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ABSTRACT. In this paper we study optimal control problems in Wasserstein spaces,
which are suitable to describe macroscopic dynamics of multi-particle systems. The dy-
namics is described by a parametrized continuity equation, in which the Eulerian velocity
field is affine w.r.t. some variables. Our aim is to minimize a cost functional which in-
cludes a control norm, thus enforcing a control sparsity constraint. More precisely, we
consider a nonlocal restriction on the total amount of control that can be used depend-
ing on the overall state of the evolving mass. We treat in details two main cases: an
instantaneous constraint on the control applied to the evolving mass and a cumulative
constraint, which depends also on the amount of control used in previous times. For
both constraints, we prove the existence of optimal trajectories for general cost functions
and that the value function is viscosity solution of a suitable Hamilton-Jacobi-Bellmann
equation. Finally, we discuss an abstract Dynamic Programming Principle, providing
further applications in the Appendix.

1. INTRODUCTION

The investigation of optimal control problems in the space of measures is attracting an
increasing interest by the mathematical community in the last years, due to the potential
applications in the study of complex systems, or multi-agent systems. See for example [21]
for crowd dynamics models, and [5] for social network analysis.

Many physical and biological phenomena can be modelled by multi-particle system with
a large number of particles. At the microscopic level, the behaviour of each particle is
determined by local and nonlocal interactions. As the number of particles increases, the
complexity of the system grows very fast. It turns out that only a macroscopic (statistical)
description of the state of such a system can be actually provided, in the sense that
an observer can deduce the state of the system only by measuring averages of suitable
quantities (as, e.g., in statistical mechanics).

Assuming that there are neither creation nor loss of agents during the evolution, it is
natural to describe the state of the system by a time-dependent probability measure p; on
R, in the sense that for every Borel set A € R? and ¢t > 0 the quantity u¢(A) corresponds
to the fraction of the total agents that are cointained in A at time t¢.

An alternative point of view is the following: suppose that the state of the system is
expressed by a time-dependent real valued map ®; defined on the set of continuous and
bounded functions on RY. In this sense, ®;(¢) € R expresses the result of the observer’s
measurement of the quantity () on the system at time ¢. If we assume that ®; is positive,
linear and continuous, by Riesz representation theorem, we have that ®; - and hence the
state of the system - can be uniquely represented by a Borel measure y; on RY, in the sense
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that

Bu(e) = [ o) dula)

In [14,16,17] time-optimal control problems in the space of probability measures &2 (R?)
are addressed, by considering systems without interactions among the agents. The authors
were able to extend to this framework some classical results, among which an Hamilton-
Jacobi-Bellman (briefly HIB) equation solved by the minimum-time function in a suitable
viscosity sense. However, a full characterization of the minimum time function in terms of
uniqueness of the solution of the corresponding HJB equation is still missing.

In [13], the author focuses on results concerning conditions for attainability and reg-
ularity of the minimum time function in Z2(RY). A set of tangent distributions in the
2-Wasserstein space is introduced in [4] for the study of viability results, i.e. weak invari-
ance properties of subsets of probability measures for mean-field type controlled evolutions,
with a dynamics taking into account possible interactions among the agents.

The study of viscosity solutions for general Hamilton-Jacobi equations in the space
of measures (see e.g. [12,25,26]) deeply involves the definition of suitable notions of
sub/super-differentials (see [2,11]). Recently, in [27], a Mayer problem without interactions
was studied. For such a problem, under strong regularity assumptions, the authors provided
a full characterization of the value function as the unique viscosity solution of a suitable
HJB equation in the class of Lipschitz continuous functions. The comparison principle used
to establish the uniqueness of the viscosity solution has been extended in the forthcoming
[28], where much milder assumptions are required.

The characterization of the value function as the unique solution of a PDE in Wasserstein
spaces is currently one of the most challenging issues in control problems for time-evolving
measures. From the point of view of the necessary conditions, in [6] the authors provide a
Pontryagin Maximum principle for a problem with interactions encoded in the dynamics by
means of a nonlocal vector field, under strong regularity on the control function. Finally,
in [23] the authors investigate I'-convergence results for a controlled nonlocal dynamics,
proving thus the consistency of the mean field model in a measure-theoretic setting with
the corresponding one in finite dimension.

In this paper we study an optimal control problem for a multi-particle system subject
to the influence of an external controller, who aims to minimize a general cost function
satisfying some basic properties. The evolution of the system starting from an initial
configuration py € 2(R?) is described by an absolutely continuous curve ¢ — p4 in the
space of probability measures, and, recalling that the total mass is preserved along the
evolution, the macroscopic dynamics will be expressed by the continuity equation

Gt,ut + div (vtut) =0,
Hjt=0 = HO-
The link between the macroscopic dynamics and the controller’s influence on each indi-
vidual at the microscopic level is expressed by the constraint on the Borel vector field v,
requiring that
vi(x) € F(x) for a.e. t €[0,7T] and pp-ae. x € RY,

where the set-valued map
F(z) = {f(@,u) = fol) + A@@)u : ue U}

represents the admissible velocities for the particles that transit through the point z € R?,
U C R™ is a given convex and compact control set, with 0 € U, and A(x) is a d X m matrix
whose columns are the evaluations at € R% of continuous vector fields f; : R? — R?,
i =1,...m, with uniform linear growth.
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The starting point of the problem we discuss is similar to the sparse control strategy
for multi-agent systems addressed in [10,24], where the authors study the evolution of the
entire population in the case of a control action concentrated only on a small portion of
the total number of agents.

In this paper, we consider a similar interaction constraint but, instead of dealing with
a nonlocal dynamics, we consider it as part of the cost functional to be minimized. More
precisely, we define the control magnitude density ¥ : R? x R? — [0, 4+-00] by

inf {Ju|: we U, f(z,u) =v}, ifve F(z),
U(z,v) =

400, otherwise,

which, under suitable assumptions, turns out to be continuous on Graph F. This map gives
the minimum norm for a control generating an admissible velocity v at x. In particular,
the integral

[, ¥ u@) du,

can be considered as a measure of the effort of the controller, combining the magnitude
of the control used to implement the vector field v;(-) and the quantity p,; of particles to
be controlled at time ¢. The above integral can thus be naturally used to impose control
sparsity constraints, in the form of upper bounds on the controller’s effort to drive the mass
of particles.

To this aim, the constraint we will consider in this paper will be upper bounds on the
L norm or on the L! norm of the map

t— U(z,v(x)) dpg.
Rd
In the case of L bound, at every instant of time the controller must choose how to use
the maximum amount of effort available to control the population: we notice that a weak
action distributed on a large number of particles, or a strong action on a few number of
individuals may require the same effort. In the case of L' bound, the effects are cumulated
in time, thus all the past history of the evolution must be taken into account.

We stress out that the two kinds of interaction considered are at the macroscopic level,
not at the microscopic one. Indeed, they do not involve directly the behavior of each
individual w.r.t. the others (like in the case of attraction/repulsion potentials). Instead,
we are interested in the particles’ collective evolution and on the effort required to generate
it,.

Considering both our cases of interest, the main goals of this paper are the following:

e to study compactness results for the set of feasible trajectories;

e to prove the existence of optimal trajectories for general cost functions;

e to provide necessary conditions in the form of an HJB equation solved by the value
function in a suitable viscosity sense.

In order to treat in a unified way the two cases, in Section 4, we provide an abstract frame-
work for optimal control problems proving a general Dynamic Programming Principle.
Further possible applications of this framework are discussed in Appendix A.

The paper is organized as follows: in Section 2 we recall some basic notion about Wasser-
stein spaces and fix the notation; in Section 3 we outline the problem providing some
preliminary results; in Section 4 we prove a general Dynamic Programming Principle; in
Section 5 we analyze the two control-sparsity problems (L>-time averaged sparsity and
L'-time averaged sparsity cases) proving existence of optimal trajectories for general cost
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functions. In Section 6, we study for each of the considered cases an Hamilton-Jacobi-
Bellman equation solved by the value function in some suitable viscosity sense. Finally, in
Appendix A we discuss other applications of the framework outlined in Section 4, while in

G. CAVAGNARI, A. MARIGONDA, AND B. PICCOLI

Appendix B we recall some estimates borrowed from [13,16].

As main references concerning optimal transport and measure theory, the reader may
refer to [2,30,31].

2. PRELIMINARIES AND NOTATION

We will use the following notation.

B(z,r)

K
Idx(-)

Ik (")
xx ()

CY(X;Y)

CYUX;Y)

"
Lip(f)

Definition 2.1 (Pushforward measure). Given two separable metric spaces X,Y, u €
P(X), and a Borel map r : X — Y, we define the push forward measure rip € Z(Y) by

the open ball of radius r of a normed space X,

ie, B(z,r):={ye X : |ly—z|x <7t}

the closure of a subset K of a topological space X;

the identity function of X,

ie. Idx(z) =z for all z € X

the indicator function of K,

ie. Ig(x)=0ifz e K, Ix(z) =+ if z ¢ K,

the characteristic function of K,

ie. xg(x)=1lifz e K, xx(r)=0if z ¢ K

the set of continuous bounded function from a Banach space X to Y,

endowed with ||f||cc = sup |f(2)] (if Y =R, Y will be omitted);
zeX

the set of compactly supported functions of CP(X;Y),

with the topology induced by CP(X;Y);

the set of continuous curves from a real interval I to R¢;

the set of continuous curves from [0, 7] to R%;

the evaluation operator e; : R? x I';

defined by e(x,v) = ~(¢) for all t € I;

the set of Borel probability measures on a separable metric space X,
endowed with the weak* topology induced by CP(X);

the set of vector-valued Borel measures on R? with values in R?,
endowed with the weak* topology induced by CY(R%; R9);

the support of the measure p;

the total variation of a measure v € .# (R%; R?);

the absolutely continuity relation between measures defined on the same
o-algebra;

the p-th moment of a probability measure p € 2(X),

fe., m, (1) = [lex 2

the push-forward of the measure u € &(X) by the Borel map r

(see Definition 2.1);

the product measure of p € #(X) with the Borel family of measures
{nz}zex (see Section 5.3 in [2]);

the i-th projection map m;(z1,...,zN) = z;;

the ¢, j-th projection map m;;(z1,...,2n) = (z;, x;);

the subset of the elements &2(X) with finite p-moment,

the p-Wasserstein distance between p and v (see Definition 2.2);

the set of admissible transport plans from u to v (see Definition 2.2);
endowed with the p-Wasserstein distance;

the Lebesgue measure on RY;

the Radon-Nikodym derivative of the measure v w.r.t. the measure p;

the Lipschitz constant of a function f.
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ripu(B) := p(r~1(B)) for all Borel sets B C Y, or equivalently,

/ F(r(z)) ds(z) = / F() driu(y),
X Y

for every bounded (or rfu-integrable) Borel function f:Y — R.

We refer to Chapter 5, Section 2 of [2] for the main properties of the pushforward
measures.
The Wasserstein distance and its basic properties are recalled below.

Definition 2.2 (Wasserstein distance). Given ui,p2 € Z(R%), p > 1, we define the
p- Wasserstein distance between p; and ps by setting

@1 Wyl ) = (inf { Lo - aapdntoraa) s 7 e H(ul,m})w ,

where the set of admissible transport plans TI(uy1, u2) is defined by

m(A1 x RY) = p1(Ay),

H(p1, po) = {W € PR xRY): m(RY x Ag) = pa(Az),

for all p;-measurable sets A;, ¢ =1, 2} .

Proposition 2.3. 2,(R?) endowed with the p-Wasserstein metric W,(-,-) is a complete
separable metric space. Moreover, given a sequence {pinfnen € Pp(RY) and u € P,(RY),
we have that the following are equivalent

(2) pn —* w and {pn tnen has uniformly integrable p-moments.

Proof. See Proposition 7.1.5 in [2]. O

Concerning disintegration results for measures, widely used in this paper, we refer the
reader to Section 5.3 in [2]. The following result is Theorem 5.3.1 in [2].

Theorem 2.4 (Disintegration). Given a measure p € P (X) and a Borel map r : X — X,
there exists a family of probability measures {uy}rex C P (X), uniquely defined for riu-
a.e. x € X, such that u,(X\ r~Y(x)) = 0 for riu-a.e. © € X, and for any Borel map
w: X xY — [0,400] we have

/Xw(Z) dp(2) :/X [/r—l(@ (2) dpr(2)

We will write g = (rfip) @ pe. If X=X xY and r~(z) C {z} x Y for all z € X, we can
identify each measure p, € P(X xY) with a measure on'Y .

d(rip)(z).

3. SETTING OF THE PROBLEM AND PRELIMINARY RESULTS

We study an optimal control problem in the space of probability measures with a control
sparsity constraint. We develop separately two specific constraints: an L°°-time averaged
sparsity condition (Section 5.1) and an L!-time averaged sparsity constraint (Section 5.2).
In both cases, the sparsity-interaction term is encoded in the cost functional to be mini-
mized. In the first case, at a.e. time instant we impose an upper bound on the magnitude
of control to be used on the evolving mass. In the second case, this constraint is L' in time.
Both these problems are strongly motivated by applications to multi-particle systems.

In this section we introduce and discuss some preliminary properties regarding the dy-
namics and the objects that will be used in Section 5 and also in Appendix A to describe
some control sparsity constraints.



6 G. CAVAGNARI, A. MARIGONDA, AND B. PICCOLI

Definition 3.1 (Standing assumptions). Let I C R be a nonempty compact interval, U C
R™ be a convex compact subset, with 0 € U, called the control set. Let f; € CO(R% R?),
i =0,...,m satisfying the following conditions

(1) growth condition:

C = sup {milglﬂ(m)\} < +0o9;

zER?
(2) rank condition: the d x m matrix A(z) := (fi(z), fa(x),... fm(x)) has rank inde-
pendent of z € R%.
We define the set-valued map F : R? = RY by setting

F(z) = {f(z,u) :== folx) + A(x)u : ueU}.
This multifunction F' will govern the controlled dynamics in terms of a differential inclusion,
as described in Definition 3.3. The graph of F(-) is the set
Graph F := {(z,v) e R¢ x R?: v € F(x)}.
We define the control magnitude density ¥ : R? x R? — [0, +00] by

U(z,v) = inf {Ju| : we U, f(z,u) =v}, ifve F(zx),
T 4o, otherwise.

Lemma 3.2. In the framework of Definition 8.1, the following properties hold.

(1) The set-valued map F(-) is continuous w.r.t. the Hausdorff metric, and it has
nonempty, compact and convex values at every x € R®. In particular, Graph F
is closed. Moreover, F satisfies the linear growth condition, i.e., there exists a
constant D > 0 such that F(z) C B(0, D(|z| + 1)) for every x € RZ.
(2) The map ¥ : R? x R? — [0, +-00] satisfies the following properties
(7) for all v € F(x), there exists w € R™ such that

U(z,v) = |A(z) " (v = fo(@)) + (I — A(z)" A(x)) wl,

where A(x)t is the Moore-Penrose pseudo-inverse of A(xz), and I is the m xm
identity matriz. Moreover U(-,-) is continuous on its domain, i.e. on Graph F';
(ii) W(-,-) is Ls.c. in R? x R%;
(iii) v — W(x,v) is convex for any x € R?.

Proof. Ttem (1) follows directly from the definition, recalling the continuity of f;, i =
1,...,m, the compactness of U and the standing assumptions. We can take D = C - Ry,
where we define Ry := max{|u| : u € U}.

We prove (i). Let x € R? be fixed, v € F(z) and let us denote with A(z)* the Moore-
Penrose pseudo-inverse of A(x), which exists and is unique (see [29]). Then, by hypothesis,
there exists a solution u of A(x)u = v — fo(x) and by pseudo-inverse properties, we can
characterize any such a solution by u = A(z)* (v — fo(x)) + (I — A(z)" A(z)) w, w € R™.

Let us define the map g : R x RY x R™ — R™, g(x,v,w) := A(z)* (v — fo(x)) + (I —
A(z)tT A(x))w. We have that g is continuous, indeed by the rank condition in Definition
3.1 and pseudo-inverses properties, since x — A(x) is continuous, so is x — A(z)™.

Thus, by Proposition 1.4.14 in [3], we have that the multifunction M : R? x R4 = R™,
defined by M (z,v) := {g(x,v,w) : w € Bp,(0)} is continuous. Hence, so is the set-valued
function Q : RY x R = R™, Q(x,v) := M(x,v) NU. By Corollary 9.3.3 in [3], we get the
continuity of the minimal norm selection of @), thus the continuity of ¥ on its domain, i.e.
on Graph F', since

U(z,v) = min |z|,
z€Q(z,v)

when (z,v) € Graph F.
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Finally, (i) follows by the continuity of ¥ on dom ¥ = Graph F' and closedness of
Graph F'.

We pass now to the proof of (iii). Let (z,v;) € R x R, j =1,2. If (z,v;) ¢ Graph F,
for some j = 1, 2, the convexity inequality is trivially satisfied, since ¥ takes the value +oo,
so we assume that (z,v;) € Graph F, j = 1,2. We notice that, since for all u; € Q(z,v;),
Jj = 1,2, we have v; — fo(z) = A(z)u;, then Aug + (1 — Nug € Q(x, Avy + (1 — X)vg) for
all A € [0,1]. Recalling the triangular inequality, we have for all u; € Q(z,v;), j = 1,2,

U(z, A1 + (1 = Nvg) =min{|u| : v € Q(x, \v1 + (1 — Nv2)}
<JAug 4+ (1 = Nug| < Mug| + (1 — X)|ugl,

By taking the minimum on u; € Q(x,v;), j = 1,2, we obtain that ¥(z,-) is convex. O

Following the same line as in [13,14,16,17,27]|, we define the set of admissible trajectories
as follows.

Definition 3.3 (Admissible trajectories). Let I C R be a compact and nonempty interval.
In the setting of Definition 3.1, we say that (u,v) is an admissible trajectory defined on I,
and we write (u,v) € Ay, if the time-depending Borel probability measure g = {u er C
P(RY) and the time-depending Borel vector-valued measure v = {v;}ie;r C 4 (R%RY)
satisfy the following properties
(A1) continuity equation: we have 0y +div vy = 0 in the sense of distributions in I x R%;
(A2) wvelocity constraint: |v¢| < py for a.e. ¢t € I and the Radon-Nikodym derivative

satisfies ﬁ(JJ) € F(x), for pg-a.e. = € R? and a.e. t € I. Equivalently, we ask
Mt

/jp(ut,l/t) dt < +OO,
1

where Jr : Z2(R?) x 4 (R%RY) — [0, +00] is defined by

Trlp, E) = /Rd Tp() (f($)> du(z), if |E| < p,

400, otherwise.

Given i € Z(RY), we say that (u,v) € Aj is an admissible trajectory starting from fi if
Pjt=minT = H, and we write (u,v) € Aj(fi). It can be proved (see [2]) that every u such
that (u,v) € Ay for some v admits a narrowly continuous representative. Thus from now
on we will always refer to it.

Remark 3.4. Let i € Z,(RY) with p > 1, and (p,v) € Ar(r). Then, due to the growth
assumption on F(+), it is possible to bound the moments of y; in terms of the moments of
po (see Proposition B.1), and hence we have u C Z2,(R9).

Recalling the Superposition Principle (Theorem 8.2.1 in [2]) and its extension to differ-
ential inclusions provided in Theorem 1 in [20], we refer to the following.

Definition 3.5 (Probabilistic representations). Let p = {11} ier € Z,(R?) be an abso-
lutely continuous trajectory and v = {14 }4¢5 a family of Borel vector-valued measures such
that Oy + divy = 0, t € I. We say that a probability measure n € Z(R? x T'y)

(1) represents the pair (u,v), if n is concentrated on the couples (z,v) € R xT'; where

~y satisfies 4(t) = &(’y(t)), ~v(minT) = x, and s = efm for all t € I;
et

(2) represents p, if 1 is concentrated on the couples (z,v) € R? x T'; where v satisfies
A(t) € F(y(t)), y(minI) = z, and pu; = efin for all ¢ € 1.
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We notice that in general if (u,v) € Ay, then p can have more than a representation
(see [20] for an example of this situation).
Recalling Theorem 8.2.1 in [2]|, and Theorem 1 in [20], we have that

Lemma 3.6 (Equivalence). In the setting of Definition 3.1.
(1) Every (m,v) € A; admits a representation n € P (R xT'1) according to Definition
3.5(1).
(2) Bvery n € (R x T1) concentrated on the couples (x,v) € R% x Ty, where #(t) €
F(y(t)) and v(0) = z, represents an admissible trajectory (p,v) € Ay, with v =
{v}ter with vy = vy and

)= [ 30 dny o),
er (v)

for a.e. t € I and ps-a.e. x € R, where the Borel family of measures Nty tyere €

P (R x T'p) is the disintegration of n w.r.t. the evaluation operator e;.

Remark 3.7. Lemma 3.6 allows us to consider equivalently an admissible trajectory defined
as in Definition 3.3, or a probability measure n € Z(R? x I'7) satisfying the property of
Lemma 3.6 (2).

Definition 3.8. Given i € Z(R%), we define
R (7)== {17 € PR xTy) : Ip,v) € Ar(fi) s.t. 1 represents (u,v)}.
Remark 3.9. We stress that in general
R () € {77 e Z(RYxTy) : I(u,v) € Ar(fi) s.t. m represents u}.

Indeed, in the left-hand set we are requiring 1 to be a representation for the pair (u, v) as in
Definition 3.5(1), while in the right-hand side we are exploiting the various possibilities for
the construction of a representation recalled in Definition 3.5(2). We borrow the following
clarifying example from [20].

Ezample 3.10. In R?, let

- = {%,y(‘)}(x,y)eRQ C AC([0,2]) where v;4(t) = (z +t,y — tsgny) for any
(z,y) € R?, t €[0,2], with sgn(0) = 0;
- F:R?2=R? F(x,y) = [-1,1] x [~1,1] for all (z,y) € R?;

1 .
" Ho = 550 ®$ﬁ_171] € Z(R%), n = ®0y,, € PR xT2), p = {fu}icppy with

fir = edfin;
- @ be the open square of vertice {(0,0), (1,0), (1/2,4+1/2)}.

By construction we have that

- F is in the form of Definition 3.1 (by taking for instance as fop the null function,
A(x) be the 2x 2 identity matrix and R? > U = [~1,1] x [~1,1]) and #(¢) € F(v(t))
for all v € & and ¢t €]0,2[.

- p is an admissible trajectory and we denote with v = {4 },¢(9 9 its driving family
of Borel vector-valued measures.

Denoted by v = " the mean vector field, this implies v(x,y) = (1,0) for all (z,y) €
Mt

Q\ (R x {0}) and ¢t = x. Now, consider the associated characteristics 7, () = v¢(,(t)),
Y4(0) = (0,y), y € [-1,1], and let us build § = po ® 65, € P(R? x T[g ).

We notice that, by construction, 7 represents (u,v) (in particular it represents ), while
1 represents p but not the pair (u, v), since it is not constructed on the mean vector field
Vg

e
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In Theorem 3 in [16] the authors give sufficient conditions providing compactness of the
set Ar(ji) w.r.t the uniform convergence of curves in W), with i € 2,(R%), p > 1. While
Proposition 1 in [20] states the compactness of the set Ry (f).

Lemma 3.11 (Norm-minimal control density). Given (u,v) € Ajg, there exists a Borel
map u : I X RY — U, defined pi-a.e. x € R and a.e. t € I, such that v = {vy = v }beer,
with

v (z) = folx) + A(z) u(t,z), for p-a.e. x and a.e. t € 1,

/\I/<:U,Vt( )dut /|utm|dut x), fora.e tel.
R Mt

We will call u(t,z) the norm-minimal control density associated with the admissible trajec-
tory (1, ).

Proof. By assumption, there exists vy € L, such that v = {v; = vypsbeer, vi(z) € F(x)
for pii-a.e. x € R? and a.e. t € I. Then, by Lemma 3.2 for p;-a.e. x and a.e. t there exists
a unique minimum-norm solution u(t,z) € U for v(z) = fo(x) + A(x) u. It is defined by
u(t,x) == A(x)t (ve(x) — fo(z)) + (I — A(z)t A(z)) w, for some w € R™ and it satisfies
U(z,v(x)) = |u(t,z)| for p-a.e. = and a.e. t. By construction, u : I x R — U is a
well-defined Borel map for u;-a.e. x and a.e. t. O

The following result allows us to prove the existence of an admissible trajectory with
given (admissible) initial velocity and satisfying further properties which will be used later
on in Section 6 to provide an HJB result in our framework.

Lemma 3.12. Lel ig € P2(R?), T > 0, vp : R? — R? be a Borel map which is also a Lio—
selection of F(-). Then for all 3 > 0, there ewists an admissible pair (u,v) € A 11(ko)
and a representation m for the pair (u,v) in the sense of Definition 3.5(1) satisfying

(1) for allp € Lio (RY)

i (o eoti), SOy g o) — [ (p(a),e0(w) dio(

t—0t RdXF[o,T] t

(2) vy —* voup ast — 07
(3) for allt € [0,T] we have

Lo (520 duto) < [ Gl duote
(4) the following bound holds

//R ( 1t )dut( )dt < 6.

Proof. Let ug : R? — U be a Borel map such that vg(z) = f(z,ug(x)) for all z € R? and
U (z,v9(x)) = |up(x)|. Notice that such a map ug exists by the same argument used in the
proof of Lemma 3.11. Define the map G : R? = I'p

G(z) = {'y e AC([0,T)) : v(¢t) = 93—}—/() [ (v(s),uo(z)e™®) ds, Vt € [O,T]} )

According to Theorem 8.2.9 p.315 in [3], to prove the measurability of this map it is
sufficient to notice that the map g : R4 x 'y — I'p defined by

M@w@wzﬂw—f+1}mw@wa@fﬂd&

is a Carathéodory map, i.e., z — g(x,7v) is Borel for every v € I'p and v — g(z,7) is
continuous for every z € R
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By Theorem 8.1.3 p. 308 in [3], since G(+) is Borel, it admits a Borel selection x — =, €
G(z). Define g = {1 }4c(o,m) by setting p; = eifin where

n = o ® 35, € PR xTr).

According to Theorem 1 in [20], we have that (p,v = {vi}iej0,m) € Apr], Where vy is

defined by
1% .
) =) = [ 30 gl
H e ' (y)

for a.e. t € [0,T] and py-a.e. y € RY, where we used the disintegration n = u; ® Mty
We prove (1) following a similar procedure as for the proof of Proposition 2.5 in [27]. By

Proposition B.1, we have that eg, “7=* € L% for all ¢ € [0,T]. Thus, for all p € Lio (RY),
by the definition of 1, we have

. e .'17, — € .'177 . - t — Yy 0
lim (poco(z, ), LD =D, iy = tim [ (o), 2= 2200,
t= 0T JRAxTp L t—0+ JRa t

dpo ().

By Dominated Convergence Theorem, we obtain

i [ o), 222 ) = [ o), tim 2O o)

_ / (p(x), vo(@)) dpo(x),
Rd

er—e
thanks to the uniform bound on tTO in terms of the 2-moment of uo (see Proposition
B.1).
We prove (2). By the definition of i, we have

wl) = | | GO dny r.9).
€y Yy
For any ¢ € CY(R%R?), we then have
B [ @) duw) = [ e00) F00.u60)e ) dnt.y).
R4 RdXFT
We observe that we can use the Dominated Convergence Theorem, indeed

FOO.u0)e) = 1+ o) L0

< C(1+ |v(t)]) - max{1,diam U},
which is n-integrable since we can estimate the 2-moment of y; in terms of the 2-moment

of 1y by Proposition B.1. Thus, by passing to the limit under the integral sign in (3.1), we
obtain

im | (o(y), ve)) duely) = /

t—0t JRd Rd

<<p(fr),f(x,UO(w))>duo=/ {o(x), vo(2)) dpo ().

Rd
We prove (3). Recalling the affine structure of f, we have

v(y) = f (y /1( )uO(v(O))e’t dm,;;(ﬂfm)) :
e, (v

t

thus

L nnan s [ ] o)l ) du)
< [ ot O)ldnt) = [ o)l do(o
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_ / U, vo(x)) dpro ().
R4

The last formula shows that the map

L / Wy, uily)) dpely)

belongs to L'([0,T]). In particular, for every 8 > 0 there exists 7 > 0 such that

| [ vty dutae < 5
0 R4

We then consider any solution fi = {jit};c[ 7 of the equation

Oy + div(f(z,0)fie) =0,
for = fir.
By Lemma 4.4 in [22], the juxtaposition of p restricted to [0, 7] with f, and the juxtapo-

sition of the corresponding families of Borel vector-valued measures v restricted to [0, 7]
with & = {f(-,0)fit }+¢[r,r, yields an admissible trajectory satisfying (4). O

4. GENERAL DYNAMIC PROGRAMMING PRINCIPLE

In this section we present an abstract Dynamic Programming Principle which holds in
quite general frameworks: this will allow us to treat the optimal control problems proposed
in Section 5 and in Appendix A in a unified way. The proposed structure establish a
common framework to check the validity of a Dynamic Programming Principle for problems
of different nature.

Definition 4.1. A generalized control system is a quadruplet (X, 3, ¢, c¢f) where X, ¥ are
nonempty sets, ¢f : X — [0,+00], and ¢: X x X x ¥ — [0, +00], is a map satisfying the
following properties
(C4) for every x,y,z € X, 01,09 € X, there exists o/ € ¥ such that
c(x,z,0") < c(z,y,01) + c(y, 2, 02).
(C2) for every z,z € X, 0 € X, there exist y' € X, 07,04 € 3 such that
c(z,z,0) > c(z,y,01) + c(y, 2,05).
Given x € X we define the reachable set from x by

Ry = {y € X : inf ¢(x,y,0) < +oo},
gEY

and if y € #, we say that y can be reached from x. Notice that if y € #, and z € %,
property (C1) implies that z € %, hence the position

Ry ={(z,y) e X x X : y € %#,},
defines a transitive relation Ry, on X.

If we define
Xy ={x e X: (z,2) € Rn},

we have that the restriction of Ry, on Xy is a partial order on . Equivalently, we have
that © € Xy if and only if there exists o € ¥ such that c¢(x,z,0) < +o0, i.e., T € Z,.

Given z € X and y € Z,, we define the set of admissible transitions from x to y by
A (x,y) :={oce€X: clz,y,0) < +oo}.

and if 0 € & (x,y), we call c(z,y,0) the cost of the admissible transition o. We call c¢(y)
the exit cost at the state y.
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We define the value function V : X — [0,400] by setting

V(z) = ylg)f( {c(@,y,0) +cr(y)},
cEX

and if V(z) < 400, we have V(x) = inf inf {c(x,y,0)+cr(y)}.
YER: o €A (x,Y)

We prove a Dynamic Programming Principle for this general framework.

Theorem 4.2 (Dynamic Programming Principle). For every z € X we have

V(z) = inf {c(z,y,0) +V(y)}.

yeX
oeEX
Proof. Set W (z) = inf {c(z,y,0) + V(y)}.
yeX
oeX

(1) We prove that V(z) > W(z). If V(z) = +o0 there is nothing to prove. So assume
V(z) < +o0o. For all € > 0 there exist y. € X, 0. € ¥ such that

V(z)+e > c(x,ye, 00) + cf(ye).
According to (C2), there are y. € X, ol 1,0, € ¥ such that

V(x)+e>c(x,ye, 00) + cf(ye) > (@, yl, 0l 1) + eyl Yey 0L o) + cr(ye)

(2,42, 0c0) + V() 2 nf {e(z,9,0) +V(y)} = W(2),
€
pass
and we conclude by letting e — 0.
(2) We prove that V(z) < W(x). If W(z) = +oo there is nothing to prove. So assume
W(x) < +o0. For all € > 0 there exist y.,y. € X, 0,0, € ¥ such that

W(l‘) +e> c(x, Ye, Us) + V(ys) > C(fL‘, Ye, Us) + C(?JE) y::’ O'é) + Cf(y‘/s) — &
According to (C1), there exists o € ¥ such that

W(z) +e>c(z,yl,of) +cr(yl) — ¢

> inf {C(:Evya U) + Cf(y)} —&= V(:E) -5
ye)g
S

and we conclude by letting e — 0T.
]

Definition 4.3 (Generalized admissible trajectory). Let (I,<j) be a totally orderered
set admitting a maximal element b € I and a minimal element a € I w.r.t. the order
<7. We endow [ with the order topology, and use the notation I = [a,b]. Given z € X,
a generalized admissible trajectory starting from x defined on I is a pair (v,0) of maps
v:1I— X, o0:1— %, satisfying

(1) v(a) = x;

(2) c(z,7v(t),0(t)) < oo for all t € I;

(3) for all t1,to € I with t; <j to there exists oy, 1, € X such that

c(z,v(t2),0(t2)) > c(x,y(t1),0(t1)) + c(v(t1), v(t2), oty >t,)

In particular, by taking ¢ = b in (2), we must have v(b) € Z,. Moreover, from (3)
we deduce that c(y(t1),v(t2), 01 t,) < +00, 80 Y(t2) € Zy,) for all t1,ty € I with
a<pt1 <rta<rb.
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Remark 4.4. We notice that if (v, 0) is a generalized admissible trajectory defined on I,
and 0,,, € X satisfies Definition 4.3 (3) with ¢; = to = a, we can define o/(t) = o(t)
for t # a and o'(a) = 04-4. In this case, we have that (vy,0’) is still a generalized
admissible trajectory, and, from Definition 4.3 (3), recalling that ¢'(a) = 044, we have
c(x,z,0'(a)) = 0. Thus, without loss of generality, given a generalized admissible trajectory
(7,0) defined on I = [a,b] we always assume that c¢(z,z,0(a)) = 0.

Definition 4.5 (Optimal transitions and optimal trajectories). Given xz,y € X, 0 € %,
we say that o is an optimal transition from z to y if
V(z) = clz,y,0) + V(y).

A generalized admissible trajectory (7, o) defined on I = [a, b] is called an optimal trajectory
if for all t € I we have that o(t) is an optimal transition from v(a) to y(¢), i.e.,

V(y(a)) = e¢(v(a),y(t),o(t) + V((t)), for all t € I.

Corollary 4.6 (DPP for generalized admissible trajectories). Let x € X and (v,0) be a
generalized admissible trajectory starting from x defined on the totally ordered set I. Then
the map h : I — [0, +o0] defined as

h(t) = c(z,y(t),0(t)) + V((t)),
1s monotone increasing, and it is constant if and only if the trajectory is optimal. Moreover,

if the trajectory is optimal, for all t,s € I with t < s we have that any 015 € X satisfying
(3) in Definition 4.3 is an optimal transition from ~y(t) to y(s).

Proof. Let (v,0) be a generalized admissible trajectory, we prove that h(-) is monotone
increasing: indeed, recalling Theorem 4.2,
V(z1) < ¢(z1,22,0) + V(z2), forall 0 € X, 21,29 € X,

thus, choosing z1 = (), 22 = v(s), 0 = 045, from Definition 4.3 (3), we have

(4.1) V(v(t) = V(1(s) < c(v(t),7(5), 01s) < c(@,7(5),0(s)) — c(z,7(t), (1)),
hence

h(t) = V(y(t)) + c(z,7(t),0(t)) < V(v(s)) + c(z,7(s), 0(s)) = h(s),
as desired.

(1) We prove that, if h(-) is constant, then the trajectory is optimal. If h is constant,
we have

h(t) = V(1)) + c(z,v(t),0(t)) = V(v(s)) + c(x,7(s),0(s)) = h(s),

and so

V() = V(v(s)) = c(z,7(s),0(s)) — c(z,7(t), o (1))
In particular, all the inequalities in (4.1) are fulfilled as equality, thus oy is an
optimal transition between ~y(¢) and 7(s). By taking ¢t = a, and recalling that we
can always assume that c(z,z,0(a)) = 0 (see Remark 4.4), we have that (v, o) is
optimal.
(2) We prove that, if the trajectory is optimal, then h(-) is constant. Since the trajec-
tory is optimal, we have

V(z) = c(z,y(t),0(t) + V(7(1)), Vi(z) = c(z,7(s),0(s)) + V(1(s)),
hence
V(@) = V((s)) = c(z,7(s),0(s)) — c(z,7(t),0(t)),
thus h(-) is constant, and again all the inequalities in (4.1) are fulfilled as equality,
SO 0¢—s 18 an optimal transition between ~(t) and 7(s).

O
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Corollary 4.7. Let (v,0) be a generalized admissible trajectory defined on the totally
ordered set I = [a,b].

(1) if ;relg c(7(b),7(b),0) = 0, we have V(y(b)) < cf(7(b)).
(2) if (v,0) is optimal and V(y(b)) = Cf(")/(b ) then v(b) € X and o(b) € ¥ realize the
infimum in the definition of V(y(a)), i.e.,
V(y(a)) = c(y(a),v(b), a(b)) + cr(v(b))-
(3) if mf c(y(b),v(b),0) = 0 and v(b) € X and o(b) € X realize the infimum in the

deﬁmtzon of V(y(a)), i.e.,

V(v(a)) = c(v(a),7(b), o (b)) + cr(7()),
then (v, 0) is optimal.

Proof.
(1) By assumption, for all € > 0 there exists 0. € ¥ with

V(v(b)) < ¢(v(b),7(b),0¢) + ¢ (7()) < &+ c(v(b)),

and we conclude by letting £ — 07 to obtain V(y(b)) < ¢f(v(b)).
(2) Recalling Theorem 4.2, we have

V(v(a)) = c(v(a),7(b), o(b)) + V(7(b)) = e(v(a),7(b), o(b)) + ¢ (7(b))-
(3) Conversely, since V(y(b)) < cg(y(b)) by item 1, we have

V(v(a)) = c(v(a),7(b), 0 (b)) + 5 (v(b)) = ¢(v(a), ¥(b), o (b)) + V(7(b))-

but, according to the Theorem 4.2, the opposite inequality holds, and so

V(y(a)) = c(v(a),7(b),a(b)) + V(7(b)).
Recalling that c¢(y(a),7(a),o(a)) =0, by Corollary 4.6 we obtain for all ¢ € [a, b]

c(v(a),~(a),o(a)) +V(v(a)) < c(y(a),7(t), o (t)) + V(¥(t))
< c(v(a),(b), (b)) + V(~(b)),

and since the first and the last terms are equal, we conclude that for all t € [a, D]
we have V(v(a)) = c(y(a),y(t),o(t)) + V(~(t)), and so the trajectory is optimal
by Corollary 4.6.

0

This completes the proof of the Dynamic Programming Principle.

5. CONTROL SPARSITY PROBLEMS

In this section we use the notation and the setting introduced in Section 3 to formulate
and analyze two problems involving a control-sparsity constraint. For both of them we will
implement the following strategy:

e we describe the control sparsity constraint that will be included in the cost func-
tional to be minimized;

e we prove a compactness property of the set of feasible trajectories, i.e. admissible
trajectories satisfying the control sparsity constraint;

e we use the results of Section 4 to prove a Dynamic Programming for the value
function of the problem;

e we prove the existence of an optimal trajectory;

e we characterize the set of initial velocities for a feasible trajectory.

The last step is essential in order to provide necessary conditions in form of an Hamilton-
Jacobi-Bellman equation satisfied by the value function (see Section 6).
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5.1. The L*-time averaged feasibility case.
Let a > 0 be fixed, p > 1. Referring to the notation introduced in Section 4, we set

X =2,RY, »= U [AC(I; P,(RY) x Bor(I; .4 (R: RY)] .

ICR
I compact interval

Observe that the set Aj of admissible trajectories starting by a measure in (@p(Rd) (see
Definition 3.3 and Proposition B.1) is a subset of X.

On the set ¥; := AC(I; 2,(R%)) x Bor(I; .4 (R% R%)) we will consider the topology of
sequentially a.e. pointwise w*-convergence, i.e., given {p"},en := {(u"™,v"™)}, C X7, and
p:= (p,v) € X1, we say that p" —* p if and only if (u, ") —=* (u, 1) for a.e. t € I.

Definition 5.1 (L*-time feasible trajectories). Given p = (u,v) € Aj, we define the map
0, : 1 — [0,+00] by setting

bp(s)i= [0 (2.22(0)) dato)

where W is the control magnitude density. Given i € Z,(R%), we set
Fo() i={p € A(i)  Op(s) S forae. s € I} = {p € Ar(f) 5 [8,llzeqr) < o}
R () == {77 e Z(RYxTy) : 3w, v) € FX(f) s.t. 1 represents (u,v)},

and we define the set of a-feasible trajectories defined on I by

= U Fr@mcsn
HE Pp(RY)

Finally, notice that
105l oo (1) < @ if and only if /E(,ut, v) dt < 400,
I

where £ : Z(RY) x .4 (R4 R?) — [0, +00] is defined by

T (/qu <$,f($)> d,u(ac)) it B <,

400, otherwise.

E(p, E) =

Remark 5.2. The quantity 6,(s) represents the total magnitude of control acting on the
mass at time s. Thus, the feasibility constraint imposes a restriction on the amount of
control to be used w.r.t. the portion of controlled mass: in particular, at every instant
of time the controller must decide if it is more convenient to control all the mass with a
reduced amount of control, or to act on few individuals with a greater amount of control
(control sparsity). In some cases (depending on the cost functional) the two strategies
are actually equivalent. We refer to the surveys [10,24] for some applications of a sparse
control strategy in the framework of multi-agent systems.

The main topological properties of the set of feasible trajectories are summarized as
follows, and are natural extensions of the same properties proved for the admissibility set
Ay, respectively in Proposition 3 and Theorem 3 in [16] and in Proposition 1 in [20].

Proposition 5.3. Let I C R be a compact nonempty interval, p > 1, pug € @p(Rd),
C1>0. Then
(1) Fp° is closed w.r.t. the topology of ¥r;
(2) for any # C Fp°, Cy > 0 such that for all (n,v) € B with p = {pu}er it holds
my, (1) < C1, we have that the closure of % in ¥ is contained in F;°;
(3) F°(mo) is compact in the topology of X
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(4) R3°(po) is compact in the narrow topology.

Proof. The proof is essentially based on the variational characterization of the feasibility
constraint.

Step 1: The functional .F : 2(RY) x .4 (R4 RY) — [0, +00] defined by

5.) o [ (e Ew) . it151<

400, otherwise

is l.s.c. w.r.t. w*-convergence.

Proof of Step 1: By Lemma 3.2, the function ¥ : RY x R? — [0, 400] is l.s.c. and
W(x,-) is convex for any x € R? with bounded domain. So adopting the notation in [7], we
have that Voo (z,v) = 0if v =0 and VU (z,v) = +00 if v # 0, where U (z, -) denotes the
recession function for W(z, ). By Ls.c. of F, there exists a continuous selection z : RY — R?
of F' (Michael’s Theorem). Thus, by continuity of U(-,-) in Graph F' (see Lemma 3.2), we
have that x — ¥(z, 2(x)) is continuous and finite. We conclude by Lemma 2.2.3, p. 39,
Theorem 3.4.1, p.115, and Corollary 3.4.2 in |7] or Theorem 2.34 in [1]. o

Step 2: Let p" := (u",v") € Fp° for all n € N, p := (u,v) € ¥; be such that p”
converges to p in ¥;. Then p € F7°.

Proof of Step 2: By convexity and lLs.c. of the indicator function Ijg 4)(-) and Ls.c. of
Z (+,+), we have that the functional £(-,-) is l.s.c w.r.t. w*-convergence. The l.s.c. of the
functional Jr(-,-), defined in Definition 3.3(A2), was already proved in Lemma 3 in [16].
By Proposition 3 in [16] we have p € A;. Now, fix t € I such that (uf,v{") —=* (¢, 1) and
E(uy, v + Trp(pd,vf) =0 for all n € N. By Ls.c. of £, Jp and the fact that £, Jp > 0,
we have
0 < E(pe ) + Tp(pe, ve) < liminf E(uf’, vi') + Tr(uf', 17') = 0.

By applying Fatou’s lemma we deduce that
/ (g(lutv Vt) + jF(:ub Vt)) dt = 07

I
hence p € F7°. o

All the assertion now follows recalling that uniformly boundedness of the moments along
a sequence implies existence of a narrowly convergent subsequence (see e.g. Chapter 5 in
[2])- O

We pass now to the analysis of the value function and of the Dynamic Programming
Principle in this setting. To this aim, we will refer to the abstract results proved in Section
4.

Definition 5.4 (Concatenation and restriction).

(1) Let I; = [a;,b;] C R, i = 1,2, with by = ag, and I := [[UI5. Let p' = (u*, %) € Fre
with “;1 = p2,. The concatenation p*xp? = (p,v) of p' and p? is defined by setting
pe = piand vy = v} when t € I; for i = 1,2, and noticing that we can assume
ul}l = 1/22 by changing the driving vector field in a .Z'-negligible set. We recall
that this implies that p!xp? € F°. Indeed, by Lemma 4.4 in [22] we have that the
set of solutions of the continuity equation is closed w.r.t. juxtaposition operations.
The admissibility property of the resulting trajectory follows straightforwardly, as
observed also in Theorem 6 in [16] and so does the feasibility one.

(2) Let p = (p,v) € F5°. The restriction pi1, of p to a compact and nonempty interval
Iy C I, where pp, = (' = {pi heen, v' = {vf hier,) is defined by setting pf = 1
and v} =y, for all t € I;. Clearly we have o € Fi7
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Remark 5.5. We can always extend an a-feasible trajectory (u(l),u(l)) € ‘7:[301;] to an a-

feasible trajectory defined in the extended time-interval [a,c], for any 0 < a < b < c. It
is sufficient to take ©;(-) = f(-,0) for all t € [b,c] and to consider the solution u(® =
{M§2)}te[b,c] of the continuity equation 9 + div(yt(Q)) =0 for t € [b, ], with p—p = uftlib,

1/,5(2) = Type. We have that (p,v) == (uM, 0M) % (u®,?)) is an a-feasible trajectory on

[a, c].

Definition 5.6. Let ¢ and ¢y be as in Definition 4.1, satisfying the following additional
properties
(C3) c(uV),p?),p) < +o0 if and only if p = (,0) € Fp*(u), with fippmmaxs = u?
for some compact and nonempty interval I C R;
(Ca)let 0 <a<b<ecp=(urv)e FC, Thenc: X xX x3 — [0,+00] is

[a,]’
superadditive by restrictions, i.e.

C(Maa He, p) > C(:ua’ b, p|[a,b]) + c(,ub? He, p|[b,c])'

Let i € Z,(RY), I C R nonempty and compact interval, and p = (pu,v) € F°(ji1). We
define the set ¥2° made of the pairs (7, 0) defined as follows

(1) v: I — X, ~y(t) :==p for all t € I;

(2) 0: 1 =%, 0(t) = pjminry for all t € .
Finally, we define the set

Gro(n) = {(1.0) €45° - p e F(m)}-

Theorem 5.7 (DPP for L>®-time feasibility case). Let V : Z,(R?) — [0, +oc] be as in
Definition 4.1. For any o € Z,(RY) we have
V(:U’O) = inf {C(M0nu|t:max17p> + V(:U’|t:maxl)} :

p=(m,v)EFF° (o)
ICR compact interval

Proof. The proof follows by Theorem 4.2 and (C3). O

Remark 5.8. Any (v,0) € 97°, s.t. p € Fp°(Q), is generalized admissible from fi, according
to Definition 4.3. It is sufficient to take oy ¢, = Pl[t1,t2] for any 0 < t; < to < T, and
observe that (Cy) implies item (3) in Definition 4.3. Thus, Corollaries 4.6, 4.7 hold in this
framework. Furthermore, since we can indentify any p € .7-"[?3] with its restriction Py g,

then by (C4) we have that c(y(t),v(t),0t—¢) =0 for all ¢t € I.

Proposition 5.9 (Existence of minimizers). Assume properties (C1) — (C4). Let p > 1
and po € Pp(RY). If c(po,-,-) and cy are Ls.c. w.r.t. w*-convergence and V (po) < 400,
then there exist I C R nonempty and compact interval and an optimal trajectory (vy,0) €
47°(po), according to Definition 4.5.

Proof. By finiteness of V(1) and (Cs), we have that for all n € N, n > 0, there exist
(™, p") € X x ¥ and I™ C R non empty compact interval such that p" = (u",v") €
Fix(po) with It —max ;n = 1" and

1
V(po) + —2 c(po, 1", p") 4 cp(p").

Let (v",0") € 95°. Without loss of generality, we can assume I" = [0, 7,,] for all n € N.
Let T' = lim inf,,, { o T}, then there exists a subsequence such that T = limj_, . T, and

1
Tnk>T—%forallk21.

Let us consider the restrictions pﬁg r_1 € .F[‘EJOT 1](M0) and any of their extensions
) % Tk

in [T — %,T] preserving the feasibility constraint (see Remark 5.5). Denote with p"F :=

(ko) e F[‘(’)f’T] (10) such an object. By compactness of [%‘jT} (10) proved in Proposition
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53, p"F —* 5= (D) € Firy(po), ie. (fp*, oPk) —* (g, ) for ae. t € [0,T).
Furthermore, similarly to the proof of Theorem 3 in [16], by the standing assumption
in Definition 3.1 and Remark 3.4, for any k there exists a sequence t; — T such that

ﬁgk —* ﬁgﬁk for i — 400, and ,&Zk —F ﬂ%’“ by absolute continuity of ™.
nk

By a diagonal argument, we have that ﬁ|[0 -1
Tk

in Definition 4.3 leads to

—* p, up to subsequences. Property (3)

(o, 1™, ™) = e(pos i1 Pl - 1p)-
By passing to the limit up to subsequences we get
V(po) = c(po, fi, p) + cg(fr).-
Thus, (v,0) € 45 is optimal by Corollary 4.7(3). O
In Section 7 we see a concrete example of cost and value functions satisfying (C1)—(Cl4).

The last part of this subsection is devoted to the characterization of the set of initial
velocities for feasible trajectories in #(R%). This is a fundamental ingredient to deal
with the formulation of an Hamilton-Jacobi-Bellman equation for this problem, which is
discussed in Section 6.1.

Definition 5.10. Let u € P5(R%), 0 < s < T.
(1) Given n € Ry (1), we define
I{t;}ien Cs, T'[, with t; — s and

Vism(n) = wny € L%(Rd X F[SVT];RCZ) : e, — €s

5 — wn weakly in L} (R x Ty s RY)

and ¥, 71(n) # 0 as already observed in Definition 11 in [16].
(2) We set

[;OT](:U*) = {x = /FI wy(z,7)dns : M € RE;T](:“)a Wy € %s,T](n)} )
[s,T]
where we denoted with {7;},cga the disintegration of n w.r.t. the map e;.
(3) We define the set
Y v(x) € F(z) for p-a.e. x € R?
27 () = v € L(REGRY) - and / U(z,v(z))du(z) < a
R4

Lemma 5.11 (Initial velocity). Let u € P2(R%), 0 < s <T. Then 7/[;’°T] (n) = Z°°(p).

Proof. From items (1) and (3) in Lemma 3.12, we deduce that 27°(u) C ”I/[S"OT] ().

Let us now prove the other inclusion, i.e. ”I/[;’OT] () € Z°°(n). Without loss of generality,
let us consider s = 0. Let n € R‘[)&T} (1). For any (w,v) represented by m, we have in
particular that (p,v) € Aj ), then z — [ wy(z,7)dne, with wy € Yo r(n), is an

b [O’T] b

Lz—selection of F' by Lemma 5 in [16] and convexity of F'(x). Hence, it remains to prove

that
/ v (3:,/ wy(x,7) dnm> du(z) < a.
Rd Tz

[0,7]

By feasibility of (u,v), for a.e. t € [0,T] we have

/ oy, B30 i) = [ (e 20) due) <o
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By hypothesis and Lemma 3.2, (-, -) is uniformly continuous on Graph F’ when the first
variable ranges in a compact set K C R%.
Then, let us fix n € N and consider the closed ball B,(0) = B(0,n) C R%. We have

frw®

wn(@,7) dm) dp(z) <

gliminf/ 1\ x,/ Md?]m dpu(x)
t—0+ B, (0) x t

[0,77]

[o,7)

< liminf/ v <eo, ‘- 60) dn(x,)
t=0% JB,(0)xI|o 1y t

1 t
= liminf/ v <7(O), / A(r) dr) dn,
t—0+ 2 (0)xT'(o, 77 t Jo

where we used l.s.c. of ¥ in the second variable and Fatou’s Lemma for the first inequality,
and Jensen’s inequality together with convexity of ¥ in the second variable for the second
inequality. Moreover,

1 t
liminf/ v <7(0), / A(r) dr) dn <
t_>0+ Bn(O)XF[O,T] t 0

t
< liminf% / / W (v(0), 4(r)) dn dr
0 n(O)XF[O,T]

t—0+

1 [t
< liminf — / / U(y(r),¥(r))dndr +e
=0+t Jo JB,(0)xTjo1y

<a+e,

for any e small enough. Where we used again Jensen’s inequality and convexity of W in
the second variable for the first inequality. Finally we used uniform continuity of ¥(-,-)
in the compact set B, (0), together with uniform continuity of the set of all v € I'jg 7y s.t.
(7(0),7) € suppn. Indeed, by the standing assumption in Definition 3.1 and compactness
of U, for all (z,v) € suppmn, we have

() = 1(0)] < /O 5(s)|ds < C /0 I (s)| ds + Ct

<c /0 7(s) = 2(0)] ds + Ct (1 + [7(0)]),

and so, by Gronwall’s inequality, and recalling that v(0) € B(0,n),
(1) = 7(0)] < Ct (1 + [y(0))e”" < CT(1 +n)e .

We conclude by letting € — 0 in the former estimate, and noticing that this holds for
all n € N, thus by passing to the limit we have

/Rdxlf (:p/r wn(z,7) dm«) du(x) = sup/n(o)\lf (g;/ wy(z,7) dm) du(z) < a.

- neNJB oy
O
5.2. The L'-time averaged feasibility case.
Let a > 0 be fixed, p > 1. Referring to the notation of Section 4, we take
X = 2,(RY)x[0, +oo], ¥ = U [Aou; P,(RY) x Bor(I;///(]R{d;Rd))} %[0, +00].

ICR
I compact interval
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On the set X; := AC(I; Z,(R%)) x Bor(I; .#(R%R)) x [0, +0co[ we will consider the
topology given by the sequentially a.e. w*-convergence and the convergence in R. More
precisely, given {p"}nen = {(u™, V", w") }neny € Xy, and p := (u,v,w) € X7, we say that

p" converges in w* /R to p, and we write p™ —*/R p_if and only if (u, ") —=* (g, 1) for

ae. tel, and w" — win R.

Definition 5.12 (L'-time feasible trajectories). Given p = (u,v,w) € Ar x [0, +00[, we
define the map w, : I — [0, +00] by setting

t
w—I—/. 0,(s)ds, if6, € L'([minI,t]);
wp(t) — min [

400, otherwise,
where 6, : I — [0,+00] is defined as in Definition 5.1.
Given (fi,@) € Z,(RY) x [0, 400, we set
Fi(a,®) :={p € Ar(fz) x [0, 4+00[: wy(maxT]) < a, w,(minT) = @}
R, @) = {n € ZRIxTy) : 3(p,v,w) € F} (i, @) s.t. 1 represents (u,u)}.
and we define the set of a-feasible trajectories defined on I by

Fi= U Fme .
neZp(RY)
©>0
The counterpart of Proposition 5.3 is the following.

Proposition 5.13. Let I C R be a compact nonempty interval, p > 1, pg € 2,(R%),
Cy >0, we0,a]. Then
(1) F1 is closed w.r.t. the topology of ¥p;
(2) for any # C F;°, C1 > 0 such that for all (p,v) € B with p = {4 }icr it holds
my, (1) < C1, we have that the closure of % in X1 is contained in F5°;
(3) Fl(po,w) is compact in the topology of Xp
(4) RY(uo,w) is compact in the narrow topology.

Proof. It is enough to notice that, given p := (p,v,w) € Xy, we have w,(max /) < aif and
only if £'(p) < +o0, where & : AC(I, 2(RY)) x Bor(I, # (R% R%)) x [0, +00[— [0, +-00] is
defined by

Iio,q (w—i—/l/ﬂw v <x7 %(az)) dus(z) ds) , if Jus| < ps for ae. s €1,
E'(p,v,w) = and 0, € L'(I)

+o0, otherwise.

Moreover, by applying Fatou’s lemma and recalling the l.s.c. of the functional .# in the
proof of Proposition 5.3, we have that the functional 4 : AC(I, 2(R%))xBor(I, .# (R%;R%)) x
[0, +00[— [0, 400] defined by

w+// U (x, i(x)> dus(z)ds, if |vs| <€ ps for ae. s €1,
1 JRd Hs

G (v, w) = and 0, € L'(I)
400, otherwise.

is Ls.c. w.r.t. w*/R-convergence. Thus the functional & is l.s.c. The other assertions
follows by an easy adaption of the proof of Proposition 5.3. U
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With the following definition, we notice that Remark 5.5 can be easily applied also in
this setting.

Definition 5.14 (Concatenation and restriction).

(1) Let I; = [a;,b;] C R, i =1,2, with by = ag, and I := I[; UI. Let p' = (u,v%,w?) €
]:}i with /’Ll‘ln =2, Wyt (by) = w?. The concatenation p' x p> = (p,v,w') of p! and
p? is defined by setting j; = pé and vy = vf when t € I; for i = 1,2. We recall
that this implies that p! % p? € .7-'11, with a similar reasoning as for the L*°-time
feasibility condition setting.

(2) Let p = (p,v,w) € .7-"11. The restriction pjr, of p to a compact and nonempty
interval I1 C I, where p;;, = (' = {u her,, vt = {vf her,,w"), is defined by
setting uf := p and v} := 1y for all t € 1, w' = w,(minly). Clearly we have
P € .7:[11

As done in Definition 5.6 for the problem of Section 5.1, we now want to reconduct this
framework to the general one of Definition 4.3 in order to gain the general results proved
in Section 4.

Definition 5.15. Let c and ¢y be as in Definition 4.1, satisfying the following additional
properties
(€3) c(p®,w® 1@ w® 5) < 4oo if and only if p = (@, 7,&) € F}(p®,w), with
Alt=max1 = 1 and wp(maxl) = w® for some compact and nonempty interval
I CR;
(CHlt0<a<b<ecp=(prw) e f[la,
superadditive by restrictions, i.e.

g~ Thenc: X x X x ¥ — [0, +00] is
C(:uav W, He, wp(c)v P) = C(Naa W, Kb, Wp(b)a p|[a,b}) + C(Nba Wp(b)a He, wp(c)v p|[b,c])'
Let i € Z,(RY), w € [0,a], I C R nonempty and compact interval, and p = (u,v,w) €
F1(ji,@). We define the set E?pl made of the pairs (v, o) defined as follows
(1) v:I—=X,~y(t) = (s, wp(t)) for all t € I;
(2) 0:1 =%, 0(t) := p|min1y for all t € I.
Finally, we define the set

G} (71,0) = {(v,0) € F} : pe FH(o)}

Theorem 5.16 (DPP for L!-time feasibility case). Let V : 2,(R%) x [0, +00[— [0, +o<]
be as in Definition 4.1. For any (po,wo) € Z(R?) x [0, +oc[, we have

V(N(LWO) = inf {C(M07w07,U/|t:maxlva(maXI)7p> + V(:U’|t:maxl7wp(maXI))} .
p=(p,v,w)EF] (110,w0)
ICR compact interval

Proof. Coming from Theorem 4.2 and (CY%). O
We notice that Remark 5.8 holds also in this setting, thus we gain Corollaries 4.6, 4.7.

Proposition 5.17 (Existence of minimizers). Assume properties (C1), (C2),(C%),(C}).
Let p > 1 and i € P,(RY), @ € [0,a]. If c(fi,@,-,-,-) and cy are Ls.c. w.r.t. w*/R-
convergence and V (fi,w) < 400, then there exist I C R nonempty and compact interval
and an optimal trajectory (7y,0) € 9t (ji, @), according to Definition 4.5.

Proof. Analogous to the proof of Proposition 5.9. O

We pass now to analyze the set of initial velocities in this framework. This result is used
later on in Section 6.2 where an Hamilton-Jacobi-Bellman equation is studied.

Definition 5.18. Let (u,w) € Z2(R?) x [0,a[, 0 < s < T.
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(1) Given € Ris1)(it,w), we define the set ¥, 77(n) as in Definition 5.10.
(2) We set

7/[51,T](U7w) = {95 = /rz

[s,T]

wy(x,7) dne 1 € Ris 1y (1,w), wy € Y1) (n)} :

where we denoted with {7;},cga the disintegration of n w.r.t. the map e;.
(3) We define the set

2 u) = {v € Li(Rd;Rd) :v(z) € F(x) for p-a.e. x € Rd} .

Lemma 5.19 (Initial velocity). Let (u,w) € ZP2(R)x[0,a[, 0 < s <T. Then ”//[Sle] (1,w) =
2 ().

Proof. The proof follows immediately by items (1) and (4) in Lemma 3.12, for the inclusion

Z () C 7/[;7T] (1, w). It is sufficient to take 5 = o — w > 0. The other inclusion comes

straightforwardly by Lemma 5 in [16]. O

Remark 5.20. Notice that if w = «, then f(+,0) is the only admissible velocity driving a
feasible trajectory for positive times starting from (u,w).

6. HAMILTON-JACOBI-BELLMAN EQUATION

In this section, we determine an Hamilton-Jacobi-Bellman equation for the L°°-time
averaged and the L'-time averaged feasibilty cases of Section 5. We consider general
cost functions satisfying the properties (C1) — (C4) already introduced, and the following
property (Cs) regarding a limiting behavior. Concerning the definition of sub/super-
differentials that we choose to adopt in the space of probability measures, we refer to
the recent survey [27]. Our aim is to provide necessary conditions in the sense of the
formulation of an Hamilton-Jacobi-Bellman equation in the space of measures solved by
the value function in a suitable viscosity sense.

Referring to Section 4 and Definition 4.3, we ask the following further condition on the
cost function c.

(Cs) There exists a map h : X — R such that for any x € X, ¢ > 0 and any (v,0)
generalized admissible trajectory from z defined on [0, ¢], we have

(e, y(),0()
Jm = = @),

6.1. L°°-feasibility case.
Throughout this section, we consider the framework described in Section 5.1, hence

X = 2,(RY, %= U [AC’(I; P(RY)) x Bor(f;///(Rd;Rd))} .

ICR
I compact interval

We give now a definition of viscosity sub/super-differentials used in this paper, inspired
by Definition 3.2 in [27].
Definition 6.1 (Viscosity sub/super-differentials). Let w : &25(R?) — R be a map, ji €
P5(R%), § > 0. We say that p € L/%(Rd) belongs to the viscosity d-superdifferential of w
at i, and we write p € D w(p), if for all p € P5(R?) we have

wips) — w(iD) < / (w2, w3 — 22) dfi(wy, 2, 3) + Walii, 1) + o(Walfi, 1)),
RdxRd xR2

for all i € 2(R? x R? x R?) such that 7 o#fi = (Idga, p)tji and 1 38 € T (j, p).
In a similar way, the set of the viscosity §-subdifferentials of w at g is defined by
Dy w(fi) = —Dj (—w)(p).
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We consider the same definition of viscosity sub/super-solutions given in [27] as follows.
Definition 6.2 (Viscosity solutions). Consider the equation
(6.1) (1, Du(p) = 0,
for a given hamiltonian J# : T*(23(R%)) — R, i.e. 7 (u,p) is defined for any u € Po(RY)
and p € Li(Rd). We say that a function w : 25(R%) — R is
o a viscosity subsolution of (6.1) if w is u.s.c. and there exists a constant C' > 0 such
that
for all € P5(R?), p € Dfw(p) and § > 0.
e a wiscosity supersolution of (6.1) if w is 1.s.c. and there exists a constant C' > 0
such that
H (,p) < C9,
for all p € P5(R?), p € Dy w(p) and § > 0.
e a viscosity solution of (6.1) if w is both a viscosity subsolution and supersolution.

We now prove that a value function with associated cost function satisfying (C1) — (C')
is a viscosity solution of a suitable Hamilton-Jacobi-Bellman equation with Hamiltonian
defined as follows.

Definition 6.3 (Hamiltonian). We define the hamiltonian > : T*(P2(R%)) — R by

A (1, p) == h(p) +  inf /(p,v>du,
veEZ (1) JRY

for any (u,p) € T*(P2(R?)), where the map h is given in (Cs).

Theorem 6.4 (HIB). Assume properties (C1) — (Cs). Let B C P5(R?) open with uni-
formly bounded 2-moments. Assume c(,-,-) and ¢y to be ls.c. w.r.t. w*-convergence,
p € B, and the value function V : P5(R%) — R to be continuous on B. Then V is a
viscosity solution of 7> (u, DV (1)) = 0 on B, where 7€ is defined as in 6.3.

Proof. Claim 1. V is a subsolution of s (u, DV (u)) =0 on B.

Let i € B, § >0, p € D;V(ﬂ). Let v € 2°°°(f1), then by Lemma 5.11 there exists

(pm,v) € Fior (i), m representing (u,v) such that
lim {p o e, ‘- eO) dn = / (p,v) dji.
t—=0T JRAdxTp t R4

By Theorem 5.7,
V(Mt) - V(ﬂ) + C(laﬂ i, U(t)) > 07
for all t € [0,T], where o(t) := (p,V))j0,4- Notice that if we define fi = (eo,p o eo, er)in,

we have Wl,?ﬁﬂ = (Ideap)ﬁ/j’ and 7T173ﬁﬂ = (607 et)ﬁn € H(ﬂnut) Hence, WQ(/jﬂHt) <
lle: — GQ”L%, which vanishes as t — 0" by continuity of ¢ — e; (see Proposition 2.3 in [27]).

Thus, we can apply the definition of viscosity superdifferential with [ as before and have
0 < V() = V(@) + e, pu, o (t))

< / <l‘2,5€3 - $1> dﬂ(x17x27x3) + 5W2(/7’7 Mt) + O(WQ(ﬂv Mt)) + C(ﬂ, Mtvo-(t))
R xR x R4

< / (poeg,er —eo)dn+dlles —eollrz + ofller — eollLz) + c(i, pe, o (1))
RdXFT

Dividing by ¢, we have H%HL% < K, where K is a suitable constant coming from
Proposition B.1 and from hypothesis. Hence,

— [ t
—6K§/ (poeo, et 60>dn+0(%ut,0( )
RdXFT

t t ’
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and by letting t — 0" we get
6K < [ (pla). o) dia) + o).

We conclude by passing to the infimum on v € Z°*°(f).

Claim 2. V is a supersolution of .7°°(u, DV (1)) = 0 on B.

Take 1 € B, 0 > 0, p € Dy V(). By Proposition 5.9, there exist 7' > 0, an optimal
trajectory (v,0) € 97° with p = (u,v) € Foy (i), and a representation 1 such that

V() — V(i) + (g, pe, 0(t)) =0, forall t €0,T].

We can take as before fi = (eo,p o €0, e;)in, thus we have Wa(fi, ju) < |lex — eol[12 and
we obtain

0= V() = V() + c(i, pu, 0 (1))
> [ twocner—co)dn—dller — collzg ~ olller — coll) + el (1),
RdXFT
Dividing by ¢ and reasoning as in Claim 1, we get

— L t
5K2/ <poeo,et 60>dn+w.
RdXFT t t

€t, —€0

Now, there exists a sequence {t;}ien CJ0,T[ and wy, € ¥o1(n) s.t. t; — 07, o
weakly converge to wy, in L%, thus by letting t; — 0T, thanks to Lemma, 5.11, there exists
ve Zn) s.t.

5K = [ b i+ ha) = G,

O
6.2. L'-feasibility case.
In this section, we consider the framework described in Section 5.2, hence
X = 2,(RYx[0, +oo], ¥ = g [A(J(I; P5(RY)) x Bor(I; ///(Rd;Rd))] %[0, +o0].

ICR
I compact interval

Similarly to the previous case, we give the following.

Definition 6.5 (Viscosity sub/super-differentials). Let w : %5(R9) x [0, +00o[— R be a
map, (i, @) € Po(R?) x [0, 400, § > 0. We say that (pz,ps) € L%(Rd) x [0, +o0o[ belongs
to the viscosity d-superdifferential of w at (fi,@), and we write (pg, ps) € D w(fi, @), if for
all (u,w) € P2(RY) x [0, +00[ we have

w(p,w) — w(f,w) < / (wo, kg3 — 1) dfi(z1, 22, 23) + po |w — W[+
R4 xR4 xR

0y Wi 1) + w0 — &2 + o(Waljt, p) + |w — @),

for all i € 2(R? x R? x RY) such that my ofji = (Idga, pp)tift and 71 380 € TI(f, u).
In a similar way, the set of the viscosity d-subdifferentials of w at (f,w) is defined by
Dy w(fi, ) = =Df (—w)(f1,@).

We adopt the same definition of viscosity sub/super-solutions given in Definition 6.2,
with the natural adaptations for this context.
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Definition 6.6 (Hamiltonian). We define the hamiltonian S : T*( P(RY) x [0, +-00]) —
R by

A o) = b+ ot {0 0) + W 0@)] dute) .
veZ1(p) LJRY

for any (i, w, Py, Pw) € T*(P2(RY) x [0, +00[), where the map h is given in (Cj).

Lemma 6.7. Let (uo,@) € P2(R?) x [0,a[, T > 0. Let (u,v,@) € ]-'[0 T}(Mo,w) be a

feasible trajectory represented by n € P(R? x I'r) in the sense of Definition 3.5(1). Then
there exist w : R* — R? Lio—selection of F(+), and a sequence t; € [0,T], t, — 0T, such
that

(1) for allp € LZO (RY)

e, (2,7) = €0
< t
k

lim

(z,7) .
k—+oo JrdxT ’p060($77)> dn(l’ﬁ) = /Rd<w(a:),p(:r)> duo(x),

(0,77]

@ am s [ (o 22@)) dua) s = [ 0w o)

Proof. Let t;, — 0T be any sequence along which th;eo

item (1) follows by Lemma 5.19.
Let us prove the second item. For any ¢ € [0,7] and any ¢ € C%(R?) we have

oy = [ MO oy an

[ L. censaon

[ L st s
w3 [ L 6o - ey ands

Si/ﬂt/w //RdxFTW(S),sO(V(S)»dn(wry)der

[ /R ) COHBEDOO) ()] dnds

L et [ e
s [

where s +— H(s) is the continuous function defined by

- //RF C(1+ [y(s)Dle(1(0)) — @(v(s))| dn ds.

With the very same argument, denoted with vs(y) =

weakly converges in L%. Then,

= (y), we can prove that

// 0s(¥), () dps(y)ds — (2L poeg)y /H
Rd t

and the right hand side tends to 0 as t — 0. In particular, as a consequence of item (1),
we get

63 am | " [ 0ot diatw)ds = [ (o). o(0)) duolo).

(6.2)
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Now, as already observed in the proof of Proposition 5.3 (Step 1), we can apply Lemma
2.2.3(i) in [7] to say that there exist {ap}nen, {bntnen € C°(R%R) such that ¥(z,v) =
supp[an(x) + (v, by (z))], for all z,v € RY. Without loss of generality, we can assume ay, by,
to have compact support. Thus,

tr
li dus(z)ds
k—igloo tk/ /Rd ( Us > H ( )
. Viw
= 1 k dpse, () d
M / /Rd < Lt )) Ho (%) du

> kli)l}rloo/o /Rd <ah(9€) + <Z’;Z (w)7bh(x)>> ity () dw
= [ o)+ wbi@)) duof)

where the last passage follows by absolute continuity of pu and by (6.3).

By positivity of ¥, we can consider {ap}nen, {bn}trhen to be positive. Let gp(z) =
ap(x) + (w(x),by(x)), and gx := max{gn(z) : h < k}. Now, since gi is a non-decreasing
sequence of measurable and non-negative functions with supj, gn(x) = supy gr(z), then
passing to the supremum and applying Beppo-Levi Theorem we have

dm (0 20)) duoyds > [ 90 duo).
O

Theorem 6.8 (ILIB). Assume properties (C1), (C2), (C%),(C%), (Cs). Let B C P5(R%)
open with uniformly bounded 2-moments. Assume c(u,w,-,-,-) and cy to be l.s.c. w.r.t.
w* /R-convergence, u € B and w € [0,af. Assume the value function V : P5(R%) x
[0, +00[— R to be continuous on Bx[0,al. ThenV is a viscosity solution of 7 (u,w, DV (u,w)) =
0 on B x [0,a[, where 7" is defined as in 6.6.

Proof. Claim 1. V is a subsolution of 5 (u,w, DV (u,w)) =0 on B x [0, a].

Let (i, @) € B x [0,al, § >0, (pp,ps) € DfV (i, ©), and v € Z(i). By Lemma 5.19
and 3.12, there exist (p,v) € A[O 71(f) and m representing (u, V) such that p := (p,v,0) €
.7:[%)7T}(ﬂ,w), and items (1), (3) of Lemma 3.12 are satisfied with v = vy.

By Theorem 5.16 we have

V(Mt’wp(t)) - V(IEL7@) + C(ﬂ,(:), Mt?wp(t)v U(t)) Z O’
for all t € [0,77], where o(t) := pjj04. Moreover, if we define ji = (e, © €9, e¢)in, then

mi28ft = (Idga, pp)if and w38 = (eo,er)in € II(f, pe). Proceeding analogously to the
proof of Theorem 6.4 and recalling items (1), (3) of Lemma 3.12, we have

0< V(:u’tva(t)) - V(/_%(D) + C(/j7@7:u’tva(t)70<t))

S/ (w2, 23 — @1) dfi(x1, 22, 23) + Po |wp(t) — @[+
RIxRdxRd

6 WE (7 10) + leop(8) — D12 + (Wi 1) + ey (8) — @) + (i, @, i, (1), (1))

:/ <pﬁoeo,et dn+pw// < >dus( ) ds+
RdXFT Rd S

6 WR (7 10) + leop(8) — D12 + (Wi 1) + leop(t) — @) + (i, @, i, wp(8), (1))

< / (P © €0, 0 — o) dn + e / W(z, v(z)) dii(x) +
]RdXFT Rd

6 WR (Gt 10) + eop(t) — B12 + 0o(Waljt, 1) + o (t) = &) + (., s eop(1), o (1)):
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Let us now divide by ¢ and recall that ||@||L% < Kj, for some K; > 0, and also

% < Jga ¥(z,v(x)) di(z) < Ky, for some Ky > 0, by boundedness of U. Then, for
some K > 0 we have

—axg/ <puoeo,€t‘e°>dn+pw/ Uz, v(x)) di(z)+
RexTp R4

t
1 _ L
+solller —eollzg +lwp(t) = @l) + (i, @, pe, wp(t), o (t)).

By letting t — 07,

SR < [ ala)o@) i+ [ W ole) di+ e,

and we conclude by passing to the infimum w.r.t. v € 2Z71(j).
Claim 2. V is a supersolution of 5#1(u,w, DV (u,w)) = 0 on B x [0, af.

Let (f,0) € Bx [0,af, § > 0, (pg,ps) € Dy V(fi,&). By Proposition 5.17, there exist
an optimal trajectory p := (u,v,w) € .7-"[%) 7] (1,w) and a representation 7 such that

V(j,0p(8)) — V(s @) + (i@, i, wp(t), o(1) = 0, for all £ € [0,T).
As done for Claim 1, we can take i = (eo,pﬁ o eq, €¢)fn, thus

0= Vg, wp(t)) = Vi, @) + (i, @, put, s (1), (1))

z/ (P 0 €0, et — dn+pw// ( )dus<>ds+
RexTp R4 Ms

-9 \/WQQ(/Z, pt) + wp(t) — @I* = o(Walit, pur) + wp(t) — @|) + (i, @, pu, wy (1), o (1))

z/ (P 0 €0, €5 — dn+pw// ( )dus< ) ds+
RdXFT Rd S
2
~ 5/ ller — eoll2; + (/ IR ( )dust) —o(flet — eollzz + lwp(t) — &)
R4 Ms m

+ c(i, @, wp(t), o (t))

Dividing by ¢ and reasoning as in Claim 1, we get

€t — € 1 t Vg
SK > (pg © eo, Ydn +ps — U x,—(x) | dus(z)ds+
RIxTp t tJo Jra Hs

1 B 1 _
— ~olller = eollzs + wp(t) — @) + el @, . wy(1), o (1)):

Now, by Lemma 6.7 there exists a sequence {tx }ren CJ0, T[and vg € Z71(ji) s.t. by passing
to the limit in the previous estimate, along the sequence t;, we get

3K > [ (o) i+ [ WGoun(e) di o+ h(.@) = A ).

7. A SPECIAL CASE: THE MINIMUM TIME FUNCTION

In this section we show a remarkable exemple where the theory proposed in this paper
can be applied.

For simplicity of exposition, consider the framework outlined in Section 5.1 (similarly,
it is possible to consider the setting of Section 5.2). We thus take X = F5(RY), ¥ =
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U [AC(I; P3(RY)) x Bor(I; .4 (RERY))[. A closed nonempty target set S C

ICR
I compact interval

P5(RY) is given.
We then define the cost functions ¢ : X x X x ¥ — [0,4o00] and ¢ : X — [0, +00] as
follows

T, if (uv) € Fyp(uh) and pyeg = u®,
cwmw@mmvnz{ oo =
400, otherwise,

3 0, if ies,

+o0, ifj¢S.
Following the notation introduced in Section 4, we have that V(u) < +oo if and only if
there exist a feasible trajectory (u,v) joining p with the target set S. In this case V(p) is
the infimum amount of time where such trajectories are defined, and so V(u) = 0 if and
only if e S.

Remark 7.1. Such a value function V is the so called minimum time function studied in
[13,14,16,17|. It is important to stress that in those references, no feasibility constraints
are imposed, dealing just with admissibility properties for trajectories in Z(R?). This
paper provides thus a sort of extension of those results.

We show now that conditions (C1) — (Cs) are satisfied.

e Check for (Cy). Given u € X,i=1,2,3and (u),00)) = ({u,ﬁj)}[ojj], {V§j)}[O7Tj]) €
¥, j = 1,2, we must prove that it is possible to construct (u',v") = ({ut}o,17, {¥1 }o,17]) €
> such that

(™, 13 (W v) < e(u, 1@, (D v D) + e(u® 1@ (u@ @),

We notice that if ug}) # u® or u(()z) # @ or (u9), 1)) are not feasible, there

is nothing to prove, since the right hand side is +00. Thus we assume u(Tl) =

p? = ,U(()Q) and feasibility of (u),v)), j =1,2. Let us define 7" = T} + T5 and
(1, v) = (6, vW) % (@, v?) € 5. Thus

(P u®, (W V) =T =Ty + Tp = c(p®, 1y, (u, W) + c(u® 1@ (u? ).
e Check for (C3). Given p € X, i=1,2, and (u,v) = (e o, {vedom) € 2, we

have to prove that there exist ¢/ € X, (', /™) = ({/,L/i}[o’Ti/],{T/li}[oyTZ{]) €x,
1 =1, 2, such that

e(p 1, () 2 e, i (D W) el u® (1)),

Indeed, we have that if (p,v) ¢ ﬁ[co’oT] (M) or W= # 1) the result is trivial

since the left hand side is +o0o. Thus we assume that (p,v) € Fg (M) with
Pjt=T = p). If we take any 7 € [0,7] and define i/ = pr, and (p/®, /M) =
(1, V)|j0,r) and ('@, /) = (p, V)|jr,7], this provides the desired inequality.

e Condition (C3) holds immediately by definition of ¢(-, -, -).

e Condition (Cy) follows by additivity of the cost function c(-,-,-), defined above,
along feasible trajectories, together with the well posedness of the restriction oper-
ation for feasible trajectories.

e Condition (C5) holds with the constant function h = 1.

We leave to future research the study of conditions assuring some regularity for the
minimum time function in this framework. We refer the reader to [13] for some discussions
concerning the case with no feasibility constraints. The study of higher order controllability
conditions in this setting is still an open research direction. We address the reader to the
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recent issue [15] for a consistent definition of Lie brackets in a measure-theoretic setting
which could possibly be used for the study of second order controllability results.

Remark 7.2. We observe that, along an optimal trajectory, the minimum time function
previously outlined gives the mass’ time of last entry into the target set. Alternatively,
keeping the same definition of ¢y, we can give another definition of the cost ¢ leading to a
value function that is an averaged minimum time function. This is inspired by [19], where
the authors provide also a possible example of application in the case with no interactions.
Let S C R? be non empty and closed, and S = {y € Z(R%) : supp pu C S}, we define

T
/0 /Rd XRd\S(fB)d,Us (x)ds, if (u,v) € ]:[%?T] (M(l)),

and /“L|t:T = M(z)a
400, otherwise.

w2

c(p, 1, (p,v))

We can easily check that properties (C1) — (Cs) holds true with h(fi) = a(R%\ S). Thus,
if the initial datum fi is such that supp i € R%\ S, then the Hamiltonians for the minimum
time function and for the averaged minimum time function coincide. This was also observed
in [18] dealing with an averaged minimum-time problem with no feasibility constraints.

APPENDIX A. A SPARSITY CONSTRAINT IN LAGRANGIAN FORMULATION

We will provide here a sparsity constraint in a Lagrangian formulation, while the set-
ting presented in Section 3 concerned a sparsity constraint given in an Fulerian point of
view. To this aim, we state a feasibility constraint on the Carathéodory solutions of the
differential inclusion 4(¢) € F(v(t)) as follows

e we consider a notion of extended characteristic, by coupling each characteristic
~ with a time-dependent curve ((-) related to the amount of control needed to
generate it;

e we put a feasibility constraint on the probability measures concentrated on this
extended notion of characteristics, i.e., we select the measures concentrated on
extended curves satisfying a control sparsity constraint.

This microscopic sparsity constraint allows also to select a (possibly not unique) proba-
bilistic representation for feasible trajectories, since it can be used to prescribe the paths
to be followed by the microscopic particles. This makes it particulary suitable for applica-
tions in irrigation problems or dynamics set on networks [8,9]. We call this constraint the
L>®-extended curve-based feasibility condition.

We first introduce the following sets and operators to deal with continuous curves in
the extended space R x R and which are used to outline the problem considered in this
section. We consider only compact and nonempty intervals I of R. We define

(1) the extended space I'; := CO(I;R? x R);

(2) the extended evaluation operator ér; : R¥ x T'y — R (7,7) v (), where we
omit the subscript I when it is clear from the context;

(3) given I C I compact and nonempty interval, we define the continuous map called
restriction operator

RI—)f : Rd+1 X f[ — Rd+1 X fja
where 4;(t) := 5(t) for all ¢ € I.
(4) given I; = [a;, b)) CR, ag = by, I = I U I3, we set

Dr, 1, := {(Z1,%1, %2,72) € R x T, x R x Ty, 1 % = Fi(as), 31(b1) = A2(a2)},
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and we define the continuous map called merge operator
.7\4[17[2 : D[17]2 — Rd+1 X f[,
(T1,71, T2, ¥2) = (31 % Y2(a1), 71 x J2),
where 1 x 42 € ['; is defined as A1 xY2(t) = Ai(t) for all t € I;, 7, € f‘]i, satisfying
F1(b1) = olaz), i = 1,2.
We notice that R[_)[iOMjl’[Q =7, t=1,2and ]\4]17[2 (R[_gl (:E, ’?), Rig, (SZ‘, ’N}/)) =
(7(a1),7), where
T RIUX T x R x Ty = RN X Ty, (81,91, 82, 52) = (86, 9)-
(5) Given & € R T = [a,b], we say that the pair (Z,7) € R x I'; satisfies the

extended dynamical system (ES) in the time interval I, if and only if 4 is an
absolutely continuous solution of the following Cauchy problem

A(t) € F(y(t)), for a.e. t €1,
C(t) = U(x(t),4(t), forae. tel,
v(a) =
((a) = w,

where ¥ is the control magnitude density and we denoted & = (z,w) € R? x R,
7= (7,¢) € CO(;RY) x C°(I;R).

Let a > 0 be fixed. Considering the notation outlined in Section 4, we take
X =2R*xR), and ¥ = U PR x T).

ICR
I compact interval

Definition A.1 (L*°-extended curve-based feasible set). We define the extended-curve-
based admissibility set by

" d+1 _ &\ 7 is concentrated on pairs (#,7) € R*! x I';
Ari= {77 € ZRTxTy) : satisfying (ES) '

Given i € Z(R4*1), we define
Ar(i) = {71 € Ap + Einstii = i}
Given 7j € A;j, we define the map wy @ RIFL x I'; — [0,+00] by setting for 7j-a.e.

(Z,7) € R x Ty, with & = (z,w) € R x R and 7 = (v,¢) € CO(I;R?%) x CO(I;R),

. e .
_ w+/lﬁ(t)dt, it ¢(-) € L' (1);

400, otherwise.

We define the extended curve-based feasibility set by
Fri={ieAr: |wgly <a}.
Given i € Z(R*1), we define
Fr(fi) = Ar(f) N Fr.

The following definitions and considerations, that we perform for the extended curve-
based feasible set, are even more valid if, instead, we consider just the extended curve-based
admissibility set.

Definition A.2 (Concatenation and restriction).



SPARSE MEAN-FIELD CONTROL PROBLEMS 31

(1) Let I; = [a;,bi] C R, i = 1,2, with by = ap, and I := I; U L,. Let 7' € Fj, with
Ep, N = €4,17°. We define the concatenation

ﬁl *ﬁ2 =[0® MII,IZﬂ(ﬁ% ® ﬁgg;)v

where fi := &, i)' = éq,i7° € Z(R? x R), and {ﬁ%}geRdJrl is the measure uniquely
defined for fi-a.e. §j € R by the disintegrations of 7' and 7> w.r.t. the extended
evaluation operators &, and é,,, respectively. Notice that for fi-a.e. § € R4T! we
have supp (ﬁ% ® ﬁg) C Dy, 1, by construction and 7' x7? € A;.

(2) Let i € F;. The restriction ﬁ‘f of 17 to a compact and nonempty interval I C I, is
defined by setting ﬁ|f = R;_ ;in. By construction, ﬁ‘f € ./Zlf.

We provide here an example showing the result of the concatenation operation in an
illustrative situation.

Ezample A.3. Considering the notation of Definition 3.1, let d =2, m =1, U = [-1, 1]
and fo(z) = (1,0) € R?, fi(z) = (0,1) € R? for all z € R% Thus, F(x) = {(1,u) € R? :
u € U}. Let us fix the control sparsity threshold o = 2.

In R?, consider z; = (0, j), and Ve [0,2] — R?, Ve; (t) = (t,7 — tsgnj), for j = *1.
Let 3z, = (72,;,¢) € CY([0,2];R?) x C°([0, 2]; R) be a solution of system (ES) in the time-
interval [0,2], starting from #; = (z;,w) € R? x R, with w = 0. Thus, we have that
¢(t) =t, since ¥(z, (1,1)) = ¥(z, (1,—1)) =1 for all z € R2.

Let us define

1 - 1
nl 2+1 ~2
n= 9 Z 557]'@5%]-“0’1] e Z(R** XF[O,l])7 n = 3 Z (5~ij(1)®5§-_

T S Q(RZ—H Xf[1,2])-
je{-1,1} je{-1,1} ‘

We see that é,#7' = é47° = 8. (1) = 01,01 € P(R*). Now, consider also &, €
J
Co([0, 2], R*H1),

o s (t), fort e0,1],
fa:j(t) = {%i(t)v fort €[1,2],ie€{-1,1}, i # j.

We can finally compute the concatenation ' « f7° which leads to

1 1 ~
SRS R B 241
=0 = E 0z, ® 05, +7 E 5@j®5&j € P(R*! x Tpgy).
jE{-1.1} je{-1,1}

Moreover, we can prove that 7', 7° and 7 are admissible and feasible in the respective
time intervals, according to Definition A.1.

Proposition A.4. Let I C R be a compact and nonempty interval. Given 71 € Fi, the
following restrictions’ properties hold.
(i) For any I C I compact and nonempty interval, we have ﬁlf € ]:'f and €N = étﬁﬁ|f
foranytel.
(it) For any I D Iy D I1 compact and nonempty intervals, we have (ﬁuQ)'h =7,
(iid) 7= i
Furthermore, we have the following property for concatenations.
(iv) Let I; = [a;, b;), i = 1,2, with by = ag and [y Uly = I and 7' € Fy,, i = 1,2, with
En i = Eaotii1”. Then 77 := ' x 77> € F and we have

.. Jean', iften,
en =9 _ -9 .
etﬁlr’ ) th € -[2-
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Proof. By construction, observe that f/| i€ A 7-

Proof of (i). First, we want to prove that n; € .7:}. By contradiction, let A C R x fj
be a Borel set of strictly positive ﬁ‘ j-measure such that the feasibility condition is violated.
In particular, we have

/ _ xa(@1,m) [wl +/@(71(t),ﬁ1(t))dt] dn j(Z1,71) > an;(A),
RA+1x T, i

where we denote with 1 = (z1,w1), 71 = (71,¢1). Now by definition of ﬁ‘f, the left-hand
side can be rewritten as follows

[ xaCptminD),5) [q, (min )+ [ 901500, >>dt] 47i(5,7) < o 1(4),
Rd+1><F1 I

where we denoted with & = (x,w), ¥ = (7,(), hence the contradiction. Indeed, we have
that for n-a.e. (Z,7)

min [

Gitmin )+ [ w050 dt=w+ [ w00+ [ V6050 d <o
by feasibility of 7.
Let us now prove that for any t € f, edn = étttﬁlf. Consider any test function ¢ €

CYRM1L:R), t € I. We have

(€4n)(Z).

d
d+1

Proof of (ii). For any test function ¢ € CP(R¥! x T'p,),

- @(‘%17:}/1)d (ﬁ\b) (‘%1,:)’1) = - (p(”~)/|]1(IIlin11),’~)/|h)dﬁ|]2(:fl,"3/)
Rd+1 |1
XF[ 1

Rd+1 ><F]2

=

/ ey, (min Iy), yypy, ) d (2, 7)
Rd+1XF[
= [ e min ). Ay, di(,3)
Rd+1><1“1
= / (@1, ) diyg (21, 7).
Rd+1XFI
Proof of (iii). By definition of 7|, for any test function ¢ € CY(RIH I'1;R), we have

/ (@) m (@) =
Rd+1><F[

/ (G (min 1), 4;) dii(3,9)
Rd+1 XF[

/ o(3,9) dii(#,7).
Rd+1 ><F]
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Proof of (iv). First, we prove that 7' x> € F;. Let us denote with i := &, 17" = é4,17°.
By contradiction, let A C R™1 xT'; be a Borel set of strictly positive measure w.r.t. 7 x>
such that the feasibility condition is not respected, i.e.

/Rd+leIXA(:M) [w+/1\y( (1), ())dt] A *752)(3,7) > a - 7'« 72(A),

where we denote with & = (z,w), ¥ = (7, (). By definition of concatenation, the left-hand
side is equivalent to

/ / / A(F1 * ¥2(ar), 31 * Fe)-
Rd+1 () Je

- [@*@(am / ¥ (1920, Gy o % 0)(0) ) | A1, 0) @) A

/ / / A1 *A2(ar), 1 *42)-
Rd+1 e t(y é

Ilt

[ww [ wen@ @+ [ weno. ())dt} 0 (., 30) A2, ) dii()

Il 12

/Rdﬂ /é,‘lt(y [wz + (t)dz(t))dt} :

'/1 o Xa(F1 % F2(ar), 31 * F2) dijy (21, %1) dii (%2, F2) dju(§)
€r,t\Y
< a'ﬁl*ﬁ2(‘4)7

by feasibility of 2, where we denoted with Z; = (z;,w;), 7 = (7, ). Hence the contra-
diction.

With the same notation as before, let us now prove the other assertion. For any test
function ¢ € CY(R¥1;R), we have

[, el@ds =)@ -
/ (1)) d( + ) (@, 7)
Rd+1><1“1
/ / (1)) My, L7 © 72)](E,7) di(7)
Rd+1 Rd+1er

/ / (Gt 3 (1)) (7} © 72)(F1, 51, B2, 30) dA(5)
Ra+1 ><eI2 .
. étﬁ’l’] , ifte Il,
eun?, ifte .

O

In the sequel, we give a further property verified by the given definitions of concatenation
and restriction, which turn out to be weakly compatible.

Proposition A.5. Let I,1;,Io C R be compact and nonempty intervals, with I = I; U I,
I; = [a;,bi], i = 1,2 and by = ay. Then the restriction and concatenation operators
are weakly compatible, i.e. given i € .7:"12., t = 1,2 such that éblﬁﬁl = éa2ﬁﬁ2, we have
@ >, =1, i =1,2.
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Proof. By definition of restriction and concatenation operators, for any ¢ = 1,2 and for all
¢ € CORM x T'f;R), we have

/ (@A) A ) (FF) =

R4+,

- /R (i (i), Ay (> 72)(E7)

Lo L (G e G s ) i @) ) )

- /  o(ilar), 5) dif (G, ).
Rd+1XF[
]

We notice that the properties just proved hold also for the settings described in Sections
5.1 and 5.2 in a straightforward way.

Remark A.6. As the following example shows, a stronger compatibility relation between
restriction and concatenation operators is not true in general in this context. Indeed, let
I,I;,I C R be compact and nonempty intervals, with I = I} U Iy, I; = [a;, bi], i = 1,2
and b; = as, and 77 € A;. Then, in general, we cannot write ) = 77, * 1,

Example A.7. Consider the same framework outlined in Example A.3, with I = I U Io,
I, =1[0,1], I = [1,2]. Let us define

1 -
=5 Z 0z; ® 05 z; € -A[o 9, &= Z Oz ®5€fj € Ap,a)-
Jje{-1,1} jE{—171}
We have that P =&, =M1, = 7', i = 1,2. Nevertheless, both p and & are different
from 7! « 72 = 7.

This construction provides another situation where the abstract Dynamic Programming
Principle of Theorem 4.2 holds true (see Theorem A.9). Furthermore, with the following
definition we can reconduct these objects to that of Definition 4.3, thus gaining the validity
of the general results proved in Section 4.

Definition A.8. Let ¢ and ¢y be as in Definition 4.1, satisfying the following additional
properties
() c(@™, 1?,7) < +oo if and only if 7 € Fr(a(V)), with émax st = i for some
compact and nonempty interval I C R;
(CHlet0<a<b<e¢ne ]:"[a,c}. Then ¢: X X X x ¥ — [0, +0o0] is superadditive by
restrictions, i.e.

c(€alim, Eclin, M) > c(Ealn, Eptn, M) + c(EbdT, ECHT, M p.q))-
The finiteness of each member follows from item (¢) in Proposition A.4.
Let o1 € P (R, I € R nonempty and compact interval, and 7 € Fy(ji). We define the
set g{ made of the pairs (£, o) defined as follows
(1) £:1 — X, &(t) :=éfiny for all ¢ € I;
(2) 0: 1 — %, 0(t) = Mmin 1,4 for all t € I.
Finally, we define the set

97 (i) = {(&0) e 9] e Fip)}.
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Theorem A.9 (DPP for the Lagrangian sparsity case). Let V : (R x R) — [0, 4+00] be
as in Definition 4.1. For any jio € Z(R? x R) we have

V(,&O) = i~nf {C(/lO; émax Iﬁﬁa ﬁ) + V(émax Iﬁﬁ)} :
AEF(fio)
ICR compact interval
Proof. The proof follows by Theorem 4.2 and (CY¥). O

The following remark, mentioned also for the feasibility cases analyzed in Section 5,
holds also in this setting.

Remark A.10. Any (&,0) € g{, s.t. 7 € Fr(ji), is generalized admissible from ji, ac-
cording to Definition 4.3. Indeed, item (1) in Definition 4.3 is obviously verified, while
item (2) comes from item (i) of Proposition A.4. Finally, by properties (i) — (i¢) proved
in Proposition A.4, we have that (C}) implies item (3) in Definition 4.3 by taking for
instance oy, ¢, 1= ﬁchtﬂ for any 0 <t <ty <T. Hence, Corollaries 4.6, 4.7 hold in this
setting. Furthermore, by (C}) we have that c(§(t),{(t),04¢) = 0 for all ¢ € I. Indeed,
by item (i77) in Proposition A.4 we can indentify any p € Fiyg with its restriction pye ).

APPENDIX B. BASIC ESTIMATES

In this appendix section, we recall some estimates used throughout the paper, borrowed
from [13,16] (Lemma 2 and Lemma 3.1 respectively).

Proposition B.1. Let T >0, p > 1, up € Z,(RY). Let (p,v) € Ajo,r)(1o), and let n be
a representation for the pair (p,v). Then, for t €]0,T|, we have

(1) eo € Ly;
P
(i) || 2L—Ce
Ly
(i) mpe) < K (1+ mp(0)),
where D > 0 is coming from Lemma 3.2 and K = K(p,D,T) > 0.

Proof. First, recall that (a + b)P? < 2P~1(aP + bP) for any a,b > 0.
Item (¢) is immediate, indeed Heo||’£12) = Jpaxr, VO dn = [ga[z[P d(eotn)(z) = my(uo) <

< 227 DePT (14 my (o)) < 400;

+oo. Let us prove (i7). By admissibility of (u,v), we have that v.(z) = %(w) € F(x). By
Lemma 3.2, there exists D > 0 such that |v;(y)] < D(1 + |y|), y € R% Thus, for n-a.c.
(z,7) we have

() - 4(0)] < \ [ s

t
< Dt+D’/ Iy(s)] ds
0

< Dt(1+[y(0)) + D

/ () — 7(0)] ds
0

By Gronwall inequality,

() = (0)] < Dt e (1+ [(0)]).
Dividing by ¢ €]0,7] and taking the L}-norm, we have
P

< DePT ( [ a+hop dn)
7 Rdx T
< 227D ePT (1 4 my(pp)) < +oo.

€t — €0

To prove (iii), notice that

mglp) = [ el d= [ et )l dn = el
XL
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and
» P
leclty < (lleollzs, + llee = eol s )
<277 ((leolly, + llec = eollyy ) -
We conclude by using the estimate in (7). O
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