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Human activity recognition and forecasting can be used as a primary cue for scene under-
standing. Acquiring details from the scene has vast applications in different fields such as
computer vision, robotics and more recently smart lighting. In this work, we present the
use of Visual Frustum of Attention(VFOA) for scene understanding and activity forecasting.
The VFOA identifies the volume of a scene where fixations of a person may occur; it can
be inferred from the head pose estimation, and it is crucial in those situations where precise
gazing information cannot be retrieved, like in un-constrained indoor scenes or surveillance
scenarios. Here we present a framework based on Faster RCNN, which introduces a branch
in the network architecture related to the head pose estimation. The key idea is to leverage
the presence of the people body to better infer the head pose, through a joint optimization
process. Additionally, we enrich the Town Center dataset with head pose labels, promoting
further study on this topic. Results on this novel benchmark and ablation studies on other
task-specific datasets promote our idea and confirm the importance of the body cues to con-
textualize the head pose estimation. Secondly, we illustrate the use of VFOA in more general
trajectory forecasting.. We present two approcahes 1) a handcrafted energy function based
approach 2) a datat driven approach.

First, Considering social theories, we propose a prediction model for estimating future
movement of pedestrians by leveraging on their head orientation. This cue, when produced
by an oracle and injected in a novel socially-based energy minimization approach, allows to
get state-of-the-art performances on four different forecasting benchmarks, without relying
on additional information such as expected destination and desired speed, which are supposed
to be know beforehand for most of the current forecasting techniques. Our approach uses the
head pose estimation for two aims: 1) to define a view frustum of attention, highlighting the
people a given subject is more interested about, in order to avoid collisions; 2) to give a short
time estimation of what would be the desired destination point. Moreover, we show that
when the head pose estimation is given by a real detector, though the performance decreases,
it still remains at the level of the top score forecasting systems.

Secondly, recent approaches on trajectory forecasting use tracklets to predict the future
positions of pedestrians exploiting Long Short Term Memory (LSTM) architectures. This
paper shows that adding vislets, that is, short sequences of head pose estimations, allows to
increase significantly the trajectory forecasting performance. We then propose to use vislets
in a novel framework called MX-LSTM, capturing the interplay between tracklets and vislets
thanks to a joint unconstrained optimization of full covariance matrices during the LSTM
backpropagation. At the same time,MX-LSTM predicts the future head poses, increasing the
standard capabilities of the long-term trajectory forecasting approaches.

Finally, we illustrate a practical application by implementing an Invisible Light Switch
(ILS). Inseid ILS detection, head pose estimation and recognition of current and forecast
human activities will allow an advanced occupancy detection, i.e. a control switch which
turns lights on when the people are in the environment or about to enter it. Furthermore,
this work joins research in smart lighting and computer vision towards the ILS, which will
bring both technologies together. The result light management system will be aware of the
3D geometry, light calibration, current and forecast activity maps. The user will be allowed
to up an illumination pattern and move around in the environment (e.g. through office rooms
or warehouse aisles). The system will maintain the lighting (given available light sources)
for the user across the scene parts and across the daylight changes. Importantly, the system
will turn lights off in areas not visible by the user, therefore providing energy saving in the
invisible.
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Chapter 1

Introduction

Human activity recognition and forecasting can be used as a primary cue for human-centric
scene understanding. Acquiring details of human activity from the scene has vast applica-
tions in different fields such as computer vision, robotics and more recently smart lighting.
Beforehand knowledge of the scene gives the ability to control the lighting based on ongoing
and future activities that might take place in the observed scene. In this regards, we propose
the use of visual frustum of attention (VFOA) for scene understanding, activity recognition
and activity forecasting. VFOA identifies the volume of a scene where fixation of a person
may occur, it can be inferred from head pose estimation, and it is crucial in scenarios where
precise gazing information cannot be retrieved. The VFOA can be used as a fundamental fea-
ture for activity forecasting so leading to a smart lighting system that predict the forthcoming
actions and thus activate the correct lighting pattern.

1.1 Background and motivation

A fundamental step in understanding human activity is to find people presence in images.
From this information then we might attempt to obtain a description of the VFOA. For this
reason people (or pedestrian) detection is a preliminary stage of all the head pose estimation
approaches, in fact all the methods presented so far assume that the position of the heads to
be processed are either given as a ground truth information or computed by an off-the-shelf
detector. Despite the correlation between these two tasks is evident, these have been never
investigated as a joint problem, in which (head) detection and (head pose) classification are
not distinct operations, but are different terms of a unique optimization function.

In this thesis, we propose a unified framework to address the tasks of pedestrian detection
and head pose estimation as a joint problem, leveraging on deep networks and reformulat-
ing the very popular Faster R-CNN [Gir15] architecture to infer head pose in unconstrained
scenarios jointly with pedestrian detection.

The head pose is an important visual cue for several computer vision applications. In
surveillance videos, the joint attention of people towards a direction can signal a particular
event is happening [GXH10]. In social signal processing, the head orientation is necessary
to infer group formations [CBPFT+11a] and capture social roles, such as leaders/followers
[Eng94]. Most recently, the head pose has been used for novel marketing strategies and
architectural design, as a proxy to personal interest in goods, impact of adverts and space
utilization [DLB10].

The head pose estimation (HPE) problem is challenging in particular when people are
captured at far and not yet addressed "in the wild". In many practical problems, such as video
surveillance, HPE input is a head region as small as a 24× 24 head pixel. This information
alone is not enough to obtain reliable performance in HPE [TSCM13a], and multi-view cam-
era setting are necessary [RSRVL+14]. Recently, few works used deep learning to regress
the head pose of a person such as [OCM07; MR15; LLWLP16; RPC19], the underlying
idea is to use features from the convolutional layers and predict the head pose using L2-loss.
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[LJMMH17], were among the fist to use a Gaussian mixture model couple with CNNs to
regress the head pose.

This research proposes to increase HPE performance by leveraging information from the
entire body of the person instead of using the head information only.

Specifically, we enrich the recent Faster R-CNN [RHGS15a] architecture with a branch
specialized on the yaw modeling of the head pose (in this work, we focus on yaw, keeping
the modeling of pitch and roll as future goals), called Head Pose Network (HPN). The idea
is to jointly optimize the pedestrian detection and the HPE tasks, in order to establish and
exploit a structural connection between the appearance of the body and the head pose.

The experiments, on the Town Center dataset [BR09b] and on standard benchmarks (or-
acle head detections are provided) show the net potentialities of our approach; additional
ablation studies confirm that the body estimation, even if noisy, greatly improve the head
pose estimation.

Most literature on HPE has considered high resolution images [MT09], which does not
apply to surveillance videos. More recently, HPE from low resolution images [TFSMC10;
OGX09; TSCM13a] has emerged to address the surveillance camera viewpoint. Here several
state of the art works leverage SVM [OGX09], deep neural networks [CRSBC+15; YYJ15]
and random forest [LYO15a]. Differently from this, we consider the joint HPE estimation
and the person detection and we argue for the virtues of their joint training.

Our work further relates to literature on people detection, which can be widely grouped
into integral channel features+boosting [DABP14], deformable part model [FGM10] and
deep neural network techniques [LLSXF+15; TLWT15]. Interestingly, only recently CNN
techniques have achieved the state of the art [ZLLH16] on the Caltech benchmark [DWSP09]
but this dataset has images of people that differs consistently from a video surveillance sce-
nario as the one in the Town Center scenario.

Furthermore in this thesis, we show that the head pose estimation can be used to design an
effective predictive model for pedestrian path prediction, capable of boosting systematically
the performance of tracking approaches at the state of the art. Starting from merely specu-
lative investigations [Cv80], recent studies on artificial lighting in public spaces [FUCH15;
FUY15], inspired from neuroscience research [PV03; MP07], analyzed the pedestrians crit-
ical visual fixations when walking on public spaces. Critical visual fixations are different
from simple fixations because they entail cognitive processes focused on the object of the
fixation, while simple fixations may be the effect of daydreaming or task-unrelated thoughts
[FUCH15]. The goal of the research was, thanks to eye tracking portable devices, to check
which are the objects that have been (critically) fixated, categorizing them in eight categories:
person, path (pathway in direction of travel), latent threat, goal, vehicle, trip hazards, large
objects, general environment. The results suggested that the path and other people are the
more frequently critical observations, with a tendency for other people to be fixated at far
distances and the path to be fixated at near distances.

Pedestrian forecasting stands for anticipating the future, based on observations and on
prior understanding of the scene and actors. Further to past trajectories, forecasting the posi-
tion of pedestrians requires therefore an intuition of the people goals [PESV09], their social
interaction models [RSAS16; AGRRF+16; GJFSA18a], the understanding of their behav-
ior [AMBT06; LK16; MHLK17] and possible interactions with the scene [KZBH12].

Building on this, we can assume that a robust and continue estimation of the head orien-
tation of a pedestrian, and thus of its VFOA, would help in predicting its future close path,
accounting for the other elements which are in the scene (pedestrians, obstacles). The idea is
to create attentive maps of the scene (one for each pedestrian) that at each pixel do contain
the probability of passing there. These maps are created by accumulating VFOAs at each
time step, so that a steady head orientation would predict with higher emphasis a possible
path in the future, than what a frequently changing head pose can do. In addition, head poses
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of other people act on the attention maps discouraging potential trajectories that may lead to
collisions.

Forecasting is important for tracking [YBOB11; SAS17; LYU18], especially in the case
of missing or sparse target observations. In addition, it is a crucial compound for early action
recognition [XPDY08; Ryo11; HD14] and more in general for surveillance systems [CLFK01;
FMW00]. Furthermore it is indispensable for deploying autonomous vehicles, which should
avoid collisions [BFS17], and for conceiving robots, respectful of the human proxemics [DRS11;
Hal66; KKSB12; MHB16; TK10; ZRGMP+09].

Forecasting trajectories from images, however, is a complex problem and, probably for
this reason, it has only recently emerged as a popular computer vision research topic. In par-
ticular, the modern re-visitation of Long Short Term Memory (LSTM) architectures [HS97],
has enabled a leap forward in performance [SZDZ17; SDZLZ16; SYMHD17; VS17; GJFSA18a].
On one side, LSTM has allowed a seamless encoding of the social interplay among pedes-
trians [AGRRF+16; GJFSA18a]. On the other side, the new systems have abandoned cues
demanding oracle knowledge, such as the person destination point [PESV09], and are there-
fore causal predictions.

In our work, we differ from previous approaches, because we additionally leverage the
visual attention of people for forecasting, further to their position. We infer their visual
attention from their head pose. We are motivated by the strong correlation between the
past short-term trajectories of the people (sequences of (x, y) position coordinates, named
tracklets) and their corresponding sequences of head pan orientations, which we name vislets.
Our novel contribution is supported by several sociological studies [Cv80; DR12; FUCH15;
FUY15; FWK11; PV03; VCDPL13]and here motivated by statistical analysis conducted on
the UCY dataset [LCL07].

This work introduces MiXing LSTM (MX-LSTM), an LSTM-based framework that en-
codes the relation between the movement of the head and people dynamics. For example, it
captures the fact that rotating the head towards a particular direction may anticipate turning
and starting to walk (as in the case of a person leaving a group after a conversation). This
is achieved in MX-LSTM by mixing the tracklet and vislet streams in the LSTM hidden
state recursion by means of a cross-stream full covariance matrix. During the LSTM back-
propagation, the covariance matrix is constrained to be positive-semidefinite by means of a
log-Cholesky parameterization. This generalizes the approach of [AGRRF+16] (specific to
the 2D positions x,y of people) to model state variables of dimensions four (position and head
pose) and higher.

Vislets allow for a more informative social interplay among people. Instead of consid-
ering all pedestrians within a radius, as done in [AGRRF+16; VS17], here we only consider
those individuals whom the person can see. Furthermore MX-LSTM forecasts both track-
lets and vislets. Predicting visual attention in crowded scenarios makes a novel frontier for
research and new applications.

We have first presented MX-LSTM in [HSTDG+18]. This paper extends our previ-
ous work in four directions: 1) we include a comprehensive evaluation of its performance
on the UCY video sequences (Zara01, Zara02 and UCY) [LCL07] and on the TownCentre
dataset [BR09a], following standard evaluation protocols of trajectory forecasting [PESV09;
AGRRF+16; GJFSA18a]. 2) we provide an extensive evaluation with the most recent ap-
proaches to show that MX-LSTM retains overall the best performance. MX-LSTM has the
ability to forecast people when they are moving slowly, the Achille’s heel of all the other
approaches proposed so far. Additionally, here we provide novel experiments to test its ro-
bustness by predicting in the longer-term horizon and by using an estimated (thus noisy) head
pose estimator [LYO15b] also for training. 3) We verify that vislets help beyond the mere
larger model capacity, by testing MX-LSTM with position-related variables replacing vislets.
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4) we provide novel qualitative illustrations, detail failure cases; and finally we perform novel
simulations, which uncover how the learned head poses affect the people motion.

1.2 Scope of the thesis

Head pose estimation and trajectory forecasting are two challenging problems in computer
vision. In this thesis, we try to address both of the problems. Importantly, this thesis shows
how these two separate problems can be addressed and furthermore how head pose estima-
tion can be used as a pivotal cue in trajectory forecasting. For both of the problems this work
points out the challenging cases. Head pose estimation gets significantly hard in crowded
space due to small head size and occlusion. We propose the use of full body to overcome the
aforementioned problems for head pose estimation. We analyzed that for trajectory forecast-
ing almost all approaches fail when the velocity of the person becomes low due unpredictable
behaviour. This Achilles heel of trajectory forecasting can be handled more efficiently by
taking into account the head movements since persons walking trajectory and head poses are
generally correlated. The methods proposed in this thesis are tested on public benchmarks
and compare against state of the art. This thesis also discusses unsolved cases of trajectory
forecasting, especially at low velocities.

1.3 Contributions

The first contribution of this thesis is a Head Pose Network (HPN). The HPN tries to estimate
person’s head orientation. Additionally, this thesis for the first time discusses the fact that it
is beneficially to estimate head pose through the whole body. Since in crowded scenarios,
head is often due to its tiny size is partially occluded and head pose has subtle differences
between different viewing angles. This approach also partially addresses the occlusion part
and whole body in crowded scenarios in most cases is more illustrated.

Additionally, we explore the correlation between people trajectories and their head ori-
entations. We argue that people trajectory and head pose forecasting can be modelled as a
joint problem. Recent approaches on trajectory forecasting leverage short-term trajectories
(aka tracklets) of pedestrians to predict their future paths. In addition, sociological cues, such
as expected destination or pedestrian interaction, are often combined with tracklets. In this
paper, we propose MiXing-LSTM (MX-LSTM) to capture the interplay between positions
and head orientations (vislets) thanks to a joint unconstrained optimization of full covariance
matrices during the LSTM backpropagation. We additionally exploit the head orientations
as a proxy for the visual attention, when modeling social interactions. MX-LSTM predicts
future pedestrians location and head pose, increasing the standard capabilities of the current
approaches on long-term trajectory forecasting. Compared to the state-of-the-art, our ap-
proach shows better performances on an extensive set of public benchmarks. MX-LSTM is
particularly effective when people move slowly, i.e. the most challenging scenario for all
other models. The proposed approach also allows for accurate predictions on a longer time
horizon.

Finally, this work proposes an application in the domain of smart lighting. Where we
combine novel research in computer vision and smart lighting. Chapter 7 is the joint work
combined with Mr. Theodoros Tsesmelis and this chapter is overlapping between his thesis
and mine.



1.4. Summary of the original articles 7

1.4 Summary of the original articles

This thesis is based on five articles. In the articles contributions mentioned above are dis-
cussed and explained.

In Paper 1, we enriched a state of the art object detector Faster R-CNN [RHGS15b] with
a head pose network(HPN). The key idea is to leverage the presence of the people body to
better infer the head pose, through a joint optimization process.

Paper 2, In this paper we show the importance of the head pose estimation in the task
of trajectory forecasting. This cue, when produced by an oracle and injected in a novel
socially-based energy minimization approach, allows to get state-of-the-art performances on
four different forecasting benchmarks, without relying on additional information such as
expected destination and desired speed, which are supposed to be know beforehand for most
of the current forecasting techniques. Our approach uses the head pose estimation for two
aims: 1) to define a view frustum of attention, highlighting the people a given subject is more
interested about, in order to avoid collisions; 2) to give a short time estimation of what would
be the desired destination point.

Paper 3, discusses recent approaches on trajectory forecasting, use of tracklets to predict
the future positions of pedestrians exploiting Long Short Term Memory (LSTM) architec-
tures. This paper shows that adding vislets, that is, short sequences of head pose estimations,
allows to increase significantly the trajectory forecasting performance. We then propose to
use vislets in a novel framework called MX-LSTM, capturing the interplay between tracklets
and vislets thanks to a joint unconstrained optimization of full covariance matrices during
the LSTM backpropagation. At the same time, MX-LSTM predicts the future head poses,
increasing the standard capabilities of the long-term trajectory forecasting approaches. With
standard head pose estimators and an attentional-based social pooling, MX-LSTM scores the
new trajectory forecasting state-of-the-art in all the considered datasets.

Paper 4 extends paper 3. In this paper we analyze the correlation between people trajec-
tories and their head orientations, and we argue that forecasting can benefit from the joint
optimization of these two features. The proposed approach, MiXing-LSTM (MX-LSTM),
is a novel framework able to capture the interplay between positions and head orientations
thanks to a joint unconstrained optimization of full covariance matrices during the LSTM
backpropagation. Furthermore, we exploit head orientations as a proxy for the visual at-
tention when modeling social interactions. Compared to the state-of-the-art, our approach
shows better performances on an extensive set of public benchmarks, when compared with
the best performing competitors, and is proved to be particularly effective when people moves
slowly, i.e. the most challenging scenario for all the other models in the literature. The pro-
posed approach also allows for accurate predictions on a longer time horizon. Besides the
future locations, MX-LSTM additionally predicts future head poses, increasing the standard
capabilities of the long-term trajectory forecasting approaches.

Finally, in paper 5 we combine the research proposed in paper 1 to 4 to suggest a practical
application in the field of smart lighting. This work is shared with the first author of the paper.
My contribution to this work is regarding the human perception part, where we are required to
detect and estimate the head pose of the person. Experiments and the drafting of the relevant
subsections (detection and head pose estimation) are primarily done by me.

1.5 Outline of the thesis

The rest of the thesis is organized as following. In chapter 2 we introduce the computer vision
field, some of the topics include deep learning, object detection, head pose estimation and
trajectory forecasting.



8 Chapter 1. Introduction

Chapter 3, discusses the brief history of object detection and furthermore it brings into
light Faster R-CNN [RHGS15b]. This chapter also discusses common problems that Faster
R-CNN faces when applied to pedestrian detection.

Chapter 4, discusses the HPN, joint optimization of HPN along with person detection
and finally comparison with state of the art.

In Chapter 5, we present LSTMs. Additionally we discuss a recent state of the art ap-
proach in trajectory forecasting Social LSTM [AGRRF+16].

In chapter 6, we discuss the field of trajectory forecasting. We describe the early energy
based approaches and discuss their strength and weaknesses. Subsequently, we discuss the
recently proposed data driven approaches and finally we describe the proposed MX-LSTM,
and how ti performs w.r.t the state of the art.

Chapter 7 a joint work on a practical application in smart lighting name Invisible Light
Switch.

Chapter 8, concludes the thesis. It discusses the current underlying issues as well as
limitations of the proposed work. Additionally, this chapter also sheds light on potential
future directions to explore.
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Chapter 2

Background

2.1 VFOA

2.1.1 Estimation of the VFOA in open scenarios

In this section we review those approaches that employ the VFOA in unconstrained sce-
narios, with no high resolution sensors to capture the precise gazing activity. The earlier
works that focus on estimating VFOA on low resolution images were [SFYW99; RR06b]
and [BO04], jointly with the pose of the person. VFOA has been used primarily for spotting
social interactions: in [BCTFP+13] the head direction serves to infer a 3D visual frustum as
approximation of the VFOA of a person. Given the VFOA and proximity information, in-
teractions are estimated: the idea is that close-by people whose view frustum is intersecting
are in some way interacting. The same idea has been explored, independently, in [RR11].
In [SBOG08], the VFOA was defined as a vector pointing to the focus of attention, thanks to
an approximate estimation of the gazing direction at a low resolution; in that work the goal
was to analyze the gazing behavior of people in front of a shop window. The projection of the
VFOA on the floor was modeled as a Gaussian distribution of "samples of attention" ahead of
a pedestrian in [CBPFT+11b]: the higher the density, the stronger the probability that in that
area the eyes’ fixation would be present. More physiologically grounded was the modeling
of [VMCHP+16]: in that work, the VFOA is characterized by a direction θ (which is the
person’s head orientation), an aperture α = 160◦ and a length l. The latter parameter corre-
sponds to the variance of the Gaussian distribution centered around the location of a person.
Even in this case, samples of attention were used to measure the probability of a fixation: a
denser sampling was carried at locations closer to the person, decreasing in density in zones
further away. The frustum is generated by drawing samples from the above Gaussian kernel
and keeping only those that fall within the cone determined by the angle α. In [ZH16], the
aperture of the cone can be modulated in order to mimic more or less focused attention areas.

In all these approaches, VFOA has been employed to capture group formations. At the
best of our knowledge, this is the first work where the VFOA is employed for the estimation
of a predictive model.

2.1.2 Social motivation of the VFOA as predictive model

In this section we motivate the usage of the VFOA as predictive model in a context of track-
ing, taking from the sociological literature. One of the earlier interesting studies was [Cv80],
investigating the most critical visual tasks that pedestrians have to perform while wandering;
it suggested that these tasks are obstacle detection, facial recognition of other pedestrians and
visual orientation, but these assumptions have not been validated nor have been weighted for
relative importance. Eye tracking was thus adopted to get quantitative results, firstly on con-
trolled laboratory settings. In [PV03], participants walk three 10m paths; two of the paths
have regularly- or irregularly-spaced footprints that subjects have to step on, the third path
has no footprints. The results showed that for the 59% of total fixation time, gaze was held
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on the near path at a fixed distance slightly ahead of the pedestrian, with fixations on the
footprints accounting for 16%. The relationship between speed and width of the VFOA
was investigated in [VCDPL13], where cyclists were asked to ride a 15m path in an inter-
nal environment with three lane widths and at three different speeds. Result showed that
narrower path and higher speed demand a more restricted visual search pattern and fewer
task-irrelevant fixations.

Despite the expected results, these studies have been criticized of being unnatural, tak-
ing place in constrained scenarios that lack the distracting features that would be present in
the real world, such as other pedestrians, buildings and eye-catching objects. Mobile eye-
tracking systems have solved this problem, allowing eye-tracking to be carried out in ecolog-
ical outdoor situations. The first studies of this kind showed that 21% of fixation time was
directed towards people, 37% towards the path, and 37% towards other objects [FWK11],
with the percentage of fixations toward the path augmenting during the night hours (40-
50%) [DR12].

Even these results were criticized: in facts, the object or area that a person fixates does
not always reflect where her attention is focused, due for example to daydreaming activities
or task-unrelated thoughts [DR12; FFK13; FUCH15]. Alternative protocols were studied, for
example focusing on shifts in fixations, which should reflect changes in where our attention
is focused [FG03]; unfortunately, the connection between eye movements and attention is
still subject of studies. For this reason, in [FUCH15; FUY15] the concept of critical fixation
was exploited: critical visual fixations are different from simple fixations because they entail
cognitive processes focused on the object of the fixation. The way to detect critical fixations
is based on the presence of a secondary task: other than the primary task (walking in an
environment), a secondary task has to be carried out (pressing a button after having heard an
auditory stimulus). A delay in the completion of the secondary task is used to identify critical
fixations. In the study of [FUCH15], participants were asked to walk a short (900m) and
heterogeneous route (road crossings, uneven terrain, residential areas and crowded plazas)
whilst wearing the eye tracking equipment and carrying out the dual task. Critical fixations
were categorized in eight categories: person, path (pathway in direction of travel), latent
threat, goal, vehicle, trip hazards, large objects, general environment. Results showed that
the more frequently critical observations are on the path (22%), the people (19%) and the
goal (15%) with a tendency for other people to be fixated at far distances (> 4m) and the
path to be fixated at near distances (≤ 4m). In addition, it is postulated that fixations at
people are due to the need of perceive their motion (speed and direction) [FUY15].

These results motivated us to exploit the VFOA for collecting plausible locations of fix-
ations (not precisely estimable in a surveillance scenario where the camera is far from the
people). In particular, we consider physiological studies for determining its size (a cone of
angles 130◦–135◦ vertical and 200◦–220◦ horizontal) [Dag11]; in [CU90], it is demonstrated
that there is a gradual dropoff in processing efficiency around the focus of attention: this
pushed us in designing a VFOA with smoothed bounds (see the next section). Thanks to the
results of [FUCH15; FUY15], we assume that the intersection of the VFOA with the scene
indicates the probable future path, and, in the case of other people within the VFOA, they
would be processed in determining possible colliding areas, which will be avoided with a
certain probability.

It is worth noting that, experiments of the same kind of [FUCH15; FUY15] in the case of
subjects forming groups are not traceable in the literature. This individuates an unexplored
area of research for the sociological field, since people that walk together would probably
have a strongly different fixation behavior with respect to single subjects; in facts, people in
a moving group, other than the individual fixations needed for path planning, need to keep
a reciprocal eye contact to maintain the social connection, that is, managing the turns in a
conversation, processing non-verbal social signals etc. [Ken67; Ken90]. Because of this,
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people in groups are considered in this paper as a single subject (they should share a very
similar trajectory, with similar destination), with an extended VFOA obtained as the merge
of their individual VFOAs.

2.2 Trajectory forecasting

Trajectory forecasting [BHHA18; MT08] has been traditionally addressed by approaches
such as Kalman filter [Kal+60], linear [MN89] or Gaussian regression models [QR05; Ras06;
WFH08; Wil98], auto-regressive models [Aka69] and time-series analysis [Pri81]. The
main limitation of these approaches is the lack of modelling the human-human interac-
tions [ABW06; CS12; CS14; LPR11; TCP06], that instead plays an important role. More
recent approaches have proposed to use convolutional neural networks [HLZHW+16], gen-
erative models [GJFSA18b] and recurrent neural networks [AGRRF+16] for modelling the
trajectory prediction, as well as, the human-human interaction. In addition, the head pose
orientation [DR12; HSTDC+18] has been utilized for trajectory forecasting.

Below, we group the related work into four categories and discuss the related approaches.
Human-human interactions. Helbing and Molnar [HM95] have considered for the first
time the effect of other pedestrians to the behavior of an individual. The pioneering idea has
been further developed by [LCL07], [MHLK17] and [PESV09], who have respectively intro-
duced a data-driven, a continuous, and a game theoretical model. Notably, these approaches
successfully employed the essential cues for track prediction, such as the human-human in-
teraction and people intended destination. More recent works encode the human-human
interactions into a “social” descriptor [ARF14] or propose human attributes [YLW15] for
the forecasting in crowds. More implicitly, related methods [AGRRF+16; VS17] embed the
proxemic reasoning in the prediction by pooling hidden variables representing the proba-
ble location of a pedestrian in a LSTM. Our work mainly differentiates from [AGRRF+16;
LCL07; PESV09; VS17] because we only consider for interactions those people who are
within the cone of attention of the person, (as also verified by psychological studies [IC01]).
Destination-focused path forecast. Path forecasting has also been framed as an inverse
optimal control (IOC) problem by Kitan et. al. [KZBH12]. The follow-up works [AN04;
ZMBD08] have adopted inverse reinforcement learning and dynamic reward functions [LK16]
to address the occurring changes in the environment. We describe these approaches as
destination-focused, because they require the end-point of the person track to be known. To
eliminate this constraint, similar works have relaxed to a set of plausible path ends [DRS11;
MHB16]. Unlike, our approach does not require this information to function.
Head pose as social motivation. Our interest into the head pose stems from sociological
studies such as [Cv80; DR12; FUCH15; FUY15; FWK11; PV03; VCDPL13], whereby the
head pose has been shown to correlate to the person destination and pathway. Interestingly,
the correlation is higher in the cases of poor visibility, such as at night time, and in general
when the person is being busy with a secondary task (e.g., bump avoidance) further to the
basic walking [FUCH15; FUY15].

In our experimental studies, we observed that the head pose is correlated with the move-
ment, especially at high velocities, while slowing down this correlation decreases too, but
still remaining statistically significant. These studies motivate the use of the head pose as
proxy to the track forecasting. Although the image resolution is small in our problem, there
are many approaches that perform real-time head pose estimation [BO04; GMHC06; HT-
GDC17; LYO15b; RR06a; SFYW99; TSCM13b]. In our experiments, we evaluate different
head pose estimation approaches.
LSTM models. LSTM models [HS97] have been employed in tasks where the output is
conditioned on a varying number of inputs [GDGRW15; VTBE15], notably hand writing
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generation [Gra13], tracking [CADNT17], action recognition [DWW15; LSXW16], future
prediction [HLZHW+16; LCVCT+17; SMS15] and path prediction [XHR18].

As for trajectory forecasting, Alahi et. al. [AGRRF+16] model the pedestrians as LSTMs
that share their hidden states through a “social” pooling layer, avoiding to forecast colliding
trajectories. This idea has been successfully adopted by [VS17]. In [SAS17], it has been
extended for modeling the tracking dynamics. A similar approach [SDZLZ16; SZDZ17]
has been embedded directly in the LSTM memory unit as a regularization, which models the
local spatio-temporal dependency between neighboring pedestrians. In this work, we propose
a variant of the social pooling by considering a visibility attentional area, driven by the head
pose.

In most of the cases, the training of LSTMs for forecasting minimizes the negative log-
likelihood over Gaussians [AGRRF+16; VS17] or mixture of Guassians [Gra13]. In gen-
eral, when it comes to Gaussian log-likelihood loss functions, only bidimensional data (i.e.
(x, y) coordinates) have been considered so far, leading to the estimation of 2 x 2 covari-
ance matrices. These can be optimized without considering the positive semidefinite require-
ment [Gra12], that is one of the most important problems for the covariances obtained by
optimization [PB96]. Here, we study the problem of optimizing Gaussian parameters of
higher dimensionality for the first time.
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Chapter 3

Object Detection

3.1 Overview

Object detection is defined as task of localizing instances of real world objects such as cars,
chair, person, desk etc. as shown in Fig. 3.1. Predominantly, the localization is performed
by bounding boxes but in some areas it also accomplished by finding points close to the
centers of the objects, or drawing ellipses. Majority of the research in object detection focuses
on finding objects that occur more frequently than others in our daily lives such as (faces,
pedestrian, cars, road sign etc.) due to the wide spread application of such objects.

However, generic object detection is often regarded as an ill-posed problem, as definition
of object potentially could be very subjective based on task. In some cases it is a very tedious
and expensive task to annotate all instances of the objects in a scene such as (e.g house, doors,
windows, chairs etc). Therefore, in many applications the term object is well constrained and
pre- defined in terms of its appearance, shape scale etc [FMFGL+96]. Although, as discussed
the term "object" could be subjective therefore it has changed and evolved from one task to
another and among different public datasets.

All recent approaches in object detection that perform well are learning based architec-
tures. Which mean that all of these approaches would require huge amount of annotated data
to be trained properly. In the last decade, a lot of attention has been given to the benchmarks
in object detection. PASCAL VOC [EZWV06], ImageNet challenge [RDSKS+15] and MS
COCO datasets [LMBHP+14] are currently the most popular and widely used benchmarks in
general object detection. These benchmarks contain diverse set of object categories such as
person, car, plants, animals, aeroplanes etc. More specifically PASCAL VOC has 20 object
categories, ImageNet has 200 and MS COCO contains 91 object classes.

Object detection has a wide spread applications, including image retrieval, object count-
ing, retrieval of items from warehouses, mail sorting, video surveillance, autonomous driv-
ing, robotics, detecting apparel and detecting logos of popular brands. Object detection also
plays a vital role in other computer vision research areas, such as object tracking, object
segmentation, caption generation and visual reasoning.

Due to wide spread application, different paradigms of object detection have been ex-
plored. Initially, in object detection the concepts from signal processing, such as auto core-
lation and template matching were used. Soon these concepts were taken over by 3D shape
based CAD models(cite). Besides, computational overhead, the problem of texture and ob-
jects occurring in different scales were the bottleneck of these approaches. In the last couple
of decades, object detection saw a tilt towards part based models[FGMR10]. These methods
operated in a sliding window manner scanning through all of the image, naturally all the
methods despite achieving relatively reasonable performances on several benchmarks were
computationally expensive and did not always scale up.

In the recent times, the most popular paradigm in object detection is object proposals. An
object proposal is a candidate for an object detection and/or segmentation. Object proposals
enable the subsequent analysis stages to focus on a small set of image regions. They need
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FIGURE 3.1: Example of object instance localization and recognition. Usu-
ally, an object detection framework, outputs bounding boxes along with ob-
ject instance label and confidence score. Illustration take from [RHGS15b]

to have high recall, with a corresponding candidate for as many objects as possible, with-
out increasing the total number of proposals too much. They have played a significant role
in object detection methods during last decade by replacing sliding window approach and
enabling the use of more advanced classifiers ( Uijlings et al. 2013 [UVGS13]).

3.2 Faster R-CNN for General Object Detection

Given the success of image classification results obtained by deep networks combined with
selective search a robust candidate generation method, [GDDM14] were the pioneers of R-
CNN based object detection. The key idea was to combine region proposals with features
obtained by CNNs for object detection. Initially, they adopted AlexNet [KSH12] along with
Selective Search[UVGS13] as region proposals method and proposed a multi-stage training
framework which outperformed all previous approaches by a significant margin. However,
including proposals from an external source meant that it was not end to end trainable. Sec-
ondly, proposal generation was seen as an expensive operation and was regarded as the bottle
neck. Motivated by [ZKLOT14; ZKLOT16], which illustrated how CNNs can be used for
object localization, [RHGS15b] proposed Faster R-CNN, which had Region Proposal Net-
work (RPN) along with discriminator Fast R-CNN[Gir15]. As illustrated in the figure 3.2, the
main contribution of the work was a single network that generated proposals and had a Fast
R-CNN region classifier. The convolutional layers, as illustrated in 3.2 were shared between
Fast R-CNN and RPN (generating proposals almost free of cost), the whole framework was
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FIGURE 3.2: Faster R-CNN, complete diagram. Illustrations adapted from
[LOWFC+18]

end to end trainable. Faster R-CNN defined new state of the art on all public benchmarks, to
date it is considered as one of the popular paradigms of modern day object detection.

As shown in 3.2, RPN takes as input an image and outputs the classification score and
bounding box coordinates (proposals). In order to generate proposals, a small network slides
over the feature map of the last shared convolutional layer. As discussed in [RHGS15b], at
each location, a spatial window (nxn) of the input feature map is fed into two fully connected
layers, one for bounding box regression and the other for background vs. foreground classi-
fication score (objectness score). Importantly, at each location of the sliding window, RPN
generates k proposals (4 k coordinates). These k proposals are parematerized relative to k
anchor boxes, as shown in 3.3. Authors in their experiments used 9 anchor boxes, 3 scales
and 3 aspect ratios. Finally, class agnostic region proposals are then used by the discrimina-
tor Fast R-CNN which further refines proposals and assign each proposal a class category or
label it as background. Faster R-CNN achieved top performances on PASCAL VOC, using
300 proposals per image and it takes 5 frames per second on a GPU for inference.

Original loss of Faster R-CNN as expressed in Eq. (3.1) is defined in the following
equation. where Lcls and Lloc are the loss functions for background vs foreground classifica-
tion and bounding-box regression respectively. In the next chapter, we will discuss how we
modify this loss to enable person detection and head pose estimation. Initially, it had alter-
nate training approach, however in recent times some amelioration [RHGS17] of the original
frame work enabled it to be trained in a single step.

L(p, u, tu, v) = Lcls(p, u) + λLloc(tu, v) (3.1)

3.2.1 Faster RCNN for Person Detection

In computer vision, pedestrian detection is usually addressed as a separate problem than
generic object detection [ZLLH16]. Despite, the success of deep learning based methods
such as Faster R-CNN for general object detection, it seemed that they performed poorly for
pedestrian detection. Zhang et.al 2016 [ZLLH16], were among the first one to investigate the
reasons on why Faster R-CNN did not preform well when applied on pedestrian detection.
Summarizing, they found at that RPN, actually is accurate in terms of recall, it is the dis-
criminator Fast R-CNN, that degrades the performance. This was down to two main factors,
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FIGURE 3.3: Region Proposals Network. Images taken from [RHGS15b]

1) insufficient resolution of the feature maps to handle small instances, 2) lack of hard nega-
tive mining and strong class imbalance between foreground and back ground. Furthermore,
[ZLLH16] proposed an effective baseline that used a trous trick [CPKMY18] to increase the
resolution of the feature map, along with a boosted forest [FHT+00; AFDP13] on top of RPN
to effectively handle hard negative mining as shown in the 3.4.

Despite achieving decent performances, RPN+BF was missing a key component, it could
not be optimized in a closed form since it was a cascaded framework. To overcome afore-
mentioned issue, [ZBS17], proposed a pedestrian detector completely based on Faster R-
CNN which with some minor modifications to the network and hyper parameters. Primarily,
[ZBS17], modified four aspects of Faster RCNN. 1) they proposed better anchors by analyz-
ing scales of the pedestrians on the training set. 2) Up sampling the input image to 2x. 3)
By analyzing the average width and height, which was 40x80 respectively. It was evident
that the default stride on VGG16 which was 16 pixels was too big for small scale pedestrian
detection. Therefore, it was reduced to 8 pixels to handle small pedestrians. 4) They used
adam solver[KA15] instead of SGD and 5) removed regions which were labelled "ignored"
from training of RPN.

The modifications proposed by [ZBS17] to vanilla Faster R-CNN made it outperform all
state-of-the art approaches on person detection by a considerable margin. In the upcoming
chapter, using these modification along with a novel branch for head pose estimation along
with person detection will be discussed in detail.
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FIGURE 3.4: Complete pipeline of RPN+BF.Feature maps pooled from RPN
are fed into cascaded boosted forest, for accurate pedestrian detection. Im-

ages taken from [ZLLH16]
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Chapter 4

Head Pose Estimation

4.1 Introduction

The head pose is an important visual cue for several computer vision applications. In surveil-
lance videos, the joint attention of people towards a direction can signal a particular event is
happening [GXH10]. In social signal processing, the head orientation is necessary to infer
group formations [CBPFT+11a] and capture social roles, such as leaders/followers [Eng94].
Most recently, the head pose has been used for novel marketing strategies and architectural
design, as a proxy to personal interest in goods, impact of adverts and space utilization
[DLB10].

The head pose estimation (HPE) problem is challenging in particular when people are
captured at far and not yet addressed "in the wild". In many practical problems, such as video
surveillance, HPE input is a head region as small as a 24× 24 head pixel. This information
alone is not enough to obtain reliable performance in HPE [TSCM13a], and multi-view cam-
era setting are necessary [RSRVL+14].

This paper proposes to increase HPE performance by leveraging information from the
entire body of the person instead of using the head information only.

Specifically, we enrich the recent Faster RCNN [RHGS15a] architecture with a branch
specialized on the yaw modeling of the head pose (in this work, we focus on yaw, keeping the
modeling of pitch and roll as future goals), called Head Pose Network (HPN). The idea is to
jointly optimize the pedestrian detection and the HPE tasks, in order to establish and exploit
a structural connection between the appearance of the body and the head pose. Secondly,
we manually label the Town Center dataset [BR09b], which nicely portrays a surveillance
scenario where 71,446 heads are imaged on 24× 25 pixel patches.

The experiments, on this dataset and on standard benchmarks (oracle head detections are
provided) show the net potentialities of our approach; additional ablation studies confirm that
the body estimation, even if noisy, greatly improve the head pose estimation.

4.2 Datasets

The Town Center dataset [BR09b] has 4,500 frames portraying a crowded scenario with
an average of 16 pedestrians per frame. The average size of the heads is about 24 × 25
pixels. We enrich the pedestrian bounding boxes labels by manually annotating the head
direction. Towards this goal, we developed a software with a point-click interface that allows
the annotator to inspect few frames of the dataset, selecting the direction where the pedestrian
is looking at.

From the annotation, we extract quantized head pose directions, namely, 4 and 8. We
then divide the sequence into a training and a testing sub-sequence of length 3,000 and 1,500
frames respectively.
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FIGURE 4.1: Network Architecture. The figure illustrates the proposed
Head Pose Classification Network (HPN). The green dotted-line represents
the filtered proposals at the training time and green solid represents the

pedestrian detections at testing time.

QMUL [OGX09] and its extension with background class QMULB [OGX09]. HIIT
dataset has 24,000 images with 6 head poses and a static background. QMUL dataset con-
tains 15,660 images that has 4 different head poses with varying illumination and occlusion.
QMUL dataset with additional 3,099 background images is referred to as QMULB.

4.3 Proposed Methodology

Our goal is to automatically predict the head pose of the pedestrians in addition to their
bounding boxes. To this end, we propose a new network branch called the head pose classifi-
cation network (HPN) as shown in Figure 4.1. The network is based on Faster RCNN [RHGS15a]
but with novel additions and modifications to the network structure. Similarly to Fast RCNN,
HPN has also two modules: a fully convolutional region proposal network (RPN) that pro-
vides class-agnostic object proposals and a Fast RCNN [Gir15] approach classifying the
incoming proposals into pre-defined object classes.

In our HPN approach, we add an additional branch to the Faster RCNN network after
the last shared convolutional layer (i.e. conv5_3), parallel to the classification and regression
layers of the Faster RCNN. HPN includes also its own ROI pooling layer, a fully connected
layer with sigmoid activation, and a K-way softmax layer for view-frustum classification for
K discrete classes.

4.3.1 Training

We keep the alternative optimization approach as described in the Faster RCNN approach [RHGS15a]
which iteratively trains the RPN and Fast RCNN stages. Related to the RPN optimization,
we keep the shared convolutional layers of Faster RCNN in their original form. Moreover,
the default Fast RCNN specific layers remain unchanged. The ROI pooling layer of the orig-
inal Fast RCNN takes each object proposal as input and extracts a fixed-length feature vector
from the entire feature map which is then fed into a couple of fully connected layers (fcs).
Our new ROI pooling layer of HPN works in the same way, except it takes only filtered re-
gion proposals at the input. This is important since we want to learn the head pose of the
pedestrian proposals without being distracted by the pedestrian false-positives. To select the
examples for training the HPN, we use the standard Jaccard overlap of greater than or equal
to 0.5 between the ground-truth bounding boxes and the region proposals.
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Adding this parallel branch (HPN) in the Fast RCNN framework essentially extends the
multi-task loss of Fast RCNN to penalize the view-frustum of the person bounding box.
This allows us to learn jointly both detection and head pose classification tasks. Following
the same naming conventions as Fast RCNN paper, our multi-task loss for jointly training
pedestrian detection and head pose is given by,

L(p, u, tu, v, h, g) =Lcls(p, u)
+ λ[u = 1]Lloc(tu, v)
+ γ[u = 1]Lhp(g, h)

where Lcls and Lloc are the original loss functions for background vs pedestrian classifica-
tion and bounding-box regression respectively. We refer the reader to original paper [Gir15]
for more details on these terms. The Lhp term refers to the loss for the head pose of the
pedestrian. We are using the softmax loss over K discrete directions of the head pose. Here
g is the ground-truth label of the head pose class and h = (h1, h2, ...hK) is the output vector
of softmax probabilities. Hence, Lv f = − log hg, is the negative log loss for the true view-
frustum class g. As mentioned earlier, we train only for positive head pose classes and do
not introduce any background class. This is given by the Iversion bracket indicator function
[u = 1]. This means the two losses Lloc and Lv f are only used when the region proposals
correspond to the pedestrian class. These losses are ignored for the background proposals.
The weights λ and γ of the later two tasks are hyper-parameters which are set to 1.0 in our
experiments.

4.3.2 Testing

At test time, our approach works in three stages. First the RPN outputs object proposals and
passes them on to Fast RCNN detection network as usual. Note that this procedure basically
is the Faster RCNN framework where we keep the pedestrian detections of the Faster RCNN
with the confidence score 0.5 or greater. Finally, our HPN predicts the view-frustum class
for each of these incoming detections.

4.3.3 Head pose classification

We first show the behavior of our technique in detecting and classifying head poses starting
from raw frames. At the same time, we include ablation studies analyzing performance on
head pose estimation. The latter test assumes that the head has been already detected by an
oracle. The comparative approaches will be introduced later in the section.

Methods Dataset HIIT QMUL QMULB
Image Size 15x15 20x20 50x50 15x15 20x20 50x50 15x15 20x20 50x50

Frobenius [TSCM13a] 82.4 89.6 95.3 59.5 82.6 94.3 54.5 76.5 92
CBH [TSCM13a] 84.6 90.4 95.7 59.8 83.2 94.9 57 76.9 92.2
RPF [LYO15a] 97.6 97.6 97.6 94.1 94.3 94.3 91.9 92.1 92.2
PSMAT [OGX09] - - 82.3 - 64.2
ARCO [TFSMC10] - - 93.5 - 89
HPN 98.4 98.9 99.01 97.4 97.9 98 95.3 95.9 94.7

TABLE 4.1: Comparison of head pose classification accuracy in regard to
image scale variation.



22 Chapter 4. Head Pose Estimation

FIGURE 4.2: Qualitative results of our proposed model. Jointly detecting
people and estimating their head pose.

4.3.4 Head pose estimation in the wild

The protocol for evaluating the pose estimation in the wild assumes that the algorithm takes
a frame as input, and provides pedestrian bounding boxes plus the head orientation, initially
evaluated over 4 classes (north, east, west, south) as shown in the Fig. 4.2. Additionally, we
also pose head pose estimation as a regression problem as shown in Fig. 4.3. Results are in
Table 4.2. We report LAMR (Log Average Miss Rate) [DWSP09] and AP (average precision)
[EVWWZ10] for monitoring the pedestrian detection performance. It is worth noting that,
in the head pose estimation accuracy, missed heads are counted as wrong detections: in this
way, false negatives in the pedestrian detection flow down and impact in the final score. False
positives are captured by LAMR and AP scores.

As competitors, we evaluate the Faster R-CNN [RHGS15a] directly as head pose esti-
mator in the wild, trained over pedestrian bounding boxes associated to 5 classes (4 head
directions and a background class, FR-CNN 5-class in the table 4.2). This will help us in
showing the added value of our HPN branch in the joint optimization, which is absent here.
The poor LAMR score (78%) contrasts the rather positive AP score 0.81%. The pose esti-
mation accuracy, based on the whole body, achieves a reasonable 66%.

The second alternative approach is composed by a recent head detector, the Face detec-
tion with Aggregate Channel Features (FACF) [YYLL14a], which has shown to work pretty
good on raw images, plus a head pose estimator, the Random Projected Forest (RPF) [LYO15a],
which takes as input head bounding boxes, FACF + RPF. Both of them have been trained on
the training partition of our dataset. As visible, performance is dramatically inferior, since
obviously the head patches are very tiny and hard to catch without the body context.

The third approach wants to fill this gap, adding a pedestrian detection to constraint
the head detector to work on pedestrian bounding boxes. In this case, we consider the Local
Decorrelation Channel Features detector (LDCF) [NDH14], giving rise to the LDCF + FACF
+ RPF pipeline. Results on Table 4.2 show that performances are higher, but still inferior
than FR-CNN 5-class.
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FIGURE 4.3: Regressing the head pose of the person in a real world surveil-
lance scenario.

We further question the importance of face detection by testing LDCF + HRCNN + RPF,
where a CNN-based head detector (HRCNN [JL16]) replaces the FACF. Reasonably, HRNN
improves the head detection considerably, 10% LAMR and 12% AP (cf. Table 4.2), resulting
in a better but still poor head pose estimation score of 50%. We conclude from this that the
face, when so tiny, is not sufficient to estimate the pose estimation alone.

We mark as "ours" in the table the combination of pedestrian detection and pose esti-
mation, jointly optimized within our model, cf. Eq. 1. As seen from Table 4.2, in the Town
Center dataset a Faster-R-CNN person detector performs on par with the person specific
LDCF [NDH14]. More interestingly, using the whole body for the estimation of pose greatly
improves performance by 18%, resulting in the best technique, HPN, which we propose. This
resonates with the baseline Faster-R-CNN 5-classes in the first row, also based on the whole
body.

We compare performances for pedestrian detection of our joint framework against FR-
CNN N-Cls baseline, and state-of-the art pedestrian detector LDCF [NDH14], FCF [ZBS15]
and Faster RCNN [RHGS15a]. We report our results in Table 4.4 . In Our framework, we
investigate the VGG model . We re-train VGG model, which was originally pre-trained on
ImageNet, for baseline, Faster R-CNN and our joint framework. We use the standardize
matrices for pedestrian and object detection (LAMR, AP). Faster RCNN, performs best for
pedestrian detection closely followed by ours joint model. However, when Faster RCNN
tries to incorporate the information about head pose(FR-CNN-N-CLS) the performance drops
significantly. Stressing the fact that ours joint model, incorporates the simultaneous people
detection and head pose estimation in a more reliable fashion.

4.3.5 Ablation study: head pose classification

The ablation studies serve to evaluate how our approach works in the case of a correct person
detection. To enrich the analysis, in Table 4.3 we consider different numbers of pose quan-
tization, namely 4 and 8 classes, in which the quantization has been obtained by uniformly
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dividing 360 degrees. As competitors, we consider RPF [LYO15a], the FR-CNN N-class (N
refers to the quantization bins), and 2 different versions of our approach. The variation we
want to analyze (Ours disjoint optimization) does the following thing: as in the proposed
version, the complete body is used for head pose estimation but the optimization terms for
object classification Lcls and bounding box regression Lloc are set to zero. In practice, this
breaks up the joint optimization and let the system operate as two separate modules, where
the object detection loss does not contribute to the head pose classification training.

Ours Joint Model is the proposed methodology where as explained above pedestrian
detection module and the head pose estimator are jointly optimized as the output is shown
in 4.2. Table 4.3 illustrates the robustness of our approach in regards to the granularity
level of head pose. Secondly, pedestrian detection and head pose estimation are related task,
therefore when posed as a joint optimization problem performance for head pose estimation
gets boosted.

In Table 4.1 the second ablation study stresses the ability of our approach in estimating
the head poses by starting from correct head bounding boxes. For this purpose we train
HPN over head images and pose it as a classification problem. Except for the QMULB
[OGX09] dataset, which has an additional background class, in that case we train HPN to
have a cascaded output, first distinguish between person and non-person and then classifying
only persons for the head poses. This procedure is consistent to our proposed joint model.
Results have been computed on the datasets HIIT [TSCM13a], QMUL [OGX09] and its
extension with background class QMULB [OGX09]. HIIT dataset has 24,000 images with
6 head poses and a static background. QMUL dataset contains 15,660 images that has 4
different head poses with varying illumination and occlusion. QMUL dataset with additional
3,099 background images is referred to as QMULB.

Finally, as shown in Table 4.1, proposed HPN is capable of overcoming in terms of
average accuracy, all of the competitors at each resolution.

Pipeline
Pedestrian
Detection

Head
Detection

Head
Pose Est.
AccuracyLAMR AP LAMR AP

FACF [YYLL14b]

+
RPF [LYO15a]

N/A N/A 90.67 0.336 0.3

LDCF [NDH14]

+
FACF [YYLL14b]

+
RPF [LYO15a]

54.99 0.83 96.37 0.2087 0.27

LDCF [NDH14]

+
HRCNN [JL16]

+
RPF [LYO15a]

54.99 0.83 84.36 0.31 0.5

Ours 55 0.86 N/A N/A 0.68

TABLE 4.2: Head pose estimation in the wild. For LAMR, lower is better.
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Method
Classification

Accuracy
(4 classes)

Classification
Accuracy
(8 classes)

RPF [LYO15a] 0.6 0.31
FR-CNN N-class [RHGS15a] 0.71 0.32
Ours (Disjoint Optimization) 0.72 -

Ours

(Joint Model)
0.74 0.33

TABLE 4.3: Head pose classification accuracy on oracle.

Method AP LAMR
LDCF [NDH14] 0.83 54.9
FR-CNN
N-Cls

0.81 78

Faster RCNN [RHGS15a] 0.87 52.3
FCF [ZBS15] 0.82 61.1
Ours 0.86 55

TABLE 4.4: Pedestrian detection results. For LAMR lower is better
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Chapter 5

LSTM Overview

Recurrent Neural Networks has the ability to learn contextual information when mapping
input and output sequences [Kaw08]. However, like any deep feed forward neural network
RNNs are trained by propagating the error through time. Back propagating error through time
makes the gradient either to decay or blow up exponentially as moves around the recurrent
connections. These phenomenons are know as vanishing and exploding gradients problems
[HBFS+01]. This problem can also be seen in the fig. 5.1

Ever since the discovery of the vanishing gradient problem, several remedies have been
proposed such as initialize the network weights so that vanishing gradient is not pronounced
or having Echo State Networks and Long Short Term Memory. In this thesis we will discuss
about Long Short Term Memory networks [HS97].

5.1 Brief History of LSTM

Detailed evolution of LSTMs could be found [GSKSS17]. This chapter will briefly present
major architectural changes that happened to LSTMs over the period of time. Earliest ver-
sion of the LSTMs [HS97] included cells, input and output gates [GSKSS17]. However,
these LSTM were missing peephole connections, unit biases or input activation. As also
discussed by [GSKSS17], training was only done using the combination of Real Time Re-
current Learning (RTRL) [RF87; Wil89] and Backpropagation Through Time. Initially, only
the gradient of the cell was backpropagated and all other gradients were truncated, naturally
limiting the capabilities of the LSTM. However these practices were soon dropped in the
favor of modern day LSTMs.

Forget Gate Soon after the emergence of LSTMs, it was soon realized that not all
past information was useful to keep in LSTM. Therefore, [gers1999learning] proposed a
mechanism for LSTMs, where they forget and reset to their own state. This gate is known as
forget gate. In continual task such as trajectory forecasting, this aspect of the LSTM is vital.

Peephole Connections
In the case of time series data, precise timings are of paramount importance, original

LSTMs could not perform it with accuracy as their was no mechanism that allowed cells to
control the gates. [gers2000recurrent], were the first one to propose peephole connection
where cells were connected with gates as shown in Fig. 5.2 (blue dots).

Full Gradient
Graves et al. 2005 [GS05], proposed the final modification to the modern day LSTMs.

They were the first one to present full backpropogation through time. This full backpropoag-
tion through time allowed LSTMs to be more reliable and robust.
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FIGURE 5.1: Illustration of the vanishing gradient problem in RNNs. One
could see the effect of gradient vanishes over time (lighter color)

5.2 Social LSTM

Social LSTM [AGRRF+16], was among the pioneer works in the field of trajectory fore-
casting. It was a complete data driven approach, which used temporal capabilities of RNNs
for pedestrian path prediction. Similar to previous works [Gra13] Social LSTM developed
an LSTM based model for trajectory forecasting. On 5 public benchmarks Social LSTM
outperformed all previous handcrafted energy based approaches by a significant margin.

In Social LSTM, one LSTM per person was proposed, as shown in Fig.5.4 LSTM model
learns the representation of how an individual navigate through crowded spaces. However,
we humans when we navigate we experience several forces such attractive (groups) and re-
pulsive (collision). A naive LSTM model could not capture such human-human interac-
tion. Therefore, a "communication" strategy was proposed by Alahi et al.2016 [AGRRF+16],
named as social pooling.

Social pooling, as illustrated in Fig.5.4, pools the hidden layers of all neighbouring
LSTMs (pedestrians) in the scene. This pooling operation basically communicates with the
given subject that where are his neighbours and where they will be in future. This pooling
mechanism is similar to how humans interact with the environment (avoiding collisions and
engaging into human human interaction). The social pooling is based on the spatial location
of other pedestrians.

As described in detail [AGRRF+16], the hidden state of the LSTM hi
t learns the repre-

sentation for the i th person in that particular scene. Subsequently, these hidden states are
shared between neighbours and for a given subject a hidden tensor Hi

t is constructed. For
a hidden-state having dimension D and a neighborhood size No, hidden tensor Hi

t for ith

trajectory of size No x No x D is defined as in eq (5.1):

H(i)
t (m, n, :) = ∑

j∈Ni

1mn[x
j
t − xi

t, yj
t − yi

t]h
j
t−1, (5.1)
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FIGURE 5.2: Detailed diagram of a Simple Recurrent Network unit and
LSTM. Image courtsey [GSKSS17]

where hi
t is the hidden state of the LSTM referring to the j th person at t− 1. 1mn[x, y]

is an indicator function, which determines if (x, y) is in the (m, n) cell of the grid, and Ni
are other individuals in the scene for teh subject i. This pooling operation could be seen as
in Fig. 5.4.

Each LSTM model is instantiated using equation (5.2). where the embedding function φ
is the linear projection, via the embedding weights W, into a D-dimensional vector, with D
the dimension of the hidden space. This is followed by a ReLU activation function. Same
transformations are applied to the embedding function of the hidden state equation (5.3)

e(X,i)
t = φ(X(i)

t , Wx). (5.2)

e(H,i)
t = φ(H(i)

t , WH). (5.3)

Similar to graves et al. [Gra13], this work assumes a bivariate Gaussian distribution
parameterized by µ, Σ P

[µ
(i)
t , Σ̂

(i)
t , Pi

t] = Woh(i)
t−1,

Finally, at training time, weights are estimated by minimizing the bivariate Gaussian log-
likelihood for the each trajectory. The loss function is

Li(Wx, , WH, Wo) =

−
Tpred

∑
Tobs+1

log
(

P(X(i)
t , µ

(i)
t , Σ

(i)
t ), Pi

t

)
,

where Tobs is the last frame of the observation period, while Tobs + 1, . . . , Tpred are
the time frames for which we provide a prediction. The loss of Eq. (5.4) is minimized over
all the training sequences. To prevent overfitting, we additionally include an l2 regularization
term.
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FIGURE 5.3: Description of Social LSTM. Authors proposed one LSTM per
person. Image adapted from [AGRRF+16]

FIGURE 5.4: Description of Social LSTM. Authors proposed one LSTM per
person. Image adapted from [AGRRF+16]
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Chapter 6

Trajectory Forecasting

6.1 Related works

A large body of literature have addressed the topic of path prediction, by adopting Kalman
filters [Kal+60], linear regressions [MN89], Gaussian regression models [QR05; Ras06;
WFH08; Wil98], autoregressive models [Aka69] and time-series analysis [Pri81]. Our ap-
proach departs from these classical approaches because we also consider the human-human
interactions and the person intention, expressed by the VFOA.
Human-human interactions. The consideration of other pedestrians in the scene and their
innate avoidance of collision was first pioneered by [HM95]. The initial seed was further
developed by [LCL07] and [PESV09], which respectively introduced a data-driven and a
continuous model. Notably, these approaches remain top performers on modern datasets,
as they successfully employ essential cues for track prediction such the human-human in-
teraction and the people intended destination. More recent works encode the human-human
interactions into a "social" descriptor [AGRRF+16; ARF14; MWF16] or proposes human
attributes [YLW15; MWFF17] for the forecasting in crowds. Our work mainly differenti-
ates from [LCL07; PESV09] because we only consider for interactions those people who are
within the cone of interest of the person, which we encode with the VFOA (as also maintained
by psychological studies [IC01]).
Destination-focused path forecast. Starting from the seminal work of Kitani et al. [KZBH12],
path forecast has been cast as an inverse optimal control (IOC) problem. Follow-up work has
additionally utilized inverse reinforcement learning [AN04; ZMBD08] and dynamic reward
functions [LK16] to address the occurring changes in the environment. We describe these
approaches as destination-focused because they all require the end-point of the person track
to be known, which later work has relaxed to a set of plausible path end points [DRS11;
MHB16]. We share with these works the importance of the person intention, but we believe
that knowing the destination undermines the reason why we may be predicting the trajecto-
ries. By contrast, we represent the person intention by their VFOA which, as we show, may
be estimated at the current frame.
VFOA and the social motivation. The interest into the VFOA stems from sociological stud-
ies such as [Cv80; DR12; FUCH15; FUY15; FWK11; PV03; VCDPL13], whereby VFOA
has been shown to correlate to the person destination, pathway and speed. Interestingly,
the correlation is higher in the cases of poor visibility, such as at night time, and in general
when the person is being busy with a secondary task (e.g. bump avoidance) further to the
basic walking. These studies motivate the use of VFOA as a proxy to forecasting trajecto-
ries. Using VFOA comes with the further advantage that it can be estimated [BO04; RR06a;
SFYW99] on a frame basis, thus requiring no oracle information and enabling a real-time
system. While our experiment is agnostic about the head pose estimation algorithm, in our
experiments we will use an off-the-shelf head pose estimator [HTGDC17].
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Sequences Number of frames Number of pedestrians Pedestrian per frame Avg traj.
UCY 5,405 434 32 404
Zara01 8,670 148 6 339
Zara02 10,513 204 9 467
TownCentre 4,500 230 16 310

TABLE 6.1: Dataset Statistics

6.2 Datasets

We evaluated our approach on publicly available benchmarks, UCY [LCL07] and TownCen-
tre [BR11] and compared it against state of the art methods. The benchmark UCY contains
three sequences showing two different scenarios. Zara01 and Zara02 sequences show a pub-
lic street with shops and cars, the number of pedestrians is quite limited and the trajectories
are somehow constrained since entry and exit points are in a limited portion of the image
border. UCY sequence is taken in a university campus plaza and it shows a dense crowd
moving in several directions without any physical constraint. Similarly, TownCentre dataset
portrays a crowded real world city centre scenario. The four datasets have in total of 29,088
frames with 1,016 pedestrians. More details about each sequence are given in Table 6.1.

6.3 Proposed Approaches

FIGURE 6.1: Graphical explanation on the selection of pedestrians to be
taken into account for the avoidance term. The large blue dot represents the
target pedestrian, the green dots are the pedestrians he/she tries not to collide
to, and the small red dots are the pedestrians he/she is not aware of because

out of the view frustum. (Best viewed in colors.)

We formulate the predictive model as a joint optimization problem, where the position
of each individual in the next frame is simultaneously estimated by minimizing an energy
function.Our loss function consists of three intuitive potentials: (1) a collision avoidance
term, which accounts for the multi-agent nature of the system, (2) a destination term, which
accounts for the goal of each individual behaviour, and (3) a constant velocity term. The
general idea behind our model is that, when in an open space, a person walks towards a desti-
nation point trying to avoid collisions with other pedestrians and static objects. While doing
this, she/he prefers to move smoothly, i.e. limiting accelerations both in terms of intensity
and direction.
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Our cost function has the general form:

C = wA · EA + wV · EV + wD · ED

where wA, wV , and wD are weighting factors, and EA, EV , and ED are the respective three
energy terms discussed in the following.

Let us consider a video sequence of T image frames as S = {It}t=1...T. At each frame t, a
set of N pedestrians are detected and their position on the ground plane is Pi(t) , i = 1 . . . N.
For each individual, we define his/her head orientation θi(t). Finally, let us indicate with
P̂i(t + 1) the predicted location of the individual i at frame t + 1.

In order to promote smooth trajectories, we define the velocity term (EV) as the summa-
tion over all the individuals’ of the squared `2-norm of the acceleration vector:

EV =
N

∑
i=1

∥∥∥∥d2Pi(t)
dt2

∥∥∥∥2

=

=
N

∑
i=1

∥∥P̂i(t + 1) + Pi(t− 1)− 2Pi(t)
∥∥2

As for the destination term (ED), we consider that a person is consistently looking at
his/her short-term destination point while walking. Thus, this term is the additive inverse of
the cosine of the angle comprised between the gaze direction θi, i.e. the head pose, and the
direction of the predicted velocity:

ED = −
N

∑
i=1

cos
(
θi(t)− P̂i(t + 1)− Pi(t)

)
where v is the phasor angle of vector v.

For the avoidance term (EA), many different models have been proposed in the literature,
mostly based on the concept of social force [HM95; PESV09; RSAS16; YBOB11]. The idea
is that a person would not allow another individual to enter his/her personal space; thus, when
walking, people adjust their velocity in order to avoid this kind of situations to happen. In this
work we model the avoidance potential as a repulsion force that is exponential with respect
with the distance between two predicted locations. Unlike many previous works, which
consider the repulsion force only when 2 pedestrians are going to be closer than an isotropic
comfort area, our method is more biologically motivated, assuming that the pedestrian reacts
to what he senses in terms of sight, which is modeled by the VFOA. More formally, this term
assumes the summation over all the individuals of the exponential of the minimum distance
between the predicted location of the individual itself and the closest predicted location of
another individual.

EA =
N

∑
i=1

e− arg minj d∗ij(t+1) , with j ∈ Fi(t), j 6= i

where d∗ij = ‖P̂i(t + 1)− P̂j(t + 1)‖2, and Fi(t) is the set of all the individuals inside the
VFOA of person i at time t. While in theory the view frustum is related to the gaze, we
assume that in first approximation, in the scenario we are facing, the gaze is equal to the head
orientation. Thus, we model the VFOA as a circular sector of angle 30◦, where this last angle
has been found experimentally (see in Sec. 6.5.7): surprisingly, this angle corresponds to the
angle of the human focal attention [IC01], which can be likened to a “spotlight” in the visual
receptive field that triggers higher cognitive processes like object recognition. A graphical
explanation of the VFOA is given in Fig. 6.1.
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Thus, the cost function of Equation 6.3 can be minimized with reference to P̂i(t + 1),
∀i = 1 . . . N. So at each step we predict the positions of all the pedestrians in the scene
jointly. This optimization problem can be addressed with a direct search method for n-
dimensional unconstrained spaces. The Nelder-Mead simplex method [LRWW98], adopted
in this work, uses an iterative approach that maintain at each step a non-degenerate simplex
of n + 1 vertices, and updates the simplex according to the function value in the vertices.
The method has a very low complexity, since it does not require to compute the gradient (as
all the direct search methods) and typically requires the function evaluation on only one or
two sample points at each iteration step.

6.4 Experiments

We evaluated our approach on publicly available benchmarks, UCY [LCL07] and TownCen-
tre [BR11] and compared it against state of the art methods.

The evaluation protocol follows the most recent literature. We first downsample the frame
rate of the videos of a factor of 10, resulting in a frame rate of 2.5 fps. Then, for each pedes-
trian detected, we predict their trajectory for the next 12 frames (4.8 seconds) by considering
at every time step the predicted location of the target pedestrian and the ground truth po-
sitions of all the others. As for the evaluation metrics, we use the standard Mean Average
Displacement (MAD) and the Final Average Displacement (FAD) error. The MAD metric
is given by the average over all the pedestrians and all the frames of the Euclidean distance
between the predicted location and the ground truth position. The FAD error is given by the
average displacement of the 12-th predicted frame over all the trajectories.

6.4.1 Quantitative results

We compare our method with four state-of-the-art model-based approaches, namely Linear
Trajectory Avoidance (LTA) [PESV09], Social Force model (SF) [YBOB11], Iterative Gaus-
sian Process (IGP) [TK10], and multi-class Social Force model (SF-mc) [RSAS16]. We also
provide results with a baseline method (Lin.) that merely estimates the next locations by
using the previous velocity. For a fair evaluation, we need to point out that all the meth-
ods use different ground truth data and/or a priori information. All the approaches require
the knowledge of the ground truth pedestrian position at each time step. In addition, IGP
requires the exact destination point of each pedestrian (i.e. the last point of each trajectory,
or the point where the pedestrian exits from the scene); LTA, SF and SF-mc require a soft
version of the destination point, indeed they only need the direction the individual is pointing
(e.g. North, South, East or West); SF and SF-mc also require to know which individuals are
forming groups.

Differently, our approach does not require the knowledge of destination points or a direc-
tion but just the pedestrian position (as the others) and the labelled head orientation of each
individual, no group membership is required. The destination point of each pedestrian, as
well as other terms in the cost function Eq. 6.3 are then automatically estimated. We report
sample model parameter in Table 6.4. Since head pose is crucial for forecasting, although
people maintain a trajectory to their final destination, there might be the need to take short
term deviations in order to avoid collision, obstacles or to engage in human-human inter-
actions (e.g. a subject might take few steps in the complete opposite direction of the given
destination point). This short term divergence is not addressed in any of the other methods
and the head pose seems to be an effective mean towards this end.

Table 6.2 and Table 6.3 show that our method outperforms the state of the art methods
in MAD, while it scores worst against the SF-mc on FAD in the UCY sequence. Please note
that the comparison with IGP method with the FAD metric is not fair by definition, since it
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Dataset Lin. LTA SF IGP SF-mc Ours
UCY 0.57 0.51 0.48 0.61 0.45 0.38
Zara01 0.47 0.37 0.40 0.39 0.35 0.30
Zara02 0.45 0.40 0.40 0.41 0.39 0.26
Town Centre 1.3 1.8 2.1 – – 1.2

TABLE 6.2: Mean Average Displacement (MAD) error for all the methods
on all the datasets.

Dataset Lin. LTA SF IGP SF-mc Ours
UCY 1.14 0.95 0.78 1.82 0.76 0.78
Zara01 0.89 0.66 0.60 0.39 0.60 0.59
Zara02 0.91 0.72 0.68 0.42 0.67 0.60
Town Centre 2.7 3.67 3.8 – – 2.28

TABLE 6.3: Final Average Displacement (FAD) after 12 frames (4.8 sec-
onds) for all the methods on all the datasets.

wA wV wD
0.1 1.16 1.0184

TABLE 6.4: Model parameters obtained from training sequences

Dataset Ours (no frustum) Ours
UCY 0.41 0.38
Zara01 0.31 0.30
Zara02 0.29 0.26

TABLE 6.5: Mean Average Displacement (MAD) with and without the view
frustum condition in the avoidance term.

requires the annotation of the final point of each trajectory. Even with the unfair advantage for
IGP, in a more densely crowded scenario like UCY, IGP performs poorly, since the short term
divergence of a subject is much more prominent and is not addressed by the fixed destination
point.

6.4.2 Ablation studies

It is worth noting that all approaches assume that a subject takes the next step accounting for
all other pedestrians in the scene. This assumption is far to be true since in normal situations
most people are unaware of what is happening behind themselves, and this does not effect
their future movements. Thus, to prove the effectiveness of the the view frustum information,
we conducted two ablation studies.

First, we turned off the frustum in the avoidance term, taking into account all the pedes-
trians in the scene. In such a case performances decrease of 2% in MAD and 5% in FAD,
showing that the view frustum is beneficial for both metrics in all the sequences. (Table 6.5
and Table 6.6)

As a second experiment, we provided to the state-of-the-art approaches the destination
points estimated frame-by-frame from the head pose. Results of Table 6.7, compared with the
ones reported in Table 6.2, demonstrate how the use of head pose is beneficial also for other
approaches, improving performances of LTA and SF of 5% and 6% on average respectively.
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FIGURE 6.2: Θ angle of the VFOA in relation with the Mean Average Dis-
placement error

Dataset Ours (no frustum) Ours
UCY 0.83 0.78
Zara01 0.65 0.59
Zara02 0.64 0.60

TABLE 6.6: Final Average Displacement (FAD) with and without the view
frustum condition in the avoidance term.

Dataset LTA SF Our
UCY 0.44 0.42 0.38
Zara01 0.33 0.32 0.30
Zara02 0.35 0.35 0.26
Town Centre 1.2 1.4 1.2

TABLE 6.7: Mean Average Displacement (MAD) for state of the art methods
with destination point estimated from the head orientation.

Fig. 6.2 shows the study on the span of the Θ angle of the VFOA in relation with the
MAD error, when the ground-truth head orientation is known. For this sake, we randomly
sample 25 pedestrians per dataset (Zara01, Zara02 and UCY) and we compute the error while
modulating Θ from 10 to 75 degrees with a step of 5. As visible in the figure, the range from
10 to 30 gives the best score, with 30 being the best absolute value. Actually, this does
correspond to the angle defining the focal attention area [IC01].

6.4.3 Experiments with HPE

Once we have shown the theoretical advantages of our approach, we replace the oracle head
orientation with the one estimated from a real head pose estimator [HTGDC17]. As most
of the head pose estimators, the one used in this work outputs the head pose in a quantized
format: dividing the 360◦ into 4 or 8 classes, thereby we also quantized the ground truth into
the same format in order to understand the theoretical bounds that one could reach with the
detector.

Looking at the results in table 6.8 we illustrate that even with the real head pose estimator,
we could get competitive results with all the state-of-the-art approaches, which relies on
strong ground truth information, highlighting the pragmatism of our approach. Additionally,
by quantizating the ground truth we further illustrates that given an accurate pose estimator
one could outperform the current state-of-the-art approaches. Moreover, as it can be noticed,
finer granularity for head pose estimation proves to be more suitable in trajectory forecasting.
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Dataset GT GT(4) GT(8) HPE(4) HPE(8)
UCY 0.38 0.44 0.43 0.52 0.50
Zara01 0.30 0.39 0.37 0.44 0.42
Zara02 0.26 0.35 0.34 0.39 0.38
Town Centre 1.2 1.3 1.2 1.3 1.2

TABLE 6.8: Mean Average Displacement error with quantized annotated
head pose and with real head pose estimator.

6.4.4 Qualitative results

Besides these quantitative results and ablation studies, we report a qualitative illustration of
our predictions in Fig. 6.4. Along with the proposed approach, we also show trajectories
predicted with LTA [PESV09] and SF [YBOB11]. Notably, our model is able to better fore-
cast trajectories with highly non-linear avoidance turns, such as to avoid static (3rd row, 3rd
column) and moving objects (3rd row, 2nd column), as well as in case a person has to avoid
collision with other pedestrians in the scene (1st, 2nd and 4th rows).

6.5 Data Driven Approaches for trajectory forecasting

Anticipating the trajectories that could occur in the future is important for several reasons: in
computer vision, path forecasting helps the dynamics modeling for target tracking [PESV09;
RSAS16; SAS17; YBOB11] and behavior understanding [AGRRF+16; KZBH12; LK16;
MHLK17; RSAS16]; in robotics, autonomous systems should plan routes that will avoid
collisions and be respectful of the human proxemics [DRS11; Hal66; KKSB12; MHB16;
TK10; ZRGMP+09]. Recently, path forecasting has benefited from the introduction of Long
Short Term Memory (LSTM) architectures [ijcai2017-386; AGRRF+16; HS97; SDZLZ16;
SYMHD17; VS17].

All of these approaches use exclusively the (x, y) position coordinates for the prediction,
forgetting that humans act and react using their senses to explore the environment, in particu-
lar, through the visual information conveyed by the gaze and inferred by the head pose [Cv80;
CO12; DR12; FUCH15; FUY15; FWK11; IC01; PV03; RR06a; SFYW99; VCDPL13]. In
particular, [Cv80; DR12; FUCH15; FUY15; FWK11; IC01; PV03; VCDPL13] found that
the head pose correlates to the person destination and pathway: these findings are also sup-
ported by a statistical analysis presented in our paper (Sec. 7.3.1).

For the first time this work considers the head pose, jointly with the positional informa-
tion, as a cue to perform forecasting. In particular, tracklets (sequences of (x, y) coordinates)
and vislets, that is, reference points indicating the head pan orientation, are the input of the
novel MiXing LSTM (MX-LSTM), an LSTM-based model that learns how tracklet and vislet
streams are related, mixing them together in the LSTM hidden state recursion by means of
cross-stream full covariance matrices, optimized during backpropagation.

MX-LSTM is able to encode how movements of the head and the people dynamics are
connected. For example, it captures the fact that rotating the head towards a particular di-
rection may anticipate a trajectory drifting with an acceleration (as in the case of a person
leaving a group after a conversation). This happens thanks to a novel optimization of the
LSTM parameters using a Gaussian full covariance through an unconstrained log-Cholesky
parameterization in the backpropagation, securing positive semidefinite matrices. To the best
of our knowledge, this is the first time Gaussian distributions with covariance matrices of
order higher than two are optimized in LSTMs.
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FIGURE 6.3: Examples of predicted trajectories on UCY (first two rows)
and Zara01, Zara02 (last two rows). Our proposed model is very precise in
the prediction of highly non-linear trajectories, where the other approaches
such as LTA [PESV09] and SF [YBOB11] are less accurate due to the fixed
destination points. In particular, our method is able to easily capture short

term deviations from the desired path.

Vislet information is also used to build a scene context, i.e. where are the other people
and how they are moving, by a shared state pooling as in [AGRRF+16; VS17], that here is
further improved using the head pose by discarding the people that an individual cannot see.

As a by-product, MX-LSTM predicts head orientations too, allowing to reason where
people will most probably look at, providing a fine grained level of long-term prediction
never reached so far in crowded scenarios.

Adopting standard protocols for trajectory forecasting [AGRRF+16; LCL07; PESV09]
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FIGURE 6.4: Illustration of common failure cases of trajectory forecasting.
Acceleration, deceleration and static groups are common failure cases across

all approaches.

and using head poses information given by a standard head pose estimator [HTGDC17],
MX-LSTM defines the new state-of-the-art both in the UCY sequences (Zara01, Zara02 and
UCY) and in the TownCentre dataset. In particular, MX-LSTM has the ability to forecast
people when they are moving slowly, the Achille’s heel of all the other approaches proposed
so far.

As main contributions, in this work we show:

• We show that trajectory forecasting can be dramatically ameliorated by considering
head pose estimates;

• We propose a novel LSTM architecture, MX-LSTM, which exploits positional (track-
lets) and orientational (vislets) information thanks to an optimization of d-variate Gaus-
sian parameters including full covariances with d > 2;

• We motivate the need for MX-LSTM showing that head poses are related with the
trajectories, even at low velocities, where most of the forecasting approaches fail;

• We define a novel type of social pooling, in the sense of [AGRRF+16; VS17], by
exploiting the vislet information;
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FIGURE 6.5: Motivating the MX-LSTM: a) analysis between the angle dis-
crepancy ω between head pose and movement, the pedestrain smoothed
velocity and the average errors of different approaches on the UCY se-
quence [LCL07]; b) correlation between movement angle β and head ori-

entation angle α when the velocity is varying (better in color).

• Thanks to MX-LSTM, we define state-of-the-art forecasting results on different datasets;

• We present MX-LSTM results of head pose forecasting, showing new long-term be-
havior analysis capabilities.

6.5.1 Motivation of MX-LSTM

Intuitively, the head pose of person is a cue for the direction in which she/he moves. However,
the literature in trajectory forecasting lacks a quantitative study on the importance of the head
pose. Here we examine the common forecasting datasets to study the relationship between
the head pose and motion directions. In particular, we focus on the UCY dataset [LCL07],
composed by the Zara01, Zara02 and UCY sequences, which provides the annotations for
the pan angle of the head pose of all the pedestrians. We also consider the Town Center
dataset [BR11], where we have manually annotated the head pose, using the same annotation
protocol as in [LCL07].

In this section, with specific reference to Figure 6.5, we present the preliminary analysis
and observations, which have motivated the design of our MX-LSTM. We would specifically
refer to the UCY video sequence (but similar observations applied to all others).
1) People watch their steps. We show this fact by plotting in Fig. 6.5a the angular discrep-
ancy ω (blue curve), between the head pose α and the person motion angle β, against the
velocity (black curve), intended as the modulus of the motion vector

−−−−−→xt+1 − xt.
In more details, we have computed the average angular discrepancy ω for each of the

people trajectories of the UCY video sequence (for each trajectory, we average ω across all
frames where it occurs). In Fig. 6.5a, we have then arranged the trajectories in ascending
order (the x axis) according to their average discrepancy angle ω (the blue y-axis on the
sub-figure right side, marked as “ω”). (We illustrate ω graphically in Fig. 6.6c.) For each
trajectory we have then plotted the corresponding average speed (black curve), as measured
on the black y-axis marked as “velocity”. (We disregard those frames where the average
speed of person movement is below 0.45m/sec, since those people do not essentially move
and their motion angle β can hardly be determined.)

As it shows from Fig. 6.5a, 75% of the people only turn their head by 20◦. They watch
therefore their steps, especially at higher speeds.
2) Head pose and movements are (statistically) correlated. On Fig. 6.5a, we report the
velocity curve (black solid line and axis). To plot this curve, we order all the trajectories
with respect to the average speed of each individual. First of all, notice that the ω and the
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pedestrian speed are inversely proportional: the alignment between the head pose and the
direction of movement is higher when the speed is higher; when the person slows down
the head pose is dramatically misaligned. Secondly, the relation is statistically significant:
we consider the Pearson circular correlation coefficient [JS01] between the angles αt and βt.
Overall, the correlation is 0.83 (p-value< 0.01), computed for all the frames of the sequences
considered for Fig. 6.5. The plot in Fig. 6.5b elaborates that the correlation is lower at low
velocities, where the discrepancy between the αt and βt angles is typically higher.

One of the challenges here, is to investigate whether the dynamic discrepancy between
the head pose angle αt and movement direction βt at different speeds of the human motion
can be learned by our proposed MX-LSTM to improve the forecasting. Moreover, MX-
LSTM should learn how these relations evolve in time, which has not been investigated yet.
In fact, prior work has only addressed single frames.
3) Forecasting is difficult for pedestrians at low speeds. In Fig. 6.5a (red lines and red
axis), we compare the Mean Average Displacement (MAD) error [PESV09] of the following
approaches: SF [YBOB11], LTA [TK10], vanilla LSTM and Social LSTM [AGRRF+16],
against our proposed MX-LSTM approach (solid red curve). We notice that lower velocities
correspond generally to higher forecasting errors. When people walk slowly, their behavior
becomes less predictable, not only due to physical reasons (less inertia), but also behavioral
(people walking slowly are usually involved in secondary activities, such as looking around
or chatting with others). By contrast, our proposed approach MX-LSTM (solid red curve)
performs well even at lower velocities, since it makes use of the evidence from the head pose.
MX-LSTM approaches an error close to zero for the nearly static people, as it should ideally
be (more details in Sec. 6.5.7).
Summarizing, the head pose is correlated with the movement. When people move fast, this
correlation is stronger and their head pose is largely aligned with the direction of motion.
However, when people move slowly, the correlation is weaker (but still significant), and the
head pose is drastically misaligned with the movement. This results in higher prediction
errors for most state-of-the-art approaches of trajectory forecasting. These facts justify and
motivate our objective with the MX-LSTM, to capture the head pose information jointly
with the movement and use it for a better and more uniform trajectory forecasting, for people
moving at both lower or higher speeds.

6.5.2 Proposed Approach

In this section, we present MX-LSTM. The model may jointly forecast individuals’ locations
and pose by leveraging the information about the recent history of head positions (tracklets)
and orientations (vislets). We first define the concepts of tracklets and vislets (Sec. 6.5.3);
then we describe our proposed formulation of social pooling based on visual frustum of
attention (Sec. 6.5.4); finally, we report details about the LSTM formulation (Sec. 6.5.5) and
model training by optimizing the multidimensional co-variance matrices (Sec. 6.5.6).

6.5.3 Tracklets and vislets

We define as tracklet the list of consecutive locations on the ground plane visited by an
individual during the last time steps. Formally, the tracklet associated with the i-th subject at
time T is {x(i)t }t=1,...,T, where x(i)t = (x, y) ∈ R2.

Similarly, a vislet is the list of anchor points located at a fixed distance r from the subject,
aligned with its head head orientation. Thus, for subject i at time T the vislet is {a(i)t }t=1,...,T,
with a(i)t = (x(i)t + cos α

(i)
t , y(i)t + sin α

(i)
t ) ∈ R2 see Fig. 6.6a.
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FIGURE 6.6: A graphical interpretation of tracklets and viselets. a) tracklets
x(i)t and x(i)t+1 and vislet anchor point a(i)t ; b) Social pooling leveraging the

Visual Frustum of Attention; c) angles for the correlation analysis.

In theory, one could encode the head orientation by means of the pan angle at each time
step. We prefer to use anchor points instead, which gives several benefits. The main advan-
tage of using vislets instead of encoding the head orientation directly with the pan angle, is
that this formulation implicitly solve all the issues generated by the discontinuity between
360◦ and 0◦. Moreover, vislets and tracklets have very similar representations, which is very
convenient for modeling the interplay of these two components in the MX-LSTM structure.
Please note that the distance r is irrelevant, as long as it is a constant value; in this work we
set it at 0.5m for the sake of visualization.

Our method relies on a set of location and head pose observations to predict tracklets
and vislets for the following estimation period. In particular, MX-LSTM mixes together
the two streams to understand their relationship, providing a joint prediction. Accordingly
to the trajectory forecasting literature [AGRRF+16; TK10; YBOB11], we consider these
observations as provided by an oracle, i.e. given by an annotator. To directly compare our
approach with the other recent ones, we provide experiments where the past head poses are
estimated by a real “static” head pose estimator; in this way, MX-LSTM will require no
additional effort in annotation with respect to former approaches.

We instantiate an LSTM model for each individual by using two separate embedding
functions for tracklets (6.1) and vislets (6.2):

e(x,i)
t = φ

(
x(i)t , Wx

)
e(a,i)

t = φ
(

a(i)t , Wa

)
where the embedding function φ is the linear projection, via the embedding weigths W(·),
into a D-dimensional vector, with D the dimension of the hidden space. This is followed by
a ReLU activation function.

6.5.4 VFoA social pooling

The concept of social pooling was first introduced by [AGRRF+16] as an effective way to
capture (and embed into an LSTM model) how people move in a crowded space to avoid
collisions. In its original form, it is an isotropic area of interest surrounding the target indi-
vidual. The LSTM hidden variables of the people within the area of interest are pooled, i.e.
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collected to account for the human-human interaction. This formulation implicitly assumes
that a person’s trajectory is affected not only by the behaviour of people walking in front of
him/her, but also by people behind him/her back as also illustrated in Fig 6.7. in this work we
refine this model by exploiting vislet information, building on the concept of View Frustum
of Attention (VFoA), that is a region where the attention of a person is focused, according
to its gaze direction. We propose to model the VFoA as a circular sector originating in the
head position (x(i)t ), aligned with the head pose (i.e. towards the anchor point a(i)t ), with a
aperture angle γ; to account for the limitations of human vision in focusing on very far ahead
objects, we limit the region with a maximum distance d. We learned both γ and d parameters
at training time by cross-validation on the training partition of the TownCentre dataset. A
graphical interpretation of the VFoA is provided in Fig 6.6(b).

Formally, we define an area of interest as the squared region centered at the pedestrian
location with size 2d× 2d; this area is then divided in a uniform grid of No × No cells. Our
VFoA social pooling is a No × No × D tensor H defined as follows:

H(i)
t (m, n, :) = ∑

j∈VFoAi

h(j)
t−1, (6.3)

where the m and n indices run over the No × No grid and the condition j ∈ VFoAi is
satisfied when the subject j is in the VFoA of subject i. The pooling vector is then embedded
into a D-dimensional vector by

e(H,i)
t = φ(H(i)

t , WH). (6.4)

6.5.5 LSTM recursion

The MX-LSTM recursion equation is:

h(i)
t = LSTM

(
h(i)

t−1, e(x,i)
t , e(a,i)

t , e(H,i)
t , WLSTM

)
.

The hidden state of the LSTM model projects onto the four dimensional space, representing
the Gaussian multi-variate distribution N (¯(i)t , Σ

(i)
t ), as follows:

[¯(i)t , Σ̂
(i)
t ] = Woh(i)

t−1,

where ¯(i)t = [µ
(x,i)
t , µ

(y,i)
t , µ

(ax ,i)
t , µ

(ay,i)
t ], Σ

(i)
t contains the covariances among the (x, y)

coordinate distributions of the tracklets and the vislets, and Σ̂
(i)
t is its vectorized version.

The distribution is then sampled to generate the joint prediction of tracklets and vislet points
[x̂t, ât], allowing us to simultaneously forecast trajectries and head poses.

At training time, we estimate the weights of the LSTM by minimizing the multivariate
Gaussian log-likelihood for the each trajectory. The loss function is

Li(Wx, Wa, WH, WLSTM, Wo) =

−
Tpred

∑
Tobs+1

log
(

P([x(i)t , a(i)t ], ¯(i)t , Σ
(i)
t )
)

,

where Tobs is the last frame of the observation period, while Tobs + 1, . . . , Tpred are the time
frames for which we provide a prediction. The loss of Eq. (6.5) is minimized over all the
training sequences. To prevent overfitting, we additionally include an l2 regularization term.
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6.5.6 MX-LSTM optimization

As shown in Eq. (6.5), the optimization procedure provides the weight matrices of the MX-
LSTM, which in turn produces the set of Gaussian parameters, including the full covariance
Σ. The latter is needed to enforce the LSTM in encoding the relations among the (x, y)
coordinate distributions of tracklets and vislets, which we already discussed in Sec. 6.5.3. In
principle, one may have simply captured the correlation between the walking direction and
head pose in order to model drifts in the trajectory, but we are interested in letting the MX-
LSTM analyze also how the head pose (pan angle) influences the length of the spatial step,
that is the velocity. In other words, we want the MX-LSTM to be able to capture whether
a particular head pose dynamics could accelerate or slow down the motion, thus letting the
machine forecast the joint behavior.

The estimation of a full covariance matrix as the result of an optimization procedure
over a generic objective function, like the log-likelihood of (6.5), is a difficult numerical
problem [PB96]. The main reason is that one must guarantee that the resulting estimate is a
proper covariance matrix, i.e. a positive semi-definite (p.s.d.) matrix. For this reason, LSTMs
with log-likelihood loss functions over Gaussian distributions have been restricted so far to
two dimensions, using a simple Gaussian [AGRRF+16], or mixture of Gaussian distributions.
The 2× 2 covariance matrices have been obtained by optimizing the scalar correlation index
ρx,y, which becomes the covariance term of Σ with σx,y = ρx,yσxσy [Gra13].

In case of higher dimensional problems, pairwise correlation terms cannot be optimized
for building Σ, since the optimization process for each correlation term is independent from
each other. At the same time, the positive-definiteness is a simultaneous constraint on multi-
ple variables [Pou11]. In practice, if we consider three variables x, y and z, learning ρx,y and
ρx,z are two independent procedures, despite that they act on the common distribution over
x. This lacks of coordination generates matrices far from being p.s.d. and thus requiring a
further correction procedure, It usually consists of projecting the estimated matrix into the
closest p.s.d. matrix based on a cost function of the Frobenious norm [BX05; Hig88]. This
procedure is very expensive [PB96], and difficult to be embedded into the LSTM optimiza-
tion process [DS96], where nonlinearities due to the embedding weights make the analytical
derivation hard to formulate. So far, there is not any LSTM loss that involved full covariances
of dimension higher than 2.

Our solution involves unconstrained optimization; we use an appropriate Cholesky pa-
rameterization of the matrix to be learned that enforces the positive semi-definite constraint,
dramatically improving the convergence properties of the optimization algorithm [Pou11].
Let us consider Σ a definite positive n × n (in our case, n = 4) covariance matrix. Since
Σ is symmetric by definition, only n(n + 1)/2 parameters are required to represent it. The
Choleski factorization is given by:

Σ = LTL, (6.6)

where L is a n × n upper triangular matrix. The optimization process focuses on finding
the n(n + 1)/2 distinct scalar values for L, which we then solve for the covariance, as for
Eq. (6.6). The main problem with the Cholesky factorization is non-uniqueness: any matrix
obtained by multiplying a subset of the rows of L by -1 is still a valid solution. As a conse-
quence, non-uniqueness makes the problem ill-posed and hinders optimization convergence.
The simplest way to enforce the matrix L to be unique is to add the constraint that all the
diagonal elements must be positive. To this end, the Log-Cholesky parameterization [Pou11]
assumes that the values found by the optimizer of the main covariance diagonal are the log
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FIGURE 6.7: VFOA pooling: For a given subject, he will try to avoid col-
lision with the people who are inside his view frustum (blue circle). Others
(red circle), will not influence his trajectory as they are no in his view frus-

tum.

of the values of L. Formally, the values found by the optimizer can be written as:

`L =


log l1,1 l1,2 l1,3 l1,4

0 log l2,2 l2,3 l2,4
0 0 log l3,3 l3,4
0 0 0 log l4,4

 .

In practice, after the estimation of Wx, Wa, WH, WLSTM, Wo parameters, the values of `L
are extracted by

[¯(i)t , ˆ̀L
(i)
t ] = Woh(i)

t−1,

where ˆ̀L is the vectorized version of `L. Then, the diagonal values of `L are exponentiated to
form L and obtaining Σ through Eq. (6.6).

6.5.7 Experiments

To validate the proposed approach we perform both qualitative and quantitative evalua-
tions. We report experiments on two public datasets, namely UCY [LCL07] and TownCen-
tre [BR11] datasets. We compare our model with one baseline, i.e. a standard LSTM model
that only accounts for pedestrian positions (Vanilla LSTM), and four state-of-the-art ap-
proaches: Social Force model (SF) [YBOB11], Linear Trajectory Avoidance (LTA) [PESV09],
Social LSTM (S-LSTM) [AGRRF+16] and Social GAN [GJFSA18a]. Here we also investi-
gate three variations of the MX-LSTM model to capture the net contributions of the different
parts that characterize our approach. Moreover, we investigate the effect of changing the
observation period and the forecasting horizon, illustrating how head pose plays a pivotal
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Metric Dataset SF [YBOB11] LTA [PESV09] Vanilla LSTM [AGRRF+16] Social LSTM [AGRRF+16] Social GAN [GJFSA18a] MX-LSTM MX-LSTM-HPE Individual MX-LSTM NoFrustum MX-LSTM BD- MX-LSTM

MAD

Zara01 2.88 2.74 0.90 0.68 0.48 0.59 0.66 0.63 0.63 0.60
Zara02 2.32 2.23 1.09 0.63 0.44 0.35 0.37 0.72 0.36 0.41
UCY 2.57 2.49 0.67 0.62 0.65 0.49 0.55 0.53 0.51 0.54
TownCenter 9.35 9.14 4.62 1.96 1.60 1.15 1.21 2.09 1.70 1.40

FAD

Zara01 5.55 5.55 1.85 1.53 1.04 1.31 1.43 1.37 1.40 1.51
Zara02 4.35 4.35 2.15 1.43 0.95 0.79 0.82 1.56 0.84 1.00
UCY 4.62 4.66 1.39 1.40 1.36 1.12 1.20 1.16 1.15 1.23
TownCenter 16.01 16.08 8.26 3.96 3.50 2.30 2.38 4.00 3.40 2.90

TABLE 6.9: Mean and Final Average Displacement errors (in meters) for
all the methods on all the datasets. The first 6 columns are the comparative
methods and our proposed model trained and tested with GT annotations.
MX-LSTM-HPE is our model tested with the output of a real head pose
estimator [HTGDC17]. The last 3 columns are variations of our approach

trained and tested on GT annotations.

role for the long term forecasting. Lastly, we analyze whether one can substitute the ground-
truth head pose information with more accessible proxies, such as the pace direction or head
pose estimates, as provided by a detector. On a qualitative evaluation, we show the interplay
between tracklets and vislets that the MX-LSTM has learnt.

6.5.8 Implementation details

We implemented the MX-LSTM model and all models of the ablation study in Tensorflow.
All models have been trained with learning rate of 0.005 along with the RMS-prop optimizer.
We set the embedding dimension for spatial coordinates and vislets to 64 and the hidden
state dimension is D = 128. We compute the social pooling on a grid of 32× 32 cells (6.3)
The view frustum aperture angle has been cross-validated on the training partition of the
TownCentre and kept fixed for the remaining trials (γ = 40◦), while the depth d is simply
bounded by the social pooling grid. Training and testing has been accomplished with a GPU
NVIDIA GTX-1080 for all evaluations.

6.5.9 Evaluation Protocol

We report experiments on two public datasets, namely UCY [LCL07] and TownCentre [BR11]
datasets.

The evaluation protocol follows the standard procedure for trajectory forecasting that is
used in the literature [PESV09; AGRRF+16]. We first downsample the videos at 0.4fps,
then we observe tracklets and vislets for 8 frames, and we predict both locations and head
poses for the following 12 time steps. The observation period is 3.2s and the forecasting
horizon is 4.8s. Experiments with different time horizons are reported in the ablation study
(Sec. 6.5.11). According to the standard protocol, we use annotations during the observation
period. Since we use additional information with respect to most of the related approaches
(i.e. head poses), we perform an evaluation with the output of a real head pose estimator as
well (Sec. 6.5.11).

For the three UCY sequences we train three models, where we use two sequences for
training and the remaining for testing. For the TownCentre dataset, the model has been
trained and tested on the provided data splits.

Regarding the evaluation metrics of the trajectory forecasting, we consider the Mean
Average Displacement (MAD) error, i.e. the average Euclidean distance between all the pre-
dicted and ground-truth pedestrian locations. The Final Average Displacement (FAD) error,
i.e. the Euclidean distance between the last predicted location of each trajectory and the
corresponding manually annotated point, is employed as well. Lastly, we evaluate the per-
formance of the head pose predictions in terms of mean angular error eα, which is the mean
absolute difference between the estimated pose and the annotated ground truth.
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6.5.10 Comparison with Prior Art

We compare our model against a baseline Vanilla LSTM model, which only uses pedestrian
positions, and four state-of-the-art approaches: Social Force model (SF) [YBOB11], Linear
Trajectory Avoidance (LTA) [PESV09], Social LSTM (S-LSTM) [AGRRF+16] and Social
GAN [GJFSA18a].

Note that the Social GAN [GJFSA18a] uses ground-truth trajectories during the predic-
tion interval: At test time, the Social GAN [GJFSA18a] model predicts 20 trajectories and
uses the L2 distance w.r.t. the ground-truth trajectory to select the best one. Although this
protocol makes the comparison with all other approach unfair, we include it in the results for
the sake of completeness.

Comparative results are reported in Table 6.9. The MX-LSTM outperforms the state-
of-the-art methods across all sequences on both metrics, with an average improvement of
23.3% over the second best performer, Social GAN. The highest relative gain is achieved in
the UCY sequence and TownCentre dataset, where we achieve a MAD error of 0.49 and 1.15
respectively, improving on Social GAN by 24% and 28% respectively. We explain the larger
relative improvement by the increased difficulty of the complex non-linear people paths, in
which case the visual attention turns out an important cue. In UCY and TownCenter, people
stand in conversational groups, others walk by closely, while some of them slow down to
look at the shop windows. We provide quantitative examples of these complex motions in
Fig. 6.5.

Note that some of the evaluated methods require additional input data: both SF and LTA
require the destination point of each individual, while SF additionally requires the social
group annotations. Ours uses the manually labelled (ground-truth) head poses, which are
provided to the algorithm (only) in the observation period (before the forecast). We discuss
in the next subsection whether this manual annotation is really needed.

Effect of head pose estimator

Here we analyze the effect on performance, at inference time, of adopting a head pose esti-
mation algorithm [HTGDC17] during the observation period (prior to forecasting), instead
of the ground-truth head poses.

We automatically estimate the head bounding box given the feet positions on the floor
plane, assuming an average person being 1.80m tall. Then, we apply the head pose estimator
of [HTGDC17] that provides continuous angles for the pan orientation. At inference time,
this data is used as input to this variant, which we name “MX-LSTM-HPE”.

Results in Table 6.9 illustrate that the performance of MX-LSTM-HPE is in average 9%
worse than MX-LSTM. The importance of the head pose estimate quality for forecasting
is therefore notable, which makes future research on head pose an indispensable require-
ment. Note from Table 6.9 that the results of MX-LSTM-HPE (MAD and FAD, across all
sequences) are still better than any other competing approach.

6.5.11 Ablation Study

We analyse the net contribution of different parts of the proposed approach by investigat-
ing three variations of our model: namely Block-Diagonal, NoFrustum and Individual MX-
LSTM.
Block-Diagonal MX-LSTM (BD-MX-LSTM): This studies the importance of estimating
full covariances to understand the interplay between tracklets and vislets, rather than mod-
elling each of them as a separate probability distribution. Essentially, instead of learning
the 4 × 4 full covariance matrix Σ, BD-MX-LSTM estimates two separate bidimensional
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covariances Σx and Σa for the trajectory and the vislet modeling, thus neglecting the cross-
stream covariance. Each 2× 2 covariance is estimated employing two variances σ1, σ2 and a
correlation terms ρ as presented in [Gra13].
NoFrustum MX-LSTM: this variant reduces MX-LSTM to the social pooling of [AGRRF+16],
i.e. pooling for hidden states {hj

t} from the entire area around each individual. NoFrustum
MX-LSTM neglects the visual frustum of attention and does not select the people to pool
from based on it. Also people behind the person would therefore influence the next step
forecasting.
Individual MX-LSTM: in this case, no social pooling is taken into account. In more detail,
the embedding operation of Eq. (6.4) is removed, and the weight matrix WH vanishes. In
practice, this variant learns independent models for each person, each one considering the
tracklet and vislet points.

he last three columns of Table 6.9 report numerical results for the three MX-LSTM vari-
ants. The main facts that emerge are: 1) the highest variations are with the Zara02 sequence,
where MX-LSTM doubles the performances of the worst approach (Individual MX-LSTM);
2) the worst performing is in general Individual MX-LSTM, showing that social reasoning
is indeed needed; 3) social reasoning is systematically improved with the help of the vislet-
based view-frustum; 4) full covariance estimation has a role in pushing down the error which
is already small with the adoption of vislets.

Summarizing the results so far, having vislets as input allows to definitely increase the
trajectory forecasting performance. Vislets should be used to understand social interactions
with social pooling, by building a view frustum that tells which are the people currently
observed by each individual. All of these features are effectively and efficiently implemented
within MX-LSTM. Note in fact that the training time is not affected by whether social pooling
is included or not.

Again, although the complete method always outperforms all the competitors, the highest
improvement is on the TownCentre sequence. In our opinion this is due to the different level
of complexity in the data, indeed most of the trajectories in UCY sequences are relatively
linear, with poor social interactions, while in TownCentre there are many interactions, such
as forming and splitting groups and crossing trajectories. For the same reason, this is the
dataset where the introduction of the view frustum in the pooling of social interactions gives
the highest benefits. By contrast, in all other sequences but Zara01, decoupling the covariance
matrix into a block diagonal matrix neglecting the interplay of position and gaze (BD-MX-
LSTM) leads to a sensitive increase in the prediction error; this proves the tight relation
between the head orientation and the motion of an individual.

6.5.12 Head Pose Forecasting

Our MX-LSTM model also provides a forecast of the head pose of each individual at each
frame, for the first time. We evaluate the performances of this estimation in terms of mean
angular error eα, i.e. the mean absolute difference between the estimated pose (angle αt,· in
Fig. 6.6c) and the annotated ground truth. eα expresses how much the direction in which an
individual is looking at a particular time instant is different from the true one. This error
measure is independent from the error in the predicted position. In other words, eα measures
the error in the gaze forecasting.

Table 6.10 reports numerical results of the static head pose estimator [LYO15b] (HPE),
the proposed model fed with manually annotated head poses (MX-LSTM) and with the out-
put of HPE (MX-LSTM-HPE) during the observation period. In all the cases our forecast
output is comparable with the one of HPE, but in our case we do not use appearance cues –
i.e. we do not look at the images at all. In the case of Zara01, the MX-LSTM is even better
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Metric HPE [HTGDC17] MX-LSTM MX-LSTM-HPE
Zara01 14.29 12.98 17.69
Zara02 20.02 20.55 21.92
UCY 19.90 21.36 24.37
TownCentre 25.08 26.48 28.55

TABLE 6.10: Mean angular error (in degrees) for the state-of-the-art head
pose estimator [HTGDC17], and our model fed with manual annotations

(MX-LSTM) and estimated values (MX-LSTM-HPE).

Dataset Forecasting horizon Vanilla LSTM Social LSTM MX-LSTM Individual MX-LSTM

Zara 01

H = 12 0.90 0.68 0.59 0.72
H = 16 1.21 1.00 0.87 1.05
H = 20 1.70 1.43 1.21 1.44
H = 24 2.30 1.94 1.55 1.85
H = 28 3.07 2.35 1.92 2.47
H = 32 4.11 2.85 2.40 3.14

Zara 02

H = 12 1.09 0.63 0.35 0.63
H = 16 1.62 0.90 0.53 1.09
H = 20 2.19 1.24 0.71 1.43
H = 24 2.75 1.59 0.90 1.83
H = 28 3.31 2.00 1.16 2.25
H = 32 3.86 2.41 1.40 2.67

UCY

H = 12 0.67 0.62 0.49 0.53
H = 16 0.90 0.90 0.70 0.77
H = 20 1.19 1.08 0.95 1.01
H = 24 1.52 1.36 1.22 1.27
H = 28 1.87 1.66 1.50 1.53
H = 32 2.24 1.99 1.80 1.83

TABLE 6.11: Mean Average Displacement (MAD) error when changing the
forecasting horizon. Observation interval is kept constant at 8 frames.

that the static prediction, which highlights the forecasting power of our model. In our opin-
ion, this is due to the fact that in this sequence trajectories are mostly linear and that people
are walking fast, with their heads mostly aligned with the direction of motion. When pro-
viding the MX-LSTM model with the estimations during the observation period, the angular
error increases, as expected, but the error remains limited.

6.5.13 Time Horizon Effect

To investigate how MX-LSTM performs for longer time horizons we conduct an experi-
mental evaluation where we increment the prediction interval from 12 (standard evaluation
protocol) to 32 frames with a step size of 4, keeping the observation interval fixed at 8 frames.
We evaluated approaches on UCY, Zara01 and Zara02, since most trajectories on TownCen-
ter last less than 24 frames. We use MAD to report the error. As shown in Table 6.11,
MX-LSTM is well capable of handling longer time horizons. MX-LSTM outperforms all
other approaches on all prediction interval, which demonstrates its robustness. Based on
these results, we argue that reasoning on the head pose becomes even more important when
forecasting in the longer term. Overall, the ranking is preserved and MX-LSTM remains the
best performer.

In order to understand how many frames are enough to learn a meaningful representation
of the trajectory we varied the observation interval. Table 5 reports numerical results of
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Dataset Observation period Vanilla LSTM Social LSTM MX-LSTM Individual MX-LSTM

Zara 01

O = 1 1.62 0.89 0.96 1.43
O = 4 0.90 0.69 0.64 0.79
O = 8 0.90 0.68 0.59 0.72
O = 12 0.90 0.68 0.59 0.68
O = 16 0.90 0.68 0.59 0.60

Zara 02

O = 1 1.65 1.13 0.85 1.35
O = 4 1.17 0.74 0.48 0.84
O = 8 1.09 0.63 0.35 0.63
O = 12 1.01 0.63 0.35 0.63
O = 16 0.99 0.63 0.33 0.62

UCY

O = 1 0.82 0.71 0.62 0.88
O = 4 0.65 0.63 0.49 0.59
O = 8 0.67 0.62 0.49 0.53
O = 12 0.65 0.60 0.48 0.52
O = 16 0.63 0.60 0.48 0.52

TABLE 6.12: Mean Average Displacement (MAD) error when changing the
observation period. Forecasting horizon is kept constant at 12 frames.

Dataset Prediction interval Vanilla LSTM Social LSTM MX-LSTM Individual MX-LSTM

Zara 01

Pred = 16 1.25 1.05 0.88 0.90
Pred = 20 1.27 1.46 1.19 1.26
Pred = 24 1.78 1.88 1.57 1.64
Pred = 28 2.39 2.37 1.93 2.01
Pred = 32 3.09 3.00 2.32 2.57

Zara 02

Pred = 16 1.31 0.88 0.49 0.95
Pred = 20 1.87 1.24 0.67 1.28
Pred = 24 2.50 1.61 0.87 1.65
Pred = 28 3.19 2.05 1.11 2.04
Pred = 32 3.87 2.53 1.35 2.42

UCY

Pred = 16 1.02 0.80 0.71 0.72
Pred = 20 1.42 1.06 0.95 1.01
Pred = 24 1.87 1.34 1.2 1.40
Pred = 28 2.37 1.67 1.46 1.50
Pred = 32 2.92 2.21 1.80 1.90

TABLE 6.13: Mean Average Displacement (MAD) error when changing the
forecasting horizon. Observation interval is kept constant at 16 frames.

an experiment where we kept the forecasting horizon fixed at 12 frames, and varied the
observation period form 1 to 16 frames with the step size of 4 frames. An observation period
of 1 frame means we try to predict trajectories based only on a static observation of the
individual, with no previous history taken into account. Results prove that one frame is not
enough for all the methods under analysis. Despite this, the ranking of different approaches
is maintained throughout all the experiments, with the only exception of Zara01 sequence
with O=1, where Social LSTM outperforms competitors. Interestingly, a rapid drop in error
of about 30% is obtained by observing 4 frames instead of 1. Furthermore, 8 frames are
enough for the approaches to learn the overall shape of the trajectory in order to predict for
the next 12 frames, as the error drop from observing 8 frames to 16 frames is below 1%.

Finally, in order to understand in more depth how different methods perform for long
term forecasting, we kept the observation interval constant at 16 frames and test increasing
forecasting horizons. Table 6.13, further validates the fact that 8 frames are sufficient for
the LSTM approach to learn the representation of the trajectory. MX-LSTM is still the best
performer but the error drop from observing 8 to observing 16 frames is negligible in long



6.5. Data Driven Approaches for trajectory forecasting 51

Dataset MX-LSTM MX-LSTM-HPE (Train and Test) Pace-MX-LSTM
Zara01 0.59 0.68 0.69
Zara02 0.35 0.51 0.73
UCY 0.49 0.58 0.59
Town Centre 1.15 1.43 1.50

TABLE 6.14: MAD errors on the different datasets

term forecatsing as well. This effect speaks about the capability of LSTM-based approaches.
The performance already starts to saturate at 8 frames and adding more information does not
bring the expected gain. In our view, this highlights the temporal modelling as one of the
performance bottlenecks, on the way to progress in the field.

6.5.14 Substitutes for Head Pose

In this experiment, we analyze the importance of the head pose and question whether one may
substitute it with more accessible proxies, such as the direction of the people pace. In more
details, we implement a Pace-MX-LSTM, which uses ground truth step directions instead of
the head pose. Table 6.14 illustrates that having the step direction instead of the head pose
downgrades the MX-LSTM, since positional data are already contained in the tracklet and
the step direction can be extracted from the previous two positions. In fact, Pace-MX-LSTM
gives consistently worse results.

In Table 6.14, we additionally illustrate the importance of having access to manually
annotated head poses during training. to study this aspect, we implemented the MX-LSTM-
HPE-Train and Test, where the head pose training data is given by a head-pose detector [HT-
GDC17]. As expected, MX-LSTM-HPE-Train and Test underperforms MX-LSTM and MX-
LSTM-HPE (MX-LSTM-HPE is still trainned on manually labelled head poses, but it adopts
a head pose estimator at inference time). This is especially so on Zara02, where conversa-
tional groups make the head pose estimation noisy due to the many partial occlusions. Still,
MX-LSTM-HPE-Train and Test remains comparable to prior state-of-the-art methods.

6.5.15 Qualitative Results

Fig. 6.8 shows qualitative results on the Zara02 dataset, which was found as the most difficult
throughout the quantitative experiments. Fig. 6.8a presents MX-LSTM results: a group sce-
nario is taken into account, with the attention focused on the girl in the bottom-left corner. In
the left column, the green ground-truth prediction vislets show that the girl is havign a con-
versation with the group members, nearly not moving at all, while moving her head around.
The magenta curve (Fig. 6.8a left) represents the S-LSTM output, predicting erroneously
that the girl would leave the group. This error confirms the problem of competing methods
in forecasting the motion of people slowly moving or static, as discussed in Sec. 6.5.1. In
the central column of Fig. 6.8a, the observation sequence given to the MX-LSTM is shown
in orange (almost static with oscillating vislets). The output prediction (yellow) shows os-
cillating vislets but no movement, confirming that the MX-LSTM has learnt this particular
social behavior. If we provide the MX-LSTM with an artificial observation sequence with
the annotated positions (real trajectory) but vislets oriented toward west (third column in
Fig. 6.8a, orange arrows), where no people are present, the MX-LSTM predicts a trajectory
slowly departing from the group (cyan trajectory and arrows).

The two rows of Fig. 6.8b analyze the Individual MX-LSTM, in which no social pooling
is taken into account. Here pedestrians are not influenced by the surrounding people, and
the forecast motion is only caused by the relationship between the tracklets and the vislets.
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FIGURE 6.8: Qualitative results: a) MX-LSTM b) Ablation qualitative study
on Individual MX-LSTM (better in color).

The first row in Fig. 6.8b shows three situations in which the vislets of the observation se-
quence are manually altered to point north (orange arrows), thus orthogonal to the person
trajectory. In this case the Individual MX-LSTM predicts a decelerating trajectory drifting
toward north (magenta trajectory and vislets), especially visible in the second and third rows.
If the observation has the legit vislets (green arrows, barely visible since they are aligned with
the trajectory), the resulting trajectory (yellow trajectory and vislets) has a different behavior,
closer to the GT (green trajectory and vislets). Similarly, in the second row, we altered vislets
to point to South. The prediction with the modified vislets is in black. The only difference is
in the bottom left picture: here the observation vislets pointing south are in agreement with
the movement, so that the resulting predicted trajectory is not decelerating as in the other
cases, but accelerating toward south.
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Chapter 7

Human-Centric Light Sensing and
Estimation

7.1 Introduction

A modern lighting system should automatically calibrate itself (determine the type and po-
sition of lights), assess its own status (which lights are on and how dimmed), and allow for
the creation or preservation of lighting patterns, e.g. after the sunset. The lighting patterns
should be adjusted in a way, that is optimal for people actions and locality. As most of our
activities hold within a given light pattern [FHSM79]. Moreover, light influences our percep-
tion of space [GV06], for example we expect to see a certain illumination pattern in a musical
concert or a theater etc. The essence of such a system would be to deploy an invisible light
switch, where the change in illumination is not perceived by the user.

Furthermore, idea of a smart lighting system, is to deploy a dynamic illumination pattern
for a given activity, where the user have the sensation of "all-lit", while in reality the scene is
optimally lit. In brief, this chapter discusses both fundamental research in computer vision
and innovation transfer in smart lighting with a goal being at researching and developing
novel autonomous tools using advanced computer vision and machine learning approaches
that seamlessly integrates into smart lighting systems for indoor environments.

In this chapter, we propose a plan to create such an achievement, in light management
systems, by enabling the understanding of the environment via long-term observation, that
span days, weeks and even months, with a sensing device (i.e. RGB cameras or RGBD if in-
cluding a depth sensor) for smart illumination and energy saving via an artificial intelligence
(AI) processor (e.g. an algorithm to understand the scene and make decisions on lighting).
More specifically in this Research and Development plan, top-view time-lapse images of the
scene allow computer vision algorithms to understand it. In this work we try to estimate
the human activities from RGB and RGBD images: in particular, recognize which and where
activities occur in the environment, using technologies of detection and head pose estimation.

This chapter is a result of a joint work. Therefore, the experimental section is shared
between two theses. The work related to detection and head pose estimation was primarily
the contribution of this thesis alone.

7.2 Ego-light-perception

Any light management system that has to autonomously adjust the illumination of the en-
vironment has to be aware of two main factors: the human occupancy and their activity in
the environment (human centric analysis) and the existing ambient illumination over time
considering how is this influenced from the scene structure, the object materials and the light
sources (scene composition analysis).
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FIGURE 7.1: Overall pipeline of our system. We first acquire the RGBD
input from the camera system (left) and together with the lighting system
properties we use this information to create the Invisible Light Switch (ILS).
That is, structuring the geometry of the scene, extracting the photometric
properties of the material and applying a human centric analysis from where
we detect the human presence in the scene and extract the possible head
poses. Lastly we utilize the output of the scene analysis as the "Invisible

Light Switch" application targeting a power saving framework.

Thus the Invisible Light Switch (ILS) is presented, as a smart lighting framework for
dynamically adjusting the illumination level in an indoor environment. ILS takes into account
the geometry of the scene, the presence of people and their light perception with the goals
of maximizing the human comfort in terms of perceived light and, at the same time, with
the lowest cost in terms of energy consumption. We do this by bringing together individual
works into a unique pipeline as we show in Figure 7.1. The framework builds upon the light
estimation system [THCGD19], which is capable of estimating the light in a given 3D point
of a multi luminaire indoor environment. As we have shown, the presented radiosity model
has been customized to take into account a realistic model of light propagation, outclassing
even industrial software in the task.

We further enriched that model by including the human aspect, and showing how the in-
terplay between the light estimation system and the human activity may lead to a consistent
energy saving framework. The invisible light switch summarises the idea: an individual has
the feeling of an environment which is globally illuminated, while in reality an automated
light switch dims the luminaires in a way which is invisible to the users. This was possible by
estimating the position of a person in the sensed environment, its head orientation, and under-
standing the light which is perceived by him. In fact, the lighting sensed by a human can be
assumed as the light contained in a conic volume departing from the mean point connecting
the human’s eyes in the direction of the nose. Given this, it is possible to determine which lu-
minaries could be switched off/dimmed down while maintaining the level of perceived light
unchanged. The head pose is provided by detecting the person first and then estimating the
head orientation. The former is carried out by means the state-of-the-art detector Mask R-
CNN [he2017mask] with ResNet [he2016deep] as a backbone architecture, while head pose
is done using Hasan’s et al. method [HTGDC17].
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7.2.1 People detection and head-pose estimation

We aim to detect people and estimate their head pose (their viewing angle). For the first task
as we mentioned we adapted the Mask R-CNN [he2017mask] object detector, while for the
second one the head pose estimator proposed in [HTGDC17].

The R-CNN [he2017mask] detector has the ResNet-101 [he2016deep] as a backbone
architecture, trained on 80k images and 35k subset of evaluation images (trainval35k) of
MS COCO dataset [LMBHP+14]. We fine-tuned the detector on our top-view dataset (see
Sec. 7.3.1), adopting a specific training portion of the data. We randomly partitioned the
data into training and testing set, keeping 70% of the data for training and 30% for testing.
Since the top-view images are different from the frontal-view images of the COCO dataset
[LMBHP+14], the fine-tuning had a crucial role. We adopted a similar procedure for training
the head pose estimator as in [HTGDC17]. It is worth noting that the input for the head pose
is the whole body detection bounding box: this is because [HTGDC17] has been specifically
designed for managing small-sized head patches, exploiting the body as contextual cue for
a better final head orientation classification. In particular, 4 and 8 classes related to angles
have been taken into account.

During testing time, a cascaded approach is followed, first by applying the people de-
tector and then feeding the detected body bounding box as input into the head orientation
module.

7.2.2 Spatial light estimation

To obtain an estimate of a dense spatial illumination map, we adapted our pipeline presente-
din Chapter 4. As we have presented there we make use of a radiosity model [cohen1993rri]
for estimating the spatial illumination over time by just using the input from an RGBD cam-
era. Furthermore, we extract the information regarding the photometric properties of the
material of the scene based on a photometric stereo baseline approach that is applied on
the time-varying RGB images. This approach allows us to extract a scalar albedo at each
pixel by using a set of images with different light sources that are switched on/off during
the day. Having the light sources position and intensity, the scalar albedo under Lambertian
assumptions, and the depth map from the sensor, our proposed method in Chapter 4 showed
that it is possible to obtain a dense measurement of the light emitted by a 3D patch in the
indoor environment. In order to provide more realistic estimates, we have shown how to
model real lighting systems that, differently from point-like sources, emit light given a spe-
cific light distribution curve (LDC). The LDC is custom for each lighting system and their
properties are considered to be known when estimating the light instensity. The proposed
method shows that, even by accounting the non-linearities of LDC, it is possible to solve
for the radiosity equation with Least Squares and so obtain a more reliable measure of the
light intensity, which we evaluated by using point-to-point sensory equipment aka. luxmeters
installed across the scene.

7.2.3 Gaze-gathered light modelling

Light measurements are practically made using a luxmeter sensor. This sensor measures
the perceived light that is in function of the distance to the light, the orientation and other
manufacturing characteristics. These properties are resumed by the Luxmeter Sensitivity
Curve (LSC) as in Figure 7.2a. The LSC illustrates the perception characteristic of every
luxmeter sensor which in this work we adopt in order to meet the measuring requirements of
the collected ground truth data and to simulate the human light perception. We have chosen
this solution because this is the standard de facto in the lighting industry and it provides
satisfactory solutions when doing light commissioning [ies2011commissioning].
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(A) (B)

FIGURE 7.2: Modeling of the Luxmeter Sensitivity Curve (LSC) as a human
light perception model.

The key idea in this procedure is that, once we have detected a person in the image and
estimated his head positioning and orientation as described in Sec. 7.2.1, we extract his
posture in the 3D space by mapping the 2D image coordinates of his detected head to the
corresponding depth information. Thereafter, once we have the positioning of the head in
the 3D space as well as its orientation (where the person looks at), we estimate the light that
arrives to his/her face (or to the luxmeter as in our case) by applying a ray-casting procedure
where we simulate the human field of view (FOV). Such view frustum is obtained by using
emitted rays starting from the estimated head position towards the corresponding estimated
head orientation. The total illumination arriving to the person is computed by adding the
related spatial illumination (radiance) from the patches of the scene that are in the direct
visibility of the person. The rays project in the space as a uniform generated sequence over
the unit sphere and weighted accordingly, based on the modelled luxmeter’s LSC, towards
the visible patches from the FOV of the sensor. The contribution of each patch to the total
amount of lighting perceived by the occupant, is computed by estimating the percentage of
rays intersecting that patch.

7.3 Invisible light switch evaluation

7.3.1 Dataset overview

[THCGD19], introduced a dataset for benchmarking light measurements with ground truth
sensory data in real scenes. In this study we extended this dataset by introducing two more
scenes with human activity, one based on a normal office environment and a second one
representing a relaxing area (see Figure 7.3).

Both new scenes comprehend different human activities e.g. watching TV, working on
a desk area, chatting, etc., as well as different head orientations (VFOA) and multiple light
combinations. In this work, VFOA is a cone with vertex in the middle of a person’s eyes,
oriented as the gaze direction and an aperture angle of α = 30◦.
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(A) (B)

FIGURE 7.3: Illustration of the two indoor scenes used for evaluation: (a)
illustrates a normal office environment and (b) shows a relaxing area. Red
and green bounding boxes are showing the location of luxmeters within the
space covering the spatial and gaze-gathered illumination ground truth mea-

surements respectively.

In both rooms there is a controlled light management installation, where the position,
type and properties (e.g. luminous intensity, light distribution curve, etc.) of the luminaires
(eight in total) are considered known, see Figure 7.4.

FIGURE 7.4: Illustration of the light management installation.

For obtaining the ground truth data we have installed and used a number of sensory
equipment. A calibrated and aligned RGBD camera system (Kinect v2) is installed in the
ceiling of the room providing a top-view perspective of the scene, see Fig. 7.3 and 7.4.
Moreover, the camera is synchronized with a number of luxmeters (also indicated in Fig.
7.3) providing the light intensity ground truth data both for the spatial as well as for the gaze-
gathered (attached to the forehead of the occupants) illumination. Considering the limitation
(i.e. point-to-point) of lux readings that the luxmeters provide, we installed 11 sensors in
different areas, thus providing a reasonable sampling of the scene. We use 9 luxemetes for
evaluating the spatial illumination across the environment and 2 luxmeters for measuring the
light intenisty that arrives to each one of the occupants appearing in the scenes. For each
luxmeter, we additionally report the type and their specific light sensitivity characteristic
curve, LSC (see Fig. 7.2) giving the sensor’s sensitivity across the incident light angles.
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Thereafter, we evaluate 24 and 30 different scenarios with different luminaire activations
(luminaires switched on/off) for each room respectively (see Fig. 7.5). Our target was the
use of RGB and depth input just for light measurement, the use of luxmeters as ground truth,
and all other provided information for evaluation studies.

FIGURE 7.5: Illustration of 4 illumination variants within the two rooms.
From left to right, the images illustrate the illumination provided by 1, 4, 7

and all 8 luminaires switched on in the two scenes.

7.3.2 Top-view detection and head-pose estimation

We fine tuned both the person detector and the head pose estimator on our top-view dataset.
We report an average precision (AP) of 98% in terms of people detection. As mentioned
previously we test our approach on the testing set of our top-view dataset. For the head
pose orientation fine tuning on the whole body has been crucial for the performance, since
using the sole head region produced definitely worst scores. In particular, we adopted two
different class numbers for head pose, namely 4 and 8. The corresponding confusion matrices
are reported in Fig. 7.7, showing an accuracy of 43.2% (8 classes) and 70.7% (4 classes)
respectively. The scarce performance in the 8-class case was due to the mix among adjacent
viewing angles: actually, the average size of the head region in the dataset is approx. 40x50
pixels. For these reasons, we used the 4-class version in the light perception studies.

(A) (B)

FIGURE 7.6: Illustration of people detection and head pose estimation. We
detect people in the scene by using Mask R-CNN and then the detections are

provided as input to the head pose estimator.
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FIGURE 7.7: Confusion matrices of the head pose estimator. From left to
right, the 4 and 8 classes confusion matrix respectively.

Avg. error ε
(in Lux)

Luxmeters

1 2 3 4 5 6 7 8 9 10 11 Avg.
(1-9)

Avg.
(11-10)

Scene 1
εest

(w.r.t. GT)
62.5 26.3 68.0 65.1 47.9 57.1 44.0 29.9 28.0 97.6 92.2 56.2 94.7

εest_d
(w.r.t. GT)

- - - - - - - - - 216.08 166.4 - 191.24

Scene 2
εest

(w.r.t. GT)
35.3 33.8 44.0 20.1 31.5 39.6 23.6 27.9 27.3 41.7 69.2 35.8 55.4

εest_d
(w.r.t. GT)

- - - - - - - - - 55.42 151.93 - 103.68

TABLE 7.1: The values represent the average estimated illumination error
over the different lighting activation w.r.t. the ground truth measurements, for
both scenes. Columns 1-9 corresponds to the spatial average values for the
corresponding installed luxmeters in the environment. By contrast, values
in columns 10-11 consider those luxmeters for evaluating the human light

perception.

7.3.3 Person-perceived light estimation

Table 7.1 presents the quantitative results of our adopted light estimation approach. The table
shows the average estimated error in lux values for both spatial (luxmeters 1-9) and gaze-
gathered light estimation (luxmeters 10-11) cases. It can be easily noticed that the error,
εest, for all luxmeters does not exceed the range of 100 lux, this yields an overall average
light estimation error approx. 56 lux for Scene 1 and 36 lux for Scene 2. On the other
hand, if we now consider only the luxmeters intended for evaluating the gaze-gathered light
estimation, i.e. luxmeters 10 and 11, we notice that the error raises up to 94.7 lux and 55.4
lux for each scene respectively. This can be justified due to inaccuracies in the reconstruction
of the 3D mesh areas corresponding to the head position and orientation of the occupants, as
well as to the fact that the inter-reflections from the wall towards the sensors are limited due
to incomplete reconstruction as an outcome of the limited FOV of the depth sensor. In any
case, the fact that the average light estimation error does not exceed 100 lux indicates that the
estimated illumination map can be considered reliable for describing the global illumination
of the scene.

Furthermore, to demonstrate the applicability of our model, we used as explained a real
person detector and a head pose estimator (making the pipeline completely automatic). In
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Table 7.1 the εest_d rows for column 10 and 11, illustrates the error based on the detectors
output for both scene 1 and 2. It can be observed that while the average error w.r.t. the oracle
is less than 100 lux, this error raises up to the range of 200 lux negative variation w.r.t. to
the ground truth measurements. The last can be justified by erroneous head pose estimations,
considering the large step size (90◦) of the 4-class adapted classification problem. This fur-
ther brings into discussion the fact that this error could further be substantially reduced by
improving the head pose estimator.

FIGURE 7.8: Scene 1 & 2 boxplot error evaluation (in Lux) using based
on the presented framework. The boxplots in the first and second columns
show the absolute and signed illumination estimated error for each lighting

scenario in each scene respectively.

Figure 7.8 shows in a graph analysis the values presented in Table 7.1. The left graphs
show the absolute light estimation error (y-axis), as estimated for each of the 11 (9 for spatial
and 2 for the human light perception) used luxmeter sensors (x-axis). The gray dots, forming
each of the box plot boxes, represent the estimated error of each of the lighting scenarios for
each scene while the pink box represents the central 50% of the data. The upper and lower
vertical lines indicate the extension of the remaining error points outside it and the central
red line indicates the mean error which comes in alignment with the values shown in Table
7.1. Similarly, the boxplots on the right present the signed illumination error accordingly.
The green and red markers indicate whether the error is due to an over or under estimation
of the illuminance at the sensor’s location respectively. As it can be noticed in the most of
the cases the error is a result of an under estimation of the illuminance which as explained
earlier are a cause of the incomplete geometry of the scenes as we only consider the parts of
the environment within the FOV of the camera sensors.
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FIGURE 7.9: Illumination map of the full-lit scenario in scene 1 with a dense
representation of the global illumination of the environment.

Finally, figures 7.9 and 7.10 visualise the illumination maps in the 3D space for one of
the illumination scenarios in each of the scenes. As it can be seen the visualized illumination
maps provide an accurate dense representation of the global illumination of the environment
over time.

FIGURE 7.10: Illumination map of the full-lit scenario in scene 2. Notice
the estimated illumination in the area in front of the occupants which is less
bright in comparison to the one that are on their side. This is due to the body
occlusion on the direct illumination coming from the luminaires from their

back which is correctly estimated by the ILS.
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Scene 1 Scene 2
VFOA 1 VFOA 2 VFOA 1 VFOA 2

Luminaire
activations 3|4|7|8 2|3|4|5 3|4 3|4|7|8 2|3|4|5 3|4 3|4|7|8 2|3|4|5 3|4 1|2|3|4|5|6 2|3|4|5 1|3|4|6 3|4

Luxmeter
10

∆ lux
(w.r.t. full-lit) 116.15 123.77 189.01 85.4 123.8 163.85 84.23 93.69 151.92 106.52 148.12 157.07 191.15

εest
(w.r.t. GT) 167.2 144.09 102.73 235.3 200.1 163.28 85.85 94.1 43.76 22.94 12.97 13.59 25.69

∆watt
(w.r.t. full-lit) 387.2 387.2 580.8 387.2 387.2 580.8 387.2 387.2 580.8 193.6 387.2 387.2 580.8

Luxmeter
11

∆ lux
(w.r.t. full-lit) 97.68 125.15 169.72 167.4 86.34 194.37 62.67 118.21 153.02 99.17 154.28 167.93 194.85

εest
(w.r.t. GT) 194.63 171.74 131.55 91.14 128.7 70.21 15.26 67.87 5.39 9.4 241.12 2.81 203.69

∆watt
(w.r.t. full-lit) 387.2 387.2 580.8 387.2 387.2 580.8 387.2 387.2 580.8 193.6 387.2 387.2 580.8

TABLE 7.2: Quantitative analysis of four different head orientation class
studies (VFOA), two for each scene. ∆ lux shows the discrepancy of differ-
ent lighting scenarios w.r.t. the full lit scenario (reference). εest shows the
corresponding average error of the estimated light in regards to the ground
truth lux measurements and ∆watt shows the discrepancy of the power con-
sumption in watts considering the active/non active luminaires for each cor-

responding scenario.

7.3.4 Applications of the invisible light switch

The idea of the Invisible Light Switch is straightforward as we have presented above. Thus,
in Table 7.2 we examine the applicability of the invisible light switch from the human per-
spective aspect (luxmeters 10-11) for different head orientation cases (VFOA) in the two
scenes. The value ∆ lux provides the information regarding what is the impact to the light
perceived from the occupants (based on the ground truth sensor measurements) on different
light source combination scenarios. As it can be seen this gives us a range of 0-200 lux
negative variation even to the most aggressive scenario of having only two luminaires active
(the ones to the direct view of the occupants each time). If we connect this with the amount
of watts that we can save for this corresponding lighting scenario, i.e. ∆watt = 580.8 watt
w.r.t. to the full lit case, this can give us a total power efficiency of 12379.2 KWatt through a
whole day. The value εest reports the light estimation error based on our framework, which
as we can see again it settles within a range of 0-200 lux overall negative variation. This
error shows us how our system aligns with the ground truth measurements, i.e. a lower εest
error the better, and whether the same pattern described above could be followed. A visual
example of the VFOA 1 case for scene 1 (see Table 7.2) can be seen in Figure 7.11. As it
can be easily noticed the estimated illumination over the desk areas have the less affect as we
switch off the peripheral light sources and still providing an optimally lit scenario while it is
minimally lit.
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FIGURE 7.11: Qualitative illustration of the VFOA 1 ablation study for
Scene 1 presented in table 7.2. The top left corner shows the illumination
map of the full lit case, in comparison to three other light scenarios. As it
can be seen the estimated illumination over the desk area where the two oc-
cupants have their attention is less affected in comparison to the areas behind
them. This show in practice how the invisible light switch application could

be established.
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Chapter 8

Summary and Conclusion

The main aim of this thesis, is to justify the effort in the estimation of the head pose estimation
in surveillance scenarios. Other than being useful for individuating groups (or interactive
activities) or highlighting salient areas in the scene, the head pose serves to individuate the
visual frustum of attention, which in turns is shown to be indicative for guessing the future
path of pedestrian.

Scenarios such as surveillance, where precise gazing information cannot be retrieved
head pose serves as a proxy to visual frustum of attention. To this end, we proposed a CNN
pipeline that copes simultaneously with pedestrian detection and head pose estimation, in
surveillance scenarios. We demonstrated that the joint model performs competitively with
the state-of-the-art, beating up-to-date serial pipelines composed by pedestrian detectors,
head detectors and head pose estimators. At the same time, we confirmed that the body
information is an important cue to increase performance of head pose estimation, especially
when the head patch size is small.

Furthermore, We have argued for the importance of people head poses, as encoded in
the proposed vislets, to forecast their future motion.We have shown that vislets are mostly
aligned with the people motion, and therefore useful to forecast it. But when vislets are
not aligned with the people motion, then they express the intention of people to change
direction. Vislets differ from the current approaches, as most recent LSTM-based forecasting
has only considered own and neighboring pedestrian positions. But this is close in spirit to
decade-old works using the people desired goals. In this work, the head pose is however
estimated, not provided (e.g. by an oracle). The use of vislets is enabled by the novel MX-
LSTM framework. This jointly “reasons” on tracklets and vislets by means of a multi-variate
Gaussian distribution, the covariance of which encodes the interplay of position and head
pose. Our proposed log-Cholesky parameterization allows its unconstrained optimization
by the LSTM backpropagation, and it opens the way to including additional variables (e.g.
the people belonging to a social group). Finally, this work has delved into a comprehensive
evaluation of the proposed MX-LSTM, including ablation studies on vislets (both estimated
and provided as GT), social pooling, view frustum, observation and prediction time horizons.
MX-LSTM provides currently state of the art performance and it is most effective when
people slow down and look around to change direction, the Achilles heel of other modern
techniques.

Finally, in this thesis we have proposed a practical application for smart lighting. We
have proposed an Invisible Light Switch. The idea behind the Invisible Light Switch is
straightforward: the user controls and sets the illumination of the environment that he can
see (estimated by VFOA), while the proposed system acts on the part of the environment that
the user cannot see, turning off the lights, thus ensuring a consistent energy saving. The study
of the scene as discussed above serves this goal: knowing the 3D geometry of the scene and
the map of inter-reflectance will allow to understand how the different light sources impact
each point of the space; knowing where a user is located and what is his posture serves to
infer what he can see and what he cannot, individuating potential areas where the light can
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be turned off. Being able to forecast his future activities will help understand (in advance)
which lights should be turned on, avoiding the user to continuously act on the illumination
system, and showing the user the illumination scenario that he wants to have.
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