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a b s t r a c t

We consider a symmetric n-player nonzero-sum stochastic differential game with
jump–diffusion dynamics and mean-field type interaction among the players. Under the
assumption of existence of a regular Markovian solution for the corresponding limiting
mean-field game, we construct an approximate Nash equilibrium for the n-player game
for n large enough, and provide the rate of convergence. This extends to a class of games
with jumps classical results in mean-field game literature. This paper complements our
previous work Benazzol et al. (2017) on the existence of solutions of mean-field games
for jump–diffusions.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we consider a symmetric nonzero-sum stochastic differential game with jump-diffusion dynamics, where
the interaction among the players is of mean-field type. Mean-field games (MFGs, henceforth) are optimization problems
that were simultaneously introduced by Lasry and Lions in Lasry and Lions (2006a,b, 2007) and by Huang and co-authors
in Huang et al. (2006). They can be seen as an approximation of large population symmetric stochastic differential games,
whose players interact via the empirical law of their private states. When the number n of players is large enough,
a solution of the limit MFG can be used to provide nearly Nash equilibria for the corresponding n-player games, see,
e.g., Carmona and Delarue (2013a,b, 2018), Carmona and Lacker (2015), Huang et al. (2006) and Kolokoltsov et al. (2011).
The importance of MFG lies also in the fact that computing Nash equilibria in n-player games, when n is large, is usually not
feasible, even numerically, because of the curse of dimensionality. Moreover, MFGs represent a very flexible framework
for applications spanning from finance to economics and crowd dynamics, see, e.g., Carmona and Delarue (2018) and
Guéant et al. (2011). In the symmetric stochastic differential game we consider in this paper, the agents interact through
the empirical distribution of their private states, affecting all coefficients in the jump-diffusion dynamics. According to
MFG theory, we expect that as the number of players gets very large, the n-player games tend to the MFG with jumps
studied in Benazzoli et al. (2017).

Our main contribution is that any solution to the limiting MFG, provided it is Markovian and Lipschitz continuous
in the state variable, gives a good approximation of Nash equilibria in the n-player game. This result extends to a
jump-diffusion setting classical results proved for continuous paths state variables as in, e.g., Carmona and Delarue (2018,
Vol. II) and references therein. From the application viewpoint, the presence of jumps allows to model unpredictable
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exogenous shocks affecting the state variable. This additional feature can be important especially for applications in
economics and finance (see, e.g., Benazzoli et al., 2017). Indeed, jumps are very natural tools to model exogenous
unexpected shocks. Regarding the literature on the topic, while the uncontrolled counter-part of MFG, namely particle
systems and propagation of chaos for jump processes, has been thoroughly studied in the probabilistic literature, see,
e.g., Andreis et al. (2018), Graham (1992) and Jourdain et al. (2008), MFGs with jumps have attracted less attention, with
the exception of few papers as Cecchin and Fischer (2018), Gomes et al. (2013), Hafayed et al. (2014) and Kolokoltsov
et al. (2011), among which only Hafayed et al. (2014) deals with jump-diffusions state variables.

The paper is organized as follows: in Section 2 we describe the n-player game and the corresponding MFG. Section 3
contains the main result of this paper, establishing how under suitable conditions a Markovian MFG solution yields a
nearly Nash equilibrium for the n-player game with n sufficiently large.

Finally, notice that our setting is one-dimensional only for the sake of simplicity, extending our results to a multi-
dimensional state space is straightforward.

2. A symmetric n-player game with interaction of mean-field type

In this section we describe the n-player game we are interested in, together with the corresponding MFG, we set the
main assumptions and we provide some a-priori estimates on the state variables. In the sequel, L(X) denotes the law of
some random variable X , while P(R) (resp. Pq(R), q ≥ 1) will denote the set of all probability measures on the real line
equipped with the Borel σ -field (resp. with finite moment of order q). Moreover, the notation ∥ · ∥Lq for the Lq(P)-norm
will be used to shorten the formulae when necessary.

2.1. The n-player game Gn with mean-field interaction.

Let (Ω,F, (Ft )t∈[0,T ],P) be a filtered probability space satisfying the usual conditions, supporting n independent
Brownian motions W i and n independent marked point processes µi, all with predictable intensity kernel ν of the form
νt (dz) = λtΦ(dz), where Φ is a probability measure on R. We note µ̃i(dz, dt) = µi(dz, dt) − νt (dz)dt the compensated
jump measure. Let X i,n

= X i,n(γ ) be the unique strong solutions to the following SDEs (conditions ensuring this will be
given below)

dX i,n
t = b(t, X i,n

t , µn
t , γ

i
t )dt + σ (t, X i,n

t , µn
t , γ

i
t )dW

i
t

+

∫
R

β(t, Xn,i
t−, µn

t−, γ i
t , z)µ̃

i(dz, dt), (1)

with initial condition X i,n
0 = ξ i, where (ξ i)ni=1 are i.i.d. random variables with distribution χ . Moreover, µn

t denotes the
empirical distribution of Xn

t = (X1,n
t , . . . , Xn,n

t ), i.e. µn
t = µn

t (γ ) =
1
n

∑n
i=1 δX i,n

t (γ ), where δy is the Dirac mass at y.
Each player i chooses a strategy γ i, with values in a fixed action space A. We assume throughout the whole paper that A

is a compact subset of R, hence A∞ := supa∈A |a| < ∞. We say that a strategy γ i is admissible if it is an A-valued predictable
process and denote by G the set of all such strategies. An admissible strategy profile γ is an n-tuple (γ 1, . . . , γ n) ∈ Gn.
For player i, the expected outcome of the game Gn according to the strategy profile γ = (γ 1, . . . , γ n) is

J i,n(γ ) = E
[∫ T

0
f (t, X i,n

t (γ ), µn
t (γ ), γ i

t )dt + g(X i,n
T (γ ), µn

T (γ ))
]

. (2)

Each player aims at minimizing the functional J i,n over the set G of her admissible strategies. We write X i,n(γ ) and J i,n(γ )
to stress that both the state variable’s dynamics and the expected cost of game Gn of player i depend not only on her
control γ i but also on those of the other players. Given an admissible strategy profile γ = (γ 1, . . . , γ n) ∈ Gn and an
admissible strategy η ∈ G, (η, γ−i) denotes a further admissible strategy where player i deviates from γ by playing η,
whereas all the other players keep playing γ j, j ̸= i, i.e. (η, γ−i) = (γ 1, . . . , γ i−1, η, γ i+1, . . . , γ n) . Our aim is to find an
approximate Nash equilibrium for the game Gn.

Definition 1. Let ε ≥ 0. An admissible strategy profile γ = (γ 1, . . . , γ n) ∈ Gn is an ε-Nash equilibrium of the n-player
game Gn if for each i = 1, . . . , n and for any admissible strategy η ∈ G the following inequality is satisfied

J i,n(η, γ−i) ≥ J i,n(γ ) − ε . (3)

A strategy profile γ is a Nash equilibrium in the game Gn if it is an ε-Nash equilibrium with ε = 0.

2.2. The associated mean-field game G∞ and main assumptions.

Let (Ω,F, (Ft )t∈[0,T ], P) be a filtered probability space satisfying the usual conditions and supporting a Brownian
motion W and an independent marked point processes µ with predictable intensity kernel ν of the form νt (dz) = λtΦ(dz).
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As before, µ̃(dz, dt) = µ(dz, dt) − νt (dz)dt denotes the compensated jump measure. Let Y = Y (γ ) be the unique strong
solution to

dYt = b(t, Yt , µt , γt )dt + σ (t, Yt , µt , γt )dWt +

∫
R

β(t, Yt−, µt−, γt , z)µ̃(dz, dt) , (4)

with initial condition Y0 = ξ ∼ χ , where µ is a càdlàg flow of probabilities,1 µ: [0, T ] → P(R), with µ(0−) = δ0. The
expected outcome of the game when playing some strategy γ is defined by

J(γ ) = E
[∫ T

0
f (t, Yt (γ ), µt , γt )dt + g(YT (γ ), µT )

]
. (5)

A MFG solution for G∞ is an admissible process γ̂ ∈ G which is optimal, i.e. γ̂ ∈ argminγ∈G J(γ ), and satisfies the
mean-field condition µt = L(Yt ) for all t ∈ [0, T ]. A solution γ̂ of G∞ is said to be Markovian if γ̂t = γ̂ (t, Yt−) where γ̂ is
a measurable function. For the games Gn and G∞ to be well-defined we will be working under the following assumption
on

(b, σ ): [0, T ] × R × P(R) × A → R2, β: [0, T ] × R × P(R) × A × R → R,

λ: [0, T ] → R+, f : [0, T ] × R × P(R) × A → R, g:R × P(R) → R ,

where R+ denotes the set of all positive real numbers. The following assumption guarantees, in particular, existence of a
unique strong solution for the SDEs in Eqs. (1) and (4) for all admissible strategies.

Assumption 1.

1. χ ∈ Pq(R) for some q > 2, q ̸= 4.
2. There exists a positive constant L such that for all t ∈ [0, T ], x, y, z ∈ R, µ, ν ∈ P2(R) and γ , η ∈ A

|(b, σ )(t, x, µ, γ ) − (b, σ )(t, y, ν, γ )| + |β(t, x, µ, γ , z) − β(t, x, ν, η, z)|
≤ L(|x − y| + dW ,2(µ, ν) + |γ − η|).

Moreover, b and σ have at most linear growth (uniformly in t), β has at most linear growth (uniformly in (t, z))
and λ is bounded and Lipschitz-continuous.

3. For all x, y ∈ R, µ, ν ∈ P2(R), t ∈ [0, T ], and γ ∈ A, we have

|f (t, x, µ, γ ) − f (t, y, ν, γ )| + |g(x, µ) − g(y, ν)| ≤ L(|x − y| + dW ,2(µ, ν)).

Moreover, f and g have at most quadratic growth (uniformly in t).

Here dW ,2 stands for the squared Wasserstein distance, while ∥ · ∥∞ denotes the sup-norm. From now on, to simplify
the notation, we write dW for dW ,2. We observe that the assumption q ̸= 4 grants the applicability of Fournier and Guillin
(2015, Th. 1) to obtain the rate of convergence (see our Remark 3 for details). We conclude this part with some classical
estimates for the second moment of the process Xn (as in (1)) and the corresponding empirical measure flow µn. The
proof is based on standard applications of Burkholder–Davis–Gundy’s and Gronwall’s inequalities. It is therefore omitted.

Lemma 2.1. Let Assumption 1 hold. Then, for each admissible strategy γ ∈ Gn, the processes X i,n
= X i,n(γ ), i = 1, . . . , n,

solving (1), satisfy

E
[

sup
t∈[0,T ]

|X i,n
t |

2
]

+ E
[

sup
t∈[0,T ]

dW (µn
t , δ0)

2
]

≤ Ĉ
(
1 + E

[
ξ 2
1

])
, (6)

for some constant Ĉ = Ĉ(χ, T ,M, A∞) independent of n and γ .

3. Markovian ε-Nash equilibrium

This section presents the main result of this paper on how to construct approximate equilibria for the n-player game
Gn provided that the MFG G∞ admits a Markovian solution, γ̂t = γ̂ (t, Yt−). Consider the game Gn, where each player
i implements the optimal strategy function (t, x) ↦→ γ̂ (t, x) evaluated at the left-limit of her own state process X̂ i,n

t− ,
i.e. γ̂ i

t = γ̂ (t, X̂ i,n
t−). The n-tuple X̂n

= (̂X1,n, . . . , X̂n,n) is defined as solution to the SDE

dX̂ i,n
t = b(t, X̂ i,n

t , µn
t , γ̂ (t, X̂ i,n

t−))dt + σ (t, X̂ i,n
t , µn

t , γ̂ (t, X̂ i,n
t−))dW i

t

+

∫
R

β(t, X̂ i,n
t−, µn

t−, γ̂ (t, X̂ i,n
t−), z)µ̃i(dz, dt), (7)

1 The limits are taken for the weak convergence of measures.
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with X̂ i,n
0 = ξ i. For each player the strategy γ̂ (t, X̂ i,n

t−) is admissible, i.e. (γ̂ (t, X̂ i,n
t−))t∈[0,T ] ∈ G, being γ̂ a measurable

function by construction and X̂ i,n
t− a predictable process. The results of this section are proved under the following standing

assumption:

Assumption 2. There exists a Markovian MFG solution γ̂t = γ̂ (t, Yt−) for the game G∞, for some measurable function
γ̂ : [0, T ] × R → A, which is Lipschitz continuous in x (uniformly in t) with Lipschitz constant Cγ̂ .

Remark 1. The Lipschitz continuity of the MFG solution is typically satisfied, for instance, in the linear-quadratic case
when the marked point process is a Poisson process with constant intensity (as in Benazzoli et al., 2017). Indeed in this
case the optimal control would be a time-dependent linear function of x, suitably truncated to keep it in A.

Now, we can state the main result of this paper.

Theorem 3.1. Let Assumptions 1 and 2 hold and let X̂n be the solution of the SDE (7). Hence the n-tuple (γ̂ (t, X̂1,n
t− ), . . . , γ̂

(t, X̂n,n
t− )) is an εn-Nash equilibrium for the n-player game Gn, with εn = O

(
n−α/2

)
→ 0 as n → ∞, where α =

min {1/2, (q − 2)/q}.

Without loss of generality we can assume that Cγ̂ = L as in Assumption 1. Moreover, from now on the strategy profile
(γ̂ (t, X̂1,n

t− ), . . . , γ̂ (t, X̂n,n
t− )), t ∈ [0, T ], will be shortly denoted by γ̂ n.

Notice that since the game Gn is symmetric, in the proof of Theorem 3.1 it will suffice to consider deviations of player
1 only. More precisely, we will focus on two different scenarios: the case when all the players follow the recipe suggested
by G∞, i.e. they all play γ̂ (t, X̂ i,n

t−), and the case when player 1 deviates to a different strategy η ∈ G, i.e. the strategy
profile is (η, γ̂ n

−1) = ((ηt , γ̂ (t, X̂2,n
t− ), . . . , γ̂ (t, X̂n,n

t− )))t∈[0,T ] . In what follows, the strategy (η, γ̂ n
−1) will be simply denoted by

ηγ̂ and the solution of (1) under such a strategy will be denoted by X̃ i,n. We will also need the processes Y i,n
= Y i,n(γ̂ )

and Ỹ 1,n
= Ỹ 1,n(η), which are solutions of the following SDEs:

dY i,n
t = b(t, Y i,n

t , µ̂t , γ̂ (t, Y i,n
t− ))dt + σ (t, Y i,n

t , µ̂t , γ̂ (t, Y i,n
t− ))dW i

t

+

∫
R

β(t, Y i,n
t− , µ̂t−, γ̂ (t, Y i,n

t− ), z)µ̃i(dz, dt), (8)

dỸ 1,n
t = b(t, Ỹ 1,n

t , µ̂t , ηt )dt + σ (t, Ỹ 1,n
t , µ̂t , ηt )dW 1

t

+

∫
R

β(t, Ỹ 1,n
t− , µ̂t−, ηt )µ̃1(dz, dt), (9)

with initial conditions, respectively, Y i,n
0 = ξ i and Ỹ 1,n

0 = ξ 1, and where µ̂t is the law of the state process of the limiting
game G∞ under γ̂ . Since, for each i, the process Y i,n has the same dynamics as the representative player’s state in G∞ (cf.
Eq. (4)), and γ̂ is a Markovian MFG solution, we have L(Y i,n

t ) = µ̂t for all t ∈ [0, T ].

Remark 2. The definition of the processes Y i,n and Ỹ i,n differs from those of X̂ i,n and X̃ i,n only in the different measure
appearing in their SDEs. Indeed in (1), the dynamics of X i,n evolves under the empirical distribution of Xn, i.e. µn, while
those of Y i,n and Ỹ 1,n in (8) and (9) evolve under µ̂. This implies that Y i,n and Ỹ 1,n do no longer depend on the other
players’ choices (and we will say that they do not depend on n, for short).

Remark 3. Let µ
Y ,n
t = µ

Y ,n
t (γ̂ ) =

1
n

∑n
i=1 δY i,n

t
. As first step we show

lim
n→∞

E
[
dW (µ̂t , µ

Y ,n
t )2

]
= 0 . (10)

Being Y i,n
t independent, identically µ̂t−distributed random variables, Fournier and Guillin (2015, Th.1) implies E

[dW (µ̂t , µ̂
Y ,n
t )2] ≤ C(q)M2/q

q (µ̂)(1/
√
n + 1/n

q−2
q ), where C > 0 is a constant depending on q, and Mq(µ) =

∫
R |x|q µ(dx).

Moreover, arguing as in Lemma 2.1, while relying on the stronger property χ ∈ Pq(R) with q > 2, we have
E
[
supt∈[0,T ] |Yt |

q]
≤ Ĉ2(χ, T ,M), so that Mq(µ̂) < ∞. Hence E[dW (µ̂t , µ

Y ,n
t )2] = O

(
n−α

)
, with α = min{1/2, (q − 2)/q},

and, since q > 2, Eq. (10) holds uniformly in time.

Now, we show that the process Y i,n(γ̂ ) approximates X̂ i,n as n is large, in a sense that will be specified later. Note that
being independent of n, the dynamics of Y i,n(γ̂ ) is easier to study. We recall that in both systems X̂n and Y n, all n players
choose a strategy of the same form, i.e. γ̂ (t, X̂ i,n

t−) and γ̂ (t, Y i,n
t− ).

Proposition 3.2. Let X̂ i,n and Y i,n be defined as in Eqs. (7) and (8), respectively. Then we have

sup
t∈[0,T ]

dW (µn
t , µ̂t )

2
L2 + sup

t∈[0,T ]

X̂ i,n
t − Y i,n

t

2
L2

= O
(
n−α

)
. (11)
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Proof. Let bX̂,i,n
t := b(t, X̂ i,n

t , µn
t , γ̂ (t, X̂ i,n

t )), bY ,i,n
t := b(t, Y i,n

t , µ̂t , γ̂ (t, Y i,n
t )), and similarly for the other coefficients. For

each t ∈ [0, T ] we haveX̂ i,n
t − Y i,n

t

2
L2

≤ 3t
∫ t

0

bX̂,i,n
t − bY ,i,n

t

2
L2
ds + 3

∫ t

0

σ X̂,i,n
t − σ

Y ,i,n
t

2
L2
ds

+ 3
∫ t

0

∫
R

β X̂,i,n
t (z) − β

Y ,i,n
t (z)

2
L2

Φ(dz)λsds.

Using the Lipschitz continuity of b, σ , β (cf. Assumption 1.2) and of γ̂ (t, ·), as well as the finiteness of E[supt∈[0,T ] dW
(µn

t , δ0)
2
] in (6), we obtainX̂ i,n
t − Y i,n

t

2
L2

≤ 3L2
∫ t

0

(
(2t + 1)

X̂ i,n
s − Y i,n

s

2
L2 + 2t

dW (µn
s , µ̂s)

2
L2

)
ds

+6L2 ∥λ∥∞

∫ t

0

(dW (µn
s , µ̂s)

2
L2 +

γ̂ (s, X̂ i,n
s ) − γ̂ (s, Y i,n

s )
2
L2

)
ds

≤ C̃
∫ t

0

(X̂ i,n
s − Y i,n

s

2
L2 +

dW (µn
s , µ̂s)

2
L2

)
ds, (12)

for a suitable constant C̃ = C̃(T , L,M). Moreover, inequality (12) yieldsdW (µn
t , µ

Y ,n
t )
2
L2

≤
1
n

n∑
i=1

X̂ i,n
t − Y i,n

t

2
L2

≤
C̃
n

n∑
i=1

∫ t

0

(X̂ i,n
s − Y i,n

s

2
L2 +

dW (µn
s , µ̂s)

2
L2

)
ds .

Then, it holds thatdW (µn
t , µ̂t )

2
L2 +

1
n

n∑
i=1

X̂ i,n
t − Y i,n

t

2
L2

≤ 2
dW (µn

t , µ
Y ,n
t )
2
L2

+ 2
dW (µ̂t , µ

Y ,n
t )
2
L2

+
1
n

n∑
i=1

X̂ i,n
t − Y i,n

t

2
L2

≤ 2
dW (µ̂t , µ

Y ,n
t )
2
L2

+ (2̃C + 1)
∫ t

0

(dW (µn
s , µ̂s)

2
L2 +

1
n

n∑
i=1

X̂ i,n
s − Y i,n

s

2
L2

)
ds.

(13)

Therefore, by Eq. (10) and Remark 3, we havedW (µn
t , µ̂t )

2
L2 +

1
n

n∑
i=1

X̂ i,n
t − Y i,n

t

2
L2

≤ O
(
n−α

)
+ 2̃C

∫ t

0

(dW (µn
s , µ̂s)

2
L2 +

1
n

n∑
i=1

X̂ i,n
s − Y i,n

s

2
L2

)
ds,

so that Gronwall’s lemma applies, giving Eq. (11). □

In the previous estimates, we have considered the case when all n players are choosing the same strategy γ̂ . We now
study what happens when player 1 deviates from the strategy profile γ̂ n by playing η ∈ G. In this case the dynamics of
each player in Gn is given by the solution to (1), under the strategy ηγ̂ , i.e. X̃ i,n.

Proposition 3.3. Let X̂ and X̃ be the solutions of the system (1), when the strategy profile is given by γ̂ n and ηγ̂ , respectively.
We denote by µn and µ̃n the empirical distribution of the two systems. Then,

sup
t∈[0,T ]

dW (µn
t , µ̃

n
t )
2
L2 = O

(
n−1) . (14)

Moreover, for the process Ỹ 1,n defined in Eq. (9), we have

sup
t∈[0,T ], η∈G

X̃1,n
t − Ỹ 1,n

t

2
L2

= O
(
n−α

)
. (15)
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Proof. First, let us consider player 1. By Lemma 2.1, the Lipschitz continuity of b, σ and β , and the boundedness of λ (cf.
Assumption 1.2) implyX̂1,n

t − X̃1,n
t

2
L2

≤ 3L2
∫ t

0

(
(2t + 1)

X̂1,n
s − X̃1,n

s

2
L2 + 2t

dW (µn
s , µ̃

n
s )
2
L2

)
ds

+ 3E
[∫ t

0

(
L dW (µn

s , µ̃
n
s ) + L

⏐⏐γ̂ (s, X̂1,n
s ) − ηs

⏐⏐)2 λ(s) ds
]

≤ 12L2T
(
(4T + 2 ∥λ∥∞ + 1)̂C

(
1 + E

[
ξ 2
1

])
+ A2

∞
∥λ∥∞

)
=: C1,

where recall that the constant Ĉ , given as in Eq. (6), is independent of n and then so is C1. Furthermore, by definition C1
does not depend on η either. On the other hand, the other players i = 2, . . . , n play the strategy γ̂ (t, X i,n

t−) in both cases,
then, to find an estimate for ∥X̂ i,n

t − X̃ i,n
t ∥

2
L2

we can argue as for (12). Following the same ideas leading to (13), we have
that dW (µn

t , µ̃
n
t )
2
L2 ≤

1
n

X̂1,n
t − X̃1,n

t

2
L2

+
1
n

n∑
i=2

X̂ i,n
t − X̃ i,n

t

2
L2

≤
C1

n
+

C̃
n

n∑
i=2

∫ t

0

(X̂ i,n
s − X̃ i,n

s

2
L2 +

dW (µn
s , µ̃

n
s )
2
L2

)
ds

and thereforedW (µn
t , µ̃

n
t )
2
L2 +

1
n

n∑
i=2

X̂ i,n
t − X̃ i,n

t

2
L2

≤
C1

n
+

2̃C
n

n∑
i=2

∫ t

0

(X̂1,n
s − X̃1,n

s

2
L2 +

dW (µn
s , µ̃

n
s )
2
L2

)
ds .

Applying Gronwall’s lemma, we havedW (µn
t , µ̃

n
t )
2
L2 +

1
n

n∑
i=2

X̂ i,n
t − X̃ i,n

t

2
L2

≤
K1

n
, (16)

with K1 = K1(χ, T , L,M, A∞) a constant independent of n, t and η, so that (14) is proved. Lastly, as in the proof of
Proposition 3.2, by considering Ỹ 1,n as defined in (9) we haveX̃1,n

t − Ỹ 1,n
t

2
L2

≤ 3(2t + 1)L2
∫ t

0

X̂1,n
s − Y 1,n

s

2
L2 ds

+ 3L2(2t + ∥λ∥∞)
∫ t

0

dW (µn
s , µ̂s)

2
L2 ds

≤ K̃
∫ t

0

(X̃1,n
s − Ỹ 1,n

s

2
L2 +

dW (µn
s , µ̂s)

2
L2

)
ds,

therefore for a suitable constant K̃ = K̃ (T , L,M) we haveX̃1,n
t − Ỹ 1,n

t

2
L2

≤ K̃
∫ t

0

X̃1,n
s − Ỹ 1,n

s

2
L2 ds + K̃O

(
n−α

)
.

Hence one more application of Gronwall’s lemma givesX̃1,n
t − Ỹ 1,n

t

2
L2

≤ K̄ O
(
n−α

)
, (17)

for some further constant K̄ = K̄ (T , L,M) independent of n, t and η, whence Eq. (15). □

Remark 4. It is crucial here and in the following that the constants K1 and K̄ appearing in (16) and (17) do not depend
on how player 1 deviates from the strategy profile γ̂ n.

To complete the proof of Theorem 3.1, we introduce the operators J̃n:Gn
→ R and J̃:G → R as

J̃n(γ ) = E
[∫ T

0
f (t, X1,n

t (γ ), µ̂t , γ
1
t )dt + g(X1,n

T (γ ), µ̂T )
]

, (18)

J̃(η) = E
[∫ T

0
f (t, Ỹ 1,n

t , µ̂t , ηt )dt + g (̃Y 1,n
T (η), µ̂T )

]
, (19)
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respectively, with X1,n and Ỹ 1,n as in (1) and (9). Observe that J̃ does not depend on the number of players, n, in the game.
Indeed, Ỹ 1,n follows the dynamics of a representative player in the MFG G∞, and therefore, J̃ is exactly the expected cost
of the strategy η in G∞ w.r.t. the flow of measures µ̂, as in (5). Therefore, since γ̂ (t, Ỹ 1,n

t ) is by construction a minimizer,

J̃(γ̂ (·, Ỹ 1,n
·− )) ≤ J̃(η) for all η ∈ G . (20)

Now, we show that the value of player 1 in the game Gn, when he deviates from the candidate Nash equilibrium γ̂ n to a
different strategy η ∈ G, i.e. J1,n(ηγ̂ ) as in (2), can be approximated, for n large, by J̃n(ηγ̂ ).

Proposition 3.4. Let (t, x) ↦→ γ̂ (t, x) be as in Assumption 2. Consider the strategy profile γ̂ n
t = (γ̂ (t, X̂1,n

t− ), . . . , γ̂ (t, X̂n,n
t− )),

for t ∈ [0, T ], and let η be an admissible strategy in G. Then

sup
η∈G

⏐⏐J1,n(ηγ̂ ) − J̃n(ηγ̂ )
⏐⏐ = O(n−α/2) . (21)

Proof. By definitions (18) and (19) and by Assumption 1.3,⏐⏐J1,n(ηγ̂ ) − J̃n(ηγ̂ )
⏐⏐ ≤ E

[∫ T

0

⏐⏐⏐f (t, X̃1,n
t , µ̃n

t , ηt ) − f (t, X̃1,n
t , µ̂t , ηt )

⏐⏐⏐ dt]
+ E

[⏐⏐⏐g (̃X1,n
T , µ̃n

T ) − g (̃X1,n
T , µ̂T )

⏐⏐⏐] ≤ L
∫ T

0
E
[
dW (µ̃n

t , µ̂t )
]
dt + LE

[
dW (µ̃n

T , µ̂T )
]
.

Hence Eq. (21) follows from previous results in Propositions 3.2 and 3.3, since E
[
dW (µ̃n

t , µ̂t )
]

≤
dW (µ̃n

t , µ̂t )

L2 =

O
(
n−

α
2

)
. □

As last preliminary result before concluding, we approximate J̃n(ηγ̂ ) with J̃(η), i.e. the expected cost for playing η in
the MFG G∞.

Proposition 3.5. Let (t, x) ↦→ γ̂ (t, x) be as in Assumption 2, let γ̂ n
t = (γ̂ (t, X̂1,n

t− ), . . . , γ̂ (t, X̂n,n
t− )), for t ∈ [0, T ], and let

η ∈ G be an admissible strategy. Then

sup
η∈G

⏐⏐̃Jn(ηγ̂ ) − J̃(η)
⏐⏐ = O

(
n−α/2) . (22)

Proof. Arguing as in the proof of Proposition 3.4, we have that⏐⏐̃Jn(ηγ̂ ) − J̃(η)
⏐⏐ ≤ E

[∫ T

0

⏐⏐⏐f (t, X̃1,n
t , µ̂t , ηt ) − f (t, Ỹ 1,n

t , µ̂t , ηt )
⏐⏐⏐ dt]

+ E
[⏐⏐⏐g (̃X1,n

T , µ̂T ) − g (̃Y 1,n
T , µ̂T )

⏐⏐⏐] ≤ L
∫ T

0
E
[⏐⏐⏐̃X1,n

t − Ỹ 1,n
t

⏐⏐⏐] dt + LE
[⏐⏐⏐̃X1,n

T − Ỹ 1,n
T

⏐⏐⏐] .

Since by Proposition 3.3 we have E[|̃X1,n
t (ηγ̂ ) − Ỹ 1,n

t (η)|] = O(n−α/2), then Eq. (22) follows. □

Proof of Theorem 3.1. Given an admissible strategy η ∈ G, let

ε1
n = 4 sup

η∈G

⏐⏐J1,n(ηγ̂ ) − J̃n(ηγ̂ )
⏐⏐ , ε2

n = 4 sup
η∈G

⏐⏐̃Jn(ηγ̂ ) − J̃(η)
⏐⏐ , εn = ε1

n + ε2
n .

Then J1,n(ηγ̂ ) ≥ −
εn
2 + J̃(η) ≥ −

εn
2 + J̃(γ̂ ) ≥ −εn + J1,n(γ̂ ), which gives (3) for player 1. The first and the third inequalities

are both guaranteed by Propositions 3.4 and 3.5, whereas the second one is justified by Eq. (20). The symmetry of the
game Gn guarantees that (γ̂ (t, X1,n

t− ), . . . , γ̂ (t, Xn,n
t− )), for t ∈ [0, T ], is an εn-Nash equilibrium. The rate of convergence,

i.e. εn = O(n−α/2), is also granted by the previous approximations in Propositions 3.4 and 3.5. □
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