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Abstract: Ambient air pollution is a leading environmental risk factor and its broad spectrum of
adverse health effects includes a decrease in lung function. Socioeconomic status (SES) is known
to be associated with both air pollution exposure and respiratory function. This study assesses the
role of SES either as confounder or effect modifier of the association between ambient air pollution
and lung function. Cross-sectional data from three European multicenter adult cohorts were pooled
to assess factors associated with lung function, including annual means of home outdoor NO2.
Pre-bronchodilator lung function was measured according to the ATS-criteria. Multiple mixed
linear models with random intercepts for study areas were used. Three different factors (education,
occupation and neighborhood unemployment rate) were considered to represent SES. NO2 exposure
was negatively associated with lung function. Occupation and neighborhood unemployment rates
were not associated with lung function. However, the inclusion of the SES-variable education improved
the models and the air pollution-lung function associations got slightly stronger. NO2 associations
with lung function were not substantially modified by SES-variables. In this multicenter European
study we could show that SES plays a role as a confounder in the association of ambient NO2 exposure
with lung function.

Keywords: Europe; socioeconomic position; air pollution; environmental equality; lung function

1. Introduction

Ambient air pollution is the biggest contributor to the total environmental burden of the disease [1,2].
NO2 is estimated to be responsible for 68,000 premature deaths and 723,000 YLL (years of life lost) in the
European Union in 2013 [3].

It has previously been shown that both air pollution and single SES parameters can have
independent adverse effects on lung function and that SES can modify the effect of poor air quality
on respiratory health [4–8]. However, SES is a multidimensional phenomenon which cannot be fully
captured by a single socioeconomic variable (e.g., education, occupation, income) [9]. The assessment
of the independent and joint association of SES and air pollution with health is complicated by the fact
that there’s substantial variation in the relationship of air pollution exposure and individual SES in
different cities and countries [4,10]. The role of socioeconomic and lifestyle factors as the confounder
or effect modifier in the association between air pollution and health therefore remains a topic of
great interest with regard to both causal inference and susceptibility related to air pollution health
effects [11–13].

We investigated whether our previous ESCAPE (European Study of Cohorts for Air Pollution
Effects) results on air pollution and lung function [14] were robust after the inclusion of further
SES-variables. We then assessed whether SES influences the association between long-term exposure
to traffic-related air pollution and respiratory function, using both individual-level (namely education
and occupation) and neighborhood-level (unemployment rate) socioeconomic factors. This study
uses pooled information from three adult respiratory cohorts which previously contributed data to
the ESCAPE meta-analysis on air pollution and lung function [14] and the SESAP (Socioeconomic
Status and Air Pollution in three European cohorts) pooled analysis on air pollution and SES [10].
In comparison to the first study [14], we additionally adjusted for the lifestyle variable pack-years of
smoking and the SES-variables occupation and unemployment rate. The latter study [10] described
the association between SES and NO2-exposure without considering health outcomes.

http://www.mdpi.com/1660-4601/16/11/1901?type=check_update&version=1
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2. Materials and Methods

2.1. Study Population

This is a cross-sectional study of 6502 adults who participated in the first follow-up of three
Western European studies. Two of those studies share harmonized study protocols—the ECRHS
(European Community Respiratory Health Survey) (n = 3772) [15] and the jointly initiated Swiss
Study on Air Pollution and Lung and Heart Diseases (SAPALDIA) (n = 1922) [16]. Combined with
EGEA (Epidemiological Study on the Genetics and Environment of Asthma) (n = 808) [17], these
cohorts represent 22 study centers from eight European countries. Briefly, in ECRHS, more than
18,000 young adults aged 20 to 44 were recruited with an oversampling of asthmatics across Europe in
1991–1993 (ECRHS I) and 10,364 participated in the first follow-up (ECRHS II) between 2000 and 2002.
SAPALDIA is a Swiss-wide cohort study covering three language regions. In 1991, 9651 participants
aged 18 to 60 were recruited for a detailed interview and health examination (SAPALDIA 1). At the
first follow-up (SAPALDIA 2), conducted in 2001–2003, 8047 participants provided health information.
EGEA is a French case control and family-based study with 2047 participants including a group
of asthmatic patients with their first-degree relatives and a group of control subjects recruited in
the early 1990s (EGEA1: 1991–1995). At the first follow-up (EGEA2) conducted between 2003 and
2007, 1601 cohort subjects answered a detailed questionnaire. Many, but not all, of the centers in
these three cohorts participated in the ESCAPE study [14]. In ESCAPE, harmonized air pollution
measurement and modeling protocols were applied to estimate long-term exposure at the residential
address of participants in the first study follow-up. The sample for the current analysis included
participants who took part in the first follow-up of the three studies and who underwent lung
function testing. The participants were from 20 urban areas in eight Western European countries,
geographically spread across the North: Umea (Sweden), the central part: Ipswich, Norwich (United
Kingdom); Erfurt (Germany); Antwerp (Belgium); Paris, Grenoble, Lyon (France); Geneva, Basel,
Lugano (Switzerland) and the South of Europe: Marseille (France); Pavia, Turin, Verona (Italy); Albacete,
Barcelona, Galdakao, Huelva, Oviedo (Spain). Paris and Grenoble hosted centers for both ECRHS and
EGEA. Since participants of the same town but from different studies differed substantially according
to air pollution exposure and SES variables the study areas were split into Paris (ECRHS), Paris (EGEA),
Grenoble (ECRHS), and Grenoble (EGEA). This resulted in the final number of 22 study areas.

2.2. Air Pollution Exposure

The current study focused on modeled annual average nitrogen dioxide (NO2) at each participant’s
place of residence as a marker of traffic-related air pollution since this variable was available in
all study areas. ESCAPE methods to estimate the NO2 annual concentrations are described in
detail elsewhere [18]. Briefly, between 2008 and 2011, two-week integrated NO2 passive sampler
measurements at approximately 40 sites in each study area were conducted in three different seasons
over a one-year period. Area-specific land use regression (LUR) models were developed to explain the
spatial variation of NO2 using a variety of geographical data including traffic, population and land use
variables. The LUR models were applied to estimate NO2 annual concentrations at each participant’s
geocoded residential address at the first follow-up. The ESCAPE areas consist of small cities or
metropolitan areas (larger cities with surrounding smaller suburban communities). The distribution of
mean annual NO2 exposure by study area is presented in Figure 1.
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Figure 1. Boxplot of residential home outdoor nitrogen dioxide (NO2) annual mean concentrations at 
first follow-up by cohort and study center (all three cohorts). 

2.3. Lung Function 

Lung function was assessed by spirometry according to ATS recommendations [19]. All 
measuring instruments (ECRHS: Water-sealed bell spirometer (Biomedin, Padova, Italy) in most 
centers; SAPALDIA: Sensormedics 2200 SP (SensorMedics Corporation, Yorba Linda, CA, USA) in 
all centers; EGEA: Biomedin or SPIRODYN’R in most centers (see online supplement of [14] for 
details) were calibrated prior to each testing session. The technical personnel were specifically 
trained. In all three studies pre-bronchodilator measurements were performed. The lung function 
parameters considered in the present analyses are FVC (forced vital capacity) and FEV1 (forced 
expiratory volume in 1 s).  

2.4. Socioeconomic Factors  

Individual SES was categorized according to education and occupation. Education was defined 
as a three-level categorical variable according to ESCAPE definitions: For EGEA and SAPALDIA, 
the questions on the highest attained degree were used (low: Primary or secondary school; medium: 
Middle or apprenticeship school; high: Technical college or university) whereas for ECRHS, the age 
of completion of full-time education was subclassified into low (≤16 years), medium (17–20 years) 
and high (≥21 years). Occupation was categorized into manual compared to non-manual work by 
classifying the corresponding ISCO-88 codes [20] of the longest held job between the baseline and 
follow-up. The ISCO-88 major groups six (Skilled agricultural and fishery workers), seven (Craft and 
related trades workers), eight (Plant and machine operators and assemblers), and nine (Elementary 
occupations) were defined as manual work. Neighborhood level unemployment rate was available 
in a reduced sample of n = 4766 subjects and n = 19 study areas and was grouped into area-specific 
tertiles to allow better comparability in the analyses across countries. The exact definition of this 
neighborhood level variable is described elsewhere [10]. 

2.5. Statistical Analysis 
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Figure 1. Boxplot of residential home outdoor nitrogen dioxide (NO2) annual mean concentrations at
first follow-up by cohort and study center (all three cohorts).

2.3. Lung Function

Lung function was assessed by spirometry according to ATS recommendations [19]. All measuring
instruments (ECRHS: Water-sealed bell spirometer (Biomedin, Padova, Italy) in most centers;
SAPALDIA: Sensormedics 2200 SP (SensorMedics Corporation, Yorba Linda, CA, USA) in all centers;
EGEA: Biomedin or SPIRODYN’R in most centers (see online supplement of [14] for details) were
calibrated prior to each testing session. The technical personnel were specifically trained. In all three
studies pre-bronchodilator measurements were performed. The lung function parameters considered
in the present analyses are FVC (forced vital capacity) and FEV1 (forced expiratory volume in 1 s).

2.4. Socioeconomic Factors

Individual SES was categorized according to education and occupation. Education was defined
as a three-level categorical variable according to ESCAPE definitions: For EGEA and SAPALDIA,
the questions on the highest attained degree were used (low: Primary or secondary school; medium:
Middle or apprenticeship school; high: Technical college or university) whereas for ECRHS, the age
of completion of full-time education was subclassified into low (≤16 years), medium (17–20 years)
and high (≥21 years). Occupation was categorized into manual compared to non-manual work by
classifying the corresponding ISCO-88 codes [20] of the longest held job between the baseline and
follow-up. The ISCO-88 major groups six (Skilled agricultural and fishery workers), seven (Craft and
related trades workers), eight (Plant and machine operators and assemblers), and nine (Elementary
occupations) were defined as manual work. Neighborhood level unemployment rate was available
in a reduced sample of n = 4766 subjects and n = 19 study areas and was grouped into area-specific
tertiles to allow better comparability in the analyses across countries. The exact definition of this
neighborhood level variable is described elsewhere [10].



Int. J. Environ. Res. Public Health 2019, 16, 1901 5 of 14

2.5. Statistical Analysis

All analyses are based on the pooled data from the three cohorts. We applied multiple mixed linear
models to analyze the role of SES in the associations between NO2 and lung function and used the study
area as a random intercept. Regarding SES, we included the following variables: Educational level
(three categories), occupation (manual compared to non-manual), and the neighborhood-level variable
tertile of unemployment rate. Models were adjusted for the basic variables sex, age, age squared,
height, height squared and additionally for the lifestyle variables smoking status (i.e., current, former,
or never smoker), pack-years and pack-years squared (each with separate terms for current and former
smokers), BMI (body mass index), and BMI squared. We systematically ran analyses for the full sample
(n = 6502) and for a reduced sample (n = 4766) since the unemployment rate was not available for
three study areas. Likelihood-ratio (LR) tests and AIC (Akaike Information Criterion) were used to
assess the contribution of SES factors to the models. Effect modification of SES on the association of
lung function and NO2 were tested by including interactions terms in the models. We carried out the
following sensitivity analyses: a) A meta-analysis comparing and combining study area-specific results
to assess heterogeneity of associations between study sites, b) a three-level model using neighborhood
level further nested within the study area, c) a three-level model taking the family structure of EGEA
into account, and d) interaction analyses excluding the lifestyle variables (smoking status, pack-years
and BMI) to assess whether SES and NO2 interact when these possible mediator variables are excluded
and thus might only be implicitly contained in SES. We used the statistical software Stata (StataCorp
2015. Stata Statistical Software: Release 14. StataCorp LP, College Station, TX, USA).

3. Results

Characteristics of the study population at the first follow-up are presented in Table 1. The average
age of participants was 46 years, and was highest in SAPALDIA. EGEA and SAPALDIA had slightly
more female (52.8% and 53.4%, respectively) than male subjects. Nearly half (47.6%) of the study
participants were overweight or obese (i.e., had a BMI > 25 kg/m2). On average, 30% of the subjects
reported current smoking. Compared to the other two cohorts, there were fewer subjects in the
low education group in SAPALDIA whereas subjects in EGEA had the highest proportion of high
education. Manual work was most common in ECRHS (21.7%). The median neighborhood level
unemployment rate was 9.5%. For further analyses this variable was grouped into study area-specific
tertiles. Mean FVC and FEV1 were 4284 mL and 3368 mL, respectively.

Table 1. Characteristics of the study population at the first follow-up.

EGEA ECRHS SAPALDIA Total

Year 2003–2007 2000–2002 2001–2003

N 808 3772 1922 6502

Age 44.9 ± 16 42.6 ± 7.2 52.7 ± 11.4 45.9 ± 11

Height (cm) 168.4 ± 8.7 169 ± 9.4 168.7 ± 9.2 168.8 ± 9.3

NO2 (µg/m3) 29 ± 12.3 29.6 ± 15.7 26.9 ± 6.8 28.7 ± 13.3

FVC (mL) 4172 ± 1057 4385 ± 994 4130 ± 1028 4284 ± 1019

FEV1 (mL) 3245 ± 908 3511 ± 803 3136 ± 830 3368 ± 842

Pack–years 0 (0; 6.6) 3.5 (0; 18) 2 (0; 20) 2.1 (0; 17.3)

Sex Women 52.8% 48.7% 53.4% 50.6%

BMI Underweight (<18.5) 3.1% 1.6% 2.2% 2.0%
Normal (18.5–25) 58.4% 49.4% 49.0% 50.4%
Overweight (25–30) 28.6% 35.6% 34.7% 34.4%
Obese(>30) 9.9% 13.5% 14.2% 13.2%



Int. J. Environ. Res. Public Health 2019, 16, 1901 6 of 14

Table 1. Cont.

EGEA ECRHS SAPALDIA Total

Smoking Current 21.5% 32.2% 28.0% 29.6%
Former 28.3% 27.1% 31.9% 28.7%
Never 50.1% 40.6% 40.1% 41.7%

Education Low 25.5% 26.6% 6.1% 20.4%
Medium 23.6% 35.6% 63.7% 42.4%
High 50.9% 37.8% 30.2% 37.2%

Occupation manual 9.7% 21.7% 16.5% 18.7%

Neighborhood unemployment rate (%) 1 8.8 (6.5; 11.3) 10.9 (6.8; 16) 4.5 (3.4; 5.3) 9.5 (5.8; 14.4)

For continuous variables mean ± standard deviation are presented, except for pack-years and neighborhood
unemployment rate where the median (first quartile; third quartile) is presented. 1 Unemployment rate on
neighborhood level is only available in the reduced sample of n = 4766.

High-educated subjects were more exposed to NO2 and low-educated subjects had the lowest
lung function. Subjects in the manual workforce had lower NO2 exposure and a slightly higher lung
function than people in non-manual jobs. For tertile of unemployment rate there was a positive
association with NO2 and a weak negative association with lung function (Table 2).

Table 2. Unadjusted relations of socioeconomic status (SES)-variables with NO2 and lung function.

NO2 (µg/m3) FVC (mL) FEV1 (mL)

Education Low 28.4 ± 13.5 4078 ± 994 3174 ± 816
Medium 28.0 ± 12.3 4213 ± 1016 3300 ± 842
High 29.8 ± 14.1 4478 ± 1003 3552 ± 821

Occupation non-manual 29.2 ± 13.3 4264 ± 999 3359 ± 829
Manual 26.5 ± 12.9 4371 ± 1099 3409 ± 895

Neighborhood Low 27.1 ± 14.3 4393 ± 1034 3461 ± 846
unemployment Medium 30.4 ± 14.2 4323 ± 1024 3421 ± 837
rate tertile High 31.8 ± 15.0 4294 ± 984 3403 ± 815

Presented are mean ± standard deviation. n = 6502 (education and occupation) and n = 4766 (unemployment rate).
Unemployment rate was categorized into area-specific tertiles.

Associations between the SES-variables themselves are presented in Table 3. There is a strong relation
between educational level and occupation, e.g., the proportion of subjects in the manual work force ranges
from 4.3% for high education to 40.7% for low education. Subjects with low education or a manual
occupation were the most likely to live in a neighborhood with an unemployment rate in the highest tertile.

Table 3. Cross-tabulation of SES-variables.

Tertiles of Unemployment Rate Occupation
Low Medium High Non-Manual Manual

Educational level low N 355 407 481 737 506
% 28.6% 32.7% 38.7% 59.3% 40.7%

medium N 539 520 531 1283 307
% 33.9% 32.7% 33.4% 80.7% 19.3%

high N 715 666 552 1850 83
% 37.0% 34.5% 28.6% 95.7% 4.3%

Occupation non-manual N 1365 1304 1201
% 35.3% 33.7% 31.0%

manual N 244 289 363
% 27.2% 32.3% 40.5%

Presented are n’s and row percentages in the reduced sample (n = 4766). Pearson’s Chi-squared-Test for all three
cross-tables: p < 0.001.
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Associations of NO2 with lung function from adjusted mixed linear models are presented in
Table 4, both for the full and the reduced sample. Education was the only SES-variable that improved
the model fit. We found rather strong evidence for associations between NO2 and the lung function in
model M1 (basic and lifestyle variables), e.g., an adverse effect per 10 µg/m3 increment in NO2 in the
full sample of −15.8 (−30.5; −1.2) mL for FVC and −11.3 (−23.8; 1.2) mL for FEV1. After including
education in the models (Model M1 + education) the model fits improved and the estimates were
stronger: −17.2 (−31.9; −2.6) mL for FVC and −12.7 (−25.2; −0.3) mL for FEV1. This corresponds with
a 9% and 12% change in estimates for FVC and FEV1, respectively (e.g., by comparing the full sample
estimates −15.8 mL and −17.2 mL for FVC) and is indicative of slight confounding by education.
The models “Model M1 + education” have the lowest AIC for all combinations of the outcome and
sample and are hence the best final models.

Table 4. Associations of lung function with NO2, results of adjusted mixed effect models.

Outcome Sample Model NO2 (95% CI) p−Value AIC

FVC Full Basic and lifestyle variables (Model M1) −15.8 (−30.5; −1.2) 0.034 100,256.3
FVC Full Model M1 + education −17.2 (−31.9; −2.6) 0.021 100,251.6
FVC Full Model M1 + occupation −15.9 (−30.6; −1.3) 0.033 100,258.3
FVC Full Model M1 + all SES−variables −17.1 (−31.8; −2.4) 0.022 100,253.2

FVC Reduced Basic and lifestyle variables (Model M1) −18.6 (−34.3; −2.9) 0.02 73,571.5
FVC Reduced Model M1 + education −20.3 (−36; −4.6) 0.011 73,568.4
FVC Reduced Model M1 + occupation −18.6 (−34.3; −2.9) 0.021 73,573.5
FVC Reduced Model M1 + education + occupation −20.0 (−35.7; −4.2) 0.013 73,569.4
FVC Reduced Model M1 + unemployment tertile −16.6 (−32.6; −0.7) 0.041 73,573.9
FVC Reduced Model M1 + all SES−variables −18.2 (−34.3; −2.2) 0.026 73,572.2

FEV1 Full Basic and lifestyle variables (Model M1) −11.3 (−23.8; 1.2) 0.077 98,381.6
FEV1 Full Model M1 + education −12.7 (−25.2; −0.3) 0.046 98,370.5
FEV1 Full Model M1 + occupation −11.7 (−24.2; 0.8) 0.067 98,381.5
FEV1 Full Model M1 + all SES−variables −12.8 (−25.3; −0.3) 0.045 98,372.4

FEV1 Reduced Basic and lifestyle variables (Model M1) −14.4 (−28; −0.8) 0.038 72,427.9
FEV1 Reduced Model M1 + education −16.4 (−30; −2.8) 0.018 72,418.1
FEV1 Reduced Model M1 + occupation −15.1 (−28.7; −1.5) 0.03 72,427.6
FEV1 Reduced Model M1 + education + occupation −16.5 (−30.1; −2.9) 0.017 72,420.0
FEV1 Reduced Model M1 + unemployment tertile −13.6 (−27.4; 0.3) 0.054 72,431.5
FEV1 Reduced Model M1 + all SES−variables −16.2 (−30; −2.3) 0.023 72,423.9

n = 6502 (full sample), n = 4766 (reduced sample with available unemployment rate). Each line shows results from
one model. Results are presented in mL per 10 µg/m3 NO2. Basic variables include sex, age, age squared, height
and height squared. Lifestyle variables are smoking, pack-years, pack-years squared, interaction of smoking and
pack-years, interaction of smoking and pack-years squared, body mass index (BMI), and BMI squared. Study center
was included as a random intercept. A decrease in (akaike information criterion) AIC can be interpreted as an
improvement of the model fit.

The parameter estimates for different education categories from the best models (i.e., Model M1
+ education) are presented in Table 5. Subjects with medium or high education had significantly
higher lung function values than the reference category of low education: 47.9 (7.3; 88.6) mL for
medium education and 62.3 (20.6; 103.9) mL for high education for FVC and 53.6 (18.3; 88.9) mL for
medium education and 71.5 (35.3; 107.7) mL for high education for FEV1. Therefore, education had an
independent effect on lung function and it also improved the model fit according to the LR-test (FVC:
p = 0.0128 and FEV1: p = 0.0005, respectively). The positive association between education and lung
function was also confirmed in the reduced sample (results not shown).
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Table 5. Independent association of education with lung function.

Outcome SES Group Estimate (mL) (95% CI) p-Value

FVC Education Low - reference
FVC Medium 47.9 (7.3; 88.6) 0.021
FVC High 62.3 (20.6; 103.9) 0.003

FEV1 Education Low - reference
FEV1 Medium 53.6 (18.3; 88.9) 0.003
FEV1 High 71.5 (35.3; 107.7) 0.000

n = 6502 (full sample). Presented are effect estimates for education from the models “Model M1 + education” from
Table 4. Included in the models are the basic variables sex, age, age squared, height and height squared and additionally
the lifestyle variables smoking, pack-years, pack-years squared, interaction of smoking and pack-years, interaction of
smoking and pack-years squared, BMI, and BMI squared, and NO2. Study center was included as a random intercept.

We tested interaction terms of NO2 with education for both the full and the reduced sample.
According to the AIC and the LR-Test the inclusion of these interactions did not improve the models,
neither for FVC nor FEV1 (Table 6). Still, when looking at results stratified by education categories
there was a tendency for stronger air pollution effects with increasing educational level (Table 7).
As SES itself is unlikely to have a causal effect on lung function we also tested the interaction of
NO2 with education in models excluding the lifestyle variables BMI, smoking status, and pack-years.
These variables might act as mediators of the effect of SES on lung function. There was also no evidence
of effect modification by SES in the models unadjusted for lifestyle (results not shown).

Table 6. Assessment of interaction between NO2 and education on lung function.

Outcome Sample AIC p-Value

Model M1 + education FVC Full 100,251.6
Model M1 + education + NO2*education FVC Full 100,254.2 0.49

Model M1 + education FVC Reduced 73,568.4
Model M1 + education + NO2*education FVC Reduced 73,569.8 0.27

Model M1 + education FEV1 Full 98,370.5
Model M1 + education + NO2*education FEV1 Full 98,372.3 0.34

Model M1 + education FEV1 Reduced 72,418.1
Model M1 + education + NO2*education FEV1 Reduced 72,418.8 0.20

For each of the two outcomes (forced vital capacity) FVC and (forced expiratory volume in 1 s) FEV1 the interaction
of NO2 and education was tested in both the full and the reduced sample. The first line lists AIC of the best
model (M1 + education as presented in Table 4) and the second line gives the AIC and the p-value for the final
model including the interaction. The p-values are from likelihood-ration (LR)-Tests testing the interaction terms.
A decrease in AIC can be interpreted as an improvement of the model fit.

As our data are from 22 study centers in eight European countries, we tested the heterogeneity of
the main results across centers. We performed a random−effect meta−analysis of study area−specific
models for the full sample. As we found only little evidence of heterogeneity we performed a
fixed−effects meta−analysis, which resulted in comparable effect estimates of −17.9 (−32.8; −2.9) mL
change per 10 µg/m3 NO2 for FVC and −10.3 (−23.4; 2.9) for FEV1, with no evidence of heterogeneity
for FEV1 (Higgins I2 = 0%) and only weak evidence of heterogeneity for FVC (I2 = 24.5%) (Supplement
Figures S1 and S2). The three−level models with a) family (taking the family structure of EGEA into
account) and b) neighborhood as a nested random factor within the study area showed very similar
results as the main models (Supplement Table S1).
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Table 7. Adjusted association of NO2 with lung function, stratified by education.

Outcome Sample SES Group Estimate (95% CI) p−Value

FVC full education low −5.6 (−29.9; 18.7) 0.653
FVC medium −19.5 (−39.8; 0.7) 0.059
FVC high −22.0 (−41; −2.9) 0.024

FVC reduced education low −8.3 (−33; 16.4) 0.510
FVC medium −16.8 (−39.1; 5.5) 0.139
FVC high −30.2 (−50.4; −10.1) 0.003

FEV1 full education low −0.5 (−21.5; 20.5) 0.962
FEV1 medium −14.5 (−31.9; 3) 0.104
FEV1 high −18.3 (−34.7; −1.9) 0.028

FEV1 reduced education low −1.8 (−23.5; 19.8) 0.868
FEV1 medium −17.5 (−37; 1.9) 0.077
FEV1 high −24.7 (−42.3; −7.1) 0.006

n = 6502 (full sample). Results are presented in mL per 10 µg/m3 NO2. Included in the models are the basic variables
sex, age, age squared, height and height squared and additionally the lifestyle variables smoking, pack-years,
pack-years squared, interaction of smoking and pack-years, interaction of smoking and pack-years squared, BMI,
and BMI squared, and NO2. Study center was included as a random intercept.

4. Discussion

In this pooled analysis of data from a subset of ESCAPE cohorts we confirmed that the previously
reported inverse cross-sectional associations of NO2 with FVC and FEV1 [14] withstood more stringent
adjustment for socioeconomic factors. The only SES-variable that improved the model fit was education.
Education was independently and positively associated with lung function, and it slightly confounded
the association of NO2 and lung function. We can only speculate about reasons why there was no
evidence of an association of the other two SES-variables with lung function. It is possible that some
manual professions might be beneficial to lung health (e.g., by being physically active or working
outside), while other manual professions might expose workers to substances like dust and fumes
and might therefore have negative effects. Unfortunately we did not have a variable for occupational
exposure. As occupation is only a rough proxy of income, the effects of socio-economic factors on lung
function may still have been underestimated. Unemployment rate at the community level might be
influenced by factors going beyond the individual SES of the residents, e.g., by industrialization of the
neighborhood [10].

From the perspective of causal inference and air quality regulation, it is essential to demonstrate
the independence of adverse health effects of air pollution from potentially correlated health risk
factors, including SES. The goal is to best possibly assess the causality of air pollution effects on
health and well-being in order to justify investments into improved air quality. SES and poverty have
been discussed for decades as important potential confounders or modifiers of air pollution-health
associations [11,12,21,22]. This has stimulated our previous investigation into the association between
air pollution and SES in different European cities [10], where we found the relationship of air pollution
exposure and individual SES to strongly vary by city and country, as it had also been shown before [23].
Our results from geographically stratified analyses (Meta-Analyses, Supplement Table S1 and Figures
S1 and S2) were quite homogeneous across study areas suggesting that these differences did not
translate into differences in the air pollution-lung function association between study areas.

Our results add evidence towards a causal role of ambient air pollution in reducing lung function.
It remains unclear whether NO2 health effects are clearly attributable to NO2 itself, or whether NO2

serves as a proxy for other polluting agents from combustion or traffic sources [24]. Whereas direct
effects of NO2 on exacerbations of asthma have been established [25,26], the causal understanding
of the independent effect of long-term exposure to NO2 on cardio-respiratory morbidity including
lung function remains poor in the light of the small number of studies investigating two- or even
three-pollutant models [27].
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From the perspective of health promotion it is not sufficient to consider air pollution effects in
isolation [28]. The identification of factors that modify the susceptibility to air pollution is important.
For example, we have previously shown that the respiratory function of obese persons may be more
susceptible to inhaled pollutants from traffic exhaust [14] and may be less likely to recover after
air quality improves [29]. These results point to the possibility that the benefits of improved air
quality on respiratory health may be diminished by an uncontrolled obesity epidemic. Several studies
previously demonstrated stronger adverse effects of air pollution on health in subjects with lower
SES [11,12,21,22,28]. Brunt et al. [28] reported stronger NO2, PM10 and PM2.5 effects on respiratory
disease mortality for the more deprived small geographic areas of Wales, whereas no associations were
observed in the least deprived areas. Deprivation status of the geographic areas was itself strongly
associated with respiratory disease mortality. This was in accordance with the general evidence for
an almost 10 year difference in life-expectancy between the most and least deprived areas in the UK,
which has so far been attributed largely to behaviors [30]. The results by [28] suggest that differences
in environmental conditions may contribute to health differences by deprivation state. In the current
study focusing on lung function as an endpoint, we did not observe statistically significant interactions
between air pollution and the SES-variable education. If anything, there was a tendency for stronger
air pollution effects in more educated persons irrespective of adjustment for lifestyle factors. But more
educated persons still had better lung function. It remains unclear if this could be due to other lifestyle
variables like physical activity and diet, which were not available in the current analysis. Future studies
need to further clarify the complex interplay between SES, physical activity [31], additional lifestyle
factors, and air pollution on lung function.

We observed independent associations of education with lung function. Those were larger than
the effects of NO2 across the contrast observed in air quality. These SES-lung function associations may
be partly explained by a correlation of low SES with occupational settings that promote respiratory
diseases [32] and that are not well captured by an occupational variable merely differentiating between
manual and non-manual work. In the current study the latter variable was not associated with lung
function. The education-lung function association could also be mediated by behaviors that are
themselves bad for lung health (e.g., poor nutrition, physical inactivity, obesity, smoking) [6,12]. As the
positive association of SES with lung function was limited to education, this individual SES parameter
seems to best capture mediators of lung function in our study.

Our study has several advantages. It covers a wide range of urban areas representing different
regions of Western Europe. NO2 exposure was estimated with the same methodology for all centers,
which makes our results comparable across studies and centers. The centers included cover a wide
range of NO2 exposure, with estimated annual means ranging from 5.3 µg/m3 (Umea, Sweden) to
58.2 µg/m3 (Barcelona, Spain) (Figure 1). The protocols and study designs of the three studies were
quite similar. However, the current study is cross-sectional by design and we can therefore not
differentiate whether people with low lung function and respiratory problems are less likely to succeed
professionally and thus live in more deprived areas or whether low educational achievements and
jobs and poor residential conditions lead to poor lung function later in life. There may be several
explanations for why we did not observe statistically significant effect modification of the NO2-lung
function associations by the SES variable education. It may reflect limitations in statistical power or
in the data available to classify participants’ SES. For example, we only had educational level and
occupation available for individual SES classification. This null result may also reflect the true absence
of effect modification.

5. Conclusions

These results provide further evidence that the inverse association between traffic-related air
pollution and lung function is not the result of confounding by SES. Consequently, it is likely that
improvements in air quality would benefit lung health [33,34] in the entire population and might
even help to reduce inequalities in health. Health benefits of improved air quality have been shown
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by many studies, e.g., for Lausanne, Switzerland, with a reduction of 1%–2% in all-cause annual
mortality attributable to a decrease in NO2 [35]. A health impact analysis for Barcelona estimated
a beneficial effect of 3500 fewer deaths as a result of reducing the mean PM10 exposure (50 µg/m3)
to the annual mean value recommended by the WHO (20 µg/m3) [36]. Beneficial effects of different
scenarios for PM2.5 reduction were also shown for 26 European cities [37]. The large potential impact
of policy efforts for clean air can also be seen in the US, where the success in reducing air pollution was
estimated to have prevented 160,000 cases of premature mortality and 130,000 heart attacks between
1990 and 2010 [38]. This is strong support for the call to develop global evidence-based clean air
standards [39]. Given the importance of the topic from a health-in-all-policy perspective, factors
determining susceptibility to air pollution must be studied further.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/16/11/1901/s1;
Figure S1: Meta-analysis of the association of NO2 with FVC in the full sample, by study center and overall;
Figure S2: Meta-analysis of the association of NO2 with FEV1 in the full sample, by study center and overall;
Table S1: Sensitivity analyses.
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