our case, each individual dataset was pre-

processed separately by first computing all possible ratios between the 5 EEG bands, because
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we observed that using the ratios instead of bands’ power produces less variability across sub-

jects. A full representation of the EEG spectra is plotted in S6 Fig, showing the classical band

distribution across NREM/REM stages, as determined by the manual scoring. Similarly, S7 Fig

shows examples of the power bands of some latent states compared to those of the known

sleep stages they are associated with. From this comparison, it can be observed that the latent

states show a more compact representation of specific structure in the data than the standard

sleep stages; hence, they are more specific concerning the microstructure that can be found in

the data. Since our data are log-Gaussian, to deal with the skewness in the features’ distribu-

tions, we used the natural logarithm, obtaining more bell-shaped distributions [18] that facili-

tate the modeling process performed by the mcRBM. The zero-mean normalization was

further applied to each single feature to make all the subjects comparable.

Modeling

We seek for modes in the input data distribution by modeling the joint distribution of the

input variables (ratios between EEG bands and EMG) using the mcRBM [8]. The mcRBM is a

probabilistic energy-based graphical model consisting of 2 fully connected layers of stochastic

random variables (also called units): a layer of visible variables representing the observed data

(visible units, v) and a layer of latent variables (hidden units, h) that capture dependencies

between the visible ones (see Fig 8 for an illustration).

The advantage of using the mcRBM for this task is related to its effectiveness in modeling

real-valued Gaussian distributed data, together with the ability to exploit the correlations

between the input variables. Another important feature making the selected model more suit-

able than other variants of restricted Boltzmann machines (RBMs) is the fact that its latent var-

iables are divided into 2 different sets (see section mcRBM for more details regarding the

model). One of these sets ({h1, . . ., hm}) is used to model the mean value of the input variables,

while the other one ({hm+1, . . ., hm+c}) is thought to be for explicitly modeling their covariance.

This second set of latent variables allows for a better fitting of the data distribution presenting

dependencies between input variables than what can be achieved with simpler models (e.g.,

Gaussian RBMs).

Once the model is trained, its bipartite graph structure allows for representing regularities

in the observed input variables through the inferred values of the latent binary variables. In

other words, the model can be used to generate a set of latent representations (the states of the

inferred hidden variables) for the observed EEG/EMG data. Indeed, the model processes each

Fig 8. Graphical model associated to the RBM. The visible variables are represented by v (in our case, the ratios

between the EEG frequency bands and the EMG), h are the latent variables, and w are the weights on the undirected

connections between visible and hidden units. EEG, electroencephalography; EMG, electromyography; RBM,

restricted Boltzmann machine.

https://doi.org/10.1371/journal.pbio.2003663.g008
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input vector (corresponding to one sample of the dataset—in our case, one 4-second epoch),

generating its related latent representation consisting of a series of binary values according to

the probability of each single latent variable to be active.

Notably, in this Bayesian framework, the observed variables are approximately jointly

Gaussian distributed [8], given the latent ones, with the mean and covariance jointly defined

by the specific values of latent variables and model parameters (see Eqs 6 and 7). This means

that each single latent configuration is associated with one mode in the joint distribution of

the input variables, reflecting the regularities in the data. Hence, one latent representation may

be considered a model representation of a sleep or a wakefulness substage.

In each of the 2 experiments performed in this study, a single mcRBM was used to model

the joint distribution of the EEG ratios and the EMG. After training the model, the latent states

of the 2 sets of hidden units were inferred according to Eqs 4 and 5.

The size of the mcRBM (the number of its latent variables) was set after a series of validation

trials in which we “calibrated” the model to the problem at hand. We observed that having too

few hidden units results in a very small number of fuzzy clusters, while, as expected, the size

escalation leads to a higher computational cost. We also realized that there is a certain number

of hidden units, beyond which there is no real advantage in increasing the network size, since

they remain inactive. We reached a good tradeoff between computational cost and quality of

the results (i.e., significantly high MI, easy interpretability of visible data distributions, good

performance in groups’ discrimination, etc.) using 11 hidden covariance units (hc), 11 visible-

to-hidden covariance factors, and 10 hidden mean units (hm). Similarly, all the other parame-

ters were set after a series of trials, taking into account the average quality of the results. Finally,

the models were trained on GPU over minibatches of 256 data points with learning rate set to

10−2.

mcRBM

Like all RBM models, the mcRBM [8] is a probabilistic energy-based graphical model with a

bipartite undirected graph structure, which consists of 2 fully connected layers of stochastic

random variables (also called units): a layer of visible variables representing the observed data

(visible units, v), and a layer of latent variables (hidden units, h) that capture dependencies

between the visible ones. Unlike the standard RBM models, the mcRBM has 2 groups of hid-

den units: mean units (hm) that model the mean of the input elements and precision units (hc)
that represent pairwise dependencies between the visible variables, modeling their covariance

structure (see Fig 9 for an illustration).

Due to the absence of connections between the variables within the layers, the variables of a

layer are independent of each other, given the variables of the other layer. The model is defined

in terms of an energy function that is given by the sum of the energy functions of the 2 groups

of variables:

Emcðv; hc; hmÞ ¼ Ecðv; hcÞ þ Emðv; hmÞ: ð1Þ

The energy function of the precision variables Ec defines a zero-mean Gaussian distribution

over the visible variables, while adding the second energy term Em allows the mcRBM to pro-

duce conditional distributions over the visible units having nonzero means.

Ec is defined as follows:

Ecðv; hcÞ ¼ � dThc � ðv
TCÞ2Phc; ð2Þ

in which C is the weight matrix from the visible (v) units to the factors (F), P is a weight matrix

with nonpositive entries for connections from the factors (F) to the hidden covariance units
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(hc), and d is the hc bias vector. P is constrained to have nonpositive entries in order to avoid

having a model that assigns larger and larger probabilities (more negative energies) to larger

and larger inputs. To control great disparity in the input features and make the model more

robust, we used the normalized version of Eq 2 [8].

Fig 9. Graphical model associated with the mcRBM. v represents the visible variables (in our case, the EEG frequency bands

and the EMG), hm the latent variables modeling the mean of variables v, and hc those modeling their covariance. F is the

number of factors.W is the 2D matrix of the weights on the undirected connections between v and hm variables. C is the weight

matrix of the connections from the v variables to the factors (F). P is the weight matrix of the connections from the factors (F)
to the hc. EEG, electroencephalography; EMG, electromyography; mcRBM, mean-covariance restricted Boltzmann machine.

https://doi.org/10.1371/journal.pbio.2003663.g009
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The energy function of mean variables Em is given by:

Em v; hmð Þ ¼ �
1

2
v � bÞT v � bð ÞcThm � vTWhm; ð3Þ
�

withW denoting the direct connections from the hidden mean units (hm) to the visible ones

(v), b being the visible bias, and c being the hidden mean bias.

After the training process, the model allows us to infer the states of its latent variables given

the observed data. Given a training sample, the binary states of the hc units can be inferred

according to the following conditional distribution:

pðhcjvÞ ¼ sðdþ ððvTCÞ2PÞTÞ; ð4Þ

in which σ(x) = 1 / (1 + exp(-x)) is the logistic function, while the states of hm units can be

inferred according to the following conditional distribution:

pðhmjvÞ ¼ sðcþWvTÞ: ð5Þ

Conditioning on the latent variables, the resulting distribution over the visible ones is

approximately Gaussian, which depends on both the hidden covariance and hidden mean

latent states and is given by:

pðvjhc; hmÞ / NðSWhm;SÞ; ð6Þ

in which S is given by:

S ¼ ðCðdiagð� PThcÞÞC
TÞ
� 1
: ð7Þ

Entropy and MI

To evaluate how well the model fits the observed data in our experiments, we analyzed how

informative the learnt latent states are about the stages of wakefulness, NREM sleep, and REM

sleep, as defined by the manual scoring. Since each latent state corresponds to a discrete proba-

bility distribution over the 3 manually scored stages, the informativeness we want to measure

can be expressed in terms of entropy and MI.

Entropy [14] is a measure of the uncertainty of a random variable and is defined by:

HLðYÞ ¼ �
X

y2Y

pLðyÞlog
2
pLðyÞ; ð8Þ

in which Y corresponds to the set of the known 3 sleep stages (wakefulness, NREM sleep, and

REM sleep), while pL(y) is the probability of each of these 3 stages to appear in each latent state

(hopefully, for each latent state, only one of the sleep stages will have a high probability).

MI [14] is a measure of the amount of information that one random variable contains

about another random variable. In our case, we would like to see how informative the latent

states X are about the 3 sleep stages Y. The MI I(X;Y) is the relative entropy between the joint

distribution and the product distribution p(x)p(y):

I X; Yð Þ ¼ �
X

x;y

p x; yð Þlog
2

pðx; yÞ
pðxÞpðyÞ

; ð9Þ

in which p(x,y) is the joint probability of latent state x and sleep stage y, p(x) is the probability

of latent state x, and p(y) is the probability of sleep stage y.
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Finally, the NMI is computed as follows:

In ¼
IðX; YÞ
HðXÞ

: ð10Þ

NMI (In) is expressed as a real number in the range [0, 1], allowing us to compare it to its

theoretical upper bound (i.e., which is equal to 1 when there is a perfect correlation between

the 2 variables).

Transition probabilities graph

Transitions between sleep stages can provide additional information regarding the structure of

sleep in 24 hours. For this reason, we analyzed the transition probabilities between the

observed latent states, which were computed and summarized in a squared transition proba-

bilities matrix. The matrix was visualized as a graph whose nodes are the latent states and

edges are the transitions between them. The weight of each edge is the probability of the corre-

sponding transition. We used the ForceAtlas2 [15] algorithm to cluster the network. Briefly,

the algorithm randomly positions the nodes in a 2D space, which are then moved according to

the attraction and repulsion forces among the nodes until the network reaches a state of equi-

librium. These forces cause nodes with a big number of connections (hubs) to strongly repel

each other and nodes connected with a heavily weighted edge (meaning a very probable transi-

tion) to attract each other [15].

Group discrimination

One question we addressed was whether we could use the discovered latent states to discrimi-

nate between different mouse genotypes. To do so, each subject was represented with a discrete

probability distribution over the k = 1,2, . . ., n observed latent states, with Pi(xk) being the

probability of latent state k for subject i.

We then performed a classification with a leave-one-subject-out schema (train the model

on N − 1 subjects and test over the left-out subject, iterating N times over all N subjects). We

used an ensemble of classifiers based on a linear support vector machine (SVM), a linear dis-

criminant analysis (LDA), and a 1-nearest neighbor (1-NN) to classify with a majority vote the

left-out subject as belonging to 1 of the 3 groups.

Supporting information

S1 Fig. Examples of input data (bands’ ratios) distributions associated with 3 latent states

corresponding with high probability to (A) REM sleep state and (B) wakefulness state.

Top: distributions of bands’ ratios along the input samples associated with the represented

latent state are visualized in a box plot. Bottom: matrices describe for each latent state the pair-

wise covariance between all input variables. REM, rapid-eye-movement.

(TIF)

S2 Fig. Strains’ discrimination results with an ensemble classifier composed by an

LDA, a linear SVM, and a 1-NN classifier. Confusion matrix showing the detailed

misclassification errors, in which we can see that only 2 subjects for each strain have been

misclassified. Interestingly, we can also observe that both misclassified subjects of the

mixed background strain have been classified as belonging to the C57BL/6J group. This can

be due to the fact that C57BL/6J background and mixed background groups are genetically
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related. 1-NN, 1-nearest neighbor; LDA, linear discrimination analysis; SVM, support vector

machine.

(TIF)

S3 Fig. Transition probabilities graphs of the 3 wild-type mouse models: (A) C57BL/6J; (B)

CD1; (C) mixed background. Nodes correspond to latent states, edges to transitions between

them. Nodes’ size is related to their in-degree. Blue, green, and red nodes are associated with

latent states mapping with high probability to wakefulness, NREM sleep, and REM sleep,

respectively. Purple nodes correspond to substages that cannot be clearly associated to any of

the known sleep states. Edges are weighted with the probability of the corresponding transition

and colored according to the source node. Graphs were built using the ForceAtlas2 algorithm

[15,16]. See also the interactive graphs available at http://pavis.iit.it/datasets/mouse-sleep-

analysis. NREM, non-rapid eye movement; REM, rapid eye movement.

(TIF)

S4 Fig. Daily profiles. Examples of circadian patterns associated with (A) wakefulness, (B)

NREM sleep, and (C) REM sleep. NREM, non-rapid eye movement; REM, rapid eye move-

ment.

(TIF)

S5 Fig. Daily profiles of the 3 sleep stages according to the manual scoring.

(TIF)

S6 Fig. Box plots associated to bands’ power, representing the full EEG spectra for the 3

groups of wild-type mice (C57BL/6J, CD1, mixed background) in NREM and REM sleep.

EEG, electroencephalography; NREM, non-rapid eye movement; REM, rapid eye movement.

(TIF)

S7 Fig. Left: box plots of the bands’ power of the latent states in Fig 3 that are characteristic

of the 3 genetic backgrounds (A—C57BL/6J, B—CD1, C—mixed background) compared

to the box plots of the power of the known according to the GT stage (right) they are asso-

ciated with. GT, ground truth.

(TIF)

S1 Data. Data associated with the statistics summarized in the bar plots in Fig 5.

(XLSX)

S2 Data. Data associated with the statistics summarized in the bar plots in Fig 7A.

(XLSX)

S1 Checklist. ARRIVE checklist.

(PDF)
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