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Abstract—We propose an Active Object Recognition (AOR)
strategy explicitly suited to work with robotic arms in human-
robot cooperation scenarios. So far, AOR policies on robotic arms
have focused on heterogeneous constraints, most of them related
to classification accuracy, classification confidence, number of
moves etc., discarding physical and energetic constraints a real
robot has to fulfill. Our strategy overcomes this weakness
by exploiting a POMDP-based AOR algorithm that explicitly
considers manipulability and energetic terms in the planning
optimization. The manipulability term avoids the robotic arm to
get close to singularities, which require expensive and straining
backtracking steps; the energetic term deals with the arm gravity
compensation when in static conditions, which is crucial in
AOR policies where time is spent in the classifier belief update,
before doing the next movement. Several experiments have been
carried out on a redundant, 7-DoF Panda arm manipulator, on
a multi-object recognition task. This allows to appreciate the
improvement of our solution with respect to other competitors
evaluated on simulations only.

Index Terms—Active object recognition, reinforcement learn-
ing, POMDP

I. INTRODUCTION

In the robotics context, a correct scene interpretation plays

a crucial role for the decision making process that follow.

Think for example at collaborative robots that have to perform

specific tasks while interacting with humans. Autonomous

collaborative robots are usually asked to explore the space they

are navigating, reconstruct the 3D structure of the environ-

ment, and understand the scene semantics. All these modules

are part of a unique higher level task usually called perception,

and will be used to decide which action to take and to plan

the motion according to specific goals.

Active perception is a specific case on perception where

the agent, also called active perceiver, dynamically deter-

mines its behaviour according to the goal of perceive —

i.e. understand— the environment. The main benefit in using

active perception instead of a static approach is that the

confidence in recognition can be increased by dynamically

modulating the overall agent’s behaviour [3]. Among the

several sources of information the perceiving agent is in

contact with, objects are the main elements to reason about
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when trying to infer a semantic understanding of a visual

scene [26].

Active Object Recognition (AOR) [24] consists in recog-

nizing one or more objects with a moving sensor that can

observe the scene under different points of view. Different dis-

ciplines have been involved with this topic. Computer vision

techniques focus on how to cover the scene in order to capture

maximally informative objects’ views. Reinforcement learning

studies planning strategies to minimize heterogeneous con-

straint, like classification accuracy, classification confidence,

number of moves, etc.. Few of these approaches consider that

the sensor has to be moved by a robotic arm [1]: this makes

the optimization hard due to the highly nonlinear mathematical

model of robotic manipulators.

In this paper, we propose an AOR approach that takes into

account the robot’s structure and capabilities. We model the

sensor planning as a Partially Observable Markov Decision

Process (POMDP). POMDP allows to sample the optimization

space in a very efficient manner, and the objective function to

minimize can be easily enriched with arbitrary terms. Specif-

ically, here the robot should be able to recognize multiple

objects by minimizing the estimated energy consumption and,

at the same time, by considering manipulability constraints.

Energy constraints are important especially when the objects

to recognize are more than one, requiring the robot to get many

scene acquisition, in order to deal with occluded objects that

are visible only from few particular points of view.

Manipulability constraints amount to let the robotic arm

avoid singular configurations, that otherwise would force it

to perform expensive and straining backtracking steps.

These two constraints have never been taken into account

jointly in an AOR framework; moreover, most of the designed

approaches have been tested on simulations. Our focus here

is to move on real systems, and specifically on a redundant,

7-DoF Panda arm manipulator1.

We report experiments with a real tabletop scenario with

several objects belonging to four different, but similar, seman-

tic classes. Results show that we outperform the state of the

art in AOR both in object classification and in localization

precision. Doing this, our method is also able to converge to

a reliable prediction earlier than the competitors and with a

higher confidence score. Energy spent in the process is also

about 25% lower than the best competitor.

1https://www.franka.de/



The rest of the paper is organized as follows: in Sec-

tion II we briefly review the recent literature on AOR; the

problem formalization and the presentation of our approach

are discussed in Sections III and IV, respectively. Finally, an

experimental validation is reported in Section V. Conclusions

are drawn in Section VI.

II. RELATED WORK

Active perception systems usually drive the robot by com-

puting the best strategy (commonly called policy) to pursue

a certain goal, i.e. the best camera trajectory to optimize

a specific cost function. The process of choosing the best

sequence of camera configurations can be myopic, quantifying

only the reward at the next view, or non-myopic, maximizing

the utility over a sequence of future configurations.

In traditional myopic approaches, actions are chosen by

predicting the information gain of observations, commonly

measured by the resulting reduction in uncertainty (entropy)

and quantified with mutual information. Many approaches try

to select the next best viewpoint within a set of candidates

lying on a viewing sphere around the object reasoning on the

information content. In [2], object appearance is represented

by parametric eigenspaces, and probability distributions in the

eigenspace are used to greedily select discriminative views. [8]

proposes to learn an “attentive” interest map to track objects of

interest using peripheral vision, while [18] addresses the next-

best-view problem as the one that maximizes information gain

increasing spatial resolution by changing the focal length of

the camera. In [19], a belief model of the unobserved space

is exploited to estimate the expected information gain of each

possible viewpoint. Similarly, in [5], the next-best-view predic-

tion is based on Hough Forests running on unsupervised fea-

tures learned from depth-invariant patches using a sparse au-

toencoder. Entropy is exploited in several myopic approaches

that control the camera motion via a greedy maximization

strategy [4], by minimizing the conditional entropy [11], [23],

or by reducing the differential entropy in the object pose

and class distributions [6]. Despite being computationally less

complex than the nonmyopic approach, myopic planning for

an adaptively submodular objective function have been proved

to be worse than the optimal strategy by a constant factor [7].

Long-term planning is usually modeled with reinforcement

learning techniques, in order to reach a good trade-off between

a higher classification accuracy and a lower cost for moving

the robot planning along an optimal sequence of actions by

accounting for a long to infinite horizon. In [16], an approxi-

mate policy that maps a sequence of received measurements to

a discriminative viewpoint is obtained offline, but the cost of

different actions is assumed to be uniform and does not apply

well to real robotic scenarios. Here, as in many other works,

the problem is formulated as a Markov Decision Process

(MDP) where the state is not fully observable —i.e. the

object class is unknown—, and thus its Partial Observability

formulation is used (POMDP). In [9], a probabilistic model

is used to encode structural relations among objects and

locations. An object search task is then represented by fitting

the probabilistic model with the visual appearance of the object

of interest, and conditional entropy is used as the reward

function. The approach of [1] formulates the problem as an

active hypothesis testing problem solved with a point-based

approximate POMDP algorithm. A similar approach that also

includes a reasoning on the saliency of each viewpoint for the

recognition of the object class is presented in [20].

POMDP-based approaches suffer from the main problem

of being intractable in the continuous belief search space.

Very recent works try to overcome this issue by employ-

ing Q-learning [14], Monte Carlo approaches [17] or deep

learning [10]. In [17], a particle filter is combined with

Gaussian process regression to estimate joint distributions of

object class and pose, and predict sensor observations from

future viewpoints. In [14] a layer of Dirichlet distribution is

embedded into a Convolutional Neural Network (CNN) for

modeling the distribution of beliefs for different object-action

pairs. CNNs are also used in [10] for entropy regression and

action prediction for the set of next viewpoint candidates. The

optimal trajectory is then approximated by maximizing the

sum of cross entropy over adjacent viewpoint pairs.

On the contrary, in this work we build upon a point-based

algorithm to compute approximate solutions of the POMDP

problem, exploring only a reachable subspace of the complete

belief search space [12].

III. PROBLEM FORMULATION

Given a robotic arm, the objective is to actively classify

unidentified objects in a tabletop scenario (Figure 1) with

a good balance between the highest possible classification

confidence and the lowest possible energy consumption. For

this problem, the robot is equipped with a range sensor

in an eye-in-hand configuration, and it is deployed in an

environment with an unknown number of static objects with

unknown identities.

The environment is composed of a finite number of objects,

where each object is assumed to belong to a class c whithin a

set of classes C of cardinality NC . Each class is represented

by a class prototype 3D model Mc.

We formulate hypotheses H(c, r) about the object class

and orientation, which means we hypothesize that the object

belongs to class c ∈ C and its orientation is described by the

rotation2 r ∈ SO(3) with respect to a canonical view.

At time t, the robot’s end-effector, where the depth sensor

is mounted, is in the location xt = [xt, yt, zt] with an

orientation rt in the 3D space. We refer to the 6DoF sensor

configuration as viewpoint, vt = {xt, rt}. At each time step,

the robot acquires a 3D point cloud Zt of the entire scene that

is partitioned into subsets zit (using 3D segmentation) such

that each subset corresponds to an object. Each point cloud

subset is then processed by a static classifier that returns the

hypothesis that best fits the input data zit at time t.
The goal is to choose a sequence of viewpoints {v0, . . . , vn}

with an optimal trade-off between the energy used to move

2SO(3) is the Lie group of rotation matrices.



Fig. 1. The operative scenario. A robot is asked to actively recognize and
localize all the objects on a table top.

the robot and the expected costs of incorrect decisions, as

formulated in (1). The process ends when the cost for moving

the robot to a new viewpoint is higher than the one for making

an error in the hypothesis selection.

A. Static hypothesis testing

Given a segmented point cloud associated to an object in

the scene, we need to estimate the class c it belongs to, and

its orientation r on the table plane. We assume here, and in

our experiments too, that all the objects are standing on the

plane, so that orientation is represented by a single angle, θ,

i.e. the rotation around the normal axis of the table plane.

For this task we employ the Viewpoint Pose Tree (VP-tree)

algorithm proposed in [1]. This algorithm is an extension of

the vocabulary tree, first introduced in [15], that extends the

utility to joint recognition and pose estimation in 3D by using

point cloud templates extracted from different viewpoints.

Training of the VP-tree is performed with simulated data.

For each hypothesis, a set of point clouds have been generated

with a simulated sensor. For each point cloud, Fast Point

Feature Histograms [21] are computed on a set of uniformly

distributed keypoints. Hierarchical clustering is then applied

to subdivide features into groups of visual words.

At testing time, the training models are ranked according to

the similarity of the query feature histogram and the training

histograms. The top ranked hypothesis is assigned as the

correct one.

IV. ENERGY SAVING PLANNER

Our goal is to choose a sequence of viewpoints for the sen-

sor {v0, . . . , vn} optimizing the trade-off between the energy

required to the robot to acquire new data and the expected

costs of incorrect decisions. In this work we propose to

model the problem as a Partially Observable Markov Decision

Process (POMDP), that is an extension of a MDP to systems

where the measurements do not allow a full observation of

the system’s state, or for systems with measurement noise. In

this section we first define the cost, i.e. reward function, and

then we present the POMDP formulation and an approximated

solution strategy.

A. Cost function
We define the best strategy for the robot, also called optimal

policy, as the one that minimizes the cost function:

E{JH + λ1JM + λ2JE} λ1, λ2 ≥ 0 , (1)

where JH is a term that accounts for correct hypothesis selec-

tion, JM prevents from approaching singular configurations,

and JE takes into account the energy spent to acquire a new

point-cloud. The expectional E{·} is needed since all the

indices are stochastic variables.
Specifically, the cost for an incorrect hypothesis selection

JH is:

JH(ĉ, r̂, c, r) =

{
K(r̂, r), ĉ = c

K∗, ĉ �= c
(2)

where K∗ is an arbitrary cost associated to an incorrect

categorization of the object class, while K(r̂, r) < K∗ is the

cost for an incorrect orientation estimate, when the class is

correctly estimated. In our formulation K(r̂, r) is defined as

the distance between rotations represented by unit quaternions.

Let p and p̂ be unit quaternions representing two rotations r
and r̂ in the same basis, the distance between rotations is

the angle of the difference rotation represented by the unit

quaternion s = pp̂∗, where ∗ denotes quaternion conjugation.

Thus, the

K(r̂, r) = 2 arccos |〈p, p̂〉| , (3)

with 〈p, p̂〉 = p1p̂1 + p2p̂2 + p3p̂3 + p4p̂4 and | · | the modulus

function.
For defining JM and JE we need to introduce the mathemat-

ical model of a robotic arm. A n-degrees of freedom robotic

manipulator can be described by a set of nonlinear differential

equations

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ , (4)

where τ =
[
τ1 · · · τn

]T
is the command torque vector,

q =
[
q1 · · · qn

]T
is the vector of generalized coordinates

(joint angles in the present case) with corresponding angular

velocity q̇ and acceleration q̈. In this standard Lagrangian

representation, M is the symmetric non singular moment of

inertia matrix, C is the Coriolis and centrifugal force matrix,

and g is the gravity torque. Cartesian coordinates x and joint

variables q are related by the forward kinematic function κ,

i.e. x = κ(q).
The term JM accounts for robot’s manipulability and pre-

vents from reaching singular joints configurations by exploit-

ing the redundant degrees of freedom. Let man(q) be the

manipulability ellipsoid defined as

man(q) =
√
det

(
J(q) JT (q)

) ≥ 0, (5)



where J(·) is the Jacobian matrix [22]. Since man(q) = 0
corresponds to a singular configuration, JM is defined as

JM (q) =
1

man(q)
. (6)

Lastly, the energetic cost JE is related to the energy

consumption. We define the energetic cost as the squared norm

of the torque needed for the gravity compensation in static

condition (q̇ = q̈ = 0):

JE(x) = ‖g(q)‖2 . (7)

Remark 1. Formally, q̇ = 0 implies that the mechanical energy

dissipated by the robot is equal to zero∫
q̇T (t)τ(t)dt = 0. (8)

However the i-th component τi of the command torque is

generated by the i-th motor as τi = kmIi, where Ii is the

current and km is a characteristic constant in any DC motor.

The electric energy is then proportional to the square of the

current, i.e. ∝ (Ii)
2, and so the energy cost is propostional

to the square of the torque, i.e. ∝ (τi)
2. Taking the norm

of the vector τ =
[
τ1 · · · τn

]T
related to the gravity

compensation we end up with (7)

Remark 2. In this work we consider within the energetic

contribution in the reward function (1) of the POMDP model

only the stationary cost ‖g(q′)‖2 related to the final position q′.
In applications where it is important to weight also the specific

trajectory to reach the target point, it would be possible to add

to (7) a term related to the energy needed to move the robot

from the starting position q = q(ti) = κ−1(x(ti)) at time ti
to the final position q′ = q(tf ) = κ−1(x(tf )) at time tf

JE(x) = ‖g(q)‖2 +
∫ tf

ti

q̇T (t)τ(t)dt. (9)

B. Partially Observable Markov Decision Process (POMDP)

Formally, a POMDP is a 6-tuple (S,A, T,R,Ω, O), where

S is a finite set of states, A is a finite set of actions, T :
S ×A → S is the transition function defining the probability

of state change upon application of a given action. The reward

function R : S × A → R represents the reward granted to

the system after having reached the new state with the given

action, Ω is a finite set of observations, and O is the probability

distribution of the observations according to states and actions.

At each time step, given a current state s ∈ S, the agent

receives an observation o ∈ Ω with probability O(s, o) =
Pr(o | s). Depending on this observation and the current state,

the agent takes an action a ∈ A, which causes a transition to

state s′ with probability T (s, a, s′) = Pr(s′ | s, a). Finally, the

agent receives a reward r equal to R(s, a). Then the process

repeats.

Solving a MDP means to find an optimal policy mapping a

state into an action that maximizes the expected total reward.

However, since in a POMDP the state is partially observable,

the concept of belief has to be taken into account. The belief
state b is the probability distribution over all states; in our

formulation, the belief state corresponds to the likelihood the

robot assigns to an object to belong to all the classes in C,

by taking into account not only the current observation, but

also the whole history of observations. A POMDP policy π
maps a belief b to a prescribed action a. A policy π induces

a value function Vπ(b) that specifies the expected total reward

of executing that policy π starting from b.
Starting from an initial distribution b0, at every iteration the

belief is updated using the formula:

b′(s′) = αO(s′, o)
∑
s∈S

T (s, a, s′) b(s) (10)

where α is a normalization constant and all the new beliefs

are guaranteed to be reachable from b0.

The goal for the robot is to choose the optimal policy π∗,
i.e. the policy that maximizes the associated value function

V ∗ = E [
∑

t R(st, at)]. In our formulation the state space of

the POMDP is the discrete space of the sampled viewpoints

(V) and the continuous space B := [0, 1]
Nh of distributions

over the Nh hypotheses. The main computational challenge

comes from the exponential growth of the size of B with the

number of hypotheses Nh. This problem can easily become

computationally intractable, but approximate solutions have

been proposed in the literature. In this work we resort to

the SARSOP approach [12], which uses samples to compute

successive approximations to the optimally reachable part of

B. The idea behind this algorithm is to sample a set of

points from the belief space B and use it as an approximate

representation of B, instead of representing B exactly. For

efficiency, most recent algorithms sample from R(b0), the set

of points reachable from a given point b0 ∈ B, under arbitrary

sequences of actions.

Theoretical analysis shows that approximate POMDPs so-

lutions can be computed efficiently when R(b0) has a small

covering number [13].

V. EXPERIMENTS

We evaluate the effectiveness of the proposed approach with

four different objects in a real scenario. We implemented the

proposed AOR framework using the Robot Operating System

(ROS) [25] and a Panda arm manipulator from Franka Emika

GmbH. The Panda arm is a redundant robot with 7 DoF, this

allows us to have high dexterity and so to reach a larger

number of poses in Cartesian space where we can examine

the scene from different views. The robot is equipped with

a Real Sense D415 mobile depth sensor mounted on the end

effector with the optical axis approximately aligned with the

last link of the arm.

We formulate hypotheses about 23 classes, including objects

like ‘pot’, ‘brush’ and ‘glass’, and yaw angles from 0◦ to 330◦

with a step of 30◦.
We restrict the motion of the sensor to a set of viewpoints

V (ρ) uniformly sampled on the surface of a hemisphere of



TABLE I
ACTIVE RECOGNITION RESULTS ON FOUR OBJECT CLASSES. THE BEST

OPTION IS TO ACHIEVE THE HIGHEST BELIEF IN THE MINIMUM AMOUNT

OF TIME (# STEPS) WITH THE MINIMUM ENERGY.

Object Approach Belief # steps Torque

Mug OUR 0.92 3.33 30.76
NVP [1] 0.75 6.67 40.83

Bottle OUR 0.81 2.50 35.53
NVP [1] 0.45 4.50 43.82

Handlebottle OUR 0.95 4 45.10
NVP [1] 0.77 8.66 62.38

Glasses OUR 0.91 4.4 35.95
NVP [1] 0.78 4.4 36.19

radius ρ centered at the location of the object. Each viewpoint

assumes the sensor is oriented with the optical axis pointing

to the centroid of the object. In our experiments ρ has been set

to 60cm to have at the same time a good image occupancy,

and as a consequence a good resolution of the point cloud,

and some sort of safety to see the whole object3.

We selected four different classes for our tests, with the

aim to perform analysis on a challenging detection task. We

decided to use three classes that can be easily confused

between each other (mug, bottle, and handlebottle), while the

fourth class (glasses) was proven to be the most challenging

for the static detector VP-tree during the classifier training

phase. For each class we fix the object location and orientation

in a fixed configuration at the center of the robot’s workspace,

and we perform 5 separate runs by randomly changing the

initial viewpoint.

In Table I we report active recognition results (averaged

over five runs) on four classes in terms of

• prediction confidence (cumulative belief over all the

hypothesis related to the correct class at the end of the

process),

• number of viewpoints visited before providing a predic-

tion (# steps), and

• energy consumption estimated during the process in terms

of the squared torque needed for the gravity compensation

in static conditions in all the viewpoints (Cartesian poses

xi corresponding to joint variables qi) visited by the

robot.

We provide comparison with a state-of-the-art method called

Nonmyopic View Planning (NVP) [1]. Our proposed method

outperforms the alternatives on all the object classes in all

the aspects analyzed. In particular we want to point out that

the results in Table I should be effectively interpreted in

conjunction with Figure 2. This figure shows the process of

exploration of the robot in terms of belief evolution and torque

provided to the robot for each step. As an example of a

common behaviour, we report here the averaged values on

five runs with the class handlebottle. In the upper plot, we can

3We decided to set a constant ρ for all the classes in our experiments.
Without loss of generality, one could decide to define a set of class specific
hemisphere radius (ρc) to take into account different scales in typical object
dimensions.

Fig. 2. Robot’s navigation process in terms of hypothesis belief evolution
(upper) and cumulative torque provided to the robot’s joints to compensate
gravity in each viewpoint.

clearly appreciate how the belief is consistently higher with

our approach than with NVP, witnessing that the convergence

of the process is quicker in our case. Moreover, the lower chart

highlights that our method saves up to 25% of the energy.

As for the evaluation of classification accuracy and lo-

calization precision, we report in Table II the object classi-

fication accuracy, i.e. the percentage of correctly predicted

object classes over the total amount of predictions generated,

and the root means squared error in object localization and

orientation estimation. Our method outperforms the state of the

art both classification and localization accuracy, with a notable

improvement in localization of about 50% on average. For

orientation estimation the precision is mostly extremely good

for our method as well as for NVP. The poor performance with

handlebottle is due to the fact that one single run predicts (for

both methods) an orientation that is 90◦ apart from the correct

one. A deeper analysis of the video shows how, starting from

that particular viewpoint, both methods are able to predict the

correct class without looking at the handle, and thus having no

information about the orientation of the target both methods

output a 0◦ prediction for the yaw angle (while correct answer

was 90◦). Note that the classes bottle and glass have no

associated orientation error since they are both symmetric

objects.

VI. CONCLUSIONS

In this paper, we proposed an Active Object Recognition

approach that takes into account the robot’s structure and capa-

bilities, modeling the sensor planning as a Partially Observable

Markov Decision Process (POMDP) that allows to sample the

optimization space in a very efficient manner. The proposed

objective function is able to recognize multiple objects by

minimizing the estimated energy consumption and, at the same

time, by considering manipulability constraints.



Fig. 3. Example of robot configurations and acquired images (both RGB and depth maps) trying to recognize a ‘mug’.

TABLE II
OBJECT CLASSIFICATION ACCURACY (ACC), AND ROOT MEAN SQUARED

ERROR IN OBJECT LOCALIZATION (eloc , IN CM) AND IN ORIENTATION

ESTIMATION (eori , IN DEGREES).

Object Approach Acc eloc eori

Mug OUR 1 0.6 0◦
NVP [1] 1 1.0 0◦

Bottle OUR 1 0.5 –
NVP [1] 0.8 1.3 –

Handlebottle OUR 1 1.2 16.6◦
NVP [1] 0.6 2.8 16.6◦

Glasses OUR 0.6 0.5 –
NVP [1] 0.4 0.8 –

We provide experiments with a real arm manipulator, show-

ing that we outperform the state of the art in AOR both in

object classification and in localization precision. Doing this,

our method is able to save about 25% of the energy with

respect to the best competitor, while ensuring to converge to

a prediction earlier and with a higher confidence score.

In this work we considered only the energetic cost to

compensate the gravity at the visited viewpoints. This is

reasonable, since most of the time is spent by the robot in these

configurations while acquiring an observation and selecting the

next action. In a future work we plan to include also a term

that accounts for the specific trajectory to reach the target point

as suggested in Eq. 9.
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