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SUMMARY 

 

The optimized use of the grape environment indigenous microbiota has been proposed as an 

innovative tool to mimic the complexity of the spontaneous fermentation process, without 

taking the risks of having poor-quality wines due to the uncontrolled growth of spoilage 

organisms or having a “standardized” product lacking originality caused by the inoculation of 

a single starter culture of Saccharomyces cerevisiae exhaustively employed worldwide. With 

the aim of exploring new alternatives for the improvement of wine quality, it was proposed 

the screening of innovative yeasts to be used on mixed fermentations together with S. 
cerevisiae. After the mining of more than 400 yeasts isolates in samples coming from 

multiple Italian wine-producing regions, a collection of non-Saccharomyces yeasts was 

thoroughly described morphologically and identified. About one quarter of them belonging to 

three more interesting and prevalent oenological species, namely Starmerella bacillaris, 

Lachancea thermotolerans and Metschnikowia spp., were picked for an in-depth molecular 

and physiological characterization. After the genotyping, stress tolerance assays, enzymatic 

activity trials and single inoculum fermentations, important differences were acknowledged 

between the strains and species, allowing for the selection of a reduced number of isolates 

showing potentially positive oenological traits. Furthermore, the isolates of S. bacillaris and 

L. thermotolerans were also submitted to a safety assessment of virulence factor related to 

human pathogenicity and were challenged to inhibit the growth of the phytopathogen Botrytis 
cinerea, responsible for massive quantitative and qualitative losses on the wine industry, 

across in vitro and in vivo assays, in order to become candidates for an integrated 

vitivinicultural strategy of biocontrol and mixed fermentation. The chosen isolates from the 

preliminary selection steps were then applied in sequential inoculations with a commercial S. 
cerevisiae in natural grape must. The physicochemical analysis and the aromatic profile 

confirmed the great potential of all three species to a successful winemaking routine, mainly 

focused on the glycerol increase and reduction of acetaldehyde concentration for S. bacillaris, 

limitation of acetic acid and boosted aromatic complexity for Metschnikowia spp., and 

diminution on ethanol content and enhanced natural acidity by lactic acid production for L. 
thermotolerans. This last feature was intriguingly highly variable among the strains and thus 

received a more detailed attention, revealing that sequence mutations and transcriptional 

regulatory mechanisms could be involved in the strong variance of a very relevant metabolic 

pathway. Indeed, many of the distinctive features of alternative yeasts are species- or strain-

dependent and the efficient selection of a new generation of starter cultures could provide 

satisfactory answers to multiple challenges of modern winemaking.  
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RESUMO 

 

O uso otimizado da microbiota autóctone associada às uvas tem sido proposto como uma 

ferramenta inovadora para mimetizar a complexidade de um processo de fermentação 

espontânea, evitando os riscos de se obter vinhos de baixa qualidade devido ao crescimento 

descontrolado de microrganismos indesejados ou vinhos “padronizados” com falta de 

originalidade como resultado da inoculação de uma cultura pura de starter Saccharomyces 
cerevisiae exaustivamente utilizada ao redor do mundo. Com o objetivo de explorar novas 

alternativas para a melhoria na qualidade dos vinhos, foi proposta uma triagem de leveduras 

inovadoras para utilização em culturas mistas com S. cerevisiae. Após o isolamento de mais 

de 400 leveduras a partir de amostras originárias de diversas regiões vitivinícolas da Itália, 

uma coleção de isolados non-Saccharomyces foi minuciosamente descrita do ponto de vista 

morfológico e identificada. Cerca de um quarto dos isolados, pertencentes à três espécies de 

maior abundância e maior interesse enológico, a saber Starmerella bacillaris, Lachancea 
thermotolerans e Metschnikowia spp., foram escolhidos para um densa caracterização 

molecular e fisiológica. Após a genotipagem, ensaios de tolerância ao estresse, provas de 

atividade enzimática e fermentações com cultura simples, diferenças importantes entre as 

espécies e cepas foram observadas, permitindo a seleção de um número limitado de isolados 

com potenciais características enológicas positivas. Adicionalmente, os isolados de S. 
bacillaris e L. thermotolerans foram submetidos a uma verificação de fatores de virulência 

associados à patogenicidade em humanos e foram desafiados a inibir o crescimento do 

fitopatógeno Botrytis cinerea, responsável por enormes perdas qualitativas e quantitativas na 

indústria do vinho, em testes in vitro e in vivo, com o objetivo de obter candidatos pra uma 

estratégia vitivinícola integrada de biocontrole e fermentação mista. Os isolados selecionados 

durante as primeiras fases de triagem foram então aplicados em fermentações sequenciais 

com um starter comercial de S. cerevisiae em mosto natural de uvas. As análises físico-

químicas e o perfil aromático confirmaram o enorme potencial das três espécies para uma 

bem-sucedida produção de vinho, focada principalmente no aumento de glicerol e redução na 

concentração de acetaldeído para S. bacillaris, diminuição no ácido acético e incremento na 

complexidade aromática para Metschnikowia spp., e limitação da quantidade de etanol com 

uma melhora na acidez natural pela produção de ácido lático para L. thermotolerans. Esta 

última característica se mostrou intrigantemente muito variável entre as diversas cepas e 

recebeu então uma atenção mais detalhada, que revelou mutações na sequência e mecanismos 

de regulação transcricional provavelmente envolvidos na significativa variância dessa via 

metabólica de alta relevância. De fato, muitas das características peculiares das leveduras 

alternativas são dependentes da espécie ou cepa e uma seleção eficiente de uma nova geração 
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de cultivos starter poderia fornecer respostas satisfatórias para múltiplos desafios da 

vinicultura moderna. 
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PREFACE 

 

The PhD research was performed in its majority in the Laboratory of Food 

Microbiology, Department of Biotechnology of the University of Verona. Some 

chemical analysis of the wines produced in the microvinification trials were 

carried out in the Laboratory of Oenological Chemistry of the same university, 

and DNA sequencing was performed at external facilities as indicated in the 

chapters regarding this analysis. The thesis is structured as follows: 

 

Chapter 1 Premise 

 

Chapter 2 Ecology of non-Saccharomyces yeasts in high sugar matrices from 

different regions of Italy 

 

Chapter 3 Exploring the phenotypic and genotypic diversity of a potential 

new generation of starter cultures for oenology 

 

Chapter 4 Antagonistic effect of alternative yeast strains against Botrytis 

cinerea for integrated vitivinicultural biocontrol strategies 

 

 Chapter 5 Unraveling molecular and physiological divergence among strains 

of Lachancea thermotolerans in the production of lactic acid 

 

Chapter 6 Improvement in the quality of wines elaborated with mixed 

fermentations of non-Saccharomyces yeasts and Saccharomyces cerevisiae 
 

Chapter 7 Concluding remarks 

 

Parts of the following chapters were already presented in scientific 

conferences, namely: International Conference in Wine Sciences “Macrowine 

2018”, organized in Zaragoza, Spain, where it was presented the poster “Isolation 

and physiological characterization of non-Saccharomyces yeast strains with 

potential oenological role from different regions of Italy”; XII Congress 
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Biodiversity 2018, at Teramo, Italy, one oral presentation entitled “Exploring 

Starmerella bacillaris Diversity to Develop New Integrated Vitivinicultural 

Strategies” and two posters, “Phenotypic and Genotypic Diversity of Lachancea 

thermotolerans Wine Strains in the Production of Lactic Acid” and “Molecular 

and Phenotypic Characterization of Metschnikowia spp. Wine Strains from 

Different Regions of Italy”. 

In the period between February and August 2017, the student developed a 

research internship in the Institute for Wine Biotechnology (IWBT) of the 

University of Stellenbosch, South Africa. The project entitled “Transcriptome 

analysis of wine-related lactic acid bacteria under different conditions of oxygen 

and nitrogen availability” was carried out under the coordination of Prof. Maret 

du Toit. The results were presented as a poster in the conference Enoforum 2019, 

at Vicenza, Italy, entitled “Metabolic response of wine-related lactic acid bacteria 

to different conditions of aeration and nitrogen availability”. 

The main results of this PhD thesis will be organized for publication in 

scientific journals. Data of Chapter 2 and Chapter 3 were already published: 

Renato L. Binati, Giada Innocente, Veronica Gatto, Alessandro Celebrin, 

Maurizio Polo, Giovanna E. Felis, Sandra Torriani. “Exploring the diversity of a 

collection of native non-Saccharomyces yeasts to develop co-starter cultures for 

winemaking”, Food Research International, Volume 122, 2019, Pages 432-442, 

ISSN 0963-9969, https://doi.org/10.1016/j.foodres.2019.04.043. 
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CHAPTER 1.  PREMISE 
 

1.1.  GENERAL INTRODUCTION 

 

Never before in the history of mankind there were available so many different 

options of wine as we have in the market today, with a huge diversity regarding 

the style and quality. The globalization made possible for consumers all over the 

world to have easy access to wine bottles coming from all different regions, 

making the international competition become an important factor pushing towards 

higher quality, but also these consumers are getting more confident about their 

wine preferences and chasing for new styles. Climate change and the issues 

regarding the health of both consumers and environment can be added to the list 

of challenges to the wine industry worldwide, calling for technological 

innovations (Bisson et al., 2002; Pretorius and Hoj, 2005). 

Among the factors that contribute to the wine quality, there is usually a 

consensus about the grape variety, environmental aspects, the health and ripeness 

state of the grapes and the human factor (viticultural and winemaking practices) 

(Van Leeuwen and Seguin, 2006; Bokulich et al., 2016). Nevertheless, it is widely 

recognized that the microbial ecology in a food matrix has a crucial and complex 

influence on the global quality and uniqueness of the product (Capozzi and Spano, 

2011). More specifically, it is also very well-defined the role played by microbial 

interactions in the grapevine health and during the fermentation of sugars and the 

maturation of the wine (Nykanen, 1986; Lambrechts and Pretorius, 2000; Barata 

et al., 2012). 

Winemaking is a very complex process from the microbiological point of 

view. The spontaneous fermentation of grape must is carried out by a succession 

of metabolic active yeast and bacteria species, each one better adapted to different 

stages of this biochemical transformation. Yeast genera frequently found on 

grapes and in must include Hanseniaspora, Candida, Metschnikowia, 

Kluyveromyces, Schizosaccharomyces, Torulaspora, Rhodotorula, 

Zygosaccharomyces, and Cryptococcus (Heard and Fleet, 1985). It is well-known 

that the species Saccharomyces cerevisiae usually overtake the others and is the 
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main responsible for the alcoholic fermentation, due to its better tolerance to 

ethanol and SO2 (Henick-Kling et al., 1998). 

The inoculation of starter cultures of S. cerevisiae is a very well established 

approach followed by many winemakers around the world, that can provide 

predicted results in a more controlled process, ensuring consistency, safety and 

quality of the final product, but on the other hand it suppresses the autochthonous 

microbiota responsible for the complexity and some distinctive and “unique” 

regional characteristics of wine. However, it has to be considered the high risk of 

relying on natural wild fermentations, that could result on stuck or sluggish 

process and/or the raise of undesired metabolites associated with depreciation and 

human toxicity (Pretorius, 2000; Romano et al., 2003; Capozzi and Spano, 2011). 

Hence, a reliable biotechnological alternative to mimic the spontaneous 

uncontrolled fermentation, without taking the risks of spoilage, and that could at 

the same time provide complexity and improved organoleptic, is the formulation 

of mixed starter cultures (Capozzi and Spano, 2011). 

In the past years, there has been an increasing number of studies regarding the 

role of a new generation of non-Saccharomyces yeasts during the fermentation of 

wine, their impact on the sensorial properties and their metabolic needs (Ciani et 
al., 2010; Comitini et al., 2011, Capozzi et al., 2015). Initially neglected as having 

secondary importance or even considered as undesirable spoilage 

microorganisms, nowadays the research has shown that selected strains of non-

Saccharomyces can be very positive resources for facing the challenges of 

changing consumer demands and environmental issues (Padilla et al., 2016). 

The non-Saccharomyces yeasts have been reported as possessing aroma-

related enzymatic activities and other metabolic traits interesting for oenology, 

which are not present or less pronounced in S. cerevisiae (Esteve-Zarzoso et al., 
1998; Mateo and Maicas, 2016). Many publications have reported that beneficial 

(e.g. enhanced glycerol) or negative (e.g. overproduction of acetic acid) metabolic 

characteristics vary significantly between wine microbial species and also 

between strains belonging to the same species, and that such huge phenotypic 

biodiversity can be exploited by the screening of a new generation of starters for 

mixed fermentations, in order to select the best producers of interesting 
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metabolites and macromolecules, increasing the wine complexity, sensorial 

properties, stability and overall quality (Fleet, 2008; Capozzi et al., 2015). 

It is important to notice that the non-Saccharomyces yeasts can be very useful 

tools for the application on mixed fermentations, either sequential or co-

inoculated, in order to integrate their distinctive production of aromatic 

compounds and other important wine properties with the unique ability of S. 
cerevisiae to complete the fermentation process until the consumption of all 

residual sugar (Ciani, 2006; Fleet, 2008; Suárez-Lepe and Morata, 2012; Rossouw 

and Bauer, 2016). 

Currently, there are already some commercial starters of non-Saccharomyces 

yeasts strains available for application in the wine industry, being used with the 

goal of giving the wines the above mentioned increase of complexity and 

improvement of sensorial properties (Petruzzi et al., 2017; Barbosa et al., 2018). 

Supplementary Table S.1 shows a list of these alternative starters available on the 

market up to date, adapted from Petruzzi et al. (2017). 

 

1.2.  AIMS OF THE STUDY  

 

The main goal of this PhD thesis was to explore the diversity of non-

Saccharomyces yeasts to be employed in winemaking processes for the 

elaboration of distinctive wines on innovative mixed fermentations with 

Saccharomyces cerevisiae. 

The specific aims were the isolation and identification of yeasts from high-

sugar matrices representative of different regions across Italy, the set-up of a vast 

yeast culture collection, the typing of isolates belonging to the same species, the 

phenotypic characterization of some interesting isolates for different oenological 

features involved in the overall quality of wine, the inoculation of grape must in 

single and sequential fermentations of new potential starter cultures belonging to 

the species Starmerella bacillaris and Lachancea thermotolerans and to the genus 

Metschnikowia, the comparison from a physic-chemical and aromatic point of 

view of the wines produced, and a genetic characterization of the different 

metabolism of lactic acid observed among the isolates of L. thermotolerans. 
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CHAPTER 2.  ECOLOGY OF NON-Saccharomyces YEASTS IN 

HIGH SUGAR MATRICES FROM DIFFERENT REGIONS 

OF ITALY 
 

2.1.  INTRODUCTION 

 

The history of winemaking can be traced back to some tens of centuries ago. 

However, for most of this time the existence of yeasts has been ignored. It was 

only in the 19th century, in 1854, that Louis Pasteur started to describe the 

microbiological basis of the fermentation (from the Latin fervere, “to boil”). He 

demonstrated that yeasts are the responsible for the conversion of sugars present 

in the grape must to ethanol and carbon dioxide during the fermentation process 

(Padilla et al., 2016). The scientist precursor of oenology noticed the existence of 

a wide variety of microorganisms in fermenting musts, and his drawings based on 

microscopic observations showed two types of yeasts. The first, more abundant 

during the early stages, had an apiculate shape (probably corresponding to what 

we know today as Hanseniaspora uvarum); the second, which became dominant 

during the alcoholic fermentation, was round shaped and larger (most likely the 

current Saccharomyces cerevisiae) (Barnett, 2000). 

The great variability of yeasts that can be present in grape musts are already 

found colonizing vineyards and grapes, but are also recurrent on the winery 

equipment (Pretorius et al., 1999). Among this complex microbiota, the most 

important wine yeast is undoubtedly S. cerevisiae, due to its excellence on the 

fermentation performance, its tolerance to the harsh conditions found in wine and 

the metabolism related to the aroma profile (Reed and Peppler, 1973; Bely et al., 
1990; Fleet, 1993; Dubourdieu, 1996; Úbeda and Briones, 2000; Ugliano et al., 
2006). The dominance of S. cerevisiae during the course of the fermentation is 

regularly observed for all kinds of wine, either on spontaneous or inoculated 

process (Heard and Fleet, 1985; Padilla et al., 2016). 

The inoculation of selected starter cultures of S. cerevisiae to carry out the 

alcoholic fermentation in grape must was first reported by Müller-Thurgau in 

1890 (Pretorius, 2000; Barnett and Lichtenthaler, 2001). It is now one of the most 

common practices used in the wineries worldwide, with the aims of having better 
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predicted results in a more controlled process, avoiding the risks of contamination 

and unpredictable outcomes due to vintage variation. There are a lot of different 

active dry yeasts in the market, each one better adapted to specific conditions and 

showing different features according to the winemaker’s needs and preferences 

(Beltran et al., 2002; Santamaría et al., 2005). 

However, despite all these advantages of using selected starters of S. 
cerevisiae, in more recent years there has been a strong debate among winemakers 

and scientists about the ‘standardization’ of the wines due to the use of the same 

pure cultures in many different regions, since the starter cultures inoculated at 

high concentrations rapidly dominate over the indigenous population and limit 

their involvement in the process (Fleet et al. 1984; Heard and Fleet, 1985; 

Henick-Kling et al. 1998). The homogeneity of fermentations is one of the goals 

of the inoculation, but at the same time the critics of the extensive use of this 

approach claim that the wines will lack on complexity, typicity and distinction, 

which could presumably be achieved with the indigenous microbiota associated 

with spontaneous fermentations (Lambrechts and Pretorius, 2000; Romano et al., 
2003). 

Usually, before being considered an opportunity to increase the quality of 

wine, the abundance of other yeast species was considered as spoilage organisms, 

causing stuck or sluggish fermentations or producing off-flavors (du Toit and 

Pretorius, 2000; Padilla et al., 2016). There is a wide variety within these 

‘supporting’ yeasts, and the term “non-Saccharomyces” is used to designate more 

than 20 genera, for example Hanseniaspora/Kloeckera, Candida, Metschnikowia, 
Pichia, Brettanomyces, Kluyveromyces, Schizosaccharomyces, Torulaspora, 

Rhodotorula, Zygosaccharomyces, and Cryptococcus, among others (Heard and 

Fleet, 1985; Padilla et al., 2016). They are actually the protagonists during the 

initial phases of spontaneous fermentation, reaching concentrations around 103 to 

106 CFU/g in the grape berries surface and in the must (Barata et al., 2008). Many 

environmental parameters can affect the number and ratio of representatives from 

those species, such as temperature, nutrient availability or supplementation, 

antimicrobial agents, clarification practices (Fleet and Heard, 1993). 

S. cerevisiae can be barely found in the first 3-4 days of fermentation and 

some non-Saccharomyces species can reach up to 107 CFU/g, but, as said before, 

the first progressively becomes the dominant when the process of conversion of 
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the sugar into ethanol goes ahead and the other species cannot survive as a 

consequence of their weak tolerance to this compound (Heard and Fleet, 1985; 

Fleet, 1999), even though some studies already showed the detection of non-

Saccharomyces throughout the fermentation process (Jolly et al., 2006). 

In this context, one suggested approach that is ever gaining popularity is the 

inoculation of selected species of non-Saccharomyces on mixed fermentations 

alongside with S. cerevisiae, in order to mimic the process of spontaneous 

fermentation without taking the risks of contamination by undesired species and 

stuck or sluggish fermentations (Jolly et al., 2003; Rojas et al., 2003; Romano et 
al., 2003; Ciani et al., 2006). The first non-Saccharomyces strain to be used 

intentionally in wine fermentation was in the 1960s, a selected Torulaspora 
delbrueckii to reduce the volatile acidity (Cantarelli, 1955; Belda et al., 2016). 

Nowadays, there are many other commercial strains of non-Saccharomyces 

available, but this practice is still a challenge for researchers and oenologists 

because many aspects of the non-Saccharomyces behavior on wine fermentation 

are still unclear (Padilla et al., 2016); the isolation and selection of suitable strains 

will still be an important topic for wine researchers worldwide for the next years. 

It is of great interest to study the microbial resources present in different 

ecosystems, not only for ecology and biogeography reports, but also because the 

biodiversity can offer a wide variety of technological applications, and the non-

Saccharomyces yeasts are a good example of this potential (Úbeda et al., 2014). 

The isolation can be done from grape berries, but also from other raw and 

processed plant materials, as yeasts found those ecosystems suitable for their 

growth and colonization (Iacumin et al., 2012; Úbeda et al., 2014). Non-

Saccharomyces yeasts have been reported to colonize many food and beverage 

products, besides grape must and wine, and many interesting species could be 

isolated from products containing high concentration of sugar or low water 

activity (aW), such as honey, sweets, molasses, overripe or dried fruits (Deák, 

2008; Benito et al., 2013). 

Many diverse differential-selective media have been already described in the 

literature for the isolation of non-Saccharomyces species, based on metabolic 

physiological characteristics of these microorganisms (Heard and Fleet, 1986; 

Benito et al., 2013). One of them is Wallerstein Laboratory Nutrient Agar (WL), 

which is not a very selective medium, but can be very useful to distinguish 
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numerous yeast species found in wine fermentations by colony color and 

morphology, being used also for a preliminary identification of yeast present in 

fermenting musts (Green and Gray, 1950; Cavazza et al., 1992; Pallman et al., 

2001). 

The classical methods of yeast identification, based on macroscopic and 

microscopic observations, sexual and biochemical characteristics of the isolates 

are laborious, time-consuming and not suitable for reliable assessments, but can 

be very useful for the identification and characterization studies, when they are 

conveniently linked to the more recent methods of molecular biology (Barnett et 
al., 1990; Correll, 1991; Deák, 1993). Molecular methods allow the identification 

of microorganisms based on comparison with public databases, and nowadays 

they are very precise, straightforward and fast (Mannazzu and Budroni, 2005). 

Polymerase chain reaction (PCR) based methods, such as restriction fragment 

length polymorphism (RFLP) and random amplification of polymorphic DNA 

(RAPD), are fast, reproducible and reliable methods for molecular 

characterization of yeasts (Messner and Prillinger, 1995; Masneuf et al., 1996; 

Mozina et al., 1997; Guillamón et al., 1998). RAPD is a whole-genome PCR that 

results in specific fingerprints by using short primers which bind to arbitrary 

regions within the sequence (Quesada and Cenis, 1995). One example of such 

primer is M13, which give characteristic band patterns for different wine yeast 

species (Lopandic et al., 2008). 

These methods can be used for a primary typing of a vast diversity of isolates, 

after what a few representatives from the clusters formed are precisely identified 

based on sequencing of the internal transcribed spacer (ITS) zone located within 

the region between the 18S rRNA and 28S rRNA genes, and/or the genes 

encoding the D1/D2 domain of the large subunit of rRNA (26S), followed by 

comparison with public databases of sequences (Bruns et al., 1991; Henrion et al., 
1994; Kurtzman and Robnett, 1998). 

PCR-Denaturing gradient gel electrophoresis (DGGE) is another molecular 

analytical method applied to study microbial ecology in food and wine 

fermentations. In this technique, microbial DNA is amplified with specific 

primers and the amplicons generated are then separated on the basis of differences 

in nucleotide sequence (Muyzer and Smalla, 1998; Cocolin et al., 2000; Giraffa 

and Neviani, 2001; Prakitchaiwattana et al., 2004). 
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The main aim of this work was to establish a vast collection of yeasts isolated 

from diverse high-sugar substrates collected at multiple different Italian regions, 

in order to have access to a huge variability of interesting resources that could be 

used mainly for oenology and also other relevant technological applications. 

The isolation and identification of the yeasts at species level allowed us to 

draw some conclusions about the presence, diversity and distribution of the 

different species in the samples grouped by diverse criteria, such as geographical 

location and type of sample. 

 

2.2.  MATERIAL AND METHODS 

 

2.2.1.  Samples 

 

During two consecutive vintages, 2015 and 2016, samples with high sugar 

concentration, such as grapes, grape must, honey, overripe and dried fruits were 

collected from different regions throughout Italy. 

Table 2.1 shows a summary of samples used during this study. 

The samples of honey and grape must were brought to the laboratory in sterile 

flasks (about 100 mL), while grapes and other fruits were aseptically placed 

directly from the trees into sterile plastic bags and transported immediately to our 

facility under refrigerated conditions. The content of each bag (around 100 g) was 

crushed using a paddle blender homogenizer (BL Smart Astori Tecnica). 

 

Table 2.1. List of samples collected for the isolation of yeasts. 

Type Varieties Regions Nº 
Grapes Alicante, Barbera, Bombino, Bonarda, Clinton, 

Corvina, Corvinone, Glera, Malvasia Candia, 

Malvasia Puntinata, Marzemino, Merlot, 

Moscato Giallo, Moscato Rosa, Pecorino, Pinot 

Grigio, Pinot Nero, Rondinella, Sangiovese, 

Solaris, Souvignier Gris, Vermentino, Viognier 

and Table grapes 

Abruzzo, Emilia-

Romagna, Lazio, 

Toscana, Trentino-

Alto Adige, Veneto 

101 

Grape 
Musts 

Corvina, Corvinone, Fiano, Glera, Marzemino, 

Negramaro, Pinot Grigio, Rondinella, Solaris 

Puglia, Veneto, 

Trentino-Alto Adige 

36 
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Honey Honey, honeycomb, fermented honey 

(hydromel) 

Abruzzo, Puglia, 

Sardegna, Sicilia, 

Toscana, Veneto 

15 

Dried 
Fruits 

Barley, Date, Fig, Plum Emilia-Romagna, 

Veneto 

6 

Overripe 
Fruits 

Apple, Blackberry, Fig, Plum Veneto 11 

  TOTAL 169 

 

2.2.2.  Yeast isolation, purification and maintenance 

 

For the isolation of yeast colonies, aliquots of the samples were diluted on 

physiological solution containing 0.9% of NaCl (Sigma-Aldrich) and then spread 

onto WL agar medium (Sigma-Aldrich), containing 100 mg per liter of 

chloramphenicol (Merck) to inhibit the growth of bacteria. After incubation at 

27 ºC for 72 h, all colonies showing different morphology/color, regardless of 

their number on the plate, were streaked on new plates of the same medium in 

order to obtain pure and single cultures. Besides the morphological 

characterization of the colonies, the cells were observed on optical microscope 

with 1000x magnification. One colony of each isolate was used to inoculate a 10-

mL tube containing YPD broth (yeast extract, 1.0%; bacteriological peptone, 

2.0%; glucose, 2.0%; Sigma-Aldrich). After 48 h incubation at 27 ºC, an aliquot 

was taken for the cryopreservation at -80 ºC in a 25% glycerol solution and all the 

yeast isolates obtained during this thesis were included in the collection. 

Immediately before use for the characterization assays and microvinification 

trials, the yeasts were transferred from the stocks to new Petri dishes containing 

WL agar and/or tubes with YPD broth, being cultured for 48 h at 27 ºC. 

 

2.2.3.  DNA extraction 

 

Total genomic DNA was isolated and purified using the commercial kit 

Wizard Genomic DNA Purification (Promega) following the manufacturer’s 

protocol, from a 2-mL aliquot of cultures grown in YPD broth. The quality 

assessment of the DNA obtained was performed with a NanoDrop ND1000 UV-
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Vis Spectrophotometer (Thermo Scientific) and dilution in DNAse-free water was 

carried out when necessary for the following molecular analysis. 

 

2.2.4.  RAPD-PCR 

 

The analysis of RAPD-PCR was used for the dereplication of yeast isolates, 

employing the primer M13 (5’-GAGGGTGGCGGTTCT-3’) and according to the 

protocol of Lieckfeldt et al. (1993). The reaction mix was prepared with the 

following concentrations for the final volume of 20 µL: 1× DreamTaq Green 

Buffer (Thermo Scientific); 4 mM MgCl2; 0.1 mM dNTPs; 4 µM primer M13; 

0.025 U/µL DreamTaq DNA Polymerase (Thermo Scientific) and 10 ng genomic 

DNA. The amplification program considers an initial denaturation at 94 ºC for 5 

minutes, followed by 40 cycles of denaturation at 94 ºC for 1 minute, annealing at 

45 ºC for 45 seconds and extension at 72 ºC for 2 minutes, concluding with a final 

extension of 5 minutes at 72 ºC. The amplification was conducted on Thermal 

Cycler 2720 (Applied Biosystems). 

Band profiles were realized on electrophoresis gel at 1.2% agarose in 1× TAE 

Buffer (40 mM Tris, 20 mM Acetic acid, and 1 mM EDTA, Sigma-Aldrich) 

stained with EuroSafe colorant (Euroclone) on a 2 hours and 20 minutes run at 

110 V. The molecular ladder used was O’Gene Ruler DNA (Thermo Scientific). 

The visualization and image capturing were made under UV light with UVITEC 

Gel Documentation System (Cleaver Scientific). The images were analyzed with 

the software BioNumerics (version 5.0, Applied Maths) and dendrograms were 

constructed using Pearson’s correlation coefficient and the unweighted pair group 

method with arithmetical average (UPGMA) clustering. 

 

2.2.5.  Sequencing 

 

A selected number of isolates was chosen from the RAPD analysis based on 

the clusters formed in the dendrograms obtained and their DNA was used for 

amplification of specific fragments (ITS region and D1/D2 domain) as detailed 

below. The PCR products were purified and sent to GATC Biotech (Konstanz, 

Germany) for the sequencing. The sequences obtained were compared with online 
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database using the BLAST alignment tool (http://blast.ncbi.nlm.nih.gov/) in order 

to identify based on the most similar species. 

 

2.2.5.1.  ITS region 

 

For all the representative isolates of the clusters formed with the RAPD 

analysis, the ITS region was chosen to confirm their identities by sequencing. The 

PCR for amplification of the ITS region was performed with the pair of primers 

ITS1 (5’-TCCGTAGGTGAACCTGCGG-3’) and ITS4 (5’-

TCCTCCGCTTATTGATATGC-3’), according to White et al. (1990). The 

reaction mix was prepared for a final volume of 20 µL with the following 

components: 1× DreamTaq Green Buffer (Thermo Scientific); 1.5 mM MgCl2; 

0.1 mM dNTPs; 0.5 µM primer ITS1; 0.5 µM primer ITS4; 0.025 U/µL 

DreamTaq DNA Polymerase (Thermo Scientific) and 10 ng genomic DNA. The 

amplification program consists of an initial denaturation at 94 ºC for 5 minutes, 

followed by 35 cycles of denaturation at 94 ºC for 50 seconds, annealing at 

55.5 ºC for 50 seconds and extension at 72 ºC for 1 minute, concluding with a 

final extension of 10 minutes at 72 ºC. The amplification was conducted on 

Thermal Cycler 2720 (Applied Biosystems). 

 

2.2.5.2.  D1/D2 domain 

 

After a series of unsatisfactory results for the ITS sequencing of some isolates, 

it was decided to try another widely used fragment of yeasts DNA for the 

sequencing, the D1/D2 domain of the 26S rRNA gene. The primers used were 

NL-1 (5′-GCATATCAATAAGCGGAGGAAAAG-3′) and NL-4 

(5′GGTCCGTGTTTCAAGACGG-3′), following the protocol of Kurtzman and 

Robnett, 1998. A reaction mix with all components was prepared for a final 

volume of 20 µL as follows: 1× DreamTaq Green Buffer (Thermo Scientific); 

1.5 mM MgCl2; 0.2 mM dNTPs; 0.7 µM primer NL-1; 0.7 µM primer NL-4; 

0.05 U/µL DreamTaq DNA Polymerase (Thermo Scientific) and 10 ng genomic 

DNA. The amplification program started with an initial denaturation at 95 ºC for 

10 minutes, followed by 36 cycles of denaturation at 94 ºC for 30 seconds, 
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annealing at 55 ºC for 30 seconds and extension at 72 ºC for 45 seconds, and 

concluded with a final extension of 7 minutes at 72 ºC. The amplification was 

conducted on Thermal Cycler 2720 (Applied Biosystems). 

 

2.2.6.  DGGE 

 

In order to verify the existence of more than one variant of the 26S rRNA 

gene in the isolates that had this gene sent to the sequencing, due to ambiguous 

results in the sequences received, a fragment of approximately 250 bp within the 

D1/D2 domain was amplified and submitted to DGGE analysis (Prakitchaiwattana 

et al., 2004). The amplification was performed with primers NL-1 containing GC-

clamp (5’-CGCCCGCCGCGCGCGGCGGGCGGGGCGGGGGC- 

GCATATCAATAAGCGGAGGAAAAG-3′) and LS-2 (5’-

ATTCCCAAACAACTCGACTC-3’), according to Cocolin et al., 2000. The 

conditions of the reaction for a final volume of 40 µL were as follows: 1× 

DreamTaq Green Buffer (Thermo Scientific); 2.0 mM MgCl2; 0.2 mM dNTPs; 

0.2 µM GC-clamp primer NL-1; 0.2 µM primer LS-2; 0.025 U/µL DreamTaq 

DNA Polymerase (Thermo Scientific) and 50 ng genomic DNA. The 

amplification program started with an initial denaturation at 95 ºC for 5 minutes, 

followed by 30 cycles of denaturation at 95 ºC for 1 minute, annealing at 52 ºC for 

2 minutes and extension at 72 ºC for 2 minutes, and concluded with a final 

extension of 7 minutes at 72 ºC. The amplification was conducted in Thermal 

Cycler 2720 (Applied Biosystems). 

The separation of GC-clamped amplicons was carried out in a D-CodeTM 

Universal Mutation Detection System (Bio-Rad). The PCR samples were added 

with the same volume of loading buffer 2.0× and applied into an 8% 

polyacrylamide gel (acrylamide:bis-acrylamide ratio of 37.5:1) of 20x20x0.1 cm 

with a denaturing gradient from 30–60% of urea and formamide. The 

electrophoretic run was performed in a running buffer of 1% TAE at a constant 

voltage of 50 V for 16 hours at 60 ºC. After the end of the run, the gel was stained 

in solution containing EuroSafe colorant (Euroclone). The visualization and 

image capturing were made under UV light with UVITEC Gel Documentation 

System (Cleaver Scientific). 
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2.3.  RESULTS AND DISCUSSION 

 

2.3.1.  Isolation and identification of non-Saccharomyces yeasts 

 

A total of 169 samples were collected from 35 different locations distributed 

across 9 regions of Italy. Most of the samples were composed of grape bunches 

harvested directly from the vineyards, belonging to 23 varieties of Vitis vinifera 

and also 4 samples of table grapes. We also received grape musts just pressed, at 

the very beginning of fermentation, in order to find higher concentration of non-

Saccharomyces yeasts, from 9 different grapes, both red and white. Additionally, 

17 samples of overripe/dried fruits and 15 of honey were used for the isolation. 

All samples have in common the high sugar content, aiming to isolate strains 

adapted to growing on such conditions, as it was already shown that they are able 

to achieve better results on grape must fermentation than other natural yeasts 

isolated from environments less rich in sugars (Camarasa et al., 2011). 

After the purification of at least one colony from every type of different 

morphology encountered at the WL plates spread with the diluted samples, a total 

number of 409 yeast isolates were organized into our culture collection. They 

were all described from the macroscopically and microscopically point of view. 

This approach can be very useful for a preliminary identification and selection of 

the isolates. As demonstrated by Cavazza et al. (1992) and Pallmann et al. (2001), 

many yeast species associated with wine fermentation present distinguishable 

aspects of the colonies grown on WL medium, and some of them also present 

very particular cell morphology when observed with optical microscope. 

The morphological analysis was used as the first criteria of exclusion of some 

groups which have less interesting properties for the purposes of this research, the 

inoculation as starter cultures on mixed fermentations. We decided to do not keep 

for the next steps of characterization the isolates presenting flat and dark green 

colonies with apiculate cells (presumably associated with Hanseniaspora uvarum 

and other species of the Hanseniaspora genus) and the white/cream colonies with 

wrinkled opaque surface, fringed margins and elongate cells forming 

pseudohyphae (usually characteristic of Candida spp. and Pichia spp.), shown on 

Figure 2.1. They are both among the most common groups found in vineyards and 

early stages of fermentation. 
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This way, we were able to identify 55 isolates with the first characteristics 

described above, which will be called from here on as “apiculate”; and 47 

showing the later characteristics on the previous paragraph, which will be now 

referred to as “pseudohyphae”. These isolates were maintained on the yeast 

collection at -80 ºC, but they were not evaluated on the next trials of this research. 

Nevertheless, some representatives of these two groups were included on the 

molecular identification procedures for the confirmation of the morphological 

preliminary identification. All remaining 307 yeast isolates had their genomic 

DNA purified and amplified according to the RAPD protocol. 

 

 

Figure 2.1. Morphology of colonies grown on WL Nutrient Agar and cells observed with 1000× 

magnification on optical microscope. (A) Dark green round colonies with flat elevation; (B) 

apiculate cells; (C) white wrinkled colonies with fringed margins; (D) elongate cells. 

 

Figure 2.2 shows one example of the electrophoretic run on agarose gel with 

isolates with different band profiles. 

 

 

Figure 2.2. Electrophoretic run on agarose gel at 1.2% for the separation of bands amplified with 

primer M13 on genomic DNA of yeast isolates. First and last lanes were loaded with molecular 

weight marker O’Gene Ruler DNA (Thermo Scientific). 

 

A B C D
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All images were grouped together for the construction of dendrograms with 

the software BioNumerics. A threshold of 90% was defined to group isolates 

belonging to the same species. At least one isolate from the clusters formed by a 

minimum of three isolates was chosen for the identification through ITS 

sequencing. Some clusters were composed by just one or two isolates and it was a 

choice to do not sequence their DNA, because they were not suitable for the next 

steps of screening, since the goal of this study was a broad characterization of 

diversity of isolates with major distribution and presence on the samples analyzed. 

The ITS sequences obtained were compared to online databases and 24 

different species could be identified among the yeast isolates, shown on Figure 

2.3. Many of them are usually present on vineyards and associated with the wine 

environment. Not considering the groups of reduced oenological interest, as stated 

before, the most abundant non-Saccharomyces yeast was Starmerella bacillaris, 

followed by Metschnikowia spp., which couldn’t be identified at species level as 

explained on the next session, Zygosaccharomyces spp. (Z. bailii and Z. mellis) 

and Lachancea spp. (L. fermentati, L. kluyveri and L. thermotolerans). 

 

2.3.2.  Divergence in the sequence analysis of Metschnikowia spp. isolates 

 

The isolates of Metschnikowia are easily recognizable on WL plates due to the 

production of a pigment called pulcherrimin, which causes the formation of a red 

halo under the colonies (Cavazza et al., 1992; Pallman et al., 2001). Many isolates 

presented this characteristic, even if the colony morphology was not identical and 

slight differences on the surface color and consistency were observed, and they 

were grouped together on a few clusters on the dendrograms. However, they could 

not be identified at species level by the sequencing of ITS region. When the 

obtained sequence was confronted with the available databases, it presented the 

same level of similarity with more than one species within the genus 

Metschnikowia and could not be unambiguously associated with just one. 

Different isolates had their ITS region sequenced and the process was even 

repeated multiple times, but the results were always inconclusive and there was 

significant diversity among them. 
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Figure 2.3. Population distribution among the 409 yeast isolates. 'Apiculate' includes 

Hanseniaspora uvarum, H. opuntiae, among others; 'Pseudohyphae' includes Pichia 
membranifaciens, among others. 

 

As an alternative, the D1/D2 region of the DNA from ten different isolates of 

the group and three type strains of Metschnikowia species of oenological 

relevance, namely: Metschnikowia pulcherrima CBS5833, Metschnikowia 
andauensis CBS10809 and Metschnikowia fructicola CBS8853; was amplified 

and sent for the sequencing facility. The results were again ambiguous, as the ITS 

sequencing. 

Figure 2.4 shows two regions on the chromatogram obtained by the Sanger 

sequencing of two isolates, to illustrate the presence of more than one peak with 

similar intensity in some positions. The nucleotides cannot be unambiguously 

defined in these conditions and it was still not possible to identify the isolates at 

species level. 

Similar issues on the identification of Metschnikowia spp. isolates and the 

observation of a great diversity among isolates from this group were already 

reported by other authors (Pallman et al., 2001; Prakitchaiwattana et al. 2004; 
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Sipiczki, 2006; Brysch-Herzberg and Seidel, 2015; Belda et al. 2016; Jara et al., 
2016). 

 

 

Figure 2.4. Chromatograms obtained through Sanger sequencing of D1/D2 domain of the 26S 

rRNA gene of the isolates ALIC2 and CORV2, highlighting two regions with elevated number of 

ambiguous nucleotides. 

 

The ambiguous nucleotides on the sequence could be attributed to errors 

during the sequencing or to heterogeneity in the amplified DNA due to the 

presence of more than one fragment showing different sequences (Sipiczki et al., 
2013). The isolates used for the PCR reactions were restreaked multiple times on 

WL agar and their purity was also confirmed by microscope observations. One 

single colony was used for the DNA purification, making it high unlikely that the 

DNA from more than one strain would be present on the material sent for 

sequencing. Moreover, the fact that isolates from other species were sent together 

to the sequencing facilities and the results were satisfactory, and the ambiguous 

nucleotides on the Metschnikowia spp. were always present at around the same 

positions and not randomly distributed across the sequence, makes also very 

unlikely the possibility of sequencing errors. 

To test the hypothesis of the presence of more than one fragment with 

different sequence, the amplified D1/D2 domain of the same ten isolates and the 

three type strains was then loaded to a Denaturing Gradient Gel Electrophoresis 

(DGGE), shown on Figure 2.5. 

It can be seen from the presence of multiple bands on the DGGE run that the 

isolates do have repeats of non-identical sequences of this gene on their genome, 

ALIC2 CORV2 
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which could probably be the reason for the ambiguous nucleotides on the 

sequencing results. Moreover, it is interesting to note the different profiles 

associated with each isolate, highlighting that they could all belong to different 

species or this feature could be related to diverse strains of the same species. In 

each way, it represents a challenge for the identification of yeasts belonging to the 

genus Metschnikowia. 

 

 

Figure 2.5. PCR-DGGE analysis (30-60% gradient) for the amplified D1/D2 domain from 

genomic DNA of three type strains and ten isolates of Metschnikowia spp. 

 

Sipiczki et al. (2013) used a different approach to test the same hypothesis that 

Metschnikowia strains have diverse large subunit rRNA genes in their rDNA 

arrays. They cloned D1/D2 domains from single-cell cultures of type strains from 

M. andauensis and M. fructicola and found several different versions of D1/D2 

sequence on the clone population. With this result they were clearly able to show 

that such ambiguous sequencing results of both species originate from divergent 

copies of the rDNA gene. Interestingly, their results showed that two variant 

regions are present within the D1 sequence, which correspond to the same 

positions highlighted in our study. 

The D1/D2 domain sequence of the three type strains used in this study was 

obtained from the deposited sequences on databases and compared using the 

Clustal Omega 1.2.4. multiple sequence alignment tool 

(http://www.ebi.ac.uk/Tools/msa/clustalo/). The results shown on Figure 2.6 
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clearly emphasize the differences on the sequence in the same positions as the 

ambiguous nucleotides presented on Figure 2.4. 

 

 

Figure 2.6. Comparison of the sequence of D1/D2 domain of 26S rRNA gene from the deposited 

sequences of three Metschnikowia type strains: Metschnikowia pulcherrima (MP), Metschnikowia 
andauensis (MA) and Metschnikowia fructicola (MF); using the Clustal Omega 1.2.4 multiple 

sequence alignment tool (http://www.ebi.ac.uk/Tools/msa/clustalo/). 

 

Due to the imprecision on the identification at species level, all isolates that 

presented the same colony morphology and the ability to produce pulcherrimin, 

which moreover clustered together by the RAPD analysis, will be indicated as 

Metschnikowia spp. on the continuation of this study. 
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2.3.3.  Distribution of non-Saccharomyces isolates in the different samples 

 

From the samples of honey and honeycomb it was possible to isolate only a 

limited number of yeast species. Zygosaccharomyces mellis was present in almost 

every sample; one strain of Sporidiobolus ruineniae and one of Rhodotorula 
mucilaginosa could be isolated from the samples collected in Sicily. We analyzed 

also one sample of hydromel, which is an alcoholic beverage of fermented honey, 

and just colonies of S. cerevisiae were grown on the WL plates. Benito and co-

workers (2013) reported the isolation of Schizosaccharomyces pombe from 

samples of unpasteurized honey and honeycombs from organic farms, using a 

selective differential medium. Applying the same protocol and with similar 

samples, we were not able to isolate any strain of this species. 

In samples of dried dates there were only colonies of Hanseniaspora opuntiae 

and from the samples of barley there could only be recovered the species 

Kazachstania unispora. To sum up, these isolates from honey, dates and barley 

are not interesting for the aims of inoculation on grape musts and were excluded 

from the successive steps of characterization and microvinification. Those 

samples were then not considered for the observations on diversity and 

distribution of yeasts. 

Considering the 154 samples of grapes, grape musts and overripe/dried fruits, 

coming from 27 different locations (in 7 Italian regions) and of 31 diverse 

varieties of grapes and fruits, the yeast isolates obtained were differentially 

distributed. It confirmed the influence that geographical origin, vineyard or fruit 

tree position (sunlight exposure, type of soil), climatic conditions (temperature, 

rainfall, wind), fruit variety (cultivar, age, history), ripeness level and health state 

of the fruits, human intervention (use of antimicrobial agents, training systems) 

can exert on microbial diversity (Fleet et al., 2002; Barata et al., 2012; Sabate et 
al., 2002). It was already demonstrated that on vineyard ecosystems this diversity 

is non-randomly associated with varietal, climatic and regional factors (Bokulich 

et al., 2014; Morrison-Whittle et al., 2017). 

The following graph (Figure 2.7) shows the presence on different locations 

and different varieties of grapes/fruits. The isolation procedure employed during 

this study consisted on the purification of one colony from each slightly different 

morphology present on the plate with the highest dilution where the total number 
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of colonies was between 20 and 200. Among the colonies with identical 

morphology, the one to be purified was chosen randomly. The colonies present on 

the plates prepared with higher dilutions have a high probability to belong to the 

dominant species on the samples (Pulvirenti et al., 2004; Solieri et al., 2006; 

Aponte and Blaiotta, 2016). Two approaches were used to calculate the presence 

of the different species on the samples analyzed. Firstly, the samples were 

grouped by their origin, more specifically the municipality from which they were 

collected (even if from different fruit types), and secondly, they were grouped by 

the type of fruit (even if from the same location). The presence was then 

calculated as the number of groups with at least one positive sample for a 

determined species or genus divided by the total number of groups, expressed in 

percentage. 

 

 

Figure 2.7. Presence of some yeast genus according to the origin and type of sample from which 

they were isolated. 

 

The diversity of yeasts present was analyzed by how many times each 

identified species was detected in the isolation substrates, following the same 

approach as Solieri et al. (2006) and Tofalo et al. (2009). However, no 
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annotations were made neither on the total concentration of colonies grown on the 

Petri dishes nor the relative abundance between the different morphologies. 

Starmerella bacillaris was the species most spread on the locations analyzed, 

being present on 74% of the territories, while isolates of the genus Metschnikowia 

were those able to colonize the highest number of different matrices, being 

detected on 50% of the fruits and grape varieties investigated. Moreover, S. 
bacillaris was found on 45% of types of samples and Metschnikowia on 52% of 

the locations. S. cerevisiae was also highly present throughout samples of 

different origins and type. Isolates of Zygosaccharomyces and Lachancea 

represented two other important groups of non-Saccharomyces yeast with 

presence above 20%. 

Even if not considered of interest for the inoculation on mixed fermentation, it 

can be noted how apiculate and pseudohyphae-forming yeasts were highly 

frequent between the cultivable yeasts isolated from our samples. As said before, 

they are among the most common species in vineyards and beginning of 

fermentation, but rapidly disappear when the conversion of sugar to ethanol 

increases and anaerobic condition occurs. The group of other species represented 

on the graphic is composed by isolates that were present in less than 5% when 

considered alone, but when they are put together it can be seen that more than 

60% of territories and varieties of samples had at least one of those minor species. 

To study how and why this yeast diversity is heterogeneously distributed 

among the different samples, they were grouped based on diverse criteria. Firstly, 

it was used the geographical origin approach, meaning the samples were sorted by 

the territories from which they were collected and then separated according to the 

geopolitical division of Italy. Secondly, ecological factors were considered and 

the samples were divided by type of fruit, grapevine species and cultivars, and 

some human intervention on the grapes.  

The profile for each geographical region (Figure 2.8) was calculated as the 

average of all samples coming from that region, without distinction of grape 

varieties or type of sample.  

The samples coming from the Veneto region were those with the highest 

number of different species, showed by the higher average number of isolates 

obtained from each sample. Moreover, a higher variety of species in general could 
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be isolated from that region. Veneto have a high prevalence of strains from the 

species S. bacillaris, also present in a high number of samples from Abruzzo. 

 

 

Figure 2.8. Average of the number of isolates present on the samples grouped by region of origin. 

 

The highest similarity was found between the regions Lazio and Emilia-

Romagna, due to the presence of isolates of Metschnikowia spp. and Meyerozyma 

spp., besides apiculate and pseudohyphae-forming yeasts. In Toscana there were 

also an elevated percentage of Metschnikowia spp. isolates and it was the region 

were Lachancea spp. was more easily isolated. 

Saccharomyces spp. was the only group found in all regions, with higher 

probability in Trentino-Alto Adige and Puglia. It can be highlighted that while S. 
cerevisiae was found in all regions, only in Trentino-Alto Adige there were also 

isolates belonging to the species S. paradoxus. 

However, these different profiles associated with each region can only 

indicate a few general trends on the regions, since the samples put together based 

on region of origin were far from being homogenous. Many factors are acting in 

synergy to define the microbiota present on each sample, and the territories 

sampled during this study have many differences on the grape varieties, climate, 

vineyard position and training system, human intervention.  
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Another way to arrange the samples is to separate the overripe and dried fruits 

from the grapes, and the grapes were further divided in two groups: those which 

were collected already as must after crushing in the winery and those which had 

no contact with the winery machinery and were brought directly from the tree to 

the laboratory. The different profiles are shown in Figure 2.9. 

 

 

Figure 2.9. Differential distribution of main oenological species on the samples divided by the 

type of fruit and stage of processing. 

 

These graphics show the influence of the types of samples that were collected 

on the diversity of yeast species present, regardless the region of origin. First, it 

can be noted how in the samples of overripe and dried fruits (apples, blackberries, 

figs and plums) there was a prevalence of species of no interest for this research, 

as apiculate, pseudohyphae and other minor non-identified species. Nevertheless, 

some isolates of Metschnikowia spp., Meyerozyma spp., Starmerella spp. and one 

of Torulaspora spp. could be recovered. Ruiz-Moyano and co-workers (2016) 

isolated yeasts from fig and found a prevalence of Aureobasidium pullulans and 

Hanseniaspora uvarum, accompanied in lower percentage of isolates identified as 

Meyerozyma caribbica, Candida carpophila, Torulaspora delbrueckii, 
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Metschnikowia pulcherrima and Hanseniaspora opuntiae, so generally speaking 

in accordance with our findings. 

Comparing grapes and grape musts, higher diversity was found in the samples 

of grapes and the biggest difference that comes to attention is the increase in the 

presence of S. cerevisiae on musts, exactly as it can be expected after the grapes 

come in contact with the winery equipment and the fermentation slowly begins. 

Additionally, it is also noteworthy how the isolates of Starmerella spp. intensified 

their presence among the isolates from must in comparison with grapes. 

The biodiversity tends to decrease throughout the fermentation process, as a 

result to the more stringent environment created by the metabolites produced. 

These findings were confirmed by Pinto et al. (2015), who also observed different 

microbial communities according to their appellation of origin. 

In a study carried out by Belda and co-workers (2016), they also isolated a 

vast number of yeasts from grape musts, however they added a step before the 

isolation to reduce the level of Aureobasidium pullulans and basidiomycetes 

species and used Lysine Agar Medium to selectively find only non-

Saccharomyces yeasts. They found more than 50% of the isolates to be 

Hanseniaspora uvarum, much higher than the group defined by us as “apiculate”, 

which also includes this species. The main similarity with our study was the 

concentration of Metschnikowia spp. and Lachancea spp. among the most 

relevant non-Saccharomyces, while the most notable differences were on the 

presence of Saccharomyces spp. and Starmerella spp. They found a significantly 

lower concentration of S. cerevisiae, most likely due to the use of lysine medium 

in comparison with WL medium employed in our research. However, it is very 

intriguing to see how they did not isolate any strain of Starmerella spp., which 

was the most prevalent group in our samples. They could also find a limited 

number of isolates from species such as Torulaspora spp., Wickerhamomyces 

spp., Zygosaccharomyces spp. and Meyerozyma spp. 

In studies carried out with Xarel-lo and Garnatxa grape musts from 1995 to 

2000 (Beltran et al., 2002), Merlot in 2006 (Zott et al., 2008), Tempranillo also in 

2006 (Hierro et al., 2006), Chardonnay in 2011 (David et al., 2014), Cabernet 

Sauvignon and Malbec in 2011 (Maturano et al., 2015) and Grenache and 

Carignan in 2012 (Wang et al., 2015), Candida zemplinina (a synonym of 

Starmerella bacillaris) and Hanseniaspora uvarum were the most abundant yeast 
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species during the cold maceration process and the early stages of fermentation. 

Tofalo and co-workers (2009) studied a traditional Italian wine made with very 

high sugar most and found a restricted number of osmotolerant non-

Saccharomyces, such as Candida apicola, “Candida zemplinina” and 

Zygosaccharomyces bailii. 
Other authors also shown that after the isolation of yeast from different 

samples of grapes or musts at early stages of fermentation the dominant species of 

non-Saccharomyces were usually Hanseniaspora spp. and Metschnikowia spp., 

with important presence of Starmerella spp. and sometimes Lachancea spp. 

(Pallmann et al., 2001; Sabate et al., 2002; Tofalo et al., 2009; Brežná et al., 
2010; Chovanová et al., 2011; Tristezza et al., 2013; Brysch-Herzberg and Seidel, 

2015; Pinto et al., 2015; Aponte and Blaiotta, 2016; Jara et al., 2016). 

It was shown with the previous charts the diversity and richness of the 

microbiota when the geographical origin and the type of sample are considered 

separately. A Principal Component Analysis (PCA) with the samples divided by 

territory of origin and fruit variety is a possible way to visualize the impact of 

these factors on the diversity and how similar they are based on region of origin 

and type of sample (Figure 2.10). 

The PCA confirms the huge variability between the samples and the influence 

of many factors. It’s possible though to see some trends that were highlighted 

before. The samples of grape must, represented with filled triangles, clustered 

relatively close due to higher presence of Saccharomyces spp. Overripe and dried 

fruits are also positioned closer and on the quadrants of the PCA with more 

influence of apiculate, pseudohyphae and the other minor species of yeasts. 

Regarding the samples of grapes, they were well distributed over the chart and 

it is difficult to identify which factor has more impact on the yeast diversity. In 

some cases, grapes from different varieties but coming from the same region 

clustered together, while there were examples of the opposite behavior, samples 

from the same region very distant from each other on the PCA plot. 

All samples from the Abruzzo region were composed of Pecorino grapes, 

coming from different locations within the region. It can be seen that most of 

them clustered together under the influence of a higher concentration of S. 
bacillaris, as already observed. In the Lazio region, a great difference can be seen 

among the samples from there, for example Malvasia di Candia and Malvasia 
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Puntinata (also known as Malvasia del Lazio) are distant from each other. The 

Malvasia di Candia from Emilia-Romagna is actually a bit closer to the last, and 

not the first from the same variety. 

 

 

Figure 2.10. [A] Loading plot and [B] Score plot of the Principal Component Analysis of the 

average number of isolates present on the samples grouped by fruit variety and region of origin. 

Samples of grapes are represented by dots, grape musts by filled triangles and overripe/dried fruits 

by stars. Different colors represent different regions, as follows: Blue – Abruzzo; Yellow – 

Emilia-Romagna; Fuchsia – Lazio; Beige – Puglia; Green – Toscana; Black – Veneto; Red – 

Trentino-Alto Adige. 
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In general, the samples from Emilia-Romagna and from Toscana, while 

belonging to all different grape varieties, tended to be more closely related to 

those from the same region, with the exception of Sangiovese, which were 

sampled from these two regions and were closer to each other than to the other 

varieties of the same respective region. 

In Trentino-Alto Adige, there were five grape varieties from two different 

locations, and they were very clearly separated on the graphic. Particularly, the 

two varieties from Grumes (TN), which were Solaris and Souvignon Gris, showed 

a very elevated divergence between them.  

In Veneto region, it is very interesting to note how the samples were separated 

based more in the grape conditions than in the variety or location. Almost all 

samples of grape must were clustered together, while the overripe and dried fruits 

concentrated in another quadrant. The samples of unknown table grapes and 

Clinton, which is an American hybrid variety also considered as table grape, 

ended up in the same cluster as the overripe/dried fruits, instead of being with the 

varieties of Vitis vinifera. It is also very clear on the PCA how almost all samples 

of withered grapes, which are Corvina, Corvinone and Rondinella from Tregnago 

(VR), and Marzemino, were placed on the top borders and separated from the 

other grapes, suggesting that this process of withering, i.e. drying the grapes to 

concentrate the sugar, is responsible for changes on the microbial ecology of the 

grapes. Some samples of those withered grapes were very close to samples of 

Pecorino from Abruzzo, due to the high presence of S. bacillaris. 

One possible explanation for diverse profiles on different grape cultivars 

coming from exactly the same territory and subjected to the same climatic 

conditions and human intervention could be the stage of ripening of the berries, 

because it varies from one cultivar to the other and plays a major role on the 

richness and diversity of the yeast community colonizing the berry surface 

(Raspor et al., 2006). Sabate and co-workers (2002) suggested that the microbiota 

on unripe grapes is very similar to other plant substrates, but when the berry 

surface starts to become richer in sugar due to increasing weakness of the peel 

with the maturation, the composition changes to favor some more fermentative 

yeast genus, such as Hanseniaspora, Candida and Pichia. This trend continues 

when the grapes are crushed to must and the higher sugar content combined with 

low pH make the environmental pressure towards fermentative yeasts always 
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stronger versus oxidative microorganisms resident on grape surface. Afterwards, 

the dominance of S. cerevisiae is inevitable due to its resistance to ethanol and 

SO2 and more efficient fermentative performance, as already exhaustively shown 

(Pretorius, 2000). 

The grape cultivar may also influence the microbiota due to berry and cluster 

characteristics that are particular of each variety, such as size, skin thickness, 

proximity and arrangement, which finally could create differences on humidity, 

pH, nutrient availability, susceptibility (Lederer et al., 2013). 

 

2.4.  CONCLUSIONS 

 

The main goal of the present work was the set-up of a vast culture collection 

composed of non-Saccharomyces yeasts isolated from samples with high sugar 

content, most of them composed by grapes and grape musts, in order to further 

explore the potential of a few selected species to the use in winemaking.  

A total of 409 isolates were obtained by using traditional culture-dependent 

methods and more than 20 species were identified by combining morphological 

and molecular approaches, confirming the tremendous potential of such substrates 

as yeasts reservoir, because of their ubiquitously presence with high richness and 

diversity. 

It was confirmed the usefulness of WL medium to the isolation and 

differentiation of the main non-Saccharomyces species associated with 

oenological interest. The combined use of morphological description in this 

medium with molecular methods such as RAPD-PCR and ITS sequencing is a 

powerful tool for the identification of major and also minor species present in the 

studied samples. 

A surprising and worth deeper investigation observation during this study was 

the high diversity among the pulcherrimin-producing colonies, which could be 

associated with the genus Metschnikowia spp. but not identified at species level. 

Further research is needed to clarify the taxonomic situation of this group and 

establish if they could belong to different species or strains under the same 

epithet. 

The results of the frequency and distribution of the isolates are in general 

concordance with other reports, highlighting the presence of Hanseniaspora, 
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Metschnikowia, Lachancea and Starmerella, and some species of important 

oenological interest were obtained. Major differences in yeast diversity and 

richness were found among the samples and many factors could be accounted for 

this result. Furthermore, the results suggest that the particular microbiome 

associated with each territory could play an important role in the typicity and 

distinctiveness of wines obtained from each appellation.  
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CHAPTER 3.  EXPLORING THE PHENOTYPIC AND 

GENOTYPIC DIVERSITY OF A POTENTIAL NEW 

GENERATION OF STARTER CULTURES FOR 

OENOLOGY 
 

3.1.  INTRODUCTION 

 

Many genera of yeast belonging to the group called non-Saccharomyces 

participate in the winemaking process by initiating the spontaneous alcoholic 

fermentation of grape juice to wine, although they are usually surpassed by S. 
cerevisiae due to their limited tolerance to ethanol and sulphite (Heard and Fleet, 

1985; Henick-Kling et al., 1998; Jolly et al., 2003). Nevertheless, the non-

Saccharomyces yeasts can have a great impact in the progression of the 

fermentation process and the outcome of wine quality, due to relevant enzymatic 

activities and production of metabolites of oenological significance that influence 

the wine organoleptic profile (Ciani and Maccarelli, 1998; Egli et al., 1998; Soden 

et al., 2000).  

The non-Saccharomyces yeasts have some features that are less pronounced in 

S. cerevisiae or even non-expressed in the leading yeast responsible for the wine 

fermentation (Esteve-Zarzoso et al., 1998; Mateo and Maicas, 2016). The main 

contribution of those alternative yeasts is on the aromatic profile, not the 

traditional fermentative aromas associated with S. cerevisiae, but more related to 

enhancing the varietal profile of some grape varieties, since their enzymatic pool 

can act by catalyzing the release of volatile aromatic compounds from non-

volatile precursors already present in the grape must (Fernández-Gonzáles et al., 
2003; Hernandez-Orte et al., 2008); some molecules are produced by their own 

metabolic activity and some extracellular enzymes can transform molecules 

derived from S. cerevisiae metabolism (Bisson and Kunkee, 1991; Boulton et al., 
1996; Clemente-Jimenez et al., 2004). 

The most important yeast enzymes regarding the release of primary aroma 

compounds are glycosidases, which hydrolyze the non-volatile odorless 

precursors bound to sugars as glycosides (Gunata et al., 1988), and carbon-sulfur 

lyases, that release volatile thiols from cysteine-bound conjugates (Tominaga et 
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al., 1998). Monoterpenes liberated from terpene glycosides by glycosidases and β-

glucosidases, and volatile thiols generated during fermentation from their 

conjugated form with cysteine can contribute to positive aromas of wines (Padilla 

et al., 2016). 

The molecules discussed on the previous paragraph are called primary aromas 

because they come from precursors formed during the grape ripening, which are 

released from the bound form by the action of yeast enzymes. Instead, the volatile 

fatty acids, higher alcohols, esters, aldehydes, volatile phenols and sulfur 

compounds are also molecules related to the aromatic profile of a wine, but are 

considered as secondary aromas, because they arise directly from the fermentation 

process (Rapp and Versini, 1991; Padilla et al., 2016). 

These compounds derived from yeast metabolism can be either positive or 

negative to the overall quality of wine depending on their concentration, and since 

the activity of enzymes and biosynthesis of aroma compounds is species- or 

strain-dependent, the selection of more suitable strains is a step of primary 

importance to their biotechnological application (Dubourdieu et al., 2006; Padilla 

et al., 2016). 

Nevertheless, the enzymatic activity is not only aroma-related and can be held 

responsible for other sensorial and technological features (Belda et al., 2016). For 

example, the pectinolytic activity of non-Saccharomyces yeasts can be useful to 

help improve clarification and filtration process and the release of more color and 

flavor compounds entrapped in the grape skin, as some pectinolytic enzymes 

(such as polygalacturonases) are already used in enology to degrade the plant cell 

wall polysaccharides present on the grape skin and pulp (Lang and Dörnenburg, 

2000; Van Rensburg and Pretorius, 2000). Proteases can also be beneficial for 

winemaking to replace bentonites in solving problems of protein haze, since the 

last can cause negative effects on the wine aroma. Proteolytic activity was also 

reported to facilitate the juice extraction and clarification, wine filtration and 

could help the release of nitrogen for yeast growth (Heard and Fleet, 1985; Van 

Rensburg and Pretorius, 2000; Marangon et al., 2012; Capozzi et al., 2015). 

On the other hand, enzymatic activities can also cause damage to the wine 

sensorial profile, such as sulfite reductase, which is responsible for the production 

of hydrogen sulfide during wine fermentation, a molecule related to the 

characteristic rotten-egg off-flavor (Swiegers and Pretorius, 2007). For this 
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reason, the lack of sulfite reductase activity is a positive characteristic to avoid the 

risk of wine reduction (Belda et al., 2016). 

Additionally, the activity of these yeasts can produce glycerol, organic acids, 

mannoproteins, which could impact the production process and ultimately other 

aspects related to the wine quality (Ciani and Comitini, 2011; Jolly et al., 2014; 

Barbosa et al., 2018). 

In this context, there is a wide variety of applications extensively proven or 

expected from the non-Saccharomyces yeasts, and since many of these relevant 

oenological characteristics are species- or even strain-specific, it is important to 

carry out selection protocols in order to highlight the most suitable natural isolates 

in the middle of all the diversity and metabolic heterogeneity, the same way as it 

has been done with S. cerevisiae, following the ultimate goal of developing 

innovative fermentation processes with improved sensorial, technological and 

safety aspects (Suárez-Lepe and Morata, 2012; Belda et al., 2016). 

The workflow for the selection of interesting yeast isolates has been evolving 

over the years and, besides the properties that influence the outcome in the wine 

quality and style, which were explained on the previous paragraphs, there are two 

other categories that can be usually added: properties related to the performance 

of the fermentation process and properties affecting the commercial production of 

the starters in large scale (Fleet, 2008). 

Regarding the performance in the grape must fermentation, it is important that 

the yeasts are able to survive the harsh environment found in grape juice and 

wine, being tolerant to the concentrations of ethanol and sulphur dioxide usually 

present. They are produced by S. cerevisiae during alcoholic fermentation, but 

SO2 is also generally added in oenology for controlling the growth of unwanted 

microorganisms and to prevent oxidation of the must. Non-Saccharomyces yeasts 

were already reported as being sensitive to it (Henick-Kling et al., 1998; Barbosa 

et al., 2018). 

Other compounds that could be present in the must remained from the grapes 

due to certain vineyard conditions. Copper is one of the oldest methods used in 

viticulture for the protection against fungal diseases, and its application has been 

intensified in the last years due to the possibility of use by organic growers 

(Cavazza et al., 2013). Even if it is used on vines, it is possible that copper will 

remain in the grape must and hinder yeast growth (Gava et al., 2016). 
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The presence of gluconic acid is particularly increased in wines obtained from 

grapes affected by gray rot, due to the metabolic activity of the mold Botrytis 
cinerea. The sensory properties of wines are considerably altered by the presence 

of gluconic acid, which decreases the wine microbiological stability and raises 

long-term storage problems that can be solved only by reducing its concentration 

in the wine. For this reason, it would be interesting to inoculate in musts 

alternative yeasts able to metabolize this acid (Peinado et al., 2004, 2009). 

In the selection of S. cerevisiae strains, it is essential that they show a 

vigorous and complete fermentation of the grape sugars to high levels of alcohol, 

while it has to be considered the limitation of most non-Saccharomyces species to 

arrive until the end of the fermentation and thus be given less importance to this 

criterion, since the fermentation process will be concluded by a S. cerevisiae 

sequentially or co-inoculated. However, the best the fermentation performance 

exhibited by the non-Saccharomyces isolates, the higher the impact they will have 

on the final wine and the lower the chance to have stuck or sluggish fermentations 

(Bisson, 1999). 

In order to become a commercial product, the yeast isolates selected for their 

good fermentation performance and interesting inputs to wine organoleptic profile 

must also be compatible to the large-scale production on preferably inexpensive 

substrates, resistant to the process of drying and packaging, resilient during the 

storage and readily active after the rehydration performed by the winemakers, 

without losing the important features for which they have been chosen 

(Soubeyrand et al., 2006; Fleet, 2008). 

Moreover, it is of summary importance to also evaluate the genotypic 

diversity among the species and strains of non-Saccharomyces. The oenological 

potential is usually evaluated by the phenotypic properties, but the genetic 

structuration of the species and the relationships between the strains are relevant 

to determine whether the phenotypic diversity is representative of a given species 

and to facilitate the selection of the top isolates. Some genotypic diversity could 

be related to the different geographical locations and conditions the isolates were 

recovered, since the colonization of different ecosystems impairs their adaptation 

to diverse environmental pressures and led to evolutionary differentiation (Banilas 

et al., 2016; Masneuf-Pomarede et al., 2016). 
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Several methods have been used for the discrimination between species, such 

as those used for the identification of isolates in the previous chapter, but they do 

not give a discrimination that is powerful enough for the definition of genetic 

relationships within a given species and therefore exists an increasing need for 

developing molecular marker-assisted genotyping methods. Such techniques 

should be ideally highly discriminatory, simple and affordable. Different 

molecular approaches have been developed so far for the typing of wine yeasts, as 

for example microsatellites or simple sequence repeats (SSRs), most of them 

already successfully applied to S. cerevisiae and to a lesser extent to non-

Saccharomyces (Banilas et al., 2016; Masneuf-Pomarede et al., 2016). SAU-PCR 

is a PCR-based method which starts with the genomic DNA digestion by the 

restriction endonuclease Sau3AI and then selective amplification with primers 

whose core sequence is based on the enzyme’s recognition site, such as SAG1 and 

SCA, and was already applied for the strain differentiation within the species S. 
bacillaris (Corich et al., 2005; Rantsiou et al., 2012; Englezos et al., 2015; Lemos 

Junior et al., 2016). 

Among the different species of non-Saccharomyces identified in the first steps 

of this research, three genera were chosen for the characterization assays due to 

interesting oenological properties already reported, as shown below, and to the 

broad range of isolates obtained for these groups, what enabled us to perform a 

more representative and promising screening. 

Starmerella bacillaris (synonym Candida zemplinina) is one of the most 

studied species in wine microbiology and due to its osmo- and psychrotolerant 

behavior is commonly found in grapes with high sugar content, like overripe and 

botrytized grapes, and musts at low temperatures, for example during cold 

maceration process (Sipiczki, 2003; Csoma and Sipiczki, 2008; Duarte et al., 
2012; Pfliegler et al., 2014; Maturano et al., 2015; Wang et al., 2015). Strains 

from this species have already been described and tested on single and mixed 

fermentations aiming to explore its fructophilic character, reduced acetic acid and 

increased glycerol production, low ethanol yield (Magyar and Tóth, 2011; 

Rantsiou et al., 2012; Tofalo et al., 2012; Bely et al., 2013; Wang et al., 2014, 

Englezos et al., 2015). It has been reported to have high tolerance to the ethanol 

present in wine and so it can survive until the end of the alcoholic fermentation, 

differing from other non-Saccharomyces yeasts (Rantsiou et al., 2012). 
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The low production of volatile acidity is also a characteristic of Lachancea 
thermotolerans, another remarkable non-Saccharomyces yeast which 

biotechnological potential is mostly considered by the high production of L-lactic 

acid (Kapsopoulou et al., 2005; Hranilovic et al., 2017). Formerly known as 

Kluyveromyces thermotolerans, it is the type species of the ascomycetous genus 

Lachancea (Kurtzman, 2003) and occupies diverse natural habitats, such as soil, 

insects, plants, fruits, and in particular grapes and must (Naumova et al., 2007; 

Lachance and Kurtzman, 2011; Freel et al., 2014). The ability to act as acidifying 

agent is of increasing interest to compensate the insufficient acidity of specific 

grape cultivars, as L. thermotolerans can provide an effective acidification 

through its elevated production of L-lactic acid (Mora et al., 1990; Kapsopoulou 

et al., 2007). Other interesting oenological traits already reported for mixed 

fermentations with L. thermotolerans are the reduction of ethanol content, 

increasing of glycerol and improved organoleptic profile (Gobbi et al., 2013; 

Benito et al., 2016). 

The genus Metschnikowia gathers around 40-50 species and represents one of 

the most divergent ascomycetous genera known (Kurtzman and Robnett, 1998; 

Liu et al., 2018). Its members can be found on sea-water, freshwater crustaceans, 

and in terrestrial habitats are usually associated with flower, fruits and transmitted 

to new niches by insects, within which were already isolated in the gut lumen or 

on eggs (Lachance, 2011; Guzmán et al., 2013; Molnár and Prillinger, 2005). M. 
pulcherrima strains may inhibit the growth of some spoilage yeasts 

(Brettanomyces/Dekkera, Hanseniaspora, and Pichia) by the formation of a red 

pigment, pulcherrimin, which depletes the free iron in the medium thus generating 

an environment unsuitable for microorganisms requiring such element for the 

growth (Oro et al., 2014; Sipiczki, 2006). M. pulcherrima and close relatives (M. 
andauensis, M. chrysoperlae, M. fructicola, M. shanxiensis, M. sinensis, M. 
zizyphicola) are regularly found in nutrient-rich plant materials that serve as 

breeding and feeding sites for insects; and especially M. pulcherrima and M. 
fructicola were already found in grapes and musts at early fermentation stages 

(Fleet et al., 2002; Lachance, 2011; Guzmán et al., 2013). Some recent studies 

showed that M. pulcherrima can be successfully used in mixed fermentations to 

reduce the ethanol content in the wine and produce good quality sensory profile 
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with beneficial volatile composition (Contreras et al., 2014, 2015; Varela et al., 
2016, 2017). 

The genotypic and phenotypic characterization of a large number of yeast 

isolates had the main objective of giving a clearer understanding on the 

limitations and potential that each species could offer for a successive 

technological application, especially in oenology. The links between the genetic 

and physiological profiles were an attempt to clarify the inter and intraspecific 

relations and the factors that could be exerting an influence on them. Based on the 

integration of the characterization data obtained it was possible to choose a 

limited number of selected isolates to be further analyzed with new criteria aiming 

to the use in winemaking. 

 

3.2.  MATERIAL AND METHODS 

 

3.2.1.  Yeasts strains and culture conditions 

 

From the yeast collection that was organized with 409 isolates recovered from 

grapes, grape must, honey, overripe and dried fruits, 104 isolates from the genera 

Lachancea, Starmerella and Metschnikowia were chosen for the genotypic and 

phenotypic studies (Supplementary Table S.2). It has also been added the type 

strains of the species Lachancea thermotolerans (DBVPG 6232T), Starmerella 
bacillaris (NCAIM Y016667T), Metschnikowia andauensis (CBS10809T), 

Metschnikowia fructicola (CBS8853T) and Metschnikowia pulcherrima 

(CBS5833T); and a commercial starter of L. thermotolerans (Viniflora® 

ConcertoTM). 

Starting from the frozen cultures kept at -80 ºC, the isolates were reactivated 

on WL (Sigma-Aldrich) agar plates incubated at 27 ºC for 72 hours. One single 

colony was then inoculated in YPD broth (yeast extract, 1.0%; bacteriological 

peptone, 2.0%; glucose, 2.0%; Sigma-Aldrich) and incubated under static 

conditions at 27 ºC for 48 hours. A fresh YPD-containing tube was then 

inoculated at 1% with the previous grown culture and put in agitation overnight at 

27 ºC to reach the early stationary phase. The culture was then centrifuged at 

3,000´g for 5 minutes, washed twice and resuspended in physiological solution 
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0.9% (w/v) NaCl (Sigma-Aldrich). The inocula were standardized for all yeast 

cultures with an optical density at 600 nm (OD600) of 1.6, corresponding to 

approximately 1´107 cells/mL. This inoculum was then used for the stress 

tolerance trials on microtiter plates, enzymatic assays on Petri dishes and 

microvinifications.  

 

3.2.2.  DNA extraction 

 

Total genomic DNA was isolated and purified using the commercial kit 

Wizard Genomic DNA Purification (Promega) following the manufacturer’s 

protocol, from a 2-mL aliquot of cultures grown in YPD broth. The quality 

assessment of the DNA obtained was performed with a NanoDrop ND1000 UV-

Vis Spectrophotometer (Thermo Scientific) and dilution in DNAse-free water was 

carried out when necessary for the following molecular analysis. 

 

3.2.3.  Rep-PCR 

 

The analysis of Rep-PCR was used for the typing of yeast isolates belonging 

to the genus Metschnikowia, employing the microsatellite oligonucleotide 

sequence (GTG)5 (5’-GTGGTGGTGGTGGTG-3’) and according to the protocol 

of Lieckfeldt et al. (1993), modified by Pfliegler et al. (2014). The reaction mix 

was prepared with the following concentrations for the final volume of 25 µL: 1× 

DreamTaq Green Buffer (Thermo Scientific); 2.5 mM MgCl2; 0.2 mM dNTPs; 

1 µM primer (GTG)5; 0.04 U/µL DreamTaq DNA Polymerase (Thermo 

Scientific) and 20 ng genomic DNA. The amplification program considers an 

initial denaturation at 94 ºC for 5 minutes, followed by 30 cycles of denaturation 

at 94 ºC for 50 seconds, annealing at 50 ºC for 50 seconds and extension at 72 ºC 

for 50 seconds, concluding with a final extension of 5 minutes at 72 ºC. The 

amplification was conducted in Thermal Cycler 2720 (Applied Biosystems). 

Band profiles were realized in electrophoresis gel at 1.5% agarose in 1× TAE 

Buffer (40 mM Tris, 20 mM Acetic acid, and 1 mM EDTA, Sigma-Aldrich) 

stained with EuroSafe colorant (Euroclone) in a 2 hours and 20 minutes run at 

110 V. The molecular ladder used was O’Gene Ruler DNA (Thermo Scientific). 
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The visualization and image capturing were made under UV light with UVITEC 

Gel Documentation System (Cleaver Scientific). The images were analyzed with 

the software BioNumerics (version 5.0, Applied Maths) and dendrograms were 

constructed using Pearson’s correlation coefficient and the unweighted pair group 

method with arithmetical average (UPGMA) clustering. 

 

3.2.4.  SAU-PCR 

 

For the molecular typing of Starmerella bacillaris and Lachancea spp. 

isolates, the SAU-PCR technique was chosen, following the protocol described by 

Corich et al., 2005. Ten microliters of the extracted genomic DNA diluted at 

20 ng/µL were digested at 37 ºC overnight with 10 units of the restriction 

endonuclease Sau3AI (Promega), in a final volume of 20 µL with the 

corresponding restriction buffer solution. Afterwards, the amplification was 

performed with the following composition for the final volume of 25 µL in the 

reaction mix: 1× DreamTaq Green Buffer (Thermo Scientific); 1.5 mM MgCl2; 

0.2 mM dNTPs; 2 µM primer SAG1 (5′-CCGCCGCGATCAG-3′); 0.02 U/µL 

DreamTaq DNA Polymerase (Thermo Scientific) and 2 µL of the digested DNA 

(10 ng/µL). The amplification program considers a preliminary step to fill-in the 

protruding Sau3AI ends, starting at 25 ºC for 5 seconds, then gradually raising the 

temperature to 60 ºC (0.1 ºC/s) and maintaining for 30 seconds. In the first 

amplification cycle, there is a low-stringency phase composed by a denaturation at 

94 ºC for 60 seconds, subsequently the temperature is brought to 50 ºC and after 

15 seconds is gradually lowered to 25 ºC (0.1 ºC/s), then it is raised again to 50 ºC 

(0.1 ºC/s) and maintained for 30 seconds. This low stringency phase is repeated 

twice. The program continues with the high-stringency amplification phase, which 

is carried out by 35 repetitions of a denaturation at 94 ºC for 15 seconds, 

annealing at 48 ºC for 60 seconds and extension at 65 ºC for 2 minutes, 

concluding with a final extension of 5 minutes at 65 ºC. The amplification was 

conducted on Mastercycler Nexus Thermal Cycler (Eppendorf). 

The separation of the amplification products, image acquisition and band 

profiles comparison were made following the same protocol as described for Rep-

PCR, except that the agarose gel was prepared with a concentration of 2%. 
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3.2.5.  Stress tolerance assays 

 

The growth tests to evaluate the tolerance of the isolates to some stress 

conditions usually encountered on the grape and must environments were 

performed in 96-well microtiter plates. The wells were filled in with 198 µL of 

medium according to the different tests described below, and inoculated with 2 µL 

of the cell suspension prepared as explained above (par. 3.2.1.). All yeast isolates 

tested were inoculated in quadruplicate and the commercial strain of S. cerevisiae 

EC 1118 was used as control. 

The microplates were then incubated at 20 ºC for 72 hours with constant 

agitation on orbital shaker at 150 rpm (IKA KS 260 basic). The optical density at 

600 nm was measured every 24 hours with a microtiter plate reader (BIO-RAD 

Model 680). The relative cell growth (%) was calculated by the ratio between the 

OD600 in the medium with and without the stress factor added, at the specific 

incubation times. The results were then used to construct dendrograms using 

Pearson’s correlation coefficient and the unweighted pair group method with 

arithmetical average (UPGMA) by the software for statistical analysis PAST 

(Hammer et al., 2001). 

 

3.2.5.1.  Ethanol 

 

The ethanol tolerance was tested in YPD broth (yeast extract, 1%; 

bacteriological peptone, 2%; glucose, 2%; Sigma-Aldrich) supplemented with 4, 8 

and 12% (v/v) absolute ethanol (Sigma-Aldrich), added after the sterilization of 

the base medium in autoclave. The same medium without the addition of ethanol 

was used as the control. 

 

3.2.5.2.  High sugar content 

 

The growth in the presence of a high sugar concentration was evaluated in 

YPD broth with the addition of glucose to reach concentrations of 220, 270 and 

320 g/L of this sugar. The glucose was autoclaved separately and added 
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afterwards to the sterile medium containing the peptone and yeast extract, in order 

to avoid the caramelization of sugars by the reaction of Maillard. The control 

growth was carried out in YPD with the standard concentration of 20 g/L glucose. 

 

3.2.5.3.  Sulphur dioxide 

 

The tolerance to SO2 was verified in YPD medium with pH adjusted to 3.30 

and added potassium metabisulfite (K2S2O5; Sigma-Aldrich), to reach a SO2 

concentration of 150 and 200 mg/L. Control was normal YPD broth without SO2. 

 

3.2.5.4.  Copper 

 

To verify the tolerance of the isolates to copper, this element was added to 

YPD broth in the form of copper sulfate (CuSO4; Sigma-Aldrich) in order to reach 

final concentrations of 2.5, 5 and 10 mM. YPD without CuSO4 was the control. 

 

3.2.5.5.  Gluconic acid 

 

The ability to metabolize gluconic acid was evaluated after growth in medium 

containing this acid as the sole carbon source (Peinado et al., 2004). The cells 

were inoculated in YM broth (yeast extract, 0.3%; malt extract, 0.3%; peptone, 

0.5%; Sigma-Aldrich) supplemented with 3% gluconic acid (Sigma-Aldrich) as 

carbon source and pH adjusted to 6.5. 

 

3.2.6.  Enzymatic activities 

 

Some enzymatic activities relevant for the wine quality were tested, with the 

protocols described in the following paragraphs. All tests were carried out with 

spot inoculation on Petri dishes filled with the specific media. From the cell 

suspension prepared as described in section 3.2.1., a droplet of 10 µL was 

deposited on the agar surface and dried under biosafety cabinet. Ten spots were 

inoculated on each plate and all isolates were inoculated in quadruplicate, with the 

commercial strain S. cerevisiae EC 1118 as a control. 
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The plates were incubated at 27 ºC for a specific time according to each test. 

The results were verified by changes on the aspect of the colony and/or the 

surrounding medium. 

 

3.2.6.1.  Sulfite reductase 

 

To verify the ability of the isolates to produce hydrogen sulfide (H2S), they 

were spot-inoculated on Biggy agar (Oxoid) plates and incubated at 27 ºC. After 

48 hours, the colonies were classified for their H2S production in a scale from 1 to 

5 based on their color: white colonies have no or very low production and were 

classified as 1, while black colonies are high producers of H2S and represent 5 in 

the scale, colonies showing different intensities of brown were classified from 2 to 

4 and are medium producers (Comitini et al., 2011). 

 

3.2.6.2.  b-Glucosidase 

 

The medium used to check the b-glucosidase activity was prepared with 5 g/L 

of arbutin (hydroquinone β-D-glucopyranoside), 6.7 g/L of Yeast Nitrogen Base 

(YNB) with amino acids  and 20 g/L of agar (all reagents Sigma-Aldrich). The pH 

was adjusted to 5.0 and the medium autoclaved. After the sterilization, 20 mL/L 

of a filtered ferric ammonium citrate solution (1% w/v) was added. The plates 

were incubated at 27 ºC and after 72 hours a positive result was indicated as the 

discoloration of the medium to brown color and also the colonies became brown, 

while negative colonies remained white (Rosi et al., 1994). 

 

3.2.6.3.  Glycosidase 

 

The glycosidase activity was evaluated on medium containing 6.7 g/L of YNB 

with amino acids, 1 g/L of glucose, 2 g/L of rutin (quercetin-3-rutinoside; Sigma-

Aldrich) and 20 g/L of agar, mixed and sterilized in autoclave. The plates 

incubated at 27 ºC were observed after 72 hours and a positive result was 

indicated by a clear zone around the colony (Hildebrand and Caesar, 1989). 
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3.2.6.4.  Esterase 

 

The presence of esterase activity in the yeast isolates was verified in medium 

composed by 10 g/L of bacteriological peptone, 5 g/L of NaCl, 0.1 g/L of CaCl2 

and 15 g/L of agar. After the adjustment of the pH to 6.8, the medium was 

autoclaved and 5 mL/L of sterile Tween 80 were added subsequently. Incubation 

of plates was made at 27 ºC and an opaque halo around the colonies after 72 hours 

represented a positive result (Slifkin, 2000; Buzzini and Martini, 2002). 

 

3.2.6.5.  Pectinase 

 

The medium for the pectinase activity assay was prepared with 12.5 g/L of 

polygalacturonic acid, 6.8 g/L of potassium phosphate pH 3.5, 6.7 g/L of YNB 

with amino acids, 10 g/L of glucose and 20 g/L of agar. The pH was adjusted to 

5.0 and the medium sterilized in autoclave. After the inoculation, the plates were 

incubated at 27 ºC for 72 hours. The results were obtained after rinsing the 

colonies off the plate with physiological solution, then staining the surface of the 

plate with a ruthenium red solution 0.1% (w/v) and a positive result was 

characterized by a purple halo around the area where the colonies were grown 

(Charoenchai et al., 1997; Strauss et al., 2001). 

 

3.2.6.6.  Protease 

 

For the verification of proteolytic activity in the yeast isolates, they were 

inoculated in YPD agar plates modified by the addition of skim milk powder (2% 

w/v; Sigma-Aldrich). After 5 days of incubation at 27 ºC, the positive colonies 

were identified by a clear halo around them (Strauss et al., 2001; Belda et al., 
2016). 

 

3.2.7.  Single culture fermentation 

 

To check the fermentative behavior and other relevant oenological parameters, 

the isolates of S. bacillaris and Lachancea spp. were tested through laboratory 

scale fermentations in natural grape must, inoculated as single starter cultures.  
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3.2.7.1.  Fermentation conditions 

 

Natural must from Trebbiano grapes (103 g/L glucose, 107 g/L fructose, 

150 mg/L yeast assimilable nitrogen, pH 3.3) was transferred to 500-mL flasks 

tapped with silicon stoppers. They were inoculated in duplicate with a 

concentration of 1´106 cells/mL of each isolate of Lachancea spp. and 

Starmerella bacillaris listed on Table 3.1, and S. cerevisiae EC 1118 as a control. 

Fermentations were carried out at 22 ºC under static conditions for 10 days.  

 

3.2.7.2.  Analytical determinations 

 

The parameters analyzed after 10 days of fermentation were: concentration of 

malic, lactic, succinic and citric acids, glucose, fructose, glycerol, ethanol, acetic 

acid, total acidity and pH. They were evaluated with infrared spectrophotometry 

(WineScan FOSS Analytical) and high performance liquid chromatography 

(HPLC; Thermo Scientific). The fermentation kinetics was estimated following 

the production of CO2 during the time. A Principal Component Analysis (PCA) 

was performed with the results of the chemical determinations using the software 

for statistical analysis PAST (Hammer et al., 2001). 

 

3.3.  RESULTS AND DISCUSSION 

 

3.3.1.  Molecular characterization 

 

To test the diversity of Lachancea spp. isolates, the band patterns obtained 

with the SAU-PCR technique were compared and used to construct the similarity 

dendrograms. Twelve isolates identified as L. thermotolerans, as described in the 

previous chapter, were submitted to this molecular characterization, alongside 

with one type strain and one commercial strain from the same species, one isolate 

identified as L. kluyveri (FIANO22) and one identified as L. fermentati (LS16).  

The cluster analysis of the 16 profiles shown in Figure 3.1 allowed us to see 

the clear differentiation of the three species, whereas there was less than 30% 

similarity between them. When the coefficient of similarity was 80%, it can be 
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distinguished the presence of two clusters and three single strains, among the L. 
thermotolerans isolates. Interestingly, the type strain and the commercial strain 

CONCERTO are two of those separated single strains, showing 80% and 50% 

similarity with the natural isolates, respectively. 

 

 

Figure 3.1. Molecular characterization of Lachancea spp. isolates by means of SAU-PCR. 

 

The molecular characterization revealed a high level of similarity between 

isolates of L. thermotolerans coming from different sources. In particular, isolates 

coming from the same grape variety tended to be closer in the dendrogram. This is 

the case for the isolates from Malvasia Candia and Fiano, however, the two 

isolates from Pinot Grigio were not clustered together, as one of them (COLC27) 

was placed in a single strain cluster with 70% similarity in comparison with the 

others. Two previous studies with microsatellites (Banilas et al., 2016; Hranilovic 

et al., 2017) and one with sequencing of mitochondrial genome (Freel et al., 
2014) for the genotyping of L. thermotolerans isolates have shown that geography 

played an important role in the differentiation within this species. 

For the characterization of 46 isolates of S. bacillaris, the protocol of SAU-

PCR was used as well. The dendrogram created with the similarity of the band 

patterns is shown in Figure 3.2. It can be seen from the dendrogram that the 

isolates of S. bacillaris sourced from different locations and grape varieties had a 

rather high level of similarity. At a similarity of 60%, the isolates form two major 

clusters and one single strain cluster (COLC34). When the coefficient of 

Location (Province) Grape
MALV13 Vigolzone (PC) Malvasia Candia
MALV17 Vigolzone (PC) Malvasia Candia
DESP53 Fossalta di Piave (TV) Marzemino
LT3 Vigolzone (PC) Malvasia Candia
LT15 Vigolzone (PC) Malvasia Candia
LS15 Massa Marittima (GR) Alicante
GLERA15 Refrontolo (TV) Glera
COLC11 Colognolla ai Colli (VR) Pinot Grigio
FIANO43 Gravina di Puglia (BA) Fiano
FIANO63 Gravina di Puglia (BA) Fiano
SOL13 Grumes (TN) Solaris
TYPE Type Strain
COLC27 Colognolla ai Colli (VR) Pinot Grigio
CONCERTO Commercial Strain
FIANO22 Gravina di Puglia (BA) Fiano
LS16 Massa Marittima (GR) Sangiovese
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similarity was 80%, eight major clusters and four single strain clusters could be 

separated. All clusters, but one, were composed by isolates coming from different 

locations and grape varieties. This only exception was the cluster formed by PG21 

and PG24, both isolated from Pinot Grigio musts. 

 

 

Figure 3.2. Molecular characterization of Starmerella bacillaris isolates by means of SAU-PCR. 
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Location (Province) Grape
PECO10 Ortona (CH) Pecorino
PECO16 Lanciano (CH) Pecorino
PECO8 Lanciano (CH) Pecorino
PG11 Montecchio Maggiore (VI) Pinot Grigio
PG15 Montecchio Maggiore (VI) Pinot Grigio
F1 Bardolino (VR) Fig
RONDINELLA2 Tregnago (VR) Rondinella
MO2 Bardolino (VR) Blackberry
ARMANI3 Dolcè (VR) Pinot Grigio
GLERA8 Refrontolo (TV) Glera
PG3 Montecchio Maggiore (VI) Pinot Grigio
RONDINELLA3 Tregnago (VR) Rondinella
CTP63 Tollo (CH) Pecorino
RECIOTO8 Tregnago (VR) Corvina
PS11 Grumes (TN) Solaris
RONDINELLA5 Tregnago (VR) Rondinella
CORV5 Tregnago (VR) Corvina
PG21 Montecchio Maggiore (VI) Pinot Grigio
PG24 Montecchio Maggiore (VI) Pinot Grigio
COLC34 Colognola ai Colli (VR) Pinot Grigio
PECO29 Tollo (CH) Pecorino
PECO4 Crecchio (CH) Pecorino
PECO24 Rocca San Giovanni (CH) Pecorino
CHIAR4 Lazise (VR) Corvina
PECO22 Paglieta (CH) Pecorino
PECO26 Tollo (CH) Pecorino
CHIAR7 Lazise (VR) Corvina
MALV10 Vigolzone (PC) Malvasia Candia
MALV43 Vigolzone (PC) Malvasia Candia
MERLOT3 Ozzano Emilia (BO) Merlot
MALV45 Vigolzone (PC) Malvasia Candia
MARZEMINO3 Refrontolo (TV) Marzemino
MALV36 Frascati (RM) Malvasia Puntinata
DESP81 Fossalta di Piave (TV) Marzemino
MAAS3 Montagna (BZ) Moscato Giallo
GLERA10 Refrontolo (TV) Glera
ST24 Refrontolo (TV) Glera
PECO20 Torrevecchia (CH) Pecorino
SOL16 Grumes (TN) Solaris
MALV20 Frascati (RM) Malvasia Candia
MARZEMINO2 Refrontolo (TV) Marzemino
COLC20 Colognola ai Colli (VR) Pinot Grigio
CORVINONE3 Tregnago (VR) Corvinone
ARMANI4 Dolcè (VR) Pinot Grigio
GLERA12 Refrontolo (TV) Glera
PECO6 Crecchio (CH) Pecorino
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All isolates from Emilia-Romagna clustered together, while those from other 

regions were distributed along the different groups. The most isolates were 

obtained from Veneto, and in the dendrogram it can be noted how those coming 

from Verona and Vicenza provinces are separated from Treviso isolates. 

The high level of similarity between isolates of S. bacillaris was already seen 

by other authors. Pfliegler and his colleagues (2014) tested five different RAPD 

and microsatellite primers in order to assess the biodiversity within 35 strains 

from different countries, and concluded that the diversity was relatively low. 

Englezos and co-workers (2015) found six clusters and three single strains at 70% 

similarity on the dendrogram obtained by the combined analysis of SAU-PCR and 

Rep-PCR. They were working with 63 isolates from two different Italian regions 

and four grape varieties. In a study with 36 isolates from two wineries in the same 

Italian region, Lemos Junior and colleagues (2016) could individuate 14 groups in 

the dendrogram obtained with SAU-PCR, at 70% similarity. In our study, 

considering the level of similarity also at 70% in order to compare, we were able 

to see four major clusters and one single strain, within a total of 46 isolates 

coming from five different Italian regions and 12 grape varieties (plus one strain 

isolated from blackberry and one from fig). 

The isolates of Metschnikowia spp. were molecularly characterized by both 

techniques of RAPD-PCR with primer M13 (protocol in the previous chapter) and 

Rep-PCR with primer (GTG)5. Figure 3.3 shows the combined dendrogram 

obtained by the average of these two analysis. A total of 44 isolates were used for 

the characterization and the type strains of three species were added, namely M. 
andauensis, M. fructicola and M. pulcherrima. Interestingly, the three type strains 

were clustered together with a similarity of 92%, while the overall similarity 

between the isolates was 68%. As deeply discussed in the previous chapter, there 

are some issues in the identification and taxonomical organization of 

Metschnikowia spp. strains due to a high level of heterogeneity in the sequences 

and presence of multiple divergent copies of the same genes within the genome. 

At a similarity level of 80%, they could be divided into six different major 

clusters and one single strain (MALV3). Five out of six clusters were composed 

by isolates coming from different regions and grapes. The exception was the 

cluster formed by ALIC2 and ALIC3, both isolated from Alicante grapes in 

Toscana. 
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Figure 3.3. Molecular characterization of Metschnikowia spp. isolates by means of RAPD-PCR 

with primer M13 and Rep-PCR with primer (GTG)5. 

 

When considered separately, the fingerprinting with Rep-PCR gave a higher 

discrimination power for the isolates and type strains of Metschnikowia spp. 

When considering a similarity level of 70%, the analysis with Rep-PCR allowed 

the separation into five different clusters, while with RAPD-PCR all isolates were 

grouped into a single cluster. This result disagrees with the one reported by 

Barbosa and co-workers (2018), who concluded that RAPD-PCR allowed a better 

strain discrimination than Rep-PCR, using 65 strains of M. pulcherrima and the 

same primers as we did. 
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F26 Bardolino (VR) Fig
FIANO51 Gravina di Puglia (BA) Fiano
FIANO12 Gravina di Puglia (BA) Fiano
FIANO44 Gravina di Puglia (BA) Fiano
MASSI4 Verona (VR) Table Grape
SANGIO2 Ozzano Emilia (BO) Sangiovese
FIANO15 Gravina di Puglia (BA) Fiano
FIANO33 Gravina di Puglia (BA) Fiano
UVATAV4 Trevignano (TV) Table Grape
F20 Trevignano (TV) Fig
DESP65 Fossalta di Piave (TV) Marzemino
FIANO23 Gravina di Puglia (BA) Fiano
COLR1 Colognola ai Colli (VR) Pinot Grigio
COLR4 Colognola ai Colli (VR) Pinot Grigio
CORV2 Lazise (VR) Corvina
VIGN1 Massa Marittima (GR) Viognier
CLINT4 Trevignano (TV) Clinton
COLR5 Colognola ai Colli (VR) Pinot Grigio
MERLOT1 Ozzano Emilia (BO) Merlot
FIANO41 Gravina di Puglia (BA) Fiano
MALV5 Frascati (RM) Malvasia Puntinata
CONT1 Montecchio Maggiore (VI) Pinot Grigio
FIANO32 Gravina di Puglia (BA) Fiano
M. fructicola TYPE
M. andauensis TYPE
M. pulcherrima TYPE
COLR3 Colognola ai Colli (VR) Pinot Grigio
COLR6 Colognola ai Colli (VR) Pinot Grigio
PG1 Montecchio Maggiore (VI) Pinot Grigio
SOUV3 Grumes (TN) Souvignier Gris
BONAR3 Vigolzone (PC) Bonarda
SOUV1 Grumes (TN) Souvignier Gris
RECIOTO1 Tregnago (VR) Corvina
RECIOTO4 Tregnago (VR) Corvina
RECIOTO5 Tregnago (VR) Corvina
GLERA6 Valdobbiadene (TV) Glera
P3 Trevignano (TV) Plum
GLERA2 Valdobbiadene (TV) Glera
COLR7 Colognola ai Colli (VR) Pinot Grigio
VIGN2 Massa Marittima (GR) Viognier
CONT2 Montecchio Maggiore (VI) Pinot Grigio
CONT4 Montecchio Maggiore (VI) Pinot Grigio
COLT3 Colognola ai Colli (VR) Corvina
PG22 Montecchio Maggiore (VI) Pinot Grigio
ALIC2 Massa Marittima (GR) Alicante
ALIC3 Massa Marittima (GR) Alicante
MALV3 Frascati (RM) Malvasia
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3.3.2.  Physiological characterization 

 

The results of the relative growth of the isolates in each stress tolerance assay 

(high sugar level, ethanol, sulfite, copper and gluconic acid) were put together to 

calculate the similarity based on this phenotypic characterization. The clusters for 

Lachancea spp., S. bacillaris and Metschnikowia spp. are shown in Figures 3.4, 

3.5 and 3.6, respectively. The response profiles are represented by heat-maps and 

the results of the sulfite reductase activity are also shown next to them. 

It is possible to observe that some inter- and intraspecies differences were 

present. In general, about the different behaviors at species level, Lachancea spp. 

and S. bacillaris were more resistant to high concentrations of ethanol than 

Metschnikowia spp. Most of the isolates from this last group could not grow at 8% 

ethanol and all of them were severely inhibited at 12% ethanol, while the isolates 

from the two other groups found some inhibition only at 12%, and specially 

isolates of S. bacillaris proved to be the more resistant to this condition. These 

results are in agreement with Barbosa and co-workers (2018), who carried out a 

characterization of 65 M. pulcherrima isolates and found only a few of them being 

tolerant to 9% ethanol and all sensitive to 12%. Aponte and Blaiotta (2016) 

performed a characterization with different species of non-Saccharomyces, 

finding isolates of M. pulcherrima to tolerate a maximum of 4-5% ethanol, while 

L. thermotolerans and S. bacillaris could grow to a concentration of 10%. 

Working with 25 isolates of L. thermotolerans, Banilas and co-workers (2016) 

described most of them being resistant to 6% ethanol and different behaviors at 

8%, from low to high tolerance. Englezos and colleagues (2015) found similar 

results to ours working with S. bacillaris, where 90% of the isolates were able to 

grow at all concentrations tested, from 8 to 14%. Also Tofalo and co-workers 

(2009) found “Candida zemplinina” to be tolerant to 8% ethanol and half of the 

strains could grow at 14%. Ethanol stress represents toxicity through intracellular 

ROS generation in addition to deleterious damage to cell membrane, by altering 

its organization and permeability, and functional proteins (D'Amore et al., 1990; 

Alexandre et al., 1994; Costa et al., 1997). 

Regarding the high content of glucose in the growth medium, the results were 

very similar between the different species. All isolates were able to grow in the 

three concentrations tested (22, 27 and 32%), but some limitation of growth was 
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observed as being directly proportional to the increase of sugar concentration, 

even though some intraspecific variability was present. Tofalo and co-workers 

(2009) tested some strains of “Candida zemplinina” and all of them grew in media 

containing 20 and 40% glucose, and most of them grew even faster on 20% 

compared to the control with 2% glucose. Glucose at 60% inhibited most of the 

isolates and only one was able to grow. Pfliegler and colleagues (2014) described 

a high variability among strains of “Candida zemplinina” in increasing 

concentrations of glucose in the growth medium. The effect of the higher sugar 

concentrations in the growth could be attributed to a slower proliferation of yeast 

cells due to the osmotic pressure caused by high glucose content (Thomas and 

Ingledew, 1990; Zhao and Lin, 2003). 

When looking at the tolerance to copper, all isolates of S. bacillaris and 

Metschnikowia spp. were tolerant to all concentrations tested (2.5, 5 and 10 mM), 

while divergent responses can be seen for Lachancea spp., a few isolates were 

fairly tolerant and others were completely inhibited. Barbosa and co-workers 

(2018) also reported tolerance to copper, but the maximum concentration used by 

them was 2 mM. 

All isolates tested were dramatically sensitive to the SO2 concentrations 

tested, even though a few isolates of S. bacillaris showed slight growth. Some 

diverging reports were found in literature. As regarding Metschnikowia spp., 

Barbosa et al. (2018) found all tested isolates of M. pulcherrima able to grow in 

128 ppm of SO2 and two of them were even resistant to 256 ppm. With isolates of 

L. thermotolerans, Banilas and colleagues (2016) found some of them with high 

growth in 100 ppm of SO2 and some could not grow at all. S. bacillaris isolates 

were reported to be sensitive to concentrations of 100 and 150 ppm of SO2, and 

only about 50% of them could grow in 50 ppm (Englezos et al., 2015). In a study 

conducted with strains from many different non-Saccharomyces species, all of 

them were described as resistant to 200 mg/L of potassium metabisulfite, 

including M. pulcherrima, L. thermotolerans and S. bacillaris (Aponte and 

Blaiotta, 2016). 

The comparison of the growth in medium containing gluconic acid as the sole 

carbon source showed that isolates of Metschnikowia spp. have a much higher 

potential to metabolize this compound than the other species analyzed. Peinado 

and colleagues (2004, 2009) used isolates from the species Schizosaccharomyces 
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pombe to remove the gluconic acid from must obtained with rotten grapes and 

wine before the aging process. 

The level of hydrogen sulfide production was not used for the construction of 

the dendrograms, but its results are shown right next to the heat maps of the stress 

tolerance assays. All isolates of S. bacillaris showed the same level of production, 

positioned in the medium to high spectrum of the scale. Among the isolates of 

Metschnikowia spp. and Lachancea spp., some variability was observed, ranging 

from low-medium to high production. Our results differ from those reported by 

Belda et al. (2016), who described a very low or even absent sulfite reductase 

activity in Metschnikowia spp. isolates, but agreed with them regarding the high 

variability among L. thermotolerans isolates. Aponte and Blaiotta (2016) 

concluded that isolates of M. pulcherrima were fair producers and of S. bacillaris 

were high producers, while again isolates of L. thermotolerans showed a high 

diversity among them. Most of the L. thermotolerans isolates assayed by Banilas 

and colleagues (2016) produced medium to high amounts of H2S, even though 

also for them some variability among isolates was present. For S. bacillaris, the 

very low variability among the isolates was shown also by Englezos and co-

workers (2015), where 4% of them produced low levels of H2S and all the others 

produced a medium amount; and Pfliegler and colleagues (2014), who observed 

almost all 35 isolates tested producing high amounts of H2S. 

The most discriminant feature among the isolates of Lachancea spp. was the 

resistance to 10 mM of copper. It can be seen how two major clusters were 

formed, one of them containing the isolates sensitive to 10 mM of copper and 

another cluster with four isolates tolerant to all concentrations of this element. 

Interestingly, the isolates in the first cluster showed a general higher production of 

H2S than those in the second cluster. The isolate FIANO43 was then differentiated 

from the others within the first cluster due to its higher tolerance to ethanol, 

especially at 12%. Comparing the three species of the genus Lachancea tested in 

the trials, L. fermentati LS16 and L. kluyveri FIANO22 had a slightly lower 

tolerance to the osmotic pressure caused by high sugar concentration and higher 

resistance to SO2, compared to L. thermotolerans. 
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Figure 3.4. Physiological characterization of Lachancea spp. strains in stress tolerance assays and 

sulfite reductase activity. 

 

The four isolates obtained from Malvasia Candia grapes were clustered 

together with a very high similarity, while in the genotypic characterization they 

were positioned in two different pairs (MALV13/MALV17; LT3/LT15) with 

around 80% similarity between them. The two isolates from Pinot Grigio were 

again distant from each other, as in the genotyping. 

For the isolates of S. bacillaris, the feature that resulted in the higher 

differentiation was the tolerance to 12% ethanol, which resulted in the formation 

of two major clusters, one with low and the other with medium to high tolerance. 

The second most discriminant feature was the tolerance to the highest 

concentrations of sugar. The isolates CTP63 and CORV5 were separated from the 

others in their respective clusters due to the lower tolerance to copper. 

The molecular characterization did not correspond with the physiological 

characterization, whereas the clusters formed were very different. The isolates 

from Emilia-Romagna, which were close to each other in the genotyping, were 

placed separately after the physiological characterization. On the other hand, some 

pairs of isolates coming from the same location and grape variety, such as 

ARMANI3/ARMANI4, GLERA8/GLERA12, CHIAR4/CHIAR7, which were 

distant from each other in the SAU-PCR analysis, were placed much closer after 

the stress tolerance assays. 
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Figure 3.5. Physiological characterization of Starmerella bacillaris strains in stress tolerance 

assays and sulfite reductase activity. 

 

Among the isolates of Metschnikowia spp., the ability to grow in the medium 

with gluconic acid was the most discriminant characteristic. One cluster was 

immediately separated from the others formed with the isolates with very low 

capacity to metabolize this acid. The isolates with lower growth in gluconate 

generally showed also lower tolerance to ethanol, sugar and copper, and the 
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highest production of H2S. The second most discriminant feature was the 

tolerance to high sugar concentrations. 

 

 

Figure 3.6. Physiological characterization of Metschnikowia spp. strains in stress tolerance assays 

and sulfite reductase activity. 

 

The physiological characterization of Metschnikowia spp. isolates also did not 

reflect the genotyping. Most of the isolates grouped together after the RAPD- and 

Rep-PCR analysis did not show the same similarity on the stress tolerance assays. 
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The exceptions were the pairs CONT2/CONT4 and COLR1/COLR4, which had a 

high similarity in both analysis and moreover were isolated from the same type of 

grape must and location, most likely representing two isolates of the same strain. 

As regarding the enzymatic activities, the isolates of S. bacillaris and L. 
thermotolerans did not show positive result for any of the tests. L. fermentati was 

positive for b-glucosidase and L. kluyveri had only pectinase activity. Some 

studies have already shown that  most yeast species are unable to produce pectic 

enzymes, even though polygalacturonase activity has been described in a few 

wine isolates (Strauss et al., 2001; Merín et al., 2011; Belda et al., 2016). On the 

other hand, b-glucosidase activity is widespread in non-Saccharomyces yeasts 

according to several screenings (Padilla et al., 2016). 

The isolates of Metschnikowia spp. presented some positive activities of 

esterase, protease and b-glucosidase, as shown in Table 3.1, organized according 

to the clusters formed through the stress tolerance assays. The test of glycosidase 

in medium containing rutin did not result positive for any of the isolates assayed. 

The proteolytic activity in skim milk was present in almost all isolates, only 

about 10% of them did not show any activity, while the others ranged from low to 

high activity. The activity of b-glucosidase was also positive for most of the tested 

isolates, 85% of them. The seven isolates that could not grow and/or change the 

color of the medium containing arbutin were also negative for the esterase 

activity. Around 28% of the isolates gave a positive result in the medium 

containing Tween 80. Only the strain ALIC3 was negative for all enzymatic 

activities assayed in this study. On the other hand, the isolates BONARDA3, 

CLINT4, COLR7, COLT3, CONT2, CONT4, FIANO12, MERLOT1, P3, PG1, 

PG22 and RECIOTO1, gave positive results for all three tests shown in Table 3.1, 

which represents around one quarter of the Metschnikowia spp. isolates used. 

The results reported by Barbosa and colleagues (2018) agreed with ours 

regarding the b-glucosidase activity of Metschnikowia spp. isolates, when almost 

all isolates showed positive activity, and they also found a high diversity in the 

activity of sulfite reductase. However, their reports on the protease activity was 

the opposite, whereas most of our isolates were positive and almost all of theirs 

were negative. 
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Table 3.1. Enzymatic activities of Metschnikowia spp. isolates. Esterase and b-Glucosidase were 

described as negative or positive, while Protease was evaluated with different intensities for the 

positive result. 

Isolate Esterase b-Glucosidase Protease 

FIANO32 - + ++ 

FIANO41 - + +++ 

FIANO44 - + ++ 

CLINT4 + + ++ 

COLR7 + + +++ 

GLERA6 - + + 

COLR6 - + ++ 

CONT1 - + + 

F26 - + ++ 

RECIOTO5 - + - 

FIANO15 - + ++ 

F20 - - ++ 

FIANO33 - - ++ 

FIANO51 - - ++ 

CONT2 + + ++ 

COLR5 - - +++ 

CONT4 + + +++ 

RECIOTO1 + + +++ 

COLT3 + + ++ 

FIANO12 + + ++ 

MA - + +++ 

COLR1 - + + 

COLR4 - + ++ 

PG1 + + + 

MASSI4 - + ++ 

CORV2 - + + 

ALIC2 - - ++ 

BONARDA3 + + + 

UVATAV4 - + +++ 

P3 + + + 

MF - + ++ 

MALV3 - + ++ 
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Isolate Esterase b-Glucosidase Protease 

GLERA2 - + + 

PG22 + + + 

DESP65 - + +++ 

RECIOTO4 - + +++ 

VIGN2 - + - 

SOUV3 - + + 

SANGIO2 - - +++ 

MP - + ++ 

MALV5 - + + 

COLR3 - + - 

FIANO23 - + ++ 

SOUV1 - + ++ 

MERLOT1 + + + 

ALIC3 - - - 

VIGN1 + + - 

 

For S. bacillaris, the work by Lemos Junior and colleagues (2016) reported 

only two strains as protease producers and all others were negative for the same 

enzymatic activities that we assayed as well. Englezos and co-workers (2015) 

were able to find 5% of the isolates being positive for b-glucosidase, 77% for 

protease and 11% for esterase, while pectinase and glycosidase activities 

corresponded with our findings and any isolate was positive. 

In a very vast study with 770 yeast isolates belonging to 15 different species, 

many enzymatic activities were tested by Belda et al. (2016). Protease and b-

glucosidase were the two most present enzymes, while polygalacturonase 

(pectinase) was very rare. The isolates of L. thermotolerans did not show any of 

those three activities, and most of Metschnikowia spp. had positive results for b-

glucosidase and protease, in agreement with our findings, with the only exception 

that they found also the pectinolytic activity to be widespread among 

Metschnikowia spp. (Belda et al., 2016). 

Another enzymatic characterization with different yeast species was carried 

out by Aponte and Blaiotta (2016). Regarding the same groups evaluated in the 

present study, only M. pulcherrima was able to produce b-glucosidase in medium 
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containing arbutin, and any isolate of M. pulcherrima, L. thermotolerans or S. 
bacillaris could give a positive result for esterase test in medium with Tween 80. 

 

3.3.3.  Single culture fermentation 

 

The isolates from the species L. thermotolerans, L. fermentati, L. kluyveri and 

S. bacillaris were further characterized by their fermentation performance in 

natural grape must. A commercial strain of S. cerevisiae (EC 1118) was used as 

control. The most important oenological parameters calculated for each species 

are shown in Table 3.2, represented as the mean value of all isolates for the 

species L. thermotolerans and S. bacillaris. 

After 10 days of incubation, none of the non-Saccharomyces isolates used in 

this fermentation trials was able to complete the alcoholic fermentation, as it can 

be seen by the high concentration of residual sugars and low production of 

ethanol, considering that the grape must initially contained around 210 g/L of 

sugars. On the other hand, the commercial strain of S. cerevisiae fermented almost 

to dryness and produced 12.21 %v/v ethanol. There was some variation among 

the isolates of S. bacillaris and L. thermotolerans, but in general L. fermentati and 

L. thermotolerans were best fermenters than L. kluyveri and S. bacillaris. 

It is noteworthy to point out how all isolates of Lachancea spp. consumed 

more glucose than fructose, while all isolates of S. bacillaris consumed more 

fructose, confirming the fructophilic character of this species. 

S. cerevisiae also consumed more malic acid than the non-Saccharomyces 

isolates. As regarding succinic acid, S. bacillaris produced much less than the 

other species, with L. kluyveri being the highest producer. At the same time, this 

species did not produce detectable amounts of lactic acid, a very well-known 

feature of L. thermotolerans and L. fermentati. The quantity produced by this last 

species was exceptionally high and for L. thermotolerans the metabolism of lactic 

acid was very strain-dependent. The concentrations varied from 0.26 to 10.54 g/L, 

and such huge diversity was further explored by different molecular and 

physiological tests in order to clarify the mechanisms of this very relevant 

metabolic trait, which are explained in detail in the next chapter. 

The higher production of volatile acidity (g/L of acetic acid) by S. cerevisiae 

can be explained by the complete consumption of sugars. Nevertheless, even 
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though this character varied among the different isolates of S. bacillaris and L. 
thermotolerans, it can be seen how the first presented a mean value much higher 

than the second. Usually, values between 0.20 and 0.70 g/L are considered 

optimal, while above its threshold of 0.70-1.10 g/L the acetic acid can becomes 

unpleasant to the flavor (Lambrechts and Pretorius, 2000). L. thermotolerans and 

S. bacillaris are usually reported as low producers of volatile acidity, when 

compared to S. cerevisiae (Padilla et al., 2016). 

The different values for the total acidity and the pH can be related to the 

diverging profiles on the production of lactic acid and acetic acid by each species. 

The production of glycerol was also very strain-dependent for L. 
thermotolerans and S. bacillaris, although it is possible to highlight that most of 

the isolates of both species produced more than L. kluyveri and L. fermentati and 

some isolates of S. bacillaris resulted in more glycerol than S. cerevisiae, keeping 

in mind that this last was the only one to complete the fermentation of sugars. The 

higher production of glycerol could be considered positive, as it contributes to 

smoothness, sweetness and complexity in wines (Ciani and Maccarelli, 1998). In 

a study performed in 2016, Rossouw and Bauer also found high glycerol yields 

for isolates of L. thermotolerans and S. bacillaris. 

Aponte and Blaiotta (2016) performed microvinification trials in Aglianico 

grape must with single cultures of different non-Saccharomyces yeasts, including 

L. thermotolerans and S. bacillaris. They showed a similar fermentation power, 

leaving almost the same quantity of residual sugars at the end, which was lower 

than the value found in the present study. Similarly to what we observed, S. 
bacillaris consumed much more fructose, while L. thermotolerans preferred 

glucose. S. bacillaris produced more glycerol while L. thermotolerans more 

succinic acid, moreover all values were higher than ours. They also found a 

significant diversity in the production of lactic acid by L. thermotolerans. The 

production of acetic acid was much lower for L. thermotolerans and similar to our 

findings, while S. bacillaris produced quantities slightly above the threshold 

described before. 
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Table 3.2. Chemical analysis of the wines obtained after single inoculation, represented as the mean values and standard deviation of all isolates belonging to each 

species. N/D = not determined. 

Species (No of 
strains) 

Residual 
Glucose 

(g/L) 

Residual 
Fructose 

(g/L) 

Citric 
Acid 
(g/L) 

Malic 
Acid 
(g/L) 

Succinic 
Acid 
(g/L) 

Lactic 
Acid 
(g/L) 

Glycerol 
(g/L) 

Acetic 
Acid 
(g/L) 

Ethanol 
(%v/v) 

Total 
Acidity 
(g/L) 

pH 

L. fermentati (1) 51.04 66.20 0.21 3.24 0.38 13.03 3.63 0.20 5.33 15.39 2.39 

L. kluyveri (1) 59.30 84.37 0.19 3.43 0.93 0 4.27 0.21 3.8 6.79 3.35 

L. thermotolerans 
(13) 

54.00 ± 

8.23 

65.98 ± 

8.19 

0.19 ± 

0.016 

3.17 ± 

0.25 

0.50 ± 

0.10 

3.68 ± 

2.99 

4.48 ± 

0.51 

0.13 ± 

0.095 

5.17 ± 

0.93 

9.11 ± 

1.96 

3.14 ± 

0.23 

S. bacillaris (47) 
93.12 ± 

6.18 

54.72 ± 

8.14 

0.22 ± 

0.024 

3.08 ± 

0.21 

0.095 ± 

0.043 
N/D 

5.46 ± 

0.82 

0.56 ± 

0.10 

3.86 ± 

0.53 

6.56 ± 

0.28 

3.56 ± 

0.026 

S. cerevisiae (1) 2.22  1.46 0.20 2.63 N/D N/D 5.21 0.59 12.21 7.09 3.62 

 

 



93 
 

Microvinifications of pasteurized grape must were conducted by Banilas and 
co-workers (2016) with single cultures of L. thermotolerans. The fermentations 
were only stopped when the weight loss became constant, around 20 days. Some 
variability was observed among strains, but they were able to consume more 
sugars, produce more ethanol and more volatile acidity than our isolates. The 
production of lactic acid was highly variable among the strains, ranging from 1.0 
to 16.6 g/L, consequently also the total acidity was variable. 

In 2016, Lemos Junior and colleagues carried out single fermentations with S. 

bacillaris isolates in synthetic grape must and stopped the fermentation after 26 
days, but they found similar results to ours: high residual sugar and limited 
ethanol production, preference for fructose consumption, high glycerol yield, but 
they found lower values for the volatile acidity. In 2015, Englezos and colleagues 
performed the fermentations in Barbera grape must during 14 days, confirming 
also the high fructophilic character and slower fermentation, compared to S. 

cerevisiae. The acetic acid and glycerol production were higher than those 
observed in the present study. 

In order to compare and better visualize the differences among the isolates of 
L. thermotolerans and S. bacillaris, a Principal Component Analysis was carried 
out with the most important parameters for all isolates of each species. The results 
are shown in Figures 3.7 and 3.8. 

The first two components were able to explain 72% of the variability (Figure 
3.7). On the top-left quarter, the isolates showed higher fermentation performance, 
but produced excessive amounts of lactic acid and volatile acidity. On the top-
right side the isolates had a good ability to increase the glycerol content and 
reduce the volatile acidity, however had the slowest growth and probably faced 
more trouble adapting to the grape must. Other isolates were placed more 
intermediary and could be interesting in the balance between having a good 
growth rate and producing adequate quantities of the important metabolites. As it 
could be expected, a higher production of lactic acid was associated with the 
higher reduction of pH. The production of succinic acid and glycerol was 
positively related to a higher consumption of fructose instead of glucose, even 
though all isolates preferred glucose. 
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Figure 3.7. [A] Loading plot and [B] Score plot of the Principal Component Analysis of some 
important oenological parameters obtained after the single inoculation of Trebbiano grape must 
with isolates of Lachancea spp. 

 
For the isolates of S. bacillaris, the first two components of the PCA 

explained 64% of the variability (Figure 3.8). The isolates placed on the left side 
had a faster fermentation performance and showed a higher fructophilic character, 
even though all isolates consumed more fructose than glucose. On the right side 
there were the isolates that presented higher yields in the production of glycerol 
and acetate. Most of the isolates were distributed close to the center of the PCA, 
showing intermediary features. 

 

A

B
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Figure 3.8. [A] Loading plot and [B] Score plot of the Principal Component Analysis of some 
important oenological parameters obtained after the single inoculation of Trebbiano grape must 
with isolates of Starmerella bacillaris. 

 
3.4.  CONCLUSIONS 
 

The fingerprinting analysis have shown the presence of different strains 
among the isolates of the same species, which formed distinct clusters based in the 
similarity. No clear relations were observed between the geographical origin, 
variety of grape and the genotypic profiles. SAU-PCR was shown to be a useful 
tool for the genotyping of S. bacillaris and L. thermotolerans isolates. For 
Metschnikowia spp., the use of primer (GTG)5 gave a higher discrimination power 

A

B
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than M13, and the combined analysis was interesting for the genotyping of this 
group. 

This study has an in-depth and vast phenotypic characterization of around one 
hundred isolates belonging to three different genera, by means of stress tolerance 
assays, enzymatic activities trials and microvinifications, showing the potential of 
the non-Saccharomyces yeast species chosen to have a relevant impact in the wine 
quality. 

The tests with five different components that are usually present on grapes 
and/or grape musts allowed the evaluation of the isolates’ potential to survive to 
the stress caused by those elements, in order to establish the capacity of the yeasts 
to participate more actively and lastingly in the fermentation and therefore give a 
more relevant contribution to the wine quality. Isolates of S. bacillaris and 
Lachancea spp. were tolerant to all concentrations of ethanol tested, while 
Metschnikowia spp. was inhibited at concentrations higher than 8%. All isolates 
were tolerant to the high concentrations of sugar, but the increasing from 220 to 
320 g/L caused an extension of the lag phase and slowing down of growth. An 
addition of 100 ppm of SO2 was sufficient to inhibit all isolates. They were also 
resistant to copper at 10 mM, with the exception of some L. thermotolerans 
isolates which survived only until 5 mM. Lachancea spp. and S. bacillaris could 
barely grow on medium containing gluconic acid as carbon source, most of the 
Metschnikowia spp. showed a great potential to consume this substance usually 
present on grapes damaged by gray rot. 

The screening of six enzymatic activities of oenological interest was 
performed to have an enzymatic profile of the studied species in order to evaluate 
the possible impact that the isolates could have in the wine aroma and other 
relevant technological steps of the winemaking process. The isolates of S. 

bacillaris and L. thermotolerans used in this study did not possess any of the 
tested enzymatic activities. On the other hand, Metschnikowia spp. showed a high 

potential for the modulation of wine aroma compounds by the presence of b-

glucosidase, protease and esterase activity in many different isolates. The 
production of H2S was highly variable among isolates of Lachancea spp. and 
Metschnikowia spp., while all isolates of S. bacillaris showed a medium 
production. 
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Microvinification trials in natural grape must with isolates of S. bacillaris and 
Lachancea spp. confirmed some interesting traits already reported before, as the 
lowering of ethanol and acetic acid when compared to S. cerevisiae and high 
production of glycerol. Particularly, the ability of the Lachancea spp. isolates to 
produce L(+)-lactic acid will gain further attention in the next chapter. 

The genotypic and phenotypic characterization showed the presence of 
variability among the tested isolates, both inter- and intraspecies, and, moreover, 
did not give corresponding clusters. Some strains with similar fingerprinting 
showed different physiological responses and others very distant in the PCR-
based dendrograms were placed very close when considering the phenotypic 
traits. Nevertheless, some isolates were similar in all analysis. It is very difficult to 
draw some conclusions about the factors influencing the variability among the 
different isolates, as they could be related with selective pressure caused by 
geographical influence, grape variety, specific health and ripeness conditions of 
the grapes during the sampling, human interventions. The same factors that were 
described in the previous chapter as having an impact in the different yeast 
population found in the diverse samples could also explain how isolates from the 
same species coming from different samples are able to have divergent 
phenotypic profiles. 

This variability observed was used for the selection of a few isolates from 
each species that show different and interesting properties, in order to be tested 
alongside with S. cerevisiae in sequential inoculation, which results will be shown 
in Chapter 6. 
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CHAPTER 4.  ANTAGONISTIC EFFECT OF ALTERNATIVE 
YEAST STRAINS AGAINST Botrytis cinerea FOR 
INTEGRATED VITIVINICULTURAL BIOCONTROL 
STRATEGIES 

 
4.1.  INTRODUCTION 

 
Botrytis cinerea is an ascomycetous fungus that has adapted to be a parasite 

and is able to infect around 200 different dicotyledonous plants, being also 
capable of having a saprophyte life. This pathogen is very difficult to control, 
especially when the favorable environmental conditions are present, and it is 
considered one of the most relevant threats for the grapevine in temperate climate, 
usually known as gray rot (Williamson et al., 2007; Ferrari et al., 2011). 

The attack of B. cinerea on the vineyard may cause important quantitative and 
qualitative losses, especially for the grapes destined to winemaking. It could infect 
different parts of the plant, but the damage is usually more evident on the berries. 
They would initially present some brown spots in the black grapes or grey-yellow 
in the white grapes. Then, in case of substantial rainfall, the berries will become 
rotten and large portions of the bunch will be covered by the gray rot, which is the 
set of conidia and conidiophores (Vicenzini et al., 2009; Ferrari et al., 2011). 
Considering the table grapes, this fungus also represents a problem during cold 
storage and shipment, since it can grow effectively at very low temperatures 
(Droby and Lichter, 2004). Indeed, B. cinerea is the most common postharvest 
pathogen of grapes in most regions of the world (Qin et al., 2010; Nally et al., 
2012). 

Considering the high risk of infection and the massive negative impact posed 
by B. cinerea, it is of ultimate importance to take some actions to avoid this 
disease, which are usually aimed to prevent the pathogen to start developing in the 
vineyard. Since the gray rot preferentially develops in habitats with high 
humidity, low temperature and limited light, the vine training system used could 
help to favor the aeration and light incidence and thus counteract the formation of 
the microclimate encouraging for the mold. The choice of the rootstock and grape 
variety have an influence in the degree of compaction within the bunches, which 
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could be a factor for the mold development (Williamson et al., 2007). The green 
pruning technique is also used with the aim to give more exposition and aeration 
of the bunches (Gubler et al., 1987). It is also fundamental to protect the vineyard 
from other grape diseases, like oidium and moths, and environmental hazards, like 
hailstorms, because they may cause damages to the integrity of the grapes and 
thus facilitate the infection with B. cinerea (Vicenzini et al., 2009). 

When the vines are infected by gray rot, the most common practice to save the 
grapes from the damage is the use of chemical agents. However, these products 
have been used indiscriminately, sometimes even when the disease is not yet 
present, causing environmental pollution over the time and possible harming the 
human health. The continuous use of those chemical fungicides could be also 
responsible for triggering resistance in the pathogens and thus the efficacy would 
be lost. The high costs accounted for the synthesis of new chemicals are also 
considered a disadvantage of their use (Tripathi and Dubey, 2004; Panebianco et 

al., 2015; Parafati et al, 2015; Vitale et al., 2016). 
For those concerns, new methods have been developed for the protection from 

the pathogens, which should be sustainable for the environment, and also from the 
economic and scientific point of view. These proposed innovations have to assure 
the safety and promote an equilibrated integration of modern biotechnologies with 
traditional agri-food system (Capozzi and Spano, 2011). One of these alternative 
approaches is the use of other fungi and yeast species that have inhibitory activity 
against the plant pathogens. Some of these so-called biological control agents 
(BCA) already available in the market anti-B. cinerea include filamentous fungi 
(Trichoderma spp., Ulocladium and Gliocladium), bacteria (Bacillus and 
Pseudomonas) and yeasts (Pichia and Candida) (Jacometti et al., 2010). 

A series of features have been listed for the ideal application of a BCA: 
genetic stability, efficacy at low concentrations, reduced nutrient requirements, 
tolerance to adverse environmental factors, activity against a broad spectrum of 
pathogens, prolonged shelf-life, simplicity of use, compatibility with chemical 
and physical treatments, harmlessness for human health, innoxious for the plants 
and fruits on which would be applied (Droby et al., 2009; Sharma et al., 2009; 
Abano and Sam-Amoah, 2012). 

The main mechanism through which a BCA is able to suppress a risk 
pathogen is the competition for nutrients and space (Zhang et al., 2011). Other 
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proposed actions include also the parasitism, the release of secondary metabolites 
with inhibitory effect, the stimulation of defensive responses in the affected plant 
through elicitors secreted by the BCA, the production of ROS by the host and the 
antagonist. Some drawbacks of the biological control are the sensitivity to certain 
environmental conditions and the restricted inhibitory activity, usually specific 
(Janisiewicz and Korsten, 2002; Spadaro and Gullino, 2004; Spadaro and Droby, 
2016). The antifungal activity varies according to the yeast species, substrate 
composition, culture mode, yeast growth stage, temperature and other 
environmental factors (Martins et al., 2010). 

Yeasts are the microorganisms most commonly used as BCA due to some 
interesting characteristics, such as their natural occurrence in fruits and 
vegetables, the ability to colonize large surface for long times, the absence of 
allergenic spores or mycotoxins, simple nutritional requirements, fast and cost-
effective biomass production in bioreactors (El-Tarabily and Sivasithmparam, 
2006; Chanchaichaovivat et al., 2007; Bai et al., 2008). Some examples of yeast 
strains that were registered for the use as BCA include Candida oleophila 
(AspireTM; NexyTM), Candida sake (CandifruitTM), Cryptococcus albidus 
(YieldplusTM), Metschnikowia fructicola (ShemerTM) and Aureobasidium 

pullulans (BoniProtectTM), although certain products were already discontinued in 
the market (Spadaro and Droby, 2016; Droby et al., 2016; Pretscher et al., 2018). 

Another important characteristic to consider is if the yeasts selected are 
generally regarded as safe (GRAS) (Banerjee, 2009). Even if the yeasts usually 
have this status, in recent years some cases of clinical infections caused by them 
have been reported, especially in immunocompromised patients (Okawa and 
Yamada, 2002; de Llanos et al., 2006). For this reason, it is of major importance 
to evaluate the possible pathogenicity towards humans of BCA candidates. Some 
features frequently associated with pathogenicity are the growth at high 
temperatures, the adhesion to host cells, the secretion of hydrolytic enzymes that 
facilitate the invasion of host tissues (de Llanos et al., 2006; Nally et al., 2012). 

Although many yeasts had already been recognized for the antifungal activity 
during the last 30 years of biocontrol research, the selection of new strains for the 
biocontrol on grapes is still challenging and studies concerning the interaction 
between species remain of great interest, since reliable commercial options for 
gray rot control are still lacking and important research effort is needed to develop 
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BCAs adapted to vineyard environment, effective in field conditions and with 
lower variability in disease control (Calvo-Garrido et al., 2018). 

The microbial population dynamics in wine is very complex, in both vineyard 
and in the cellar, and so it is of major importance to establish if the biocontrol 
yeasts would remain in the grape musts and possibly actively participate during 
the fermentation process. The selection of new BCA should then consider the 
possible impacts that the strain could have in the natural or inoculated microbiota 
responsible for the fermentation and in the properties of the wine (Lemos Junior et 

al., 2016). 
The microbiomes of many terrestrial environments represent a collection of a 

tremendous underexplored diversity, which remarkable scientific and industrial 
potential are still largely uncharacterized. The vineyard environment has received 
a growing attention in the past decades, and the hundreds of different bacteria and 
yeast species and strains living there could offer a world of biotechnological 
opportunities. There are various indigenous yeast genera living on the grape 
surface, such as Candida, Hanseniaspora, Metschnikowia, Pichia, Torulaspora, 
but the participation of this group known as “non-Saccharomyces” in the wine 
fermentation has been limited due to previous belief on their liability for spoilage 
and degradation of the wine quality (Rossouw and Bauer, 2016). 

Nowadays, their role has been already completely reevaluated and a few 
strains are available in the market with the aim to improve the wine quality in 
many different aspects (Petruzzi et al., 2017; Supplementary Table S.1). Besides 
the many active extracellular molecules that have been highlighted due to the 
beneficial effect in wine quality and stability, some non-Saccharomyces can also 
produce metabolites active against wild spoilage organisms (Comitini et al., 
2017). 

Nevertheless, the potential use of non-Saccharomyces as BCA is still largely 
uncovered. Additionally, for the best of our knowledge, there are no data available 
on literature about the impact of non-Saccharomyces BCA in the later stages of 
winemaking after grape harvest, even if they could presumably persist on the 
grape surface at high concentrations after repeated applications. Moreover, there 
is only one reported study about the possibility of using non-Saccharomyces 
yeasts in an integrated approach as BCA and starter culture, performed with 
strains from the species Starmerella bacillaris (Lemos Junior et al., 2016). 
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S. bacillaris (synonym Candida zemplinina) is an important species of non-
Saccharomyces yeast that stands out from the group due to many interesting 
oenological properties, such as the fructophilic character, the high tolerance to 
ethanol, high glycerol production, increase in aromatic complexity (Tofalo et al., 
2016; Englezos et al., 2018). Another interesting species is Lachancea 

thermotolerans, which has been mainly investigated due to its particular ability to 
produce large quantities of lactic acid. Besides enhancing wine acidity, this yeast 
was also described as producing low levels of volatile acidity and ethanol, high 
levels of glycerol and beneficial aromatic compounds (Benito et al., 2016; 
Whitener et al., 2016). These species, as the other non-Saccharomyces, are not 
able to ferment the grape must to dryness, and for this reason they are coupled 
with S. cerevisiae in order to have a complete process resulting in increased 
quality, stability and complexity of the wine (Petruzzi et al., 2017). 

The main goal of this study was to evaluate the biodiversity of strains from 
two oenological relevant species, L. thermotolerans and S. bacillaris, isolated 
from diverse grape varieties across many different Italian regions, in the potential 
use as BCA against grapevine pathogens, specifically the responsible for gray rot, 
B. cinerea. The ideal candidate should possess effective antagonism against the 
mold and, moreover, do not show possible harmful effects for the human health or 
for the outcome of the fermentation process, with the final aim of improving the 
wine quality. Those strains were extensively characterized for genotypic and 
phenotypic features and some of them were also tested in mixed inoculation with 
S. cerevisiae, as shown in different chapters of the present thesis. 

 
4.2.  MATERIAL AND METHODS 

 
4.2.1.  Yeast and mold strains and growth conditions 

 
All isolates of L. thermotolerans (12) and S. bacillaris (46) listed in 

Supplementary Table S.2 were used for the pathogenicity tests, plus the type 
strains L. thermotolerans DBVPG 6232T, S. bacillaris NCAIM Y016667T, one 
commercial starter of L. thermotolerans (Viniflora® ConcertoTM) and one of S. 

cerevisiae (EC 1118). For in vitro antagonism trials, 16 isolates of S. bacillaris 
and the type strain of the species were used, alongside with seven isolates of L. 
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thermotolerans and the commercial strain, selected based on the characterization 
of the previous chapter and the pathogenicity tests. The list was shortened again 
for the in vivo antagonism assays, when two isolates for each species and the 
starter Viniflora® ConcertoTM were used (Table 4.1). Two different strains of B. 

cinerea were chosen for the antagonism tests, the strain BM0510 from the VTT 
Culture Collection and one isolate (TOB62) from Nosiola withered grapes 
belonging to the collection of the Laboratory of Food Microbiology. 

 
Table 4.1. List of the isolates used for the antagonism assays versus Botrytis cinerea. Bold names 
represent the isolates used for both in vitro and in vivo assays. 

L. thermotolerans S. bacillaris 
COLC11, COLC27, 
DESP53, MALV17, 
LT15, LS15, SOL13, 
Concerto™ 

ARMANI3, CHIAR4, COLC20, COLC34, CORV5, 
DESP81, GLERA10, GLERA12, MALV45, PECO4, 
PECO6, PECO26, PECO29, PG15, RONDINELLA 3,  
SOL16, NCAIM Y016667T 

 
The activation of the yeast isolates followed the same procedures for the 

pathogenicity and antagonism tests. Starting from the frozen cultures kept at -
80 ºC, the isolates were reactivated on WL (Sigma-Aldrich) agar plates incubated 
at 27 ºC for 72 hours. One single colony was then inoculated in YPD broth (yeast 
extract, 1.0%; bacteriological peptone, 2.0%; glucose, 2.0%; Sigma-Aldrich) and 
incubated under static conditions at 27 ºC for 48 hours. A fresh YPD-containing 
tube was then inoculated at 1% with the previous grown culture and put in 
agitation overnight at 27 ºC to reach the early stationary phase. The culture was 

then centrifuged at 3,000´g for 5 minutes, washed twice and resuspended in 

physiological solution 0.9% (w/v) NaCl (Sigma-Aldrich). The inoculum was 
standardized for all yeast cultures with an OD600 of 1.6, corresponding 

approximately to 1´107 cells/mL. Aliquots of the cellular suspension were used 

for the spot inoculation in the pathogenicity tests and the streak or spread 

inoculation for the tests of inhibition in vitro. A concentrated suspension at 1´108 

cells/mL was prepared for the injection during the in vivo assays. The activation 
steps were repeated before each different trial. 

The strains of B. cinerea were grown on PDA plates (potato extract, 0.4%; 
glucose, 2.0%; agar, 1.5%; Sigma-Aldrich) for 5 days at 27 ºC, and the mycelium 
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was used for the in vitro assays with contemporary growth. For the in vitro tests in 
opposite plates and the in vivo assays, a conidial suspension was used. It was 
prepared by the incubation of B. cinerea on PDA plates at room temperature for 
15 days, exposed to sun light. A solution of 0.05%v/v Tween 80 (Sigma-Aldrich) 
was then used to recover the conidia from the plates, centrifuged at 14,000 rpm 
for 5 minutes and the pellet was resuspended in the same solution. The conidia 

were microscopically counted in order to have a suspension of 1´106 conidia/mL. 

 
4.2.2.  Tests of pathogenicity 

 
All tests were carried out with spot inoculation on Petri dishes filled with the 

specific media. From the cell suspension prepared as described in section 4.2.1., a 

droplet of 10 µL was deposited on the agar surface and dried under biosafety 

cabinet. Ten spots were inoculated on each plate and all isolates were inoculated 
in quadruplicate, with the commercial strain S. cerevisiae EC 1118 as a control. 

The plates were incubated at 27 ºC or 37 ºC for a specific time according to 
each test. The results were verified by changes in the aspect of the colony and/or 
the surrounding medium. 

 
4.2.2.1.  Growth at 37 ºC 

 
The ability of the yeast isolates to grow at the human body temperature 

(37±4 ºC) was evaluated on YPD agar plates (yeast extract, 1.0%; bacteriological 

peptone, 2.0%; glucose, 2.0%; agar, 1.5%; Sigma-Aldrich), as described by de 
Llanos et al. (2006). The spot inoculated plates were incubated at 37 ºC for 3 
days. The growth of the colonies was compared with a control incubated at 27 ºC. 

 
4.2.2.2.  Invasive growth 

 
The same plates of YPD agar incubated at 27 ºC used as control for the growth 

at 37 ºC were then utilized for the verification of the invasive growth. They were 
incubated for additional 10 days at room temperature, after what the surface of the 
medium was washed with deionized water and a spatula was employed to rinse 
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off the colonies. This procedure allowed the visualization of the isolates’ ability to 
penetrate and grow below the surface of the agar medium (de Llanos et al., 2006). 

 
4.2.2.3.  Formation of pseudohyphae 

 
The medium SLAD (Synthetic Low Ammonium Dextrose) was applied for the 

assessment of pseudohyphae formation by the yeast isolates. It was prepared with 
6.61 mg/L of (NH4)2SO4 (Sigma-Aldrich), 6.7 g/L of Yeast Nitrogen Base (YNB) 
without amino acids (Sigma-Aldrich), 20 g/L of glucose and 20 g/L of agar. YNB 
was dissolved in sterile water and mixed with the other components after these 
were autoclaved. Following the spot inoculation, the plates were incubated for 10 
days at 27 ºC. The results were reported as negative (-) when there were no visible 
pseudohyphae around the colony and the margins were plain, while irregular 
borders without pseudohyphae were accounted as +/- result and the clear presence 
of pseudohyphae was represented as positive (+) (de Llanos et al., 2006). 

 
4.2.2.4.  Proteolytic activity 

 
The proteolytic activity was evaluated in medium containing 20 g/L of malt 

extract (Sigma-Aldrich), 0.2 g/L of MgSO4 (Sigma-Aldrich), 2.5 g/L of K2HPO4 
(Sigma-Aldrich), 2.5 g/L of Bovine Serum Albumin (BSA; Sigma-Aldrich), 5 g/L 
of NaCl, 1 g/L of yeast extract, 20 g/L of glucose and 20 g/L of agar. Malt extract 
and agar were sterilized in autoclave, while the other components were dissolved 
in sterile water, filtered and mixed together with the first two after the autoclave. 
The pH was adjusted to 5.0 with HCl (Sigma-Aldrich). The plates incubated at 
27 ºC were observed after 10 days and a positive result would be indicated by a 
clear halo around the colony (de Llanos et al., 2006). 

 
4.2.3.  Tests of inhibition in vitro versus Botrytis cinerea 

 
4.2.3.1.  Contemporary growth on agar plates 

 
For the inhibition assays on agar plates, the PDA medium was used, following 

the methods described elsewhere (Parafati et al., 2015; Lemos Junior et al., 2016). 
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The first approach was the contemporary inoculation of both yeast and mold on 
the same plate. From each of the yeast cultures of S. bacillaris and L. 

thermotolerans listed in Table 4.1, and prepared as stated in section 4.2.1., an 

aliquot of 10 µL was taken and orthogonally streaked following the diameter of 

the Petri dish. Subsequently, two fragments with 6 mm diameter were excised 
from the edges of a mycelial growth of B. cinerea and placed on the same plate in 
opposite positions, with a distance of 3 cm from the streaked yeast culture (6 cm 
distance between the two fragments) and 1.5 cm from the border of the plate. The 
plates were closed surrounded with Parafilm® to prevent air leakage and 
incubated at 27 ºC for 5 days. All yeast isolates were tested in duplicate for each 
of the two strains of B. cinerea (BM0510 and TOB62). Control plates were 
prepared with only the inoculation of each B. cinerea, without the yeast streak. 

The inhibition of the mold growth caused by the presence of the yeast was 
compared with the control by using the following expression: 

 
%I = [(C – T) /C] x 100 

 
Where: 
%I = percentage of inhibition of B. cinerea growth; 
C = radial growth of B. cinerea in the control inoculation; 
T = radial growth of B. cinerea in the presence of the yeast. 
The mean and standard deviations of the four measurements for each yeast 

isolate with each mold strain were calculated, and the comparison between the 
different yeast isolates was performed based on One-way ANOVA (ANalysis Of 
VAriance) with post-hoc Tukey’s HSD (Honestly Significant Difference) test 
(p<0.05), using software for statistical analysis PAST (Hammer et al., 2001). 

 
4.2.3.2.  Separate growth on opposite agar plates 

 
This test was also carried out using PDA medium and following protocol 

described in literature (Parafati et al., 2015; Lemos Junior et al., 2016). Two 
plates of PDA agar were necessary for each couple of non-Saccharomyces/B. 

cinerea tested. An aliquot of 100 µL of the yeast culture was spread plated on one 
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of the Petri dishes containing PDA, while on the second plate a spot of 10 µL 

from the conidial suspension of the mold was inoculated exactly in the center. The 
two plates were then positioned facing each other, the edges were docked and 
surrounded with Parafilm®. All pairs of plates were incubated at 27 ºC for 5 days. 
The control test was made with the plates with B. cinerea facing unseeded PDA. 

The percentage of inhibition and the statistical analysis were calculated with 
the same procedure as described above. 

 
4.2.4.  Tests of inhibition in vivo versus Botrytis cinerea 

 
For the in vivo assays, white table grapes were used. The strains of S. 

bacillaris PECO4 and CHIAR4, L. thermotolerans COLC27, SOL13 and 
ConcertoTM, and the two strains of B. cinerea BM0510 and TOB62 were used. 
Healthy undamaged grapes were cleaned and disinfected prior to the analysis. An 
artificial wound was made at the equator of each berry with a sterile needle and 

10 µL of the conidial suspension (1´106 conidia/mL) were inoculated. After 2 

hours air-drying, a new inoculation was performed in the same place with 10 µL 

of the concentrated yeast culture (1´108 cells/mL). The control was prepared by 

the inoculation of 10 µL physiological solution (0.09% NaCl) instead of the yeast. 

For each pair of non-Saccharomyces/B. cinerea, a group of eight homogenous 
berries randomly selected was used. They were incubated inside a plastic box for 
5 days at 27 ºC, with a wet paper towel folded inside the box to maintain a high 
humidity. The effectiveness of the treatments were evaluated with the following 
expression (Parafati et al., 2015; Lemos Junior et al., 2016): 

 

(DRI) = (C−T/C)	x	100 

 
Where: 
DRI = disease reduction incidence; 
C = radial growth of the infection in the control; 
T= radial growth of the infection in the presence of yeast. 
The mean and standard deviations were calculated for the eight grapes of each 

treatment and the results analyzed as described above. 
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4.3.  RESULTS AND DISCUSSION 
 

4.3.1.  Safety assessment of virulence factors 

 
Before selecting the yeast strains with a potential utilization as BCA, it is 

important to verify some possible virulence factors, as a guarantee that they would 
not represent a risk for human health, especially the people responsible for 
applying the product in the field. The results for the four virulence factors tested 
are shown in Table 4.2. 
 
Table 4.2. Pathogenicity tests with the yeast isolates. 

Isolate 
Phenotypic characteristic 

37 ºC SLAD BSA Invasive 
Saccharomyces cerevisiae    
EC 1118 + +/- - + 
Lachancea thermotolerans    
COLC11 - + - + 
COLC27 - + - + 
DESP53 - + - + 
FIANO43 - +/- - + 
FIANO63 - +/- - + 
GLERA15 - + - + 
LS15 - +/- - + 
LT15 - +/- - + 
LT3 - +/- - + 
MALV13 - +/- - + 
MALV17 - + - + 
SOL13 - + - + 
ConcertoTM - + - + 
DBVPG 6232T - +/- - +/- 
Starmerella bacillaris    
ARMANI3 - - - - 
ARMANI4 - - - - 
CHIAR4 - - - - 
CHIAR7 - - - - 
COLC20 - - - - 
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Isolate 
Phenotypic characteristic 

37 ºC SLAD BSA Invasive 
COLC34 - - - - 
CORV5 - - - - 
CORVINONE3 - - - - 
CTP63 - - - - 
DESP81 - - - - 
F1 - - - +/- 
GLERA8 - - - - 
GLERA10 - - - +/- 
GLERA12 - - - - 
MAAS3 - - - +/- 
MALV10 - - - +/- 
MALV20 - - - - 
MALV36 - - - - 
MALV43 - - - - 
MALV45 - - - - 
MARZEMINO2 - - - +/- 
MARZEMINO3 - - - +/- 
MERLOT3 - - - - 
MO2 - - - +/- 
PECO4 - - - - 
PECO6 - - - +/- 
PECO8 - - - - 
PECO10 - - - - 
PECO16 - - - - 
PECO20 - - - - 
PECO22 - - - - 
PECO24 - - - +/- 
PECO26 - - - - 
PECO29 - - - - 
PINOTG3 - - - - 
PINOTG11 - - - +/- 
PINOTG15 - - - +/- 
PINOTG21 - - - - 
PINOTG24 - - - +/- 
PS11 - - - +/- 
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Isolate 
Phenotypic characteristic 

37 ºC SLAD BSA Invasive 
RECIOTO8 - - - +/- 
RONDINELLA2 - - - - 
RONDINELLA3 - - - - 
RONDINELLA5 - - - +/- 
SOL16 - - - - 
ST24 - - - - 
NCAIM Y016667T - - - - 
37 ºC = growth after incubation at 37 ºC; SLAD = formation of pseudohyphae; BSA = proteolytic 
activity; Invasive =  penetration of the YPD medium. 

 
The first tests regarded the ability of the strains to survive under the 

temperature normally found inside the human body, around 37 ºC, and to 
penetrate in the growth medium. Any of the strains of L. thermotolerans or S: 

bacillaris was able to grow after the incubation in YPD at 37 ºC. Only the 
commercial strain of S. cerevisiae showed simultaneous growth in the control at 
27 ºC and at 37 ºC. 

The invasive growth assay showed some species and strain variation. All 
isolates of L. thermotolerans, but the type strain, were able to completely infiltrate 
within the YPD medium, although there was a partial invasive growth recorded 
for DBVPG 6232T. For S. bacillaris, most of the strains were only able to develop 
on the surface of the medium, even though 15 out of 47 tested isolates had a 
partial ability to penetrate the agar. EC 1118 gave a positive result. 

The test on SLAD agar offered the yeast isolates a minimal medium, without 
amino acids and with a very low concentration of ammonium sulfate. The lack of 
nitrogen caused a stress in the yeasts, triggering in some isolates the ability to 
form pseudohyphae, in order to help in the search for nutrients. This feature could 
be associated with the penetration of the human epithelium and damage of the 
endothelium, with consequent diffusion of the pathogen to the blood stream 
(Kumamoto and Vinces, 2005). The switching from normal growth to hyphal 
formation has been already associated with pathogenesis and virulence in 
Candida albicans and clinical isolates of S. cerevisiae (Gognies and Belarbi, 
2002). Any of the isolates of S. bacillaris produced pseudohyphae and all of them 
grew with plain borders. On the other hand, for the isolates of L. thermotolerans, 
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half of them showed colonies with irregular margins and the other half clearly 
were able to produce pseudohyphae to chase for nutrients in the SLAD agar 
medium. The commercial S. cerevisiae had irregular borders, but without 
formation of pseudohyphae. 

The proteolytic activity, examined in BSA agar, is the enzymatic hydrolysis of 
the peptide bond in the proteins. These hydrolytic enzymes are responsible for the 
cellular lysis and the destruction of molecules involved in the immunity response 
(Kumamoto and Vinces, 2005). Any of the isolates of the three species tested 
gave a positive result for the proteolytic activity in BSA. These results are in 
accordance with the assay reported in Chapter 3, when all of those isolates also 
showed a negative result for the protease activity in YPD containing skim milk. 

As a comparison, Ponsone and co-workers (2016) tested the same phenotypic 
characteristics related to human pathogenicity with two strains of L. 

thermotolerans. Both strains gave positive results only for the growth at 37 ºC, 
but did not possess any of the other virulence factors. 

Previously, Nally and colleagues (2012) studied the same traits in 15 strains of 
S. cerevisiae and one Schizosaccharomyces pombe. They found that most of the 
strains were able to grow at 37 ºC, but only one positive result was observed in 
the tests for proteolytic activity, pseudohyphae formation and invasive growth. 
One of the strains of S. cerevisiae scored three positive results in the four tests, 
while the S. pombe resulted negative for all assays.  

 
4.3.2.  Biocontrol activity against grey rot 

 
Considering the results of the previous molecular and physiological 

characterization of the isolates and the fermentation trials with single inoculation 
(Chapter 3), looking then also the pathogenicity tests described above, a limited 
number of 17 isolates of S. bacillaris and eight of L. thermotolerans were further 
characterized for the antagonism capacity. The ability of L. thermotolerans and S. 

bacillaris strains to limit the growth of the pathogen B. cinerea was evaluated 
with in vitro and in vivo assays. The tests in PDA plates aimed to give a first 
picture in the potential of those species to act as BCA, but also the use of two 
different protocols allowed the comparison between two of the proposed 
mechanisms of antagonism. The first trial focused in the competition for nutrients 
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and space, since the pathogen and the BCA were contemporary inoculated at the 
same plate. The results of the inhibition of B. cinerea are shown in Figure 4.1. 

 

 
Figure 4.1. Inhibition of B. cinerea growth by antagonism of yeast isolates in the same plate. [A] 
S. bacillaris; [B] L. thermotolerans. Different letters for the same series of data indicate significant 
difference in Tukey’s HSD test (p<0.05). 
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All isolates were able to exert inhibition of B. cinerea to some extent, ranging 
from around 20% (MALV17 versus BM0510) to 75% (PECO4 against BM0510). 
In the average, isolates of S. bacillaris were more effective than L. 

thermotolerans, for both the B. cinerea strains. Moreover, for both the non-
Saccharomyces species the inhibition was stronger towards BM0510 than TOB62, 
but the differences were very slight. 

For most of the strains, the levels of inhibition were similar in tests with 
BM0510 and TOB62, but some diverging profiles were observed. The isolates 
COLC34, GLERA10, GLERA12, MALV45, PECO29, PECO4, NCAIM 
Y016667T and ConcertoTM had a much stronger inhibitory effect against BM0510 
than TOB62, while CHIAR4, CORV5 and MALV17 resulted in higher inhibition 
of TOB62 than BM0510. 

In the same assays performed by Junior Lemos and colleagues (2016), using 
different strains of S. bacillaris isolated from withered Raboso Piave grape 
variety, they have observed a range between 12 and 33% for the inhibition of 
radial mycelial growth of B. cinerea BM0510, thus less effective for the 
biocontrol than the strains of the present study. 

In a study with more than 200 different strains of S. cerevisiae and non-
Saccharomyces, Nally and co-workers (2012) observed that around one quarter of 
them showed antagonistic activity against B. cinerea under in vitro conditions, co-
cultured with the pathogen in the same Petri dish. However, the two isolates of 
Kluyveromyces thermotolerans (synonym L. thermotolerans) were among the 
yeasts not presenting antagonism effect. Any isolates of S. bacillaris were 
included in the study. Applying a similar approach, Pretscher and colleagues 
(2018) tested 38 yeast strains against 12 different fungal phytopathogens strains, 
and the only isolate of K. thermotolerans in the screening did not caused 
inhibition of any of these pathogens, including five strains of B. cinerea. 

The second in vitro trial put the isolates of non-Saccharomyces and the strain 
of B. cinerea in opposite plates, so they could not have a physical contact and 
were not competing for nutrients or space, but the inhibitory activity may be due 
to the action of volatile organic compounds (VOCs), since the two opposite agar 
plates were sharing the same air space. The results on the percentage inhibition of 
the radial growth of B. cinerea are shown in Figure 4.2. 
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Figure 4.2. Inhibition of B. cinerea growth by antagonism of yeast isolates in opposite plates. [A] 
S. bacillaris; [B] L. thermotolerans. Different letters for the same series of data indicate significant 
difference in Tukey’s HSD test (p<0.05). 
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reaching values above 70% for all tested yeasts. The percentage inhibition ranged 
from around 75% (NCAIM Y016667T versus TOB62) to 96% (PECO29 versus 
BM0510) for S. bacillaris, and from 70% (SOL13 versus TOB62) to 99% 
(ConcertoTM versus BM05010) for L. thermotolerans. 

In the average, L. thermotolerans isolates were more effective against 
BM0510, while S. bacillaris inhibited more the growth of TOB62, but the 
differences were very small. Again the differences in the inhibition of the two B. 

cinerea were not significant for most strains, but some cases of greater inhibition 
of one strain rather than the other were observed, such as NCAIM Y016667T, 
DESP53 and SOL13, who were much more active against BM0510; and 
GLERA12 and SOL16, who provoked higher inhibition of TOB62. 

In the previous assay, GLERA12 was more effective against BM0510, while 
in the VOCs assay it inhibited more TOB62. On the other hand, NCAIM 
Y016667T showed a stronger antagonism towards BM0510 in both trials. 

The study of Lemos Junior and colleagues (2016) showed the same trend of 
the present study, with the inhibition caused by the VOCs higher than the co-
cultivation in the same plate. Their values ranged from 44 to 79%, hence lower 
than the inhibitions found for our strains of S. bacillaris. 

Also applying the same protocols as in the present study, but using different 
yeasts strains, Oro and co-workers (2018) verified the successful biocontrol 
activity of all species tested (M. pulcherrima, S. cerevisiae and Wickerhamomyces 

anomalus) against different species of pathogens, including B. cinerea, with 
percentages of inhibition ranging from 56 to 87%. Parafati and collaborators 
(2015) tested the effect of VOCs and also the contemporary growth on the same 
plate with B. cinerea, including the same yeast species cited above plus A. 

pullulans, reporting an inhibition ranging from 20 to 99% in the different trials. 
However, on the contrary of the present study, they have reported a higher 
antagonism in the co-culture test, compared to the effect of VOCs, suggesting that 
different mechanisms of action could be more or less important for different 
species, such as iron depletion, production of cell wall-degrading enzymes, and a 
cumulative effect of several mechanisms. 

These results show how the interaction between the yeast isolates and the 
mold is both species- and strain-dependent. Among the different mechanisms of 
inhibition that were tested in the present study, there was a good evidence that the 
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production of VOCs is a very effective tool of the examined yeast species to 
inhibit B. cinerea. Additional previous studies that have shown the antifungal 
effects of such compounds towards B. cinerea include yeast species such as S. 

cerevisiae, W. anomalus, M. pulcherrima, A. pullulans, Candida intermedia, 
Sporidiobolus pararoseus, Hanseniaspora uvarum, Meyerozyma guilliermondii 
(Druvefors and Schnürer, 2005; Huang et al., 2011, 2012; Hua et al., 2014; Di 
Francesco et al., 2015; Cordero-Bueso et al., 2017). 

Approximately 250 different VOCs produced by fungal metabolism have been 
identified, and they are produced as mixtures of simple hydrocarbons, 
heterocyclics, aldehydes, ketones, alcohols, phenols, thioalcohols and thioesters, 
and/or their derivatives (Korpi et al. 2009; Ortiz-Castro et al. 2009). Numerous 
studies have been carried out about the potential biotechnological applications of 
VOCs in agriculture, food industry and pharmacology, particularly as biocontrol 
factors, due to the small sizes of these molecules and their diffusion through the 
atmosphere and soil (Liu et al. 2008; Arrebola et al. 2010; Morath et al. 2012; 
Giorgio et al. 2015). 

Since the production of inhibitory compounds in culture medium is not a 
guarantee of their production on fruit surface (Dal Bello et al., 2008), a few 
isolates were selected to confirm the antagonistic activity on in vivo trials. Three 
isolates of L. thermotolerans (COLC27, SOL13 and ConcertoTM) and two of S. 

bacillaris (CHIAR4 and PECO4), chosen due to the interesting results on the 
pathogenicity and in vitro antagonism assays, were used for the competition with 
the two strains of the pathogen B. cinerea (BM0510 and TOB62) in white grape 
berries. 

All isolates were able to reduce the visible symptoms of the disease, i.e. the 
size of decay and the mycelial growth of B. cinerea (data not shown). The 
percentage reduction on the diameter of the lesion on the surface of the infected 
grape berries, compared to a control, ranged from around 30% (COLC27 and 
ConcertoTM) to 64% (CHIAR4) in the challenge against BM0510 and from 35% 
(ConcertoTM) to 63% (COLC27) versus TOB62. It can be underlined that the 
responses were similar in the two pathogen strains, even if COLC27 inhibited 
more BM0510 than TOB62 and CHIAR4 had the opposite behavior. In the 
average, L. thermotolerans was more effective against TOB62 and S. bacillaris 
against BM0510, although it is difficult to draw conclusions with a limited 
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number of strains. What can be clearly highlighted is the high potential of both 
species to contrast the growth of B. cinerea in these in vivo assays. 
 

 
Figure 4.3. Inhibition of B. cinerea growth by antagonism of yeast isolates inoculated within 
healthy grape berries. 

 
Similar values to our study were found by Lemos Junior and colleagues 

(2016) using S. bacillaris isolates, with DRI ranging from 39 to 85%. Other 
studies confirmed the great potential of different yeast species to reduce gray rot 
in grape berries inoculated simultaneously with the mold and antagonist yeast, 
correlating well with in vitro assays (Parafati et al., 2015; Cordero-Bueso et al., 
2017). 

 
4.4.  CONCLUSIONS 

 
Considering only the pathogenicity tests, the isolates of the species S. 
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biocontrol of B. cinerea, since they presented mostly negative results for the 
virulence factors, while isolates of L. thermotolerans gave positive results for the 
invasive growth and ability to generate pseudohyphae. Nevertheless, any isolates 
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gave all positive results for the characteristics associated with pathogenicity in 
humans at the same time. 

Successively, some selected isolates of S. bacillaris and L. thermotolerans 
were submitted to in vivo and in vitro assays in order to assess their biocontrol 
activity against the fungal pathogen responsible for the gray rot disease in grapes, 
B. cinerea. All trials have evidenced a remarkable capacity of all isolates to 
constrain the development of the mold, particularly higher for S. bacillaris than L. 

thermotolerans. 
The in vitro tests showed that the production of VOCs is very likely more 

relevant to the antifungal ability, although the competition for nutrients and space 
are also probably involved, with a lesser effect. The in vivo analysis confirmed the 
potential observed before and moreover clearly highlighted the beneficial action 
of the yeast isolates to reduce the symptoms caused by the infection.  
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CHAPTER 5.  UNRAVELING MOLECULAR AND 
PHYSIOLOGICAL DIVERGENCE AMONG STRAINS OF 
Lachancea thermotolerans IN THE PRODUCTION OF 
LACTIC ACID 

 
5.1.  INTRODUCTION 

 
Lachancea thermotolerans, formerly known as Kluyveromyces 

thermotolerans, is a species of non-Saccharomyces yeast with a remarkable 
technological potential, yet underexplored. This group of “non-conventional” 
yeasts is always receiving more attention, not only by the scientific community 
but also by the industry searching for new biotechnological applications, due to 
their uncommon metabolic and physiological features (Kurtzman, 2003; 
Hranilovic et al., 2017). 

The proposal of the new genus Lachancea in 2003 by Kurtzman was based on 
relationships among species of the ‘Saccharomyces complex’ from a multigene 
sequence analysis (18S, ITS, 5.8S and 26S rDNAs, translation elongation factor 
1-K(EF1-K), mitochondrial small-subunit rDNA and cytochrome oxidase (COX 
II)), when the family Saccharomycetaceae was resolved into 11 well-supported 
clades (Kurtzman, 2003). Since then, the former K. thermotolerans was renamed 
to L. thermotolerans and considered the type species of the genus, however there 
are still some commercial products using the previous genera classification 
(Lachance and Kurtzman, 2011; Benito, 2018). To date, the complete genome of 
the type strain Lachancea thermotolerans CBS 6430T is available in the public 
databases, showing a genome of 10.6 Mb organized in eight chromosomes and 
containing 5,350 annotated genes (Malpertuy et al., 2000; Talla et al., 2005; 
Souciet et al., 2009). However, there is still no consensus about the ploidy of L. 

thermotolerans, whereas some authors report it being diploid (Malpertuy et al., 
2000; Souciet et al., 2009) while others argue it to be haploid (Freel et al., 2014; 
Banilas et al. 2016; Hranilovic et al., 2017). 

Most species belonging to the ascomycetous genus Lachancea are ubiquitous, 
it is included among the 20 most frequent foodborne yeast genus. L. 

thermotolerans is usually found in diverse natural habitats, such as soil, insects, 
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plants, fruits, fermented foods, in particular grapes and musts in several 
viticultural regions worldwide (Torija et al., 2001; Jolly et al., 2003; Ganter, 
2006; Naumova et al., 2007; Deák, 2008; Lachance and Kurtzman, 2011; Freel et 

al., 2014). 
As it can persist during the grape must spontaneous fermentation and have an 

impact in the process, L. thermotolerans was already studied during single and 
mixed fermentations with S. cerevisiae, and some interesting oenological traits 
have been reported, such as low production of volatile acidity, reduction of 
ethanol content, increase of glycerol, improved wine aroma, flavor and mouthfeel 
(Kapsopoulou et al., 2005; Gobbi et al., 2013; Benito et al., 2016). 

One of the most important features of L. thermotolerans is its particularly high 
capacity to produce L(+)-lactic acid (LA) during fermentation, a very uncommon 
metabolic activity among yeasts, that arise great biotechnological interest (Witte 
et al., 1989; Dequin and Barre, 1994; Sauer et al., 2010). LA is considered one of 
the most industrially important organic acids, due to many versatile applications, 
in food, pharmaceutical, textile, chemical industries (Datta and Henry, 2006; 
Sauer et al., 2008; Chen et al., 2013; Martinez et al., 2013). It is widely 
distributed in nature in two enantiomeric forms: L(+) and D(-), and the production 
through lactic fermentation by microorganisms leads selectively to one of two 
stereoisomers or their racemic mixture (Axelsson, 2004; Martinez et al., 2013). 

Although the efficiency of L. thermotolerans to produce LA is very low for 
the industrial bulk chemical manufacture of this substance and not much effort 
was put into the use of this yeast as a producer organism, in processes in which 
the concomitant acidification with alcoholic fermentation is a benefit, notably in 
the oenological industry context, it could provide an effective acidification of 
wines, important for some grape cultivars and some wine-producing regions 
where the acidity is insufficient (Mora et al., 1990; Kapsopoulou et al., 2007; 
Sauer et al., 2010; Hranilovic et al., 2017). The biological acidification can have a 
positive effect in the sensorial profile and also provide a higher microbial stability 
of the wines (Jolly et al., 2014). This attribute, coupled with the reduction of 
ethanol content, could be very useful to address some recent concerns of the wine 
industry regarding climate change, which is causing an increase in sugar levels 
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(and consequent ethanol increase) and loss of acidity of the grapes (Balikci et al., 
2016; Benito et al., 2016). 

In yeasts, the major flux of pyruvate metabolism is to ethanol, by way of 
pyruvate decarboxylase (PDC; EC 4.1.1.1) and alcohol dehydrogenase (ADH; EC 
1.1.1.1). Providing an alternative route during anaerobic respiration for 
regenerating NAD+ through lactate dehydrogenase (LDH; E.C. 1.1.1.27), which 
catalyzes the reduction of pyruvate to lactate, they could theoretically replace 
ethanolic fermentation (Everse and Kaplan, 1973; Skory, 2003). 

Several recent studies have underlined the significant variability among strains 
of L. thermotolerans, especially when important oenological parameters are 
compared, indicating that a proper selection has to be carried out in order to find 
the most appropriate isolates for the wine industry, with the goal of overall 
product enhancement (review by Benito, 2018). 

Despite the great interest in the production of LA and the availability of 
genomic information brought by the complete sequencing of L. thermotolerans 
genome, the knowledge about the lactate metabolism, either at genotypic or 
phenotypic level, is rather limited. Aiming to shed light on this important 
metabolic pathway, our collection of Lachancea spp. isolates was submitted to a 
physiological characterization of their ability to produce lactic acid and the 
extension of the biological acidification in grape must. Subsequently, the presence 
of the putative genes responsible for this activity and their levels of expression 
was evaluated by means of molecular methods. 

In order to unravel the genomic differences such as genes translocation and 
SNPs numbers, for the first time it was proposed the whole-genome sequencing of 
L. thermotolerans strains to be compared. Bioinformatics tools were used for the 
alignment of the reads obtained from the genome sequences, the prediction of 
protein-coding sequences, regulation sites and protein structures. These analysis 
allowed the annotation of the genome from an important yeast species and more 
specifically could help to clarify a very technologically relevant pathway 
associated also with other yeast species, which is the metabolism of lactic acid. 
Finally, this study had a focus on genes responsible for wine technological 
characteristics. 
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5.2.  MATERIAL AND METHODS 
 

5.2.1.  Yeast strains 

 
From the 104 yeast isolates characterized in the previous chapters 

(Supplementary Table S.2), 11 isolates of the species Lachancea thermotolerans 
were taken for the molecular and technological characterization of the LA 
metabolism, with the addition of the type strain (DBVPG 6232T = CBS 6340T) 
and a commercial starter of the same species (Viniflora® ConcertoTM). One isolate 
belonging to the species L. fermentati and one L. kluyveri were also used. 

 
5.2.2.  Microfermentations 

 
The quantification of LA production was made simultaneously with the 

physiological characterization carried out in Chapter 3. The supernatant of the 
stress tolerance assay made in YPD broth containing 220 g/L of glucose, after 
72 h growth (par. 3.2.5.2.), and the wine obtained from the single culture 
inoculation in Trebbiano grape must (par. 3.2.7.), were used for the LA analysis. 

For the gene expression analysis, a new microfermentation was set up with 
only two isolates of L. thermotolerans, the one with the highest and the one with 
the lowest LA production in the previous microfermentations. They were 
inoculated in glass bottles containing 100 mL of a biological white grape juice 
(160 g/L of sugar, Folicello), pasteurized at 70 ºC. The bottles were equipped with 
silicon stoppers and a folded Pasteur pipette to let the carbon dioxide release. The 
bottles were kept at 22 ºC under static conditions and weight loss was measured 
daily until the end of fermentation (constant weight). Samples were taken during 
the fermentation for the RNA isolation and at the end for the LA quantification. 

 
5.2.3.  L(+)-Lactic acid analysis 

 
Two different methods were used for the quantification of LA. The 

concentrations in the YPD broth modified and in biological grape juice at the end 
of fermentation were quantified by using an enzymatic assay (Megazyme), 
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following the manufacturer’s protocol. The quantity of LA in the wines obtained 
with Trebbiano grape must was evaluated by HPLC, as explained in paragraph 
3.2.7.2. 

 
5.2.4.  DNA extraction 

 
Total genomic DNA was isolated and purified using the commercial kit 

Wizard Genomic DNA Purification (Promega) following the manufacturer’s 
protocol, from a 2-mL aliquot of cultures grown in YPD broth for the DGGE 
analysis and from a volume of 50 mL to have a sufficient concentration for the 
genome sequencing. The quality assessment of the DNA obtained was performed 
with a NanoDrop ND1000 UV-Vis Spectrophotometer (Thermo Scientific) and 
dilution in DNAse-free water was carried out when necessary. 

 
5.2.5.  DGGE and band sequencing 

 
In order to check the presence of the genes encoding for LDH and eventual 

sequence differences among the isolates, the primers listed in Table 5.1 were 
designed for the amplification of such fragments and subsequent separation in 
DGGE, based on the genome sequence of the type strain of L. thermotolerans 
CBS 6340T. A GC-clamp was added at position 5’ of the forward primers. 

 
Table 5.1. List of primers used for LDH genes amplification. 

Primer Sequence (5’-3’) Amplicon size (bp) Tm (ºC) 
LDH1-F ATCCGGTCGGAAGTACCAAC 

195 
59.4 

LDH1-R TACTGGTGACTGACAGCGC 58.8 

LDH2-F TTCAAGTACCAGCATTCGG 
258 

54.5 
LDH2-R CGGGTCAGCTAAACAGTA 53.7 

LDH3-F AGATACCTTGCGTAAGACTAGT 
287 

56.5 
LDH3-R CTAACTCGTAGACCTCTAGT 55.3 

 

The conditions of the reaction for a final volume of 40 µL were as follows: 1× 

DreamTaq Green Buffer (Thermo Scientific); 2.0 mM MgCl2; 0.2 mM dNTPs; 

1 µM GC-clamp forward primer; 1 µM reverse primer; 0.025 U/µL DreamTaq 
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DNA Polymerase (Thermo Scientific) and 50 ng genomic DNA. The 
amplification program started with an initial denaturation at 94 ºC for 4 minutes, 
followed by 30 cycles of denaturation at 94 ºC for 1 minute, annealing at the 
respective melting temperature (Tm) of each pair of primers reported in Table 5.1 
for 30 seconds and extension at 72 ºC for 1 minute, and concluded with a final 
extension of 8 minutes at 72 ºC. The amplification was conducted in Thermal 
Cycler 2720 (Applied Biosystems). 

The separation of GC-clamped amplicons was carried out in a D-CodeTM 
Universal Mutation Detection System (Bio-Rad). The PCR samples were added 
with the same volume of loading buffer 2.0× and applied into an 8% 
polyacrylamide gel (acrylamide:bis-acrylamide ratio of 37.5:1) of 20x20x0.1 cm 
with a denaturing gradient from 30–50% of urea and formamide. The 
electrophoretic run was performed in a running buffer of 1% TAE at a constant 
voltage of 50 V for 16 hours at 60 ºC. After the end of the run, the gel was stained 
in solution containing EuroSafe colorant (Euroclone). The visualization and image 
capturing were made under UV light with UVITEC Gel Documentation System 
(Cleaver Scientific). 

Some interesting bands were excised from the polyacrylamide gel and 

transferred to a microtube containing 50 µL of TE buffer (pH 8.0). Subsequently, 

1 µL of the suspension was used for the reamplification using the same primers 

listed in Table 5.1, without the GC-clamp, and following the same protocol 
described above. The PCR products were purified and sent to GATC Biotech 
(Konstanz, Germany) for the sequencing. The sequences obtained were aligned 
with Clustal Omega 1.2.4 multiple sequence alignment tool 
(http://www.ebi.ac.uk/Tools/msa/clustalo/) and the relations observed through 
MEGA5 (http://www.megasoftware.net). 

 
5.2.6.  Genome sequencing 

 
The shotgun sequences were generated using an Illumina NextSeq 500 

platform (1-kb mate-pair libraries) at the CRIBI Biotechnology Center (Padua, 
Italy). The assembly and annotation were carried out following the same protocols 
described by Lemos Junior and colleagues (2017). Genome sequences were de 
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novo assembled using CLC Genomic Workbench software (version 9.5). Coding 
sequences (CDS) were predicted by GeneMark-ES (Besemer and Borodovsky, 
2005) and gene annotation was obtained using BlastKOALA tool (Kanehisa et al., 
2016), in order to access the non-redundant set of KEGG genes, with the selection 
of the family Saccharomycetaceae as a taxonomy group and 4893 as taxonomy 
ID, and RPS BLAST, to compare protein sequences with eukaryotic orthologous 
groups of proteins (KOG) (Tatusov et al., 2003). 

SnpEFF was used to identify variants between the two strains using SOL13 as 
reference genome. Only variants with predicted “high” or “moderate” effect were 
selected. Function of the genes with variants was obtained by annotating proteins 
with BlastKOALA software (Kanehisa et al., 2016). 

Progressive MAUVE (Darling et al., 2004) was used for genome alignment 
where the presence of translocations between L. thermotolerans CBS 6340T and 
the examined strains in the LDH genes was identified by visual inspection. The 
comparison of the sequences of LDH genes among COLC27, SOL13 and CBS 
6340T was carried out in MEGA5 software (Molecular Evolutionary Genetics 
Analysis) (Kumar et al., 2008). 

 
5.2.7.  RNA extraction and cDNA synthesis 

 
The sampling for the RNA isolation was taken during the fermentation in 

grape juice with the two isolates representative of the highest and lowest LA 
production at three different times: T0 (time of inoculation; 10 mL), T1 (half 
fermentation; 1 mL) and T2 (end of fermentation; 1 mL), in triplicate. 

The samples were centrifuged at 8,000 rpm for 5 minutes, the pellets were 
washed twice with (diethylpyrocarbonate) DEPC-treated water and centrifuged 

again. The pellets were then resuspended in 500 µL of LETS (200 mM LiCl, 

20 mM EDTA, 20 mM Tris, 0,4% SDS; stock 5×), followed by the addition of 

300 µL of glass beads (Æ 0.45 mm), 300 µL of solution phenol-chloroform-

isoamyl alcohol (25:24:1) and 1 µL of DEPC. The cellular lysis was performed 

with five cycles of agitation on vortex during 1 minute followed by 1 minute in 
ice. After centrifugation at 13,000 rpm for 10 minutes at 4 ºC, the upper phase of 

the supernatant, containing the RNA, was transferred to a new tube with 600 µL 
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of a solution chloroform-isoamyl alcohol (24:1) and mixed by inversion. A new 
centrifugation was made with the same conditions and the upper phase was again 

transferred to new tubes, containing 60 µL of potassium acetate 3 M. After gentle 

agitation, 1 mL of cold ethanol 100% was added and the tubes incubated at -80 ºC 
for one hour. Afterwards, the pellet obtained by centrifugation (13,000 rpm, 15 
minutes, 4 ºC) was washed with cold ethanol 70%, and dried. The RNA was 

finally resuspended in 50 µL of DEPC-treated water. 

The concentration and purity of the resulting RNA were measured with a 
NanoDrop ND1000 UV-Vis Spectrophotometer (Thermo Scientific). All samples 

were then diluted in DEPC-treated water to reach a concentration of 100 ng/µL 

and submitted to DNAse treatment. This purification was carried out with the kit 
Turbo DNA-free (Life Technologies), following the manufacturer’s instructions. 
The purified RNA was kept at -80 ºC freezer until the synthesis of cDNA, using 
the kit ImProm-IITM Reverse Transcriptase (Promega) according to the 
manufacturer’s protocol. 

 
5.2.8.  qPCR 

 

The standard curve for the quantification of the number of transcribed genes 
was prepared by the cloning of the amplification products of LDH1 and LDH2 
from the genome of type strain L. thermotolerans DBVPG 6232T in plasmid 
pGEMT-easy (Promega), followed by transformation of JM109 cells (Promega) 
and isolation of plasmid DNA with GenEluteTM Plasmid Miniprep kit (Sigma-
Aldrich), always following the manufacturer’s guidelines. 

Real-time PCR (qPCR) was carried out for the cDNA obtained from the 
microfermentations with two isolates of L. thermotolerans and the plasmid DNA 
prepared for the standard curve. For the amplification reaction of LDH1 and 

LDH2 (Table 5.1) in a final volume of 24 µL, the following components were 

added: 10 µL of SYBR Green Master Mix (Life Technologies); 0.4 µL forward 

primer (10 µM); 0.4 µL reverse primer (10 µM); 6 ng DNA. The amplification 

program included an initial denaturation at 95 ºC for 5 minutes, followed by 40 
cycles of denaturation at 95 ºC for 1 minute, annealing at the respective melting 
temperature (Tm) of each pair of primers reported in Table 5.1 for 30 seconds and 
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extension at 72 ºC for 40 seconds, and concluded with a final denaturation of 10 
seconds at 95 ºC. The melting curve was conducted by raising the temperature 
from 60 to 95 ºC with a gradient of 0.1 ºC/s. The reactions were performed with 
technical replicate in Light Cycler Nano (Roche). 

 

5.3.  RESULTS AND DISCUSSION 
 

5.3.1.  L(+)-Lactic acid production 
 
Eleven isolates of the species L. thermotolerans recovered during this PhD 

work, plus one type strain and one commercial starter of the same species, one L. 

fermentati and one L. kluyveri, were submitted to an extensive molecular and 
physiological characterization. During these tests, it came out that a remarkable 
variability in the production of L(+)-lactic acid was present among the isolates of 
Lachancea spp., an important feature already associated with this group. Figure 
5.1 shows the LA production during growth in synthetic laboratory medium 
containing 220 g/L of glucose (modified YPD) and in natural grape must 
containing also approximately 200 g/L of sugar (almost equally split between 
glucose and fructose). 

The results for L. fermentati and L. kluyveri were omitted from the graphic, 
since we chose to focus on L. thermotolerans due to the interesting potential of 
this last species to the use as starter culture in sequential fermentations of grape 
must. It is worth to point out that L. fermentati produced around 13 g/L of LA in 
both YPD and grape must, a value significantly higher than all L. thermotolerans 
isolates that were reported here. Future studies could be done for an in-depth 
characterization of this species, since it was never exploited before, for the best of 
our knowledge. On the other hand, L. kluyveri produced just 0.3 g/L of LA in 
YPD and no production could be detected by the HPLC method in the grape must 
assay. 

As it can be seen, significant differences were found in the LA production 
among the diverse isolates. The production ranged from 1.15 g/L (COLC27) to 
5.24 g/L (SOL13) after 72 hours of growth in modified YPD broth, and from 
0.26 g/L (CONCERTO) to 10.54 g/L (SOL13) after 10 days of growth in 
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Trebbiano grape must. The isolates can be divided into three separate groups 
according to their LA metabolism, namely: Low producers (COLC11, COLC27, 
CONCERTO and DBVPG 6232T); Medium producers (FIANO43, GLERA15, 
MALV13, MALV17, LS15 and LT3) and High producers (LT15 and SOL13). 
The isolate DESP53 is among the medium producers when the grape must is 
considered, but it is a low producer when looking at the results in YPD broth. 
 

 
Figure 5.1. L(+)-Lactic acid production by isolates of L. thermotolerans during fermentation in 
YPD broth and natural grape must. 

 
Only to cite the most recent works, in a study with 24 non-Saccharomyces 

isolates of eight different species, some oenological features were evaluated after 
pure culture fermentations of Viura pasteurized grape must (206 g/L of reducing 
sugars). At the end of fermentation, the four isolates belonging to L. 

thermotolerans have shown very different concentrations of LA, ranging from 
0.90 to 4.20 g/L, corresponding to the low to medium producers in the present 
study. Any of the other species could produce more than 0.15 g/L (Escribano et 

al., 2018). 
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Another screening with 23 isolates (10 non-Saccharomyces and 13 S. 

cerevisiae) published in 2016 by Aponte and Blaiotta, in Aglianico grape must 
(240 g/L of reducing sugars), found the three isolates of L. thermotolerans 
producing 1.24, 1.29 and 2.56 g/L of LA, so a similar value to the strains in the 
group of low producers in our study. One strain of Pichia kudriavzevii produced 
0.84 g/L of LA, while any of the other isolates could produce detectable amounts 
of this organic acid. 

A total of 25 L. thermotolerans isolates obtained from different vineyards in 
Greece were tested in microfermentations of pasteurized grape must (215 g/L of 
sugars) and the content of LA was quantified at the end of fermentation by 
enzymatic kit (Banillas et al., 2016). As in the present study, a huge diversity was 
found among the strains. The production of LA ranged from 1.0 to 16.6 g/L, 
where 56% of the isolates were able to produce more LA than the highest 
producer found in our study (SOL13, 10.54 g/L) and the other 44% produced less 
than 2.6 g/L, so similar to the study of Aponte and Blaiotta (2016) and 
corresponding to our group of low producers. 

Aiming to further analyze the possible reasons for the huge phenotypic 
divergence in the LA production, a genotypic investigation of the genes codifying 
for lactate dehydrogenase (LDH), the putative enzymes responsible for the lactic 
acid metabolism, was carried out using bioinformatics tools and molecular 
biology protocols. 

 
5.3.2.  LDH genes 

 
In the Kyoto Encyclopedia of Genes and Genomes (KEGG) database 

(http://www.genome.jp/kegg/), the production of LA was identified in the 
pyruvate metabolic pathway of L. thermotolerans as the resultant activity of an 
enzyme classified as EC 1.1.1.27. The gene codifying for the LDH enzyme was 
present in three different copies within the deposited genome of the type strain 
CBS 6340T, denominated by us as LDH1, LDH2 and LDH3, as it can be seen in 
Figure 5.2. 

To verify the presence of those genes in the isolates of our collection, three 
pairs of primers were designed, one for each copy of LDH (LDH1, LDH2, LDH3) 
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found in the type strain genome. The presence of LDH was evaluated in all 15 
isolates, described before in the LA quantification, by the amplification with the 
primers listed in Table 5.1, using the genomic DNA purified from each isolate. 
 

 
Figure 5.2. Genomic context in which the lactate dehydrogenase (LDH) genes are positioned 
within the genome of type strain L. thermotolerans CBS 6340T. 

 
The results of the electrophoresis run with the amplification products 

confirmed the presence of LDH1 and LDH2 in the genome of the 13 L. 

thermotolerans isolates, while the amplification of LDH3 did not result in visible 
bands for any of the 15 Lachancea spp. isolates tested. Neither L. kluyveri nor L. 

fermentati had positive results for any of the three copies of LDH (data not 
shown). It could be argued that our isolates simply do not have LDH3 in their 
genomes, however, also the type strain DBVPG 6232T belongs to our collection 
and it is supposed to be the same strain as CBS 6340T, so it should be expected 
that they have the same genome and LDH3 must have been amplified at least in 
this strain, what did not happen. Other possible reasons for the failure in the 
amplification of LDH3 are the wrong design of the pair of primers or the presence 
of mistakes in the sequenced genome of CBS 6340T available in public databases. 

Afterwards, DGGE runs were carried out with the products of amplification of 
LDH1 and LDH2. The analysis of LDH1 confirmed that only one band was 
present in the amplified DNA of each L. thermotolerans isolates and they were all 
at the same position in the gel, thus it could be concluded that the designed 
primers were specific for the target gene, all tested L. thermotolerans isolates have 
the copy LDH1 in their genomes and they all have presumably the same sequence 
for this specific copy of the LDH gene (data not shown). 

LDH2 LDH3

LDH1
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As regarding LDH2, an interesting outcome was observed with the DGGE 
analysis (Figure 5.3). Also only one band was present for each of the L. 

thermotolerans isolates, but these bands were at three different positions, 
suggesting that there are differences in the LDH2 sequence. Moreover, it can be 
seen how the different variations in LDH2 sequence were related to the groups 
formed in the phenotypic evaluation of LA production (Figure 5.1). 

All medium and high producers share the same LDH2 (yellow circle), while 
COLC11 and CONCERTO (low producers; green circle) show a different 
sequence and COLC27, DESP53 and the DBVPG 6232T (also low producers; 
gray circle) possess a third variation in the LDH2 sequence. 

 

 
Figure 5.3. PCR-DGGE analysis (gradient 30-50%) of the amplified LDH2 gene in the genomic 
DNA extracted from L. thermotolerans isolates. Colored circles represent bands at the same 
position in the gel. 

 
The bands from three representative (CONCERTO, DESP53 and FIANO43) 

of these variants in the sequence were excised from the gel and the product of the 
reamplification was sequenced. The alignment of sequences with Clustal Omega 
is shown in Figure 5.4, together with the reference sequence of CBS 6340T. 

The results of the sequence alignment reflected exactly what could be 
expected from the PCR-DGGE analysis. The LDH2 sequence of DESP53 
matched perfectly with CBS 6340T (DBVPG 6232T), as they showed the same 
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band height in the polyacrylamide gel. CONCERTO has only one nucleotide of 
difference, while the sequence of FIANO43 had ten nucleotides diverging from 
the other three strains analyzed. This observation makes sense when the 
phenotypes are confronted, as DESP53, CONCERTO and DBVPG 6232T have 
shown very low and similar production of LA, whereas FIANO43 belongs to the 
group of medium producers. 
 

 
Figure 5.4. Sequence alignment of the gene LDH2 in three strains of L. thermotolerans 
(CONCERTO, DESP53 and FIANO43) and the type strain CBS 6340T. 

 
However, these DNA sequences were converted to the aminoacidic sequence 

and compared again with Clustal Omega 1.2.4., where it was shown that all those 
point mutation were actually silent, as no differences could be observed in the 
sequence of amino acids obtained (data not shown). 

As there was a strong indication that the differences in LA metabolism were 
related to the differences at the genomic level of the enzyme LDH, but since the 
divergences found in the sequence of one copy of the gene LDH could not explain 
changes in the protein, an in-depth investigation of molecular mechanisms that 
could be related with LA metabolism involved the complete genome sequencing 
and the analysis of expression of the LDH1 and LDH2 genes, with the highest 
(SOL13) and lowest (COLC27) producers of LA. 
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5.3.3.  Genome assembly and annotation 
 
The results of assembly and annotation of whole-genomes from L. 

thermotolerans strains COLC27 and SOL13 are shown in Table 5.2. 
 
Table 5.2. Whole-genome information of the two L. thermotolerans strains COLC27 and SOL13. 

Feature 
 

COLC27 SOL13 
Nucleotide distribution GC (%) 47.34 47.34 

Contig measurements N75 478,272 364,893 

N50 788,172 946,139 

Scaffold 43 71 

Genome size  10.24 Mb 10.28 Mb 

 
The Table 5.2 contains the following information: 
Nucleotide distribution (GC (%)): fraction of the assembly covered by 

nucleotides C and G. 
Contig measurements: this section includes statistics about the number and 

lengths of contigs. A contig is a continuous stretch of genomic sequence 
containing only A, C, G, or T bases without gaps, in which the order of bases is 
known to a high confidence level. N75 and N50: the N50 contig set is calculated 
by summarizing the lengths of the longest contigs until reach 50% of the total 
contig length, and the minimum contig length in this set is the N50 value of a de 

novo assembly. N75 values is computed in a similar way. Scaffold: Scaffolds are 
composed of contigs and gaps, created by chaining contigs together using 
additional information about the relative position and orientation of the contigs in 
the genome. 

Genome size: The total number of bases in the result. This can be used for 
comparison with the estimated genome size to evaluate how much of the genome 
sequence is included in the assembly. 

High-throughput sequencing technology has afforded the sequencing of a 
great number of yeast genomes. Currently, tools from the comparative genomic 
help us in the comprehension of why some phenotypic differences rise among 
similar fungal species (Dujon, 2010; Mohanta and Bae, 2015). 
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L. thermotolerans has a highly conserved mitochondrial genome with the 
coding regions characterized by low rates of non-synonymous substitutions. The 
genetic structure of L. thermotolerans genomes, in features such as the number of 
genes encoding enzymes, synthesis and metabolic pathways, has to be elucidated 
(Freel et al., 2014). Genomes of L. thermotolerans strains COLC27 and SOL13 
were not aligned in a unique consensus sequence, and, besides that, SNP (single-
nucleotide polymorphism) between the two strains was 87,968 and genome sizes 
of 10.24 and 10.28 Mb were generated, respectively. In a review about the 
diversity of fungal genome, Mohanta and Bae (2015) reported that reduced 
genome sizes, as found for L. thermotolerans strains, are associated with a rapid 
evolution in terms of phenotypic diversification motivated by adaptive exigencies 
or due to natural selection. 

The GC content of 47.34% is compatible with close related yeasts that belong 
to the same clade. Regarding the comparison between L. thermotolerans COLC27 
and SOL13 genomes by alignment using MAUVE software, it was not evidenced 
any translocations in the LDH genes. 

According to the BlastKOALA annotation tool, the annotated genomes of the 
two L. thermotolerans isolates were grouped in functional categories, based on the 
biological roles that are played, and the distribution of the genes among the 
different categories is shown in Figure 5.5, alongside with the annotation of the 
reference genome of type strain CBS 6340T. 

The annotation showed very similar results for the three analyzed strains. The 
most abundant category for all genomes was the Genetic Information Processing, 
followed by Cellular Processes and Carbohydrate metabolism. Nucleotide 
metabolism had a higher distribution in the type strain CBS 6340T than in the two 
strains isolated. 

To understand in more detail the genetic basis in the LA metabolism 
differences, the LDH genes were further analyzed. Three copies of the LDH gene 
were found in the genome of SOL13, COLC27 and CBS 6340T. The similarity 
between these copies was analyzed with MEGA5 software and the Neighbour-
joining tree is reported in Figure 5.6. 
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Figure 5.5. Functional annotation of the genome sequence of three L. thermotolerans strains: (A) 
COLC27; (B) SOL13 and (C) CBS 6340T, obtained with BlastKOALA tool. 

 
It can be noted in the tree that the alignment of LDH1 was very close for the 

three strains, while of LDH2 a slight difference was observed for SOL13 in 
comparison with the other two strains, and LDH3 was similar between SOL13 
and COLC27, with the type strain positioned separately. 
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Figure 5.6. Phylogenetic tree based on the aminoacidic sequence from the LDH genes of three 
strains of L. thermotolerans: COLC27, SOL13 and CBS 6340T (KLTH0). The codes following the 
names represent the position of the genes within the genome. 

 
The results of the PCR-DGGE (Figure 5.3) have shown that COLC27, 

DESP53 and DBVPG 6232T have all the same band of the amplification of LDH2, 
and indeed the alignment of the amplicon sequenced from DESP53 (Figure 5.4) 
and the whole-genome sequencing of COLC27 (Figure 5.6), when compared to 
the reference genome of CBS 6340T, have all a very strong similarity for this 
gene. The LDH2 amplicon of SOL13 was at the same height as FIANO43, which 
sequencing showed multiple differences with the sequences of DESP53 and CBS 
6340T, and so also in accordance with the results of the whole-genome 
sequencing. Moreover, the DGGE analysis also showed that the amplification of 
LDH1 resulted in the same band for all isolates, and this was the case for 
COLC27, SOL13 and CBS 6340T in the phylogenetic tree. LDH3 could not be 
observed in the DGGE analysis, since it was not successfully amplified in any 
tested strains. 

The findings seem to be in accordance with the phenotypic results observed 
before. COLC27 and DBVPG 6232T (CBS 6340T) produced almost the same 
quantity of LA, in both YPD broth and grape must, being considered in the group 
of low producers, while SOL13 was the highest producer of all isolates tested, 

LDH1

LDH2

LDH3
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with 4.5 times more than COLC27 and DBVPG 6232T in YPD broth and 13 times 
more in the grape must (Figure 5.1). 

 
5.3.4.  Expression analysis 

 

The samples for the RNA extraction from the two representative strains that 
were chosen for the expression analysis (COLC27: lowest producer; SOL13: 
highest producer) were taken at the beginning, middle and end of the 
fermentation, determined by the weight loss. By using the standard curve built 
with the products of LDH1 and LDH2 amplification from the type strain CBS 
6340T cloned in plasmidial vector, it was possible to quantify the number of 
transcripts produced by the two L. thermotolerans isolates. 

LA production was measured at the same time of the sampling for the gene 
expression analysis. As it can be seen in Figure 5.7, the production by SOL13 was 
approximately 10 times higher than COLC27. Moreover, it is interesting to note 
how the LA metabolism happened during the first days of fermentation, 
statistically the concentration did not change from to middle (T1) to the end (T2) 
of the process. 
 

 
Figure 5.7. L(+)-Lactic acid production during fermentation of pasteurized grape juice by the two 
isolates of L. thermotolerans COLC27 and SOL13. 
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The level of transcription of the genes LDH1 and LDH2 for the two isolates 
are represented in Figure 5.8. 

 

 
Figure 5.8. Gene expression level by qPCR analysis of LDH1 and LDH2 in the two isolates of L. 

thermotolerans COLC27 and SOL13 after inoculation in grape juice, at the beginning (T0), middle 
(T1) and end (T2) of fermentation. 

 
For the expression of LDH1, both strains only showed relevant amount of 

transcripts at the middle of fermentation, suggesting that the expression of this 
gene was activated in the first days of fermentation and then it was repressed 
towards the end, when the metabolism of LA was no longer necessary for the 
cells. Interestingly, the expression of LDH1 in the isolate SOL13 was 
significantly higher than COLC27, in accordance with the higher production of 
LA by the first. 

As regards LDH2, the same observation for the higher transcription in SOL13 
than COLC27 in the sample collected at middle fermentation was true, and the 
repression of transcription from halfway to the conclusion of fermentation. 
However, differently than LDH1, it can be noted that an elevated number of 
transcripts was already present at the beginning of fermentation. The inoculation 
was made with cultures grown in YPD medium at the exponential phase of 
growth, so possibly the LA metabolism was already active in the inocula. 

Both genotypic analysis are in accordance with the phenotypic outcome 
shown in Figure 5.4, as LA production by SOL13 was much higher than COLC27 
and this metabolic pathway was active until the middle of the fermentation 
process, after what the concentration of LA did not change. 
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5.4.  CONCLUSIONS 
 
Isolates of Lachancea spp. showed diverging profiles in LA production, both 

in synthetic medium and natural grape must, in some cases reaching notably high 
values, thus this characteristic received a more detailed attention. For the best of 
our knowledge, this was the first time when a molecular characterization of the 
lactate dehydrogenases (LDH), the putative enzymes responsible for the LA 
metabolism, was carried out. 

Making use of bioinformatics tools, it was possible to identify three copies of 
the gene codifying for LDH (LDH1, LDH2 and LDH3) in the available genome of 
the type strain from the species, L. thermotolerans CBS 6340T, and later the 
whole-genome sequencing of two isolates from our collection allowed the 
individualization of also three copies in both of them (COLC27 and SOL13). The 
phylogenetic analysis also showed a very high similarity between the copies of 
LDH2 in COLC27 and CBS 6340T, while some differences were present for 
SOL13. LDH1 was similar to all three strains. 

Primers were designed based on the genome of CBS 6340T and the LDH 
genes were amplified in the isolates of L. thermotolerans from our collection. The 
Denaturing Gradient Gel Electrophoresis (DGGE) PCR analysis showed three 
different sequences among the tested isolates for the isoform LDH2, distributed in 
the isolates according to the quantity of LA produced. 

The two isolates with the highest and lowest production of lactic acid, SOL13 
and COLC27, respectively, were inoculated in grape juice on a subsequent 
fermentation trial and the expression of the genes LDH1 and LDH2 was evaluated 
by real-time PCR. For both genes, the qPCR analysis showed a significant higher 
expression present in the isolate that produced more lactate, suggesting a possible 
correlation of this metabolism with the transcriptional regulation of LDH genes. 

Even considering a relatively low number of isolates studied, a remarkable 
diversity was presented in the character studied and some isolates have a potential 
to be further exploited for their biological acidification of wines, especially for 
grape musts from warmer regions that could lack on natural acidity. The 
molecular mechanisms elucidated here could help the optimization of screening 
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protocols for the selection of isolates with a higher potential for the production of 
large amounts of LA. 
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CHAPTER 6.  IMPROVEMENT IN THE QUALITY OF WINES 
ELABORATED WITH MIXED FERMENTATIONS OF 
NON-Saccharomyces YEASTS AND Saccharomyces cerevisiae 

 
6.1.  INTRODUCTION 

 
The term “non-Saccharomyces yeasts” was used in the past to refer a group of 

species with secondary relevance during the fermentation of grape musts to wine, 
considered even as spoilage organisms in some cases. Their influence was usually 
repressed and even eliminated by the inoculation of selected pure cultures of S. 

cerevisiae. More recently, they are not only recognized by their important 
contributions to the wine quality, due to the metabolites produced, but also 
desired and screened for being used as starter cultures themselves. They are 
usually proposed for their contribution to the aroma profile of wines, but could 
give more important inputs, such as lowering the alcohol level, modulating the 
acidity, improving other aspects related to the wine quality, controlling spoilage 
organisms, optimizing steps along the winemaking process (Andorrà et al., 2010; 
Padilla et al., 2016; Wang et al., 2016; Petruzzi et al., 2017). 

The reduction of the ethanol content in wines is a demand from the market, 
because of consumers’ preferences and also from a tributary point of view, since 
wines with more alcohol are subject to higher taxes in some countries (Pickering, 
2000; Kutyna et al., 2010). The use of non-Saccharomyces yeasts in multi-starter 
fermentations could be interesting for the lowering of ethanol by taking advantage 
of the differences in energy metabolism, altered biomass synthesis, byproduct 
formation and/or alternative regulation of respiration among the diverse wine 
species (Gonzalez et al., 2013; Mateo and Maicas, 2016; Varela et al., 2017). 

The contributions to the wine aroma by non-Saccharomyces yeasts can occur 
by different forms. The most important is probably the direct biosynthesis of 
volatile aroma compounds and a large variety of molecules produced by these 
yeasts is known (Swiegers et al., 2005; Fleet, 2008; Styger et al., 2011). Non-
Saccharomyces can be divided into two groups, those that produce little or no 
flavor compounds, neutral yeasts, and those that are flavor-producing (Clemente-
Jiménez et al., 2004). Other metabolites from the non-Saccharomyces are 
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odorless, but can be used as intermediaries in metabolic pathways by S. cerevisiae 
for the release of different aromas, as for example the conversion of acetoin to 
diacetyl and 2,3-butanediol (Romano and Suzzi, 1993; Mateo et al., 2011). 

Some non-Saccharomyces can produce enzymes that release volatile 
compounds from glycosidic precursors (Zironi et al., 1993; Sarry and Gunata, 
2004), other metabolic products include terpenoids, esters, higher alcohols, 
acetaldehyde, acetic acid, succinic acid, volatile fatty acids, carbonyl and sulfur 
compounds (Lambrechts and Pretorius, 2000; Capozzi et al., 2015; Swiegers and 
Pretorius, 2005;). Moreover, some of these aroma compounds derived from non-
Saccharomyces activity are not associated with S. cerevisiae metabolism, such as 
particular terpenoid compounds and monoterpenes (Rossouw and Bauer, 2016). 

Acetaldehyde is an important volatile flavor compound found in many food 
and beverages, that in wine at low levels (below 70 mg/L) can give pleasant fruity 
aroma, but at high concentrations (above 100 mg/L) produces a green, grassy, 
nutty or apple-like off-flavor and could be a pungent irritating odor (Dittrich and 
Barth, 1984; Henschke and Jiranek, 1993; Miyake and Shibamoto, 1993). 
Considered to be a leakage product of the yeasts alcoholic fermentation, 
acetaldehyde is extremely reactive and can react with amino acids to generate 
various flavor compounds (Margalith, 1981; Griffith and Hammond, 1989). 

The binding of SO2 by acetaldehyde limits the sensory effect of acetaldehyde, 
but also reduces the effectiveness of SO2 antimicrobial activity and its 
antioxidative effect. Therefore, due to this phenomenon, more SO2 is usually 
added to a wine containing high concentrations of acetaldehyde (Liu and Pilone, 
2000). However, as a result of escalating consumer awareness of the adverse 
health risks related to SO2, efforts have been prioritized to reduce its contents in 
wines (Osborne et al., 2006), and so the reduction of acetaldehyde levels by use of 
non-Saccharomyces that are lower producers in mixed fermentations could be an 
alternative for the reduction of SO2 additions to wine. 

Extracellular enzymatic activities, such as proteolytic and pectinolytic, could 
also be interesting for the winemaking process, helping in technological steps 
such as clarification, filtration and color extraction (Van Rensburg and Pretorius, 
2000; Strauss et al., 2001). Regarding other extracellular active molecules 
released by yeast metabolism, some have been regarded as able to counteract the 
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development of undesired spoilage microorganisms and thus help to improve the 
wine stability (Comitini et al., 2017). 

Glycerol, polysaccharides and mannoproteins can positively influence the 
wine taste by affecting smoothness, sweetness, mouth-feel and complexity, and 
several non-Saccharomyces have been reported to alter the concentration of those 
compounds (Ciani and Maccarelli, 1998; Prior et al., 2000; Vidal et al., 2004; 
Domizio et al., 2014). Glycerol is the second most abundant compound produced 
during yeast fermentation of grape must, after ethanol, being considered as one of 
the main contributions of the non-Saccharomyces, and plays a role in their 
metabolism for the regulation of redox potential in the cell (Scanes et al., 1998). 

Usually present on the skin of grape berries and surface of the winery 
equipment, the non-Saccharomyces are able to initiate the fermentation process, 
but their persistence during the course of fermentation depends on the 
winemaking practices, grape must composition and the type of inoculation 
employed (Bisson and Kunkee, 1993). Nevertheless, these alternative yeasts 
generally present low fermentation performances and cannot be relied on to 
complete the alcoholic fermentation in the winemaking process, due to their weak 
ethanol tolerance. Since their dominance during the early stages of the process can 
be sufficient to leave their imprint in the wine final composition, they are suitable 
for the inoculation as mixed starters with strains of S. cerevisiae, in order to 
exploit their positive contribution and avoid the risk of stuck/sluggish or spoiled 
fermentations (Romano et al., 1997; Jolly et al., 2003; Padilla et al., 2016). 

The metabolic characteristics of non-Saccharomyces are very species- and 
strain-dependent, making the selection of the most suitable strains, starting from a 
great diversity, an essential step for their biotechnological exploitation, in the 
same way as it has been for S. cerevisiae a few decades before. It should be taken 
into account that the criteria usually used for the selection of S. cerevisiae strains 
could not be the most adequate for non-Saccharomyces though. Features such as 
fermentation power, high ethanol tolerance, positive killer activity, although 
desirable for S. cerevisiae, are less important for non-Saccharomyces than traits 
like efficient sugar utilization, high enzymatic activity, high production of 
glycerol and other secondary compounds (Mateo and Maicas, 2016). 

The practice of mixed culture fermentation implies a lot of work that has to be 
done by researchers and oenologists, such as selection of the most suitable strains, 
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considerations about the interactions between them, decision on the timing and 
load of inoculation. The proper management of the mixed fermentations is one of 
the main challenges for the wine industry nowadays and the optimization of this 
important innovative solution is a key for the production of quality wines with 
remarkable stylistic distinctions (Ciani et al., 2010; Padilla et al., 2016). 

During the last decades, many studies have been done in mixed fermentations 
with S. cerevisiae and non-Saccharomyces, in order to better understand the 
effects of this interaction in the wines obtained (Ciani et al., 2006; Comitini et al., 
2011; Padilla et al., 2016). When the cultures of non-Saccharomyces grow 
together with S. cerevisiae strains, it is believed that some possible negative 
metabolic activities may be modified or even non-expressed due to their 
interaction (Ciani and Comitini, 2011; Mateo and Maicas, 2016). The impact of 
the mixed culture in the wine quality will depend on the strains that are used and 
the inoculation strategies (Maturano et al., 2012; Sadoudi et al., 2012). During the 
fermentation process, even the early death of the non-Saccharomyces could be 
beneficial, due to the release of specific nutrients for the ideal growth of S. 

cerevisiae, thus helping for the optimal continuation of the process. However, it is 
necessary that any killer or other inhibitory compounds, such as medium chain 
fatty acids, would not be released alongside with the useful nutrients, otherwise 
the fermentation would instead be adversely affected (Fleet et al., 2002; Mateo 
and Maicas, 2016). The competition for nutrients, especially nitrogen, during the 
first days of fermentation may also limit the growth and metabolism of S. 

cerevisiae (Medina et al., 2012). 
Two different approaches have been proposed and tested for the mixed 

fermentations (Whitener et al., 2016). The co-inoculation involves the addition of 
the non-Saccharomyces and Saccharomyces at the same time and the 
concentration could vary between them. The second strategy, sequential 
inoculation, implies the addition firstly of the non-Saccharomyces species and 
subsequently S. cerevisiae, so the previous can ferment on their own for a given 
amount of time before S. cerevisiae takes over the fermentation. (Padilla et al., 
2016). The second technique gives more time to the non-Saccharomyces to 
express their metabolic reactions without the competition of S. cerevisiae 
(Whitener et al., 2015), but the extent of their effect in the wine quality will 
greatly depend on the concentration of cells inoculated and the ratio non-
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Saccharomyces/S. cerevisiae (Comitini et al., 2011). Both strategies were able to 
mimic the natural process of spontaneous fermentation in the goal of having 
wines with improved complexity (Whitener et al., 2016); nevertheless, most 
studies claim that sequential inoculation would be the best option (Benito et al., 
2016). 

With the goal of evaluating the potential of three different species of non-
Saccharomyces species, series of fermentation trials were set up applying 
sequential inoculation with a commercial strain of S. cerevisiae and some of the 
isolates identified, characterized and selected in the previous chapters, using grape 
juice and must with different nutritional composition. 

The fermentation kinetics and growth profile of the yeasts were followed 
during the whole process, and an extensive analysis of important chemical 
parameters was carried out at the end, in order to help understanding how the 
interactions between the different species in fermentation media with different 
composition affected the wine style and quality. As one of the main reasons to the 
use of non-Saccharomyces yeasts in wine fermentations is their possible 
contribution to the aroma, it was also very important to obtain the complete 
profile of volatile compounds produced during the different fermentations. 

 
6.2.  MATERIAL AND METHODS 

 
6.2.1.  Yeast strains and culture conditions 

 
From the isolates of three oenologically important genera belonging to the 

yeast culture collection organized as explained in Chapter 2 and characterized in 
Chapters 3, 4 and 5, nine were selected for the sequential microfermentations, 
three of each genera. The commercial strain EC 1118 of Saccharomyces 

cerevisiae was used as control and to complete the fermentations. 
The isolates maintained in the freezer at -80 ºC were reactivated on WL 

(Sigma-Aldrich) agar plates, incubated at 27 ºC for 72 hours. One single colony 
was then inoculated in YPD broth (yeast extract, 1.0%; bacteriological peptone, 
2.0%; glucose, 2.0%; Sigma-Aldrich) and incubated under static conditions at 
27 ºC for 48 hours. A fresh YPD-containing tube was then inoculated at 1% with 
the previous grown culture and put in agitation overnight at 27 ºC to reach the 
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early stationary phase. The cultures were then centrifuged at 5,000´g for 10 

minutes, washed twice in physiological solution 0.9% (w/v) NaCl (Sigma-
Aldrich) and resuspended in the pasteurized grape juice or untreated must used for 
the microvinification. The cells were microscopically counted in order to calculate 
the volume for inoculation. 

 
6.2.2.  Grape musts and sequential inoculation 

 
Two sets of microvinification trials were carried out, with the same scheme of 

inoculation but using two different fermentation media. Firstly, a commercial 
biological red grape juice, filtered and pasteurized at 70 ºC (Folicello), made with 
Lambrusco Grasparossa di Castelvetro e Sangiovese grapes (225 g/L of sugar, 
46.5 mg/L of YAN (Yeast Available Nitrogen) and 18 mg/L of SO2). 
Subsequently, a second trial was performed in fresh untreated must obtained by 
the pressing of Pinot Grigio grapes (236 g/L of sugar, 235.5 mg/L of YAN and 
2.5 mg/L of SO2). 

The nine isolates were inoculated at a concentration of 1´106 cells/mL in four 

replicates in sterile 200-mL glass bottles filled to the top, equipped with 
perforated silicon stoppers combined with 0.45-mm filters (Millipore) to let the 
carbon dioxide release and prevent contamination, kept under static conditions at 
22 ºC. The strain EC 1118 was inoculated at the same concentration in all bottles 
containing the non-Saccharomyces yeasts, after 48 hours. Control fermentations 
were prepared with single inoculation of EC 1118, one set of inoculations at the 
same time as the non-Saccharomyces and another contemporary with the 
sequential inoculations. 

 
6.2.3.  Analytical determinations 

 
The weight loss was measured daily in three of the replicates, while the fourth 

replicate was used for taking samples to the microbiological analysis. Cell 
concentration was followed throughout the fermentation by means of plate counts. 
Serial dilutions were prepared in physiological solution (0.9% NaCl; Sigma-
Aldrich) and plated on WL nutrient agar (Sigma-Aldrich). After 48 hours 



169 
 

incubation at 27 ºC, the cells could be differentially counted based on the 
morphological particularities presented by most non-Saccharomyces species that 
distinguish them from S. cerevisiae (Pallman et al., 2001). 

When the daily weight loss was less than 0.05 g/L, the fermentations were 
finished by the addition of 100 mg/L of potassium metabisulfite (K2S2O5; Sigma-
Aldrich), the bottles were hermetically closed and kept at 4 ºC until further 
analysis. Before the chemical analysis, the wines were centrifuged at 5,000 rpm 
for 10 minutes and the clarified supernatants were then loaded in an automated 
enzymatic analyzer (Y15, BioSystems). Specific enzymatic kits were employed 
for the optical measurements of absorbance in the following determinations: 
residual sugars (glucose/fructose), acetic acid, primary amino nitrogen (PAN), 
ammonia, free sulfite, total sulfite, acetaldehyde, glycerol and ethanol. YAN is 
calculated by the sum of PAN and ammonia. L(+)-Lactic acid was measured 
manually with an enzymatic kit (Megazyme), only for the bottles inoculated with 
L. thermotolerans and S. cerevisiae. 

Volatile compounds were quantified as described by Slaghenaufi and Ugliano 
(2018). An aliquot of 50 mL of the wine was diluted 1:1 with distilled water and 

100 µL of internal standard solution (octen-2-ol at 42.0 mg/L in ethanol, Sigma-

Aldrich) were added. Subsequently, solid phase extraction (SPE) was performed 
with Bond Elut ENV cartridges (Agilent Technologies) and the free volatile 
compounds were eluted with dichloromethane (CH2Cl2, Sigma-Aldrich). They 
were then evaluated by GC-MS (Gas Chromatography-Mass Spectrometry) 
analysis, performed in an HP 7890A gas chromatograph coupled to a 5977B 
quadrupole mass spectrometer (Agilent Technologies), equipped with a MPS3 
autosampler (Gerstel). Separation was performed using a DB-WAX capillary 
column (30m × 0.25, 0.25 μm film thickness, Agilent Technologies) and helium 
as carrier gas at 1.2 mL/min of constant flow rate. GC oven was programmed as 
follow: started at 40 ºC for 5 min, raised to 240 ºC at 4 ºC/min and maintained for 
10 min. Mass spectrometer operated in electron ionization at 70 eV with ion 
source temperature at 200 ºC and quadrupole temperature at 150 ºC, scanning 
from 47 to 400 m/z. For quantification, mass spectra were acquired in Selected 
Ion Monitoring mode. 
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The comparison between the different treatments was performed based on 
One-way ANOVA (ANalysis Of VAriance) with post-hoc Tukey’s HSD 
(Honestly Significant Difference) test. The Principal Component Analysis (PCA) 
were calculated with the results of the chemical determinations and the volatile 
compounds quantification by using the software for statistical analysis PAST 
(Hammer et al., 2001). 

 

6.3.  RESULTS AND DISCUSSION 
 

6.3.1.  Fermentation kinetics 
 
The molecular and physiological characterization carried out with 104 isolates 

from the genera Lachancea, Starmerella and Metschnikowia enabled us to see 
some significant differences between them. Considering the most tolerant yeasts 
in the stress assays, the presence of interesting enzymatic activities, lower 
production of H2S, fermentation performance and the profiles of wines obtained 
with single inoculation, it was possible to draw some characteristics that would be 
more desirable from the oenological point of view. Among the isolates possessing 
those characteristics, it was taken into account then the similarities in the 
molecular typing, in order to select different strains. This way, three strains of 
each of those genera were chosen for the sequential fermentation assays, having 
interesting profiles but also still some diversity, aiming to confirm how the 
preliminary features evaluated would have an impact in the wines obtained after 
interaction with S. cerevisiae, responsible for completing the fermentation of the 
reduced sugars. The chosen non-Saccharomyces isolates were: COLC27, DESP53 
and SOL13 (L. thermotolerans); COLR7, FIANO12 and SOUV1 (Metschnikowia 
spp.); CHIAR4, MALV45 and PECO10 (S. bacillaris). 

Two different media were used for microvinifications: a commercial grape 
juice from a producer that claims organic production without addition of any 
antimicrobials, treated only by pasteurization and filtration to eliminate all 
possible contamination with the spontaneous microbiota; and a fresh grape must 
that did not receive any thermal treatment or addition of SO2, kept refrigerated 
during the transportation to the laboratory until the moment of inoculation. The 
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concentration of some nutrients, especially nitrogen-based, were significantly 
different in the two media. 

With the data from the weight loss measurement, it was possible to obtain the 
graphic of the carbon dioxide production over time, represented by gCO2 

produced/100 g of grape juice or must (Figures 6.1 and 6.2). 
As expected, the commercial strain of S. cerevisiae started the fermentation 

more vigorously than the non-Saccharomyces isolates, but following the 
sequential inoculation the fermentation went on with a similar profile in all bottles 
with S. bacillaris and Metschnikowia spp., while the fermentations with L. 

thermotolerans started to slow down after the first five days. The fermentations in 
the pasteurized grape juice (Figure 6.1) went on a rather slow speed and took a 
long time to finish: 44 days for the control with pure S. cerevisiae and 49 days for 
the mixed fermentations with the strains of Metschnikowia spp. and S. bacillaris. 
After 70 days, the bottles with isolates of L. thermotolerans were still decreasing 
more than 0.1 g/L per day, but the fermentations were stopped. 

 

 
Figure 6.1. Fermentation kinetics of the microvinification trials in pasteurized grape juice. 

 
Fermentations in fresh grape must ran optimally (Figure 6.2), much faster than 

in the juice, and the pure culture of S. cerevisiae finished it within 9 days, while 
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all the sequential inoculations reached the conclusion after 14 days. There could 
not be seen significant differences among the isolates of non-Saccharomyces in 
the fermentation kinetics. Nevertheless, in comparison with the control inoculated 
with single S. cerevisiae, it could be noted that the mixed fermentations slowed 
down the conclusion of the process by a few days. 

 

 
Figure 6.2. Fermentation kinetics of the microvinification trials in natural grape must. 

 
Englezos and co-workers (2018b) found exactly the same results as in the 

present study, when working with the pair S. bacillaris/S. cerevisiae in white 
grape must: 14 days for the conclusion of the mixed fermentations and 9 days for 
the control single inoculation. Using also the same species and strategy of 
inoculation, those authors found a similar result in red grape must, where the 
mixed inoculation took 10 days and the single 7 days (Englezos et al., 2018a); 
while Lemos Junior and collaborators (2016) verified a delay of four days in the 
conclusion of the mixed fermentation compared to the single in Incrocio Manzoni 
grape must (14 and 10 days, respectively). An interval of three days was seen 
between the conclusion of fermentation in mixed cultures of commercial strains of 
M. pulcherrima and L. thermotolerans with S. cerevisiae and the control S. 

cerevisiae, in Shiraz wines (Hranilovic et al., 2018). A delay of four days was 
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observed for sequential inoculation of L. thermotolerans and S. cerevisiae in 
Airén wine, where the mixed culture took 14 days to finish and the single S. 

cerevisiae only 10 days (Benito et al., 2016). In white variety Emir, Balikci and 
colleagues (2016) observed that the sequential inoculation of L. thermotolerans 
and S. cerevisiae resulted in a delay of two days in the completion of the 
fermentation when compared to the pure culture of S. cerevisiae; the same results 
observed in Sangiovese and Cabernet Sauvignon (Gobbi et al., 2013). 

Hence, longer fermentation times observed for mixed inoculations were not 
surprisingly seen in this study, as they have been long described in literature. 
Although timely and reliable completion of fermentation are of primary 
importance in the wine industry, the trend of mixed fermentations considers the 
advantages of this approach and the use of non-Saccharomyces is thought to 
compensate the slower fermentation with the gains in quality (Hranilovic et al., 
2018). It is possible to consider the slower fermentation kinetics for the mixed 
cultures as relevant for a better retention of volatile compounds and a reduction on 
the demand for energy in the winery to cool down tanks that observe too vigorous 
fermentations (Medina et al., 2013). 

From the chemical analysis to characterize also the fermentation media before 
the inoculation, it was shown that the pasteurized grape juice contains five times 
less nitrogen available for the nutrition of the yeasts and seven times more sulfite 
than the grape must. The quantity of sugar available was similar between them. It 
can be discussed then that possibly the grape juice applied for the first 
fermentation trial was lacking on essential nutrients, or may contain some 
compounds derived from the thermal treatment, that could have caused inhibition 
of the yeast starters inoculated. Specific studies addressing the impact of nitrogen 
supply and other nutritional compounds in the dynamics of non-Saccharomyces 
and S. cerevisiae fermentations are still scarce (Lage et al., 2014). All the isolates 
and the commercial strain struggled to grow in the grape juice and the non-ideal 
conditions can also have accentuated the competition among them. In the grape 
must, on the other hand, there was the necessary amount of nutrients to allow the 
optimal development of the inoculated yeasts and inhibitory compounds were not 
present in quantities that could have harnessed their growth. 

The vigor of the fermentation depends on the behavior of the non-
Saccharomyces, but most of all on the metabolism of the S. cerevisiae 
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sequentially inoculated and the interactions between them. For this reason, it is 
important to follow also the cell concentration of both species during the process. 

Indeed, some differences could be seen in the microbial populations 
throughout the process. Figures 6.3 and 6.4 show the concentrations of the non-
Saccharomyces isolates and the commercial S. cerevisiae inoculated at each 
bottle, represented by the decimal logarithm of the CFU/mL during the 
fermentation process. The concentration of EC 1118 cells during the control 
single fermentation is also shown within each graphic to have a comparison of the 
effect of the interaction in the growth of S. cerevisiae. 

There can be seen major differences in the behavior of the three non-
Saccharomyces species and subtle differences among the isolates of the same 
species. During the fermentation of grape juice (Figure 6.3), the strains of L. 

thermotolerans caused the highest inhibition of the co-inoculated S. cerevisiae 
and DESP53 and SOL13 even dominated the fermentation until around 20 days. 

DESP53 reached a maximum concentration of 1.4´107 CFU/mL after four days of 

inoculation. COLC27 also inhibited S. cerevisiae, but at a lesser extent than the 
others and was not able to dominate. The three L. thermotolerans were detected in 
the bottles until 35 days after the inoculation. 

S. bacillaris showed equivalent concentrations with the sequentially 
inoculated yeast until about 16 days of fermentation and CHIAR4 and MALV45 
were detectable until 29 days, while PECO10 until 35 days. The maximum cell 
concentration was reached by MALV45 after only two days of inoculation, at 

1.3´107 CFU/mL. The isolates of Metschnikowia spp. could grow well in the first 

days of fermentation, especially FIANO12, who reached a cell counting of also 

1.3´107 CFU/mL, four days after the inoculation, similarly to the other non-

Saccharomyces. However, they were dominated immediately after the sequential 
inoculation with S. cerevisiae and FIANO12 disappeared after around 16 days, 
while COLR7 survived until 13 days and SOUV1 was already not detectable after 
only 4 days. The decrease of Metschnikowia species in the early days of mixed 
fermentations due to the low ethanol resistance and sensitivity to the inhibition by 
other microorganisms was already reported for this genus (Sadoudi et al., 2012; 
Contreras et al., 2015; González-Royo et al., 2015; Varela et al., 2016; Wang et 

al., 2016; Barbosa et al., 2018). 



175 
 

 
Figure 6.3. Population dynamics during mixed fermentations of pasteurized grape juice. 
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Figure 6.4. Population dynamics during mixed fermentations of natural grape must. 
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Looking at the growth kinetics it is possible to suppose that the slower 

fermentation observed for the mixed fermentations with L. thermotolerans could 

be the result of the reduced growth of S. cerevisiae during the first 20 days of 

interaction with the isolates of that species. Only the successive analysis could 

show whether this behavior is negative or positive for the outcome of the 

vinification process. 

Although the fermentation in grape must was much faster, the results of the 

microbial dynamics during the shorter period of the process can be related to the 

previous results, with L. thermotolerans showing slightly higher inhibition of S. 
cerevisiae and Metschnikowia spp. being the first to decline facing the rising 

ethanol concentration (Figure 6.4). Nevertheless, the isolates of S. bacillaris and 

L. thermotolerans were immediately overcome by S. cerevisiae after the 

sequential inoculation and could be detected only until the fifth day of 

fermentation. The same behavior was observed for a sequential inoculation of L. 
thermotolerans with S. cerevisiae in Tempranillo, Airén and Riesling wines, 

where the non-Saccharomyces started to decline very fast following the 

inoculation of S. cerevisiae (Benito et al., 2015a; 2015b; 2016). 

Besides the limitation caused by the rising ethanol concentrations, another 

possible reason for the loss of viability of the non-Saccharomyces in the mixed 

fermentations could be the decrease of the redox potential in the fermented media, 

since the alcoholic fermentation creates anaerobic conditions in the bottles (Lage 

et al., 2014). It was shown by Hansen and colleagues (2001) that the availability 

of oxygen increased the survival time of Torulaspora delbrueckii and L. 
thermotolerans. The secretion of antimicrobial peptides by S. cerevisiae and cell-

cell contact were also already reported as causing inhibition of non-

Saccharomyces growth (Albergaria et al., 2010, Renault et al. 2013). 

All yeasts, Saccharomyces and non-Saccharomyces, were able to reach higher 

cell concentration in the must in comparison with the pasteurized grape juice, 

reinforcing the suggestion that the composition of the last somehow hindered the 

yeast metabolism. Three days after the inoculation, the isolates of L. 

thermotolerans ranged from 2.5 to 3.4´107 CFU/mL, S. bacillaris between 1.3-

2.2´107 CFU/mL, and Metschnikowia spp. reached around 1.1´107 CFU/mL 



 178 

(with the exception of SOUV1, who reached the maximum of 4.9´106 CFU/mL in 

the second day and could not be detected anymore after the third day). 

S. cerevisiae was able to reach 1.1´108 CFU/mL on the third day in the 

control single inoculation of grape must, while the maximum concentration 

achieved by the control in the fermentation in grape juice was 8.7´106 CFU/mL, 

even if the higher value for S. cerevisiae in the grape juice was during the mixed 

fermentation with COLR7, at 1.8´107 CFU/mL, clearly showing the influence of 

the medium in the yeast growth. The same observation was made by a single 

culture of S. cerevisiae in Malvasia Fina and Arinto grape must with two 

concentrations of YAN, 175 and 387 mg/L, where a higher cell population and 

higher fermentation rate were found in the must with higher YAN. In the mixed 

culture, lower cell concentrations and longer fermentation length were registered, 

under both nitrogen regimes (Lage et al., 2014). 

However, our findings are not in total agreement with the conclusion of 

Barbosa and co-workers (2018), who carried out single and mixed fermentations 

in grape musts from Tinta Roriz grapes, one batch with an initial nitrogen supply 

of 73.5 mg/L YAN and another supplemented to a concentration of 280 mg/L 

YAN. They did not detect differences in the growth rates between the two 

fermentation media, although significant differences were found in the maximum 

fermentation rate. The process was completed much faster in the must with more 

YAN, as it was in our case. 

 

6.3.2.  Chemical analysis 
 

Even if any of the non-Saccharomyces isolates could survive until the end of 

the fermentations in grape juice and grape must, they were all able to actively 

grow during the first 48 hours before the sequential inoculation and in some cases 

also after that. The extent of the impact caused directly by their metabolism and 

by the interaction with S. cerevisiae in the wine composition can be evaluated by 

the chemical analysis that were carried out. The results for the first fermentation, 

in the pasteurized grape juice, were summarized in Table 6.1, while the second 

fermentation is illustrated in Table 6.2. 
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Table 6.1. Chemical analysis at the end of sequential fermentations in pasteurized grape juice, represented as the mean ± standard deviation of three replicates. 

Yeast 
Residual 

Sugars (g/L) 
Ethanol 
(%v/v) 

Acetic Acid 
(g/L) 

YAN* 
(mg/L) 

Total Sulfite 
(mg/L) 

Free Sulfite 
(mg/L) 

Acetaldehyde 
(mg/L) 

Glycerol 
(g/L) 

L(+)Lactic 
Acid (g/L) 

Lachancea thermotolerans 

COLC27 5.65±3.19bc 12.15±0.28c 0.53±0.032bc 14.67±0.58ab 57.67±1.53a 6.67±0.58bc 20.0±2.0ab 2.40±0.26c 0.38±0.12a 

DESP53 7.17±2.11c 12.03±0.16abc 0.57±0.01cd 14.50±0.71ab 66.33±0.58cde 8.33±0.58c 22.0±1.0ab 3.40±0.26d 0.89±0.15a 

SOL13 0.52±0.23a 12.03±0.09abc 0.48±0.012b 15.33±1.15ab 60.67±0.58ab 9.67±0.58c 14.33±0.58a 2.37±0.38c 3.44±0.73b 

Starmerella bacillaris 

CHIAR4 1.40±0.54ab 11.52±0.017a 0.57±0.01cd 14.67±1.53ab 64.33±3.06bcde 6.67±2.08bc 24.33±3.21bc 1.05±0.21ab  

MALV45 2.09±0.26abc 12.09±0.025abc 0.64±0.03e 14.67±2.08ab 64.33±0.58bcde 7.33±0.58bc 23.33±3.21b 1.30±0.14ab  

PECO10 1.38±0.2ab 11.87±0.34abc 0.63±0.045de 16.33±2.08b 64.33±2.31bcde 6.67±1.53bc 25.67±4.04bc 1.85±0.21bc  

Metschnikowia spp. 

COLR7 2.10±1.36abc 12.14±0.13bc 0.53±0.0bc 17.50±0.71b 68.50±2.12de 4.50±0.71ab 33.0±1.41cd 3.90±0.0d  

FIANO12 1.75±1.27ab 11.60±0.16ab 0.37±0.014a 14.0±0.0ab 63.0±0.0abcd 4.50±0.71ab 28.0±1.41bc 4.15±0.35d  

SOUV1 1.75±0.5ab 11.56±0.082a 0.37±0.01a 13.67±2.52ab 62.33±2.52abc 6.67±0.58bc 27.0±2.83bc 4.05±0.071d  

Saccharomyces cerevisiae 

EC 1118 0.91±0.76a 11.68±0.063abc 0.56±0.015bc 11.0±0.0a 68.67±3.06e 3.0±1.41a 40.0±4.24d 0.80±0.28a 0.17±0.14a 
*YAN = primary amino nitrogen + ammonia. 
Different letters in the same column indicate a significant difference in Tukey’s HSD test (p<0.05). 
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For the first round of fermentations, in grape juice, it can be seen that only the 
control inoculation with S. cerevisiae and the mixed inoculation with SOL13 and 
S. cerevisiae were able to consume almost all the available sugar, while in the 
other bottles there were more than 1 g/L of sugar, even after more than 40 days of 
fermentation. The fermentations with S. bacillaris and Metschnikowia spp. were 
considered finished when the weight was constant, but those with L. 
thermotolerans had to be stopped after 70 days, although a slight weight loss was 
still being registered. Indeed, in the fermentations with COLC27 and DESP53 
there were still more than 5 g/L of sugars. 

The production of ethanol showed some diverging profiles among the isolates 
of the same species. Two isolates of Metschnikowia spp. (FIANO12 and SOUV1) 
and one of S. bacillaris (CHIAR4) were able to reduce the ethanol content in the 
mixed fermentations compared to the control, while the six other isolates caused 
an increase in the production of ethanol. Specially the isolates of L. 
thermotolerans were responsible for a higher yield in the ethanol production, 
since they consumed less sugars and nevertheless raised the ethanol content by at 
least 0.35% (v/v). 

As regarding the volatile acidity, the strains of L. thermotolerans did not 
caused differences in the mixed fermentations compared to the control, while two 
S. bacillaris generated a higher production of acetic acid and two Metschnikowia 
spp. helped to reduce its level. 

The quantity of available nitrogen at the end of fermentations showed that S. 
cerevisiae consumed it more in the single fermentations than in the sequential 
inoculations, even if the pure fermentation was shorter and some isolates of non-
Saccharomyces reached higher concentrations of cells during the process than the 
S. cerevisiae in the control. Little is known about the nutritional needs of the non-
Saccharomyces yeasts, but is possible that they needed less than S. cerevisiae and 
the competition between them may have caused a reduction in the consumption. 
The starting amount of YAN was rather low (46.5 mg/L), however there was still 
30% of that at the end of the process, represented in almost all its totality by the 
ammonia component, while the PAN fraction was almost completely consumed 
by all isolates. 

All mixed fermentations showed a lower level of SO2 at the end than the 
single EC 1118, but significantly only two isolates of L. thermotolerans (COLC27 
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and SOL13) and two of Metschnikowia spp. (FIANO12 and SOUV1) could be 
considered for a reduction in the level of sulfite. For the free fraction of the 
sulfites, the single fermentation had the lowest value, even having the highest 
total SO2, showing that most of it is in the bounded form. The isolates of L. 
thermotolerans had the most free SO2, followed by S. bacillaris and then 
Metschnikowia spp. 

The production of acetaldehyde and glycerol were also significantly different 
in all treatments in comparison with the control. All isolates helped to reduce the 
level of acetaldehyde, especially those of L. thermotolerans. It is interesting to 
note how the level of acetaldehyde is related to that of free SO2, because 
acetaldehyde is one the main responsible for linking to the SO2 and thus reducing 
its level. The lower concentrations of acetaldehyde (L. thermotolerans) 
corresponded to the highest level of free SO2, and the highest acetaldehyde 
content (EC 1118) was present in the bottles with less free SO2. 

On the other hand, the production of glycerol was higher in all mixed cultures 
than in the single. The isolates of Metschnikowia spp. can be highlighted for an 
increase of around five times the content of glycerol in wines. An increased 
production of glycerol is usually linked to increase also in acetic acid production 
(Prior et al., 2000), but exactly the opposite trend was observed among the mixed 
fermentations with our isolates of non-Saccharomyces. 

L(+)-Lactic acid (LA) metabolism followed the same trend as the trials shown 
in Chapter 5, with SOL13 being the highest producer, followed distantly by 
DESP53 and COLC27. However, the values in the sequential fermentations were 
significantly lower than those presented by L. thermotolerans in the single 
inoculation trials, possibly due to the competition with S. cerevisiae for the 
available sugar. 

The results of all replicates from the ten different combinations of inoculation 
were summarized in a PCA, except the data of LA production, and are shown in 
Figure 6.5. 

The Principal Component Analysis showed a clear separation of the isolates 
based on the species and the first and second components were able to explain 
49.7% of the variability. Generally speaking, Metschnikowia spp. produced more 
glycerol and acetaldehyde, less ethanol and acetic acid. L. thermotolerans isolates 
did not finish the fermentation, leaving more residual sugars, produced more 
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ethanol though, and less acetaldehyde. The isolates of S. bacillaris were 
differentiated by the higher production of volatile acidity and reduced production 
of glycerol. Nevertheless, it is important to highlight that some differences were 
observed among strains of the same species, more pronounced for Metschnikowia 
spp. and less for S. bacillaris, as it was observed in the molecular and 
physiological characterization described in Chapter 3, when the tested isolates of 
Metschnikowia spp. showed much more intraspecific variability than those of S. 
bacillaris. 

 

 
Figure 6.5. [A] Loading plot and [B] Score plot of the Principal Component Analysis of some 
important oenological parameters obtained after the sequential inoculation of pasteurized grape 
juice with isolates of non-Saccharomyces and S. cerevisiae. 

 

A

B
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In the comparison between the mixed fermentations and the control with 
single inoculation of S. cerevisiae, it could be highlighted the reduction in the 
levels of acetaldehyde and increase in the production of glycerol, maintaining the 
values of acetic acid within the acceptable range. Although the fermentations in 
the pasteurized grape juice did not proceed with optimal kinetics and development 
of the yeasts, as it was show in the previous graphics (Figure 6.1 and 6.3), it was 
interesting to emphasize some positive impacts caused by the addition of non-
Saccharomyces to the fermentation process. 

Table 6.2 summarized the results from the second fermentation trial, in Pinot 
Grigio grape must. Confirming the results already observed in the graphics of the 
fermentation kinetics and microbial concentrations (Figure 6.2 and 6.4), the 
chemical analysis also shown that the fermentation in grape must ran in optimal 
conditions and the medium was more suitable for the yeast development than the 
grape juice used previously. 

All strategies of inoculation reached the conclusion of the fermentation and 
were able to consume the available sugars almost in their totality. Due to the 
metabolism of the non-Saccharomyces strains, the ethanol content was reduced in 
all mixed inoculations when compared to the control, and it was more evident for 
L. thermotolerans and S. bacillaris. This observation is in accordance with several 
previous studies of mixed fermentations, who justified the results with the 
respiratory metabolism of non-Saccharomyces strains (Kutyna et al., 2010; 
Contreras et al., 2014; Quiros et al., 2014; Morales et al., 2015, Benito et al., 
2015b). 

The levels of acetic acid produced were much lower than those registered for 
the fermentation in grape juice, which is an advantage since this by-product could 
depreciate the wine quality (Barbosa et al., 2018). It has been already suggested 
that acetic acid could be increased in excessively clarified grape musts, due to the 
removal of essential constituents such as polyphenolic compounds, unsaturated 
fatty acids or solid particles (Garcia-Moruno et al., 1993; Guilloux-Benatier and 
Feuillat, 1993), and this seem to be the case in our experiments. The strains of 
non-Saccharomyces maintained in the mixed fermentations approximately the 
same level as that observed for the control, with a slightly increase for SOL13 and 
the three S. bacillaris, however this rise is not excessive and would not reach a 
threshold that compromise the wine quality. 
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Table 6.2. Chemical analysis at the end of sequential fermentations of grape must, represented as the mean ± standard deviation of three replicates. 

Yeast 
Residual 

Sugars (g/L) 

Ethanol 

(%v/v) 

Acetic Acid 

(g/L) 

YAN* 

(mg/L) 

Total Sulfite 

(mg/L) 

Free Sulfite 

(mg/L) 

Acetaldehyde 

(mg/L) 

Glycerol 

(g/L) 

L(+)-Lactic 

Acid (g/L) 

Lachancea thermotolerans 

COLC27 0.09±0.015abc 11.97±0.0092bc 0.19±0.01abc 41.67±0.58bc 49.0±0.0b <3 40.0±0.0cd 4.67±0.65ab 0.53±0.053ab 

DESP53 0.13±0.014c 11.95±0.013b 0.19±0.0058ab 39.67±0.58b 61.0±2.0cd <3 45.0±0.0d 5.30±0.26abc 1.22±0.24b 

SOL13 0.40±0.049d 11.76±0.036a 0.26±0.0071de 48.00±1.41d 65.33±2.08d <3 56.50±4.95e 5.27±0.55abc 4.42±0.72c 

Starmerella bacillaris 

CHIAR4 0.07±0.026abc 11.95±0.011b 0.28±0.01e 30.50±0.71a 41.50±0.71a <3 31.0±1.41ab 6.30±0.3c  

MALV45 0.06±0.021ab 11.95±0.042b 0.22±0.025cd 32.67±2.08a 38.50±0.71a <3 28.0±0.0a 5.73±0.32bc  

PECO10 0.07±0.017abc 12.0±0.0047bcd 0.22±0.01bcd 32.33±2.52a 38.0±0.0a <3 32.0±2.88abc 5.45±0.35bc  

Metschnikowia spp. 

COLR7 0.10±0.0058bc 12.02±0.022cd 0.18±0.015a 45.50±0.71cd 59.0±1.73c <3 38.0±0.0bcd 4.97±0.42abc  

FIANO12 0.13±0.03c 12.04±0.014cd 0.17±0.0058a 43.0±1.73bcd 60.67±0.58cd <3 40.67±2.31bcd 5.53±0.57bc  

SOUV1 0.08±0.012abc 12.05±0.03de 0.16±0.01a 47.0±1.41d 58.67±2.08c <3 41.33±1.53d 4.55±0.21ab  

Saccharomyces cerevisiae 

EC 1118 0.04±0.012a 12.11±0.0091e 0.17±0.0058a 46.0±1.41cd 71.67±1.53e <3 57.50±2.12e 4.0±0.42a 0.15±0.13a 

*YAN = primary amino nitrogen + ammonia. 
Different letters in the same column indicate a significant difference in Tukey’s HSD test (p<0.05). 
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Testing mixed fermentations of S. cerevisiae with six different non-
Saccharomyces in Sauvignon Blanc, including the three species explored in the 
present study, Whitener and colleagues (2016) also found that S. bacillaris was 
the highest producer of acetic acid. Nevertheless, other authors already described 
the effective reduction of volatile acidity level for the pairs M. pulcherrima/S. 
cerevisiae (Comitini et al., 2011; Sadoudi et al., 2012), L. thermotolerans/S. 
cerevisiae (Gobbi et al., 2013; Benito et al., 2016) and for S. bacillaris/S. 
cerevisiae (Rantsiou et al., 2012). 

The three isolates of S. bacillaris and one of L. thermotolerans (DESP53) 
needed more nutrients than the others and caused the highest consumption of 
YAN, significantly higher than the single culture of S. cerevisiae, showing that for 
these treatments some competition for nitrogen compounds could have occurred 
with S. cerevisiae, even though no detrimental effects were seen in the 
fermentation progress (Figure 6.4). Previous studies have already reported the 
increase in YAN consumption by mixed fermentation with non-Saccharomyces 
compared to single S. cerevisiae (Andorrà et al., 2010; Medina et al., 2012). 
Besides high-demanding nitrogen needs, a lower nitrogen release could also be 
related with lower final YAN levels in the mixed cultures (Benito, 2018). 

Comparing with the fermentation in grape juice, the remaining YAN was 
higher in the fermentation of grape must, however, since the initial level was 
much higher in grape must, the consumption of YAN was actually almost seven 
times higher. The quantity of ammonia at the end of fermentations was similar in 
all fermentations (around 15 mg/L), but the biggest difference is in the primary 
amino nitrogen. PAN reached zero in the bottles of the first fermentation round, 
while in the second it was still around 30 mg/L, except for S. bacillaris, where it 
was around 20 mg/L. These results showed how the limitation of PAN could have 
been one of the main reasons for the abnormally slow fermentations in grape juice 
compared to the grape must, as it was discussed previously. 

The quantity of total SO2 was significantly lower in all mixed fermentations 
than in the control, especially for S. bacillaris. Other than being directly added to 
grape must/wine as a preservative during vinification, its presence in wine can be 
attributed to yeasts, which produce it to varying extents (Jackowetz et al., 2010). 
A possible reason for lower sulfur metabolism could be the lower SO2 tolerance 
reported for several strains of non-Saccharomyces (Benito Á. et al., 2015). 
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Sulphur dioxide is used as an antimicrobial, antioxidative and anti-enzymatic 
agent in winemaking (Peynaud, 1984). The total SO2 consists of bound and free 
forms, with the former having a weaker antimicrobial function. A number of 
carbonyl compounds (mainly acetaldehyde, pyruvic acid and a-keto-glutaric acid) 
can bind with free SO2 to form a complex compound (bound SO2). The binding of 
bisulphite ion by acetaldehyde reduces the availability of free SO2, resulting in a 
reduction in the antimicrobial efficacy of SO2 (Liu and Pilone, 2000). This can 
explain why SO2 presence induces the mechanism of resistance of acetaldehyde 
formation by yeasts (Stratford et al., 1987; Pilkington and Rose, 1988). In spite of 
problems associated with the use of SO2, it is usually considered difficult to 
produce good quality wine without it (Somers, 1998). However, it would be 
possible to reduce the quantity added by the winemaker through the inoculation of 
yeasts that produce less acetaldehyde and therefore cause less hindrance to the 
SO2 effectiveness. 

In our fermentations of grape must, it can be supposed that all SO2 was 
present in its bounded form, since the quantification of free sulfites resulted lower 
than the detection limit of the instrument (3 mg/L) for all bottles. This was caused 
most likely due to the higher quantities of acetaldehyde in all bottles, when 
compared to the fermentation of grape juice. Nevertheless, almost all non-
Saccharomyces caused a reduction in the level of acetaldehyde in comparison 
with single EC 1118, above all S. bacillaris, with the L. thermotolerans SOL13 as 
the exception. Moreover, the concentrations of acetaldehyde were directly 
proportional to the total SO2 observed. Our non-Saccharomyces followed the 
same behavior described elsewhere, with less acetaldehyde being produced in 
mixed fermentation than single (Benito et al., 2015b; Benito et al., 2016). On the 
contrary of our analysis, Nisiotou and co-workers (2018) found a higher level of 
total SO2 and acetaldehyde for the sequential inoculation with S. bacillaris than in 
the control. There are large species and strain differences in the production of this 
compound, with reported values between 0.5 to 286 mg/L for S. cerevisiae, and 
up to 66 mg/L for non-Saccharomyces species, while the olfactory threshold in 
wines ranges from 100-125 mg/L (Fleet and Heard, 1993; Zoecklein et al., 1995; 
Liu and Pilone, 2000). 

The production of glycerol was higher for all treatments in the grape must 
when compared to grape juice. And in the same way as in the grape juice, in grape 
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must all mixed inoculations raised the glycerol content with respect to the control. 
The increase was more evident for the isolates of S. bacillaris, who reached the 
highest level among the non-Saccharomyces, in contrast to what was observed in 
the grape juice, but accordingly to the long reputation of this species as a 
consistent high glycerol producer (Comitini et al., 2011). Glycerol’s relevance in 
the sensorial properties will depend on the style of the wine, generally 
contributing to smoothness, sweetness and complexity (Ciani and Maccarelli, 
1998; Jolly et al., 2006). 

As regarding LA, all three isolates of L. thermotolerans saw an increase in the 
production in comparison with the grape juice, maintaining again the same 
relative ranking between them, however the values in the sequential inoculation 
were still below those reached with L. thermotolerans in the single inoculation 
trials performed before (Chapter 5). S. cerevisiae, on the other hand, produced 
approximately always the same level of LA, much lower than L. thermotolerans. 
The production of LA occurs during the first days of L. thermotolerans 
fermentation, as it was shown in Chapter 5, and is strictly related to its active 
growth. The exponential decrease in this non-Saccharomyces population during 
sequential and co-inoculations with S. cerevisiae, as shown in this study and 
reported elsewhere, cause a strong decrease in the production of this metabolite. 
These results confirm the relevance of choosing compatible yeasts strains for 
mixed cultures and the importance of a inoculation delay for S. cerevisiae 
(Kapsopoulou et al, 2007; Benito, 2018). The explanation for the differences 
observed between the production of LA by the same isolates when in pure 
cultures or mixed inoculations in grape juice and grape must could be then the 
different population growth, influenced by the medium composition and the 
presence of S. cerevisiae. 

As it has been discussed previously, the biological acidification of wines 
caused by LA is considered to positively affect their organoleptic properties and 
microbial stability, being an interesting tool in regions where lack of acidity could 
be an issue (Jolly et al., 2014). In some Italian regions, the necessity to achieve 
phenolic maturation in some red grape varieties, in order to have more intense and 
ripe flavor of the wines, and the effects of climate change, result in a general 
higher pH, one example of context where the use of starter cultures of L. 
thermotolerans could be a solution to the producers’ needs (Gobbi et al., 2013). 
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With conditions of mixed inoculation similar to those of this study, other authors 
found a production of LA of 1.70 g/L (Chen et al., 2018), 3.18 g/L (Benito et al., 
2016), 2.75 g/L (Benito et al., 2015a), 0.22 g/L (Benito et al., 2015b), 6.38 g/L at 
winery scale and 1.55 g/L at lab scale (Gobbi et al., 2013) and 5.13 g/L 
(Kapsopoulou et al., 2007). This great diversity could be the reflect of strain 
differences, since LA metabolism can vary greatly among the isolates of L. 
thermotolerans, as discussed in details in Chapter 5. 

It should be noted by the higher production of glycerol and lactic acid, and 
lower production of acetic acid, how the ideal conditions of nutrition in the 
fermentation medium are critical for the correct development of the yeasts, not 
only for the faster and more efficient fermentation of sugars, but also from the 
point of view of the production of those important metabolites. 

The results of the chemical analysis in the wines of the second set of 
fermentation experiments were also organized in a PCA (Figure 6.6), for a better 
visualization of the effects of the mixed fermentations compared to the control 
with single starter culture and also the comparison between the nine different non-
Saccharomyces yeast strains tested. 

The PCA showed again a clear separation of the mixed inoculations based on 
the non-Saccharomyces species that were present and the first two components 
could explain 78% of the variability. It is also interesting to note that the isolates 
of Metschnikowia spp. were positioned closer to the control with single 
inoculation of EC 1118, while the isolates of S. bacillaris seem to produce the 
wines with more differences. Some dissimilarities were also observed among 
strains of same species, more markedly for L. thermotolerans SOL13. 

As for some general observations, S. bacillaris strains were responsible for 
higher production of glycerol and acetic acid, lower production of sulfites and 
acetaldehyde, and a higher need for nitrogen supply. Those characteristics were 
more apparent in CHIAR4 than in MALV45 or PECO10. 

Recent studies with mixed inoculations of S. bacillaris and S. cerevisiae in 
four white (Chardonnay, Muscat, Riesling and Sauvignon Blanc) and four red 
grape varieties (Cabernet Sauvignon, Merlot, Pinot Noir and Shiraz) have shown a 
consistent trend in the chemical profile of all the wines, with reduction in ethanol 
and increase in glycerol, in comparison with the control (Englezos et al., 2018a, 
2018b). Also previous studies have already reported the same observations, in 
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Kotsifali/Mandilari (Cretan grapes; Nisiotou et al., 2018), Incrocio Manzoni 
(Lemos Junior et al., 2016), Barbera (Englezos et al., 2016), Montepulciano 
d’Abruzzo (Tofalo et al., 2016), Bovale (Zara et al., 2014), Merlot, Nero d’Avola 
and Frappato grapes (Giaramida et al., 2013). 
 

 
Figure 6.6. [A] Loading plot and [B] Score plot of the Principal Component Analysis of some 
important oenological parameters obtained after the sequential inoculation of grape must with 
isolates of non-Saccharomyces and S. cerevisiae. 

 
For L. thermotolerans, SOL13 showed many differences to COLC27 and 

DESP53. The first had a much lower yield in ethanol production, possibly due to 
a displacement of the metabolism for a higher production of lactate, acetate and 

A
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acetaldehyde. It can be highlighted that isolates of L. thermotolerans caused the 
highest reduction in ethanol content and those of Metschnikowia spp. were 
responsible for the lowest production of volatile acidity and smallest need of 
nutrients. Interestingly, two recent studies of sequential fermentations with the 
same commercial strains of L. thermotolerans and M. pulcherrima in Shiraz 
(Hranilovic et al., 2018) and Riesling (Benito et al., 2015b) grape musts have 
found exactly the same trends as in the present study, such as rising in the 
glycerol production, reduction in the levels of total SO2, acetaldehyde (only 
measured in Riesling) and alcohol and no significant changes in acetic acid. 

Isolates of L. thermotolerans were recently tested in mixed fermentations of 
Airén (Benito et al., 2016), Emir (Balikci et al., 2016), Tempranillo (Benito et al., 
2015a), Sangiovese and Cabernet Sauvignon wines (Gobbi et al., 2013), always 
leading to increase in total acidity (due to LA production), and sometimes also 
rise in glycerol content and reduction in ethanol and acetic acid, usually 
improving the overall quality. 

The study conducted by Barbosa and colleagues (2018) with mixed 
fermentations of S. cerevisiae and M. pulcherrima in Tinta Roriz grape must 
showed the potential of this species to significantly decrease levels of ethanol, 
volatile acidity and hydrogen sulfide. Co-inoculation of M. pulcherrima/S. 
cerevisiae in Merlot grape must showed decrease in ethanol, increase in glycerol 
and no changes in acetic acid concentrations in comparison to the single S. 
cerevisiae (Varela et al., 2017), exactly the same findings as in the present study. 
In Shiraz and Chardonnay wines, the sequential inoculation of the same species 
resulted in reduced ethanol and acetic acid, while the concentration of glycerol 
increased in Chardonnay and decreased in Shiraz (Varela et al., 2016). No 
significant differences were found in Macabeo wines, although a slightly increase 
in glycerol and volatile acidity and decrease in ethanol were observed in the 
mixed culture M. pulcherrima/S. cerevisiae respect to the control (González-Royo 
et al., 2015). 

The control fermentation in grape must with a single inoculation of S. 
cerevisiae was used in this study to confirm the potential of the mixed 
inoculations to reduce the ethanol and acetaldehyde content of the wines, as well 
as increasing the glycerol and LA levels (in the case of L. thermotolerans), 
without harming the optimal progress and conclusion of the fermentation process. 
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6.3.3.  Aromatic profile 
 
The previous sections discussed the fermentation from the process point of 

view and the physicochemical attributes of the wines. It has been shown that the 
mixed fermentations caused significant impact in the wines, even considering the 
limited growth of the non-Saccharomyces. Besides the fermentation kinetics and 
chemical analysis, it is fundamental during the selection of yeasts for commercial 
winemaking to determine the influence in the flavor and aroma (Varela et al., 
2017). Doing so, further effects in the complexity and quality of the wines could 
be viewed from the perspective of the so-called ‘bouquet’, represented by the 
collection of aromatic compounds. Rossouw and Bauer (2016) described a 
noteworthy impact in the final aroma profile, regardless of the non-
Saccharomyces strains inability to dominate numerically throughout the entire 
fermentation. They confirmed that the metabolic impact of these yeasts during the 
early stages of fermentation is sufficient to trigger significant changes to the final 
balance of volatile alcohols and esters produced. 

The evaluation of wines through GC-MS at the end of fermentation of the 
Pinot Grigio grape musts allowed the identification and quantification of 37 
volatile compounds, separated in the following classes: esters (9), fatty acids (3), 
alcohols (10), carbonyl compounds (4), volatile phenols (2) and terpenes (9). All 
of them are represented in Table 6.3, although the discussion was focused on the 
molecules with significant differences and concentrations above their specific 
odor threshold. It should nonetheless be noted that even small differences in the 
concentrations of some compounds could change the perception and preference of 
the wines on sensory evaluations (Jemec and Raspor, 2005; Jolly et al., 2006). 

Most of these compounds were a result of the fermentation process, and their 
different concentrations could be mainly attributed to the dominant yeast species 
and fermentation conditions (Padilla et al., 2016). It is usually considered that the 
differential synthesis of aromatic compounds may occur because non-
Saccharomyces species vary from S. cerevisiae in the distribution of metabolic 
flux during fermentation and therefore differ in ethanol production, biomass 
synthesis, and by-product formation (González et al., 2018), and moreover the 
biosynthesis is strain-dependent (Escribano-Viana et al., 2018). 
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Table 6.3. Volatile aromatic compounds (µg/L) found after the fermentation of grape must with non-Saccharomyces and S. cerevisiae strains. 

 

Compounds 
Lachancea thermotolerans Starmerella bacillaris Metschnikowia spp. S. cerevisiae 

COLC27 DESP53 SOL13 CHIAR4 MALV45 PECO10 COLR7 FIANO12 SOUV1 EC 1118 OTa ODb 

Alcohols 
(E)-3-Hexen-1-ol 95.10 ± 

0.47ab 

86.17 ± 

1.75a 

86.75 ± 

2.05a 

120.65 ± 

1.62e 

120.28 ± 

2.53de 

112.43 ± 

1.47cde 

104.91 ± 

0.10bc 

113.48 ± 

8.38cde 

107.88 ± 

2.41cd 

88.82 ± 

2.86a 

400(1) fruity, fresh grass 

(Z)-3-Hexen-1-ol 21.89 ± 

0.45abc 

21.12 ± 

0.39ab 

20.29 ± 

0.33a 

22.80 ± 

0.08c 

25.74 ± 

0.15de 

24.65 ± 

0.45d 

27.29 ± 

0.86e 

26.82 ± 

0.42e 

25.61 ± 

0.40de 

22.63 ± 

0.17bc 

400(1) green, cut grass 

1-Butanol 93.63 ± 

3.33a 

98.01 ± 

2.84a 

129.75 ± 

13.44c 

98.57 ± 

1.80ab 

130.61 ± 

0.31c 

101.27 ± 

7.68ab 

92.35 ± 

1.50a 

96.78 ± 

5.78a 

122.36 ± 

4.29bc 

89.88 ± 

7.46a 

1.5´105(2) medicinal, green herb 

1-Pentanol 2.93 ±  

0.22a 

12.36 ± 

4.41abc 

20.82 ± 

0.59cde 

10.33 ± 

0.08ab 

21.52 ± 

3.38cde 

16.69 ± 

1.27bcd 

32.24 ± 

2.71f 

25.09 ± 

0.45def 

21.06 ± 

0.07cde 

28.63 ± 

5.03ef 

80000(3) fruity, balsamic 

2-Butanol 9941.70 ± 

401.23b 

8995.33 ± 

301.38b 

9285.42 ± 

407.04b 

9064.47 ± 

243.75b 

13384.76 ± 

24.69c 

10492.58 ± 

565.06b 

10334.54 ± 

97.06b 

11024.36 ± 

1422.51b 

10583.36 ± 

44.57b 

4858.74 ± 

286.26a 

50000(2) fruity, sweet apricot, 

medicinal 

3-Methyl-1-
butanol 

254422.15± 

2845.45cd 

227364.88± 

2333.71bc 

227210.61± 

54.86bc 

172329.86± 

6818.57a 

257291.80± 

14164.68de 

209675.95± 

3030.04b 

254886.12± 

3587.07cd 

255136.52± 

8730.85cde 

283691.01± 

12722.62e 

244818.76± 

2190.56cd 

60000(2) whiskey, malt, cheese, 

sweet, herbaceous 

Benzyl alcohol 132.59 ± 

1.00a 

575.61 ± 

34.54d 

252.29 ± 

12.88bc 

290.34 ± 

14.71c 

279.16 ± 

64.93c 

292.83 ± 

0.80c 

139.28 ± 

10.57a 

136.34 ± 

1.07a 

162.90 ± 

0.81ab 

118.74 ± 

1.22a 

2´105(4) floral, leaf 

b-Phenylethyl 

alcohol 

11569.19 ± 

453.33ab 

11800.04 ± 

92.06ab 

10824.10 ± 

854.41a 

18479.77 ± 

2525.66de 

13475.91 ± 

343.10abc 

14681.71 ± 

1474.27abcd 

15093.69 ± 

425.27bcd 

17527.70 ± 

308.79cde 

15686.64 ± 

291.85bcd 

21434.73 ± 

1086.26e 

14000(5) rose, honey, spice, 

lilac, pollen 

n-Hexanol 1127.13 ± 

13.58de 

1125.00 ± 

12.81de 

1163.33 ± 

2.75de 

924.13 ± 

12.33b 

950.11 ± 

39.73bc 

944.75 ± 

6.65b 

768.44 ± 

12.13a 

907.36 ± 

0.12b 

1057.54 ± 

27.43cd 

1181.91 ± 

69.13e 

1100(2) herbaceous, grass, 

woody, toasty, dry 

Vanillyl alcohol <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ n.d. creamy, vanilla, 

coconut 

å Alcohols 280198.69± 

8038.67cde 

249613.43± 

1426.79bc 

250882.87± 

1402.38bcd 

201305.80± 

9642.62a 

286783.36± 

16062.46e 

242130.62± 

1219.72b 

281150.30± 

3476.61cde 

284885.02± 

10067.01de 

291697.62± 

14902.03e 

274722.41± 

2064.48bcde 
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Compounds 
Lachancea thermotolerans Starmerella bacillaris Metschnikowia spp. S. cerevisiae 

COLC27 DESP53 SOL13 CHIAR4 MALV45 PECO10 COLR7 FIANO12 SOUV1 EC 1118 OTa ODb 

Carbonyl compounds 
a-Ionone <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ 3(6) violet 

b-Damascenone 2.15 ±  

0.04b 

1.59 ± 

0.11ab 

1.27 ± 

0.04ab 

6.07 ±  

0.26c 

1.88 ± 

0.06ab 

1.00 ±  

0.00a 

5.05 ±  

0.16c 

1.53 ± 

0.11ab 

5.28 ±  

0.81c 

5.70 ±  

0.24c 

0.05(1) baked and ripe fruit, 

apple, rose, honey 

b-Ionone 1.19 ± 

0.01ab 

1.37 ± 

0.04abc 

1.56 ±  

0.11c 

1.45 ± 

0.09bc 

2.07 ±  

0.16d 

1.22 ± 

0.04ab 

1.17 ±  

0.01a 

1.22 ± 

0.01ab 

1.17 ±  

0.01a 

1.17 ±  

0.01a 

5(2) balsamic, rose, violet 

Furfural 0.56 ±  

0.01a 

0.51 ±  

0.04a 

0.58 ±  

0.03a 

0.50 ±  

0.00a 

0.54 ±  

0.01a 

0.53 ±  

0.01a 

0.57 ±  

0.03a 

0.53 ±  

0.01a 

0.53 ±  

0.02a 

0.54 ±  

0.02a 

14100(5) sweet, bread, almond, 

floral 

å Carbonyl 

compounds 

4.04 ± 

0.10ab 

3.61 ±  

0.31a 

3.62 ±  

0.11a 

7.95 ±  

0.45e 

5.00 ± 

0.06bc 

3.14 ±  

0.07a 

6.79 ±  

0.13d 

3.28 ±  

0.12a 

5.97 ± 

0.59cd 

7.01 ± 

0.23de 

  

Fatty acids 
3-Methylbutanoic 
acid 

184.49 ± 

18.99b 

124.37 ± 

3.24a 

100.85 ± 

6.34a 

133.27 ± 

12.01a 

122.24 ± 

1.59a 

129.27 ± 

9.94a 

305.65 ± 

10.71c 

141.59 ± 

26.32ab 

349.00 ± 

8.28c 

308.24 ± 

6.50c 

33(5) rancid, cheese, sweaty 

Hexanoic acid 1946.31 ± 

265.93ab 

2163.68 ± 

70.03ab 

1453.16 ± 

1.49a 

2010.02 ± 

130.28ab 

1612.45 ± 

9.52ab 

2708.90 ± 

227.27b 

6839.13 ± 

184.94d 

3983.88 ± 

691.20c 

7078.33 ± 

341.74d 

3870.24 ± 

87.36c 

420(5) cheese, sweaty, fatty 

Octanoic acid 4954.37 ± 

134.43ab 

4635.20 ± 

213.89a 

3993.93 ± 

288.13a 

6712.78 ± 

733.64c 

4342.94 ± 

208.43a 

6167.82 ± 

352.05bc 

10687.32 ± 

86.06e 

11111.26 ± 

358.16e 

11678.76 ± 

256.02e 

8648.53 ± 

323.71d 

500(5) fatty, rancid, cheese 

å Fatty acids 7527.85 ± 

568.73bc 

6810.36 ± 

121.03ab 

5553.73 ± 

304.17a 

9118.53 ± 

480.73c 

6502.50 ± 

11.14ab 

9013.73 ± 

103.87c 

17812.07 ± 

288.60f 

15274.78 ± 

305.54e 

18534.28 ± 

886.10f 

12827.00 ± 

404.57d 

  

Esters 
Ethyl 2-
methylbutyrate 

0.04 ± 

0.01ab 

0.05 ± 

0.01ab 

0.05 ± 

0.01ab 

0.07 ± 

0.00ab 

0.06 ± 

0.01ab 

0.05 ± 

0.01ab 

0.04 ± 

0.01ab 

0.03 ±  

0.01a 

0.04 ± 

0.01ab 

0.09 ±  

0.02b 

18(5) strawberry, fruity, 

anise 

Ethyl 3-
methylbutyrate 

<LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ 3(1) strawberry, fruity, 

pineapple 
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Compounds 
Lachancea thermotolerans Starmerella bacillaris Metschnikowia spp. S. cerevisiae 

COLC27 DESP53 SOL13 CHIAR4 MALV45 PECO10 COLR7 FIANO12 SOUV1 EC 1118 OTa ODb 
Ethyl butyrate 374.42 ± 

3.15cde 

385.27 ± 

3.42de 

308.31 ± 

8.42b 

352.39 ± 

5.94c 

383.09 ± 

10.84de 

371.07 ± 

3.66cd 

400.17 ± 

2.77ef 

388.39 ± 

3.53de 

419.77 ± 

8.92f 

238.05 ± 

13.02a 

20(1) apple, fruity, sweet, 

strawberry, banana 

Ethyl hexanoate 966.88 ± 

30.85bc 

927.22 ± 

25.16b 

704.78 ± 

30.36a 

746.39 ± 

20.90a 

875.72 ± 

25.94b 

883.55 ± 

2.93b 

1036.95 ± 

3.85c 

1064.46 ± 

20.97cd 

1145.24 ± 

15.32d 

655.72 ± 

46.05a 

14(5) strawberry, anise, 

green apple, brandy 

Ethyl octanoate 989.54 ± 

32.33bcd 

996.32 ± 

9.84bcd 

770.24 ± 

20.17a 

845.01 ± 

19.38abc 

1059.93 ± 

12.48cd 

962.99 ± 

36.43abc 

1421.66 ± 

92.49f 

1348.63 ± 

30.30ef 

1187.91 ± 

124.95de 

838.45 ± 

42.83ab 

5(5) fatty, sweet, floral, 

pear, pineapple 

Ethyl decanoate 230.47 ± 

14.45ab 

201.05 ± 

14.64a 

213.09 ± 

9.21ab 

298.87 ± 

11.60ab 

221.29 ± 

9.16ab 

390.81 ± 

6.36ab 

1121.66 ± 

144.91c 

400.47 ± 

16.28b 

1258.55 ± 

35.84c 

320.05 ± 

0.18ab 

200(5) waxy, fruity, apple, 

grape 

Ethyl lactate 1203.14 ± 

11.24f 

1626.40 ± 

57.31g 

6341.63 ± 

792.84h 

439.03 ± 

28.62b 

674.97 ± 

14.91de 

552.68 ± 

1.61bc 

650.08 ± 

4.67cd 

650.26 ± 

44.31cd 

786.05 ± 

43.70e 

150.76 ± 

6.02a 

1.5´105(2) fruity, buttery 

Isoamyl acetate 1485.60 ± 

39.07d 

1362.07 ± 

3.20cd 

1027.73 ± 

4.78b 

632.67 ± 

11.17a 

950.13 ± 

9.57b 

700.76 ± 

14.30a 

1261.35 ± 

31.94c 

1237.73 ± 

0.88c 

1390.06 ± 

26.36d 

1072.24 ± 

82.74b 

160(2) banana, fruity, sweet 

n-Hexyl acetate 14.15 ± 

0.06de 

10.76 ± 

0.07bc 

9.43 ± 

0.44abc 

6.87 ±  

0.13a 

7.92 ± 

1.51ab 

8.93 ± 

0.03ab 

9.66 ± 

0.33abc 

12.59 ± 

0.74cd 

16.33 ± 

0.35e 

21.73 ± 

1.77f 

670(2) apple, cherry, pear, 

floral 

å Esters 5217.82 ± 

119.00c 

5528.98 ± 

108.06c 

9284.71 ± 

600.99e 

3423.16 ± 

76.25a 

4100.13 ± 

143.73ab 

3978.39 ± 

56.51ab 

5729.34 ± 

238.32cd 

4998.43 ± 

115.00bc 

6649.10 ± 

492.87d 

3231.21 ± 

243.68a 

  

 
Volatile phenols 

Vanillin 3.75 ± 

0.05ab 

4.04 ± 

0.08ab 

3.61 ± 

0.36ab 

3.15 ±  

0.08a 

5.47 ± 

0.26cd 

4.61 ± 

0.44bc 

7.97 ±  

0.47e 

4.84 ± 

0.21bcd 

9.74 ±  

0.60f 

5.92 ±  

0.23d 

60(7) vanilla, powder, dry 

grass, woody 

2-6-Dimethoxy-
phenol 

5.26 ± 

0.11bcd 

5.44 ± 

0.16cd 

3.84 ± 

0.40abc 

4.75 ± 

0.55abcd 

4.94 ± 

0.09bcd 

6.01 ±  

1.01d 

3.70 ± 

0.19ab 

13.39 ± 

0.06e 

3.20 ±  

0.09a 

13.35 ± 

0.48e 

570(8) medicinal, smoky 

å Volatile phenols 9.23 ± 

0.16abc 

9.02 ± 

0.07abc 

7.45 ±  

0.76a 

7.90 ± 

0.47ab 

10.13 ± 

0.03bc 

13.12 ± 

1.01d 

11.36 ± 

0.71cd 

18.23 ± 

0.15e 

12.93 ± 

0.51d 

20.42 ± 

1.36e 
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Compounds 
Lachancea thermotolerans Starmerella bacillaris Metschnikowia spp. S. cerevisiae 

COLC27 DESP53 SOL13 CHIAR4 MALV45 PECO10 COLR7 FIANO12 SOUV1 EC 1118 OTa ODb 

Terpenes 
(E)-Linalool oxide 1.65 ± 

0.02abcd 

1.32 ± 

0.02ab 

1.20 ±  

0.07a 

2.11 ±  

0.13d 

1.55 ± 

0.08abcd 

1.49 ± 

0.15abc 

1.43 ± 

0.01abc 

1.84 ± 

0.21bcd 

2.02 ± 

0.04cd 

1.55 ± 

0.37abcd 

6(9) rose, camphor, floral 

green 

(Z)-Linalool oxide 0.44 ± 

0.06ab 

0.93 ±  

0.01d 

0.43 ± 

0.01ab 

0.41 ± 

0.00ab 

0.38 ± 

0.06ab 

0.33 ±  

0.04a 

0.63 ±  

0.08c 

0.53 ± 

0.01bc 

0.36 ± 

0.01ab 

0.30 ±  

0.07a 

6(9) rose, camphor, fruity 

a-Ionol <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ 0.05(10) raspberry, violet 

a-Terpineol 1.67 ±  

0.30d 

28.00 ± 

1.34e 

1.05 ±  

0.10b 

1.57 ± 

0.10cd 

0.94 ±  

0.04ab 

0.73 ±  

0.01ab 

0.98 ± 

0.05ab 

1.10 ± 

0.04bc 

0.95 ± 

0.07ab 

0.53 ±  

0.11a 

250(5) lilac, floral, sweet 

b-Citronellol 6.64 ± 

 0.20d 

1.58 ±  

0.07a 

1.85 ±  

0.06a 

6.19 ± 

0.69cd 

5.16 ± 

0.09bc 

4.40 ±  

0.21b 

6.27 ± 

0.15cd 

8.85 ±  

0.24e 

5.84 ± 

0.35cd 

10.89 ± 

0.46f 

100(1) green, fruity 

Geraniol 3.51 ± 

0.13bc 

3.37 ± 

0.21abc 

0.72 ±  

0.23a 

4.86 ±  

0.41c 

2.07 ± 

0.89ab 

12.46 ± 

0.54d 

16.50 ± 

0.12e 

13.82 ± 

0.01de 

12.10 ± 

1.26d 

11.15 ± 

1.38d 

30(1) floral, green , fruity 

Linalool 2.08 ±  

0.27b 

2.08 ±  

0.06b 

1.75 ±  

0.07b 

2.07 ±  

0.12b 

1.93 ±  

0.24b 

0.85 ±  

0.05a 

1.69 ±  

0.03b 

0.99 ±  

0.08a 

1.69 ±  

0.20b 

1.84 ±  

0.02b 

25(5) flower, lavender 

Nerol 1.16 ±  

0.01a 

1.47 ± 

0.04ab 

3.68 ±  

0.11d 

1.91 ±  

0.06b 

3.96 ±  

0.32d 

2.88 ±  

0.16c 

1.13 ±  

0.01a 

1.60 ± 

0.04ab 

1.14 ±  

0.13a 

1.48 ± 

0.13ab 

400(11) vegetable, sweet, 

fruity 

Terpinen-4-ol <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ 130(12) dust, nutmeg 

å Terpenes 17.16 ± 

0.15b 

38.40 ± 

1.68d 

10.42 ± 

0.44a 

18.45 ± 

0.23b 

18.09 ± 

0.16b 

21.24 ± 

0.21b 

30.03 ± 

0.05c 

30.78 ± 

3.63c 

22.32 ± 

0.86b 

27.95 ± 

0.25c 

  

Mean ± standard deviation values of three independent replicates are indicated. <LOQ = below the Limit of Quantification. 

Different letters in each row indicate significant difference according to Tukey’s HSD test (p<0.05). Values in bold are above the OT. 
a OT (Odor Threshold): The reference (µg/L) is given between parentheses: (1) Guth, 1997; (2) Peinado et al., 2004; (3) Li, 2006; (4) Gómez-Míguez et al., 2007; (5) Ferreira et 

al., 2000; (6) Burdock, 2010; (7) Culleré et al., 2004; (8) Parker et al., 2012; (9) Joshi and Gulati, 2015; (10) Zhang et al., 2013; (11) Marais, 1983; (12) Pino and Mesa, 2006; n.d. = 

not determined.  
b OD (Odor Descriptor). 
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The impact of the mixed fermentations in the aroma of wines depends also on 
the composition of the initial grape must, including its nutrient and nitrogen 
availability. This means that it may be very difficult to determine and predict the 

particular impact of an individual species of inoculated starter, although certain 
compounds could show some reproducibility (Rossouw and Bauer, 2016). In our 
case, the aromatic profile was only evaluated in the wines at the end of 
fermentation of the natural grape must, since the previous analysis have shown 
that the yeast growth and fermentation performances were seriously compromised 
in the bottles with the pasteurized grape juice. Moreover, the treatments applied to 
the grape juice aiming the microbial stability of the product could have caused 
also depletion of important aroma precursors, in the same way that have 
diminished the nutrient availability. Nevertheless, the volatile compounds were 
quantified for the control fermentation in grape juice, and the comparison with the 
control in the fermented grape must showed much lower concentrations in the 
first case and confirmed that it would not be worthwhile to analyze the other 
bottles of fermented grape juice (data not shown). 

The most abundant group in all wines was the higher alcohols, followed by 
fatty acids and esters. From the 37 molecules analyzed, five of them resulted 

below the limit of quantification, namely: vanillyl alcohol, a-ionone, ethyl 3-

methylbutyrate, a-ionol and terpinen-4-ol. Considering the statistical analysis of 

the 32 detectable compounds, only furfural was not produced in significant 
different quantities among the diverse inoculation strategies. For what concern the 
aromatic threshold, 12 volatile compounds were present in at least one of the 
treatments with concentrations above the limit described in literature (indicated 
below Table 6.3 for each compound) for the perception of the aroma by human 
nose. 

The compounds above the odor threshold were: three higher alcohols (3-

methyl-1-butanol, b-phenylethyl alcohol and n-hexanol), one ketone (b-

damascenone), three fatty acids (3-methylbutanoic, hexanoic and octanoic acids) 
and five esters (ethyl butyrate, ethyl hexanoate, ethyl octanoate, ethyl decanoate 

and isoamyl acetate). All of them were produced with significant differences 
among the sequential inoculations and the control with single S. cerevisiae, 
sometimes with increase and sometimes decrease. 
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The highest increase was observed for the esters, responsible for pleasant 
fruity and floral aromas. Especially the ethyl esters were increased due to the non-
Saccharomyces action, even though in literature they were already reported as 

much lower producers than S. cerevisiae (Rojas et al., 2003). The accumulation of 
esters depends on the balance between the ester-producing metabolism and the 
activity of esterase enzymes, present in both S. cerevisiae and non-Saccharomyces 
yeasts (Ubeda-Iranzo et al., 1998; Swiegers and Pretorius, 2005). Even small 
changes in the concentration of these molecules could be perceived in the sensory 
evaluation of the wines (Englezos et al., 2018a). 

The sum of the compounds separated by classes resulted most of the time in 
higher values for Metschnikowia spp. than the other non-Saccharomyces and the 
single inoculum, especially for the fatty acids and higher alcohols. The control 
with single inoculation of S. cerevisiae was responsible for producing more 
carbonyl compounds and volatile phenols, than the mixed cultures. 

Higher alcohols are the largest group of aromatic compounds and are believed 
to contribute to the wine complexity in concentrations below 300 mg/L, while 
above 400 mg/L they could have a negative effect (Amerine et al., 1980; Rapp 
and Mandery, 1986). In the present study, any of the fermentations produced an 
overall amount of higher alcohols superior to 300 mg/L, and the lowest producer 
was CHIAR4 with approximately 200 mg/L. All Metschnikowia spp. isolates, one 

S. bacillaris (MALV45) and one L. thermotolerans (COLC27) caused an increase 
compared to S. cerevisiae, even though it was not significant. It was already 
reported high production of higher alcohols for strains of M. pulcherrima, L. 

thermotolerans and S. bacillaris (Padilla et al., 2016; Escribano-Viana et al., 
2018). 

Nevertheless, for two of the higher alcohols that reached concentrations above 

the odor threshold in the single inoculum (b-phenylethyl alcohol and n-hexanol), 

it was observed a general reduction in the concentration for the mixed 

inoculations, significant in most cases. For b-phenylethyl alcohol, an essential 

aromatic alcohol for the overall flavor quality and contributing to pleasant floral 
aromas, it was reported in literature the opposite of the present observations, with 
higher productions by the pairs L. thermotolerans/S. cerevisiae and M. 

pulcherrima/S. cerevisiae (Comitini et al., 2011; González et al., 2018). Our 
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isolates of L. thermotolerans and one S. bacillaris (MALV45) caused a decrease 

in b-phenylethyl alcohol to levels below the odor threshold, while for n-hexanol, 

that could be negative by imparting vegetable and herbaceous notes, only the 
isolates of L. thermotolerans did not result in decrease below the threshold. 

The other alcohol produced above the sensory threshold, 3-methyl-1-butanol 
(isoamyl alcohol), which could negatively contribute with herbaceous notes, was 

the main component of the higher alcohols group for all treatments, and the 
concentration varied among the fermentations. It increased significantly only for 
SOUV1 and decreased for two S. bacillaris. 

Fatty acids are believed to negatively impact the wine bouquet with fatty and 
rancid descriptors and the three compounds quantified in this study surpassed the 
sensory threshold. All strains of L. thermotolerans and S. bacillaris were able to 
significantly reduce the content of all fatty acids, but the three Metschnikowia spp. 
caused an increase for hexanoic and butanoic acid. For 3-methylbutanoic acid 
(isovaleric acid), considered a wine fault in too high concentrations, one isolate of 
Metschnikowia spp. (FIANO12) was also able to significantly decrease, and the 
other two isolates maintained statistically the same concentration as the single 
inoculum. Nevertheless, it is considered that a concentration of fatty acids above 
20 mg/L would impact negatively the wine quality (Ribéreau-Gayon et al., 2006), 
what did not happen for any of the wines in the present research. 

The mechanisms that lead to the formation of ethyl esters from the 
corresponding fatty acids are still unexplored, but it has been shown that the 
concentration of the fatty acid precursor modulates the ethyl ester production 

(Saerens et al., 2008). And considering the reverse reaction, the fatty acids could 
contribute to the aromatic equilibrium of wine by counteracting the hydrolysis of 
their respective esters (Swiegers et al., 2005). Indeed, the higher concentration for 
fatty acids in the present fermentations with the Metschnikowia spp. isolates were 
accompanied by correspondent higher levels of the ethyl esters. 

The carbonylic compound b-damascenone has a very low odor threshold and 

thus was above this value in all wines, possibly contributing with floral and fruity 
aromas. Only for CHIAR4 the absolute quantity was higher than the control, but 
not statistically significant, while for six of the other non-Saccharomyces a 
significant decrease was observed. 
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Regarding the volatile phenols, their presence is described as always 
undesirable, due to the possibility of masking the fruity notes of white wines, even 
at low concentrations below the odor threshold (Padilla et al., 2016). All of our 

isolates caused a reduction in the total amount of volatile phenols (not significant 
only for FIANO12), represented mainly by 2-6-dimethoxy-phenol (Syringol), 
responsible for medicinal and smoky aromas, even though they were all far below 
the perception threshold. Padilla and colleagues (2016) reported the lower 
production of volatile phenols by M. pulcherrima, but in our study this was more 
evident for Lachancea and Starmerella. 

Terpenes add positively to the wine aroma and are released when glucosidases 
free bound glycosylated precursors (Carrau et al., 2005). M. pulcherrima strains 

were already reported to increase the concentrations of a-terpineol, geraniol and 

nerol after single inoculation, due to their b-glucosidase activities (Rodríguez et 

al., 2010). However, during mixed fermentations the nerol and geraniol decreased 

significantly, and only a-terpineol was still high, probably due to the ability of S. 

cerevisiae to convert nerol and geraniol into a-terpineol (Di Stefano et al., 1992; 

Mateo and Jiménez, 2000). Indeed, in our fermentations all the mixed 

inoculations produced higher a-terpineol than S. cerevisiae alone (even if only for 

FIANO12, CHIAR4 and the three L. thermotolerans it was significant), but only 
four of them increased also geraniol (just COLR7 significantly) and five produced 
higher nerol (three significant differences). L. thermotolerans and S. bacillaris 

isolates were also highlighted as terpene producers with high b-glucosidase 

activities (Cordero-Bueso et al., 2012; Whitener et al., 2016), even though this 
was observed in the previous characterization of our isolates only for 
Metschnikowia spp. 

In a sequential inoculation of M. pulcherrima and S. cerevisiae in Viura-
Malvasía white must, Tronchoni and co-workers (2018) have also verified, in 

accordance with us, a decrease in the production of b-damascenone and 2-6-

dimethoxy-phenol by the mixed culture, and increased concentrations for 3-
methyl-1-butanol. On the other hand, divergences with the present study were 
found for n-hexanol, esters and fatty acids, with a lower production by mixed 

cultures in their observations; and b-phenylethyl alcohol, which was lower in the 

control single inoculation. In Merlot wines, an overall increase in the esters and 
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higher alcohols by the mixed inoculation with M. pulcherrima was in accordance 
with our findings (Varela et al., 2017). 

Also with mixed inoculation of M. pulcherrima and S. cerevisiae, Varela and 

colleagues (2016) found increased levels for ethyl butyrate and ethyl hexanoate 
and decreased ethyl octanoate, ethyl decanoate and isoamyl acetate, resulting in 
no significant differences in the total esters content compared to the single 
inoculation, in Chardonnay grape must. The concentrations of 3-methyl-1-butanol 

and b-phenylethyl alcohol were higher in the single inoculum, but no differences 

were seen in total higher alcohols. Regarding fatty acids, 3-methylbutanoic and 
hexanoic acids increased, while octanoic acid decreased in the mixed inoculation, 
although again when considering the total concentration, no changes were 
observed for fatty acids. In the same study, but with Shiraz grape must, the 
authors found results more similar to ours than with Chardonnay (Varela et al., 
2016). Considering the same esters that we quantified, they all increased in the 
mixed inoculation compared to the single and thus the total esters content was 
significantly higher for M. pulcherrima/S. cerevisiae mixed culture. The content 
of fatty acids was also in accordance with us, showing higher values for the mixed 
culture. The only difference to our study was for the higher alcohols, where they 

found increased b-phenylethyl alcohol and decreased 3-methyl-1-butanol, the 

opposite of the present study. 
In a series of fermentations with different grape varieties, Englezos and 

colleagues (2018a, 2018b) tested the effects of mixed fermentations with S. 

bacillaris and S. cerevisiae in the chemical and aromatic composition of wines. 
Many differences were found with the present study, suggesting a strong 
influence of the grape variety and the strains used. Considering the total higher 
alcohols, in almost all grape varieties the same result was observed as our isolates 
MALV45 and PECO10 in Pinot Grigio, with no significant change to the single 

inoculation, while the lowering of higher alcohols in Pinot Noir was in accordance 
with our strain CHIAR4, and their mixed fermentation in Sauvignon Blanc was 
the only case of increase in this group of compounds. Regarding the alcohols 

above the odor threshold, 3-methyl-1-butanol, b-phenylethyl alcohol and n-

hexanol, our strains reduced or maintained their levels, the same result in 
Riesling, Sauvignon Blanc, Cabernet Sauvignon, Pinot Noir, Merlot and Shiraz 
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for 3-methyl-1-butanol; in Chardonnay, Muscat, Pinot Noir, Merlot and Shiraz for 

b-phenylethyl alcohol; and all red varieties for n-hexanol. For the fatty acids, our 

results are in accordance with all white and red varieties studied by these authors, 
where an overall reduction in the content was observed. Looking at the quantified 
esters, different considerations have to made for the ethyl and acetate esters. Our 
strains were able to increase the first (except ethyl decanoate) and decreased the 

second. The same observations were made only in Sauvignon Blanc for the ethyl 
esters and in all white and red varieties for the acetate esters. Our three strains 
decreased the total content of terpenes, interestingly the same observation made 

for the white wine varieties, while the decrease or no change in b-damascenone 

was unanimous between our strains in Pinot Grigio and all varieties examined by 
Englezos and colleagues (2018a, 2018b). 

In a co-inoculation of S. cerevisiae and S. bacillaris in Montepulciano 
d’Abruzzo grape must (Tofalo et al., 2016), the total production of esters and fatty 
acids was higher for the mixed fermentation, in accordance with the present study 
only for the esters. Also in agreement with our findings, the co-culture produced 
less higher alcohols. When analyzing the single components, both studies found 

increase in 1-butanol, 3-hexen-1-ol and ethyl butanoate, and decrease in b-

phenylethyl alcohol for the mixed fermentation. 
Different strategies of inoculation were carried out by Balikci and co-workers 

(2016) to evaluate mixed fermentations of L. thermotolerans and S. cerevisiae in 
Emir grape must. The sequential inoculation of S. cerevisiae 48 hours after the 
inoculation of L. thermotolerans resulted in a reduction in the levels of all esters 
and higher alcohols (except n-propanol). In the present study, the strain SOL13 
behaved similarly with the mentioned investigation, while the strain DESP53 
agreed in the reduction of higher alcohols but caused an increase in the esters, and 
COLC27 achieved the total opposite result, increasing the higher alcohols and 
esters, even though the differences were not significant in some cases. 

In Airén wines (Benito et al., 2016), again the results of the mixed 
fermentation with L. thermotolerans were more similar to our strain SOL13, with 

decreased values or no significant changes for some fatty acids, higher alcohols 
and esters. The main differences to the present study is that our COLC27 and 

DESP53 increased some esters, and all three isolates decreased the content of b-
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phenylethyl alcohol, while their sequential inoculation caused a significant 
increase. It is noteworthy to point out that these authors found an increase of two 
times for the concentration of ethyl lactate, while in the present study the observed 

increases ranged from 10 to 40 times (SOL13) for the mixed inoculations 
compared to the single. The findings of Gobbi and colleagues (2013) in white 
grape must were very similar to those described by Benito et al. (2016). 

Three recent studies have compared the aromatic profile of sequential 
fermentations with non-Saccharomyces/S. cerevisiae yeasts and included strains 
of L. thermotolerans and M. pulcherrima: in Tempranillo grape must (Escribano-
Viana et al., 2018); Shiraz (Hranilovic et al., 2018); and Riesling (Benito et al., 
2015b). The first used indigenous strains, while the others applied the same 
commercial strains. Considering the main volatile compounds and those above the 
odor threshold in the present study, surprisingly noteworthy disparities between 
the different investigations were observed. For the higher alcohols, the most 
similar to our study was Tempranillo, with Metschnikowia spp. being the highest 
producer. In Shiraz, L. thermotolerans was consistently the highest producer of 3-

methyl-1-butanol, b-phenylethyl alcohol and n-hexanol, while in Riesling the top 

producer was the single culture of S. cerevisiae. Considering the esters, L. 

thermotolerans was able to produce more than M. pulcherrima in both Riesling 
and Shiraz, but in Riesling the production of L. thermotolerans was also higher 
than the single inoculum, while in Shiraz there was no difference between L. 

thermotolerans and S. cerevisiae. In our case there was no difference between the 
non-Saccharomyces, but they were both higher than the control. In Tempranillo 

the acetate esters were quantified and resulted lower in L. thermotolerans. 
Confirming the observation of the present study, also in Tempranillo and Riesling 
wines the production of ethyl lactate was much higher in the mixed fermentation 
containing L. thermotolerans. Regarding the fatty acids, the fermentations 
behaved similarly according to the type of must. While in white varieties, Riesling 
and Pinot Grigio of the present study, the strains of Metschnikowia spp. resulted 
in more fatty acids, in red cultivars, Shiraz and Tempranillo, the control was 
responsible for the highest content of these compounds, and in all cases the least 

producer was L. thermotolerans. Terpenes and b-damascenone were not 

quantified in Tempranillo, but different profiles were present in the other wines. 
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Metschnikowia spp. was the top producer of terpenes in our Pinot Grigio and 

produced more b-damascenone in Riesling, while L. thermotolerans the most 

terpenes and b-damascenone in Shiraz and more terpenes in Riesling. 

The concentrations of the 32 compounds that were present in quantities 
significantly different were used for the Principal Component Analysis (Figure 
6.7), considered separately for the three replicates of each of the ten diverse 
treatments, i.e. sequential inoculation of nine different non-Saccharomyces yeasts 
and S. cerevisiae and the control with the commercial S. cerevisiae strain EC 1118 
alone. 

This PCA clearly showed one more time the relevant impact of the mixed 
starters in the properties of the wine, as the PCA with the physicochemical 
parameters (Figure 6.6). For the aromatic profile it is possible to consider that the 
mixed fermentations were placed even farther from the control in comparison 
with the previous PCA. Moreover, the replicates of the same inoculation were 
positioned very close and grouped relatively next to the yeast strains of the same 
species, but with significant differences between species. The isolates of L. 

thermotolerans and S. bacillaris are closer among them than with Metschnikowia 
spp. The replicates are indicated by the name of the strain followed by a Roman 
numeral, and the species have different colors, where L. thermotolerans is blue, S. 

bacillaris is green, Metschnikowia spp. is purple and the control is orange. These 
observations gave a very strong evidence that the differences in the volatile 
compounds produced were the result of the presence of the non-Saccharomyces 
yeasts inoculated at the beginning of the fermentation, and not caused by the 
spontaneous microbiota that could have had an influence. 

The first and second components that are represented in the graphic explained 
43.5% of the variance, and the third component explained additional 11.29%. The 
PC1 was more positively influenced by the fatty acids and respective ethyl esters, 

while PC2 was more correlated with the higher alcohols and volatile phenols. In 
general, the isolates of Metschnikowia spp. produced the highest quantities of 
volatile aroma compounds and contributed more to the aromatic complexity of the 
wines, confirming the trend observed in the physiological characterization of 
Chapter 3, when only the isolates of Metschnikowia spp. showed positive results 
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for the tested enzymatic activities, that are believed to be responsible for the 
release of aromas. 

 

 
Figure 6.7. [A] Loading plot and [B] Score plot of the Principal Component Analysis of some 
volatile compounds with significant statistical difference between the sequential inoculations of 
grape must with isolates of non-Saccharomyces and S. cerevisiae. 

 
In order to better visualize the effects of the non-Saccharomyces isolates, it 

was calculated the increase or decrease in the production of each of the volatile 
compounds for each mixed inoculation in relation to the pure culture of EC 1118. 
The results were transformed in a heat-map and organized following the UPGMA 
cluster (Figure 6.8). 

A

B
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Figure 6.8. Cluster and heat-map based on the similarities between the non-Saccharomyces 
isolates sequentially inoculated with S. cerevisiae in the increased or decreased production of 
volatile aroma compounds, in comparison with the control single inoculation. Concentrations 
above the odor threshold are highlighted in blue. 

 
As some general trends, it was possible to observe again that Metschnikowia 

spp. strains were responsible for the highest gain in the aromatic complexity by 
producing more compounds with increased concentrations respect to the single 
inoculation, with a special highlight to the esters with concentrations above the 
aromatic threshold. Only the strains of Metschnikowia spp. provoked an increase 
in the production of fatty acids. Comparing the three strains, SOUV1 and COLR7 
behaved very alike while FIANO12 was slightly different. This is especially true 

for the higher production of 3-methylbutanoic acid, hexanoic acid, b-

damascenone, ethyl decanoate, vanillin and linalool by the first two, while the last 
produced more 2-6-dimethoxy-phenol, being also the only non-Saccharomyces to 
do not cause a decrease in this compound compared to the control. The 
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differences between SOUV1 and COLR7 were increased 1-butanol and 3-methyl-
1-butanol for the first and increased (Z)-linalool oxide and geraniol for the 
second. 

Some important differences were seen between the three strains of L. 

thermotolerans. DESP53 produced very much higher concentrations of benzyl 

alcohol, (Z)-linalool oxide and a-terpineol, not only compared with the other two 

strains of the same species but among all ten different fermentations. SOL13 
increased 1-butanol and nerol, besides ethyl lactate already discussed before, 
although the production of the other esters was lower and a noticeable decrease in 
geraniol was observed. COLC27 caused the highest decrease in 1-pentanol, but 

showed more 3-methylbutanoic acid, n-hexyl acetate and b-citronellol than the 

other two L. thermotolerans, since they caused a prominent decrease in these 
compounds. 

Considering the aromatic compounds separately, it can be seen that S. 

bacillaris strains gave more positive contributions than L. thermotolerans, 
although the overall complexity was similar between them and below 
Metschnikowia spp. The production of nerol, benzyl alcohol and (E)-3-hexen-1-ol 
could be highlighted as higher for S. bacillaris than the others. MALV45 
produced more higher alcohols and esters, PECO10 more fatty acid and terpenes 
and CHIAR4 had more carbonyl compounds. It could be highlighted the increase 
of 1-butanol, 2-butanol, 3-methyl-1-butanol, isoamyl acetate and nerol by 

MALV45, while b-phenylethyl alcohol and b-damascenone were the biggest 

contributions of CHIAR4; and PECO10 gave more geraniol and ethyl decanoate. 
In an investigation with six different species of non-Saccharomyces yeasts, 

including L. thermotolerans, M. pulcherrima and S. bacillaris (Whitener et al., 
2016), it was concluded that each of the co-fermentations gave a unique sensory 
and metabolic profile and that S. bacillaris gave the most remarkable and distinct 
aroma profile. Their study greatly increased the understanding of these yeasts’ 
metabolism and contribution to wine aroma, but reported as an obstacle the strong 
dependence on the wine matrix that was used (Sauvignon Blanc grape must). 

Another challenge in the study of the aromatic composition is the interaction 
between the components of the mixed culture. Data in literature are not always 
consistent for flavor metabolites produced during the mixed fermentations in 
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comparisons with the single cultures of each strain (Fleet, 2008). Howell and 
colleagues (2006) concluded that wines made with mixed yeast cultures have a 
different volatile aroma profile than the blend of wines made with the strains 

separately, confirming thus the influence of the interaction in the individual 
metabolisms. So, it is very complex to understand to what extent the differences 
in the aroma profiles observed here are due to the metabolism of the different non-
Saccharomyces isolates tested and how much of that could be explained by the 
modulation of activities of the specific S. cerevisiae strain used in this study 
because of the yeast-yeast interaction. 

 

6.4.  CONCLUSIONS 
 
Even if any of the non-Saccharomyces isolates was able to survive past 

halfway of the fermentation process, their impact in the wine quality was clearly 
acknowledged in all subsequent analysis. Taking into account the parameters 

analyzed during this study, the tested strains of alternative yeasts showed an 
adequate interaction with S. cerevisiae during sequential inoculation and caused 
positive effects in the physicochemical and aromatic profile of the wines. 

The initial composition of the grape must had a clear effect in the 
development of the yeasts, seriously compromised in the pasteurized grape juice, 
where the fermentation took around 50 days to finish, impractical for real 
processes. The fermentation ran optimally in the natural grape must of Pinot 
Grigio grapes. This difference is very likely due to the initial nitrogen availability, 
much lower in the grape juice. 

The musts inoculated with a commercial S. cerevisiae 48 hours after the initial 
inoculation of the non-Saccharomyces isolates took five days more to finish in 
comparison with the control initially inoculated with EC 1118, probably because 
the development of the non-Saccharomyces somehow slowed down the normal 
growth of S. cerevisiae, but not to an extent that could harm the satisfactory 
completion of the fermentative process. 

Isolates of Metschnikowia spp. were immediately suppressed after the 
sequential inoculation, while those of S. bacillaris and L. thermotolerans were 
able to survive longer, probably related to the ethanol tolerance characteristic of 



 208 

each species. No differences were observed in fermentation kinetics between the 
nine strains of the three species. 

The strains of L. thermotolerans caused the highest decrease in the ethanol 

content and produced high quantities of L(+)-Lactic acid. The S. bacillaris yeasts 
were responsible for the highest production of glycerol, but also resulted in the 
maximum levels of acetic acid. Conversely, they showed the lowest production of 
SO2 and acetaldehyde. Mixed fermentations with the Metschnikowia spp. had the 
smallest content of acetic acid and the smallest consumption of YAN, probably 
due to the limited growth of this species in comparison with the others. 

In comparison with the single inoculation with EC 1118, all sequential 
inoculations successfully reduced the ethanol content, decreasing also the levels 
of SO2 and acetaldehyde. An overall interesting increase of glycerol was observed 
but also of detrimental acetic acid, although this last was not significant in some 
cases and, even when significant, not to levels that could generate concerns about 
the wine quality. 

Regarding the aromatic profile, all non-Saccharomyces strains positively 
influenced the final outcome, increasing the complexity. All of them increased the 
concentration of esters, compounds usually regarded as responsible for pleasant 
fruity and floral aromas. They also caused the reduction of volatile phenols, which 
on the contrary are mainly responsible for negative attributes. 

Comparing the three non-Saccharomyces species, mixed fermentations with 
Metschnikowia spp. produced the highest quantities of esters, higher alcohols and 
terpenes, but also presented more fatty acids. The L. thermotolerans produced less 
fatty acids and volatile phenols, showing also an elevated content of esters, 
mainly driven by the very high production of ethyl lactate. Isolates of S. bacillaris 
were those generating the least increase in aromatic complexity. 
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CHAPTER 7.  CONCLUDING REMARKS 
 

7.1.  GENERAL DISCUSSION 
 
Wine, the result of the very straightforward process of crushing grapes and 

letting the sugar to be naturally converted into alcohol and carbon dioxide, is part 
of humans’ diet since thousands of years ago, and probably any other food or 
beverage has been the subject of so many research and discussions. Alexander 
Fleming, the bacteriologist who discovered Penicillin in 1928, was credited for 
saying that “Penicillin cures, but wine makes people happy”. Louis Pasteur, the 
pioneer in studies that clarified the role of yeast in winemaking about 160 years 
ago (Whitener et al., 2016), once quoted that “Wine is the most healthful and 
most hygienic of beverages”. Throughout millennia, wine has not only captured 
the attention and imagination of poets and philosophers (Burlingame, 2008), but 
also scientists had turned their eyes to the wonders of this gift that nature had 
given us. 

The scientific community found in wine an absolutely worthy subject for 
investigations, very often justifying the research as means to improve its quality 
and the process of making it. From the grapevine to the bottle, passing through all 
the chemical and biological steps, almost every aspect of winemaking has been 
meticulously described and subjected to all kinds of scientific method 
experiments. Nevertheless, it seems that there are still much space for new 
studies, as in almost all universities and scientific institutes located in the wine-

producing regions of the world it is possible to locate a research group dedicated 
to oenology and/or viticulture. 

Obviously, wine research does not only exist because of the fondness of 
scientists. The interest for those studies comes from governments and players of 
the wine industry, who are willing to invest their capital on that, since wine 
business actually moves huge amounts of money worldwide. The most recent 
Statistical Report on World Vitiviniculture of the International Organisation of 
Vine and Wine (OIV) has shown that in 2017, among other data, 7.5  millions of 
hectares was the global area under vines, 73.3 millions of tons of grapes were 
grown, 248 millions of hectoliters of wine were produced (279 millions of 
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hectoliters is the estimated production for 2018) and 244 millions of hectoliters 
were consumed in the world, all of this making up an international trade in value 
of about 30.4 billion EUR (OIV, 2018). This colossal market is mainly driven by 

the consumer’s preferences, but the reduction of production costs is also an 
important factor to be considered in the balance. The research aiming to obtain 
wines with higher overall quality is as important as the improvements to reach 
more efficient, reliable and cost-effective production process. With all that said, 
the time, human force and funds deposited in oenological research are very 
justified due to the socioeconomic importance of this product for the markets and 
regions were is being produced. 

It could look simple for the least watchful minds, but the process of growing 
grapes, the fermentation in the winery and the chemical composition inside a 
bottle are actually so complex that their study validate the achievement of Doctor 
of Philosophy titles all over the world, just like this one. Studying wine involves 
not only chemistry and biology, but also history, geography, philosophy, art, 
culture, economy, law, tourism, and so on. Even medicine and lifestyle, as 
countless papers were written about the effects of wine consumption for human 
health. And to whom it may concern, this paper was partially written under the 
effects of wine. Hot topics in the wine science include now also subjects of major 
relevance for human nature, such as geopolitics and climate change. 

Coming back to the focus of the present PhD research, it was planned with the 
ultimate goal of improving the overall wine quality, including aspects of typicity 
and complexity. In order to achieve superior features in the chemical composition, 
physical structure and organoleptic perception, the optimized use of the microbial 
resources was proposed. For a long time, the alcoholic fermentation of grape 
musts has been considered a one man show played by the yeast Saccharomyces 

cerevisiae. Even when the real complexity of the process was acknowledged, the 
myriad of other bacteria and yeast species inherently present on the grapes surface 
were relegated and sometimes considered as a risk of spoilage. 

The dominance of S. cerevisiae happens naturally due to the outstanding 
adaptation of this species to the fermenting must and wine environment, which are 
usually too harsh for the others. But even their role during the early stages of 
fermentation has been limited by sanitizing actions and the inoculation of a huge 
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concentration of cells from a pure culture of a very carefully selected strain of S. 

cerevisiae with very predictable and desirable outcomes. The inoculation of the 
so-called “starter cultures” is one of the cornerstones of modern winemaking. 

Notwithstanding, the never ending quest for improved quality and the growing 
appeal that the concepts of terroir and typicity have with the consumers have led 
to a new trend in oenology, which is the better exploitation of the microbial 
diversity that has always been there. 

Some brave winemakers are trying to achieve that by using the spontaneous 
fermentation, but the majority do not want to take the risks of ending up with 
stuck fermentations or spoiled products and are not willing to give up the safety 
that decades of perfectioning the inoculation approach have given us. The most 
satisfactory alternative to mimic the complexity of spontaneous fermentation 
without losing the control is the use of mixed fermentation, i.e. the inoculation of 
starter culture from two or more different species. Several studies have proven 
that the species present at the beginning of the fermentation have some particular 
and different metabolism than S. cerevisiae, and many of these could actually be 
used in favor of wine properties. 

This group of alternative yeasts comprises about a dozen of species and they 
have been simply called “non-Saccharomyces”. It has been a while now since 
they came to the spotlight, but the number of commercially available products 

(Supplementary Table S.1) are still far below that of S. cerevisiae. The industrial 
application of the new generation of starter cultures should keep rising in the next 
years, following the trend of the ever-growing number of laboratory studies. The 
massive inter- and intraspecific diversity present among the non-Saccharomyces 
is the fuel for new researches, and the body of knowledge that is being 
accumulated about their metabolic characteristics and effects in wine will 
definitely help to pave the way for the more rational and common application. The 
studies are also important to comprehend the interactions between the components 
of the mixed starter and with the abiotic factors that make up the wine 
environment. For some very complete and recent reviews in all aspects 
mentioned, see Petruzzi et al. (2017), Padilla et al. (2016) and Mateo and Maicas 
(2016). 
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Therefore, the first task to be accomplished was the establishment of a culture 
collection containing a high number of yeast isolates belonging to an elevated 
number of different species, in order to have sufficient material to work with 

(Chapter 2). The project started with the gathering of a lot of samples coming 
from diverse regions of Italy. Our goal was to have a robust diversity, and not to 
reflect any specific terroir. For that reason, samples of grapes or freshly pressed 
musts from many different cultivars, climates and topographical conditions were 
collected. It was important to maintain the integrity of the berries and transport the 
musts refrigerated to the laboratory in order to have more prevalence of non-
Saccharomyces, as S. cerevisiae was not the target. We decided to include 
additional samples of honey and overripe or dried fruits due to the possibility of 
finding interesting species for oenology also in these other habitats, having in 
common the high concentration of sugar. 

More than 400 isolates were obtained and the identification through a primary 
morphological analysis followed by robust molecular techniques allowed us to 
name more than 20 different species, some familiar and others strange to the wine 
sector. The first aim was then clearly achieved and the yeast collection will be 
maintained at the Food Microbiology Laboratory of the University of Verona, 
considering that yeasts have an enormous potential for many other technological 
applications beyond winemaking and could possibly be useful for future projects. 

Due to the logistic and structural impossibility of characterization of all 
isolates, this number of 400 was reduced four times, following the decision to 
focus on three species that are already known and applied in oenology, besides the 
fact that they were those found in higher quantity and higher distribution among 
the samples. Lachancea thermotolerans, Starmerella bacillaris and 
Metschnikowia pulcherrima have a good reputation for winemaking and presented 
an elevated diversity in the present isolation procedure, fundamental pre-requisites 
for a meaningful screening. Nevertheless, in reality it was not possible to associate 
unambiguously any isolate to the species Metschnikowia pulcherrima, due to 
limitations in the sequencing approach that is standard for yeasts and worked 
fairly well with all other isolates. This aspect was explored a little bit deeper and 
nonetheless it was decided to use all the isolates assigned to the genus 
Metschnikowia. 
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The total of about one hundred yeasts from these three species were submitted 
to an extensive phenotypic and genotypic characterization (Chapter 3). The 
protocols for genotyping were satisfactory and have shown some variability 

among the isolates of the same species at strain level. It was not possible to draw 
any conclusions about the relations between the genotypic characterization and 
the geographical origin or grape variety from which the isolates were obtained. 
Many factors could be involved in the microbiota diversity present in each 
sample, such as climate, soil, vineyard management and arrangement, health 
condition and stage of ripeness of the fruits at the moment of harvest, grape 
variety, vineyard surroundings. Nevertheless, it has been proven that the isolation 
from many different samples and locations contributed to the strain diversity that 
was found, allowing for the progression of the project and broadening the 
possibilities of finding interesting phenotypes. 

The first stage of the selection was based on traditional oenological 
parameters. Stress tolerance assays aimed to check the compatibility of the 
isolates with some challenging components that could be present in fermenting 
musts, what is crucial for the implantation of inoculated cultures. It would be 
more interesting to have strains that could resist better and survive longer during 
the fermentation, having more time to express their peculiarities and hopefully 
giving more significant inputs to the final wine. 

The evaluation of potential enzymatic activities had the goal to compare the 
strains’ likelihood to contribute or damage the aromatic profile of wines and 
technological steps of the winemaking process. Finally, lab scale fermentations 
with single inoculation were prepared to see the direct impact in some measurable 
chemical parameters. 

This large characterization allowed us to see some important differences 
between the species, and also between the strains of the same species. The 
different species have diverse weaknesses and strengths, where the goal of an 
efficient selection program is to find the best strains within determined species 
that are able to maximize the advantages and minimize the disadvantages. The 
goal of the winemaker is then to find among this group of the best strains the one 
most suitable for the style and quality of wine that is sought to be made. It has to 
be considered that balance is one the most appreciated qualities in a good quality 
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wine and it is not possible to have only one strategy of fermentation that fits all 
expectations. 

In our characterization, strains of Metschnikowia spp. had the highest potential 

to modulate the wine aroma by the production of enzymes and to reduce the 
content of gluconic acid that could be present in unhealthy grapes, but had also 
the highest limitation to survive under increasing alcohol concentrations. On the 
other hand, the isolates of S. bacillaris showed the highest tolerance to ethanol 
and the most accentuated production of glycerol, but the high production of also 
acetic acid could demand some extra attention. Cultures of L. thermotolerans 
confirmed its renowned potential for the acidification of musts and moreover this 
feature presented the most elevated diversity among strains of all characters taken 
into consideration in the present study. They could also help to reduce the volatile 
acidity and had the highest fermentation vigor, but care should be taken to do not 
negatively interact with S. cerevisiae and cause stuck fermentations. 

A further characterization was then carried out with some strains of L. 

thermotolerans and S. bacillaris, focusing in another application for the non-
Saccharomyces that is ever gaining more attention from researchers, but is still 
struggling to become a case of commercial success. Following restrictions to the 
use of chemical pesticides due to environmental and human health issues and the 
rapid emergence of resistance phenotypes in the most common plant pathogens, 

the proposal of biological control gained force. Yeasts offer a lot of desirable 
skills and have what it takes to become very effective biological control agents 
(BCA). However, only a few products reached the market and even less are still 
available, although this potential has been studied for the past 30 years. 
Nevertheless, a very limited number of studies worried about the fate that the 
BCA could possibly have after the crushing of the grapes into must. This 
represents an important gap, since the high concentrations with which the BCA 
would be spread on the grapes could easily mean that they might persist until the 
beginning of the fermentation and then actively join the process. 

Our strains of S. bacillaris and L. thermotolerans, especially the first species, 
showed very promising antagonistic activity versus B. cinerea in both in vitro and 
in vivo trials (Chapter 4). Both species were the subject of very few studies in 
literature on this regard. Considering the impressive curriculum that they have 
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already delivered for the use as oenological starters, a new integrated 
vitivinicultural strategy could be proposed for the exploitation of both potentials, 
where the non-Saccharomyces could be applied on the vineyard to colonize the 

grape surface, in order to counteract the development of gray rot and afterwards 
initiate the fermentation process, giving its positive contribution to the wine 
properties. Some relevant virulence factors were also tested to guarantee the 
safety utilization of such yeasts without risks to human health. 

The most special trait of L. thermotolerans received then more attention, since 
very little is available in literature about the molecular basis of the lactic acid 
metabolism in this yeast species and the enormous variability among the strains 
inspires in-depth investigation (Chapter 5). It has been shown through molecular 
techniques that different strains have different sequences for the gene transcribing 
to lactate dehydrogenase (LDH), the putative enzyme responsible for the final 
conversion in the metabolism to lactic acid, but strains with similar phenotypes 
share the same sequence. Moreover, analysis of expression with two 
representative strains have shown that the highest production of lactate was 
associated with a higher expression of those genes. These findings could help the 
elucidation of an important metabolic pathway and be useful in the development 
of specific markers for the screening of high lactic acid producers. 

Taking into consideration the most interesting profiles from the oenological 

perspective, but also keeping some diversity, three strains from each of the three 
groups characterized were chosen for the mixed inoculation trials (Chapter 6). 
Even if some non-Saccharomyces could be used alone for applications where less 
alcohol is involved, such as sweet wines or other fermented beverages with less 
initial sugar, it has been said that their utilization for most of wines would require 
the presence of S. cerevisiae to reach the complete dryness. The 
microvinifications with the nine chosen strains were carried out using two 
different grape juices. The first, a commercial grape juice that has been subjected 
to pasteurization and filtration in order to limit the development of the indigenous 
microbiota and avoid spontaneous fermentation; and secondly, a natural must of 
freshly pressed Pinot Grigio grapes without any addition of sulfites or other 
antimicrobial treatments. 
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The fermentation in grape juice should allow the development of the 
inoculated non-Saccharomyces without any competition from the natural 
microbiota. However, it was verified that the treatments to which the grape juice 

was submitted caused the depletion of important nutrients and possibly the 
emergence of inhibitory substances, which caused an impaired growth of the 
yeasts, both non-Saccharomyces and the commercial S. cerevisiae inoculated to 
carry out the fermentation to completion. The fermentation took much longer than 
firstly anticipated and the stress was probably the cause for the increased 
production of acetic acid. Nevertheless, some important features of the mixed 
fermentations with non-Saccharomyces were confirmed, such as the increase of 
glycerol and decrease of acetaldehyde. In this first fermentation, the strains of 
Metschnikowia spp., especially FIANO12 and SOUV1, can be highlighted as the 
most promising. 

The second round of microfermentations, in the fresh grape must, was more 
useful for the evaluation of the non-Saccharomyces in the sense that the 
development was ideal, and even if a natural population of yeasts was present in 
the beginning, the inoculated strains were able to exert their impact in the final 
wine, since significant differences were seen between the control with single 
inoculation and the mixed cultures and moreover between the diverse nine 
treatments, thus confirming that the differences were due to the inoculated non-

Saccharomyces. Some important features of the tested species were reinforced 
and significant differences were accomplished. 

In general, strains of L. thermotolerans had the highest potential to reduce the 
ethanol content and they produced relevant amounts of lactic acid. In the aromatic 
profile, some general trends for the L. thermotolerans strains were the diminution 
of volatile phenols and fatty acids compared to all other treatments, a good 
production of esters above the control fermentation and equivalent levels of 
higher alcohols. Noticeable differences were observed between the three strains in 
the chemical analysis. SOL13 had the highest potential of all strains to reduce the 
concentration of ethanol in wine, most likely due to the deviation of the metabolic 
pathway to the remarkable high production of lactic acid, and additionally also a 
high production of glycerol was observed. However, this strain was also the 
responsible for the highest production of acetic acid and acetaldehyde. In the 
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aromatic profile, SOL13 produced the highest level of esters, mainly due to the 
much higher production of ethyl lactate, very likely related to the production of 
LA, while for almost all the other volatile compounds the levels for SOL13 were 

lower than the other strains. 
COLC27 and DESP53 had very similar profiles in the chemical parameters 

and also aromatic profile, but important divergences could be pointed. DESP53 
was probably the best among the L. thermotolerans strains, because of the 
considerable production of glycerol and lactic acid coupled with the reduction in 
ethanol and no changes in the acetic acid when compared to the single S. 

cerevisiae, even if between COLC27 and DESP53 no significant differences were 
detected. These findings repeated the ones observed in the single inoculations of 
the L. thermotolerans strains. DESP53 has also the advantage of having produced 
less H2S in the test on Biggy agar and reached higher cellular concentrations in 
the first days of the fermentation. In the aromas, DESP53 had lower levels of 3-
methyl-1-butanol and fatty acids, molecules that could be negative for the flavor, 

equivalent levels of interesting esters and more terpenes than COLC27, notably a-

terpineol, and benzyl alcohol, contributors to floral aromas. 
For the S. bacillaris strains, the highest potential to increase glycerol and 

reduce acetaldehyde and total SO2 was found, among all species. However, these 
strains also caused the highest increase in acetic acid. Although the concentrations 
are still far below the accepted limit in wine and seem to do not represent a 
problem for the Pinot Grigio wine produced, it could require some attention for 
other varieties. Another important consideration to be made is the highest 

consumption of YAN by these non-Saccharomyces yeasts, which did not cause 
any difficulty in the progress of the fermentation analyzed, but again could 
represent a risk for other musts with a lower nutrient availability. 

As it was the case in the previous characterization, the isolates of S. bacillaris 
showed a lower strain variability, even if it can be noticed that CHIAR4 produced 
more glycerol and also more acetic acid than the other two, probably due to its 
highest fermentation vigor. In the quantification of volatile compounds, it was 
shown that S. bacillaris was responsible for the lower concentrations for most of 
the compounds, in comparison with the other non-Saccharomyces and also with 
the control. Nevertheless, more differences were observed among the isolates than 
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in the quantification of the chemical parameters. Levels of esters and terpenes 
were similar for all three strains, but CHIAR4 produced less 3-methyl-1-butanol 

(herbaceous) and more b-phenylethyl alcohol (floral) and b-damascenone (fruity), 

while MALV45 less fatty acids (rancid, sweaty) and more some esters (fruity), 
even if the total amount was not significantly different. Due to the narrow range 
of variation among S. bacillaris, seems that all three isolates would have similar 

potential to the utilization, considering the drawbacks discussed above. 
The strains of Metschnikowia spp. were those able to survive the shortest time 

in the mixed fermentations, being more susceptible to inhibition by the presence 
of S. cerevisiae and/or the escalation of the ethanol concentration, and SOUV1 
lived less than the other two strains. This reduced growth is probably correlated 
with the lowest consumption of YAN, so representing the lowest risk to cause 
stuck fermentations with S. cerevisiae sequentially inoculated. Nonetheless, it was 
evident that, even with the reduced time, they were able to have remarkable 
impact in the wine. They produced the lowest quantity of acetic acid among the 
non-Saccharomyces and did not cause any change in the concentration observed 
for the single control. They caused the more discreet reduction in ethanol content 
and the increase of glycerol was significantly higher than the single inoculum. 

The ethanol tolerance of Metschnikowia spp. was already the lowest in the 
characterization tests and for this reason the isolates were not evaluated in pure 
culture fermentations. But they showed the highest enzymatic activity with 
potential to positively impact the aromatic profile. This was confirmed by the 
determination of the volatile profile of wines, where Metschnikowia spp. strains 

gave the highest contributions to the aromatic complexity. They produced higher 
levels of higher alcohols and esters (not counting ethyl lactate, which was 
produced in much higher extent by L. thermotolerans due to LA metabolism), but 
also bigger quantities of fatty acids. FIANO12 produced less fatty acids and more 

b-phenylethyl alcohol than the other two, but also less esters, less b-damascenone 

and more 2-6-dimethoxy-phenol (medicinal, smoky). FIANO12 and SOUV1 
showed lower production of H2S than COLR7, but this last had the highest 
proteolytic activity. 

To sum up, all three species of non-Saccharomyces evaluated in this study 
showed an interesting prospective to positively impact the overall wine quality, 
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with possible applications depending on the conditions of the must to be 
inoculated and the desired style and quality of wine that would be obtained. All 
steps were fundamental during the screening program, with the huge diversity 

found during the isolation allowing for the achievement of an encouraging pool of 
diverse oenological features, which were confirmed during the microvinification 
trials with a sequential inoculation approach. The wines obtained were all 
significantly different than the single inoculation of S. cerevisiae and the 
improvements observed justify the investment in the alternative yeasts. 

 
7.2.  CONCLUSIONS 

 
I. Grape and grape musts are a sure reservoir for a large number of different 

yeast species; 
II. Different samples can have very different microbial populations, and 

multiple factors could be held responsible for the variety; 
III. Morphological description coupled with RAPD-PCR (primer M13) and ITS 

sequencing are powerful tools for the discrimination of most of the 
culturable species encountered in the wine environment; 

IV. SAU-PCR can be successfully used to differentiate strains within the 
species L. thermotolerans and S. bacillaris, while RAPD-PCR (primer M13) 

and Rep-PCR (primer GTG(5)) offer a sufficient discrimination power for 
Metschnikowia spp. strains; 

V. The different species respond differently to diverse stress factors that could 
be present on grapes and grape musts, and some characteristics are also 
highly strain-dependent; 

VI. Metschnikowia spp. is less tolerant to alcohol but more capable of growing 
utilizing gluconic acid as carbon source; 

VII. S. bacillaris show a lower strain variability, except for the ethanol tolerance, 
which is generally higher than the other species tested; 

VIII. The tested isolates of L. thermotolerans and S. bacillaris do not present any 
of the enzymatic activities taken in consideration, while Metschnikowia spp. 

have protease, esterase and b-glucosidase activities widespread in the 

isolates; 
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IX. Production of hydrogen sulfide is highly variable among isolates of 
Metschnikowia spp. and L. thermotolerans, but equal for all S. bacillaris; 

X. In single inoculation trials, isolates of S. bacillaris produce more glycerol 

and acetic acid, while L. thermotolerans more L(+)-lactic acid and ethanol; 
XI. Isolates of L. thermotolerans have a higher fermentation performance with 

overall higher consumption of reduced sugars, but S. bacillaris have a 
remarkable fructophilic character; 

XII. Isolates of S. bacillaris did not possess the evaluated virulence factors 
associated with human pathogenicity, while L. thermotolerans isolates 
showed invasive growth and formation of pseudohyphae, although any of 
the strains had all virulence factors together; 

XIII. All tested strains were effective against B. cinerea during both in vitro and 
in vivo assays, greatly reducing the radial mycelial growth in agar plates and 
the decay on infected grape berries; 

XIV. Production of L(+)-lactic acid is greatly variable among isolates of L. 

thermotolerans and there are a suggestion that the differences could be 
explained by mutations of the genes codifying for the enzyme lactate 
dehydrogenase; 

XV. The composition of the grape must, most likely the availability of nitrogen 
nutrients, have a determinant effect in the yeast growth and fermentative 

metabolism; 
XVI. Non-Saccharomyces yeasts inoculated at high concentrations are able to 

initiate the fermentation of grape musts and actively grow during the first 
days and, even if they start to decrease before the middle of the process and 
disappear prematurely before the completion of the sugar conversion, have a 
significant impact in the wine properties; 

XVII. The strategy of mixed fermentation with non-Saccharomyces yeasts 
sequentially inoculated with S. cerevisiae is a reliable tool to positively 
modulate some chemical parameters such as ethanol, glycerol, acetaldehyde, 
total sulfite, acetic acid and lactic acid contents in wine; 

XVIII. The participation of non-Saccharomyces yeasts also causes an overall 
improvement on the wine aromatic complexity, especially considering the 
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increase in concentrations of important esters that greatly contribute to 
pleasant floral and fruity aromas; 

XIX. The effects of non-Saccharomyces starter cultures are highly species- and 

strain-dependent. 
 

7.3.  FUTURE WORK 
 
From the collection of around 400 hundred yeasts established in the first 

stages of the present project, about one quarter were selected for the following 
characterization steps, from three chosen genera. Other species found after the 
identification have potential oenological interest and could be tested for future 
applications, such as Torulaspora delbrueckii, Hanseniaspora vineae, 
Meyerozyma caribbica and Zygosaccharomyces bailii. They could be 
genotypically and phenotypically characterized and tested in fermentation trials, 
the same way as it was done for L. thermotolerans, S. bacillaris and 
Metschnikowia spp. 

Aiming for the use of some isolates as BCA in vineyard to protect the 
grapevines, it would be necessary to run new tests for the optimization of the 
product, such as an adhesion method to facilitate the implantation, rational 
application based on the mechanism of antagonism, adaptation to adverse 

environmental factors, scaling up of the production process. 
The study of the lactic acid metabolism could be expanded to more isolates of 

L. thermotolerans, obtained from different regions worldwide, in order to validate 
the findings with a broader range of strains. It could be expected that even more 
possibilities of sequence, arrangement and number of copies for the LDH gene 
would be observed, giving stronger indications of the correlations of this activity 
with mutations within the species. With more data it could be interesting to draw 
some connections between the phenotype, genotype and sample of origin, trying 
to better understand the evolution and selection pressures that could have led to 
the differentiation. 

Before becoming commercially available products, further tests are needed for 
the strains characterized in this study. Different combinations of strains, 
composition of grape musts and strategies of inoculation (time and load) could 
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result in changes of the outcomes. Some strains could develop better in one 
condition rather than another. The earlier inoculation of S. cerevisiae could 
minimize the possible problems caused by S. bacillaris and still keep its benefits, 

while a later inoculation could give Metschnikowia spp. more time to develop and 
contribute even more to the aroma. The scaling up of the process until the winery 
scale is also necessary to corroborate that the positive impact of the non-
Saccharomyces will not be surpassed by eventual complications. 
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APPENDIX 
 

Supplementary Table S. 1. List of non-Saccharomyces starter cultures currently available in the market 
(Petruzzi et al., 2017, updated). 

Species 
Commercial 

Product 
Oenological Features Distributor 

Lachancea 
thermotolerans 

LEVULIA® 
Alcomeno 

High increase of total acidity and a decrease of 
the alcohol content, bringing wine freshness 
and balance to the mouth 

AEB Group 

Metschnikowia 
pulcherrima 

FERMOL 
Pulkerrima 
Select 

The co-culture is characterized by a higher 
quantity of superior alcohols, ethyl esters, 
acetates and terpenes, increasing the 
complexity and intensity of the aromatic profile 

AEB Group 

Metschnikowia 
pulcherrima 

PRIMAFLORA® 
VB BIO 

Ability to quickly establish itself in the must, 
limiting in this way the development of 
unwanted microorganisms, such as 
Brettanomyces, apiculate yeasts, lactic bacteria 

AEB Group 

Metschnikowia 
pulcherrima and 
Saccharomyces 
cerevisiae 

PRIMAFLORA® 
VR BIO 

Limits the combination of SO2 at the end of 
fermentation and prevents the selection of SO2-
resistant strains. It contributes to preserving the 
purity of expression of the territory 

AEB Group 

Metschnikowia 
pulcherrima 

LEVULIA® 
Pulcherrima 

Increases the aromatic complexity and reduces 
alcohol content. Used to obtain white and rosé 
wines more aromatic, complex, fruity  

AEB Group 

Torulaspora 
delbrueckii 

Viniferm NS TD Increases the wine’s complexity and aromatic 
spectrum. Releases significant amounts of 
mannoproteins, adding roundness and volume 

Agrovin 

Lachancea 
thermotolerans 

Viniflora® 
ConcertoTM 

Produces lactic acid, giving roundness and 
balanced acidity to wines in warm regions 

Chr. Hansen 

Lachancea 
thermotolerans and 
S. cerevisiae 

Viniflora® 
RhythmTM 

Excellent choice for fruit forward red wines and 
produces round, rich flavors with notes of 
blackberry and dark fruit. Produces low levels 
of SO2 

Chr. Hansen 

Lachancea 
thermotolerans, 
Torulaspora 
delbrueckii and       
S. cerevisiae 

Viniflora® 
MelodyTM 

Increases wine complexity, gives tropical 
fruitiness and an overall aromatic intensity, 
combined with a round, balanced mouthfeel 

Chr. Hansen 

Lachancea Viniflora® Produces wines characterized by a round and Chr. Hansen 
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Species 
Commercial 

Product 
Oenological Features Distributor 

thermotolerans, 
Torulaspora 
delbrueckii and       
S. cerevisiae 

HarmonyTM rich flavor, with notes of black fruit. Excellent 
choice for white or red wines that demand 
subtle but multi-dimensional differences 

Pichia kluyveri Viniflora® 
FrootZenTM 

Enhances varietal aromas, and thiols aromas Chr. Hansen 

Torulaspora 
delbrueckii 

Viniflora® 
PreludeTM 

Increases body, soft structure Chr. Hansen 

Torulaspora 
delbrueckii and       
S. cerevisiae 

Oenoferm® wild 
& pure 

Creamy texture with a pleasant and lasting 
mouthfeel 

Erbslöh 

Torulaspora 
delbrueckii 

Zymaflore® 
AlphaTD n.Sacc. 

Makes wines of high organoleptic complexity Laffort 

Torulaspora 
delbrueckii and 
Metschnikowia 
pulcherrima 

Zymaflore® 
ÉgideTDMP 

Harvest bioprotection of grapes and juices, as an 
SO2 reduction strategy 

Laffort 

Metschnikowia 
pulcherrima 

FlaviaTM Enhances varietal aromas, terpenes and thiols 
aromas 

Lallemand 

Torulaspora 
delbrueckii 

BiodivaTM Enhances aroma and mouthfeel complexity in 
white and red wines 

Lallemand 

Torulaspora 
delbrueckii and       
S. cerevisiae 

LEVEL2 TD™ Promotes aromatic intensity, complexity and 
mouthfeel in white wines 

Lallemand 

Metschnikowia 
fructicola 

GaiaTM Dominates the must during cold soak to offer a 
natural protection against spoilage organisms, 
allowing to reduce the SO2 at crushing 

Perdomini 

Schizosaccharomyces 
pombe 

ProMalic® Allows maloalcoholic deacidification Proenol 

Pichia kluyveri WLP605 Produces rose petal and floral aromas, 
contributing to overall bouquet of wine 

Vintner’s 
Harvest 

Torulaspora 
delbrueckii 

WLP603 Provides aromatic complexity and a fresh fruit 
characteristic. Produces low volatile acids, 
volatile phenols, and ethyl acetate 

Vintner’s 
Harvest 
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Supplementary Table S. 2. List of yeast isolates used for the genotypic and phenotypic characterization. 

Isolate Municipality (Province) Grape Variety (*or Fruit) 
Lachancea fermentati 
LS16 Massa Marittima (GR) Sangiovese 

Lachancea kluyveri 
FIANO22 Gravina di Puglia (BA) Fiano 

Lachancea thermotolerans 
COLC11 Colognola ai Colli (VR) Pinot Grigio 
COLC27 Colognola ai Colli (VR) Pinot Grigio 
DESP53 Fossalta di Piave (TV) Marzemino 
FIANO43 Gravina di Puglia (BA) Fiano 
FIANO63 Gravina di Puglia (BA) Fiano 
GLERA15 Refrontolo (TV) Glera 
LS15 Massa Marittima (GR) Alicante 
LT15 Vigolzone (PC) Malvasia Candia 
LT3 Vigolzone (PC) Malvasia Candia 
MALV13 Vigolzone (PC) Malvasia Candia 
MALV17 Vigolzone (PC) Malvasia Candia 
SOL13 Grumes (TN) Solaris 

Metschnikowia spp. 
ALIC2 Massa Marittima (GR) Alicante 
ALIC3 Massa Marittima (GR) Alicante 
BONAR3 Vigolzone (PC) Bonarda 
CLINT4 Trevignano (TV) Clinton  
COLR1 Colognola ai Colli (VR) Pinot Grigio 
COLR3 Colognola ai Colli (VR) Pinot Grigio 
COLR4 Colognola ai Colli (VR) Pinot Grigio 
COLR5 Colognola ai Colli (VR) Pinot Grigio 
COLR6 Colognola ai Colli (VR) Pinot Grigio 
COLR7 Colognola ai Colli (VR) Pinot Grigio 
COLT3 Colognola ai Colli (VR) Corvina 
CONT1 Montecchio Maggiore (VI) Pinot Grigio 
CONT2 Montecchio Maggiore (VI) Pinot Grigio 
CONT4 Montecchio Maggiore (VI) Pinot Grigio 
CORV2 Lazise (VR) Corvina 
DESP65 Fossalta di Piave (TV) Marzemino 
F20 Trevignano (TV) *Fig 
F26 Bardolino (VR) *Fig 
FIANO12 Gravina di Puglia (BA) Fiano 
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Isolate Municipality (Province) Grape Variety (*or Fruit) 
FIANO15 Gravina di Puglia (BA) Fiano 
FIANO23 Gravina di Puglia (BA) Fiano 
FIANO32 Gravina di Puglia (BA) Fiano 
FIANO33 Gravina di Puglia (BA) Fiano 
FIANO41 Gravina di Puglia (BA) Fiano 
FIANO44 Gravina di Puglia (BA) Fiano 
FIANO51 Gravina di Puglia (BA) Fiano 
GLERA2 Valdobbiadene (TV) Glera 
GLERA6 Valdobbiadene (TV) Glera 
MALV3 Frascati (RM) Malvasia 
MALV5 Frascati (RM) Malvasia Puntinata 
MASSI4 Verona (VR) Table Grape 
MERLOT1 Ozzano Emilia (BO) Merlot 
P3 Trevignano (TV) *Plum 
PINOTG1 Montecchio Maggiore (VI) Pinot Grigio 
PINOTG22 Montecchio Maggiore (VI) Pinot Grigio 
RECIOTO1 Tregnago (VR) Corvina 
RECIOTO4 Tregnago (VR) Corvina 
RECIOTO5 Tregnago (VR) Corvina 
SANGIO2 Ozzano Emilia (BO) Sangiovese 
SOUV1 Grumes (TN) Souvignier Gris 
SOUV3 Grumes (TN) Souvignier Gris 
UVATAV4 Trevignano (TV) Table Grape 
VIGN1 Massa Marittima (GR) Viognier 
VIGN2 Massa Marittima (GR) Viognier 

Starmerella bacillaris 

ARMANI3 Dolcè (VR) Pinot Grigio 

ARMANI4 Dolcè (VR) Pinot Grigio  

CHIAR4 Lazise (VR) Corvina 

CHIAR7 Lazise (VR) Corvina 

COLC20 Colognola ai Colli (VR) Pinot Grigio 

COLC34 Colognola ai Colli (VR) Pinot Grigio 

CORV5 Tregnago (VR) Corvina 

CORVINONE3 Tregnago (VR) Corvinone 

CTP63 Tollo (CH) Pecorino 

DESP81 Fossalta di Piave (TV) Marzemino 

F1 Bardolino (VR) *Fig 

GLERA8 Refrontolo (TV) Glera 
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Isolate Municipality (Province) Grape Variety (*or Fruit) 

GLERA10 Refrontolo (TV) Glera 

GLERA12 Refrontolo (TV) Glera 

MAAS3 Montagna (BZ) Moscato Giallo 

MALV10 Vigolzone (PC) Malvasia Candia 

MALV20 Frascati (RM) Malvasia Candia 

MALV36 Frascati (RM) Malvasia Puntinata 

MALV43 Vigolzone (PC) Malvasia Candia 

MALV45 Vigolzone (PC) Malvasia Candia 

MARZEMINO2 Refrontolo (TV) Marzemino 

MARZEMINO3 Refrontolo (TV) Marzemino 

MERLOT3 Ozzano Emilia (BO) Merlot 

MO2 Bardolino (VR) *Blackberry 

PECO4 Crecchio (CH) Pecorino 

PECO6 Crecchio (CH) Pecorino 

PECO8 Lanciano (CH) Pecorino 

PECO10 Ortona (CH) Pecorino 

PECO16 Lanciano (CH) Pecorino 

PECO20 Torrevecchia (CH) Pecorino 

PECO22 Paglieta (CH) Pecorino 

PECO24 Rocca San Giovanni (CH) Pecorino 

PECO26 Tollo (CH) Pecorino 

PECO29 Tollo (CH) Pecorino 

PINOTG3 Montecchio Maggiore (VI) Pinot Grigio 

PINOTG11 Montecchio Maggiore (VI) Pinot Grigio 

PINOTG15 Montecchio Maggiore (VI) Pinot Grigio 

PINOTG21 Montecchio Maggiore (VI) Pinot Grigio 

PINOTG24 Montecchio Maggiore (VI) Pinot Grigio 

PS11 Grumes (TN) Solaris 

RECIOTO8 Tregnago (VR) Corvina 

RONDINELLA2 Tregnago (VR) Rondinella 

RONDINELLA3 Tregnago (VR) Rondinella 

RONDINELLA5 Tregnago (VR) Rondinella 

SOL16 Grumes (TN) Solaris 

ST24 Refrontolo (TV) Glera 
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“and only because  

he had no place he could stay in 

 without getting tired of it and because 

 there was nowhere to go but everywhere, 

 keep rolling under the stars” 

Jack Kerouac 


