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Recent tract-based analyses provided evidence for the exploitability of 3D-SHORE

microstructural descriptors derived from diffusion MRI (dMRI) in revealing white matter

(WM) plasticity. In this work, we focused on the main open issues left: (1) the comparative

analysis with respect to classical tensor-derived indices, i.e., Fractional Anisotropy (FA)

and Mean Diffusivity (MD); and (2) the ability to detect plasticity processes in gray matter

(GM). Although signal modeling in GM is still largely unexplored, we investigated their

sensibility to stroke-induced microstructural modifications occurring in the contralateral

hemisphere. A more complete picture could provide hints for investigating the interplay

of GM and WM modulations. Ten stroke patients and ten age/gender-matched healthy

controls were enrolled in the study and underwent diffusion spectrum imaging (DSI).

Acquisitions at three and two time points (tp) were performed on patients and controls,

respectively. For all subjects and acquisitions, FA and MD were computed along

with 3D-SHORE-based indices [Generalized Fractional Anisotropy (GFA), Propagator

Anisotropy (PA), Return To the Axis Probability (RTAP), Return To the Plane Probability

(RTPP), and Mean Square Displacement (MSD)]. Tract-based analysis involving the

cortical, subcortical and transcallosal motor networks and region-based analysis in GM

were successively performed, focusing on the contralateral hemisphere to the stroke.

Reproducibility of all the indices on both WM and GM was quantitatively proved on

controls. For tract-based, longitudinal group analyses revealed the highest significant

differences across the subcortical and transcallosal networks for all the indices. The

optimal regression model for predicting the clinical motor outcome at tp3 included

GFA, PA, RTPP, and MSD in the subcortical network in combination with the main

clinical information at baseline. Region-based analysis in the contralateral GM highlighted

the ability of anisotropy indices in discriminating between groups mainly at tp1, while

diffusivity indices appeared to be altered at tp2. 3D-SHORE indices proved to be suitable

in probing plasticity in both WM and GM, further confirming their viability as a novel family

of biomarkers in ischemic stroke in WM and revealing their potential exploitability in GM.

Their combination with tensor-derived indices can provide more detailed insights of the

different tissue modulations related to stroke pathology.

Keywords: diffusion propagator, tensor model, 3D-SHORE model, reproducibility, tract-based, gray matter,

ischemic stroke
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INTRODUCTION

In the last 30 years, diffusion magnetic resonance imaging
(dMRI) has been proven to be a valuable tool for characterizing
physiological and pathological conditions in-vivo (Le Bihan
et al., 1986; Beaulieu, 2002). An increasing number of modeling
methods have been proposed for inferring tissue microstructural
properties from the acquired diffusion signal (for a detailed
overview see Novikov et al., 2016), many of which rely only on
the reconstruction of the ensemble average propagator (EAP),
i.e., the probability distribution function of the water molecules
displacements. The EAP, under some optimality assumptions,
contains the full information about the diffusion process and
therefore can inform about the underlying tissue architecture
(Zucchelli et al., 2016b), leading to numerical indices that can
indirectly quantify the different microstructural features.

Diffusion Tensor Imaging (DTI) (Basser et al., 1994a) was
the first EAP model introduced to describe the anisotropic
nature of the diffusion process in biological tissues and is
still the preferred method in clinical settings thanks to its
ability to estimate the principal diffusion direction from very
few dMRI measurements. The scalar indices obtained from
DTI, mainly the mean diffusivity (MD) and the fractional
anisotropy (FA) (Pierpaoli and Basser, 1996), have become
precious tools for characterizing pathological conditions such
as tumors, stroke and neurodegenerative disorders (Sundgren
et al., 2004). Nonetheless, DTI has an inherent strong modeling
constraint related to the description of the EAP as a single
multivariate Gaussian function. This assumption is rarely
adequate in real conditions where complex white matter (WM)
topologies featuring crossing, fanning and kissing fibers are most
often encountered, severely limiting its applicability. Among
the widespread EAP models proposed for circumventing this
limitation, one of the most accurate is the Simple Harmonic
Oscillator Based Reconstruction and Estimation (SHORE), firstly
introduced in Özarslan et al. (2008). 3D-SHORE and its
extensions, asMeanApparent Propagator (MAP)-MRI (Özarslan
et al., 2013), demonstrated good performance in detecting
multiple diffusion directions and are among the most promising
EAP-based models for characterizing the tissue microstructure,
as recently highlighted at the SPARC-dMRI contest (Ning et al.,
2015). Under some assumptions, reliable measures of tissue
anisotropy can be derived from these EAP models, such as the
Generalized Fractional Anisotropy (GFA) and the Propagator
Anisotropy (PA), along withmeasures of the EAP variance (Mean
Square Displacement, MSD). In addition, they provide indices
that quantify various features of the three-dimensional diffusion
process, namely the Return to the Origin Probability (RTOP),
the Return To the Axis Probability (RTAP) and the Return
To the Plane Probability (RTPP). When the diffusion time is
long enough and under narrow pulse assumptions (Özarslan
et al., 2013), these indices reflect the degree of restriction
of the water molecules in the voxel, which is linked to the
underlying pore shape and thus represent relevant descriptors of
the microstructural properties (Zucchelli et al., 2016a).

Since their first introduction, 3D-SHORE indices have been
increasingly explored as novel potential biomarkers of brain

microstructure. This has been shown both on synthetic data and
in ex-vivo experiments on a marmoset brain (Özarslan et al.,
2013) as well as in in-vivo studies on healthy subjects (Avram
et al., 2014; Fick et al., 2015; Mendez et al., 2016; Zucchelli et al.,
2016a). Very few studies have tried to pursue their potentialities
as clinical biomarkers in pathologies, with promising results to
date only on Alzheimer’s animal models (Fick et al., 2016) and
on ischemic stroke (Brusini et al., 2015; Obertino et al., 2016).
In the latter case, albeit DTI scalar indices have been used to
assess stroke features in several longitudinal studies (Maniega
et al., 2004; Yu et al., 2009), the characterisation of the network
pathophysiology with advanced EAP-based indices would add
insights into the reorganization processes that can be combined
with clinical information to draw a more precise picture of the
disease. A recent study (Brusini et al., 2016) investigated these
aspects on a group of ischemic stroke patients and assessed the
performance of selected 3D-SHORE indices along WM tracts of
different motor networks (cortical, subcortical, and transcallosal
circuits). Results highlighted how 3D-SHORE-based indices
(mainly GFA, PA, RTAP, and RTPP) could providemeasurements
featuring high precision and allow discriminating patients from
controls, supporting their suitability for mapping longitudinal
changes after stroke.

Although the available findings for these numerical indices
are encouraging, a quantitative comparison with the classical
tensor-derivedmetrics is currently lacking but essential to further
probing their potentialities as biologically specific markers.
Indeed, MD and FA remain the standard measures in clinical
settings, especially for acute stroke imaging. Therefore, 3D-
SHORE-based indices have to be carefully related to tensor-
derived indices in terms of precision, consistency, discriminative
and predictive power in patients, all essential requirements to be
eligible as numerical biomarkers. Avram et al. (2016) reported a
first attempt to assess the feasibility of novel EAP-indices (from
MAP-MRI modeling rather than 3D-SHORE) in comparison
to classical DTI indices, demonstrating good consistency across
subjects and reproducibility in test–retest experiments on three
controls. However, despite the promising results, the authors
dealt with a very limited number of healthy subjects and relied
only on qualitative visual comparisons, acknowledging the need
for further studies on patient populations that, to the best of our
knowledge, are still missing in recent literature.

Whereas a great research effort has been devoted to dMRI
signal modeling in WM, its exploitability for characterizing gray
matter (GM) structures is still largely unexplored. In fact, there
is a growing need for a more comprehensive assessment of
GM tissue changes using dMRI. The intrinsic complexity of
GM microstructure which, as opposed to WM, lacks coherent
tissue orientation complicates the modeling and interpretation
of the diffusion process, and casts shadows on the suitability
of the currently available models. Some previous studies with
classical DTI indices have highlighted MD as a promising
marker of GM diffusivity changes in several pathologies such
as Alzheimer’s disease (Weston et al., 2015), multiple sclerosis
(Ceccarelli et al., 2007), and Parkinson (Kim et al., 2013).
However, DTI is scarcely employed in the assessment of GM
regions, especially in the cortex, and its ability of capturing
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microstructural features and feature modulations in GM is still
under debate. Conversely, thanks to the ability of capturing the
EAP in complex tissue microstructures, the 3D-SHORE model
might allow characterizing the signatures of hindered diffusion in
GM regions as well as providing information about GM changes
occurring over time.

The goal of this study was twofold. First, to complete the
assessment of the potential of the 3D-SHORE-derived indices
in capturing the microstructural feature modulations induced
by ischemic stroke in WM by providing a comparative analysis
of their performance with respect to the classical DTI-based
FA and MD indices. Second, to start bridging WM and GM
modeling by investigating the ability of the considered models
(DTI and 3D-SHORE) for the identification of microstructural
feature variations in GM, possibly hinting at plasticity processes.

MATERIALS AND METHODS

Dataset
Ten ischemic stroke patients (6 males, mean age: 60.3 ±

12.3 years) and ten age- and gender-matched healthy subjects
were enrolled in the study and underwent longitudinal MRI
acquisitions on a 3T Siemens scanner (Trio, Siemens, Erlangen,
Germany), as firstly reported in Granziera et al. (2012b). Of note,
an optimized protocol and a dedicated 32-channel head coil with
excellent signal-to-noise (SNR) properties (based on Wiggins
et al., 2006) were employed, aiming at maximizing the SNR in
the acquired data (as in Granziera et al., 2009). Acquisitions were
performed at three time points in patients (within 1 week (tp1),
1 month (± 1 week, tp2), and 6 months (± 15 days, tp3) after
the injury), and at two time points in controls (1 month apart,
tp1c, and tp2c). The same structural imaging protocol was used in
all cases. In particular, Diffusion Spectrum Imaging (DSI), a high
angular resolution diffusion technique (Wedeen et al., 2005), was
performed using a single-shot spin-echo echo-planar imaging
(EPI) product sequence and the following parameters: TR/TE
= 6,600/138ms, FOV = 212 × 212 mm2, 34 slices, 2.2 × 2.2
× 3mm3 resolution, GRAPPA = 2, scan time = 25.8min. The
sampling scheme consisted of a keyhole Cartesian acquisition
with 258 diffusion directions covering a half q-space 3D grid
with radial grid size of 5. Thirty-four different b-values (from
300 up to 8,000 s/mm2) were included in the acquisition and one
image was acquired at b = 0 s/mm2 (b0 volume). Because of the
inherent antipodal symmetry, the signal was duplicated on the
other hemisphere yielding to 515 points.

In order to provide a measure of the diffusion data quality,
SNR values were calculated for all the b0 volumes as the ratio
of the mean of the signal divided by the standard deviation
of the underlying Gaussian noise (Descoteaux et al., 2011). A
uniform ROI in the background was chosen for deriving the
noise standard deviation while the mean signal was extracted
from the corpus callosum, selected as representative ROI for
the SNR calculation. The estimated values are reported in
Table 1. High-resolution 3DT1-weighted images were also added
to the protocol (TR/TE = 2,300/3ms, FOV = 256 × 256
mm2, 160 slices, 1 × 1 × 1.2 mm3 resolution, scan time =

6.13min). Besides MRI acquisitions, patients underwent clinical

TABLE 1 | Signal-to-Noise (SNR) ratio for the diffusion datasets.

SNR-corpus callosum

Controls tp1 28.47 ± 5.33

tp2 28.63 ± 4.38

Patients tp1 28.21 ± 4.60

tp2 29.65 ± 6.24

tp3 27.25 ± 4.55

SNR values were calculated on the b0 volume of each subject. In particular, a uniform

ROI in the background was chosen for estimating the noise standard deviation while the

mean signal was extracted from the corpus callosum, selected as representative ROI for

the SNR calculation. Mean ± standard deviation values across subjects are reported,

considering each time point and group separately.

neurological assessment following the National Institutes of
Health Stroke Scale (NIHSS) at each tp. Only the motor part
of the NIHSS score was retained for further analysis. Stroke
volumes were derived from the individual high-resolution T1-
weighted images using the statistical parametric mapping (SPM)
lesion segmentation toolbox (www.fil.ion.ucl.ac.uk/spm/). All the
subjects signed the written informed consent to the imaging in
accordance with the Declaration of Helsinki and the Lausanne
University Hospital approved the protocol. Patient demographics
and main clinical information are reported in Supplementary
Table 1.

Signal Modeling and Microstructural
Descriptors
The classical DTI (Basser et al., 1994a,b) and the 3D-SHORE
(Özarslan et al., 2008, 2013) models were used to reconstruct
the EAP from which the microstructural descriptors were then
derived.

The EAP can be recovered from the diffusion weighted signal
attenuation E

(

q
)

under the narrow pulse assumption (Stejskal
and Tanner, 1965) via the Fourier relationship:

P (r) =

∫

q∈R3
E
(

q
)

ei2πqrdq (1)

where P (r) is the EAP, indicating the likelihood for a particle to
undergo a net displacement r in the unit time and q = qu is
the sampling position, with u being unit vector of the reciprocal
space, or q-space.

DTI assumes that the diffusion propagator can be described
by a single 3D Gaussian distribution (Basser et al., 1994a,b) from
which a 3 × 3 symmetric positive-definite matrix is derived (D,
diffusion tensor) and used to compute the classical tensor-based
indices (MD and FA) as follows:

MD =
(λ1 + λ2 + λ3)

3
(2)

FA =

√

1

2

(λ1 − λ2)
2 + (λ2 − λ3)

2 + (λ1 − λ3)
2

λ21 + λ22 + λ23
(3)
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where λ1, λ2, λ3 are the eigenvalues of D. Only b < 1,500 mm2/s
were used for the DTI analysis, corresponding to 32 gradient
directions.

The novel microstructural indices explored in this work were
calculated by fitting the SHORE model (Özarslan et al., 2008,
2013) based on the solutions of the 3D quantum harmonic
oscillator in the formulation using the orthonormalized basis:

E
(

q
)

=

Nmax
∑

l=0,even

(Nmax+l)
2
∑

n=l

l
∑

m=−l

cnlmΦnlm

(

q
)

(4)

In this equation, Nmax is the maximal order of the functions,
8nlm

(

q
)

are the functions forming the 3D-SHORE orthonormal
basis and are given by:

8nlm

(

q
)

=

[

2
(

n− l
)

!

ζ
3
2 Ŵ
(

n+ 3
2

)

]
1
2 (

q2

ζ

)

l
2

exp

(

−q2

2ζ

)

L
l+ 1

2
n−l

(

q2

ζ

)

Ym
l (u) (5)

where Ŵ is the Gamma function and ζ is a scaling parameter
determined by the diffusion time and themean diffusivity (Merlet
and Deriche, 2013; Zucchelli et al., 2016a). For the 3D-SHORE
model, the EAP is obtained by plugging Equation (4) into
Equation (1) (Özarslan et al., 2013; Zucchelli et al., 2016a). Due
to the linearity of the Fourier transform, the EAP basis is thus
expressed in terms of the same set of coefficients cnlm as the
diffusion signal.

RTAP and RTPP (Özarslan et al., 2013) represent the integral
of the EAP along the main diffusion direction and over the
plane passing through the origin and perpendicular to the main
diffusion direction, respectively:

RTAP =

∫

R
P
(

r‖
)

dr‖ (6)

RTPP =

∫

R2
P (r⊥) d2r⊥ (7)

where r‖ is the main diffusion direction, and r⊥ indicates
the plane orthogonal to the main diffusion direction and
passing through the origin. It has been shown (Özarslan et al.,
2013; Zucchelli et al., 2016b) that, under the assumptions of
narrow pulses and long diffusion time, RTAP and RTPP are
proportional to the inverse of the mean apparent cross-sectional
area and length of the compartment where diffusion takes place,
respectively.

The MSD represents the mean square displacement of the
water molecules in the unit time and is computed as follows:

MSD =

∫

R3
P (r) r2d3r (8)

MSD has been proven to be closely related to the classical MD
index, sharing similar patterns (Wu and Alexander, 2007).

From the EAP it is possible to derive a propagator anisotropy
index, depending on the angular distance between the isotropic

part of the EAP, that is encoded in the coefficients cn00, and the
full EAP as in Özarslan et al. (2013):

PA =

√

√

√

√1−

∑Nmax
n=0 c2n00

∑Nmax
n,l,m c2

nlm

(9)

Finally, the Orientation Distribution Function (ODF) can be
analytically obtained from the 3D-SHORE by taking the radial
integral of the EAP along a given direction (Merlet and Deriche,
2013; Özarslan et al., 2013). From the ODF it is possible to derive
another measure of anisotropy, the GFA index, which can be
viewed as the normalized variance of the ODF:

GFA =

√

n
∑n

i=1 (ODF (ui) − 〈ODF〉)2

(n− 1)
∑n

i=1 ODF (ui)
2 (10)

where ODF (ui) is the value of the ODF in the direction ui, and
〈ODF〉 is the mean ODF value across all directions.

In this work, we used both classical tensor-based indices (MD,
FA) along with the aforementioned 3D-SHORE-based indices
(RTAP, RTPP, MSD, PA, and GFA) to detect microstructural
modulations by both tract-based analyses in WM and by ROI-
based analyses in GM, respectively. While the first allowed
assessing the performance of the 3D-SHORE-based indices with
respect to FA and MD in the motor cortical and subcortical
networks, the second targets the GM in order to provide a more
complete picture of changes occurring after stroke and possibly
pointing at plasticity processes.

Tract-Based Analysis of WM
The tractogram was obtained via a streamline-based algorithm
with diffusion tensor ODFs computed from the DSI images
(Diffusion Toolkit, CMTK, www.connectomics.org). Individual
high-resolution T1-weighted images were parcellated using
Freesurfer (http://surfer.nmr.mgh.harvard.edu/) and the
Desikan-Killiany anatomical atlas at 83-region scale (sixty-four
cortical and nineteen subcortical regions) plus the corpus
callosum was employed. The FLIRT tool from the FMRIB
FSL software (www.fmrib.ox.ac.uk/fsl) was used for the linear
(affine) registration of the T1-weighted scan to diffusion data.
In particular, the diffusion baseline images (b0 volumes) were
considered as reference images for estimating the registration
transformation subsequently applied to back-project the
subject-specific anatomical parcellation into the DSI space.

Among all the parcels, a subset of the motor regions of
interest (ROIs) was considered for the analyses. For the cortical
area we selected the primary motor area (M1), supplementary
motor area (SMA), somatosensory cortex (SC) and premotor
area (PM), which was considered as a unique region given by
the joint combination of the dorsal and ventral parts from the
Freesurfer parcellation, while thalamus (Thl), caudatus (Cau),
putamen (Put), and globus pallidus (GPi) were selected for the
subcortical part. Then, three loops involved in themotor network
and linking these cortical-subcortical ROIs were considered in
the analysis as in Brusini et al. (2016). In details, the transcallosal
circuit (CC) gathers the set of fibers linking the corpus callosum
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FIGURE 1 | Schematic representation of transcallosal (A), cortical (B), and subcortical (C) networks. Cortical areas (white): M1, primary motor area; SMA,

supplementary motor area; SC, somatosensory cortex; PM, premotor area. Subcortical nuclei (gray): Thl, thalamus; Cau, caudatus; Put, putamen; GPi, globus

pallidus. Bundle of neural fibers (light gray): CC, corpus callosum.

with each considered ROI (Figure 1A). The cortical loop (CORT)
consists of fibers linking the four cortical ROIs (Figure 1B), while
the subcortical loop (SUBCORT) includes the set of fibers linking
cortical (except SC) with subcortical ROIs (Figure 1C).

Tensor-based and 3D-SHORE-based indices were finally
calculated along each fiber bundle linking every pair of regions in
the proposed networks. To this end, the values of the considered
microstructural parameter were firstly mapped onto each fiber
connecting two specific ROIs, then averaged across the whole
fiber bundle. In this way, a representative microstructural value
was derived for each connection of the considered network.

Region-Based Analysis of GM
The individual high-resolution T1-weighted images were
segmented into WM, GM, and cerebrospinal fluid (CSF) tissues
using the SPM toolbox (Friston et al., 1995). A binary mask
was derived for GM using a conservative 95% threshold on the
individual probability maps.

Eighty regions from the Freesurfer parcellation were
considered (brainstem and corpus callosum were excluded) and
masked with the binary GMmask. Four small subcortical regions
per hemisphere resulted to be empty after GM masking and
were excluded from further analyses, for a total of seventy-two
regions. For all indices, the mean GM value across each masked
ROI was then calculated. In particular, average measures were
calculated across corresponding regions in both hemispheres for
controls, while averaging was constrained to the contralateral
hemisphere for patients, leading in both cases to thirty-six
representative GM values for each index and subject. The list of
the considered regions and relative abbreviations is provided in
Supplementary Table 2.

Test–Retest Reproducibility Analysis
Before comparing the performance of the indices in the two
groups and assessing their discriminative/predictive power, a
preliminary step for analyzing their variability and longitudinal

stability was performed following the test-retest paradigm on
controls (tp1c and tp2c). This allowed to quantitatively assess
their reproducibility in physiological conditions and thus to
estimate the precision of the measurements. These elements
were quantified for all the microstructural indices, relying on all
the representative measures coming from both tract-based and
region-based analysis.

The following metrics were computed for each measure to
assess the reproducibility: the intraclass correlation coefficients
(ICC) and the intra- and inter-subject coefficients of variation
(CVintra and CVinter) (Bland and Altman, 1996; Chen et al., 2011;
Pinto et al., 2016). ICC is one of the most important methods
to assess the reliability of a measure, reflecting both intra- and
inter-subject variability. It allows evaluating how measurements
derived from the same subject are reproducible across sessions,
taking into account the intra/inter-subject variability as follows:

ICC =
σ 2
bs

σ 2
bs
+ σ 2

ws

(11)

where σbs is the between-subject standard deviation and σws is the
within-subject standard deviation for repeated measurements.
ICC levels and reliability can be evaluated using the following
recommendations: poor (<0.4), fair (0.41–0.59), good (0.60–
0.74) and excellent (>0.75) (Fleiss, 1981; Cicchetti, 2010).

The CVintra (within-subject CV) measures the variability
between sessions of the same subject, reflecting both
physiological variations that can occur in a natural way
and possible measurement errors (Pinto et al., 2016). CVintra was
computed as:

CVintra =
σws

µ
· 100 [%] (12)

where µ is the mean value of the parameter across subjects and
sessions (overall mean). Since only twomeasurements per subject
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were available, σws can be calculated as:

σws =

√

√

√

√

(

∑k
i=1

(

aitp1 − aitp2
)2

2× k

)

(13)

where k is the number of subjects, and aitp1and aitp2 are the
measurements for subject i on test (tp1) and retest (tp2) sessions,
respectively (Bland and Altman, 1996).

Finally, the CVinter (between-subject CV) measures the
stability across the group, reflecting the inter-individual
variability. For each index, the CVinter was initially computed for
each session as follows:

CVinterj =
σtpj

µtpj
· 100 [%] (14)

where tpj represents the session j (j = 1, 2), µtpj and σtpj are
the mean and standard deviation values, respectively, calculated
across all the subjects for the considered session tpj. The
representative CVinter measure was then computed as the mean
of the CVinterj from the two sessions.

For biological measurements from MRI, CVintra ≤ 10% and
CVinter < 15% are considered as acceptable (Heiervang et al.,
2006; Marenco et al., 2006).

For tract-based measures, ICC and CVintra were a single
measure for each loop, as all the connections belonging to the
corresponding network were grouped for providing a global
representative measure of network reproducibility, in line with
(Brusini et al., 2016). Conversely, the representative CVinter

metric was first computed for each tract and then summarized for
each loop by the mean ± standard deviation (SD) values across
connections. This allowed to evaluate the stability across subjects
and also the inter-subject variability across the different structural
links of each network.

For region-based analysis, CVintra and ICC were computed
for each ROI individually (mean ± SD values across GM ROIs),
while the representative CVinter metric was initially calculated for
each region and then reported as mean ± SD values across GM
ROIs. This again allowed to appreciate the variability across the
GM structures.

Statistical Analysis on Tract-Based
Outcomes–Patients and Controls
After the reproducibility analysis, the outcome measures
from tract-based analysis were assessed for depicting possible
differences between patients and controls and determining the
discriminative power of the different indices. In particular, for
each index and network, the percentage absolute changes inmean
values between tp (1tp) were calculated as in Brusini et al. (2016).

Since the Kolmogorov–Smirnov normality test confirmed
the normal distribution of the percentage values, statistical
comparisons with the unpaired t-test were performed to detect
significant differences between delta changes in controls (1tp12c)
and 1tp12, 1tp23, 1tp13 calculated in the patient cohort. While
in our previous work (Brusini et al., 2016) the False Discovery
Rate (FDR) correction was applied to the statistical results, here
a more conservative Bonferroni adjustment (α = 0.05) was used

to correct for multiple comparisons across indices. This approach
was chosen in order to further strengthen the statistical findings
and highly reduce false positive results.

In addition, in order to assess the predictive power of both
tensor-derived and 3D-SHORE-derived indices, different linear
regression models were considered and their performance in
predicting the clinical motor outcome at 6 months (NIHSS at
tp3) was tested. First, a linear regression model including only
clinical information at baseline (age, stroke size, and NIHSS
motor scores at tp1) as predictors was calculated for reference.
Then, for each network, three types of regression models were
built and compared as opposed to what was done in our previous
work (Brusini et al., 2016), where a single model combining
clinical information with a set of 3D-SHORE-based descriptors
(GFA, PA, R, RTAP, RTOP, RTPP) was considered. In detail, the
following models were considered:

1) Tensor-based model (TBM): the average across all the
connections of the considered loop at tp1 was calculated for
each index (MD, FA) and both mean values were included as
predictors along with age, stroke size and NIHSS at tp1.

2) 3D-SHORE-based model (SBM): the average across all the
connections of the considered loop at tp1 was calculated for
each index (GFA, PA, RTAP, RTPP, MSD) and these mean
values were included as predictors along with age, stroke size
and NIHSS at tp1.

3) Global microstructural model (GBM): all the indices at tp1
(both tensor-derived and 3D-SHORE-derived) were included
as predictors, after having calculated their individual mean
value across all the connections of the considered loop. No
clinical information was included.

All the linear regression analyses were performed in SPSS,
version 18 (SPSS, Inc., Chicago, Illinois), setting p = 0.05 as
significance threshold of the overall F-test to determine whether
the regression model significantly predicts the clinical motor
outcome. A backward elimination strategy was utilized to obtain
a parsimonious regression model. In details, a full model that
includes all the predictor variables was initially created. Then,
each subsequent step removed the least significant variable in the
model until all the remaining variables had individual p-values
smaller than the selected criterion. The default criterion in SPSS
(based on the probability of F-to-remove, with pout = 0.10) was
chosen for deleting a predictor that had little or no influence on
the dependent variable. For each optimal model, the calculated
R2 value was adjusted for the number of predictors included,
in order to perform a valid comparison across the different
regression models and penalize the addition of extraneous
predictors. The following equation, as implemented in SPSS
(Ezekiel, 1930; Kirk, 1996), was applied:

R2adj = 1−
(1− R2)(N − 1)

N − k− 1
(15)

where N is the sample size and k is the number of predictors in
the corresponding model, i.e., those that were not deleted by the
backward selection process, excluding the constant.
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Statistical Analysis on GM Region-Based
Outcomes–Patients and Controls
In order to compare the GM region-based measures, a three-
way mixed (within-between) analysis of variance (ANOVA)
was firstly performed for each microstructural index to test
the significance of different factors, using the mean index
value as dependent variable. Three independent variables were
considered: Time with two levels and Region with thirty-six levels
(within-subject factors) plus Group with two levels as between-
subject factor. In addition, a further two-way repeated measures
ANOVA was performed on the patient group data in order to
assess for the presence of longitudinal changes in contralateral
GM structures across all temporal scales. Also in this case the
mean value for each index was used as dependent variable in
the corresponding ANOVA, while two independent variables
were included: Time with three levels and Region with thirty-six
levels.

For each ANOVA, Mauchley test was used to assess
the sphericity assumption and Greenhouse-Geisser epsilon
adjustments for non-sphericity were applied where appropriate.
Post-hoc tests adjusted for multiple comparisons with the
Bonferroni correction were used when significant interactions
were found. For all statistical tests, performed in SPSS v.18, p <

0.05 was considered to be significant.

RESULTS

Qualitative Assessment of dMRI-Based
Indices
Classical tensor-derived and 3D-SHORE-derived indices were
estimated in all subjects and tp. Figures 2, 3 show the different
maps calculated for each index across times in a representative
control and a representative ischemic stroke patient, respectively.
For ease of visualization and for the sake of clearer presentation,
the three anisotropy measures were normalized to the respective
maximum index value, while the square-root of the RTAP maps
was extracted to report the values in the same range of RTPP, as
in Avram et al. (2016).

All the anisotropy measures as well as RTAP and RTPP maps
revealed high values in WM, while lower values were reached
in GM and especially in voxels with strong CSF contribution.
The opposite pattern was visible in MD and MSD maps, where
WM appeared to be hypointense due to restricted diffusion
while higher values were reached in GM and CSF tissues.
These patterns were consistent across subjects and temporal
scales. Comparing GFA, PA, and FA, both control and patient
representative slices revealed a higher WM/GM contrast for the
normalized 3D-SHORE-derived anisotropy measures that also
appeared to be less noisy and more uniform throughout WM in
comparison to the classical FA. Moreover, FA appeared to have
lower values in regions with large fiber orientation dispersions
where the single tensor representation precludes the possibility to
cope with complex structures leading to drops. RTAP maps were
hyperintense in regions of coherently packed WM fibers, while
RTPP was similar in GM andWM tissues. Finally, MSD, andMD
visually demonstrated a correlated behavior, appearing brighter

in regions where water particles are free to diffuse like ventricles
and darker in regions of restriction like WM.

In the stroke patient reported in Figure 3, a large ischemic
lesion can be appreciated in the left hemisphere (cortico-
subcortical areas) and the modulation of tissue microstructure is
visible across the different tp. The lesion was hypointense in GFA,
PA, MSD, FA, and MD at tp1, while markedly brighter than the
other tissues in RTAP and RTPP. After 1 month from the injury
(tp2), the contrast was reversed for these two indices, such that
the lesion appeared hypointense as in the anisotropy measures,
where hyperintensities within the lesion became visible in MSD
andMD. Such a trend persisted at 6 months after the initial brain
damage (tp3).

For all the subsequent quantitative analyses, we investigated
the contralateral hemisphere only, where microstructural
changes after stroke might be subtle and not visually
detectable.

Test-Retest Reproducibility on Healthy
Controls
In terms of test-retest reproducibility, tract-based results
highlighted excellent consistency across sessions in the three
networks for tensor-derived as well as 3D-SHORE indices, with
ICC > 0.8 in almost all cases and values close to unity for the
SUBCORT loop (Supplementary Table 3). Indeed, the highest
ICC was obtained for PA in SUBCORT (ICC = 0.96), followed
by MSD in the same network (ICC = 0.95). Conversely, MSD
together with RTPP reached the lowest values in CORT, although
still amenable to be judged as having good reliability (ICC= 0.67
and ICC = 0.59, respectively). This high reliability was matched
with high intra-subject stability across sessions as measured by
CVintra values, well below 10% and, in most of the cases, also
below 5%. The lowest stability was found in the CC loop for
MD (CVintra = 7.7%), while MSD resulted to be the index with
the highest stability in all the loops, reaching a remarkable 1.1%
within-subject variability in the SUBCORT network.

GM region-based reproducibility results are reported in
Table 2 in terms of mean and SD values across ROIs. RTAP,
RTPP, MSD, and MD reached excellent consistency, with mean
ICC > 0.90 and very low SD across ROIs (<0.10). Conversely, all
the anisotropy measures showed only good reliability and more
variability across the different GM structures. This was further
confirmed by the CVintra measure, reporting mean values <10%
in all cases albeit higher for GFA, PA, and FA in comparison to the
other microstructural indices. Also in this case, MSD reached the
lowest variability values with a limited spread around the mean.

Figure 4 shows the inter-subject variability results (CVinter)
represented as mean ± SD across all the connections of a given
loop for tract-based analysis, and across ROIs for region-based
analysis on GM. As expected, the between-subject variability was
higher than the within-subject, although the mean CVinter values
were ≤ 15% in all cases. Regarding the network analysis, similar
patterns in the three loops were observed for each index, with
RTPP and MSD featuring the lowest variability across subjects
(RTPP: CVinter = 4.67± 2.53 % in CORT;MSD: CVinter = 2.36±
1.82 % in SUBCORT). Conversely, RTAP was the index showing
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FIGURE 2 | dMRI-based indices on a representative control. Axial slices of a representative control are reported for each index (columns) and each time point (rows).

Images are displayed in radiological convention.

FIGURE 3 | dMRI-based indices on a representative patient. Axial slices of a representative patient (ischemic stroke in left cortico-subcortical areas) are reported for

each index (columns) and each time point (rows). Images are displayed in radiological convention.

more variability in all loops, especially in CC. The same trend was
observed in the ROI-based analysis on GM, where the CVinter

values were similar to those resulting from tract-based analysis
with RTPP andMSD reaching the highest stability (RTPP: CVinter

= 4.87 ± 1.34 %; MSD: CVinter = 6.49 ± 1.72 %). It is worthy of
note that all the values were within the recommended 15% range
(Heiervang et al., 2006;Marenco et al., 2006), even though tensor-
derived indices featured relatively lower stability across subjects

in GM, with the highest values reached by FA (CVinter = 11.68±
3.09 %).

Quantitative Assessment on Tract-Based
Outcomes–Patients and Controls
For each index and network, the mean of the percentage absolute
changes between tp is reported in Figure 5 along with SD across
subjects. The p-values resulting from the statistical analysis are
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shown as stars with three levels of significance (∗p < 0.05, ∗∗p
< 0.01, ∗∗∗p < 0.001). In all cases, data from the control group
confirmed the limited percentage changes between time points,
with mean values <5%, in agreement with the reproducibility
results from the previous section.

Regarding the CC network, all the anisotropy measures (GFA,
PA, and FA) reached the highest significance when comparing
1tp12c and 1tp12 as well as 1tp12c and 1tp13 (p < 0.001).
Moreover, GFA and FA showed higher significance than the
other microstructural indices in the comparison between 1tp12c

and 1tp23 (p < 0.01). MSD and MD highlighted the same
patterns across time and the same statistical differences, with
no significant changes between 1tp12c and 1tp23. In the CORT
network, only few significant differences were detected between
controls and patients (1tp12) by GFA and RTAP, while for all
the other indices the longitudinal changes, although appreciable,
did not reach the statistical threshold. Conversely, several
significant differences were detected again in the SUBCORT
loop by all the indices at multiple time scales, except for
RTAP and RTPP which did not depict significant changes
between1tp12c and1tp23. All the anisotropymeasures confirmed
the presence of marked changes over time involving also

TABLE 2 | Reproducibility for gray matter (GM) outcomes.

ICC CVintra %

GFA 0.63 ± 0.22 7.36 ± 2.96

PA 0.61 ± 0.24 6.82 ± 2.42

RTAP 0.91 ± 0.07 3.40 ± 1.63

RTPP 0.92 ± 0.07 1.73 ± 0.78

MSD 0.93 ± 0.09 1.97 ± 0.75

FA 0.66 ± 0.17 9.25 ± 3.59

MD 0.94 ± 0.08 3.09 ± 1.71

Results are quantified in terms of intra-class correlation coefficient (ICC) and intra-subject

coefficient of variation (CVintra) for all the indices. In particular, mean ± standard deviation

values across all the considered GM regions are reported.

this network, with similar patterns to the findings shown
in CC.

Extending the preliminary analyses on predictive models
reported in Brusini et al. (2016), the tract-based results in patients
were further used to predict the clinical motor outcome at tp3
by relying on several regression models. The reference linear
regression model including only clinical variables at baseline
(age, stroke size and NIHSS motor score at tp1) and avoiding
microstructural indices could predict the NIHSS outcome at tp3
with low correlation (R2 = 0.546; adjusted R2 = 0.489; p < 0.05).
The TBM, enclosing MD-FA at tp1 plus the clinical variables,
allowed increasing the prediction capability of the reference
model in the CORT and SUBCORT networks (Figure 6, first
row). In detail, the TBM for SUBCORT presented the best
performance (R2 = 0.975; adjusted R2 = 0.955; p < 0.001)
holding MD, FA, stroke size and age as relevant predictors. In
the case of the CORT network, a higher correlation than the
reference model was found with the TBM retaining only stroke
size and MD as significant predictors (R2 = 0.700; adjusted R2

= 0.614; p < 0.05). Conversely, the TBM for CC did not include
any microstructural index, returning the reference model as the
optimal one.

The SBM, embedding the five 3D-SHORE indices at tp1
plus the clinical variables, reached the highest correlation in
the SUBCORT network (R2 = 1; adjusted R2 = 0.998; p <

0.001) (Figure 6, second row). The optimal predictive model held
clinical variables plus GFA, MSD, RTPP, and PA as significant
predictors. The SBM for CORT excluded all the microstructural
indices, leading to the referencemodel as the optimal one. Finally,
in the CC network the SBM presented a slightly lower correlation
than the reference (R2 = 0.454; adjusted R2 = 0.385; p < 0.05)
but highlighting RTPP as the only significant predictor.

The GBM, including only the dMRI-based indices, allowed to
substantially increase the capability to timely predict the motor
outcome compared to the clinical reference model (Figure 6,
third row). In detail, the SUBCORT network provided again
the highest correlation (R2 = 0.728; adjusted R2 = 0.694; p <

0.01) keeping only RTPP as significant predictor. The predictive

FIGURE 4 | Reproducibility in terms of inter-subject coefficient of variation (CVinter) for all the indices and for all the outcome measures. Results are expressed as

percentage and reported as mean ± standard deviation across connections (for tract-based) and regions (for region-based on gray matter), respectively. CC,

transcallosal network; CORT, cortical network; SUBCORT, subcortical network.

Frontiers in Neuroscience | www.frontiersin.org 9 February 2018 | Volume 12 | Article 92

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Boscolo Galazzo et al. dMRI-Based Microstructural Indices in Stroke

FIGURE 5 | Group-based analyses on controls and patients over time. Longitudinal changes in percent absolute values in controls and patients are reported. The

significant differences between cohort distributions are indicated in figure (*p < 0.05, **p < 0.01, ***p< 0.001) for each index in transcallosal (CC), cortical (CORT), and

subcortical (SUBCORT) networks. Mean ± standard deviation values across subjects are reported.

model for the CC network also featured high correlation (R2 =
0.713; adjusted R2 = 0.631; p < 0.05) maintaining MD and RTPP
as predictors, while GFA, RTAP, and MD were retained in the
predictive model for CORT. This network led to the GBM with
the lowest correlation (R2 = 0.724; adjustedR2 = 0.586; p< 0.05),
but still higher than the reference model. Further details on the
predictive models and the retained predictors are reported in the
Supplementary Tables 4.

Quantitative Assessment on GM
Region-Based Outcomes–Patients and
Controls
Regarding the control vs. patient analyses on the outcomes
from the region-based quantification in GM tissues, the mixed
ANOVA revealed a significant three-way interaction between
Group, Time (TP) and Region (ROI) for all the anisotropy
measures (GFA, PA, and FA) and RTPP. Details about these
statistical results are reported in Table 3. For the four indices,
post-hoc Bonferroni tests revealed significant between-group
differences in several regions at both time scales, showing in
these cases higher values in patients than controls (Figure 7).
While the most widespread changes were detected in terms
of anisotropy at tp1, four common regions were identified as
significantly altered (Patients>Controls) also by RTPP. In detail,
the inferior temporal gyrus (ITG) and the lateral occipital cortex
(LOC) were in common at both tp, while the lateral orbitofrontal
cortex (lOFC) and the middle temporal gyrus (MTG) presented
high significance (p ≤ 0.01) at tp1 and tp2 in GFA, PA, and
RTPP and only at tp1 in FA (Figure 7). RTPP changes were
more visible at tp2, with several regions showing higher values
in patients compared to controls and non-significant anisotropic
differences. The remaining indices failed to reach a significant
three-way interaction even though control vs. patient differences
can be visually appreciated in Figure 7A. In particular, for RTAP
a similar trend to the anisotropy measures was detected in all
the regions, especially at tp1 over motor areas and subcortical

nuclei as PM, SMA, SC, M1 and Thal, Cau and Put (Patients >

Controls). For MSD, while few ROIs presented relatively higher
values in patients at tp1, there was an overall increase in all
regions at tp2 (Patients > Controls), except for the temporal pole
where lower values were found over time in this group. Finally,
MD patterns were in line with MSD results, although with less
marked changes between groups.

Moving a step backward in the mixed ANOVA, all the indices
except RTAP revealed a significant two-way interaction between
Group and ROI confirming that, considering the overall time
scales, there were differences in specific GM regions between the
two groups (Table 3; Supplementary Figure 1). The anisotropy
measures were highly consistent, with FA highlighting more
widespread increased values in GM for patients as before. Finally,
only GFA, PA, and FA revealed an overall significant main effect
of Group (between-subject factor), as reported in Table 3.

Considering the longitudinal analysis on the patient measures
only, again all the anisotropy indices along with RTPP and
MD revealed a significant interaction between TP and ROI. In
details, for GFA F(70, 630) = 1.61, p = 0.002; for PA F(70, 630)
= 1.52, p = 0.006; for RTPP F(70, 630) = 1.47, p = 0.01; for
FA F(70, 630) = 1.92, p < 0.0001; and for MD F(70, 630) =

1.76, p = 0.0003 (Supplementary Table 5). Post-hoc Bonferroni
tests (Figure 8) highlighted for the three anisotropy measures
consistently significant differences over the lingual gyrus (LgG)
for tp1 vs. tp2, and in the medial orbitofrontal cortex (mOFC)
for tp1 vs. tp3. Moreover, FA presented LgG differences for
tp1 vs. tp3, and in the precuneus (PCN) for both tp1 vs. tp2
and tp1 vs. tp3. In all these statistically significant changes,
higher values were detected just after the stroke event (tp1) in
comparison to tp2 and tp3. Conversely, an opposite trend was
found for RTPP detecting a single region [frontal pole (FP)]
with higher values at tp2 compared to tp1. For MD, despite
the significant interaction no regions survived the Bonferroni
corrections of the post-hoc paired tests (Figure 8). When using
a less conservative approach [Least Significant Different (LSD)
post-hoc tests], five regions, including PM, SC, and Thal, turned
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FIGURE 6 | Linear regression models. Representation of the measured and predicted NIHSS-motor score at tp3 using tensor-based (TBM), 3D-SHORE-based

(SBM), and global (GBM) predictive models. For each model, the adjusted R2 and corresponding p-values are reported.

out to be significantly increased at tp3 compared to tp2 and tp1
(Supplementary Figure 2). Applying LSD post-hoc tests also to the
other indices, the anisotropy measures revealed more widespread
regions of increased values in the early phase (tp1) in comparison
to the other two time points, consistently with the results from
the mixed ANOVA. GFA and PA, in addition, showed higher
values at tp3 compared to tp2 over two motor regions, e.g.,
Put and M1, respectively. Finally, RTPP confirmed a significant
increase over time (both tp2 and tp3) in comparison to tp1 in the
FP region.

Regarding the other two indices that did not show a significant
interaction (RTAP and MSD) and were thus precluded to
be evaluated with post-hoc tests, a different trend was visible
across time with a series of appreciable longitudinal differences
(Figure 8A). In particular, RTAP revealed a similar behavior to

the anisotropy measures, with higher values at tp1 that decreased
over time, especially at tp3. Conversely, MSD highlighted higher
values over time, as in the case of MD, with marked visual
increases at tp3 over several regions (as PM, SC, FP, Thal, Put,
Cau).

DISCUSSION

In this study, our results suggest that 3D-SHORE-based
microstructural descriptors obtained from DSI data are capable
to quantify the remodeling of WM tracts and GM regions
involved in motor recovery after ischemic stroke. 3D-SHORE-
based indices proved to perform similarly to the classical DTI
indices (FA and MD) and revealed common patterns across the
networks and ROI evaluated in the analyses.
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TABLE 3 | ANOVA results (three-way mixed ANOVA) for the control vs. patient comparison of gray matter outcomes.

Between-subject Within-subject

Group Group*ROI Group*TP*ROI

F-ratio (1, 18) p-value F-ratio (35, 630) p-value F-ratio (35, 630) p-value

GFA 6.205 0.023* 2.340 <0.001* 2.235 <0.001*

PA 6.256 0.022* 2.218 <0.001* 1.669 0.010*

RTAP 1.548 0.229 1.249 0.157 1.326 0.102

RTPP 2.064 0.168 2.152 <0.001* 1.843 0.003*

MSD 2.681 0.119 2.601 <0.001* 0.552 0.990

FA 7.346 0.014* 2.082 <0.001* 2.731 <0.001*

MD 0.186 0.671 1.825 0.003* 1.105 0.314

The three independent variables were Group (between-subject factor), Time Point (TP) and Region (ROI) (within-subject factors), while the dependent variable was the mean index value.

Group, along with Group*ROI and Group*TP*ROI interactions, are expressed in terms of F-ratio (degree of freedom, error) and p-values. *, significant values.

FIGURE 7 | Post-hoc test results for the three-way mixed ANOVA (controls vs. patients). (A) For each index and each time point (tp) block, the first column represents

the mean values for the controls while the second column the mean values for the patients. (B) Post-hoc results expressed in terms of p-values for the significant

interactions between Group, TP and Region (ROI). Two different colormaps are used to display the p-values for the ROIs with significant differences between control

and patient mean values (hot: Controls < Patients; cold: Controls > Patients). These values (p < 0.05) are Bonferroni corrected for multiple comparisons.

Considering their performance and different nature, their
combination in clinical studies would allow to provide a
more detailed and specific tissue characterization, allowing to
disentangle different conditions where tensor-based indices take
the same values. For instance, DTI cannot distinguish between
a reduction of FA caused by crossing fibers and one caused by
a decrease of neural density in a voxel. Conversely, the joint
exploitation of RTAP and RTPP can allow disentangling such

ambiguity, as RTAP and RTPP both diminish in the case of
neuronal density reduction, while RTAP decreases and RTPP
increases for crossing fibers, as previously reported (Zucchelli
et al., 2016a). In addition, the combination of tensor-based
and SHORE-based indices in the linear regression models
allowed to greatly increase their ability to predict the clinical
motor outcome in all the considered networks. To the best
of our knowledge, this is the first study focusing on the
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FIGURE 8 | Post-hoc test results for the two-way ANOVA for repeated measures on patients. (A) For each index, the first column represents the mean values at tp1,

the second column at tp2 and the third at tp3. (B) Post-hoc results expressed in terms of p-values for the significant interactions between Time Point (TP) and Region

(ROI). Each column in the matrix refers to a specific statistical comparison between time scales, i.e. tpi vs. tpj with i = 1, 2 and j = 2, 3 (first: tp1 vs. tp2; second: tp2

vs. tp3; third: tp1 vs. tp3). Two different colormaps are used to display the p-values for the ROIs with significantly different values between the considered time scales

(hot: positive difference, tpi > tpj; cold: negative difference, tpi < tpj). These values (p < 0.05) are Bonferroni corrected for multiple comparisons.

quantitative comparison between 3D-SHORE-based and tensor-
based descriptors in healthy subjects and in a patient population,
aiming at demonstrating their behavior in different brain
conditions/tissues and accomplishing an essential step toward
their applicability as viable tissue markers.

Qualitative Assessment of dMRI-Based
Indices
A growing body of literature is currently reporting the advantages
of using multiple b-values in terms of both detecting fiber
crossings (Sotiropoulos et al., 2013; Jeurissen et al., 2014) and
recovering the tissue microstructure (Assaf and Basser, 2005;
Zhang et al., 2012; Kaden et al., 2016). Because of these facts,
nowadays, sampling schemes presenting higher b-values (as DSI
and multi-shell) are becoming popular in research and started
to appear also in clinical application. In order to fully exploit
advanced dMRI datasets, reconstruction models that require
multiple b-values such as the 3D-SHORE are necessary and
therefore will become more common in this field. In this context,
it is therefore necessary to provide an extensive characterization
of these indices in describing tissues in physiological and
pathological condition, as we did for stroke patients. In line
with the findings firstly described by Özarslan et al. (2008,
2013), our results suggest that 3D-SHORE-based indices can
provide a wide set of information, reflecting meaningful tissue

properties as visually appreciable from the different maps. In
particular, the values estimated in our healthy population for
each index and their spatial distribution across the different
anatomical structures appear to be in agreement with the
available literature results (Özarslan et al., 2013; Avram et al.,
2016; Zucchelli et al., 2016a), with a high consistency across
subjects and time. These 3D-SHORE-based metrics are able to
provide accurate microstructural information especially in brain
regions characterized by complex architectures and geometries,
to which the classical indices have low sensitivity. GFA and
PA represent alternative measures of anisotropy to the classical
FA, based on different mathematical formulations. Indeed, while
GFA is a measure of the ODF variance, PA is derived from the
EAP as a measure of its deviation from the isotropic component,
and FA is computed from the tensor eigenvalues. In consequence,
they provide different descriptors of the diffusion anisotropy with
a high degree of correlation. However, GFA and PA are able to
more properly quantify the anisotropy, presenting more contrast
between the GM and regions with multiple fiber crossings in
which the FA usually results in the same value. The two zero-
displacement probability measures derived from SHORE reflect
diffusion restriction in different directions, respectively radially
(RTAP) and axially (RTPP) to the main diffusion direction
(Özarslan et al., 2013). Consistently, RTAP maps exhibited high
values in regions of coherently packed WM fibers, as the corpus
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callosum which is less contaminated by partial volume effects.
RTPP values were similar in both GM and WM tissues featuring
less WM/GM contrast. This could suggest similar apparent axial
diffusivity for WM and GM, even though the mapping of this
measurement to real tissue microstructural properties is still an
open issue. Finally, MSD and MD were consistently higher in
regions featuring free diffusion, like the CSF and in areas with
ischemic oedema (Alexander et al., 2007). These two indices are
directly related via the Einstein diffusion equation as reported
in the works of Wu and Alexander (2007) and Hosseinbor et al.
(2013) and, accordingly, are visually correlated.

Evaluating qualitatively the longitudinal maps derived from
the stroke patients, the microstructural indices exhibited a
different behavior in the voxels belonging to the damaged area
but with a consistent pattern. Indeed, while all the anisotropy
measures revealed low values within the lesion that persisted
over time, RTAP and RTPP shifted from initial hyperintensities
toward hypointensities after 1 month from the event (tp2),
highlighting an opposite trend for anisotropy and restriction.
This stresses the complementarity of the information brought by
those indices. Furthermore, considering their opposite trend in
comparison to MSD and MD (from hypo- to hyperintensities)
and the ischemic nature of the stroke, these findings support
the hypothesis of Avram et al. (2016) according to which the
zero-displacement measures are more specific biomarkers of
the presence of restricting barriers to diffusion. Interestingly,
RTAP and RTPP featured the highest values at tp1 highlighting
restricted diffusion in the lesion. Moreover, we found MSD to
be more contrasted than MD inside the ischemic lesion in all
cases. In particular, this index seems to identify and characterize
different portions of the lesion, while MD appears to be more
homogeneous in the same areas. Some patients (mainly those
with extensive lesions) also revealed increased MSD values in the
periphery. However, as this pattern was not confirmed in all cases,
a larger sample size and more focused analyses on the stroke
lesion would be necessary to draw robust conclusions on this
aspect, possibly pointing at an inflammatory reaction which has
been previously described (Wang et al., 2007; Kim et al., 2016).
Finally, the heterogeneous patterns of RTAP, RTPP, and MSD
visible within the lesion 1 week after stroke could be of help for
distinguishing the ischemic core from the penumbra area. This
issue deserves further investigation.

Reproducibility Analyses on Controls
The quantitative analysis of possible plasticity processes was
focused on the contralateral hemisphere to the stroke. The
contralesional GM and WM tissues have been widely considered
as normal appearing, although the plasticity and compensatory
processes that might take place in the non-injured areas are still
not well understood. First of all, several complementary aspects
were evaluated on healthy controls in order to quantify the
reliability of these microstructural indices through a test-retest
paradigm and their potentialities as novel biomarkers for stroke
recovery. In particular, both 3D-SHORE-based and DTI indices
exhibited high reproducibility, as quantified by ICC, and high
stability, as quantified by intra/inter-subject CV parameters, on
both tract and region-based outcomes.

Interestingly, for tract measures the 3D-SHORE index MSD,
rarely considered in previous studies, showed the lowest intra-
subject variability (CVintra) in all cases, and the highest reliability
(ICC) in CC and SUBCORT. Conversely, it revealed lower,
although still good, ICC values in CORT along with RTPP
that resulted to be the index with the lowest reliability in this
network. This is possibly related to the fact that these two indices
exhibited here a relatively higher within-subject SD for repeated
measurements than in the other cases, which resulted to be closer
to the between-subject SD values and therefore led to lower ICC
values for this loop. Despite this consideration concerning the
CORT loop only, the reliability and discriminative power of MSD
and RTPP were not compromised as further proven by the other
group-based analyses performed in this study. To note that beside
Brusini et al. (2016), where some of these indices were initially
evaluated along WM tracts, no other studies have quantified the
reproducibility of 3D-SHORE-based metrics across subjects and
sessions. Moreover, the previous reports aiming at quantifying
the reliability of classical tensor-basedmeasures generally focused
only on few major fiber tracts (e.g., corpus callosum, cingulum,
fornix and arcuate fasciculus) (Heiervang et al., 2006; Danielian
et al., 2010; Wang et al., 2012) rather than considering specific
brain networks with different sets of tracts. Despite this main
difference, our findings are in line with the results of these
studies, which demonstrated reliable measurements for FA and
MD featuring both inter-session CVintra ≤ 10% and ICC ≥ 0.70,
with some variability related to the considered tract.

Regarding region-based outcomes, the reproducibility
analysis in GM ROIs revealed a higher intra-subject variability
for the three anisotropy measures (GFA, PA, and FA) in
comparison to the other indices, with mean values still well
within the 10% range, matched with a good reliability from ICC.
This is possibly due to the lack of directed orientation in a tissue
as GM (Basser and Ozarslan, 2009) and is in agreement with
previous studies showing a two-three times higher variation
of FA in regions of GM compared to WM structures (Vollmar
et al., 2010; Bouix et al., 2013). Conversely, MSD and RTPP
appeared again as featuring the lowest intra-subject variability
and, along with MD, reached the highest ICC reliability values.
The performance of FA for GM ROIs appears to be in line
with previous reports evaluating DTI indices in this tissue
(Veenith et al., 2013; Grech-Sollars et al., 2015), showing higher
CVintra values for the whole GM than for MD (8–11% vs.
2–5%, respectively) and a wide range of variation across the
different GM structures (3.3–19.2%). Conversely, no studies
have previously quantified the measurement precision of 3D-
SHORE-based indices in GM regions, therefore our findings
add an important step to the current literature on the topic and
their reassurance in terms of reliability encourages their use for
evaluating GM tissues as well.

Considering as additional reliability measure the between-
subject variability, we found average CVinter values well below the
15% threshold for both tract- and region-based outcome. Among
the seven variables, RTPP and MSD generally had lower CVinter

than the other metrics with average values ≤ 6%. Tensor-based
measures revealed overall lower between-subject stability than
3D-SHORE-based indices, especially in the GM ROIs where the
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average values were around 10%. Previous studies have indicated
FA and MD as the measures with lower CVinter in different WM
fiber tracts, for example Wang et al. (2012) reported average
values in the range 2.4–7.6% for FA and 1.7–9.9% for MD
respectively, while Grech-Sollars et al. (2015) showedmean inter-
subject values <6% for the whole GM and WM regions (not
tracts). Our results confirmed the good inter-subject stability
for FA and MD but demonstrated that the 3D-SHORE-based
indices improve on the classical measures in terms of between-
subject variability in most of the cases. The latter observation
demonstrated the gain in using a multi-b-values model such as
3D-SHORE. In particular, GFA and MSD were already defined
the analogs of FA and MD for multi-b-values acquisitions by
Hosseinbor et al. (2013). The combined high stability over time,
relatively higher inter-subject variability (CVintra << CVinter)
shown by the 3D-SHORE based indices, which is a pattern
that can help detecting group differences between subjects, and
excellent inter-session ICC values for most of the cases reinforce
their potentialities as microstructural biomarkers for revealing
longitudinal changes.

Quantitative Analyses on Tract-Based
Outcomes of WM
Longitudinal group-based analyses were performed to
statistically compare the mean absolute changes between
time points calculated for each network. Regarding 3D-SHORE-
based indices, the Bonferroni corrected t-tests revealed several
highly significant differences between patients and controls in
the SUBCORT and CC networks, also for the newly introduced
MSD index. These findings further confirm and strengthen our
preliminary results on a subset of 3D-SHORE indices (Brusini
et al., 2016), where the t-tests were corrected for multiple
comparisons with FDR. Conversely, a more conservative
correction was employed here in order to quantify with
additional confidence the longitudinal changes detected by the
different indices and to reduce false positive results. Tensor-
derived indices also exhibited similar patterns to 3D-SHORE
descriptors, in terms of both evolutions of changes over time and
level of significance.

In all cases, the highest levels of significance were reached
in the patient group for the tp1-tp2 and tp1-tp3 relative
changes, suggesting the presence of marked modifications in the
contralateral hemisphere just 1 week after the stroke event (tp1).
Interestingly, 3D-SHORE-based indices appeared to be the only
capable of depicting statistically significant changes across the
CORT loop. Indeed, only GFA and RTAP found a significant
patient vs. control difference in the first phase (tp1-tp2), further
highlighting the relevance of this time scale in the course of the
disease.

These findings are in line with the few previous works
reporting changes in the WM tracts of the contralesional
hemisphere after stroke. Indeed, the possible modifications in
the contralateral hemisphere with respect to the lesion have
been scarcely investigated in literature, especially in humans,
as these tissues have been widely disregarded as considered
healthy and not directly involved in any rearrangement process
(Maniega et al., 2004; Ozsunar et al., 2004). However, as the field

moved forward, it became apparent that also the non-injured
hemisphere undergoes marked changes and has a fundamental
role in stroke recovery, as recognized by several authors relying
on different MRI techniques (Ward et al., 2003; Gerloff et al.,
2006; Crofts et al., 2011; Granziera et al., 2012b; Lin et al., 2015).
Specifically, Crofts et al. (2011) showed how communicability
values, derived from complex network analysis, were reduced in
both ipsilateral and homologous contralateral regions. Moreover,
Granziera et al. (2012a) reported significantly increased apparent
diffusion coefficient (ADC) values in the infarct region (in both
GM and WM tissues) moving from acute to chronic, whereas
WM FA significantly decreased in the mirror regions. Our
study extends the available literature on the topic and the novel
biomarkers derived by the 3D-SHORE model possibly add new
metrics that can be employed in this context (for a detailed
overview see Kim and Winstein, 2017).

In addition, the predictive power of all the microstructural
indices for patientmotor outcome at tp3were investigated relying
on the tract-based values and comparing several regression
models for the prediction. Notably, among the three loops, the
SUBCORT was the only one for which all the three types of
models created (tensor-based model, 3D-SHORE-based model,
global microstructural model) reached excellent performance. In
particular, the 3D-SHORE-based model, combining a subset of
these indices together with clinical patient information, led to
the best linear regression model featuring a very high predictive
power (R2adj = 0.998, p < 0.001), which slightly outperformed the

optimal model we found in our previous work (R2adj = 0.988, p

= 0.009) (Brusini et al., 2016). The set of indices in the optimal
model of this work embedsMSD, suggesting that this index holds
a higher potential in probing stroke-induced microstructural
changes during the early phase.

The model using all the microstructural indices led to the
best performance in the SUBCORT loop, reaching the highest
correlation score (R2adj = 0.694, p < 0.01) and keeping RTPP

as key predictor. The relevance of RTPP for subcortical WM
tracts appears to be coherent with another observation of Avram
et al. (2016) according to which RTPP is very sensitive to deep
structures, showing higher intensity in nuclei like thalamus.
RTPP also highlighted high predictive power in CC, contributing
to the optimal model for both the 3D-SHORE-based and global
model, in combination with MD in this latter case. These results,
jointly with the high precision and the ability to detect significant
changes between patients and controls, stress the potential of this
index in the considered task.

Quantitative Analyses on ROI-Based
Outcomes of GM
Besides evaluating the performance of the different indices along
the WM connections of specific brain networks, we performed
a quantitative comparison of their patterns within contralateral
GM regions. GM tissue changes related to the disease are
generally quantified by volume or density analyses and are very
rarely investigated with dMRI-based indices. A growing body of
literature is emerging to endorse the use of dMRI techniques
for detecting microscopic changes in GM in different disorders.
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Indeed, the analysis of diffusivity GM changes using MD has
shown to be promising for detecting abnormalities in Alzheimer
disease (Weston et al., 2015) and multiple sclerosis (Ceccarelli
et al., 2007). GM FA alterations were also demonstrated in
schizophrenic patients in Situ et al. (2015), reporting increased
MD and decreased FA values in patients compared to controls.
In stroke patients, studies in GM are less consistent and generally
consider the tissues in the contralateral hemisphere as normal
appearing, although regions remote (upstream or downstream)
from the infarct have been demonstrated to undergo marked
changes over a time course of 2 days to 1 year (Sotak, 2002).
In one of these studies using the contralateral part as reference,
Maniega et al. (2004) showed a trend of increased MD/decreased
FA values within the lesion, which just started the first week from
the event.

In our study, the longitudinal analyses on the patient
group demonstrated a similar pattern but in the contralateral
hemisphere, revealing an increase in MD values over time which
mainly involved GM motor regions. Conversely, FA exhibited
an initial widespread increase at tp1 over temporo-frontal and
motor areas, followed by a gradual decrease toward normality at
tp3. This was further confirmed by the group-based comparisons
with ANOVA, highlighting in most of these regions significantly
higher FA values at tp1 in patients vs. controls, whereas the
increased pattern remained restricted to few ROIs when tp2
values were evaluated. Similar patterns of alterations were
detected also by SHORE-based indices, in particular by GFA,
PA, RTPP and MSD. The group comparisons 1 week after the
stroke revealed several GM regions (cACC, FuG, IGG, mOFC,
PORB, rMFG, FP, ITG, LOC, IOFC, MTG) in which the patients
exhibit significantly higher values for all the anisotropy indices
(GFA, PA, FA) with respect to the controls. Considering that in
the same regions, at the same time point, the MD and MSD
appear to be increasing (Figure 7A), although not significantly,
we can speculate that we are observing a general increase of the
diffusivity along the main diffusion direction in the GM. More
difficult to interpret is the simultaneous increase of the RTPP
in some of these regions (ITG, LOC, IOFC, MTG). RTPP is
generally inversely proportional to anisotropy inWM, e.g., RTPP
is low in single fiber bundle areas such as the CC, and higher
in crossing regions (Özarslan et al., 2013; Avram et al., 2016;
Zucchelli et al., 2016a). Understanding the possible causes of this
contemporary increase of RTPP and anisotropy in the GMwill be
one of the aims of our future works.

Contralateral changes in GM involved not only regions in
the motor systems, but also areas playing an important role in
cognition and behavior, as the FP and frontal areas, supporting
the hypothesis of extensive rearrangements during stroke
recovery. These indices therefore confirm their potentialities in
describing not only WM but also GM properties, with high
reliability and discriminative power. However, RTAP and MSD,
which resulted to be suitable to characterize WM tracts in all the
networks, appeared to be less sensitive to GM changes. Indeed,
these indices failed to highlight statistically significant differences
in the GM areas, especially when comparing the patient data over
time. However, they deserve further investigations considering
their good stability over time and their physiological relevance.

It is worthmentioning that the impact of partial volume effects
was minimized by restricting the analysis to voxels where the
GM contribution was above the 95%. This further enhances the
hypothesis of extensive contralateral changes involving also the
GM, reducing the contamination by other tissues.

As a side note, we also extracted for each patient and
time point the average volumes of GM ROIs (results not
shown). However, when statistically compared by means of
a two-way repeated measure ANOVA, no significant changes
were detected, possibly because of the small sample size and
the limitations of such morphometric measure that might be
not sensitive enough to subtle changes in the contralateral
hemisphere. A larger sample size and more sophisticated
analyses, for example based on cortical thickness measures or
voxel-based morphometry, might be more suitable for depicting
GM longitudinal changes following stroke, as often done in
literature (Stebbins et al., 2008; Brodtmann et al., 2012). Our
results, though preliminary, support the hypothesis that SHORE-
based indices might hold the potential of revealing GM plasticity
processes in the contralesional stroke area. We are aware of the
fact that the interpretation in terms of geometrical restriction of
the diffusion of the SHORE-derived indices in GM is prone to
criticism because the real tissue architecture cannot be directly
mapped to the underlying reference model (i.e., the pore).
However, the fact that differences across time within a patient
population and across groups can be detected using such indices
provide evidence in favor of their exploitability as potential
numerical biomarkers for GM plasticity in disease, leaving their
interpretation in terms of microstructural properties an open
issue.

Some limitations have to be acknowledged. This work has
to be considered as a preliminary comparison between DTI
and SHORE-based EAP derived indices in stroke. Here, we
considered only the two most used DTI derived indices (FA
and MD) and some of the principal EAP derived indices (RTAP,
RTPP, MSD, PA, GFA). However, it will be interesting to extend
the analyses to further indices that can be derived, e.g., the
radial and axial diffusivity for the DTI, RTOP and the MAP-
MRI non-gaussianity for the EAP. Moreover, our findings are
based on the comparison between 10 healthy subjects and 10
ischemic stroke patients. A higher number of subjects would
be necessary in future studies to fully exploit the potentialities
and discriminative/predictive power of these rather novel indices.
In particular, the linear regression analyses have to be carefully
evaluated bearing in mind they are preliminary, although
encouraging, findings. Indeed, the limited sample size precluded
the possibility of identifying the optimal model in a subset of
the population and testing it in a different validation cohort,
as normally does in the machine learning/classification field.
Moreover, a large number of predictors was initially included
in the models, possibly leading to over-fitting problems that
should be carefully considered when dealing with a limited
number of subjects. Adding more data will allow to increase
the power of the statistical analyses performed in this work and
to further validate the promising findings about contralateral
WM and GM changes suggesting the presence of plasticity
processes.
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CONCLUSIONS

In conclusion, this work provided new evidence in favor of the
suitability of dMRI-based microstructural indices for probing
WMmodifications and highlighted their potential as descriptors
of microstructural feature changes in GM in ischemic stroke
patients. To the best of our knowledge this is the first attempt
of using 3D-SHORE-derived indices for studying microstructure
in GM in both controls and patients, contributing a first step in
bridging WM and GM diffusion signal modeling. In particular,
the RTPP seems to be able to convey relevant information while
being consistent across groups and time.

From the clinical point of view, our results provide additional
evidence in favor of the hypothesis of the contralateral
remodeling after stroke. The 3D-SHORE-derived indices
performed as well as classical tensor-derived indices (FA and
MD), achieving a high predictive power for clinical outcome
over cortico-subcortical connections and a good discrimination
between patients and controls at different time scales, further
confirming their viability in ischemic stroke. Their combination
can allow to convey a more detailed microstructural description,
marking a step forward in the definition of a novel family of

biomarkers. Finally, the detection of significant changes in
GM across groups and in the patient longitudinal comparison
provides a new perspective along the path of characterizing
disease-related microstructural modulations which deserves
further investigation.
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