

UNIVERSITÀ DEGLI STUDI DI VERONA
DIPARTIMENTO DI BIOTECNOLOGIE

SCUOLA DI DOTTORATO DI
SCIENZE NATURALI E INGEGNERISTICHE

DOTTORATO DI RICERCA IN BIOTECNOLOGIE

XXXI CICLO

Identification of key regulators for grapevine ripening by integrated genetic approaches

S.S.D. AGR/07

Coordinatore: Prof. Matteo Ballottari
Firma \qquad

Tutor:
Prof.ssa Diana Bellin
Firma \qquad
\qquad

Quest'opera è stata rilasciata con licenza Creative Commons Attribuzione - non commerciale Non opere derivate 3.0 Italia . Per leggere una copia della licenza visita il sito web:
http://creativecommons.org/licenses/by-nc-nd/3.0/it/
Attribuzione Devi riconoscere una menzione di paternità adeguata, fornire un link alla licenza e indicare se sono state effettuate delle modifiche. Puoi fare ciò in qualsiasi maniera ragionevole possibile, ma non con modalità tali da suggerire che il licenziante avalli te o il tuo utilizzo del materiale.

NonCommerciale Non puoi usare il materiale per scopi commerciali.

Non opere derivate - Se remixi, trasformi il materiale o ti basi su di esso, non puoi distribuire il materiale così modificato.

Identification of key regulators for grapevine ripening by integrated genetic approaches Pietro Delfino
Tesi di Dottorato
Verona, 17 Maggio 2019

Identification of key

regulators for grapevine ripening by integrated genetic approaches

Table of contents

Summary

Background

Vitis vinifera L.
The genome of Vitis vinifera
The reproductive developmental cycle of grapevine
Grapevine veraison
Impact of climate change on viticulture

Chapter 1

Integration of meta-QTL analysis and transcriptomic data identifies candidate genes controlling veraison time in grapevine

Chapter 2

Exploit the genetic diversity of a grapevine collection for genetic association studies

Conclusions

Acronyms

Appendix

Acknowledgments

Summary

Grapevine is one of the most economically relevant fruit crops in the world. In the past few years climate change and in particular global warming have started to significantly impact agriculture and viticulture as well. Indeed, higher temperatures occurring early during the growing season may advance the date of the phenological stages like bud burst, flowering and veraison. As a consequence, the shift in veraison to earlier dates causes ripening to occur under higher temperatures which impairs wine quality. It is of great interest for viticulture to investigate the timing of veraison and disentangle its genetic control. Genetic variation between cultivars leads to differences in the expression of phenotypic traits such as veraison time. A deeper knowledge of the genes involved in the phenology processes is critical to select varieties that are well adapted for current and future climatic conditions.

The aim of this thesis was to identify the most promising candidate genes for the regulation of the transition to grapevine berry ripening through complementary genetic study. The thesis is divided in two chapters: in the first chapter an approach based on the integration of data from QTL studies has been developed, in order to narrow down the number of candidate genes that may be related with berry ripening. Meta-QTL analysis integrated with transcriptomic data led to the identification of 61 candidate genes related to veraison, including well known transcription factors and genes related to carbohydrate metabolism.

In the second part, we have characterized a wide germplasm collection of different grapevine accessions (from CREA-VIT Conegliano collection) with the aim to identify the best panels of grapevine varieties, representing the most diverse genotypes and phenotypes for the traits of interest, to be exploited to test the genotype-phenotype association. The Conegliano collection has been previously phenotyped for flowering time and veraison time in the last 50 years; our work focused on the phenotypic data of the last 13 years (data kindly made available by our partners). These phenotypic data have been firstly used to assist the construction of a core collection, including the most genetic diverse accessions and individuals with contrasting phenotypes. Approximately 600 CREA-VIT accessions were previously genotyped (Cipriani et al., 2010) using 45 microsatellite markers. The
genotypic data have been used to assess the genetic diversity and population structure of the Conegliano collection. The end of the second part was dedicated to performing the association analysis itself with two different approaches, firstly using the GrapeReSeq 18K Vitis genotyping chip, then with an innovative approach called XP-GWAS (Yang et al., 2015) where pool of individuals displaying extreme phenotypes are whole-genome resequenced and allele frequencies compared to a random pool are screened for enrichment.

The findings of this study provide indications of the genetic factors controlling or influencing veraison time in grapevine. The elucidation of the genetic network underlying the beginning of the berry ripening phase is of fundamental importance for the need to breed new grapevine varieties adapted to changing climatic conditions.

Background

Vitis vinifiera L.

Grapevine belongs to the family Vitaceae, a family of fourteen genera and about 910 known species (Christenhusz and Byng, 2016), covering mainly woody or herbaceous lianas (Mullins et al., 1992). Vitis is the most common genus of the family and contains 79 species. Vitis species are mainly spread in temperate zones of the Northern hemisphere and the same number of species is almost found between America and Asia. Only one Vitis species is native to Europe, Vitis vinifera L., which consists of two subspecies, Vitis vinifera L. subspecies sylvestris, the wild grapevine, and Vitis vinifera L. subspecies vinifera, the cultivated grapevine (Boss et al., 2003). The wild species Vitis vinifera sylvestris is the progenitor of the cultivated one, characterized by many large, sweet berries (Duchene, 2016). As a result, Vitis vinifera vinifera (Vitis vinifera from now on) is hermaphroditic while Vitis vinifera sylvestris is dioecious. Considering cultivation area (about 7.5 million ha in 2014) and economic value, grapevine is one of the major fruit crops of the world. The centre of domestication for grapevine is considered the near East between the Black Sea and Iran (Terral et al., 2010). From there, the first cultivated forms were diffused by humans probably throughout the middle and near East up to central Europe. To date, all the most known grapevine varieties, such as Pinot, Cabernet Sauvignon or Sangiovese, derives from Vitis vinifera. More than 74 million tons of grapes are produced annually, with the greatest portion in Europe. The usages of the grapes are various (fresh as table grapes, dried as raisins, juice, jelly, jam, ethanol, vinegar, grape seed oil, tartaric acid, and fertilizer), however, the most common product is wine (53% of the world's yield of grape). Vitis vinifera is hence one of the most important cultivated plants of the whole world.

The genome of Vitis vinifera

Vitis vinifera is a diploid plant with 38 chromosomes ($\mathrm{n}=19$). It has a genome size of approximately $475-500 \mathrm{Mb}$ (Jaillon et al., 2007) and about 32,000 genes (Vitulo et al., 2014). Since fertilization is occurring mainly by means of wind and insect
pollination, all grapevine varieties are highly heterozygous. Inbreeding depression is also a particular feature of grapevine, with sterility occurring often from the first to third generation of selfing. A reference genome sequence is available since 2007 from Jaillon et al.; this sequence is derived from a cultivated clone of Vitis vinifera Pinot Noir (PN40024), which from recurrent selfings has reached about a 93% of homozygosity. The Vitis genome sequence was firstly created from a Sanger sequencing assembly at an average 8 -fold coverage of the genome, later updated with a 12X assembly in 2010 when additional sequences were added to the pool (http://www.genoscope.cns.fr/externe/GenomeBrowser/Vitis/). The PN4002412 Xv 0 assembly, available on the website of the international Grape Genome Browser Genoscope, was improved and updated to the 12 Xv 2 assembly by the French-Italian Public Consortium (Canaguier et al., 2017) but the sequences of contigs and scaffolds remained unchanged compared to version 12Xv0. Several different gene annotations derived from different gene predictions are available at present. One gene set derived from PN40024-12Xv0 is available since 2009 and can be found on the Genoscope website. The gene prediction 12Xv1 is the result of the union of v0 and a gene prediction performed at the Centro di Ricerca Interdipartimentale per le Biotecnologie Innovative (CRIBI) in Padova, Italy and is available on the CRIBI website (http://genomes.cribi.unipd.it/grape/). In 2014 an improved gene annotation, called v2 was established on the 12 Xv 0 assembly version at the CRIBI (Vitulo et al., 2014). Recently, with the advent of new sequencing technologies based on the so-called "long reads", the area of the plant genomics has started to take advantage of these new approaches, and few grapevine genome announcements based on it have been made (Chin et al., 2016; Roach et al., 2018).

The reproductive developmental cycle of grapevine

Vitis vinifera is a polycarpic perennial plant that cycles between periods of flowering and vegetative growth. Its entire reproductive developmental cycle is completed over two consecutive growing seasons, separated by dormancy (Carmona et al., 2008). Both vegetative and reproductive tissues are formed simultaneously on the same shoot by the shoot apical meristem. During the spring
of the first season, lateral meristems, called uncommitted primordia, are formed within latent buds in the axis of grapevine leaves, and do not burst until the second year after formation. These will develop into inflorescence primordia, while other uncommitted primordia formed on rapidly growing shoots will develop into tendrils. Inflorescence primordia enter dormancy in autumn of the first year when day length decreases then stay dormant throughout winter (Fennell et al., 2015). Bud growth is halted during bud dormancy to better tolerate low temperatures and frost. The second season is initiated in spring with bud burst when environmental conditions become permissive. Shortly before and during bud burst, flower initials are formed and flower parts become distinct. The conversion from inflorescence primordia to inflorescences begins in the spring. Inflorescence formation is regulated at the level of formation of uncommitted primordia and at the level of differentiation. Flowering occurs around May - June in the Northern hemisphere, after which berry formation and berry ripening take place.

Grapevine veraison

Veraison is the phenological stage that marks the beginning of ripening of the grapes. Several events are initiated during this phase, for example the change in skin colour, berry softening, sugar accumulation, and organic acid decline (Coombe and Bishop, 1980; Uhlig and Clingeleffer, 1998). Grapevine berry ripening follows a biphasic growth, resembling a double sigmoid curve. In the first phase, fruit set is occurring, and little hard green berries develop to a medium size; then growth interrupts for a lag phase and starts again with a second stage of maturation where softening of the berries, sugar accumulation, acid decline and colour changes of the pericarp occur. During ripening, the berries develop the properties specific to the cultivar, and then complex physical and chemical processes take place gradually from veraison to physiological maturity. The polyphenolic compounds, in particular anthocyanins, are the group subject to the main changes during berry ripening; anthocyanins accumulate rapidly, while phenolic acids levels are lower than those of anthocyanins and show different alteration during ripening (Giovanelli and Brenna, 2007). Sugar and organic acid content also undergo significantly changes during berry ripening; while the concentration of glucose and
fructose increase rapidly, organic acids decline (Sadras and Mccarthy, 2007). Each of the compounds that is subject to variation during the ripening stage may differ among genotypes and may be different according to the stage of development of the berry. Veraison is usually evaluated by checking the berries for the beginning of softening or the start of anthocyanin pigmentation, the latter process that results more difficult for white-berried cultivars, that instead of depositing anthocyanins in the skin, lose chlorophyll and start to brighten. In the internationally recognized system of descriptors for grapevine phenotypic traits developed by OIV (Organisation Internationale de la Vigne et du Vin, OIV), veraison time is described by five classes 1, 3, 5, 7 and 9 (OIV descriptor 303), with class 1 representing cultivars displaying an early veraison time and class 9 represents the very late ones. Grapevine phenology stages are also defined with the BBCH code (Lorenz et al., 1994) (stage 81), or in the E-L System (Coombe, 1995) (stage 35). Veraison time is strictly correlated to the other phenological stages and is considered a predictor of maturity and harvest time (Sadras and Petrie, 2011). It may differ significantly between cultivars and has a strong genetic determination (from this thesis, broad sense heritability estimated is 0.424). Several QTL studies have identified unique and common genetic loci explaining variable portion of the phenotypic variance, for example on chromosome 16 (Costantini et al., 2008; Duchêne et al., 2012; Fischer et al., 2004; Zyprian et al., 2016). Grapevine breeders have recently started to apply marker-assisted selection, approach that will reveal helpful especially for phenotypic traits where manual evaluation is complex and automated scoring is still lacking, such as phenology traits. Genetic markers associated to veraison time would unveil useful tools for marker-assisted breeding of new cultivars adapted to climate change.

Impact of climate change on viticulture

It is a truth universally acknowledged that climate change is occurring and is shaping the future of agriculture. Viticulture is one of the niches of agriculture that is suffering the most, given the tremendous differences in terms of wine quality that can result from even light variations in terms of precipitations and temperature during a single season, especially in cool-climate viticulture (Vasconcelos et al.,
2009). In fact, with respect to the weather conditions, yield can vary up to 32.5% between seasons, which makes grapevine by far the crop with the highest seasonal variation in yield (Boss et al., 2003; Lebon et al., 2008). Yields and quality are not only affected by events mediated all over the season, but also by extreme and precise damages occurring during key phenological stages like budburst and flowering. The major and more evident effect of climate change is global warming, that is leading to a tendency to higher temperatures at earlier dates during the growing season. This obviously results in an advancement of bud burst, flowering and veraison stages. The predicted shift in veraison to earlier dates may cause ripening to occur under higher temperatures (Delrot et al., 2013), thus affecting grape composition and wine quality, in particular by impairing the accumulation of anthocyanins in the berries, a condition that is thought unfavourable for wine quality (Duchene, 2016). Moreover, with earlier ripening a compressed time window for many grapes is observed, leading to a compressed harvesting period. Stronger temperatures or frost damage can also affect the number of flowers and thus the number of berries per plant. Few studies have shown that the higher the temperatures around bud burst, the lower the number of flowers per inflorescence (Keller et al., 2010; Petrie and Clingeleffer, 2005). Furthermore, increased temperatures lead to longer drought periods and water stress which also poses a strain to viticulture; water deficit during floral initiation can lead to a decreased number of inflorescences and can have a negative influence on berry weight, especially when applied after veraison (Niculcea et al., 2014). On the other hand, cold, rain and frost conditions are other problems affecting berries development; in particular cold or rainy weather around flowering can reduce the number of grape clusters formed; frost conditions if occurring during late spring can cause significant crop loss when showing up after bud burst (Mosedale et al., 2015; Mullins et al., 1992).

Among all the possible options that we have to contrast the negative effects of climate change in viticulture, in this thesis we discuss the genetic approach; that is, the possibility of studying and understanding the genetic of the berry ripening process in order to exploit the source of natural variation coming from different grapevine varieties and breed new cultivars adapted to a changing climate.

Chapter 1

Integration of meta-QTL analysis and transcriptomic data identifies candidate genes controlling veraison time in grapevine

Abstract

High temperature impairs the quality of grapes and wines. Understanding the genetic control of grapevine phenology-related processes is crucial to successfully breed varieties more adapted to a changing climate. Veraison time, in particular, is a key factor for determining climatic conditions during ripening, in a sense that, depending on the period of the season when occurring, it will impact the time of the season when ripening time will occur. Quantitative trait loci (QTL) studies attempting to elucidate the genetic determinism of developmental stages in grapevine have identified genomic regions including large number of genes. Broad scale transcriptomic studies, by identifying sets of genes modulated along berry development and ripening, have also highlighted a huge number of putative candidates. With the final aim of providing a functional and integrated genomic overview for the genetic control of grapevine veraison time, and of prioritizing possible main genetic regulators, we have applied a meta-QTL analysis for grapevine phenology-related traits and checked for co-localization of transcriptional candidates. Twelve QTL studies were considered, including 174 QTLs related to phenology. By using the software BioMercator v4.2 a consensus genetic map including 3130 markers was compiled. QTLs were projected onto the consensus map and clustered into meta-QTLs. Anchoring to the grapevine genome assembly 12X.v2 allowed us to select positional candidates. We generated 17 metaQTLs from 69 QTLs for the traits flowering, veraison and ripening among which 4 specifically related to veraison time. Moreover 11 meta-QTLs for genomic regions generically affecting phenology were revealed. This approach allowed reducing the number of positional candidates by almost 4-fold. Expression data generated by transcriptomic studies during berry development performed on several grape varieties were mined with different approaches to select, among positional candidates, genes significantly modulated at veraison time.

Introduction

High temperature impairs the quality of grapes and wines. Understanding the genetic control of grapevine phenology-related processes is crucial to successfully breed varieties more adapted to a changing climate. Veraison time, in particular, is a key factor for determining climatic conditions during ripening. Understanding the genetic control of phenological developmental stages (i.e. flowering, veraison, ripening, etc) would be helpful for the adaptation of local varieties to changing climate. In particular, delaying berry veraison and ripening is a desirable breeding target, since ripening occurring under very hot summer strongly affect and uncouple berry quality traits. By applying QTL analysis, segments of the genome carrying with higher probability genes involved in the traits of interest, and thus with a potential for breeding applications, can be identified. QTL studies allow to define the genetic control of phenotypic traits dissecting the phenotypic variation and determining the contribution of each QTLs. QTLs studies in grapevine have focused on different phenotypic traits. Quantitative trait loci (QTL) studies attempting to elucidate the genetic determinism of developmental stages in grapevine have identified genomic regions including large number of genes. According to these QTL studies, a complex inheritance would control phenology traits, with low contributions scarcely reproducible among studies, even though few reproducible contributions were found. An interesting opportunity to rationalize and interpret the plethora of QTL information, especially to the aim of providing relevant trait candidates, comes from QTL meta-analysis (Goffinet and Gerber, 2000; Veyrieras et al., 2007) a statistical framework to project QTLs on a consensus map which allows to identify and mine co-localizing QTLs among independent experiments. Indeed, QTLs detected independently and located in a given region of a chromosome could possibly represent several estimations of the position of one single QTL. This hypothesis can be tested by appropriate statistical tools which indicate the most likely number of 'real' QTLs underlying a pool of QTLs from independent experiments, providing alongside consensus positions for these narrowing down the QTLs confidence intervals. The resulting meta-QTLs are expected to better define the boundaries of the causative genomic intervals by integrating information from different studies. QTL meta-analyses have become
popular in literature where they are used both to summarize QTL information about one trait as well as to locally verify the co-location of QTLs between different populations as a first step towards QTL validation and/or prioritization of candidates. Chardon et al. (Chardon et al., 2004) first applied this approach to study flowering time in maize by summarizing several QTLs from different mapping populations into meta-QTLs. Subsequent positional cloning and association mapping analysis found in meta-QTL intervals two genes effectively involved in modulating flowering time (Ananiev et al., 2007; Salvi et al., 2011). These successful examples confirmed meta-analysis as very useful method for predicting candidate genes and for developing molecular markers for breeding. Lately, metaanalysis has been successfully used in studying QTL in different species like rice (Khowaja et al., 2009), cotton (Said et al., 2015), potato (Danan et al., 2011) and many others. So far, this approach has not been applied in grapevine.

Given this, it must be also noted that the meta-analysis of QTLs is a methodology that does not necessarily imply causation; that is, a newly defined meta-QTL may arise from different original input QTLs that share a common genetic determinant, but may also arise from a simple "physical" co-localization or proximity. Especially in not so dense genetic maps, QTL often spans several cM , resulting in easy overlapping of QTLs that do not have a real biological common meaning. Also when different "rounds" of meta-analysis are conducted with QTLs identified from different phenotypic traits (Danan et al., 2011), the risk of obtaining meta-QTLs that do not share the same genetic background is higher. Indeed, QTL colocalization can be due to tight-linkage of QTL/genes playing different functions, but could also arise from pleiotropy; when pleiotropy is likely, it would also justify meta-analysis across traits, to further reduce the number of candidates. Such a risk of "fake" co-localization may be contained if input QTLs are manually selected and curated, and maybe also if genes contained in the original QTLs intervals are screened in advance and checked for congruence. A great advancement in the metaQTL analysis would also come from the integration of original genotypic data instead of genetic maps markers' distance and name; operation that is limited by the lack of resources and standards to deposit original genotyping data. Indeed, by using original data to create consensus map, this will reflect more precisely the real
position and distance of the different markers, then the QTLs projection would be more accurate, avoiding false overlappings and moreover the information of the alleles of the parents would be available thus making it fundamental in the view of selecting the favourable allele for new breeding programs.

Transcriptomic experiments in grapevine identified a number of genes as candidates for phenology in particular for the transition from immature to mature stage, the so-called veraison (Fasoli et al., 2012; Massonnet et al., 2017; Palumbo et al., 2014). The number of this transcriptomic candidates and QTL positional candidates is very large. To prioritize candidate genes it would be useful to integrate meta-QTL results, in particular meta-QTL positional genes, with transcriptomic candidate genes to identify most important genes. Broad scale transcriptomic studies, by identifying sets of genes modulated along berry development and ripening, have also highlighted a huge number of putative candidates. With the final aim of providing a functional and integrated genomic overview for the genetic control of grapevine veraison time, and of prioritizing possible main genetic regulators, we have applied a meta-QTL analysis for grapevine phenology-related traits and checked for co-localization of transcriptional candidates. We have created the first grapevine consensus map, performed the first meta-QTL analysis in grapevine, anchored the consensus map to the updated assembly of grapevine genome, integrated data from transcriptomic studies and prioritized candidate genes for veraison control in grapevine. In this study, we report a candidate-genes prioritization approach based on two steps: in the first step we perform a metaanalysis of QTLs associated to grapevine phenology; in the second step we integrate the information of grapevine phenology-related hub-genes pinpointed in transcriptomic studies with the results of the QTL meta-analysis, in order to identify genes to be considered as key regulators for the veraison stage of grapevine. The meta-QTL analysis was conducted creating the first grapevine genetic consensus map, integrating 39 different mapping populations. The consensus map was then anchored to the grapevine genome using 1055 markers. To our knowledge, this is the first meta-QTL analysis conducted in grapevine.

Methods

Grapevine consensus map construction

The process of consensus map creation started with the collection of individual genetic linkage maps with information on marker names and position in cM . To make it possible to combine the individual maps into a consensus map, marker names must be consistent. We manually checked and curated the name of the markers in order to correct misspellings and find synonyms. The files were input in BioMercator V4.2 (input files available upon request) and the linkage groups were oriented according to the reference map of Doligez (Doligez et al., 2006). Linkage groups that did not share at least two markers with the corresponding linkage groups of other maps were removed from the analysis, leading to a different number of input maps in the construction of the consensus linkage groups. The command InfoMap was used to evaluate markers order and consistency between each pair of input maps; in case of inversions in markers order between maps, the occurrence of the inverted markers in all the maps was evaluated and only the marker less represented across all the maps was removed. After all the inversions were corrected, the command ConsMap was used to construct the consensus map in a single step, without using any map as reference.

In silico mapping of GCM markers and anchoring to the grapevine genome

Sequences of the GCM markers were downloaded from the publications where they originally appeared and were blasted against the 12X.v2 assembly of the grapevine genome using the website https://urgi.versailles.inra.fr/blast/. An anchor map was thus created composed of the univocally mapping GCM markers and corresponding position in base pairs. The anchor map was uploaded to BioMercator and the option "New genome version" was used to anchor the GCM to the new structural annotation of the grapevine genome as a .gff3 file (https://urgi.versailles.inra.fr/Species/Vitis/Annotations). Physical positions of QTLs, meta-QTLs and candidate genes located in confidence intervals were then automatically calculated by BioMercator using an internal formula (Yannick De Oliveira, personal communication) and downloaded to be reported in the tables.

QTL projection and meta-analysis

Before performing the meta-analysis, specific information of QTL data were collected, in particular start and end position of the confidence interval and peak of the QTL, its associated variance explained value $\left(R^{2}\right)$, and the size of the population that was used for mapping the QTL. These information were input in BioMercator and each QTL was associated to the genetic map where it was originally mapped. The command QTLProj was then applied in order to project the QTLs of the component maps to the consensus map; the command performs a homothetic projection of the original QTL to the consensus map only when flanking markers are found where the ratio of the distance of these markers to the confidence interval of the QTL that is being projected is not reduced by a factor greater than 0.25 . In our case default options were kept. The meta-analysis itself was then executed; we used the Veyrieras algorithm (Veyrieras et al., 2007) which in BioMercator is divided in two steps, the QTLClust and MQTLView. The QTLClust performs the clustering of the input QTLs belonging to the same trait and finds the real number of meta-QTLs, calculating as many models as the number of the input QTLs and five different criterion values, AIC (Akaike information criterion), AICc, AIC3, BIC (Bayesian information criterion) and AWE (average weight of evidence), for each one of the models. The best model was then selected as the model minimizing the criterion value. The second step, MQTLView, was then used to graphically represent the meta-QTLs identified according to the selected model.

Transcriptomic data integration

RNA-Seq gene expression data (Fasoli et al., 2018) from 99 berry RNA samples from the cultivars Pinot Noir collected in triplicates in the years 2012, 2013 and 2014 around the time of veraison were analysed. To identify the most significant genes modulated across veraison, we developed a strategy that takes into account the entity of the modulation in the comparison of the time-point before veraison. We used a recently published dataset (Fasoli et al., 2018) reporting the results of the differential expression analysis between different time-points of the berry samples from the cultivars Pinot Noir and Cabernet Sauvignon, sampled in triplicated in the years 2012, 2013 and 2014. We selected the genes that, between
the time-point -T1 and veraison (T0), were significantly differentially expressed and displayed an absolute value of $\log 2$ of the fold change $(|\log 2 F C|)$ greater than all the other comparisons.

Results and discussion

Collection of grape QTLs studies for QTLs data integration

With the final aim of integrating available information about grapevine QTLs emerging from independent studies/populations, and especially QTLs related to veraison time control, literature was mined to identify all published grapevine QTL studies up to October 2018. Studies relying on genetic maps without enough shared markers with other maps (i.e. genetic maps including only AFLP or SNPs), or not providing information about genetic map version used as reference or all genetic information about detected QTLs, were not considered. This resulted in the selection of 42 publications, reporting 47 different QTL maps. A list of all these, including reference and information about the related genetic map, is provided in Table 1. These QTL studies exploited overall 24 different cross populations, constituted on average by 157 offsprings (number of offsprings ranging from 74 to 265). Cross population were mainly F1, with the only exception of two populations obtained by self-pollination and one obtained by selfing an F1 (Blasi et al., 2011; Duchêne et al., 2009; Fennell et al., 2019). Large number of cross populations (14) were derived by crossing Vitis vinifera with hybrids or other Vitis species, but a number of intra-vinifera cross was also represented. The selected QTL studies included 2093 QTLs for 354 different phenotypes scored. For each QTL study we focused on QTLs detected in the consensus map, when this was provided. QTLs mapped on parental maps were included only if genetic data for consensus maps were not available (see Table 1). All QTLs were considered, independently of their score thresholds, LOD/variance values or years of observation. A detailed list of all scored phenotypes, grouped for each study and including the QTL short name used in the relative reference as well as a short description, is provided as Table S1 (external file). More details about the phenotypic scoring for each QTL can be found in the original reference. Each measured phenotype/QTL was manually attributed to its most related trait, for which the score was considered to be a
descriptor, and traits were arbitrarily grouped in nine main trait categories. An overview about currently more characterized plant traits in grape, grouped according to the nine different trait categories, is given in Figure 1.

Table 1. List of QTL studies

QTL study reference	Genetic map reference	Cross	Female Parent	Male Parent	$\begin{aligned} & \text { Pop } \\ & \text { Type } \end{aligned}$	$\begin{aligned} & \text { Pop } \\ & \text { Size } \end{aligned}$	QTL categories	Total number of used QTLs
Azuma et al. 2015	Ban et al. 2014	line 693	626-84	Iku82	F1	74	berry metabolites	31
Ban et al. 2014	Ban et al. 2014	line 693	626-84	Iku82	F1	98	berry metabolites	10
Ban et al. 2016	Ban et al. 2014	line 693	626-84	Iku82	F1	98	berry morphology, phenology	24
Bayo Canha, PhD thesis 2015	Bayo Canha, PhD thesis 2015	MN x SY	Vv Monastrell	Vv Syrah	F1	229	phenology, berry morphology, cluster related traits, berry metabolites	40
Bellin et al. 2009	Bellin et al. 2009 (parental maps)	CHx BI	Vv Chardonnay	Bianca	F1	116	pathogen resistance	18
Bert et al. 2013	Bert et al. 2013	CS x RGM1995-1	Vv Cabernet Sauvignon	Vr Gloire de Montpellier	F1	138	vegetative traits, abiotic stress response	129
Blasi et al. 2011	Blasi et al. 2011	V. amurensis 'Ruprecht' S1	Va 'Ruprecht'	Va 'Ruprecht'	S1	232	pathogen resistance	8
Cabezas et al. 2006	Cabezas et al. 2006	D x AS	Vv Dominga	Vv Autumn Seedless	F1	118	berry morphology, seeds related traits	20
Carreño Ruiz, PhD thesis 2012	Carreño Ruiz, PhD thesis 2012	RS x M	Vv Ruby Seedless	Vv Moscatuel	F1	78	phenology, cluster related traits, berry morphology, berry metabolites, seeds related traits	72
Correa et al. 2014	Correa et al. 2014	RS x S	Vv Ruby Seedless	Vv Thompson Seedless	F1	137	cluster related traits	19
Correa et al. 2015	Correa et al. 2015	RS x S	Vv Ruby Seedless	Vv Thompson Seedless	F1	137	berry morphology, seeds related traits	40
Correa et al. 2016	Correa et al. 2016	RS x S	Vv Ruby Seedless	Vv Thompson Seedless	F1	137	berry morphology	6
Costantini et al. 2008	Costantini et al. 2008	I x BP	Vv Italia	Vv Big Perlon	F1	163	berry morphology, seeds related traits, phenology	25
Costantini et al. 2015	Costantini et al. 2015	SY x PN	Vv Syrah	Vv Pinot Noir	F1	170	berry metabolites	554
Coupel-Ledru et al. 2014	Coupel-Ledru et al. 2014	Sx G (and reverse)	Vv Syrah	Vv Grenache	F1	186	vegetative traits, abiotic stress response	29
Coupel-Ledru et al. 2016	Coupel-Ledru et al. 2014	S x G (and reverse)	Vv Syrah	Vv Grenache	F1	186	vegetative traits, abiotic stress response	100
Doligez et al. 2010	Doligez et al. 2010	MTP3140	Vv MTP2223-27	Vv MTP2121-30	F1	139	cluster related traits	2
	Doligez et al. 2010	MTP3140	Vv MTP2223-27	Vv MTP2121-30	F1	139	berry morphology, seeds related traits	55
Doligez et al. 2013	Coupel-Ledru et al. 2014	S x G (and reverse)	Vv Syrah	Vv Grenache	F1	191	berry morphology, seeds related traits	77
Duchêne et al. 2009	Duchêne et al. 2009	S1 MO	Vv Muscat Ottonel	Vv Muscat Ottonel	S1	121	berry metabolites	7
Duchêne et al. 2012	Duchêne et al. 2012	RI x GW	Vv Riesling	Vv Gewürztraminer	F1	188	phenology	22
	Fechter et al. 2014	V3125 x Börner	Vv V3125	Börner	F1	202	phenology	22
Fechter et al. 2014	Zyprian et al. 2016	Gf.Ga-47-42 x Villard blanc	Gf.Ga-47-42	Villard blanc	F1	151	phenology	9
Garris et al. 2009	Garris et al. 2009	Vitis riparia x Vitis hybrid Seyval	Vr PI 588289	Seyve Villard 5-276	F2	119	vegetative traits	17

Grzeskowiak et al. 2013	Costantini et al. 2015	SY x PN	Vv Syrah	Vv Pinot Noir	F1	170	phenology, cluster related traits	27
Guo et al. 2015	Guo et al. 2015	'87-1’ x ‘9-22'	87-1	9-22	F1	149	berry metabolites	30
Herzog et al., 2015	Zyprian et al. 2016	Gf.Ga-47-42 x Villard blanc	Gf.Ga-47-42	Villard blanc	F1	151	pathogen resistance	1
Huang et al. 2012	Huang et al. 2012	SxG (and reverse)	Vv Syrah	Vv Grenache	F1	191	berry metabolites	114
Huang et al. 2014	Huang et al. 2012	SxG (and reverse)	Vv Syrah	Vv Grenache	F1	191	berry metabolites	29
Malacarne et al. 2015	Costantini et al. 2015	SY x PN	Vv Syrah	Vv Pinot Noir	F1	170	berry metabolites	200
Marguerit et al. 2012	Marguerit et al. 2012 (parental maps)	CS x RGM1995-1	Vv Cabernet Sauvignon	Vr Gloire de Montpellier	F1	138	vegetative traits, abiotic stress response	22
Mejía et al. 2007	Mejía et al. 2007	RS \times S	Vv Ruby Seedless	Vv Thompson Seedless	F1	144	berry morphology, phenology, seeds related traits	26
Mejía et al. 2011	Mejía et al. 2011	RS x S	Vv Ruby Seedless	Vv Thompson Seedless	F1	139	berry morphology, seeds related traits	6
Moreira etal 2011	Moreira et al. 2011	$\mathrm{VN} \times \mathrm{RP}$	Vv White Muscat	Vr Wr 63	F1	174	pathogen resistance	26
Moreiraetal. 201	Moreira et al. 2011	RTx AM	VRH3082 1-42	SK77 5/3	F1	94	pathogen resistance	6
Ochssner et al. 2016	Ochssner et al. 2016	V3125 x Börner	Vv V3125	Börner	F1	202	pathogen resistance	7
Rex et al. 2014	Zhang et al. 2009	V3125 x Börner	Vv V3125	Börner	F1	188	pathogen resistance	20
Schwander et al. 2012	Schwander et al. 2012	Gf.Ga-52-42 x Solaris	Gf.Ga-52-42	Solaris	F1	265	pathogen resistance	5
VanHeerden et al. 2014	VanHeerden et al. 2014 (Regent parental map)	Regent x Red Globe	Regent	Vv Red Globe	F1	186	pathogen resistance	7
Viana et al. 2013	Viana et al. 2013	AT0023	D8909-15	Vv B90-116	F1	203	vegetative traits, phenology, cluster related traits, berry morphology, berry metabolites, seeds related traits	41
Welter et al. 2007	Welter et al. 2007	RxL	Regent	Vv Lemberger	F1	144	pathogen resistance	21
Zhang et al. 2009	Zhang et al. 2009	V3125 x Börner	Vv V3125	Börner	F1	188	pathogen resistance	2
Zhao et al. 2015	Zhao et al. 2015	'87-1' x ‘9-22'	87-1	9-22	F1	149	berry morphology, phenology, berry metabolites	5
Zhao et al. 2016	Zhao et al. 2015	'87-1' x '9-22'	87-1	9-22	F1	149	phenology	5
Zyprian et al. 2016	Zyprian et al. 2016	Gf.Ga-47-42 x Villard blanc	Gf.Ga-47-42	Villard blanc	F1	151	phenology, pathogen resistance	157

Number of QTLs for each trait as well as number of studies considering each trait are shown. The trait for which the highest number of QTLs is currently available in the literature is berry metabolites content. This is expected since high throughput metabolomic approaches can easily release large datasets. However, the overall most scored trait across independent studies was berry weight (scored in 12 independent studies), while categories most addressed by QTL studies so far have been phenology and pathogen resistance.

Abiotic Stress Response	Berry Metabolites	Berry Morphology	Cluster Related Traits	Pathogen Resistance	Phenology	Seeds Related Traits	Vegetative Traits
Drought Stress	Anthocyanins	Berry Weight	Fertility	Downy Mildew Resistance	Ripening Time	Seed Number	Growth
Chlorosis	Terpenols	Berry Firmness	Berry Number	Powdery Mildew Resistance	Veraison Time	Seed Weight	Leaf Morphology
	Seed And Skin Tannins	Berry Diameter	Peduncle Length	Phylloxera Resistance	Flowering Time	Seed Percent Dry Matter	Water Use Efficiency
	Flavonol	Berry Volume	Cluster Architecture	Black Rot Resistance	Interval	Seed Response To Ga	Leaf Area
		Berry Response To Ga	Cluster Weight	Botrytis Resistance	Budburst		
			Cluster Response To Ga				

Figure 1. Summary of phenology QTL studies

Building a grapevine consensus genetic map

All the 35 reference genetic maps for the QTL studies were used as input for the construction of a consensus map in BioMercator 4.2 software (Sosnowski et al., 2012). Moreover a grapevine reference map, developed from the integration of 5 different genetic maps (Doligez et al., 2006), was also included, as well as few other available grapevine genetic maps (Costantini et al., 2008; Venuti et al., 2013). Common markers made it possible the construction of a consensus for each of the 19 grapevine chromosomes with no residual conflicts. The consensus map consisted of 19 linkage groups, corresponding to the 19 grapevine chromosomes, including 3130 markers with a total length of 1922 cM and an average number of markers and length per linkage group of 164 and 101 cM respectively. The number of markers shared by at least two maps was 1209 , corresponding to 38.63% of the total markers, with an average of 63 shared markers per linkage group (Table 2). The full map file and a graphical overview are provided as Table S2 and Figure S1. The number of maps used for the construction of each linkage group varied from 26 (LG 11) to 39 (LGs $1,2,4,5,10,12,17,18$), due to the different number of markers shared among maps (Table 2, Table S3 [external file]).

Table 2. Consensus genetic map features

LG	\mathbf{N}° of markers	\mathbf{N}° unique markers	\mathbf{N}° markers in at least two maps	Length $(\mathbf{c M})$	\mathbf{N}° of individual maps integrated
I	214	130	84	95.68	39
II	130	71	59	89.73	39
III	135	92	43	92.03	37
IV	161	101	60	93.36	39
V	206	150	56	70.64	39
VI	139	93	46	90.72	38
VII	204	124	80	82.09	38
VIII	167	88	79	95.72	37
IX	128	77	51	85.01	35
X	168	93	75	141.87	39
XI	90	38	52	72.64	26
XII	211	153	58	143.13	39
XIII	156	89	67	94.79	37
XIV	202	118	84	93.44	37
XV	128	86	42	68.7	35
XVI	126	74	52	104.47	39
XVII	130	76	54	148.93	39
XVIII	275	172	96	64	103

Marker density was not equally distributed along the consensus, with peaks in putative centromeric positions similarly as found in original maps and in agreement with the expected suppression of recombination rate in such regions. However, comparison of markers order between the single component maps and the consensus map revealed a high level of correlation. Spearman's rank correlation values of pairwise comparisons were significantly high for all maps but two, possibly due to the low number of shared markers (Figure S2). The consensus genetic map was connected to the reference genome through the use of an anchor file. Markers physical position was recovered as explained in the methods section. Upon removal of markers showing incongruent or not unique physical position, 713 markers (on average of 38 markers per LG) were finally physically mapped on the 12X.v2 assembly of the grapevine genome (Canaguier et al., 2017). Their physical coordinates are also included in the map file Table S3. Among these markers, 480 (67\%) were shared by at least two original maps, and the majority (513, 72\%) were microsatellite markers.

Distribution of grapevine QTLs on the consensus genetic map

All QTLs from the 47 QTL studies (Table 1) were projected onto the consensus map to identify possible overlaps across populations. In total 1899 QTLs (91\%) could be successfully plotted while 194 QTLs could not be projected to the consensus map due to the lack of anchoring markers. QTLs reduction was comparable across the different QTL categories, ranging from 87% of successfully plotted QTLs for berry metabolism to 98% for abiotic stress. Only for the trait category "cluster related trait" the number of plotted QTLs was lower (79\%). Summary plots with distribution of projected QTLs for each trait category are provided as Figure 2. For each QTL consensus map, hotspots of overlapping QTLs across studies relying on independent populations have been highlighted. In summary we found independent overlapping QTLs for all the traits related to berry morphology (LG 1, 15, 18) and seeds related traits (LG 1, 10, 14 and 18), with only exception of traits measured in response to GA, for all vegetative traits $(1,4,10$, 13,18) and for all phenology related traits (LG $1,2,3,6,7,14,16,18$) except bud burst. Moreover, we also found overlapping QTLs for anthocyanins (LG 2), and
downy (LG $1,4,5,6,7,12,17,18$) or powdery mildew resistance (LG 15). No overlapping QTLs were found instead for traits belonging to the category abiotic stress and for traits related to clusters.

Figure 2. Summary graphic plots with distribution of projected QTLs for each trait category. Clockwise, from top left: abiotic stress response, cluster related traits, berry metabolites, berry morphology (Continue)

Figure 2. Continued. Summary graphic plots with distribution of projected QTLs for each trait category. Clockwise, from top left: pathogen resistance, phenology, inlcuding meta-QTLs on the inner circle, seed related traits, vegetative traits.

Interestingly, overlapping QTLs across different traits or categories possibly involved in the expression of more complex traits can also be scored in this dataset. As an example, overlapping QTLs from independent studies were found in LG 18 both for seed fresh weight and berry weight traits. Since berry weight is known to be also dependent on seed content (Doligez et al., 2013) these overlaps could hide a common genetic basis and could thus be exploited in a meta-analysis aiming to reduce, based on QTL co-locations, the number of underlying positional candidate genes. In the following we provide a detailed meta-analysis on phenology related traits aiming to identify candidate genes for veraison time.

Narrow down of candidates for veraison time by meta QTL-analyses

The list of phenology related QTLs projected onto the consensus map (141 QTLs from 13 studies) was manually curated for the purpose of performing a metaanalysis on overlapping QTLs from independent studies. Redundant QTLs, that is, QTLs with same peak position from the same study, which could overestimate the effect of that QTL in the analysis (Danan et al., 2011), were pruned as explained in the material and methods section. For the meta-analysis we considered 35 veraison related QTLs derived from six studies (Bayo Canha, 2016; Carreño Ruiz, 2012; Costantini et al., 2008; Emanuelli et al., 2013; Fechter et al., 2014; Zyprian et al., 2016). Meta-analysis was performed if at least two QTLs from independent experiments were overlapping. For veraison, overlapping QTLs from independent studies were found on LG1 and LG2 (from two studies and three studies respectively). The optimal number of meta-QTLs explaining overlapping QTLs was statistically determined by choosing the most likely model, as computed by BioMercator V4.2 software by five different tests. Our meta-analysis resulted in the identification of 4 veraison meta-QTLs located respectively on LG1 (one meta QTL) and on LG2 (three meta QTLs) (Table 3, Figure 2F). More in detail veraison meta-QTLs on LG2 resulted by integration of at least five original co-located QTLs, while ver_1_1 on LG1 was derived from two original co-located QTLs. Average CI was 3.5 cM ranging from 1.2 cM for ver_2_3 to 5.1 cM per ver_2_1, which was the largest one. On LG1 the original CI covered by QTLs was reduced from 23.9 cM to 4.3 cM (5.6 times) by the meta-analysis. On LG2 the reduction of CI by meta-
analysis was overall of five times, with a strongest effect on the ver_2_3 meta QTL. R^{2} values of meta QTLs were all higher that 10%. In particular ver_2_2 was the most relevant, explaining up to 34% of total variance. A similar meta-QTL analysis was applied to overlapping QTLs for berry colour on LG2 to validate our procedure. Indeed, berry colour genetic control has been already elucidated and linked to a transposon insertion in the promoter region of the MybA1 gene located on Chr 2 (Fournier-Level et al., 2009; Kobayashi et al., 2004; Walker et al., 2007). The metaQTL analysis on 28 overlapping QTLs derived from five independent studies identified 7 meta-QTLs (Table S5). Interestingly the MybA1 gene was included in the list of the 125 genes underlying these meta-QTLs (Table S6). Given such a high number and considering the high percentage of variance explained by many of these original QTLs, the meta-analysis resulted in a high number of very small metaQTLs, which eventually can be considered as a single meta-QTL spanning a wider area. Here is a limitation of the meta-QTL approach when dealing with situations where the number of QTLs is high and the peaks of the original QTLs are very close to each other but not overlapping.

Inspection of the phenology QTL consensus map revealed extensive co-localization across traits for different developmental stages (i.e. co-location of veraison and ripening QTLs). Co-location of veraison QTLs with other phenology QTLs was indeed highly significant compared to a random distribution (χ^{2}-test, $\mathrm{p}<0.01$). Overlapping phenology QTLs could represent several estimates of a single QTL affecting more developmental stages, which would justify the attempt to identify consensus QTLs across different phenology traits (Bancroft et al., 2009). In agreement with such option a meta-analysis for veraison QTLs including overlapping QTLs for other phenology traits on LG1 and LG2 identified metaQTLs (pheno-QTLs) largely overlapping with previously reported meta-QTLs regions (Table S7). Therefore, with the final aim of reducing the number of candidate genes underlying veraison QTLs, we decided to apply also meta-analysis on veraison QTLs when overlapping QTLs from other phenological traits could be found in independent studies; then we have identified 13 further indicative metaQTLs regions (pheno-QTLs) (Table 4, Figure 2H). Among these, two meta-QTLs on LG16 were particularly relevant, explaining on average up to 35% and 38% of
total phenotypic variance. In conclusion, the number of candidate genes underlying original veraison QTLs was narrowed down by applying meta-analysis of veraison QTLs, by a factor of 3.7. Meta-QTL analysis including alternative phenology related traits allowed also to reduce (2.2 times) the number of positional candidates (Figure 3), however this should be considered cautiously since relevant candidates might be skipped. Lists of candidate genes in veraison meta-QTLs and pheno metaQTLs intervals, with the corresponding CRIBIv1 annotation (Vitulo et al., 2014), are given in Table S 8 and Table S 9 respectively.

Table 3. Results of the meta-QTL analysis on overlapping veraison QTLs. LG Linkage Group, Meta-QTL The name assigned to the meta-QTL identified, Peak Position (cM) Position in $c M$ of the peak of the meta-QTL, \boldsymbol{R}^{2} Proportion of variance explained by the meta-QTL, Start (cM) Start position in cM of the meta-QTL, End (cM) End position in cM of the meta-QTL, Start (bp) Start position in bp of the meta-QTL, End (bp) End position in bp of the meta-QTL, Meta-QTL Positional Candidates The number of positional candidate genes within the metaQTL interval, Original QTLs co-located The number of input QTLs that produced the meta-QTL, QTL Studies (Populations) The number of grapevine populations that produced the cross where QTLs were identified, Traits Phenotypic traits studied for the original QTL analysis, Reference Citation of the original publication where QTLs were originally reported.

LG	$\begin{aligned} & \text { Meta- } \\ & \text { QTL } \end{aligned}$	Peak Position Position (cM)	\mathbf{R}^{2}	$\begin{aligned} & \text { Start } \\ & (\mathrm{cM}) \end{aligned}$	$\begin{aligned} & \text { End } \\ & \text { (cM) } \end{aligned}$	Start (bp)	End (bp)	Meta-QTL Positional Candidates	Original QTLs co-located	QTL Studies (Populations)	Traits	Reference
I	ver_1_1	31.29	0.11	29.15	33.43	2510506	3254952	78	2	2	VT	Fechter et al 2014, Zyprian et al 2016
II	ver_2_1	31.34	0.17	28.79	33.89	4029921	5344816	147	7	2	VB, Vr	Bayo Canha 2015, Grzeskowiak et al 2013
	ver_2_2	41.55	0.13	40.00	43.30	5717649	7154894	96	5	3	$\begin{aligned} & \text { Vr, VB, } \\ & \text { VE, VT } \end{aligned}$	Costantini et al 2008, Bayo Canha 2015, Grzeskowiak et al 2013
	ver_2_3	53.47	0.34	52.88	54.07	13336750	16677137	94	5	3	$\begin{aligned} & \text { Vr, VE, } \\ & \text { VP } \end{aligned}$	Costantini et al 2008, Bayo Canha 2015, Grzeskowiak et al 2013

Table 4. Results of the meta-QTL analysis on veraison QTLs overlapping with other phenology QTLs. LG Linkage Group, Meta-QTL The name assigned to the meta-QTL identified, Peak Position (cM) Position in cM of the peak of the meta-QTL, \boldsymbol{R}^{2} Proportion of variance explained by the meta-QTL, Start (cM) Start position in cM of the meta-QTL, End (cM) End position in cM of the meta-QTL, Start (bp) Start position in bp of the meta-QTL, End (bp) End position in bp of the meta-QTL, Meta-QTL Positional Candidates The number of positional candidate genes within the meta-QTL interval, Original QTLs co-located The number of input QTLs that produced the meta-QTL, QTL Studies (Populations) The number of grapevine populations that produced the cross where QTLs were identified, Traits Phenotypic traits studied for the original QTL analysis, Reference Citation of the original publication where QTLs were originally reported.

LG	Meta-QTL	Peak Position (cM)	\mathbf{R}^{2}	$\begin{aligned} & \text { Start } \\ & \text { (cM) } \end{aligned}$	$\begin{aligned} & \text { End } \\ & \text { (cM) } \end{aligned}$	Start (bp)	End (bp)	Meta-QTL Positional Candidates	Original QTLs colocated	QTL Studies (Populations)	Traits	Reference
III	pheno_3_1	27.67	0.15	24.43	30.92	560404	1647064	138	5	3	$\begin{gathered} \text { VT, SSC, } \\ \text { Bpc } \end{gathered}$	Carreño Ruiz 2012, Viana et al 2013, Zhao et al 2015
	pheno_3_2	50.42	0.14	45.30	55.54	5903464	10894193	288	4	3	VT, SSC, Bpc, BB	Carreño Ruiz 2012, Viana et al 2013, Zhao et al 2015
V	pheno_5_1	50.97	0.09	49.77	52.18	16799689	19536797	111	3	2	VT,F-V, Ma	Zyprian et al 2016, Bayo Canha 2015
VII	pheno_7_1	9.59	0.16	7.58	11.60	1087707	1552842	59	2	2	VT, Fw	Carreño Ruiz 2012, Bayo Canha 2015
XI	pheno_11_1	16.15	0.11	15.01	17.30	2934932	3356851	50	4	2	$\begin{aligned} & \text { FBL, FS, } \\ & \text { Tar/Ma, VT } \end{aligned}$	Bayo Canha 2015, Fechter et al 2014
XII	pheno_12_1	77.85	0.19	74.31	81.40	23793458	24155112	27	2	2	VT, RT	Carreño Ruiz 2012, Zyprian et al 2016
XIV	pheno_14_1	55.03	0.22	51.45	58.62	22441297	24645689	157	7	4	$\underset{\mathbf{V T}}{\text { B-F, FS, FT, }}$	Carreño Ruiz 2012, Zyprian et al 2016, Fechter et al 2014, Duchêne et al 2012

XVI	pheno_16_1	34.70	0.31	32.53	36.88	14012548	16583139	126	4	2	F-V, VT	Costantini et al 2008, Zyprian et al 2016
	pheno_16_2	38.49	0.38	36.49	40.50	16503904	17318604	51	5	2	F-V, VT	Zyprian et al 2016, Duchêne et al 2012
XVII	pheno_17_1	48.83	0.13	45.12	52.54	4969509	6401642	113	6	3	$\begin{aligned} & \text { FBL, FS, } \\ & \text { RDA, VB } \end{aligned}$	Fechter et al 2014, Grzeskowiak et al 2013, Mejía et al 2007
	pheno_17_2	61.83	0.11	61.46	62.20	8920888	9063993	12	7	4	$\begin{aligned} & \text { FBL, FS, } \\ & \text { RDA, VB, } \\ & \text { F-V } \end{aligned}$	Fechter et al 2014, Grzeskowiak et al 2013, Mejía et al 2007, Zyprian et al 2016
XVIII	pheno_18_1	34.68	0.17	28.21	41.15	1836848	5349350	322	2	2	VT, FT	Carreño Ruiz 2012, Zyprian et al 2016
	pheno_18_2	66.33	0.13	60.57	72.10	10927035	15526564	330	4	3	VT, FT, F-V	Carreño Ruiz 2012, Zyprian et al 2016, Duchêne et al 2012

Figure 3. Bar plot showing for each linkage group where meta-QTLs were identified, the magnitude of positional and transcriptional candidate genes reduction in terms of the absolute number of candidate genes for each linkage group and each class.

Prioritization of candidates by transcriptomic data integration

Positional candidates underlying meta-QTLs were explored for their expression in different organs according to the grapevine expression atlas (Fasoli et al., 2012). Sixty-three genes among the positional candidates underlying veraison meta-QTLs (15.2% of the positional candidates) were never expressed either in berry, rachis or seed and were thus excluded from our candidate list. In a similar way 350 never expressed genes (19.6% of the positional candidates) were excluded from candidates underlying pheno meta-QTLs. Transcriptomic changes in berries along development and in particular across veraison have previously been widely explored, revealing that a massive transcriptomic change is associated to the veraison (Palumbo et al., 2014). More in detail, by comparing the expression profiles at four different berry developmental stages in 10 different grapevine varieties a first list of shared genes differentially expressed across veraison was found (Massonnet et al., 2017; Palumbo et al., 2014). Moreover, a recent RNA-Seq study has characterized weekly gene expression in Pinot Noir berries along development in the three years 2012, 2013 and 2014 (Fasoli et al., 2018). With the final aim of selecting genes putatively involved in veraison control based on their expression profile we decided to exploit such transcriptomic information. RNASeq data were inspected to spot in each year the expected massive transcriptional remodulation associated to the veraison transition (Table S10). The transition across which the highest number of genes was differentially expressed was considered as "molecular veraison". Genes which were mainly modulated in their profiles across this transition in at least two of the three years have been selected also as transcriptional candidates. Altogether a list of 2850 transcriptomic candidates was selected, among which 494 have been previously suggested as veraison main regulators according to profile or network analyses (Palumbo et al., 2014). Under veraison meta-QTLs (Chr 1 and 2) we found 61 of these transcriptomic candidates. These represent the genes most likely involved in the veraison genetic control mapped at these locations (Table 5). Heatmaps showing their expression along berry development are shown (Figure 4). Moreover, 12 of these were among the genes proposed as main regulators of berry veraison transition. Among the most notable candidate genes, comprised in the ver_2_1 and
ver_2_2 meta-QTL intervals, two pectin methylesterase inhibitor (PMEI) genes, previously reported to control pectin methylesterase activity in tomato (Di Matteo et al., 2005). Their function is supposedly to inhibit pectin methylesterase activity and then a premature berry softening related to pectin degradation (Lionetti et al., 2015). They may play a central role in the beginning of ripening by regulating some initial events at veraison, such as softening and loss of turgor (Gambetta et al., 2015). Another interesting candidate gene, again located within ver_2_2 meta-QTL interval, is the NAC (VvNAC13) transcription factor. This gene is believed to play an important role in the transition from the immature to the mature stage of grapevine; its role in development has been demonstrated in various plant species including grapevine (Wang et al., 2013). NAC transcription factors have been shown to regulate vegetative and reproductive development in Arabidopsis (Raman et al., 2008), tomato (Hendelman et al., 2013) and papaya, suggesting a significative role as hub genes for fruit ripening. Finally, a cluster of Myb genes within ver_2_3 meta-QTL interval, MYBA1, MYBA2, and MYBA3, support our approach; indeed, these genes have been previously extensively characterized for their role in the transition to berry ripening, by regulating the accumulation of anthocyanins in the berry skin (Kobayashi et al., 2004; Walker et al., 2007). Finally, a similar approach was also applied in order to try to prioritize genes located under veraison QTLs at other genetic locations. By applying the same strategy, the total number of original candidates underlying veraison QTLs was further reduced (8.2 times) allowing to build a priority list including 217 candidate genes (Figure 3, Table S11).

Table 5. Transcriptomic candidates underlying veraison meta QTLs. Meta-QTL The name assigned to the meta-QTL identified, Gene ID ID of the gene according to V1 annotation, Chr Chromosome, Start (bp) Start position in bp of the meta-QTL, End (bp) End position in bp of the meta-QTL, Annotation V1 Gene description according to V1 annotation, Transcriptomic candidate Citation of the original publication where transcriptomic data where taken to use for integration.

MetaQTL	Gene ID	Chr	Start (bp)	End (bp)	Annotation_V1	Transcriptomic candidate
ver_1_1	VIT_01s0011g02840	1	2525946	2527902	Cytochrome B561	Palumbo et al 2014, Massonet et al 2017
	VIT_01s0011g02880	1	2546007	2547946	Cationic amino acid transporter 8	Fasoli et al 2018
	VIT_01s0011g02950	1	2618690	2632669	Zinc finger (C3HC4-type ring finger)	Fasoli et al 2018
	VIT_01s0011g03000	1	2688188	2688578	No hit	Palumbo et al 2014, Massonet et al 2017
	VIT_01s0011g03050	1	2717642	2719224	Unknown protein	Palumbo et al 2014, Massonet et al 2017
	VIT_01s0011g03070	1	2751566	2753036	ERF/AP2 Gene Family (VvRAV1)	Palumbo et al 2014, Massonet et al 2017
	VIT_01s0011g03180	1	2879352	2882108	Lysine and histidine specific transporter	Palumbo et al 2014, Massonet et al 2017
	VIT_01s0011g03210	1	2924829	2926924	Aspartic Protease (VvAP1)	Palumbo et al 2014, Massonet et al 2017
	VIT_01s0011g03360	1	3044557	3045849	Unknown	Palumbo et al 2014, Massonet et al 2017, Fasoli et al 2018
	VIT_01s0011g03400	1	3076982	3080343	Proton-dependent oligopeptide transport (POT) family protein	Palumbo et al 2014, Massonet et al 2017

				Palumbo et al 2014, Massonet et al 2017, Fasoli et al 2018		
	VIT_01s0011g03450	1	3127812	3132261	Alpha-glucosidase	Fasoli et al 2018

	VIT_02s0154g00080	2	4813347	4818031	Multi-copper oxidase (SKU5)	Palumbo et al 2014, VIT_02s0154g00090
	2	4824906	4827102	Vacuolar invertase 2, GIN2	Massonet et al 2017	

					Palumbo et al 2014, Massonet et al 2017, Fasoli et al 2018	
	VIT_02s0012g00500	2	6449814	6450360	Invertase/pectin methylesterase inhibitor	Palumbo et al 2014,
	VIT_02s0012g00550	2	6518911	6526733	Inositol polyphosphate 5-phosphatase II	Massonet et al 2017

VIT_02s0033g00450	2	14420525	14421283	VvMybA3	Palumbo et al 2014, Massonet et al 2017, Fasoli et al 2018
VIT_02s0033g00700	2	15436012	15438008	Nitrilase	Palumbo et al 2014, Massonet et al 2017
VIT_02s0033g00800	2	15606321	15608743	Nitrilase 4 (NIT4)	Palumbo et al 2014, Massonet et al 2017, Fasoli et al 2018
VIT_02s0033g01000	2	16093114	16095441	Anthraniloyal-CoA: methanol anthraniloyal transferase	Palumbo et al 2014, Massonet et al 2017
VIT_02s0033g01020	2	16190948	16193334	Anthraniloyal-CoA: methanol anthraniloyal transferase	Palumbo et al 2014, Massonet et al 2017
VIT_02s0033g01030	2	16252684	16254941	Anthraniloyal-CoA: methanol anthraniloyal transferase	Palumbo et al 2014, Massonet et al 2017
VIT_02s0033g01050	2	16299329	16301080	Anthraniloyal-CoA: methanol anthraniloyal transferase	Palumbo et al 2014, Massonet et al 2017

Figure 4. Heatmaps of gene expression levels of the transcriptomics candidates included in the veraison and phenology meta-QTLs from the RNA-Seq datasets of Massonnett 2017 and Palumbo 2014. In this panel the veraison transcriptomic candidates in the Massonnett dataset.

Figure 4. Continued. Heatmaps of gene expression levels of the transcriptomics candidates included in the veraison and phenology meta-QTLs from the RNA-Seq datasets of Massonnett 2017 and Palumbo 2014. In this panel the veraison transcriptomic candidates in the Palumbo dataset.

Figure 4. Heatmaps of gene expression levels of the transcriptomics candidates included in the veraison and phenology meta-QTLs from the RNA-Seq datasets of Massonnett 2017 and Palumbo 2014. In this panel the phenology transcriptomic candidates in the Massonnett dataset.

Figure 4. Heatmaps of gene expression levels of the transcriptomics candidates included in the veraison and phenology meta-QTLs from the RNA-Seq datasets of Massonnett 2017 and Palumbo 2014. In this panel the phenology transcriptomic candidates in the Palumbo dataset.

Discussion

A classical way to dissect the genetic determinism of grape phenology has been QTL studies. However, QTLs mapping often provides inconsistent results among studies, and huge genomic locations. A big advantage can derive from metaanalysis, which offers stronger evidence than individual studies, by revealing regions robustly associated with traits in multiple environments and genetic backgrounds. This approach has been already successfully exploited to improve and validate QTLs in several species, allowing insights into the genetic architecture of complex traits and paving the way for fine mapping and gene cloning. With this aim a genetic consensus map was built from 39 available SSR maps, including 3130 markers. By looking at marker distribution we observed they were not regularly spread along the chromosomes, but tended to concentrate in the middle regions, even though a good correlation was found with original maps. This is not surprising, reflecting a similar trend to original maps, due to suppression of recombination in centromeric regions. Other consensus maps already reported this drawback. Moreover, genetic positions of marker on the consensus arose from positions of shared markers according to the Biomercator software procedure, and were not based on recombination, since original genetic data are unfortunately not available from original maps. We fully agree that QTL meta-analysis would gain power and precision if raw genotypic and phenotypic data were made available. Recent advances in markers technology, with development of the NGS-based GBS technology in particular, have given a strong impulse to plant genotyping, and QTL studies now rely more on dense SNP maps. However, unshared markers do not allow for a direct genetic comparison of mapped QTLs, but require an indirect comparison through anchoring to the genome assembly. The distribution pattern of QTLs on chromosomes differs strongly between genetic and physical maps. Therefore, integration directly at genetic level could aid the improving of QTL location through co-location and meta-analysis, when feasible. Further comparisons can be then undertaken to newly generated QTLs relying on high throughput SNP maps, following anchoring to the genome assembly. Taking all this into account, we concluded that the consensus map we built constitutes a valuable reference, especially to the aim of integrating available genetic information, from
related QTL studies. Moreover, it will also provide a valuable instrument to enquire co-location with newly generated QTLs relying on dense SNP maps.

Taking advantage of this tool we have provided a compendium of all available QTL information that can be integrated at genetic level. Interestingly QTLs plotting revealed extensive co-locations across studies for each of the phenology related traits, besides downy mildew resistance, powdery mildew resistance, anthocyanin, drought stress, fertility, water use efficiency and growth, as well as for some berry and seeds related traits. However, studies addressing phenology are still few, negatively affecting the number of studies supporting each of the co-located QTLs. R^{2} values of plotted QTLs, beside their distribution, suggest a highly polygenic nature for phenology related traits, with several QTLs involved, each of small effect, differently from other traits like pathogen resistance, seeds related traits and colour, all showing a more oligogenic architecture. More in detail, concerning veraison time four main regions located on LG1 and 2 have so far emerged consistently. Interestingly, plotting on a unique consensus map of QTLs also allows inspection of co-location across traits and categories, which is especially relevant for complex traits. In this way QTL meta-analysis also allows genetic correlation among traits to be investigated. In a previous work a second round meta-QTL analysis was proposed for seed yield QTLs and co-located yield associated QTLs in rapeseed, which allowed "indicator" meta-QTLs contributing to the complex trait crop yield to be defined. Indeed, QTL co-localization can be due to tight-linkage of QTL/genes playing different functions, but could also arise from pleiotropism. When pleiotropy is likely, it would also justify meta-analysis across traits, to further reduce the number of candidates. Veraison time is expected to be strictly related to other phenological stages. Accordingly, tests on the previously mentioned regions on LG1 and LG2 confirmed that, at least in some cases, comparable results are achieved when only veraison or all co-located phenology related traits are considered for the meta-analysis (see ver_2_1/pheno_2_1 as an example). We therefore also attempted a similar approach for veraison QTLs co-located with other phenology QTLs, finally identifying a number of regions, of which the most relevant were those located on LGs 14,16 and 18 . However, we are aware that these
rely on the pleiotropic assumption, which could be not always satisfied. A recent QTL study based on a GBS SNP map also addressed the mapping of veraison time. That study mainly aimed to discover and map stable QTLs across environments. A veraison QTL mapping on LG16 between 5 and 24 cM , which corresponded to the region between 2 and 16 Mbp , was found, but was not consistent across environments. Interestingly, it partially overlapped the pheno_16_2 meta-QTL we derived here starting from a veraison meta-QTL and its co-location to a floweringveraison interval QTL. Beside the detailed analysis of phenology traits, we have undertaken, our compendium now provides a useful tool for the inspection of colocation and meta-analysis for further traits in a similar way.

Transcriptomic studies have been also widely applied to characterize molecular changes associated to the onset of ripening, revealing, first of all, a massive transcriptomic rearrangement at veraison time. Among others, genes triggering such transition are expected to modulate their expression at this stage, although alternative regulative mechanisms cannot be excluded. We thus mined available transcriptomic profiles to i) identify the timing of such massive change, ii) select genes differentially expressed during this time in more varieties. Then, beside inspection of positional candidates underlying meta-QTLs, we propose to also integrate information about differential expression at veraison time, in order to prioritize candidates.

On LG1 a veraison time QTL was previously mapped. A more recent study also mapped a QTL for veraison at this location, which allowed us to define the ver_1_1 meta-QTL. Flowering QTLs consistently overlapped at same location suggesting a possible control of veraison time through regulation of flowering time. Accordingly, candidates for the flowering time control mapped under this metaQTL, like the PFT1 (phytochrome and flowering time 1) gene or a CONSTANS-like gene both controlling the photoperiodic flowering pathway in A. thaliana. However, integration of transcriptomic data allowed to pinpoint 14 candidates, among which the VvRAV1 transcription factor, belonging to the plant-specific $R A V$ (RELATED TO ABI3 AND VP1) family, was included. In Arabidopsis RAV1 was shown to act as negative regulator of both development and flowering, probably in
complexes with other co-repressors. Interestingly, some members of this gene family were shown to modulate developmental transitions, especially in response to temperature. Moreover RAV1 was also shown to be negatively regulated by brassinsteroid and abscisic acid, both hormones modulated at the onset of veraison time.

On LG2 meta-QTL analysis of overlapping veraison QTLs allowed 3 main regions to be spotted. In the first of these regions flowering QTLs were also plotted, again supporting a possible regulation of veraison time through flowering, even though no genes controlling flowering time where found under this locus. Interestingly, the orthologous of the Arabidopsis YABBY1/FIL transcription factor, which directly activate the AtMYB75, a key regulator of anthocyanin biosynthesis, was found among candidates selected by the integration of expression data. Moreover, by looking at other functional categories possibly related to veraison time, a gene encoding for a vacuolar invertase 2, key enzyme of sugar metabolism in fruits during ripening, a stay-green protein 1 gene related to a gene shown to be involved in ripening in tomato, beside two pectin methylesterase inhibitor (PMEI) genes, were found as differentially expressed. These last belong to a gene family previously characterized in grape. Their function is supposed to inhibit pectin methylesterase activity in pectin degradation and may play a role in the beginning of ripening by regulating initial events such as softening and loss of turgor. Interestingly, network analysis of gene expression profiles during berry ripening revealed PMEI among genes likely involved in triggering the major transcriptome reprogramming that occurs at veraison. Within ver_2_2 meta-QTL, the most notable candidate considering both positional and expression data was the VvNAC13 transcription factor. This gene belongs to a wide family of transcription factors in grapevine. Interestingly members of this family in tomato are involved in ethylene biosynthesis, reception and signalling during ripening. Moreover, they were also already suggested as playing a crucial role in berry transcriptome modulation associated to veraison, according to network analysis of berry expression profiles. However, in the same region, a gene encoding an atypical pseudo-response regulator (APRR2), involved in the circadian clock mechanism and contributing to fruit pigmentation and ripening in tomato, as well as two 1-
aminocyclopropane-1-carboxylate oxidases, taking part in ethylene biosynthesis and ripening were also selected by our approach and represent promising candidates. Lastly, a cluster of Myb genes locates within ver_2_3 meta-QTL interval. These genes have previously been extensively characterized for their involvement in the transition to berry ripening, by regulating the accumulation of anthocyanins in the berry skin. This finding, thus, supports our approach, even though these genes are unlikely to be themselves the early trigger of ripening onset. Other genomic regions were also proposed by previous studies for the genetic control of veraison time, among which the most relevant were mapping on LG 14, 16 and 18. By considering overlapping with other phenology related QTLs, followed by integration of transcriptomic data, we also selected candidates for these regions. The pheno_14_3 meta-QTL was computed from overlapping veraison QTL and flowering QTLs, and was accordingly highly enriched in candidates playing a role in the flowering transition control or fruit ripening, among which the most notable are Constans 2 (COL2), the feronia receptor-like kinase, a gene encoding a Brassinosteroid-6 oxidase, a gene encoding a COBRA protein and the putative MADS-box FRUITFULL 2. Interestingly this last gene was recently shown to also contribute to modulate the onset of ripening in tomato at early fruit development, beside its involvement at later ripening stages. Instead, a QTL previously mapped on LG 16, and explaining a large part of the genetic variance in the corresponding mapping population, partially co-localized to QTLs for the derived trait flowering-veraison interval, and with the genomic region involved in veraison recently identified by a SNP map and previously discussed. According to our strategy, the original interval was reduced to two regions of about 3.3 Mbp overall, including 15 transcriptomic candidates. Interestingly, more recently, the SSR marker UDV052, mapping under the pheno_16_3 meta-QTL close to the two candidates ABC transporter and an ERF transcription factor (19.1 Kbp and 56.9 Kbp respectively), was shown to be significantly associated to the early phenotype in a collection of different varieties, thus supporting our approach (Zyprian et al., 2018). Lastly, three different veraison QTLs were mapped on LG18. Two of them partially co-located with flowering QTLs from an independent study, and one of them was overlapping also with a QTL for the flowering-veraison interval. Under the derived
meta-QTLs, pheno_18_1 and pheno_18_2, spanning a still large region, we selected 74 transcriptomic candidates among which 19 were encoding proteins involved in regulation of gene expression, signalling or development. Candidates involved in carbohydrate metabolism, including especially a hexose (HT2) and a sucrose transporter (SUT2-2), putatively modulating sucrose signalling, or candidates encoding for genes for cell wall degradation (like a glucanase and a galactosidase, as examples), were also among those selected.

Conclusions

By building a grape consensus genetic map anchored to the genome assembly a comprehensive overview about genomic distribution of several QTLs from published studies and their co-location both inside traits as well as across related traits was provided. Extensive co-localization was evident especially for phenology related traits. Four veraison meta-QTLs located on LG1 and 2, and several phenology meta-QTLs among which most relevant on LG 14, 16 and 18 were derived from 141 phenology related QTLs. Integration of meta-QTLs with expression data from prior transcriptomic studies allowed to select a set of 272 candidate genes for the genetic control of the veraison transition, reducing by about 20 and 10 times the genes proposed so far by either only genetic or transcriptomic approaches. Among these candidates 78 genes were involved in regulation of gene expression, signal transduction or development. Specific relevant candidates according to their annotation have been discussed. Further studies will now test and eventually validate the putative involvement of these candidates in the genetic control of the veraison transition during berry development.

Chapter 2

Exploit the genetic diversity of a grapevine collection for genetic association studies

Abstract

In plant organisms, genetic association studies still represent a valuable tool to uncover the genetic loci underlying specific quantitative traits. For grapevine phenology, such studies are still poor because of different reasons: the complex genetic architecture of the trait, the high levels of heterozygosity of the species, and its genomic characteristics (i.e. extent of linkage disequilibrium). By performing two complementary GWAS approaches on a grapevine germplasm collection, and by comparing the results with the results of the meta-analysis approach, we were able to identify and prioritize with high confidence genomic regions that could be regions of interest carrying the genes responsible for the beginning of the berry ripening, the veraison stage. In the first part of the chapter, we describe the genetic and phenotypic characterization of a wide germplasm collection of different grapevine accessions (CREA-VIT Conegliano collection) with the aim to identify the best panels of grapevine varieties, representing the most diverse genotypes and phenotypes for the traits of interest to be exploited to test the genotype-phenotype association. The second part of the chapter is dedicated to describe the association analysis itself with two different approaches, firstly using the GrapeReSeq 18K Vitis genotyping chip, then with an innovative approach called XP-GWAS (Yang et al., 2015) where pool of individuals displaying extreme phenotypes are wholegenome resequenced and allele frequencies compared to a random pool are screened for enrichment.

Methods

Plant material

The CREA-VIT Conegliano collection (hereafter CCC) is a grapevine germplasm collection comprising more than 2,000 grapevine accessions, among wine, table
cultivars, hybrids and rootstocks. The CCC has been extensively phenotyped for over 50 years for phenology traits (flowering time, veraison time, ripening time) and to a less extent for other various phenotypic traits like cluster architecture and wine acidity. The set of grapevine cultivars representing the object of our work consists in 617 unique genotypes (corresponding to 937 cultivars) for which phenotypic and genotypic data were complete and available. The list of the 617 genotypes is given in Supplementary Table 12.

Genetic data and genetic diversity characterization

The genotypic data provided by our partners consisted in the genetic profiles of the 617 grapevine unique genotypes genotyped with 45 microsatellites (SSR) markers; of these, 32 were already published (Cipriani et al., 2010), while the remaining 13 have been developed and run subsequently. This additional set of microsatellite markers is composed of the 9 SSR markers used internationally for grapevine varietal identification (Maul et al., 2012) plus 4 additional markers developed by the researchers of the CREA-VIT to perform variety identification service (the ISV named markers and the VMCNG4B9). The protocols describing the generation of the SSR data are available from Cipriani. SSR markers were chosen to cover the whole genome of grapevine (19 chromosomes) with at least two markers per chromosome. To give an overview of the genetic diversity of the CCC different indexes commonly used in population genetics, such as expected heterozygosity, were calculated with the software Genalex v6.5.1 (Peakall and Smouse, 2012). Accessions displaying more than 20% of missing data were discarded, so the number of accessions used for the genetic diversity characterization and subsequent analysis was 530 .

Population structure analysis

To explore the genetic variability of the collection and the population structure, the first method employed was PCA (principal component analysis) which helps to visualize the entire variability of the data in only two dimensions. PCA was performed on the 530×45 data set with the dudi.pca function of the R package ade4, after centring and scaling, and replacing missing values with column mean.

Using this method, the alleles sizes are firstly converted to absence/presence ($0 / 1$), so the PCA is not calculated directly on the allele sizes but on allele frequencies. The genetic diversity of the collection represented by the PCA was matched with the geographical origins (each cultivar was classified according to its geographic origin or region of cultivation as reported in the VIVC website http://www.vivc.de/index.php or http://catalogoviti.politicheagricole.it/catalogo.php) and grapes usage (wine vs table) of the individuals in the collection. The second method employed to explore population structure is the one included in the software STRUCTURE v2.3.4 which uses a Bayesian approach to assign a posterior probability to cluster individuals in sub-populations (Pritchard et al., 2000). Ten independent runs for K values ranging from 1 to 20 were performed with a burn-in length of $1,000,000$ followed by $1,500,000$ iterations. The admixture model was applied, and no prior population information was used. The best K was chosen based on the estimated membership coefficients (Q) for each individual in each cluster. The optimal subpopulation model was investigated by applying the informal pointers (i.e. the plateau criterion) proposed by Pritchard et al.; individuals with a proportional membership $\mathrm{Q}>0.8$ were considered members of the group, while the remaining were considered admixed individuals. To validate the results from STRUCTURE software a nonparametric clustering approach called DAPC (Discriminant Analysis of Principal Components) implemented in the R package adegenet 2.0.1 (Jombart and Collins, 2015) was also applied. This non-parametric approach makes different assumptions about the Hardy-Weinberg equilibrium of the genetic loci, so that it can be applied to very different ranges of populations. Prior clusters were identified by a sequential K-means clustering algorithm (find.clusters function) after data transformation by PCA. Then, a discriminant analysis (DA) used part of the principal components (PCs) to describe the clusters. K-means was ran with K varying from 1 to 20 and to ensure convergence we increased the number of starting points to 400 . The number of clusters was chosen based on the Bayesian Information Criterion (BIC).

Phenotypic data

Phenotypic data consist of the flowering beginning and veraison beginning date in the last 13 years (2004-2016), with the value recorded as Julian day. Flowering beginning corresponds to the phenological stage when 10% of flowerhoods of a cluster have fallen, while veraison beginning corresponds to the stage when 10% of the berries of a cluster changed the colour from green to the particular colour of the cultivar, and this stage is usually considered the beginning of ripening. The interval from flowering to veraison, calculated as the difference between the two traits in number of days, was also included in the analysis. For each accession in the collection five plants are present, and all the plants are grafted on SO4 rootstock. The single phenotypic value per accession per year is obtained as the mean of the five plants. Beside raw data analysis, we also tried to understand the effect of temperature on phenological stages; we thus transformed raw flowering and veraison date values to a new value based on the GDD index. GDD (Growing Degree-Days) is an index used in agriculture that measures the heat accumulation throughout the year. The GDD value was calculated for each day of each year (2004-2016) for the Conegliano region and replaced the raw values (weather data source http://www.arpa.veneto.it/bollettini/storico/Mappa_2019_TEMP.htm). In this way the effect of temperature is normalized among years making the phenotypes more comparable. GDD is calculated as $G D D=\max \left(\frac{T_{\max }+T_{\text {min }}}{2}-T_{\text {base }}, 0\right)$, were temperatures below $10^{\circ} \mathrm{C}$ and above 30 ${ }^{\circ} \mathrm{C}$ are set to $10^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$ respectively. GDD values were calculated for each day and then summed to obtain a value for each accession. Historical weather data were retrieved from ARPAV website. ARPAV is the regional agency for the environment protection of Veneto region. Data were recorded at a station located in the same area where the experimental vineyard is located. Phenotipic data are recorded every year according to the OIV descriptors. Phenological observations were recorded by visual inspection. All statistical analysis were performed with the statistical programming language R, version 3.4.4 (Team and R Development Core Team, 2016).

Retrieval of published SNPchip data

We downloaded genotyping data publicly available from a recent publication (Laucou et al., 2018) from a French grapevine germplasm collection (Vassal collection) to be used as starting point for our GWAS study. Indeed, Laucou et al. released genotyping data for more than 700 grapevine accessions. Among these, 95 were in common, that is they had the same name, with the accessions of the CREAVIT collection. We obtained these data and explored the genetic diversity of this 95 accessions subset in our collection. More in detail, released data consisted of genotyping data of 10,207 solid SNPs with no missing data, obtained with the GrapeReSeq 18K Vitis genotyping chip.

Core collection construction

Core collections construction was performed using the SSR data (530 accessions by 45 markers) with the software Core Hunter 3 (De Beukelaer et al., 2018). The software can select the smallest number of individuals maximizing different indexes. We applied a strategy of genetic diversity maximization, implemented in the software CoreHunter 3 (De Beukelaer et al., 2018), which allows to maximize allelic diversity of a collection, starting from a number of fixed entries. Core Hunter 3 can construct cores based on genetic marker data, phenotypic traits or precomputed distance matrices, optimizing one of many provided evaluation measures depending on the precise purpose of the core (e.g. high diversity, representativeness, or allelic richness). We decide to perform a maximization using allele coverage, i.e. the percentage of marker alleles observed in the full collection that are retained in the core, keeping as fixed the 95 cultivars in common with the GrapeReSeq dataset (Paslier M-C et al., 2013). Core Hunter was run 100 times to obtain the minimum number of unique individuals maximizing allele coverage. After obtaining this number, the individuals were ranked by occurrence and the most present individuals were selected to constitute the core collection. The R package poppr (Kamvar et al., 2014) was used to evaluate allelic diversity of the core and compare it to the entire collection.

The DNA of the cultivars chosen with the core collection construction method was extracted with Qiagen DNeasy Plant Mini Kit (Qiagen, Hilden, Germany), according to the manufacturer's instructions from frozen leaf tissue. DNA was quantified with a NanoDrop. DNA was purified with Agencourt AMPure XP (Beckman Coulter) and sent for hybridization to Fondazione Edmund Mach. Genotype data were scored and validated from the GrapeReSeq 18K Vitis genotyping chip raw data using GenomeStudio Data Analysis v2011.1 (Illumina Inc, San Diego, CA, USA). Genotypes were called and for the subsequent analysis only the 10,207 solid SNPs comprised in the Vassal dataset were kept.

Association analysis SNPchip

The association test was performed on the three phenotypic traits independently, flowering, veraison and flowering-veraison interval, both on mean value across years and on each independent year. Three different software were used: EMMAX (Kang et al., 2010), GAPIT (Lipka et al., 2012) and QTCAT (Klasen et al., 2016). For calculating the association with EMMAX, both no population structure correction and a correction based on kinship were tested, the latter obtained using all the 10K SNPs for the 132 individuals using the command \$kinship plink $-s-v$. Regarding GAPIT, a correction based on population structure was applied; the population structure included this time was the Q-matrix calculated with the 45 SSR markers and the software STRUCTURE. Regarding QTCAT, the software includes a new method that does not need population structure correction, so no other parameters other than genotypes and phenotypes were included. Linkage disequilibrium was evaluated on the 132 cultivars panel using the R package LDcorSV (Mangin et al., 2012) that takes into account population structure and relatedness. The complete set of 10,207 SNPs was used for the evaluation.

XP-GWAS pool design and DNA extraction

With this approach the panel selected for the association study from a germplasm collection is selected based on the phenotypic and not the genotypic diversity. Indeed, the distribution of the trait of interest was explored and the cultivars displaying extreme phenotypes were selected from the tails of the distribution. The
extreme phenotype GWAS approach (XP-GWAS) (Yang et al., 2015) expects that three different pools of individuals from a germplasm collection or a natural population are created based on the phenotypic distributions of the trait under study. In particular, the more the sample size and the standard deviation of the pools are similar the better. The three pools, hereafter called low, high and random pool, were designed from the flowering-veraison interval trait since it was the trait that displayed a more normal distribution. Starting from the 530 cultivars of the CCC, we sampled 48 and 47 cultivars from the low and high tail of the distribution respectively, and we randomly picked 38 cultivars from the entire collection. The distributions and statistics of the three pools were studied with the software R 3.4.4. For each accession of the 3 pools, frozen leaves tissue was grinded and equal amounts of frozen powder were pooled together. DNA was extracted with Qiagen DNeasy Plant Mini Kit (Qiagen, Hilden, Germany), according to the manufacturer's instructions. Extracted DNA was resuspended in water and sent to the genomics facility for quality control and sequencing. Genomic DNA samples were quantified with the Qubit dsDNA HS Assay kit (Life Technologies). DNA purity and integrity were assessed at the Nanodrop 1000 spectrophotometer (Thermo Scientific) and by capillary electrophoresis on a 2200 TapeStation (Agilent Technologies), respectively. For each pool, 500ng DNA was sheared into 350bp fragments by sonication using a S220 Covaris Ultrasonicator. The fragmented DNA was then used for the preparation of Whole Genome libraries following the Kapa Hyper Prep PCR-free workflow (KAPA Biosystems) according to manufacturer's instructions with minor modifications. To avoid index-hopping during sequencing, libraries were treated with Illumina Free Adapter Blocking Reagent (Illumina) prior to further processing. DNAseq libraries were pooled at equimolar concentration and sequenced over 3 lanes of an Illumina HiSeqX sequencer using 150bp paired-end reads.

Results and discussion

CCC genetic diversity characterization and population structure description

The CREA-VIT Conegliano collection (CCC) is a wide grapevine germplasm collection including more than 2,000 grapevine accessions. The cultivars for which
complete phenotypic information on phenology and genotypic information at 45 microsatellite markers was available (Cipriani et al., 2010) were 617. We first used the latter information to study the genetic diversity and the population structure of this collection subset. Full information about country of origin, cultivation, berry colour and usage, retrieved either from http://www.vivc.de/index.php or http://catalogoviti.politicheagricole.it/catalogo.php are provided in Supplementary Table 11 and Figure 5.

Figure 5. First panel, top: country of origin of the 530 grapevine accessions, when not available, replaced with the area of major cultivation. Second panel, bottom: destination usage of the grape varieties.

The majority of cultivars of the CCC are of Italian origin, especially from north and centre of Italy, followed by cultivars of western Europe origin. Concerning the destination usage of the grapes, the majority (77%) are cultivars designated to wine production. The 530 distinct genotypes characterized with 45 SSR markers (Cipriani et al., 2010 and personal communication) revealed a large number of alleles detected (Table 7). The number of different alleles (A) for the SSRs was 369 and ranged from 2 to 16 per locus, with an average of 8.2. The observed $(H o)$ and
expected heterozygosities (He) were 0.658 and 0.75 , respectively, and the former is in line with the value in other grapevine collections (Nicolas et al., 2016).

Table 7. Summary statistics of genetic variation at 45 SSR loci in the 530 germplasm cultivars. In the column locus, in green the previously reported SSR markers (Cipriani et al., 2010), in yellow the new set of markers. \boldsymbol{N} (Sample Size), Na (No. Alleles), Ne (No. Effective Alleles), I (Information Index), Ho (Observed Heterozygosity), He (Expected Heterozygosity), uHe (Unbiased Expected Heterozygosity), F (Fixation Index).

Locus	N	Na	Ne	I	Ho	He	uHe	F
VChr1a	495	9.000	2.737	1.400	0.655	0.635	0.635	-0.031
VChr1b	526	4.000	2.728	1.156	0.671	0.633	0.634	-0.060
VChr1c	528	3.000	1.973	0.724	0.523	0.493	0.494	-0.060
VChr2a	525	4.000	1.859	0.771	0.520	0.462	0.462	-0.126
VChr2b	497	4.000	1.748	0.772	0.443	0.428	0.428	-0.035
VChr3a	487	12.000	6.275	2.026	0.786	0.841	0.841	0.064
VChr4a	475	6.000	2.448	1.135	0.589	0.592	0.592	0.003
VChr5a	520	11.000	5.149	1.880	0.806	0.806	0.807	0.000
VChr5b	513	9.000	3.704	1.517	0.754	0.730	0.731	-0.033
VChr5c	450	7.000	4.215	1.623	0.760	0.763	0.764	0.004
VChr6a	509	3.000	2.037	0.846	0.417	0.509	0.510	0.182
Vchr7a	524	3.000	1.982	0.723	0.508	0.495	0.496	-0.025
VChr7b	469	4.000	3.287	1.277	0.736	0.696	0.697	-0.057
VChr8a	498	12.000	5.702	1.918	0.588	0.825	0.825	0.287
VChr9a	448	7.000	5.059	1.741	0.850	0.802	0.803	-0.060
VChr9b	395	13.000	4.385	1.760	0.324	0.772	0.773	0.580
Vchr10b	512	4.000	2.831	1.083	0.670	0.647	0.647	-0.036
Vchri1a	511	5.000	2.039	0.955	0.485	0.510	0.510	0.048
Vchri2a	525	8.000	2.566	1.204	0.547	0.610	0.611	0.104
Vchr12b	482	3.000	1.385	0.465	0.295	0.278	0.278	-0.060
Vchri3a	504	7.000	3.281	1.479	0.704	0.695	0.696	-0.013
Vchr 13b	511	8.000	2.558	1.342	0.614	0.609	0.610	-0.009
Vchri3c	513	4.000	3.141	1.258	0.700	0.682	0.682	-0.027
Vchr14a	403	5.000	2.294	0.956	0.600	0.564	0.565	-0.065
Vchr15a	511	7.000	3.387	1.455	0.663	0.705	0.705	0.059
Vchr16a	525	8.000	1.507	0.734	0.250	0.336	0.337	0.258
Vchr16b	523	8.000	2.086	1.144	0.530	0.521	0.521	-0.017
Vchri7a	488	2.000	1.781	0.630	0.281	0.439	0.439	0.360
Vchr18a	519	9.000	3.458	1.553	0.570	0.711	0.712	0.198
Vchr 18 b	529	5.000	2.829	1.146	0.681	0.647	0.647	-0.053
Vchr19a	520	9.000	3.061	1.471	0.673	0.673	0.674	0.000
Vchr 19 b	523	5.000	3.281	1.306	0.562	0.695	0.696	0.191
VVS2	529	13.000	5.504	1.964	0.822	0.818	0.819	-0.005
VVMD27	529	9.000	5.615	1.827	0.824	0.822	0.823	-0.003
VVMD7	529	14.000	5.320	1.907	0.822	0.812	0.813	-0.013
ISV2	525	16.000	6.641	2.061	0.891	0.849	0.850	-0.049
VrZAG62	530	10.000	6.383	1.979	0.860	0.843	0.844	-0.020
VVMD5	524	10.000	6.098	1.949	0.819	0.836	0.837	0.021
VMCNG4B9	524	15.000	6.231	2.139	0.853	0.840	0.840	-0.016
VrZAG79	527	11.000	5.667	2.018	0.827	0.824	0.824	-0.005
ISV3	488	10.000	3.119	1.361	0.836	0.679	0.680	-0.231
ISV4	520	10.000	4.682	1.693	0.754	0.786	0.787	0.041
VVMD28	526	14.000	7.751	2.207	0.882	0.871	0.872	-0.013
VVMD25	443	14.000	4.434	1.669	0.786	0.774	0.775	-0.014
VVMD32	428	15.000	5.864	1.962	0.862	0.829	0.830	-0.039
Mean	501.8	8.200	3.780	1.426	0.658	0.675	0.676	0.027
SE	5.088	0.580	0.252	0.071	0.026	0.022	0.022	0.020

To explore the genetic variability of the collection and population structure, the first method employed was the PCA. The genetic diversity of the collection represented by the PCA was matched with the geographical origins and grapes usage of the cultivars in the collection. Clustering was weak concerning the geographic subdivision (weak gradient right to left, eastern Europe to north Italy/center-north Europe), while the clustering based on usage was more evident (Figure 6), displaying a sort of gradient from right to left (table to wine cultivars), with the wine/table cultivars in the middle of the distribution, similar to what has been reported before for other collections (Migicovsky et al., 2017).

Figure 6. Principal component analysis plots from SSR data. Each dot represents one of the 530 cultivars. Top plot represents geographic origin/cultivation, while bottom is grape usage destination. Top panel abbreviations: AM America, CI Center Italy, CNE Center North Europe, EE Eastern Europe, IS Islands (Sardinia, Sicily), IT Italy, NI North Italy, SI South Italy, UKN Unknown origin, WE Western Europe. Bottom panel abbreviations: T/R Table/Raisin, UKN Unknown origin, W/T Wine/Table, W/T/R Wine/Table/Raisin.

Population structure analysis performed with the software STRUCTURE on the SSR data set suggested as the most likely number of clusters (K), evaluated with the plateau criterion proposed by Pritchard et al. and the $\Delta \mathrm{K}$ method (Evanno et al., 2005) a maximum probability for $K=2$ and a smaller probability for $K=6$. Indeed, the $\Delta \mathrm{K}$ criterion gave the highest value at $\mathrm{K}=2$, and a small peak at $\mathrm{K}=6$. Instead, the plateau criterion, highlighted by the mean log-likelihood curve, revealed a maximum value with no standard deviation associated at $\mathrm{K}=6$, beyond that, a sort of plateau is reached, and the standard deviations associated with the remaining estimates increase. When the cultivars in the PCA are coloured according to the membership of the groups identified by STRUCTURE, the 2 groups subdivision is very evident (Figure 8). Table 8 gives the genetic diversity statistics associated to each one of the 2 subgroups and the admixed one, compared to the values (already reported in Table 7) obtained considering the entire collection.

Figure 7. Estimated number of clusters obtained with STRUCTURE for K values from 1 to 20. Graphical representation of its derivative statistics ΔK (top) and estimated mean $L(K)$ (middle). Bottom figure represents plot generated based on the Q-matrix. Each cultivars is represented by a single vertical line, which is divided in coloured segments in proportion to the estimated membership in the two subgroups. On the y-axes is the likelihood of assignment to any given cluster K.

Figure 8. Principal component analysis plot from SSR data. Each dot represents one of the 530 cultivars. The colors represent the 2 groups subdivision identified by STRUCTURE.

Table 8. Summary statistics of genetic variation at 45 SSR loci in the 530 germplasm cultivars, subdivided into 2 groups as identified by STRUCTURE, compared to the values obtained considering the entire collection.

Pop		\mathbf{N}	$\mathbf{N a}$	$\mathbf{N e}$	\mathbf{I}	$\mathbf{H o}$	$\mathbf{H e}$	$\mathbf{u H e}$	\mathbf{F}
A-STR	Mean	148.778	7.378	3.736	1.409	0.655	0.671	0.673	0.025
	SE	1.925	0.488	0.252	0.070	0.026	0.022	0.023	0.022
B-STR	Mean	131.644	7.378	3.745	1.420	0.663	0.675	0.677	0.017
	SE	1.239	0.501	0.249	0.071	0.026	0.022	0.022	0.020
	Mean	221.356	7.467	3.757	1.419	0.656	0.674	0.676	0.029
	SE	2.027	0.481	0.246	0.070	0.026	0.023	0.023	0.021
CCC	Mean	501.8	8.2	3.78	1.426	0.658	0.675	0.676	0.027
	SE	5.088	0.58	0.252	0.071	0.026	0.022	0.022	0.02

Homogeneity of genetic diversity between the three subgroups is appreciable, and the values are comparable to the ones of the entire collection; however, pairwise Fst values (fixation index or inbreeding coefficient), which describe the genetic differentiation between groups or population, indicates a very low level of differentiation between the three subgroups (0.0026 between A-STR and B-STR, 0.0019 between A-STR and ADMIXED, and 0.0021 between B-STR and
admixed), although very similar to values previously reported separating sativa cultivars of among Western, Central and Eastern Europe (Myles et al., 2011). We tried to characterize the subgroups to find specific features of the two, so we looked at enrichment in terms of geographic origins, and found a significative overrepresentation of cultivars from the east (mostly table grapes), the orientalis group (proles) as defined in the works of Negrul and Troshin (Negrul et al., 1946; Troshin LP et al., 1990), in the group A-STR, and a significant underrepresentation of cultivars from the North Italy group (Table 9). Regarding group B-STR, we found a significant overrepresentation of cultivars belonging to the North Italy group and a slight enrichment for cultivars belonging to the Center-North Europe group ($p=0.061$ two-tailed, $p=0.0554$ one-tailed Fisher's Exact Test) comprised in the pontica occidentalis proles. On the other hand, in this group we observed very few cultivars belonging to groups overrepresented in group A-STR (AM, EE, IS [2 cultivars]).

Table 9. Composition of the two groups identified by STRUCTURE plus the admixed cultivars. Top table shows contingency table for country of origin, bottom table for colour. In red overrepresented groups, in blue underrepresented ones. In parenthesis, in italics are reported p-values from Fisher's Exact Test two-tailed. Abbreviations: AM America, CI Center Italy, CNE Center North Europe, EE Eastern Europe, IS Islands (Sardinia, Sicily), IT Italy, NI North Italy, SI South Italy, UKN Unknown origin, WE Western Europe.

COUNTRY	A-STR	B-STR	ADMIXED	CCC
AM	$\mathbf{8}(0.09445)$	0	$3(0.5692)$	11
CI	$42(0.8417)$	$34(1)$	$58(1)$	134
CNE	0	$8(0.06159)$	$5(1)$	13
EE	$\mathbf{1 3}(0.0285)$	0	$5(0.4912)$	18
IS	$\mathbf{1 5 (0 . 0 2 7 4)}$	$2(0.1956)$	$5(0.2069)$	22
IT	$27(0.7169)$	$\mathbf{8}(0.006577)$	$48(0.1853)$	83
NI	$\mathbf{6 (3 . 4 3 1 e - 0 8)}$	$\mathbf{6 9}(9.71 e-05)$	$56(0.9294)$	131
SI	$20(0.4707)$	0	$34(0.1449)$	54
UKN	$3(0.7049)$	$2(1)$	$2(0.73)$	7
WE	$25(0.1696)$	$15(1)$	$17(0.1862)$	57
	$\mathbf{1 5 9}$	$\mathbf{1 3 8}$	$\mathbf{2 3 3}$	$\mathbf{5 3 0}$

COLOR	A-STR	B-STR	ADMIXED	CCC
BLANC	$86(0.1308)$	$\mathbf{3 8}(0.03239)$	$100(0.9427)$	224
GRIS	0	0	2	2
NOIR	$\mathbf{5 1}(0.009774)$	$\mathbf{9 6}(0.04294)$	$121(0.8398)$	268
RED	2	0	1	3
ROSE	2	0	1	3
ROUGE	4	3	1	8
UKN	14	1	7	22
	$\mathbf{1 5 9}$	$\mathbf{1 3 8}$	$\mathbf{2 3 3}$	$\mathbf{5 3 0}$

When the same reasoning is applied to the colour characteristic, we observe an underrepresentation of black-skinned (noir) cultivars in the A-STR, coupled with an overrepresentation of the same in the B-STR.

To support the results obtained by STRUCTURE we also applied a non-parametric approach called DAPC to the same SSR dataset (530 individuals, 45 SSRs). To identify the optimal number of clusters the Bayesian Information Criterion (BIC) method was employed (Jombart et al., 2010). The greatest delta between two points is found between $\mathrm{K}=1$ and $\mathrm{K}=2$, while the lowest value is reached at $\mathrm{K}=7$. Both K values (2 and 7) were explored and compared to the results obtained previously with STRUCTURE (Figure 9).

Figure 9. Bayesian Information Criterion (BIC) according to the number of inferred clusters ($K=0-20$). 300 principal components were kept and the number of starting points was set at 100 . Number of iterations was 1000000 and the chosen number of clusters were $K=2$ and $K=7$.

When the individuals belonging to the subgroups identified by STRUCTURE are matched with the individuals belonging to the subgroups identified by DAPC there is a perfect match (Figure 10, top). The individuals classified as admixed by STRUCTURE (group c in the figure) are split between the 2 groups identified by DAPC, which usually identifies a very small number of admixed individuals, in this case just 3 (not shown). Moreover, the two DAPC groups separates very good in the PCA plot, meaning that their genetic diversity is high (Figure 10, bottom).

Figure 10. Top figure. Representation of contingency table by square sizes to compare prior group assignments using K-means clustering to the groups identified by STRUCTURE. Group a is A-STR, b is B-STR and c is admixed. Inferred clusters 1 and 2 are the two clusters identified by DAPC approach. Bottom panel is the discriminant analysis component plot for the two inferred clusters by DAPC.

Another way of assessing the results of the clustering method we employed is with phylogenetic trees and dendrograms. Using the R package phangorn $v 2.1 .1$ we built a Neighbour-Joining tree based on Euclidean distances and a dendrogram based on Manhattan distances (Figure 11). In both, the 2 subgroups identified by STRUCTURE and DAPC (data not shown) and the groups founds by the trees were in agreement except for few individuals incorrectly placed, thus reinforcing the two groups subdivision identified initially by STRUCTURE.

Figure 11. Top panel, Neighbor-joining tree based on euclidean distances. In red, green and blue group ASTR, B-STR and admixed cultivars respectively. Bottom panel, dendrogram based on manhattan distances, Ward method. Red labels represent group A-STR, black labels are cultivars from group B-STR. Admixed individuals are not displayed.

We then tried to explore the additional subdivision of the population in 6 subgroups as previously suggested by STRUCTURE (Figure 7). When the PCA of the 530 cultivars is coloured according to the 6 subgroups (Figure 12), except for groups d
and e, which are slightly overlapping, the remaining 4 groups are well separated. Admixed cultivars are the majority $(316, \sim 60 \%)$ and are dispersed all over the points, but mostly concentrate in the middle of the plot. The smallest group is group $c(\mathrm{n}=10)$, while group f is the largest, with 67 cultivars. In Table 10 summary statistics of the genetic diversity of the 6 subgroups are reported. Values are again comparable to each other's and to the entire collection. Pairwise fixation index ranged from 0.019 between d and f and 0.096 between b and c subpopulations (Table 11). Considering the small sample size compared to other grapevine germplasm collections (Emanuelli et al., 2013; Nicolas et al., 2016), these values, with an average value of 0.051 , may reflect statistically supported subpopulations. Also in this case we tried to characterize the subpopulations from a geographic (Table 12) and grape usage point of view. We notice some over- and underrepresentation: for example group a is enriched in cultivars of the proles orientalis, very similarly to the previous group A-STR, while at the same time is scarce of cultivars from the north of Italy; group b is very small ($\mathrm{n}=12$), but being very close to group a is again slightly enriched for cultivars from classified as America (Cardinal, Early Muscat, July Muscat, mainly table grape cultivars). Group c is the smallest $(\mathrm{n}=10)$ composed only of wine cultivars and not enriched in cultivar from any geographic area; group d is composed mainly by wine cultivars and is enriched in cultivars of north Italian origin and, though not significant, the other representatives are only cultivars from centre of Italy. Group e, similar to group d, is enriched in cultivars of centre-Italy origin (though significant only at one-tail), and even if almost overlapping to group d, it also displays overrepresentation of western European cultivars (in particular 7 wine French cultivars: Becuet, Pinot Blanc, Malbech, Merlot, Sauvignon, Semillon, Chenin). Group f is significantly enriched for centre and south Italian cultivars, while it comprises only one cultivar classified as North Italian, and, according to the PCA plot, it is the only subgroup with no cultivars overlapping to any other subgroups. By building a Neighbor-joining phylogenetic tree without considering the admixed individuals identified by STRUCTURE, the 6 subgroups identified both by STRUCTURE separates well supporting again the hypothesis of the 6 groups subdivision (Figure 13 B).

Figure 12. Principal component analysis plot from SSR data. Each dot represents one of the 530 cultivars. The colors represent the 6 groups subdivision identified by STRUCTURE. Group g is admixed cultivars, colored in light grey.

Table 10. Summary statistics of genetic variation at 45 SSR loci in the 530 germplasm cultivars, subdivided into 6 groups as identified by STRUCTURE, compared to the values obtained considering the entire collection. Group g is admixed cultivars.

Pop		N	Na	Ne	I	Ho	He	uHe	F
a	Mean	40.556	6.489	3.649	1.375	0.667	0.661	0.669	-0.009
	SE	0.548	0.434	0.255	0.071	0.026	0.023	0.023	0.023
b	Mean	11.222	4.822	3.421	1.275	0.648	0.653	0.685	0.013
	SE	0.220	0.278	0.220	0.062	0.032	0.022	0.023	0.033
c	Mean	9.400	4.556	3.252	1.230	0.664	0.634	0.670	-0.035
	SE	0.140	0.257	0.197	0.062	0.035	0.023	0.025	0.038
d	Mean	52.511	6.667	3.765	1.404	0.662	0.674	0.680	0.013
	SE	0.564	0.402	0.253	0.069	0.026	0.022	0.023	0.023
e	Mean	23.911	5.844	3.481	1.323	0.618	0.647	0.661	0.046
	SE	0.439	0.358	0.238	0.070	0.032	0.024	0.025	0.034
f	Mean	63.133	6.844	3.719	1.401	0.662	0.672	0.677	0.015
	SE	0.795	0.452	0.248	0.070	0.026	0.022	0.022	0.023
g	Mean	301.044	7.778	3.767	1.425	0.658	0.675	0.676	0.027
	SE	2.664	0.512	0.247	0.070	0.026	0.022	0.023	0.021
CCC	Mean	501.8	8.2	3.78	1.426	0.658	0.675	0.676	0.027
	SE	5.088	0.58	0.252	0.071	0.026	0.022	0.022	0.02

Table 11. Pairwise $F_{\text {st }}$ index (calculated as $1-(\mathrm{Ho} / \mathrm{He})$) between the six subgroups subdivision as identified by STRUCTURE. Highest and lowest values highlighted in red and blue respectively, excluding admixed individuals.

Pop	a	b	c	d	e	f
b	0.055					
c	0.066	$\mathbf{0 . 0 9 6}$				
d	0.022	0.052	0.055			
e	0.036	0.067	0.081	0.037		
f	0.023	0.045	0.066	0.019	0.037	
g	0.016	0.045	0.060	0.013	0.032	0.010

Table 12. Contingency table of geographic composition of the six groups identified by STRUCTURE plus the admixed cultivars. In red overrepresented groups, in blue underrepresented ones. In parenthesis, in italics are reported p-values from Fisher's Exact Test two-tailed.

Also in this case, to validate STRUCTURE results, we tried the DAPC approach which suggested a possibility having a 7 subgroups subdivision (Figure 9). When we tried to match the composition of individuals identified by both the methods, this time the match is not perfect but is still significant. In particular for groups a, b, and e, the match is almost perfect with DAPC clusters 3,6 and 7 respectively (Figure 13 C). The plot of the discriminant components based on the DAPC approach shows that not all the 7 groups were clearly separated from each other (Figure 13 D).

D

Figure 13. A. Plot generated based on the Q-matrix. Each cultivar is represented by a single vertical line, which is divided in coloured segments in proportion to the estimated membership in the six subgroups identified by STRUCTURE. On the y-axes is the likelihood of assignment to any given cluster K. B. Neighbor-joining tree based on euclidean distances. Each colours represent a different subgroups of the 6 identified by STRUCTURE. C. Contingency table by square sizes to compare prior group assignments using K-means clustering to the groups identified by STRUCTURE. Groups a to g are 6 groups identified by STRUCTURE, while g are admixed cultivars. Inferred clusters 1 to 7 are the 7 clusters identified by DAPC approach. D. Scatter plot of the first two discriminant components as evaluated by the dapc function of the adegenet R package. Black crosses indicate the centre of each one of the inferred clusters.

Phenotypic data

Phenotypic data consisting of Julian days (days from the beginning of the year) for the beginning of flowering (FB) and the beginning of veraison (VB) were recorded for the whole CCC for over 50 years. Flowering-veraison interval trait (F-V) was also considered and obtained as the raw difference between the time of veraison beginning and flowering beginning. We focused our analysis on the data of seasons 2002 to 2016, given the observation (Tomasi et al., 2011) that a significant breakpoint in the grapevine phenology in the Conegliano region occurred around 20 years ago. Complete phenotypic data were available for 13 years for FB trait, while for VB , and consequently also $\mathrm{F}-\mathrm{V}$, for 11 years.

When we checked the single years distribution of flowering, many years showed a bimodal distribution, as well as the all-years distribution (Figure 14, Panel 1). We then checked the distribution of the traits with histograms and quantile-quantile plots (QQ plots). Flowering suggests a bimodal distribution while veraison approximates well a normal distribution. Raw phenotypic values were then plotted for each year as boxplot in order to check the variability for the three traits among the 13 years. Variability among years looks greater for flowering than for veraison, though quite significant for both (p-value $\ll 0.01$, ANOVA), showing a slightly decreasing trend over the years. The inter-years variability looks more levelled when the trait flowering-veraison interval is considered, though again still significant when an ANOVA test is performed to compare all the years together (pvalue $\ll 0.01$). Since it is important to consider the effect of temperature on phenological stages of plants, and in particular in grapevine (De Cortázar-Atauri et al., 2017; Duchêne et al., 2010; Williams et al., 1985) we wanted to verify the effect of temperature on the two traits, performing a transformation of the raw flowering and veraison date values to a new value based on the GDD index. GDD (Growing Degree-Days) is an index used in agriculture that measures the heat accumulation throughout the year. After plotting the newly GDD- transformed values the distribution of flowering changed from bimodal to a good normal distribution, while the veraison distribution remained unchanged (Figure 14, Panel 2); especially from the QQ plots it can be observed that when using the GDD values almost all
the points fall on the theoretical quantile distribution except for few points at the flowering tails. The same effect can be seen on the flowering-veraison trait, and it can be noted that when considering the GDD values, the entire distribution profile of the F-V interval trait is completely determined by the VB trait profile. Such a decrease in variability among years when using the GDD corrected traits was also confirmed by a comparison of the p-values intensities from a pairwise t-test between every year (Figure 15). Overall, the p-values of the comparison of the means lose significance when considering GDD values, both for flowering and for veraison. Finally, we plotted the traits (both as raw date and GDD-corrected dates) for each genotype as boxplot (Data not shown) to check the intra- and intergenotypic variability and could observe that both decreased after the GDD correction for the flowering trait while remained similar for veraison.

Flowering				
YEAR	Count	Mean	Median	SD
$\mathbf{2 0 0 4}$	263	163.21	164	2.33
$\mathbf{2 0 0 5}$	268	153.64	154	3.33
$\mathbf{2 0 0 6}$	368	157.85	158	3.19
$\mathbf{2 0 0 7}$	288	137.96	138	3.00
$\mathbf{2 0 0 8}$	564	155.27	155	2.46
$\mathbf{2 0 0 9}$	506	144.17	144	2.10
$\mathbf{2 0 1 0}$	570	154.92	155	2.27
$\mathbf{2 0 1 1}$	506	143.35	143	2.07
$\mathbf{2 0 1 2}$	526	153.80	154	3.44
$\mathbf{2 0 1 3}$	595	159.50	159	3.21
$\mathbf{2 0 1 4}$	568	146.72	147	3.41
$\mathbf{2 0 1 5}$	583	150.33	151	3.46
$\mathbf{2 0 1 6}$	524	156.56	156	3.62
$\mathbf{A L L}$	6129	152.08	154	6.999

Veraison				
YEAR	Count	Mean	Median	SD
$\mathbf{2 0 0 4}$	263	226.29	227	6.64
$\mathbf{2 0 0 5}$	268	222.46	222	8.01
$\mathbf{2 0 0 6}$	368	224.94	226	7.45
$\mathbf{2 0 0 7}$	288	208.70	207.5	8.22
$\mathbf{2 0 0 8}$	564	225.98	226	10.46
$\mathbf{2 0 1 0}$	570	218.87	219	7.05
$\mathbf{2 0 1 1}$	506	208.13	209	7.09
$\mathbf{2 0 1 3}$	595	225.41	226	8.95
$\mathbf{2 0 1 4}$	568	221.05	223	9.85
$\mathbf{2 0 1 5}$	583	216.52	217	7.93
$\mathbf{2 0 1 6}$	524	227.07	227	7.57
$\mathbf{A L L}$	5623	220.52	221	10.42

Flowering-Veraison				
YEAR	Count	Mean	Median	SD
$\mathbf{2 0 0 4}$	263	63	63	6.64
$\mathbf{2 0 0 5}$	268	68.9	68	7.79
$\mathbf{2 0 0 6}$	369	67.1	68	7.76
$\mathbf{2 0 0 7}$	288	70.8	70	7.64
$\mathbf{2 0 0 8}$	567	70.8	71	10.2
$\mathbf{2 0 1 0}$	568	64	64	7.16
$\mathbf{2 0 1 1}$	500	64.7	66	7.17
$\mathbf{2 0 1 3}$	536	65.9	67	8.75
$\mathbf{2 0 1 4}$	564	74.4	76	9.95
$\mathbf{2 0 1 5}$	583	66.2	67	7.86
$\mathbf{2 0 1 6}$	521	70.5	71	7.37
ALL	5392	67.85	68.27	8.03

Figure 14. Panel 1. On previous page, panel showing different plots and tables regarding raw phenotypic values; flowering, veraison and flowering-veraison interval in orange, purple and blue respectively. For images, from top left, clockwise: density plots showing trait distribution over different years; histogram of overall distribution across all years; QQ plot across all years; boxplot showing inter-years differences.

Veraison GDD				
YEAR	Count	Mean	Median	SD
$\mathbf{2 0 0 4}$	264	1123	1134	87.3
$\mathbf{2 0 0 5}$	269	1239	1232	86.3
$\mathbf{2 0 0 6}$	372	1407	1415	92
$\mathbf{2 0 0 7}$	289	1400	1394	114
$\mathbf{2 0 0 8}$	567	1458	1465	153
$\mathbf{2 0 1 0}$	569	1322	1320	90.9
$\mathbf{2 0 1 1}$	507	1267	1271	84.9
$\mathbf{2 0 1 3}$	538	1392	1407	130
$\mathbf{2 0 1 4}$	565	1394	1428	124
$\mathbf{2 0 1 5}$	583	1439	1439	121
$\mathbf{2 0 1 6}$	521	1386	1376	88.8
ALL	5044	1347.91	1352.82	106.6

Flowering-Veraison GDD

YEAR	Count	Mean	Median	SD
$\mathbf{2 0 0 4}$	263	643	641	86.3
$\mathbf{2 0 0 5}$	268	769	762	83.8
$\mathbf{2 0 0 6}$	371	937	947	92.7
$\mathbf{2 0 0 7}$	288	897	893	106
$\mathbf{2 0 0 8}$	567	987	993	149
$\mathbf{2 0 1 0}$	568	855	851	91.7
$\mathbf{2 0 1 1}$	500	778	783	86.7
$\mathbf{2 0 1 3}$	536	945	967	127
$\mathbf{2 0 1 4}$	564	893	922	123
$\mathbf{2 0 1 5}$	583	934	943	118
$\mathbf{2 0 1 6}$	521	894	887	86.1
$\mathbf{A L L}$	5029	866.545	871.727	104.6

Figure 14. Panel 2. On previous page, panel showing different plots and tables regarding GDD phenotypic values; flowering, veraison and flowering-veraison interval in orange, purple and blue respectively. For images, from top left, clockwise: density plots showing trait distribution over different years; histogram of overall distribution across all years; QQ plot across all years; boxplot showing inter-years differences.

Figure 15. Pairwise t-test p-values intensity for flowering (upper panel) and veraison (lower panel) traits; in each panel lower triangle is raw values while upper triangle displays values for GDD values. Scales are from red to green, where red values represent more lower p-values while yellow to green values represent higher pvalues.

Diversity panel construction

Since our aim was to perform a GWAS on the CCC, we wanted to utilize a subset diversity panel (core collection) representing the entire allelic diversity of the CCC. We downloaded GrapeReSeq 18K Vitis genotyping chip data from a recent publication (Laucou et al., 2018) consisting in a matrix of 10,207 SNPs x 783 unique grapevine individuals with no missing values. The number of cultivars in common between the 530 from CCC and the 783 was 95 (Supplementary Table 13). When highlighted in the PCA plot based on SSR data, these 95 cultivars show a sort of good coverage of the entire plot space (Figure 16).

Figure 16. PCA plot based on SSR data of the CCC. In blue, the 95 cultivars in common with the French collection are highlighted. In orange, the rest of the cultivars.

When considering the average number of alleles (allelic diversity) of the 95 cultivars in common between the CCC and the French collection, the value reached is 6.95 , compared to the one of the entire CCC which is 8.2 . To obtain the minimum number of cultivars covering all the loci of the entire collection, we used the approach of the core collection construction, using the R package corehunter (De Beukelaer et al., 2018). This software is able to select the minimum number of representatives from larger collection, with least redundancy, while maximizing
different indexes, like allelic diversity or expected heterozygosity. Given as input the SSR genotypic data matrix from the CCC ($45 \mathrm{SSR} \times 530$ cultivars), and as main option, to keep the 95 cultivars in common as fixed (that is, always included in the resulting core collection), we evaluated the lowest number of cultivars needed to reach the allelic diversity average value of 8.2 . As shown in Table 13, the number of cultivars needed to reach this value is 132, that is, the 95 fixed ones plus 37 additional cultivars from the CCC.

Table 13. Values of allele coverage (CV, i.e. the percentage of marker alleles observed in the full collection that are retained in the core) and allelic diversity ($A D$) obtained from the software corehunter, starting from the 95 cultivars fixed, adding one cultivar at the time, until reaching the complete coverage of the CCC.

\mathbf{N}° of entries	$\mathbf{C V}$	$\mathbf{A D}$
95	0.8482385	6.9555557
96	0.8617886	7.06666652
97	0.8753388	7.17777816
98	0.8834688	7.24444416
99	0.8915989	7.31111098
100	0.899729	7.3777778
101	0.9051491	7.42222262
102	0.9105691	7.46666662
103	0.9159892	7.51111144
104	0.9214092	7.55555544
105	0.9268293	7.60000026
106	0.9295393	7.62222226
107	0.9322493	7.64444426
108	0.9349593	7.66666626
109	0.9376694	7.68888908
110	0.9403794	7.71111108
111	0.9430894	7.73333308
112	0.9457995	7.7555559
113	0.9485095	7.7777779
114	0.9512195	7.7999999
115	0.9539295	7.8222219
116	0.9566396	7.84444472
117	0.9593496	7.86666672
118	0.9620596	7.88888872
119	0.9647696	7.91111072
120	0.9674797	7.93333354
121	0.9701897	7.95555554
122	0.9728997	7.97777754
123	0.9756098	8.00000036
124	0.9783198	8.02222236
125	0.9810298	8.04444436
126	0.9837398	8.06666636
127	0.9864499	8.08888918
128	0.9891599	8.11111118
129	0.9918699	8.13333318
130	0.9945799	8.15555518
131	0.99729	8.177778
132	1	8.2

Since, among the 435 remaining cultivars ($530-95=435$), the number of possible combinations to choose the 37 additional one was high, we simulated 100 core collections of 132 cultivars, and selected, among the 37 , the cultivars that were more present in the 100 simulations. We found 26 cultivars being always present in all the simulations; to choose the remaining 11 , we counted the frequency of appearance of the remaining 11 cultivars in all the 100 core collections and selected the most frequent ones. Figure 17 shows the PCA plot where the resulting diversity panel is highlighted. The 37 additional cultivars that resulted necessary to reach the allelic diversity maximization are depicted in red in Figure 17. From their position in the PCA plot, it can be noted that they get to cover quite uniformly the remaining areas that were not fully covered with just the individuals from the French collection (in blue).

Figure 17. PCA plot based on SSR data of the CCC. In blue, the 95 cultivars in common with the French collection are highlighted. In red, the 37 cultivars that together with the 95, maximize the allelic diversity of the CCC. In orange, the rest of the cultivars.

Summary statistics of the genetic diversity of the core collection compared to the CCC are given in Table 14. The average number of observed alleles is, as requested before, the same of the CCC, while both Shannon diversity Index and expected
heterozygosity are higher than in the CCC. The index of evenness, a measure of the distribution of genotype abundances, is highly comparable between the two.

Table 14. Summary genetic diversity statistics of the core collection and the CCC.

	$\mathbf{N a}$	\mathbf{I}	He	Evenness
CORE	8.2	1.4570	0.6842	0.7526
CCC	8.2	1.4264	0.6759	0.7572

When the composition of the diversity panel from the geographical origin point of view is compared with the entire germplasm collection, the unique geographic group that shows an altered composition is the one of the cultivars from western Europe, which is enriched in the core collection compared to the entire collection (Table 15 A). When the same comparisons are made for grapes usage, no enrichment is observed (Table 15 B), and the same can be said regarding the numerosity of the cultivars of the core belonging to the subgroups identified by STRUCTURE, both when considering the 3 and the 6 groups subdivision (Table 15 C and D), suggesting a homogenous composition of the diversity panel from different perspectives. Supplementary table 14 describes the 132 cultivars included in the diversity panel.

Table 15. A. Contingency table of geographic composition of the core collection of 132 cultivars identified with corehunter. B. Contingency table of grapes usage of the core collection. C. Contingency table of the composition of the 2 subgroups subdivision identified by structure compared between the core collection and the CCC. D. Contingency table of the composition of the 6 subgroups subdivision identified by structure compared between the core collection and the CCC. In red overrepresented groups. In parenthesis, in italics are reported p-values from Fisher's Exact Test two-tailed.

A	COUNTRY	CORE	CCC
AM	$6(0.1296)$	11	

CI	$31(0.827)$	134
CNE	$4(0.7583)$	13

EE $\quad 9(0.1397) \quad 18$

IS	$5(1)$	22
IT	$14(0.2171)$	83

NI $\quad 24(0.2142) \quad 131$

SI	$12(0.8714)$	54
UKN	$1(1)$	7

WE	$26(0.022 I)$
132	530

B

USAGE	CORE	CCC
TABLE	$18(0.2755)$	52
TABLE/RAISIN	$1(0.4880)$	2
UKN	0	3
WINE	$89(0.4063)$	409
WINE/TABLE	$23(0.1176)$	61
WINE/TABLE/RAISIN	$1(1)$	3
	132	530

STR-6	CORE	ALL
a	$18(0.0973)$	43
b	$5(0.3576)$	12
c	$2(1)$	10
d	$20(0.2298)$	56
e	$3(0.2404)$	26
f	$9(0.0923)$	67
g (admixed)	$75(0.8099)$	316
	132	530

Phenotypic diversity of the $\mathbf{1 3 2}$ cultivars of the GWAS diversity panel

We studied the phenotypic data of the 132 individuals included in the GWAS diversity panel, and compared them to the data of the entire collection, to understand if the approach of maximizing the number of alleles with the minimum number of individuals would retain a phenotypic distribution similar to the CCC one. Figure 16 shows the phenotypic distribution of the cultivars included in the
panel overlaid with the distribution of the entire collection. As can be seen from the density plots, the phenotypic values of the diversity panel precisely reflect the values of the entire collection, except for very few values in the tails.

Figure 16. Density plots of the phenotypic traits flowering beginning (FB), veraison beginning (VB) and flowering-veraison interval $\left(F_{-} V\right)$ from the diversity panel, transparent colour, and from the entire collection, normal colour. On the x-axis the phenotypic value expressed in days of year. On the y-axis the density distribution.

Integration of published SNPchip data: DNA extraction, hybridization and SNP data extraction

DNA of the 37 additional samples identified to reach the 132 individuals diversity panel was extracted with the Qiagen DNeasy Plant Mini Kit (Qiagen, Hilden, Germany) and quantified with the NanoDrop. Supplementary Table 13 reports the concentration and quality ratio values. Approximately $1 \mu \mathrm{~L}$ for each sample at a concentration ranging from $40-60 \mathrm{ng} / \mu \mathrm{L}$ was used to perform the GrapeReSeq 18K Vitis genotyping chip hybridization. Hybridizations evaluation and SNP calling were performed using the standard workflow of GenomeStudio Data Analysis v2011.1 (Illumina Inc, San Diego, CA, USA). After exporting the genotypic matrix for the 37 samples for performing the subsequent GWAS analysis we subset it to the 10,207 solid SNPs identified by Laucou et al. Among these

10,207 SNPs, we found only 97 SNPs that did not meet quality criteria, so that the resulting matrix used for GWAS was 10,110 SNPs x 37 individuals. We then merged the data matrix obtained from Laucou et al. with the data matrix produced by us and checked the consistency of both data sets in terms of genotypes scoring.

Association analysis SNPchip

Before running the association tests, we filtered SNPs having a minor allele frequency less than 0.05 using TASSEL, obtaining 9536 SNPs in total. In order to have a sort of confirmation of the design of our diversity panel, we performed a preliminary association test using the skin colour as phenotype. Using EMMAX (Kang et al., 2010) and running an association test correcting for kinship, inputting a kinship matrix as calculated by EMMAX itself on the same data matrix, we found as the most significant region associated to the colour phenotype, a region on chromosome 2 very close and overlapping to the extensively characterized colour locus (Fournier-Level et al., 2009) (Figure 17).

Skin color

Figure 17. Manhattan plot showing the results of the GWAS association test using grapes skin colour as phenotype. Most significantly associated SNPs reside in the region of chromosome 2 around 15 Mbp . In this case GWAS was performed with EMMAX.

The most significantly associated SNP, Vv_12X_V2_Chr2_15524738, is also the same most significantly associated SNP found when the association test is run using QTCAT, in this way giving a significant comparison between the approaches. A
similar test with grape skin colour was performed also by Laucou et al. and they identified the same region as the most significantly associated one.

We then proceeded with performing GWAS association on the phenology phenotypes with three different software, of which, two, use population structure or kinship as factor of correction, EMMAX and Gapit, while QTCAT works without using any other file for correction. Different runs were performed leading to many combinations (Supplementary Table 17), whose most significant results for the phenotypic values averaged across all the years are reported in Table 16. In this case the most significant results come from the raw phenotypic values and not the GDD ones (results not shown). Regarding EMMAX and Gapit, to make the results more comparable, the model used for both was the one corrected only by kinship. No significant results were found for the trait flowering beginning, while different significant SNPs were found for the other 2 traits (Table 16). Regarding veraison beginning, 5 significantly associated SNPs were found but only by the QTCAT approach, that were located respectively on chromosomes 3, 12, 13, 16 and 18. Concerning flowering-veraison interval, the three approaches identified altogether 13 signals of association, located on chromosomes 4, 8, 11, 12, 14, 16 and 18. Importantly 3 SNPs were significantly associated both to the veraison beginning trait and to flowering-veraison interval, thus suggesting a relevance of these regions in controlling grape veraison time and as consequence the floweringveraison interval length. As far as the use of different software is concerned, QTCAT identified the highest number of significantly associated SNPs (5 for veraison beginning and 10 for flowering-veraison interval) while. Gapit identified three SNPs and EMMAX only one. Interestingly two of the three SNPs associated to both traits also emerged by applying different softwares.

Table 16. The table reports the most significantly associated SNPs for the phenological traits averaged across the years. No significant results were found for the beginning of flowering. * $F D R<0.05$; ${ }^{* *} F D R<0.01$ as obtained from the approach under which the association was found. For QTCAT, the concept of FDR does not stand, so the stars are given according to the p-value.

	Trait	Software	Significance	Multiple evidence
$\boldsymbol{C h r} 3 _379409$	VB	QTCAT	$*$	No

Chr4_6106210	F-V	QTCAT	**	No
Chr8_3847595	F-V	Gapit	*	No
Chr8_7340158	F-V	QTCAT	*	No
Chr8_8216855	F-V	Gapit	**	No
Chr11_963022	F-V	QTCAT	*	No
Chr11_1343142	F-V	QTCAT	*	No
Chr12_21100465	VB, F-V	QTCAT, EMMAX	**, $p<0.1$	Yes
Chr13_26217739	VB	QTCAT	**	No
Chr14_23248717	F-V	QTCAT	**	No
Chr14_29502138	F-V	QTCAT	**	No
Chr16_348557	VB, F-V, F-V	QTCAT, Gapit, QTCAT	**, *, **	Yes
Chr16_20303373	F-V	QTCAT	**	No
Chr18_3381571	VB, F-V	QTCAT, QTCAT	**, **	Yes
Chr18_22124028	F-V	QTCAT	**	No

For further discussion we decided to focus on the SNPs associated to both traits veraison time and flowering veraison interval. The SNP $V v_{-} 12 X_{-} V 2 _C h r 12 _21100465$ that resulted significant $(p=0.00162)$ with the software QTCAT for the veraison beginning trait, and almost significant for the flowering-veraison interval trait with the software EMMAX (FDR $=0.052$). This SNP resides in the coding sequence of the gene VIT_12s0035g00280, that is annotated as an endomembrane protein 70 . The second SNP that resulted in common fir both traits and was revealed by between more than one approach was Vv_12X_V2_Chr16_348557. This SNP resulted significant with the software Gapit for the trait F-V $(\mathrm{FDR}=0.044)$ and with QTCAT both for VB $(p=0.00226)$ and F-V ($p=0.00356$). This SNP resides in the coding sequence of the gene VIT_16s0039g00700, that is annotated as a maltose transporter (RCP1 in A. thaliana), thus a gene involved in the carbohydrate metabolic processes. The third and last SNP pointed out as in common for both traits is $V v_{-} 12 X_{-} V 2 _C h r 18 _3381571$. This SNP resulted significant only with the software QTCAT but with the two phenotypic traits VB $(p=0.00318)$ and F-V $(p=0.00294)$. Also this SNP resides in the coding sequence of a gene, VIT_18s0001g03540, whose function is described as an auxin transporter protein 4 (LAX2 in A. thaliana). Moreover, this same gene is included in a meta-QTL interval that we identified in chapter one, in particular within pheno_18_1, a minor meta-QTL originating from
two QTLs, one from a mapped from flowering time trait (Carreño Ruiz, 2012) and the other from veraison time trait (Zyprian et al., 2016).

Table 17. Table listing the upstream and downstream flanking genes to the most significant SNPs associated to VB and F-V traits. In the first column, highlighted in italics and bold are the genes where the significantly associated SNP falls. Only highlighted in italics are the genes considered interesting for explaining the phenotype according to their function.

Flanking genes	Chr	Start	End	Function	Gene Ontology Slim
VIT_12s0035g00200	12	20991910	21013685	Phospholipase D	lipid metabolic process; catabolic process; cellular process
VIT_12s0035g00210	12	21019518	21020261	MAPKKK19	cellular protein modification process
VIT_12s0035g00220	12	21046133	21050594	No hit	
VIT_12s0035g00240	12	21059265	21062347	DAG protein, chloroplast precursor	
VIT_12s0035g00250	12	21064129	21066252	EMB2758	
VIT_12s0035g00260	12	21070623	21081261	Mlo4	response to stress; cell death; response to biotic stimulus
VIT_12s0035g00270	12	21081724	21082383	Ferredoxin, chloroplast (PETF)	generation of precursor metabolites and energy; transport; cellular process; protein metabolic process
VIT_12s0035g00280	12	21083032	21100612	Endomembrane protein 70	
VIT_12s0035g00290	12	21118063	21120870	Sugar transporter ERD6-like 6	
VIT_12s0035g00300	12	21130316	21134875	Carbohydrate transmembrane transporter SFP1	transport; cellular process
VIT_12s0035g00310	12	21148330	21154433	Protein kinase SPK-3 ASK1 (SnRK-6)	cellular protein modification process; response to stress; signal transduction; response to abiotic stimulus; response to endogenous stimulus
VIT_12s0035g00320	12	21159933	21169655	Phosphomethylpyrimidine kinase; thiamin-phosphate pyrophosphorylase	biosynthetic process; cellular process
VIT_16s0039g00570	16	283917	286597	10-deacetylbaccatin III 10-O-acetyltransferase	cellular protein modification process
VIT_16s0039g00610	16	316837	332541	Serine/threonine-protein kinase ppk15	
VIT_16s0039g00660	16	332542	337573	RNA polymerase nonessential primary-like sigma factor SIGA	

VIT_16s0039g00690	16	341722	344560	D111/G-patch domain-containing protein	carbohydrate metabolic process; transport; catabolic process; response to biotic stimulus; cellular process
VIT_16s0039g00700	16	346728	353020	RCP1 (root cap 1)	
VIT_16s0039g00720	16	357505	361097	Folate-biopterin transporter	DNA metabolic process; biosynthetic process
VIT_16s0039g00730	16	361349	363172	DNA polymerase delta, subunit D	cellular process; cellular component organization
VIT_16s0039g00740	16	370309	400930	Histone-lysine N-methyltransferase ASHH3	metabolic process
VIT_16s0039g00760	16	401533	403436	CYP89A2	
VIT_18s0001g03390	18	3298924	3306685	S-receptor kinase	carbohydrate metabolic process; cellular protein modification process; biosynthetic process; pollen-pistil interaction; cellular process
VIT_18s0001g03420	18	3307440	3307550	No hit	
VIT_18s0001g03430	18	3309917	3311940	Flavonol synthase	> metabolic process; biosynthetic process; cellular process; secondary metabolic process
VIT_18s0001g03440	18	3313991	3315438	No hit	
VIT_18s0001g03450	18	3320975	3328281	Glycine-rich protein	
VIT_18s0001g03470	18	3338337	3340959	Flavonol synthase	metabolic process; biosynthetic process; cellular process; secondary metabolic process

VIT_18s0001g03490	18	3349225	3350592	Flavonol synthase	metabolic process; biosynthetic process; cellular process; secondary metabolic process
VIT_18s0001g03510	18	3354104	3359003	Flavonol synthase XM_002284374.1	> metabolic process; biosynthetic process; cellular process; secondary metabolic process
VIT_18s0001g03520	18	3359393	3369207	Camphor resistance CrcB	
VIT_18s0001g03540	18	3380455	3383288	Auxin transporter protein 4	transport; signal transduction; response to endogenous stimulus
VIT_18s0001g03570	18	3387900	3389335	Thaumatin ATLP-1	response to stress
VIT_18s0001g03580	18	3389546	3393993	Ubiquitin-fold modifier 1 precursor	
VIT_18s0001g03610	18	3401893	3411144	Auxin-independent growth promoter	
VIT_18s0001g03630	18	3412345	3414417	Pentatricopeptide (PPR) repeat-containing protein	biological_process; catabolic process; cellular process
VIT_18s0001g03640	18	3417193	3418012	No hit	
VIT_18s0001g03650	18	3418650	3419295	No hit	
VIT_18s0001g03670	18	3422279	3424214	Zinc finger (C2H2 type) family	
VIT_18s0001g03680	18	3433101	3445210	Protein kinase	cellular protein modification process
VIT_18s0001g03720	18	3445760	3445939	No hit	
VIT_18s0001g03730	18	3445960	3490992	SET Domain group 37	

Since in this diversity panel we estimated a linkage disequilibrium decay at 0.2 of around 77 Kbp (averaged across all the chromosomes and corrected by kinship with the R package $L D \operatorname{corSV}$) showed in Supplementary Table 16, it is clear that we reported only the gene closest to the significant SNP but other genes may be linked to the studied trait. Looking at the Manhattan plot and the QQ plot of expected versus observed p-values for the F-V GWAS performed with EMMAX, it is clear to observe that, on the contrary with the grapes skin colour phenotype, it is not possible to identify a typical dense column of SNPs with low p-values around the most significant one. Indeed, the most significant SNP looks like a false positive, maybe due to population structure stratification, but if we consider that for chromosome 12, LD decay at 0.2 is around 50 Kbp and after filtering the closest downstream and upstream SNPs are 20 Kbp and 48 Kbp away respectively, that does not look so much like a strange signal of association. Considering the other two significantly associated SNPs that we selected, the same idea can be applied, and we see that for SNP Vv_12X_V2_Chr16_348557, the closest SNPs are at 25 Kbp (down) and 22 Kbp (up), where LD decay for chromosome 16 is around 37 Kbp. For the SNP identified with QTCAT, this reasoning is more difficult to discuss since the method does not imply any kind of correction and every SNP is tested individually within blocks of similar SNPs.

A complete list of the genes flanking the three most significant selected SNPs, in the range of LD decay for that chromosome, is given in Table 17. Few interesting candidate genes are highlighted and here discussed. On chromosome 12 two downstream genes of $V v_{-} 12 X_{-} V 2_{-}$Chr12_21100465 SNP, that is VIT_12s0035g00290 and VIT_12s0035g00300, appeared as functionally related to the phenotype. The first gene is annotated as a sugar transporter ERD6-like 6, a subgroup of the monosaccharide transporters family firstly described in Arabidopsis (Büttner, 2007). ERD stands for early-responsive to dehydration, and the gene is in fact induced upon dehydration (Kiyosue et al., 1998). Interestingly, dehydration is a characteristic step of the berry ripening process after veraison (Keller, 2010), and different transcriptomic studies have previously identified several sugar accumulation related genes as induced after veraison in the grapevine berry (Fasoli et al., 2012, 2018; Fontana et al., 2007; Massonnet et al., 2017;

Palumbo et al., 2014). The other gene is annotated as a carbohydrate transmembrane transporter SFP1, a sugar-porter family protein closely related to ERD6-like genes. SFP1 has a homolog, SFP2, and they are found as tandem genes. SFP1 was shown to be senescence-induced, which is paralleled by an accumulation of monosaccharides in the Arabidopsis leaves (Quirino et al., 2001). Regarding SNP Vv_12X_V2_Chr16_348557 potential candidates, we highlight the gene VIT_16s0039g00570, annotated as a 10-deacetylbaccatin III 10-Oacetyltransferase, an enzyme belonging to the family of acyltransferases that catalyses the conversion of acetyl-CoA and 10-deacetylbaccatin III to CoA and baccatin III (Walker and Croteau, 2000). This enzyme participates in diterpenoid biosynthesis. Terpenoids are well known as major components for wine flavour and aroma (Lund and Bohlmann, 2006; Martin et al., 2010; Wen et al., 2015), and have been found to accumulate during the last phase of berry development, when most of the secondary metabolites accumulate (Lücker et al., 2004). Different transcriptomic studies have identified diverse genes encoding for enzymes responsible for the biosynthesis of secondary metabolites to increase their expression right before the last of the three steps of berry development (Deluc et al., 2007), but few if none have focused on this specific candidate, making it interesting for further explorations. The last one of the three candidate SNPs, Vv_12X_V2_Chr18_3381571, is flanked upstream by a family of flavonol synthase encoding genes. Flavonol synthase, from the family of oxidoreductases, is an enzyme that catalyses the production of flavonol. Flavonols are a predominant class of flavonoids, secondary metabolites widely present in plants, that are involved in different functions like response to biotic and abiotic stresses. In grapevine berries they accumulate in the cell wall and the vacuole of the skin cells and are almost absent in the pulp. Like anthocyanins, the determinants of the red colour in red grapevine cultivars, flavonols are a product of the phenylpropanoid pathway. Regarding the content of flavonols in the berry skin during development, it has been found to start accumulation right after veraison, and then reach a maximum at the initial stage of berry development (Downey et al., 2003). Other genes encoding for flavonol synthase or for different enzymes involved in the phenylpropanoid pathway have been also recently emerged as candidates from few transcriptomics
experiments (Fasoli et al., 2012; Palumbo et al., 2014); even more recently a gene encoding for a 2'-hydroxy isoflavone/dihydroflavonol reductase (from the anthocyanin biosynthesis) has been defined, amongst others, as a marker transition gene, representing a gene that marks the transition to the late ripening stages of the berry, in agreement to the observation on the accumulation of anthocyanins (Downey et al., 2003).

When we looked at the phenotypic differences for the three allelic combinations of each one of the three most interesting SNPs, selected for resulting as significantly associated across more than one trait or more than one software, in almost all cases we observe quite a significant difference between the heterozygotes and the homozygotes cultivars for those SNPs, as shown in Figure 17.

Figure 17. Boxplots showing phenotypic values of veraison beginning and flowering-veraison interval phenotypes against genotypes of the three selected SNPs significantly associated to the traits. The three SNPs Vv_12X_V2_Chr12_21100465, Vv_12X_V2_Chr16_348557 and Vv_12X_V2_Chr18_3381571 are in A, B and C respectively.

In particular for SNP $V v_{-} 12 X_{-} V 2_{-} C h r 16_{-} 348557$ where the cultivars seem more equally distributed in the three genotypic classes, the differences are quite significant and an average of around ten days diversity in the veraison date and flowering-veraison time interval is observed between the two homozygotes (Figure 17 B).

Overall, the results suggest that probably a bigger sample size is needed to catch all the rare alleles. Indeed phenology in general, and in particular veraison time, is considered a polygenic complex trait, with many loci contributing to small variations, and many authors have previously failed to identify strong signals of association for such complex traits (Marrano et al., 2018; Migicovsky et al., 2017; Myles et al., 2011). Moreover, the grapevine SNPchip, with its 10K SNPs, may not be an adequate technology to identify all the small variance-contributors loci for such complex traits. In particular because linkage disequilibrium extends longer for regions subject to selection but, on the contrary to berry size or grapes skin colour, which are typical traits selected over many generations, the time of veraison and phenology in general are traits that have not been selected since long times.

To overcome such limitations, we opted for a different experimental design that takes into account the phenotypic diversity of a germplasm collection and measures allele frequencies in the extreme pools, enabling discovery of associations between genetic variants and traits of interest, without testing the association of the single individual to the phenotype. Indeed, the XP-GWAS approach overcome the limitations of a SNPchip GWAS by allowing a bigger sample size at a reduced cost, enriching for rare alleles and augment allele effects via extreme phenotypic selection, and using a whole-genome resequencing approach, opposed to genotyping chip where density of coverage of the genome is way lower than in a resequencing. Moreover, XP-GWAS, by considering the average phenotypic value of a pool of individuals, tolerates a degree of inaccuracy in the phenotyping data, which is desirable for traits difficult to phenotype like flowering and veraison time
or phenology in general, where the trait is not easily quantifiable by human eyes. We created three pools of individuals, named low, high and random pool by observing the distribution of the flowering-veraison interval trait and after DNA pooling, we are currently subjecting them to resequencing.

Conclusions

Grapevine veraison is a stage that is critical for determining the final quality of the grape, and ultimately the wine. The transition from the immature to the mature stage of the grapevine berry has been demonstrated to be a critical point where environmental conditions can impact significantly the entire cycle of formation of the berry and its components. In particular, in a scenario where climate change will impact the temperature with a forecasted increase of around 2 degrees in the next 50 years in many areas including the most famous viticulture area (Jones et al., 2005), this situation may disclose different aspects to be taken into account when considering viticulture and the winemaking process. For example, it has been demonstrated that higher temperatures impact the formation of typical compounds of the grape berry skin, like flavonoids and anthocyanins in particular (Mori et al., 2007; Pastore et al., 2017; Yamane et al., 2006) and this will affect the assembly of other compounds that represent the specificity of a wine, like tannins. The increased temperature of the last years led to and will lead to an advance of the phenological stages (Tomasi et al., 2011), and this advance could bring to a more rapid ripening phase, that when different to a normal maturation is not paralleled by the accumulation of flavour components that require more time to store. In particular, if veraison will occur earlier during the season there will be less time for the preveraison production of flavanols that can be assembled into tannins before and during ripening. A possible overcome to this problem is to wait the flavours to assemble and develop but doing so, grapes are harvested with very high sugar concentrations that will result in wines with high alcohol contents. Temperature is not the only factor that can influence phenological stages in grapevine, but also conditions of water deficit, both before and after veraison, can impact the formation of organic compounds in the berry and in particular in the skins (Ojeda et al., 2002). With such a scenario, different approaches may be taken in order to contrast the effect of climate change on grapevine phenology. The genetic approach, that is for example exploiting genetic diversity from the wild or from germplasm collections to integrate rare and natural alleles into existing cultivars, is a long process and it still needs to be addressed carefully in grapevine. The genetics underlying complex traits like phenology is still poorly known. Here, by integrating different genetic
approaches to identify the genetic determinants of grapevine veraison process, we aimed to produce relevant information towards the disclosure of the major loci contributing to the berry ripening process.

In the first chapter we created the first integrated consensus map of grapevine from different individual grapevine genetic maps with the aim to perform the first metaQTL analysis for grapevine. In detail, we collected genetic maps info from 42 different publications and integrated them with a statistical approach, in order to obtain the most significant and reliable grapevine consensus map that can be used to summarize and integrate different QTL results. We collected all the available QTL information that were produced for grapevine and then we focused on phenological traits. We identified 4 meta-QTLs for the veraison trait that represent the most reliable genomic spots where the most significant QTLs mapped for veraison so far have been identified. One of the main aims was to reduce the number of possible positional candidate genes comprised in the high number of veraison associated QTL present in literature. In performing such meta-analysis, we were able to reduce the number of candidate genes by almost 4 -fold. Indeed, one of the main limitations of the QTL approach is the downstream analysis represented by the search of the candidate genes; since the number of genes within the interval of a QTL can be really high, an approach that tries to reduce this number may be eventually useful, especially in situations where the trait studied is a complex trait, and the loci governing the trait are numerous. After performing the meta-analysis of the QTLs, we integrated data from different transcriptomic experiments, given the idea that the genes resulting differentially expressed across veraison time in grapevine berries may be also in common with positional candidate genes deriving from QTL studies. In particular, different previous transcriptomic experiments (Fasoli et al., 2012; Massonnet et al., 2017; Palumbo et al., 2014) have identified a number of candidate genes that are either up or down regulated across the veraison stage of grapevine berries and are considered as master regulators of the transition from the green to the mature stage of the grapevine. For example, some special sets of the genes identified, for example the "switch genes" (Palumbo et al., 2014) characterized with a network analysis as having many significant negative
correlations outside their own group in the network, represent a group of genes, mainly transcription factors, considered as master regulators of the transcriptome remodelling marking the developmental shift from immature to mature growth. We found some of these special master regulators to lie within the meta-QTL intervals, indicating that the integration of different approaches, from summarizing QTL data to integrating existent transcriptomic data, may be helpful to prioritize most significant results, with the final aim of identifying a restricted number of candidate genes to be explored individually.

In the second chapter we studied the genetic diversity of a grapevine germplasm collection, in order to identify the most genetically diverse and representative panel of individuals to be used for genetic association study. Studying the population structure of the collection, we firstly found out that the Conegliano collection is mostly composed by cultivars from Italian origin, and even so, the overall genetic diversity is comparable to the one of other germplasm collection, indicating that among all Vitis vinifera cultivars, the overall genetic diversity is easily reached with a small number of alleles. We were able to identify significant genetically distinct subgroups/substructure in the collection, and found that this subgroups resemble the geographical subdivision of the collection. We collected all these information and used them to construct diversity panels to be used for association analysis. Before, we made use of existing genotypic data, with the idea of integrating them with newly generated data. Through the use of the GrapeReseq Vitis Genotyping Chip we genotyped additional cultivars that from the genetic point of view summarize the entire collection, and tested the genotype-phenotype association with an incredible resource of grapevine phenology phenotypic data provided by our CREA-VIT Conegliano partners. Though some limitations due to sample size, genetic architecture of the trait, and not easily scorable phenotypic traits, we identified some significant genomic regions that would represent the most interesting regions linked to veraison time traits. For doing so, we did not only used the classical GWAS approach, but we had the idea of integrating different approaches represented by different software that apply different statistical procedures. Moreover, we integrated the results from the GWAS approach with the
results of the meta-analysis of the QTLs and found that one of the veraison time most significantly associated SNP is located precisely in a meta-QTL interval on chromosome 18.

We have shown that the integration of existing data, also of different sources, is a strategic procedure when the nature of the trait studied is complex and multifaceted. Also with limited resources, the summarization of existing results and the exploration of new results with the aid of reorganized and prioritized information, may disclose novel targets and shed light on the genetic control of complex traits.

Acronyms

CCC CREA-VIT Conegliano Collection

DAPC Discriminant Analysis of Principal Components

FB Flowering beginning

F-V Flowering-Veraison interval

GCM Grapevine Consensus Map

GWAS Genome Wide Association Study

LD Linkage Disequilibrium

PCA Principal Component Analysis

QTL Quantitative Trait Loci

SNP Single Nucleotide Polymorphism

SSR Simple Sequence Repeat

VB Veraison beginning

Bibliography

Ananiev, E. V., Rafalski, J.-A., Svitashev, S., Niu, X., Tingey, S. V., Sponza, G., et al. (2007). Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc. Natl. Acad. Sci. 104, 11376-11381. doi:10.1073/pnas. 0704145104 .

Bancroft, I., Morgan, C., Meng, J., Jiang, C., Qiu, D., Li, R., et al. (2009). Unraveling the Complex Trait of Crop Yield With Quantitative Trait Loci Mapping in Brassica napus. Genetics 182, 851-861. doi:10.1534/genetics.109.101642.

Bayo Canha, A. (2016). Genetic analysis of traits of interest in Vitis vinifera using a progeny of wine grapes: Monastrell x Syrah. Available at: http://repositorio.upct.es/xmlui/handle/10317/5393?locale-attribute=en [Accessed October 30, 2017].

Blasi, P., Blanc, S., Wiedemann-Merdinoglu, S., Prado, E., Rühl, E. H., Mestre, P., et al. (2011). Construction of a reference linkage map of Vitis amurensis and genetic mapping of $R p v 8$, a locus conferring resistance to grapevine downy mildew. Theor. Appl. Genet. 123, 43-53. doi:10.1007/s00122-011-1565-0.

Boss, P. K., Buckeridge, E. J., Poole, A., and Thomas, M. R. (2003). New insights into grapevine flowering. Funct. Plant Biol. 30, 593. doi:10.1071/FP02112.

Büttner, M. (2007). The monosaccharide transporter(-like) gene family in Arabidopsis. FEBS Lett. 581, 2318-2324. doi:10.1016/J.FEBSLET.2007.03.016.

Canaguier, A., Grimplet, J., Di Gaspero, G., Scalabrin, S., Duchêne, E., Choisne, N., et al. (2017). A new version of the grapevine reference genome assembly (12X.v2) and of its annotation (VCost.v3). Genomics Data 14, 56-62. doi:10.1016/J.GDATA.2017.09.002.

Carmona, M. J., Chaib, J., Martinez-Zapater, J. M., and Thomas, M. R. (2008). A molecular genetic perspective of reproductive development in grapevine. J. Exp. Bot. 59, 2579-2596. doi:10.1093/jxb/ern160.

Carreño Ruiz, I. (2012). Identificación de regiones cromosómicas implicadas en el control genético de caracteres de interés para la mejora genética de la uva de mesa.

Proy. Investig. Available at: https://digitum.um.es/xmlui/handle/10201/28936 [Accessed October 30, 2017].

Chardon, F., Virlon, B., Moreau, L., Falque, M., Joets, J., Decousset, L., et al. (2004). Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics 168 , 2169-2185. doi:10.1534/genetics.104.032375.

Chin, C.-S., Peluso, P., Sedlazeck, F. J., Nattestad, M., Concepcion, G. T., Clum, A., et al. (2016). Phased diploid genome assembly with single-molecule real-time sequencing. Nat. Methods 13, 1050-1054. doi:10.1038/nmeth. 4035.

Christenhusz, M. J. M., and Byng, J. W. (2016). The number of known plants species in the world and its annual increase. Phytotaxa 261, 201-217. doi:10.11646/phytotaxa.261.3.1.

Cipriani, G., Spadotto, A., Jurman, I., Gaspero, G. Di, Crespan, M., Meneghetti, S., et al. (2010). The SSR-based molecular profile of 1005 grapevine (Vitis vinifera L.) accessions uncovers new synonymy and parentages, and reveals a large admixture amongst varieties of different geographic origin. Theor. Appl. Genet. 121, 15691585. doi:10.1007/s00122-010-1411-9.

Coombe, B., and Bishop, G. (1980). Development of the grape berry. II. Changes in diameter and deformability during veraison. Aust. J. Agric. Res. 31, 499. doi:10.1071/AR9800499.

Coombe, B. G. (1995). Growth Stages of the Grapevine: Adoption of a system for identifying grapevine growth stages. Aust. J. Grape Wine Res. 1, 104-110. doi:10.1111/j.1755-0238.1995.tb00086.x.

Costantini, L., Battilana, J., Lamaj, F., Fanizza, G., and Grando, M. (2008). Berry and phenology-related traits in grapevine (Vitis vinifera L.): From Quantitative Trait Loci to underlying genes. BMC Plant Biol. 8, 38. doi:10.1186/1471-2229-8-38.

Danan, S., Veyrieras, J.-B., and Lefebvre, V. (2011). Construction of a potato consensus map and QTL meta-analysis offer new insights into the genetic architecture of late blight resistance and plant maturity traits. BMC Plant Biol. 11, 16. doi:10.1186/1471-2229-11-16.

De Beukelaer, H., Davenport, G. F., and Fack, V. (2018). Core Hunter 3: flexible core subset selection. BMC Bioinformatics 19, 203. doi:10.1186/s12859-018-2209-z.

De Cortázar-Atauri, I. G., Duchêne, É., Destrac-Irvine, A., Barbeau, G., De Rességuier, L., Lacombe, T., et al. (2017). Grapevine phenology in France: From past observations to future evolutions in the context of climate change. J. Int. des Sci. la Vigne du Vin 51, 115-126. doi:10.20870/oeno-one.2016.0.0.1622.

Delrot, S., Duchêne, E., Garcia de Cortazar-Atauri, I., Pieri, P., Bois, B., Bavaresco, L., et al. (2013). Why climate change will not dramatically decrease viticultural suitability in main wine-producing areas by 2050. Proc. Natl. Acad. Sci. 110, E3051-E3052. doi:10.1073/pnas. 1307927110.

Deluc, L. G., Grimplet, J., Wheatley, M. D., Tillett, R. L., Quilici, D. R., Osborne, C., et al. (2007). Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development. BMC Genomics 8 , 429. doi:10.1186/1471-2164-8-429.

Di Matteo, A., Giovane, A., Raiola, A., Camardella, L., Bonivento, D., De Lorenzo, G., et al. (2005). Structural Basis for the Interaction between Pectin Methylesterase and a Specific Inhibitor Protein. PLANT CELL ONLINE 17, 849-858. doi:10.1105/tpc.104.028886.

Doligez, A., Adam-Blondon, A. F., Cipriani, G., Di Gaspero, G., Laucou, V., Merdinoglu, D., et al. (2006). An integrated SSR map of grapevine based on five mapping populations. Theor. Appl. Genet. 113, 369-382. doi:10.1007/s00122-006-0295-1.

Downey, M. O., Harvey, J. S., and Robinson, S. P. (2003). Analysis of tannins in seeds and skins of Shiraz grapes throughout berry development. Aust. J. Grape Wine Res. 9, 15-27. doi:10.1111/j.1755-0238.2003.tb00228.x.

Duchene, E. (2016). How can grapevine genetics contribute to the adaptation to climate change? OENO One 50. doi:10.20870/oeno-one.2016.50.3.98.

Duchêne, E., Butterlin, G., Claudel, P., Dumas, V., Jaegli, N., and Merdinoglu, D. (2009). A grapevine (Vitis vinifera L.) deoxy-d-xylulose synthase gene colocates with a major quantitative trait loci for terpenol content. Theor. Appl. Genet. 118, 541-552. doi:10.1007/s00122-008-0919-8.

Duchêne, E., Butterlin, G., Dumas, V., and Merdinoglu, D. (2012). Towards the adaptation of grapevine varieties to climate change: QTLs and candidate genes for developmental stages. Theor. Appl. Genet. 124, 623-635. doi:10.1007/s00122-011-1734-1.

Duchêne, E., Huard, F., Dumas, V., Schneider, C., and Merdinoglu, D. (2010). The challenge of adapting grapevine varieties to climate change. Clim. Res. 41, 193204. doi:10.3354/cr00850.

Emanuelli, F., Lorenzi, S., Grzeskowiak, L., Catalano, V., Stefanini, M., Troggio, M., et al. (2013). Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape. BMC Plant Biol. 13, 39. doi:10.1186/1471-2229-13-39.

Evanno, G., Regnaut, S., and Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611-2620. doi:10.1111/j.1365-294X.2005.02553.x.

Fasoli, M., Dal Santo, S., Zenoni, S., Tornielli, G. B., Farina, L., Zamboni, A., et al. (2012). The Grapevine Expression Atlas Reveals a Deep Transcriptome Shift Driving the Entire Plant into a Maturation Program. Plant Cell 24, 3489-3505. doi:10.1105/tpc.112.100230.

Fasoli, M., Richter, C. L., Zenoni, S., Bertini, E., Vitulo, N., Dal Santo, S., et al. (2018). Timing and Order of the Molecular Events Marking the Onset of Berry Ripening in Grapevine. Plant Physiol. 178, 1187-1206. doi:10.1104/pp.18.00559.

Fechter, I., Hausmann, L., Zyprian, E., Daum, M., Holtgräwe, D., Weisshaar, B., et al. (2014). QTL analysis of flowering time and ripening traits suggests an impact of a genomic region on linkage group 1 in Vitis. Theor. Appl. Genet. 127, 1857-1872. doi:10.1007/s00122-014-2310-2.

Fennell, A., Clark, L., McKay, S., Mathiason, K., Luby, J., Owens, C., et al. (2019). Mapping of Photoperiod-induced Growth Cessation in the Wild Grape Vitis riparia. J. Am. Soc. Hortic. Sci. 134, 261-272. doi:10.21273/jashs.134.2.261.

Fennell, A. Y., Schlauch, K. A., Gouthu, S., Deluc, L. G., Khadka, V., Sreekantan, L., et al. (2015). Short day transcriptomic programming during induction of dormancy in
grapevine. Front. Plant Sci. 6, 834. doi:10.3389/fpls.2015.00834.
Fischer, B. M., Salakhutdinov, I., Akkurt, M., Eibach, R., Edwards, K. J., Töpfer, R., et al. (2004). Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine. Theor. Appl. Genet. 108, 501-515. doi:10.1007/s00122-003-1445-3.

Fontana, P., Moser, C., Malossini, A., Viola, R., Cestaro, A., Demattè, L., et al. (2007). Genome-wide transcriptional analysis of grapevine berry ripening reveals a set of genes similarly modulated during three seasons and the occurrence of an oxidative burst at vèraison. BMC Genomics 8, 428. doi:10.1186/1471-2164-8-428.

Fournier-Level, A., Le Cunff, L., Gomez, C., Doligez, A., Ageorges, A., Roux, C., et al. (2009). Quantitative genetic bases of anthocyanin variation in grape (Vitis vinifera L. ssp. sativa) berry: a quantitative trait locus to quantitative trait nucleotide integrated study. Genetics 183, 1127-39. doi:10.1534/genetics.109.103929.

Gambetta, G. A., Wada, H., Matthews, M. A., Cramer, G. R., Peterlunger, E., Castellarin, S. D., et al. (2015). Characterization of major ripening events during softening in grape: turgor, sugar accumulation, abscisic acid metabolism, colour development, and their relationship with growth. J. Exp. Bot. 67, 709-722. doi:10.1093/jxb/erv483.

Giovanelli, G., and Brenna, O. V. (2007). Evolution of some phenolic components, carotenoids and chlorophylls during ripening of three Italian grape varieties. Eur. Food Res. Technol. 225, 145-150. doi:10.1007/s00217-006-0436-4.

Goffinet, B., and Gerber, S. (2000). Quantitative trait loci: A meta-analysis. Genetics 155, 463-473.

Jaillon, O., Aury, J. M., Noel, B., Policriti, A., Clepet, C., Casagrande, A., et al. (2007). The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449, 463-467. doi:10.1038/nature06148.

Jombart, T., and Collins, C. (2015). A tutorial for Discriminant Analysis of Principal Components (DAPC) using adegenet 2.0.0. Available at: http://adegenet.r-forge.r-project.org/files/tutorial-dapc.pdf [Accessed August 22, 2017].

Jombart, T., Devillard, S., and Balloux, F. (2010). Discriminant analysis of principal
components: a new method for the analysis of genetically structured populations. BMC Genet. 11, 94. doi:10.1186/1471-2156-11-94.

Jones, V. G., White, M. A., Cooper, O. R., and Storchmann, K. (2005). Climate Change and Global Wine Quality. Clim. Change 73, 319-343. doi:10.1007/s10584-005-4704-2.

Kamvar, Z. N., Tabima, J. F., and Grünwald, N. J. (2014). Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281. doi:10.7717/peerj.281.

Kang, H. M., Sul, J. H., Service, S. K., Zaitlen, N. A., Kong, S., Freimer, N. B., et al. (2010). Variance component model to account for sample structure in genome-wide association studies. Nat. Genet. 42, 348-354. doi:10.1038/ng.548.

Keller, M. (2010). The science of grapevines - anatomy and physiology. doi:10.1016/B978-0-12-374881-2.00012-X.

Keller, M., Tarara, J. M., and Mills, L. J. (2010). Spring temperatures alter reproductive development in grapevines. Aust. J. Grape Wine Res. 16, 445-454. doi:10.1111/j.1755-0238.2010.00105.x.

Khowaja, F. S., Norton, G. J., Courtois, B., and Price, A. H. (2009). Improved resolution in the position of drought-related QTLs in a single mapping population of rice by meta-analysis. BMC Genomics 10, 276. doi:10.1186/1471-2164-10-276.

Kiyosue, T., Abe, H., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1998). ERD6, a cDNA clone for an early dehydration-induced gene of Arabidopsis, encodes a putative sugar transporter. Biochim. Biophys. Acta - Biomembr. 1370, 187-191. doi:10.1016/S0005-2736(98)00007-8.

Klasen, J. R., Barbez, E., Meier, L., Meinshausen, N., Bühlmann, P., Koornneef, M., et al. (2016). A multi-marker association method for genome-wide association studies without the need for population structure correction. Nat. Commun. 7. doi:10.1038/ncomms13299.

Kobayashi, S., Goto-Yamamoto, N., and Hirochika, H. (2004). Retrotransposon-Induced Mutations in Grape Skin Color. Science (80-.). 304, 982. doi:10.1126/science.1095011.

Laucou, V., Launay, A., Bacilieri, R., Lacombe, T., Adam-Blondon, A.-F., Bérard, A., et al. (2018). Extended diversity analysis of cultivated grapevine Vitis vinifera with 10K genome-wide SNPs. PLoS One 13, e0192540.
doi:10.1371/journal.pone. 0192540 .

Lebon, G., Wojnarowiez, G., Holzapfel, B., Fontaine, F., Vaillant-Gaveau, N., and Clement, C. (2008). Sugars and flowering in the grapevine (Vitis vinifera L.). J. Exp. Bot. 59, 2565-2578. doi:10.1093/jxb/ern135.

Lionetti, V., Raiola, A., Mattei, B., and Bellincampi, D. (2015). The Grapevine VvPMEI1 Gene Encodes a Novel Functional Pectin Methylesterase Inhibitor Associated to Grape Berry Development. PLoS One 10, e0133810. doi:10.1371/journal.pone. 0133810 .

Lipka, A. E., Tian, F., Wang, Q., Peiffer, J., Li, M., Bradbury, P. J., et al. (2012). GAPIT: genome association and prediction integrated tool. Bioinformatics 28, 2397-2399. doi:10.1093/bioinformatics/bts444.

Lorenz, D., Eichhorn, K., Holder, H., Klose, R., Meier, U. C., Weber, E., et al. (1994). Phänologische Entwicklungsstadien der Weinrebe (Vitis vinifera L. ssp. vinifera). Available at: https://www.scienceopen.com/document?vid=a6780a45-bc95-4678-96c7-4b66a4f9f6be [Accessed December 11, 2018].

Lücker, J., Bowen, P., and Bohlmann, J. (2004). Vitis vinifera terpenoid cyclases: functional identification of two sesquiterpene synthase cDNAs encoding $(+)-$ valencene synthase and (-)-germacrene D synthase and expression of mono- and sesquiterpene synthases in grapevine flowers and berries. Phytochemistry 65, 26492659. doi:10.1016/j.phytochem.2004.08.017.

Lund, S. T., and Bohlmann, J. (2006). The Molecular Basis for Wine Grape Quality-A Volatile Subject. Science (80-.). 311, 804-805. doi:10.1126/science. 1118962.

Mangin, B., Siberchicot, A., Nicolas, S., Doligez, A., This, P., and Cierco-Ayrolles, C. (2012). Novel measures of linkage disequilibrium that correct the bias due to population structure and relatedness. Heredity (Edinb). 108, 285-291. doi:10.1038/hdy.2011.73.

Marrano, A., Micheletti, D., Lorenzi, S., Neale, D., and Grando, M. S. (2018).

Horticulture Research Genomic signatures of different adaptations to environmental stimuli between wild and cultivated Vitis vinifera L. Hortic. Res. 5, 34. doi:10.1038/s41438-018-0041-2.

Martin, D. M., Aubourg, S., Schouwey, M. B., Daviet, L., Schalk, M., Toub, O., et al. (2010). Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assays. BMC Plant Biol. 10, 226. doi:10.1186/1471-2229-10226.

Massonnet, M., Fasoli, M., Tornielli, G. B., Altieri, M., Sandri, M., Zuccolotto, P., et al. (2017). Ripening Transcriptomic Program in Red and White Grapevine Varieties Correlates with Berry Skin Anthocyanin Accumulation. Plant Physiol. 174, 23762396. doi:10.1104/pp.17.00311.

Migicovsky, Z., Sawler, J., Gardner, K. M., Aradhya, M. K., Prins, B. H., Schwaninger, H. R., et al. (2017). Patterns of genomic and phenomic diversity in wine and table grapes. Hortic. Res. 4, hortres201735. doi:10.1038/hortres.2017.35.

Mori, K., Goto-Yamamoto, N., Kitayama, M., and Hashizume, K. (2007). Loss of anthocyanins in red-wine grape under high temperature. J. Exp. Bot. 58, 1935-1945. doi:10.1093/jxb/erm055.

Mosedale, J. R., Wilson, R. J., and Maclean, I. M. D. (2015). Climate Change and Crop Exposure to Adverse Weather: Changes to Frost Risk and Grapevine Flowering Conditions. PLoS One 10, e0141218. doi:10.1371/journal.pone.0141218.

Mullins, M. G., Bouquet, A., and Williams, L. E. (1992). Biology of the grapevine. Biol. grapevine. Available at: https://www.cabdirect.org/cabdirect/abstract/19920316870 [Accessed November 19, 2018].

Myles, S., Boyko, A. R., Owens, C. L., Brown, P. J., Grassi, F., Aradhya, M. K., et al. (2011). Genetic structure and domestication history of the grape. Proc. Natl. Acad. Sci. 108, 3530-3535. doi:10.1073/pnas. 1009363108.

Negrul, A. M., Baranov, A., Kai, Y., Lazarevski, M., Palibin, T., and Prosmoserdov, N. (1946). "Origin and classification of cultivated grape," in, 159-216.

Nicolas, S. D., Péros, J.-P., Lacombe, T., Launay, A., Le Paslier, M.-C., Bérard, A., et al.
(2016). Genetic diversity, linkage disequilibrium and power of a large grapevine (Vitis vinifera L) diversity panel newly designed for association studies. BMC Plant Biol. 16, 74. doi:10.1186/s12870-016-0754-z.

Niculcea, M., López, J., Sánchez-Díaz, M., and Carmen Antolín, M. (2014). Involvement of berry hormonal content in the response to pre- and post-veraison water deficit in different grapevine (Vitis vinifera L.) cultivars. Aust. J. Grape Wine Res. 20, 281291. doi:10.1111/ajgw. 12064.

Ojeda, H., Andary, C., Kraeva, E., Carbonneau, A., and Deloire, A. (2002). Influence of Pre- and Postveraison Water Deficit on Synthesis and Concentration of Skin Phenolic Compounds during Berry Growth of Vitis vinifera cv. Shiraz. Am. J. Enol. Vitic. 53, 261-267. Available at: http://www.ajevonline.org/content/53/4/261.1 [Accessed December 10, 2018].

Palumbo, M. C., Zenoni, S., Fasoli, M., Massonnet, M., Farina, L., Castiglione, F., et al. (2014). Integrated Network Analysis Identifies Fight-Club Nodes as a Class of Hubs Encompassing Key Putative Switch Genes That Induce Major Transcriptome Reprogramming during Grapevine Development. Plant Cell Online 26, 4617-4635. doi:10.1105/tpc.114.133710.

Paslier M-C, L., Choisne, N., R, B., R, B., Boursiquot, J.-M., D, B., et al. (2013). The GrapeReSeq 18 k Vitis genotyping chip.

Pastore, C., Dal Santo, S., Zenoni, S., Movahed, N., Allegro, G., Valentini, G., et al. (2017). Whole Plant Temperature Manipulation Affects Flavonoid Metabolism and the Transcriptome of Grapevine Berries. Front. Plant Sci. 8, 929. doi:10.3389/fpls.2017.00929.

Peakall, R., and Smouse, P. E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research--an update. Bioinformatics 28, 2537-2539. doi:10.1093/bioinformatics/bts460.

Petrie, P. R., and Clingeleffer, P. R. (2005). Effects of temperature and light (before and after budburst) on inflorescence morphology and flower number of Chardonnay grapevines (Vitis vinifera L.). Aust. J. Grape Wine Res. 11, 59-65. doi:10.1111/j.1755-0238.2005.tb00279.x.

Pritchard, J. K., Stephens, M., and Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics 155, 945-959. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1461096/ [Accessed September 19, 2016].

Quirino, B. F., Reiter, W.-D., and Amasino, R. D. (2001). One of two tandem Arabidopsis genes homologous to monosaccharide transporters is senescenceassociated. Plant Mol. Biol. 46, 447-457. doi:10.1023/A:1010639015959.

Roach, M. J., Johnson, D. L., Bohlmann, J., van Vuuren, H. J. J., Jones, S. J. M., Pretorius, I. S., et al. (2018). Population sequencing reveals clonal diversity and ancestral inbreeding in the grapevine cultivar Chardonnay. PLOS Genet. 14, e1007807. doi:10.1371/journal.pgen. 1007807.

Sadras, V. O., and Mccarthy, M. G. (2007). Quantifying the dynamics of sugar concentration in berries of Vitis vinifera cv. Shiraz: A novel approach based on allometric analysis. Aust. J. Grape Wine Res. 13, 66-71. doi:10.1111/j.17550238.2007.tb00236.x.

Sadras, V. O., and Petrie, P. R. (2011). Climate shifts in south-eastern Australia: Early maturity of Chardonnay, Shiraz and Cabernet Sauvignon is associated with early onset rather than faster ripening. Aust. J. Grape Wine Res. 17, 199-205. doi:10.1111/j.1755-0238.2011.00138.x.

Said, J. I., Song, M., Wang, H., Lin, Z., Zhang, X., Fang, D. D., et al. (2015). A comparative meta-analysis of QTL between intraspecific Gossypium hirsutum and interspecific G. hirsutum \times G. barbadense populations. Mol. Genet. Genomics 290, 1003-1025. doi:10.1007/s00438-014-0963-9.

Salvi, S., Corneti, S., Bellotti, M., Carraro, N., Sanguineti, M. C., Castelletti, S., et al. (2011). Genetic dissection of maize phenology using an intraspecific introgression library. BMC Plant Biol. 11, 4. doi:10.1186/1471-2229-11-4.

Sosnowski, O., Charcosset, A., and Joets, J. (2012). Biomercator V3: An upgrade of genetic map compilation and quantitative trait loci meta-analysis algorithms. Bioinformatics 28, 2082-2083. doi:10.1093/bioinformatics/bts313.

Team, R. D. C., and R Development Core Team, R. (2016). R: A Language and

Environment for Statistical Computing. R Found. Stat. Comput. 1, 409. doi:10.1007/978-3-540-74686-7.

Terral, J.-F., Tabard, E., Bouby, L., Ivorra, S., Pastor, T., Figueiral, I., et al. (2010). Evolution and history of grapevine (Vitis vinifera) under domestication: new morphometric perspectives to understand seed domestication syndrome and reveal origins of ancient European cultivars. Ann. Bot. 105, 443-455. doi:10.1093/aob/mcp298.

Tomasi, D., Jones, G. V., Giust, M., Lovat, L., and Gaiotti, F. (2011). Grapevine Phenology and Climate Change: Relationships and Trends in the Veneto Region of Italy for 1964-2009. Am. J. Enol. Vitic. 62, 329-339. doi:10.5344/ajev.2011.10108.

Troshin LP, Nedov, P., Litvak, I., and Guzun, N. (1990). Improvement of Vitis vinifera sativa DC. taxonomy. Vitis (special issue) Proc. 5th Int. Symp. Grape Breeding, 1989, 37-43.

Uhlig, B. A., and Clingeleffer, P. R. (1998). Ripening Characteristics of the Fruit From Vitis vinifera L. Drying Cultivars Sultana and Merbein Seedless Under Furrow Irrigation. Am. J. Enol. Vitic. 49, 375-382. Available at: http://www.ajevonline.org/content/49/4/375 [Accessed December 11, 2018].

Vasconcelos, M. C., Greven, M., Winefield, C. S., Trought, M. C. T., and Raw, V. (2009). The Flowering Process of Vitis vinifera: A Review. Am. J. Enol. Vitic. 30, 312-317. Available at: http://www.ajevonline.org/content/60/4/411.short [Accessed January 21, 2019].

Venuti, S., Copetti, D., Foria, S., Falginella, L., Hoffmann, S., Bellin, D., et al. (2013). Historical Introgression of the Downy Mildew Resistance Gene Rpv12 from the Asian Species Vitis amurensis into Grapevine Varieties. PLoS One 8, e61228. doi:10.1371/journal.pone. 0061228.

Veyrieras, J. B., Goffinet, B., and Charcosset, A. (2007). MetaQTL: A package of new computational methods for the meta-analysis of QTL mapping experiments. BMC Bioinformatics 8, 49. doi:10.1186/1471-2105-8-49.

Vitulo, N., Forcato, C., Carpinelli, E., Telatin, A., Campagna, D., D’Angelo, M., et al. (2014). A deep survey of alternative splicing in grape reveals changes in the
splicing machinery related to tissue, stress condition and genotype. BMC Plant Biol. 14, 99. doi:10.1186/1471-2229-14-99.

Walker, A. R., Lee, E., Bogs, J., McDavid, D. A. J., Thomas, M. R., and Robinson, S. P. (2007). White grapes arose through the mutation of two similar and adjacent regulatory genes. Plant J. 49, 772-785. doi:10.1111/j.1365-313X.2006.02997.x.

Walker, K., and Croteau, R. (2000). Molecular cloning of a 10-deacetylbaccatin III-10-Oacetyl transferase cDNA from Taxus and functional expression in Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 97, 583-7. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10639122 [Accessed January 26, 2019].

Wang, N., Zheng, Y., Xin, H., Fang, L., and Li, S. (2013). Comprehensive analysis of NAC domain transcription factor gene family in Vitis vinifera. Plant Cell Rep. 32, 61-75. doi:10.1007/s00299-012-1340-y.

Wen, Y.-Q., Zhong, G.-Y., Gao, Y., Lan, Y.-B., Duan, C.-Q., and Pan, Q.-H. (2015). Using the combined analysis of transcripts and metabolites to propose key genes for differential terpene accumulation across two regions. BMC Plant Biol. 15, 240. doi:10.1186/s12870-015-0631-1.

Williams, D. W., Andris, H. L., Beede, R. H., Luvlsi, D. A., Norton, M. V. K., Williams, L. E., et al. (1985). Validation of a Model for the Growth and Development of the Thompson Seedless Grapevine. II. Phenology. Available at: http://www.ajevonline.org/content/ajev/36/4/283.full.pdf [Accessed December 3, 2018].

Yamane, T., Jeong, S. T., Goto-Yamamoto, N., Koshita, Y., and Kobayashi, S. (2006). Effects of Temperature on Anthocyanin Biosynthesis in Grape Berry Skins. Am. J. Enol. Vitic. 53, 171-182. Available at: http://www.ajevonline.org/content/57/1/54 [Accessed December 10, 2018].

Yang, J., Jiang, H., Yeh, C.-T., Yu, J., Jeddeloh, J. A., Nettleton, D., et al. (2015). Extreme-phenotype genome-wide association study (XP-GWAS): a method for identifying trait-associated variants by sequencing pools of individuals selected from a diversity panel. Plant J. 84, 587-596. doi:10.1111/tpj. 13029.

Zyprian, E., Ochßner, I., Schwander, F., Šimon, S., Hausmann, L., Bonow-Rex, M., et al.
(2016). Quantitative trait loci affecting pathogen resistance and ripening of grapevines. Mol. Genet. Genomics 291, 1573-1594. doi:10.1007/s00438-016-12005.

Zyprian, E., Trapp, O., Eibach, R., Trapp, O., Schwander, F., and Töpfer, R. (2018). Grapevine breeding under climate change: Applicability of a molecular marker linked to véraison Sensor-assisted phenotyping of grape bunch architecture. Vitis J. Grapevine Res. 57, 119-123. doi:https://doi.org/10.5073/vitis.2018.57.119-123.

Appendix

Supplementary Table 1
External file (Available upon request
$\begin{array}{lllllllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19\end{array}$

Supplementary Figure 1. The grapevine consensus map

Supplementary Table 2. Contribution of each individual genetic map to the construction of the consensus map.

Reference	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	XIII	XIV	XV	XVI	XVII	XVIII	XIX
Ban et al. 2014	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
Bayo Canha, PhD thesis 2015	x	x	x	x	x	x	x	x	x	X	x	x	x	x	x	x	x	x	x
Bellin et al. 2009 BI	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
Bellin et al. 2009 CH	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
Bert et al. 2013	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
Blasi et al. 2011	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
Cabezas et al. 2006	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
Carreño Ruiz, PhD thesis 2012	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
Correa et al. 2014	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
Correa et al. 2015	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
Correa et al. 2016	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
Costantini et al. 2008 IT	x	x	x	x	x	x	x	x	x	x		x	x	x	x	x	x	x	x
Costantini et al. 2008	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
Costantini et al. 2015	x	x		x	x	x	x			x		x					x	x	
Coupel-Ledru et al. 2014, 2016	x	x	x	x	x	x	x	x	x	x		x	x	x	x	x	x	x	x
Doligez et al. 2006	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
Doligez et al. 2010	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
Duchêne et al. 2009	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
Duchêne et al. 2012	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
Fechter et al. 2014	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
Garris et al. 2009	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
Guo et al. 2015	x	x	x	x	x	x	x	x	x	x		x	x	x	x	x	x	x	x

Huang et al. 2012	x	x	x	x	x	x	x	x	x	x		x	x	x	x	x	x	x	x
Marguerit et al. 2009, 2011 CS	x	x	x	x	x	x	x	x	x	x		x	x	x	x	x	x	x	x
Marguerit et al. 2009, 2011 RGM	x	x	x	x	x	x	x	x	x	x		x	x	x	x	x	x	x	x
Mejía et al. 2007	x	x	x	x	x	x	x	x	x	x		x	x	x	x	x	x	x	x
Mejía et al. 2011	x	x	x	x	x	x	x	x	x	x		x	x	x	x	x	x	x	x
Moreira et al. 2011 RT	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
Moreira et al. 2011 AM	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
Ochssner et al. 2016	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
Schwander et al. 2012	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
Riaz et al. 2006	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
van Heerden et al. 2014	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
Venuti et al. 2013	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
Viana et al. 2013	x	x		x	x					x		x					x	x	
Welter et al. 2007	x	x	x	x	x	x	x	x		x		x	x	x	x		x	x	x
Zhang et al. 2009	x	x	x	x	x	x	x	x		x		x	x	x	x		x	x	x
Zhao et al. 2015	x	x	x	x	x	x	x	x	x	x		x	x	x	x	x	x	x	x
Zyprian et al. 2016	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
Number Of Maps Used To Construct Linkage Group	39	39	37	39	39	38	38	37	35	39	26	39	37	37	37	35	39	39	37

Supplementary Figure 2. Correlation plot displaying Pearson correlation values for each pair of input genetic maps.

Supplementary Table 3

External file (Available upon request)

Supplementary Table 4

External file (Available upon request)

Supplementary Table 5

LG	Meta-QTL		$\mathbf{R}^{\mathbf{2}}$	$\begin{aligned} & \text { Start } \\ & \text { (cM) } \end{aligned}$	End $(\mathbf{c M})$	Start (bp)	End (bp)	Candidates	Original QTLs co-located	QTL Studies (Populations)	Reference
II	anthocyanin_2_1	49.04	0.560143	48.72	49.36	8600542	9173540	25	14	5	Carreño Ruiz 2012, Costantini et al. 2015, Azuma et al. 2015, Guo et al. 2015, Bayo Canha PhD thesis 2015
II	anthocyanin_2_2	50.76	0.554231	50.315	51.205	10028560	10710740	22	13	3	Costantini et al. 2015, Azuma et al. 2015, Bayo Canha PhD thesis 2015
II	anthocyanin_2_3	52.4	0.567667	52.17	52.63	11130194	12095023	19	15	3	Costantini et al. 2015, Azuma et al. 2015, Bayo Canha PhD thesis 2015
II	anthocyanin_2_4	52.94	0.563625	52.76	53.12	12753898	14578477	57	16	3	Costantini et al. 2015, Azuma et al. 2015, Bayo Canha PhD thesis 2015
II	anthocyanin_2_5	54.03	0.561125	53.86	54.2	16667197	16683683	1	16	3	Costantini et al. 2015, Azuma et al. 2015, Bayo Canha PhD thesis 2015
II	anthocyanin_2_6	54.4	0.574389	54.4	54.4	16693380	16693380	0	18	3	Costantini et al. 2015, Azuma et al. 2015, Bayo Canha PhD thesis 2015
II	anthocyanin_2_7	56.58	0.588667	56.51	56.65	17799696	17822818	1	12	2	Costantini et al. 2015, Bayo Canha PhD thesis 2015

Supplementary Table 6

Meta-QTL	Gene ID	Chr	Start (bp)	End(bp)	Annotation_V1
anthocyanin_2_1	VIT_02s0012g01940	2	8639809	8644529	Myb KAN2 (KANADI 2)
	VIT_02s0012g01950	2	8684996	8685382	Photosystem II protein D1
	VIT_02s0012g01960	2	8685632	8694337	Transcription factor jumonji (jmj)
	VIT_02s0012g01970	2	8725299	8725604	No hit
	VIT_02s0012g01980	2	8737610	8738292	Valyl tRNA synthetase
	VIT_02s0012g01990	2	8745023	8746458	4-hydroxyphenylpyruvate dioxygenase
	VIT_02s0012g02000	2	8805267	8815050	Binding
	VIT_02s0012g02020	2	8846265	8846784	GTP binding protein
	VIT_02s0012g02030	2	8851816	8858007	Homeobox-7
	VIT_02s0012g02050	2	8869228	8874707	PAP/fibrillin family
	VIT_02s0012g02060	2	8876177	8876668	Calmodulin
	VIT_02s0012g02070	2	8877753	8893038	Dolichol phosphate-mannose biosynthesis regulatory protein
	VIT_02s0012g02080	2	8903756	8904732	No hit
	VIT_02s0012g02090	2	8918570	8923074	Unknown protein
	VIT_02s0012g02110	2	8936032	8953681	No hit
	VIT_02s0012g02120	2	8961449	8968305	Defender against cell death 1 (DAD1)
	VIT_02s0012g02130	2	9009706	9010443	Unknown
	VIT_02s0012g02140	2	9020625	9024203	No hit
	VIT_02s0012g02150	2	9028389	9028757	Reduced sugar response 4 RSR4
	VIT_02s0012g02160	2	9055038	9090180	Glycerol-3-phosphate acyltransferase
	VIT_02s0012g02170	2	9098719	9099667	No hit
	VIT_02s0012g02180	2	9103155	9107033	Abhydrolase domain-containing protein
	VIT_02s0012g02190	2	9124133	9129245	Cellulose synthase CSLD2
	VIT_02s0012g02200	2	9133993	9144207	No hit
	VIT_02s0012g02210	2	9151187	9151438	No hit
anthocyanin _2_2	VIT_02s0012g02520	2	10095290	10107351	Vacuolar protein sorting 25
	VIT_02s0012g02530	2	10144914	10157269	Phosphomevalonate kinase
	VIT_02s0012g02540	2	10157476	10159508	Chlororespiratory reduction 4 (CRR4)
	VIT_02s0012g02560	2	10211013	10211294	No hit
	VIT_02s0012g02570	2	10303823	10313431	Guanine nucleotide-binding protein alpha-1 subunit
	VIT_02s0012g02580	2	10333777	10333986	No hit
	VIT_02s0012g02590	2	10333987	10335087	Galacturonosyltransferase 1
	VIT_02s0012g02600	2	10337139	10337655	Octicosapeptide/Phox/Bemlp (PB1) domain-containing protein
	VIT_02s0012g02610	2	10346830	10347282	SAR1 (suppressor of auxin resistance1) (Nup160)
	VIT_02s0012g02620	2	10358627	10359350	PFT1 (phytochrome and flowering time 1) MED25
	VIT_02s0012g02640	2	10371559	10372237	Aspartic-type endopeptidase
	VIT_02s0012g02650	2	10379257	10380646	Purple acid phosphatase 2 PAP2
	VIT_02s0012g02660	2	10381950	10405928	Proteasome 26S regulatory subunit (RPN9)
	VIT_02s0012g02670	2	10482684	10485983	Unknown protein
	VIT_02s0012g02680	2	10538523	10542564	No hit
	VIT_02s0012g02690	2	10556046	10556298	No hit
	VIT_02s0012g02700	2	10603213	10607154	Unknown
	VIT_02s0012g02710	2	10617021	10618719	Unknown
	VIT_02s0012g02720	2	10620819	10623614	RPM1 (resistance to p. syringae pv maculicola 1)

	VIT_02s0012g02760	2	10685743	10699497	Methionyl-tRNA synthetase
	VIT_02s0012g02770	2	10703356	10703813	ABC transporter g family pleiotropic drug resistance 12 PDR 12
	VIT_02s0012g02780	2	10706920	10720569	Cytochrome b5 domain-containing protein
anthocyanin _2_3	VIT_02s0012g02920	2	11133984	11136347	Acyl-CoA oxidase ACX3
	VIT_02s0012g02970	2	11183822	11186832	No hit
	VIT_02s0012g03040	2	11666980	11687641	AAA-type ATPase
	VIT_02s0012g03050	2	11688053	11691156	AAA-type ATPase
	VIT_02s0012g03060	2	11710057	11710461	6-phosphogluconate dehydrogenase, decarboxylating
	VIT_02s0012g03090	2	11751038	11752949	AAA-type ATPase
	VIT_02s0012g03100	2	11771975	11773559	No hit
	VIT_02s0012g03110	2	11774822	11776354	CTV. 22
	VIT_02s0012g03130	2	11817589	11831312	No hit
	VIT_02s0012g03140	2	11831313	11832597	Ribosomal protein S7 30S
	VIT_02s0012g03160	2	11840324	11841710	No hit
	VIT_02s0012g03170	2	11873089	11874714	No hit
	VIT_02s0012g03180	2	11879297	11879706	Unknown
	VIT_02s0012g03190	2	11885508	11886222	CTV. 22
	VIT_02s0012g03200	2	11893087	11894138	Armadillo/beta-catenin repeat
	VIT_02s0012g03210	2	11897304	11897873	No hit
	VIT_02s0012g03240	2	11947893	11959569	AAA-type ATPase
	VIT_02s0012g03250	2	11959578	11960203	AAA-type ATPase
	VIT_02s0012g03260	2	11987891	11988792	No hit
anthocyanin _2_4	VIT_02s0109g00230	2	12786746	12808921	Early-responsive to dehydration protein / ERD protein
	VIT_02s0109g00240	2	12814813	12815037	No hit
	VIT_02s0109g00250	2	12822109	12827876	4-coumarate-CoA ligase
	VIT_02s0109g00260	2	12868384	12876281	Retrotransposon gag protein
	VIT_02s0109g00280	2	12912306	12929427	No hit
	VIT_02s0109g00290	2	12929477	12929908	CYP76C6
	VIT_02s0109g00300	2	12929909	12931565	CYP76B1
	VIT_02s0109g00310	2	12936238	12938714	flavonoid 3-monooxygenase
	VIT_02s0109g00320	2	12982398	12982920	Translation initiation factor eIF-3 subunit 8
	VIT_02s0109g00350	2	13058347	13059533	Carboxyl-terminal proteinase
	VIT_02s0109g00360	2	13116317	13119876	Translocase of chloroplast 34
	VIT_02s0109g00370	2	13163595	13167989	RNA recognition motif (RRM)-containing protein
	VIT_02s0109g00380	2	13170239	13193614	Stress response suppressor 1
	VIT_02s0109g00390	2	13282201	13282765	N-hydroxycinnamoyl/benzoyltransferase 5
	VIT_02s0109g00400	2	13282778	13283707	Serine-type peptidase SLP3
	VIT_02s0109g00410	2	13308757	13312393	No hit
	VIT_02s0109g00420	2	13341559	13342323	Disease resistance protein (CC-NBS-LRR class)
	VIT_02s0109g00430	2	13347364	13349570	Nitrilase 4 (NIT4)
	VIT_02s0109g00440	2	13353462	13353985	No hit
	VIT_02s0033g00010	2	13457765	13460162	Unknown protein
	VIT_02s0033g00020	2	13460163	13461470	Unknown protein
	VIT_02s0033g00030	2	13506518	13511727	No hit
	VIT_02s0033g00040	2	13512257	13512649	No hit
	VIT_02s0033g00050	2	13518893	13519179	Scarecrow transcription factor 3 (SCL3)
	VIT_02s0033g00060	2	13531787	13538078	DNAJ plastid division protein (ARC6)

	VIT_02s0033g00070	2	13568564	13569348	No hit
	VIT_02s0033g00080	2	13590737	13637352	Pleckstriny (PH) domain-containing protein
	VIT_02s0033g00090	2	13639223	13640252	DNA replication licensing factor MCM2
	VIT_02s0033g00120	2	13705067	13785560	Pleckstriny (PH) domain-containing protein
	VIT_02s0033g00130	2	13786111	13787768	Cis-zeatin O-beta-D-glucosyltransferase
	VIT_02s0033g00150	2	13832782	13833455	No hit
	VIT_02s0033g00160	2	13856081	13859536	Pleckstriny (PH) domain-containing protein
	VIT_02s0033g00180	2	13880089	13881941	Phenylpropanoid:glucosyltransferase 2
	VIT_02s0033g00190	2	13884200	13933646	DNA replication licensing factor MCM2
	VIT_02s0033g00230	2	13998724	14007202	Unknown protein
	VIT_02s0033g00240	2	14031671	14033252	Glucosyltransferase twil
	VIT_02s0033g00250	2	14051742	14052882	No hit
	VIT_02s0033g00260	2	14104114	14107827	Pinoresinol-lariciresinol reductase
	VIT_02s0033g00270	2	14123184	14126331	Pinoresinol-lariciresinol reductase
	VIT_02s0033g00290	2	14139881	14141542	Pinoresinol-lariciresinol reductase
	VIT_02s0033g00300	2	14144838	14148929	myb family
	VIT_02s0033g00310	2	14158366	14159002	No hit
	VIT_02s0033g00320	2	14159003	14183582	PRLI-interacting factor L
	VIT_02s0033g00350	2	14253249	14254161	No hit
	VIT_02s0033g00360	2	14265226	14266015	Urease
	VIT_02s0033g00370	2	14275372	14275752	myb domain protein 113
	VIT_02s0033g00380	2	14291438	14291683	VvMybA2 (C-term)
	VIT_02s0033g00390	2	14291727	14292732	VvMybA2
	VIT_02s0033g00400	2	14302187	14303282	myb domain protein 113
	VIT_02s0033g00410	2	14351791	14352807	VvMybA1
	VIT_02s0033g00420	2	14386896	14387181	Ribosomal protein S28 (RPS28C) 40S
	VIT_02s0033g00430	2	14392775	14393842	myb domain protein 113
	VIT_02s0033g00440	2	14400037	14401092	Myb VvMYBA1
	VIT_02s0033g00450	2	14420525	14421283	VvMybA3
	VIT_02s0033g00460	2	14425416	14426478	myb domain protein 113
	VIT_02s0033g00480	2	14498732	14499419	No hit
	VIT_02s0033g00490	2	14567216	14568104	No hit
anthocyanin _2_5	VIT_02s0033g01190	2	16677461	16690102	Unknown protein
anthocyanin _2_6					
anthocyanin _2_7	VIT_02s0087g00390	2	17799720	17825371	Endonuclease

Supplementary Table 7. Description of the phenology meta-QTLs

LG	MetaQTL	Peak Position (cM)	\mathbf{R}^{2}	$\begin{aligned} & \text { Start } \\ & \text { (cM) } \end{aligned}$	$\begin{aligned} & \text { End } \\ & \text { (cM) } \end{aligned}$	$\begin{aligned} & \text { Original QTLs } \\ & \text { co-located } \end{aligned}$	QTL Studies (Populations)	Traits	Reference
I	ver_1_1	31.29	0.11	29.15	33.43	2	2	VT	Fechter et al 2014, Zyprian et al 2016
	pheno_1_1	30.30	0.15	28.08	32.53	9	5	VT, FBL, FT, FS, RT	Carreño Ruiz 2012, Costantini et al 2008, Fechter et al 2014, Zyprian et al 2016
	pheno_1_2	37.94	0.15	36.68	39.21	9	3	VT, FBL, RT, FS	Carreño Ruiz 2012, Fechter et al 2014, Zyprian et al 2016,
II	ver_2_1	31.34	0.17	28.79	33.89	7	2	VB, Vr	Bayo Canha 2015, Grzeskowiak et al 2013
	ver_2_2	41.55	0.13	40.00	43.30	5	3	Vr, VB, VE, VT	Costantini et al 2008, Bayo Canha 2015, Grzeskowiak et al 2013
	ver_2_3	53.47	0.34	52.88	54.07	5	3	Vr, VE, VP	Costantini et al 2008, Bayo Canha 2015, Grzeskowiak et al 2013
	pheno_2_1	31.22	0.18	30.03	32.42	15	5	$\begin{gathered} \text { Ac, VE, Rp, FT, ssc, VB, VE, } \\ \text { V-R, Vr, Vr-Rp } \end{gathered}$	Carreño Ruiz 2012, Costantini et al 2008, Ban et al 2016, Bayo Canha 2015, Grzeskowiak et al 2013
	pheno_2_2	41.58	0.18	40.23	42.94	9	4	$\begin{gathered} \mathrm{Ac}, \mathrm{VB}, \mathrm{FT}, \mathrm{Rp}, \mathrm{VE}, \mathrm{Vr}, \mathrm{Vr-} \\ \mathrm{Rp}, \mathbf{V T} \end{gathered}$	Carreño Ruiz 2012, Costantini et al 2008, Bayo Canha 2015, Grzeskowiak et al 2013

pheno_2_3
48.83
53.60
pheno 24 .

Supplementary Table 8

| Meta-
 QTL | Gene ID | Chr | Start
 (bp) | End(bp) |
| :---: | :---: | :---: | :---: | :---: | Annotation_V1 (

VIT_01s0011g03040	1	2714906	2715758
VIT_01s0011g03050	1	2717642	2719224
VIT_01s0011g03060	1	2726727	2743646
VIT_01s0011g03070	1	2751566	2753036
VIT_01s0011g03080	1	2754305	2765766
VIT_01s0011g03090	1	2766597	2767444
VIT_01s0011g03100	1	2770673	2771827
VIT_01s0011g03110	1	2781518	2783517
VIT_01s0011g03120	1	2786238	2790806
VIT_01s0011g03130	1	2791893	2796533
VIT_01s0011g03140	1	2806814	2809091
VIT_01s0011g03160	1	2819342	2877060
VIT_01s0011g03170	1	2877767	2878493
VIT_01s0011g03180	1	2879352	2882108
VIT_01s0011g03190	1	2886723	2897786
VIT_01s0011g03200	1	2898690	2906357
VIT_01s0011g03210	1	2924829	2926924
VIT_01s0011g03220	1	2928959	2935184
VIT_01s0011g03230	1	2941266	2946275
VIT_01s0011g03240	1	2948265	2949046
VIT_01s0011g03250	1	2951539	2951847
VIT_01s0011g03260	1	2954243	2955469
VIT_01s0011g03270	1	2958052	2959131
VIT_01s0011g03280	1	2967860	2979364
VIT_01s0011g03290	1	2981226	2996541
VIT_01s0011g03300	1	3007049	3007411
VIT_01s0011g03310	1	3008153	3011404
VIT_01s0011g03320	1	3011621	3013806
VIT_01s0011g03330	1	3014379	3016292
VIT_01s0011g03340	1	3028681	3030154
VIT_01s0011g03350	1	3030155	3040612
VIT_01s0011g03360	1	3044557	3045849
VIT_01s0011g03370	1	3046873	3051454
VIT_01s0011g03380	1	3061306	3065510
VIT_01s0011g03390	1	3065990	3068987
VIT_01s0011g03400	1	3076982	3080343
VIs			

Unknown protein
Unknown protein
Symbiosis receptor-like kinase
ERF/AP2 Gene Family (VvRAV1)
Methionine aminopeptidase 1B, chloroplast precursor Allene oxide cyclase (jasmonates from fatty acids) Zinc finger (C2H2 type) protein (WIP6)

myb family

Unknown protein
Unknown protein
PFT1 (phytochrome and flowering time 1) MED25 PFT1 (phytochrome and flowering time 1) MED25 PFT1 (phytochrome and flowering time 1) MED25 Lysine and histidine specific transporter ATP-dependent Cl p protease adaptor protein ClpS containing protein Transmembrane protein FT27/PFT27

Aspartic Protease (VvAP1)
Choline transporter
Basic Leucine Zipper Transcription Factor (VvbZIP01)
PGPS/D12
Fw2.2 ORFX
Fw2.2 ORFX
CXE carboxylesterase
Protein phosphatase 2 regulatory subunit A
Aluminum-activated malate transporter 9
Plastid-specific 30S ribosomal protein 3
Unknown protei
Arabidopsis histidine phosphotransfer AHP2
Unknown protein
No hi
PRP4 pre-mRNA processing factor 4 homolog B
Unknown
Agenet domain-containing protein Dihydrolipoamide S-acetyltransferase (LTA2)

Unknown protein
Proton-dependent oligopeptide transport (POT) family protein

	VIT_01s0011g03410	1	3084191	3092672	DNA repair protein RAD23
	VIT_01s0011g03420	1	3100807	3101627	Unknown protein
	VIT_01s0011g03430	1	3112762	3113407	No hit
	VIT_01s0011g03440	1	3117073	3117578	DNA mismatch repair protein
	VIT_01s0011g03450	1	3127812	3132261	Alpha-glucosidase
	VIT_01s0011g03460	1	3141923	3142868	No hit
	VIT_01s0011g03470	1	3142869	3144296	ERF/AP2 Gene Family (VvERF122)
	VIT_01s0011g03480	1	3147476	3149151	Cinnamoyl CoA reductase
	VIT_01s0011g03490	1	3167509	3169015	3-ketoacyl-CoA synthase
	VIT_01s0011g03500	1	3175430	3178998	Homocysteine S-methyltransferase 1
	VIT_01s0011g03510	1	3180020	3185492	Protein kinase PKN/PRK1
	VIT_01s0011g03520	1	3190826	3192777	Constans-like 16
	VIT_01s0011g03530	1	3204646	3205573	Lateral organ boundaries protein 41
	VIT_01s0011g03540	1	3210273	3211389	Lateral organ boundaries protein 41
	VIT_01s0011g03550	1	3217781	3218222	Unknown
	VIT_01s0011g03560	1	3223281	3227712	fiber protein Fb 34
	VIT_01s0011g03570	1	3232043	3232750	Unknown
	VIT_01s0011g03580	1	3235418	3237772	Unknown protein
	VIT_01s0011g03590	1	3246882	3249663	Ribosomal protein L15, chloroplast (CL15) 50S
	VIT_01s0011g03600	1	3252820	3255824	JAGGED
ver_2_1	VIT_02s0025g04660	2	4037933	4039464	Senescence-inducible chloroplast stay-green protein 1
	VIT_02s0025g04670	2	4043652	4045210	Senescence-inducible chloroplast stay-green protein 2
	VIT_02s0025g04680	2	4047267	4056403	Cell division cycle 20-like protein 1
	VIT_02s0025g04690	2	4059360	4060286	Unknown protein
	VIT_02s0025g04700	2	4061719	4063223	Expansin (VvEXPA2)
	VIT_02s0025g04710	2	4064018	4073343	Unknown protein
	VIT_02s0025g04720	2	4094895	4096363	Leucoanthocyanidin dioxygenase (VvLDOX) [Vitis vinifera]
	VIT_02s0025g04730	2	4100066	4103095	Glyoxylate reductase
	VIT_02s0025g04750	2	4108905	4111169	Glycerate dehydrogenase
	VIT_02s0025g04760	2	4121700	4124366	Splicing factor YT521-B
	VIT_02s0025g04770	2	4135934	4139911	Unknown protein
	VIT_02s0025g04780	2	4141626	4144449	Subtilisin stomatal density and distribution
	VIT_02s0025g04790	2	4145024	4146976	Hydrogenobyrinic acid a,c-diamide synthase
	VIT_02s0025g04800	2	4149493	4151715	Hydrogenobyrinic acid a,c-diamide synthase
	VIT_02s0025g04810	2	4153569	4155803	Subtilisin P69F protein
	VIT_02s0025g04820	2	4166469	4168208	Subtilisin P69E protein

VIT_02s0025g04830	2	4169732	4176688
VIT_02s0025g04840	2	4177464	4181953
VIT_02s0025g04850	2	4191899	4193146
VIT_02s0025g04860	2	4193239	4194582
VIT_02s0025g04870	2	4210862	4211722
VIT_02s0025g04880	2	4212083	4213721
VIT_02s0025g04890	2	4216365	4217374
VIT_02s0025g04900	2	4226153	4229768
VIT_02s0025g04910	2	4233942	4235225
VIT_02s0025g04920	2	4236968	4238438
VIT_02s0025g04930	2	4243946	4246738
VIT_02s0025g04940	2	4246754	4248676
VIT_02s0025g04950	2	4251382	4252445
VIT_02s0025g04960	2	4257725	4263946
VIT_02s0025g04970	2	4267189	4268564
VIT_02s0025g04980	2	4274342	4280444
VIT_02s0025g04990	2	4282395	4290690
VIT_02s0025g05000	2	4300566	4305985
VIT_02s0025g05010	2	4307128	4313693
VIT_02s0025g05020	2	4313694	4314578
VIT_02s0025g05030	2	4314983	4315368
VIT_02s0025g05040	2	4315576	4316706
VIT_02s0025g05050	2	4321904	4323519
VIT_02s0025g05060	2	4324307	4346662
VIT_02s0025g05070	2	4346663	4347651
VIT_02s0025g05080	2	4348262	4351307
VIT_02s0025g05090	2	4356581	4373218
VIT_02s0025g05100	2	4376256	4377810
VIT_02s0025g05110	2	4390487	4392478
VIT_02s0025g05120	2	4410051	4413324
VIT_02s0025g05130	2	4421391	4429393
VIT_02s0025g05140	2	4437507	4440897
VIT_02s0025g05150	2	4444146	4448453
VIT_02s0025g05160	2	4450431	4454056
VIT_02s0025g05170	2	4454528	4456260
VIT_00s2563g00010	2	4456792	4458501

Copper chaperone for superoxide dismutase Nudix hydrolase 14

CYP76B1
CYP76B1
No hit
Geraniol 10-hydroxylase
CYP76B1
Phosphoglycerate mutase Growth-regulating factor 5
Phosphate translocator protein2, Plastidic
CDI3/OZS1/RCD3/SLAC1 (slow anion channel-associated 1)
Carboxyl-terminal peptidase
No hit
Unknown protein Subtilisin protease 1-aminocyclopropane-1-carboxylate synthase

Unknown protein
Bile acid:sodium symporter

Unknown protein
Nuclear pore complex component Zf A20 and AN1 domain-containing stress-associated protein 1 Microtubule motor PAK (phosphatidic acid kinase) KHC Microtubule motor PAK (phosphatidic acid kinase) KHC Zf A20 and AN1 domain-containing stress-associated protein 1 Microtubule motor PAK (phosphatidic acid kinase) KHC

AT-hook DNA-binding protein MATE efflux family protein ACT domain-containing protein (ACR8) High mobility group HMG-I and HMG-Y, DNA-binding ATP-dependent Clp protease proteolytic subunit (ClpP2) TFIIH basal transcription factor complex TTD-A subunit Cornichon family
Unknown protein
Glycogenin glucosyltransferase

VIT_02s0241g00010	2	4481714	4483309
VIT_02s0241g00020	2	4486591	4488109
VIT_02s0241g00030	2	4497165	4497380
VIT_02s0241g00040	2	4500666	4508486
VIT_02s0241g00050	2	4516706	4519215
VIT_02s0241g00060	2	4528876	4533648
VIT_02s0241g00070	2	4545465	4546112
VIT_02s0241g00080	2	4546113	4551868
VIT_02s0241g00090	2	4553230	4560602
VIT_02s0241g00100	2	4560763	4561723
VIT_02s0241g00110	2	4563842	4567239
VIT_02s0241g00120	2	4567672	4570586
VIT_02s0241g00130	2	4572517	4573830
VIT_02s0241g00140	2	4577280	4577983
VIT_02s0241g00150	2	4581818	4583479
VIT_02s0241g00160	2	4583480	4597122
VIT_02s0241g00170	2	4599598	4602678
VIT_02s0241g00180	2	4617301	4618383
VIT_02s0241g00190	2	4626070	4626875
VIT_00s0555g00010	2	4641190	4641853
VIT_00s0555g00020	2	4648183	4650503
VIT_00s0555g00050	2	4665292	4666049
VIT_00s0323g00010	2	4668106	4670512
VIT_00s0323g00020	2	4671193	4672013
VIT_00s0323g00030	2	4678930	4682628
VIT_00s0323g00040	2	4697703	4701979
VIT_00s0323g00050	2	4703890	4704749
VIT_00s0323g00060	2	4707844	4708734
VIT_00s0323g00070	2	4716445	4717351
VIT_00s0323g00080	2	4728265	4732585
VIT_00s0323g00100	2	4758426	4761706
VIT_02s0154g00010	2	4765224	4766070
VIT_02s0154g00020	2	4779757	4782259
VIT_02s0154g00030	2	4784152	4784510
VIT_02s0154g00040	2	4788746	4794088
VIT_02s0154g00050	2	4794446	4795025

Pentatricopeptide (PPR) repeat-containing protein
Unknown
Sterol 4-alpha-methyl-oxidase 1 (SMO1)
Cyclobutane pyrimidine dimer photolyase
Unknown protein
Unknown protein
Zinc finger (DHHC type)
Glycine-rich protein-like Translation release factor

Unknown protein Aminomethyltransferase Receptor protein kinase

No hit
Calmodulin (A)

No hit

Esterase/lipase/thioesterase family Zinc finger (C 2 H 2 type) family
UDP-D- glcucuronate 4-epimerase 5 GAE5
No hit
CYP706A12
flavonoid 3-monooxygenase
CHCH domain containing protein
No hit
HSP associated protein
HSP associated protein
Unknown protein
Invertase/pectin methylesterase inhibitor Invertase/pectin methylesterase inhibitor Pectin methylesterase inhibitor Elongation factor G, chloroplast precursor Vacuolar processing enzyme beta Auxin-responsive SAUR11
NAC domain-containing protein (VvNAC02)
No hit
Thylakoid lumenal protein Glycosyl hydrolase family 5

VIT_02s0154g00060	2	4795026	4798608
VIT_02s0154g00070	2	4804832	4807460
VIT_02s0154g00080	2	4813347	4818031
VIT_02s0154g00090	2	4824906	4827102
VIT_02s0154g00100	2	4830177	4840110
VIT_02s0154g00110	2	4840895	4843817
VIT_02s0154g00120	2	4856955	4857771
VIT_02s0154g00130	2	4864567	4866368
VIT_02s0154g00140	2	4866564	4878108
VIT_02s0154g00150	2	4891997	4893321
VIT_02s0154g00160	2	4895022	4898791
VIT_02s0154g00170	2	4900531	4903560
VIT_02s0154g00180	2	4905399	4908515
VIT_02s0154g00190	2	4917402	4920926
VIT_02s0154g00200	2	4926234	4929441
VIT_02s0154g00210	2	4932248	4932565
VIT_02s0154g00220	2	4968010	4968965
VIT_02s0154g00230	2	4979771	4980739
VIT_02s0154g00240	2	5005578	5017004
VIT_02s0154g00250	2	5021111	5041753
VIT_02s0154g00260	2	5048952	5052974
VIT_02s0154g00270	2	5059261	5059470
VIT_02s0154g00280	2	5063840	5064500
VIT_02s0154g00290	2	5068196	5068884
VIT_02s0154g00300	2	5073755	5074467
VIT_02s0154g00310	2	5077143	5078172
VIT_02s0154g00320	2	5084359	5085114
VIT_02s0154g00330	2	5090858	5100329
VIT_02s0154g00340	2	5100931	5102577
VIT_02s0154g00350	2	5107218	5109108
VIT_02s0154g00360	2	5109216	5109392
VIT_02s0154g00370	2	5110262	5115144
VIT_02s0154g00380	2	5117118	5118512
VIT_02s0154g00390	2	5127909	5131694
VIT_02s0154g00400	2	5145761	5147651
VIT_02s0154g00410	2	5164705	5167011

Thylakoid lumenal protein
Abnormal floral organs
Multi-copper oxidase (SKU5)
Vacuolar invertase 2, GIN2
Transaldolase totaL2
Trehalose-6-phosphate phosphatase (AtTPPA)
Unknown
Exostosin (Xyloglucan galactosyltransferase KATAMARI 1) 3-oxoacyl-[acyl-carrier-protein] synthase 3 A , chloroplast precursor

PLATZ transcription factor
flavin-containing monooxygenase family protein / FMO family protein flavin-containing monooxygenase 3 flavin-containing monooxygenase 3 flavin-containing monooxygenase 3

Unknown protein
WRKY DNA-binding protein 21
Zinc finger (C 2 H 2 type) family
Phosphatidic acid phosphatase / PAP2
Oxysterol binding protein
Oxysterol binding protein
Nitrate transporter

No hit

Arachidonic acid-induced DEA1
Extensin
Small nuclear ribonucleoprotein Sm D3 Protease inhibitor/seed storage/lipid transfer protein (LTP) Protease inhibitor/seed storage/lipid transfer protein (LTP)

L-lactate dehydrogenase A
No hit
$\mathrm{YbaK} /$ prolyl-tRNA synthetase associated region

Scarecrow transcription factor 6 (SCL6)

	VIT_02s0154g00420	2	5169940	5170164	No hit
	VIT_02s0154g00430	2	5170165	5170573	Unknown
	VIT_02s0154g00440	2	5170574	5171512	Unknown protein
	VIT_02s0154g00450	2	5174203	5183898	Zinc knuckle
	VIT_02s0154g00460	2	5184751	5188467	Unknown protein
	VIT_02s0154g00470	2	5188779	5190703	No hit
	VIT_02s0154g00480	2	5191329	5192828	Heat shock protein MTSHP
	VIT_02s0154g00490	2	5197928	5198941	Heat shock 22 kDa protein mitochondrial
	VIT_02s0154g00500	2	5201356	5203907	VAP27-1 (VAMP/synaptobrevin-associated protein 27-1)
	VIT_02s0154g00510	2	5205962	5214005	Aspartic Protease (VvAP2)
	VIT_02s0154g00520	2	5216152	5221223	Aspartyl protease
	VIT_02s0154g00530	2	5227339	5229999	Histidine triad nucleotide binding protein 3
	VIT_02s0154g00540	2	5231330	5239367	Protein arginine N-methyltransferase
	VIT_02s0154g00550	2	5239749	5268651	DnaJ homolog, subfamily C, member 11
	VIT_02s0154g00560	2	5280620	5283758	No hit
	VIT_02s0154g00580	2	5295292	5296235	Unknown
	VIT_02s0154g00590	2	5308401	5308985	Unknown
	VIT_02s0154g00600	2	5321389	5323536	Pectinesterase family
	VIT_02s0154g00610	2	5324724	5332701	Pex19 protein
	VIT_02s0154g00620	2	5333217	5334885	Unknown
	VIT_00s1338g00010	2	5339303	5340709	DNA-directed RNA polymerase III subunit C34
	VIT_00s1338g00020	2	5343106	5344525	Protein transport protein Sec61 subunit alpha
	VIT_00s0229g00010	2	5346706	5349092	No hit
ver_2_2	VIT_02s0012g00010	2	5737022	5737770	No hit
	VIT_02s0012g00020	2	5764306	5772117	Glycine-rich protein
	VIT_02s0012g00030	2	5772754	5778969	Unknown
	VIT_02s0012g00040	2	5781659	5781796	No hit
	VIT_02s0012g00050	2	5786859	5796200	Glycine-rich protein
	VIT_02s0012g00060	2	5796703	5801313	Unknown
	VIT_02s0012g00070	2	5801456	5801882	Unknown protein
	VIT_02s0012g00080	2	5804657	5813125	Casein kinase II subunit beta-4
	VIT_02s0012g00090	2	5813865	5826392	Phosphatidylinositol-4-phosphate 5-kinase
	VIT_02s0012g00100	2	5828133	5830613	Ribosomal protein L37a (RPL37aB) 60S
	VIT_02s0012g00110	2	5835376	5837313	Chromatin remodeling 31
	VIT_02s0012g00140	2	5869675	5887801	Novel plant snare 11
	VIT_02s0012g00150	2	5897718	5902809	NAK-type protein kinase

VIT_02s0012g00160	2	5910037	5913981	Unknown
VIT_02s0012g00170	2	5916093	5918986	1,4-alpha-D-glucan maltohydrolase
VIT_02s0012g00180	2	5923457	5932422	Serine protease
VIT_02s0012g00190	2	5938773	5978552	Unknown protein
VIT_02s0012g00240	2	5999054	6002113	Unknown protein
VIT_02s0012g00250	2	6005214	6012306	Vacuolar protein sorting 13C protein
VIT_02s0012g00270	2	6027694	6106280	Pleckstriny (PH) domain-containing protein
VIT_02s0012g00280	2	6111583	6112872	Senescence-associated protein
VIT_02s0012g00290	2	6133593	6135728	S-ribonuclease binding protein SBP1
VIT_02s0012g00300	2	6151132	6189859	Unknown protein
VIT_02s0012g00310	2	6204735	6223899	Lon protease
VIT_02s0012g00320	2	6225175	6226474	Norcoclaurine synthase
VIT_02s0012g00350	2	6233046	6236366	Norcoclaurine synthase
VIT_02s0012g00360	2	6238852	6242299	1-aminocyclopropane-1-carboxylate oxidase
VIT_02s0012g00370	2	6242887	6258576	No hit
VIT_02s0012g00380	2	6273340	6285802	Norcoclaurine synthase
VIT_02s0012g00390	2	6286306	6288341	Norcoclaurine synthase
VIT_02s0012g00400	2	6296189	6299377	1-aminocyclopropane-1-carboxylate oxidase
VIT_02s0012g00410	2	6305682	6310741	Naringenin, 2-oxoglutarate 3-dioxygenase
VIT_02s0012g00420	2	6311954	6315948	No hit
VIT_02s0012g00430	2	6320484	6320851	Oxidoreductase, 20G-Fe(II) oxygenase
VIT_02s0012g00440	2	6320999	6321467	Norcoclaurine synthase
VIT_02s0012g00450	2	6323850	6325555	1-aminocyclopropane-1-carboxylate oxidase
VIT_02s0012g00460	2	6332076	6381980	Glycine-rich protein
VIT_02s0012g00470	2	6397883	6398726	Unknown
VIT_02s0012g00480	2	6399524	6430074	Regulator of nonsense transcripts 1
VIT_02s0012g00490	2	6446158	6446783	Cytochrome c oxidase subunit 6b
VIT_02s0012g00500	2	6449814	6450360	Invertase/pectin methylesterase inhibitor
VIT_02s0012g00510	2	6455739	6464806	Golgi transport Got1
VIT_02s0012g00530	2	6490169	6496086	Ribose-phosphate pyrophosphokinase 1
VIT_02s0012g00540	2	6516342	6518185	Peroxidase
VIT_02s0012g00550	2	6518911	6526733	Inositol polyphosphate 5-phosphatase II
VIT_02s0012g00560	2	6533749	6545389	Tobamovirus multiplication 2A TOM2A
VIT_02s0012g00570	2	6554241	6560259	Pseudo-response regulator 2 (APRR2) (TOC2)
VIT_02s0012g00580	2	6586031	6594054	Ankyrin protein kinase
VIT_02s0012g00590	2	6600611	6610281	Unknown protein

VIT_02s0012g00600	2	6611782	6615934	Vacuolar protein sorting 55
VIT_02s0012g00610	2	6616375	6616852	Allyl alcohol dehydrogenase
VIT_02s0012g00620	2	6625135	6636514	Phosphoacetylglucosamine mutase
VIT_02s0012g00630	2	6639102	6640237	Myb family
VIT_02s0012g00640	2	6645562	6645999	PBP1 (pinoid-binding protein 1)
VIT_02s0012g00650	2	6653658	6654223	PBP1 (pinoid-binding protein 1)
VIT_02s0012g00660	2	6660229	6660825	Calcium-binding EF-hand
VIT_02s0012g00670	2	6670534	6672390	No hit
VIT_02s0012g00680	2	6682700	6682873	No hit
VIT_02s0012g00690	2	6707170	6707803	No hit
VIT_02s0012g00700	2	6709030	6709203	No hit
VIT_02s0012g00710	2	6733243	6741163	RAB GTPase RAB6
VIT_02s0012g00720	2	6746761	6748648	Unknown
VIT_02s0012g00730	2	6749467	6750865	Purine permease 10 PUP10
VIT_02s0012g00740	2	6758931	6769661	Dynamin-like protein 2 b
VIT_02s0012g00750	2	6769877	6773816	Haloacid dehalogenase hydrolase
VIT_02s0012g00760	2	6778127	6782078	Haloacid dehalogenase hydrolase
VIT_02s0012g00770	2	6787173	6789662	No hit
VIT_02s0012g00780	2	6791455	6791610	No hit
VIT_02s0012g00790	2	6792634	6793661	Ras-related protein RAB6A
VIT_02s0012g00800	2	6795685	6795849	No hit
VIT_02s0012g00810	2	6799938	6800021	No hit
VIT_02s0012g00820	2	6804399	6806143	Unknown
VIT_02s0012g00830	2	6817359	6819815	Expansin (VvEXLB1)
VIT_02s0012g00840	2	6820451	6823470	Pentatricopeptide (PPR) repeat-containing protein
VIT_02s0012g00850	2	6823971	6851054	Splicing factor PWI domain-containing protein
VIT_02s0012g00860	2	6855160	6859171	No hit
VIT_02s0012g00870	2	6859219	6873440	RNA-binding protein 10
VIT_02s0012g00880	2	6897090	6898500	AT-hook DNA-binding protein
VIT_02s0012g00890	2	6914782	6915482	Unknown protein
VIT_02s0012g00900	2	6917525	6928933	AT-hook protein 1 (AHP1)
VIT_02s0012g00910	2	6930227	6946661	Adaptor-related protein complex 2, mu 2 subunit
VIT_02s0012g00920	2	6947431	6967357	Conserved oligomeric complex COG6
VIT_02s0012g00930	2	6972956	6979797	Unknown protein
VIT_02s0012g00940	2	6980980	6981681	Late embryogenesis abundant group 1
VIT_02s0012g00950	2	6991276	6991983	H(+)-ATPase 9 AHA9

	VIT_02s0012g00960	2	6993519	6994847	1-deoxy-D-xylulose-5-phosphate synthase
	VIT_02s0012g00970	2	7008648	7012385	Cu2+-exporting ATPase HMA5 (heavy metal ATPase 5)
	VIT_02s0012g00980	2	7027209	7037654	ferredoxin-6, chloroplast precursor
	VIT_02s0012g00990	2	7043508	7046965	LOL1 (LSD ONE like 1)
	VIT_02s0012g01000	2	7050270	7060977	Protein tyrosine phosphatase
	VIT_02s0012g01010	2	7087110	7089452	Leucine-rich repeat
	VIT_02s0012g01020	2	7092594	7099500	Zinc finger (C3HC4-type ring finger)
	VIT_02s0012g01030	2	7100088	7118988	AL-activated malate transporter 1
	VIT_02s0012g01040	2	7120118	7122681	NAC domain-containing protein (VvNAC13)
	VIT_02s0012g01050	2	7131585	7133584	ABC protein 6 non-intrinsic
	VIT_02s0012g01060	2	7154618	7155584	ABC Transporter (VvNAP3 - VvABCI3)
ver_2_3	VIT_02s0109g00420	2	13341559	13342323	Disease resistance protein (CC-NBS-LRR class)
	VIT_02s0109g00430	2	13347364	13349570	Nitrilase 4 (NIT4)
	VIT_02s0109g00440	2	13353462	13353985	No hit
	VIT_02s0033g00010	2	13457765	13460162	Unknown protein
	VIT_02s0033g00020	2	13460163	13461470	Unknown protein
	VIT_02s0033g00030	2	13506518	13511727	No hit
	VIT_02s0033g00040	2	13512257	13512649	No hit
	VIT_02s0033g00050	2	13518893	13519179	Scarecrow transcription factor 3 (SCL3)
	VIT_02s0033g00060	2	13531787	13538078	DNAJ plastid division protein (ARC6)
	VIT_02s0033g00070	2	13568564	13569348	No hit
	VIT_02s0033g00080	2	13590737	13637352	Pleckstriny (PH) domain-containing protein
	VIT_02s0033g00090	2	13639223	13640252	DNA replication licensing factor MCM2
	VIT_02s0033g00120	2	13705067	13785560	Pleckstriny (PH) domain-containing protein
	VIT_02s0033g00130	2	13786111	13787768	Cis-zeatin O-beta-D-glucosyltransferase
	VIT_02s0033g00150	2	13832782	13833455	No hit
	VIT_02s0033g00160	2	13856081	13859536	Pleckstriny (PH) domain-containing protein
	VIT_02s0033g00180	2	13880089	13881941	Phenylpropanoid:glucosyltransferase 2
	VIT_02s0033g00190	2	13884200	13933646	DNA replication licensing factor MCM2
	VIT_02s0033g00230	2	13998724	14007202	Unknown protein
	VIT_02s0033g00240	2	14031671	14033252	Glucosyltransferase twil
	VIT_02s0033g00250	2	14051742	14052882	No hit
	VIT_02s0033g00260	2	14104114	14107827	Pinoresinol-lariciresinol reductase
	VIT_02s0033g00270	2	14123184	14126331	Pinoresinol-lariciresinol reductase
	VIT_02s0033g00290	2	14139881	14141542	Pinoresinol-lariciresinol reductase
	VIT_02s0033g00300	2	14144838	14148929	myb family

VIT_02s0033g00310	2	14158366	14159002
VIT_02s0033g00320	2	14159003	14183582
VIT_02s0033g00350	2	14253249	14254161
VIT_02s0033g00360	2	14265226	14266015
VIT_02s0033g00370	2	14275372	14275752
VIT_02s0033g00380	2	14291438	14291683
NIT_02s0033g00390 hit			
VIT_02s0033g00400	2	14291727	14292732
VIT_02s0033g00410	2	14351791	14352807
VIT_02s0033g00420	2	14386896	14387181
VIT_02s0033g00430	2	14392775	14393842

VIT_02s0033g00750	2	15496243	15499175	Kinesin motor protein
VIT_02s0033g00770	2	15560608	15562469	Nitrilase 4B
VIT_02s0033g00780	2	15573189	15573552	14-3-3 protein GF14 omega (GRF2)
VIT_02s0033g00790	2	15591008	15592898	Nitrilase 4B
VIT_02s0033g00800	2	15606321	15608743	Nitrilase 4 (NIT4)
VIT_02s0033g00810	2	15612721	15613040	No hit
VIT_02s0033g00830	2	15651191	15651721	RAB GTPase RABA4A
VIT_02s0033g00840	2	15659957	15669174	Nitrilase 4B
VIT_02s0033g00850	2	15669871	15671771	Nitrilase
VIT_02s0033g00870	2	15700024	15702438	Nitrilase 4B
VIT_02s0033g00880	2	15714340	15714678	Ribosomal protein L8 (RPL8C) 60S
VIT_02s0033g00900	2	15829983	15834399	Unc51-like kinase
VIT_02s0033g00910	2	15835533	15836148	Kinesin motor protein
VIT_02s0033g00920	2	15921498	15922178	No hit
VIT_02s0033g00930	2	15941055	15952365	Single-strand DNA binding protein
VIT_02s0033g00960	2	15974263	15978140	Zinc-binding protein
VIT_02s0033g00970	2	16053537	16062151	No hit
VIT_02s0033g00980	2	16081574	16084857	NADH-plastoquinone oxidoreductase subunit 2
VIT_02s0033g00990	2	16084858	16085540	Ribosomal protein S7 30S
VIT_02s0033g01000	2	16093114	16095441	Anthraniloyal-CoA: methanol anthraniloyal transferase
VIT_02s0033g01010	2	16152695	16154133	Ribosomal protein S7 30S
VIT_02s0033g01020	2	16190948	16193334	Anthraniloyal-CoA: methanol anthraniloyal transferase
VIT_02s0033g01030	2	16252684	16254941	Anthraniloyal-CoA: methanol anthraniloyal transferase
VIT_02s0033g01050	2	16299329	16301080	Anthraniloyal-CoA: methanol anthraniloyal transferase
VIT_02s0033g01060	2	16349045	16351278	Anthraniloyal-CoA: methanol anthraniloyal transferase
VIT_02s0033g01070	2	16356696	16359431	Anthraniloyal-CoA: methanol anthraniloyal transferase
VIT_02s0033g01100	2	16435669	16439357	No hit
VIT_02s0033g01110	2	16439358	16447346	Male germ cell-associated kinase
VIT_02s0033g01120	2	16515095	16520470	Dehydration-responsive protein
VIT_02s0033g01130	2	16555004	16556115	SAR1 (secretion-associated ras)
VIT_02s0033g01150	2	16602266	16611445	Unknown protein
VIT_02s0033g01160	2	16649637	16654775	Unknown protein
VIT 02s0033g01170	2	16657559	16664675	Replication protein RPA 70kDa subunit

Meta-QTL	Gene ID	Chr	$\begin{aligned} & \hline \begin{array}{l} \text { Start } \\ \text { (bp) } \end{array} \\ & \hline \end{aligned}$	End(bp)	Annotation_V1
pheno_3_1	VIT_03s0038g00620	3	547345	562437	Zinc knuckle
	VIT_03s0038g00630	3	565597	568081	Endo-1,4-beta-glucanase
	VIT_03s0038g00640	3	574493	578920	Unknown
	VIT_03s0038g00650	3	579366	583281	Coenzyme Q10 homolog B
	VIT_03s0038g00660	3	584427	587912	Unknown protein
	VIT_03s0038g00670	3	592539	594503	fructose-bisphosphate aldolase, chloroplast precursor
	VIT_03s0038g00690	3	594846	598517	Zinc finger (B-box type)
	VIT_03s0038g00700	3	606114	613813	Kinesin motor protein
	VIT_03s0038g00710	3	614468	614930	Unknown
	VIT_03s0038g00720	3	615777	618174	NADH dehydrogenase (ubiquinone) 1 beta subcomplex 9
	VIT_03s0038g00730	3	623867	624348	No hit
	VIT_03s0038g00740	3	624648	632238	GC1 (GIANT chloroplast 1)
	VIT_03s0038g00750	3	632713	639536	Ubiquitin fusion degradation protein UFD1
	VIT_03s0038g00760	3	644491	647420	Arginine decarboxylase (Fragment)
	VIT_03s0038g00790	3	662174	664796	V-type H+-transporting ATPase 16kDa proteolipid subunit
	VIT_03s0038g00800	3	666647	670774	NADP-dependent D-sorbitol-6-phosphate dehydrogenase
	VIT_03s0038g00820	3	670775	676616	3-oxo-5-alpha-steroid 4-dehydrogenase, C-terminal
	VIT_03s0038g00840	3	679207	684375	BPC4/BBR/BPC4/BPC4
	VIT_03s0038g00860	3	689247	693308	Basic Leucine Zipper Transcription Factor (VvbZIP05)
	VIT_03s0038g00870	3	694566	700828	Dihydrouridine synthase 3
	VIT_03s0038g00880	3	702486	704460	Amidophosphoribosyltransferase 2
	VIT_03s0038g00890	3	709401	710989	No hit
	VIT_03s0038g00910	3	713857	721463	Ribosome-binding factor A , chloroplast precursor
	VIT_03s0038g00920	3	722303	732914	Carbohydrate kinase, PfkB
	VIT_03s0038g00930	3	736435	737319	Auxin responsive SAUR protein
	VIT_03s0038g00940	3	738127	738887	Auxin-responsive
	VIT_03s0038g00950	3	749716	750398	Auxin-responsive SAUR9
	VIT_03s0038g00960	3	755323	760266	Transcription factor TFIIF
	VIT_03s0038g00980	3	783897	784664	Unknown
	VIT_03s0038g01010	3	799108	799188	No hit

VIT_03s0038g01020	3	815278	815673
VIT_03s0038g01060	3	854295	855373
VIT_03s0038g01070	3	856872	858394
VIT_03s0038g01080	3	858886	859170
VIT_03s0038g01090	3	862995	863398
VIT_03s0038g01100	3	864608	864876
VIT_03s0038g01110	3	866357	866897
VIT_03s0038g01120	3	867890	868156
VIT_03s0038g01130	3	869586	872380
VIT_03s0038g01140	3	876348	878337
VIT_03s0038g01150	3	880653	881315
VIT_03s0038g01160	3	883689	883976
VIT_03s0038g01170	3	885397	885684
VIT_03s0038g01180	3	888635	888955
VIT_03s0038g01190	3	892009	892382
VIT_03s0038g01210	3	894854	895141
VIT_03s0038g01220	3	897891	898180
VIT_03s0038g01230	3	900918	901205
VIT_03s0038g01250	3	903282	903569
VIT_03s0038g01260	3	905892	906181
VIT_03s0038g01270	3	908817	909399
VIT_03s0038g01280	3	910867	911175
VIT_03s0038g01290	3	915230	915499
VIT_03s0038g01300	3	917424	917748
VIT_03s0038g01310	3	921733	927965
VIT_03s0038g01320	3	930985	948815
VIT_03s0038g01330	3	955035	956506
VIT_03s0038g01360	3	964891	966169
VIT_03s0038g01370	3	967748	969830
VIT_03s0038g01380	3	971266	975571
VIT_03s0038g01390	3	976131	977121
VIT_03s0038g01400	3	978958	982622
VIT_03s0038g01410	3	984045	985466
VIT_03s0038g01420	3	991431	993320
VIT_03s0038g01430	3	993344	994100
VIT_03s0038g01440	3	996232	1004637

Metalloprotease
Metalloprotease
Pentatricopeptide (PPR) repeat-containing protein Auxin responsive SAUR protein Auxin responsive SAUR protein Auxin responsive SAUR protein

Auxin-responsive SAUR31
Auxin responsive SAUR protein
Auxin-responsive
Metalloendoproteinase 1 precursor
Auxin-responsive
Auxin responsive SAUR protein Auxin responsive SAUR protein Auxin responsive SAUR protein

Auxin-induced SAUR
Auxin responsive SAUR protein
Auxin-induced protein 15A
Auxin responsive SAUR protein Auxin responsive SAUR protein

Auxin-induced SAUR
Auxin responsive SAUR protein
Crp1 protein
Anthranilate N -benzoyltransferase protein 1
Unknown
ABA-responsive protein (HVA22)HVA22H
Calcium-binding EF hand Aquaporin TIP3;1
R protein PRF disease resistance protein
Aquaporin PIP PIP1A
Phytochelatin synthetase
Phytochelatin synthetase
Adenosylhomocysteine nucleosidase.

VIT_03s0038g01450	3	1004638	1005093
VIT_03s0038g01460	3	1006320	1009717
VIT_03s0038g01470	3	1009718	1014601
VIT_03s0038g01480	3	1015472	1018780
VIT_03s0038g01490	3	1025473	1040019
VIT_03s0038g01510	3	1041388	1041967
VIT_03s0038g01520	3	1044307	1047456
VIT_03s0038g01530	3	1050448	1058022
VIT_03s0038g01540	3	1062491	1063732
VIT_03s0038g01550	3	1066258	1068897
VIT_03s0038g01580	3	1077896	1078534
VIT_03s0038g01590	3	1082216	1083954
VIT_03s0038g01610	3	1084197	1085815
VIT_03s0038g01620	3	1088445	1096163
VIT_03s0038g01630	3	1111137	1113800
VIT_03s0038g01670	3	1168819	1177208
VIT_03s0038g01740	3	1215576	1222056
VIT_03s0038g01750	3	1224505	1226936
VIT_03s0038g01760	3	1231040	1235642
VIT_03s0038g01770	3	1235713	1237448
VIT_03s0038g01780	3	1238202	1248527
VIT_03s0038g01790	3	1252286	1255340
VIT_03s0038g01810	3	1263090	1274110
VIT_03s0038g01820	3	1275024	1279206
VIT_03s0038g01830	3	1283253	1285733
VIT_03s0038g01840	3	1286455	1288037
VIT_03s0038g01850	3	1298173	1299515
VIT_03s0038g01860	3	1301501	1302939
VIT_03s0038g01870	3	1303910	1304387
VIT_03s0038g01880	3	1313644	1323526
VIT_03s0038g01920	3	1332326	1347193
VIT_03s0038g01930	3	1347905	1348611
VIT_03s0038g01940	3	1349912	1356622
VIT_03s0038g01950	3	1357739	1360559
VIT_03s0038g01960	3	1362167	1363750
VIT_03s0038g01970	3	1367294	1369340

Translocon-associated protein alpha TRAP complex
Proline-rich protein 4
Proline-rich protein 4
Proline-rich protein 4
Proline-rich protein 4
Nuclear pore complex protein Nup188 Nuclear pore complex protein Nup 188 Nuclear pore complex protein Nup 188
Peptidyl-prolyl cis-trans isomerase ROC5 (rotamase CYP 5) Permease nonimprinted in Prader-Willi/Angelman

Glycine-rich protein
Proline-rich family protein
Amidase
$\left.\begin{array}{llll}\text { VIT_03s0038g01990 } & 3 & 1374043 & 1381233 \\ \text { VIT_03s0038g02000 } & 3 & 1383516 & 1393182 \\ \text { VIT_03s0038g02010 } & 3 & 1393183 & 1395922 \\ \text { VIT_03s0038g02020 } & 3 & 1395923 & 1400744 \\ \text { VIT_03s0038g02030 } & 3 & 1402181 & 1405517 \\ \text { VIT_03s0038g02040 } & 3 & 1406571 & 1408542 \\ \text { VIT_03s0038g02050 } & 3 & 1412118 & 1412819 \\ \text { VIT_03s0038g02060 } & 3 & 1415776 & 1416475 \\ \text { VIT_03s0038g02070 } & 3 & 1424949 & 1429038 \\ \text { VIT_03s0038g02080 } & 3 & 1436852 & 1438855 \\ \text { AIT_03s0038g02090 } & 3 & 1441262 & 1442535 \\ \text { Amidase } \\ \text { VIT_03s0038g02100 } & 3 & 1443063 & 1447359 \\ \text { VIT_03s0038g02110 } & 3 & 1449330 & 1451521\end{array}\right]$ Amidase
 VIT 03s0180g00050 $3 \quad 5981525 \quad 5989159$ VIT_03s0180g00060 $3 \quad 5989504 \quad 599394$ VIT 03s0180g00070 $3 \quad 5995174 \quad 6000876$ VIT 03s0180g00080 $3 \quad 6009317 \quad 6020720$ VIT_-03s0180g00090 $\quad 3 \quad 6023040 \quad 6024531$ VIT_03s0180g00100 $\quad 3 \quad 6030251 \quad 6032840$ VIT_03s0180g00110 360337236036694 VIT 03s0180g00120 $366037870 \quad 6059709$ VIT_03s0180g00130 $3 \quad 6060227 \quad 6064528$ VIT_03s0180g00140 $3 \quad 6071530 \quad 6072486$ VIT 03s0180g00150 $3 \quad 6078670 \quad 6081676$ VIT_-03s0180g00160 $\quad 3 \quad 6090668 \quad 6100225$ VIT_03s0180g00170 $\quad 3 \quad 6101310 \quad 6105927$ VIT_03s0180g00180 3661066026118797 VIT 03s0180g00190 $3 \quad 6119889 \quad 612437$ VIT_03s0180g00200 $\quad 3 \quad 6124465 \quad 6126202$ VIT_03s0180g00210 $\quad 3 \quad 6147352 \quad 6148726$ VIT_03s0180g00230 $3 \quad 6166608 \quad 6177981$ VIT ${ }^{-} 03 \mathrm{~s} 0180 \mathrm{~g} 00240 \quad 3 \quad 6179625 \quad 6179759$ VIT_03s0180g00250 $3 \quad 6179858 \quad 6181360$ VIT_03s0180g00260 3662123296214039 VIT 03s $0180 \mathrm{~g} 00270 \quad 3 \quad 6217552 \quad 6226884$ VIT_03s0180g00280 $\quad 3 \quad 6255489 \quad 6257208$ VIT_03s0180g00290 $366263737 \quad 6264635$ VIT_03s0180g00300 $366267395 \quad 6267971$ VIT_03s0180g00310 $3 \quad 6269156 \quad 6269856$ VIT_03s0180g00320 $\quad 3 \quad 6281986 \quad 6283705$ VIT_03s0091g00010 $366310807 \quad 6311602$ $\begin{array}{lllll}\text { VIT 03s0091g00020 } & 3 & 6314436 & 6314606\end{array}$ VIT_03s0091g00030 $\quad 3 \quad 6314607 \quad 6315780$ VIT_03s0091g00040 $\quad 3 \quad 6338109 \quad 6339850$ VIT_03s0091g00050 $36357496 \quad 6364352$

Cysteine proteinase
Phosphoric monoester hydrolase
Calcium-binding protein
Cyclin D3_2
DNA-directed RNA polymerase II subunit C
Late embryonic abundant protein EMB7
Cyclase
Cyclase
Receptor kinase
Unknown protein
Stress enhanced protein 1 (SEP1)
Sodium hydrogen antiporter NHD1
D-3-phosphoglycerate dehydrogenase, chloroplast precursor
Acetyl xylan esterase AxeA
Receptor protein kinase
ATTIC21/CIA5/TIC21 (chloroplast import apparatus 5) Reticulon-like protein B11 RTNLB11

Unknown protein
No hit
Limonoid UDP-glucosyltransferase (VvGT2)
Myb domain protein R1
UNC-50
No hit
Cinnamyl alcohol dehydrogenase
Cinnamyl alcohol dehydrogenase
Pseudouridine synthase
Indole-3-acetate beta-glucosyltransferase Gibberellin-regulated protein 4 (GASA4)

ABC transporter F member 2 ATP-dependent Clp protease ClpB protein indole-3-acetate beta-glucosyltransferase (VvGT3)

No hit
No hit
No hit
Limonoid UDP-glucosyltransferase (VvGT1) Triacylglycerol/steryl ester hydrolase

VIT_03s0091g00060	3	6374562	6374820
VIT_03s0091g00070	3	6374821	6376254
VIT_03s0091g00080	3	6384738	6388178
VIT_03s0091g00090	3	6388280	6390379
VIT_03s0091g00100	3	6391617	6395252
VIT_03s0091g00110	3	6395575	6397456
VIT_03s0091g00120	3	6398105	6398826
VIT_03s0091g00130	3	6399870	6400567
VIT_03s0091g00140	3	6404905	6405345
VIT_03s0091g00150	3	6405346	6405711
VIT_03s0091g00160	3	6406167	6406991
VIT_03s0091g00180	3	6419877	6420461
VIT_03s0091g00190	3	6447349	6451553
VIT_03s0091g00200	3	6479048	6503929
VIT_03s0091g00210	3	6507392	6509263
VIT_03s0091g00220	3	6511172	6511647
VIT_03s0091g00230	3	6512832	6514492
VIT_03s0091g00240	3	6521904	6537905
VIT_03s0091g00250	3	6538966	6539935
VIT_03s0091g00260	3	6548677	6549577
VIT_03s0091g00270	3	6551840	6559848
VIT_03s0091g00280	3	6566136	6569256
VIT_03s0091g00290	3	6571900	6589424
VIT_03s0091g00300	3	6623124	6623416
VIT_03s0091g00310	3	6633708	6635996
VIT_03s0091g00320	3	6642216	6651075
VIT_03s0091g00350	3	6664651	6666079
VIT_03s0091g00360	3	6668161	6688642
VIT_03s0091g00370	3	6691248	6693137
VIT_03s0091g00380	3	6699445	6705656
VIT_03s0091g00390	3	6715491	6716068
VIT_03s0091g00400	3	6717421	6752391
VIT_03s0091g00410	3	6773316	6776359
VIT_03s0091g00420	3	6785458	6787059
VIT_03s0091g00430	3	6798217	6802152
VIT_03s0091g00440	3	6804406	6807382

ACT domain-containing protein (ACR6)
ACT domain-containing protein (ACR6)
Methylthioribose kinase
No hit
Methylthioribose kinase
Plant basic secretory protein (BSP) family Prp27-like protein

Prp27
Plant basic secretory protein (BSP) family NtPRp27 secretory protein NtPRp27 secretory protein

Unknown
WD40
DNA repair protein REV1
Ethylene-responsive protein Unknown protein Unknown protein
Haloacid dehalogenase hydrolase
Unknown
Zinc finger protein 4 TIP41
Cyclin A3;4
Pathogenesis-related homeodomain protein (PRHA) B-cell receptor-associated protein 31
Indole-3-acetic acid-amido synthetase GH3.8
Ribosomal rna assembly protein mis3
No hit
Seed maturation protein PM23
Pentatricopeptide (PPR) repeat-containing protein
Thioredoxin domain-containing protein 9
Snakin-1
Transducin family protein / WD-40 repeat
Unknown protein
No hit
SWIB complex BAF60b domain-containing protein
Pentatricopeptide (PPR) repeat-containing protein

VIT_03s0091g00450	3	6811798	6813280
VIT_03s0091g00460	3	6817116	6818768
VIT_03s0091g00470	3	6846055	6849796
VIT_03s0091g00480	3	6851584	6855075
VIT_03s0091g00490	3	6859815	6860409
VIT_03s0091g00500	3	6871858	6872341
VIT_03s0091g00510	3	6894959	6895595
VIT_03s0091g00520	3	6905764	6914781
VIT_03s0091g00530	3	6917800	6921320
VIT_03s0091g00540	3	6976055	6984113
VIT_03s0091g00550	3	6987237	6990594
VIT_03s0091g00560	3	6995098	6998522
VIT_03s0091g00570	3	6998808	6999512
VIT_03s0091g00580	3	7035451	7039010
VIT_03s0091g00590	3	7040488	7042974
VIT_03s0091g00600	3	7044909	7047565
VIT_03s0091g00610	3	7050934	7055804
VIT_03s0091g00620	3	7055805	7059068
VIT_03s0091g00630	3	7065044	7065631
VIT_03s0091g00640	3	7072474	7073358
VIT_03s0091g00650	3	7076200	7076677
VIT_03s0091g00660	3	7082071	7098207
VIT_03s0091g00670	3	7099015	7099742
VIT_03s0091g00680	3	7103281	7113666
VIT_03s0091g00690	3	7125371	7126295
VIT_03s0091g00700	3	7137444	7143607
VIT_03s0091g00710	3	7149908	7160638
VIT_03s0091g00720	3	7168741	7177092
VIT_03s0091g00730	3	7192504	7193911
VIT_03s0091g00740	3	7195947	7206249
VIT_03s0091g00750	3	7219508	7223633
VIT_03s0091g00760	3	7223730	7230484
VIT_03s0091g00770	3	7244888	7245217
VIT_03s0091g00810	3	7287360	7289100
VIT_03s0091g00820	3	7291711	7302903
VIT_03s0091g00830	3	7303408	7311191

VIT_03s0091g00840	3	7321433	7322062
VIT_03s0091g00850	3	7323004	7324112
VIT_03s0091g00860	3	7324113	7339946
VIT_03s0091g00870	3	7342165	7357074
VIT_03s0091g00880	3	7374686	7382483
VIT_03s0091g00890	3	7385745	7389061
VIT_03s0091g00900	3	7389633	7402240
VIT_03s0091g00920	3	7415296	7415826
VIT_03s0091g00930	3	7417454	7418376
VIT_03s0091g00940	3	7428322	7430945
VIT_03s0091g00950	3	7441440	7444729
VIT_03s0091g00960	3	7446465	7449614
VIT_03s0091g00970	3	7469828	7484328
VIT_03s0091g00990	3	7502149	7502253
VIT_03s0091g01010	3	7535063	7536574
VIT_03s0091g01020	3	7537306	7559608
VIT_03s0091g01030	3	7563890	7582120
VIT_03s0091g01040	3	7603310	7604326
VIT_03s0091g01050	3	7652632	7661288
VIT_03s0091g01060	3	7673917	7675754
VIT_03s0091g01080	3	7693399	7695038
VIT_03s0091g01090	3	7704746	7705934
VIT_03s0091g01100	3	7710736	7711700
VIT_03s0091g01110	3	7716202	7726782
VIT_03s0091g01120	3	7739421	7740245
VIT_03s0091g01130	3	7741682	7743818
VIT_03s0091g01140	3	7747402	7749276
VIT_03s0091g01150	3	7759653	7762665
VIT_03s0091g01160	3	7771297	7771879
VIT_03s0091g01170	3	7813667	7815342
VIT_03s0091g01180	3	7826669	7826884
VIT_03s0091g01190	3	7831919	7853120
VIT_03s0091g01200	3	7855565	7861870
VIT_03s0091g01220	3	7888986	7890085
VIT_03s0091g01230	3	7890272	7892417
VIT_03s0091g01240	3	7903958	7907570
VI			

DNA polymerase kappa subunit Adenylylsulfate kinase 1 (AKN1)

Endoxylanase
Endoxylanase
Endoxylanase
Zfwd2 protein (ZFWD2)
GRAM domain-containing protein / ABA-responsive
Zfwd2 protein (ZFWD2)
Endoxylanase
No hit
ADP-ribosylation factor-like A1D
Heat shock protein 70
LIM domain protein WLIM1
Unknown protein
Telomere repeat binding factor 1

No hit

Nucleobase-ascorbate transporter 4 (NAT4)
Cyclin delta-2
-aminocyclopropane-1-carboxylate oxidase
Unknown
Unknown protein
Meprin and TRAF homology domain-containing protein Meprin and TRAF homology domain-containing protein Meprin and TRAF homology domain-containing protein Meprin and TRAF homology domain-containing protein

Cleavage and polyadenylation specificity factor
No hit
Meprin and TRAF homology domain-containing protein
No hit
Magnesium transporter CorA
Sinapoylglucose:malate sinapoyltransferase (SNG1) Enhancer of mRNA-decapping protein 4
Enhancer of mRNA-decapping protein 4
Serine carboxypeptidase S10 / Anthocyanin Acyl-transferase

VIT_03s0091g01260	3	7918875	7934080
VIT_03s0091g01270	3	7935398	7938767
VIT_03s0091g01280	3	7942831	7944961
VIT_03s0091g01290	3	7951175	7955690
VIT_03s0088g00010	3	7987351	7989378
VIT_03s0088g00030	3	8005949	8006486
VIT_03s0088g00040	3	8018981	8020373
VIT_03s0088g00050	3	8035215	8039037
VIT_03s0088g00060	3	8069862	8072808
VIT_03s0088g00070	3	8084352	8086688
VIT_03s0088g00100	3	8122234	8124112
VIT_03s0088g00110	3	8141417	8145242
VIT_03s0088g00140	3	8186019	8188472
VIT_03s0088g00150	3	8193838	8194272
VIT_03s0088g00160	3	8195668	8197771
VIT_03s0088g00170	3	8209417	8210614
VIT_03s0088g00180	3	8212188	8213029
VIT_03s0088g00190	3	8220525	8221777
VIT_03s0088g00200	3	8228928	8232449
VIT_03s0088g00210	3	8232628	8239401
VIT_03s0088g00220	3	8240353	8241018
VIT_03s0088g00230	3	8241019	8242075
VIT_03s0088g00240	3	8242076	8244718
VIT_03s0088g00250	3	8244719	8251952
VIT_03s0088g00260	3	8252549	8257129
VIT_03s0088g00270	3	8267214	8267760
VIT_03s0088g00280	3	8281268	8302843
VIT_03s0088g00290	3	8315170	8315924
VIT_03s0088g00300	3	8320984	8322831
VIT_03s0088g00310	3	8329921	8335645
VIT_03s0088g00320	3	8343365	8347681
VIT_03s0088g00330	3	8350297	8352177
VIT_03s0088g00340	3	8371381	8372242
VIT_03s0088g00350	3	8374871	8376359
VIT_03s0088g00370	3	8403058	8408371
VIT_03s0088g00380	3	8412010	8414515

sinapoylglucose-choline O-sinapoyltransferase
No hit
Serine carboxypeptidase S10
Concanavalin A lectin
Serine carboxypeptidase-like 6 Concanavalin A lectin
Serine carboxypeptitase 1 Isoflavone reductase

No hit
Concanavalin A lectin
Serine carboxypeptidase SCPL17
Isoflavone reductase protein 2 Serine carboxypeptidase SCPL17 Serine carboxypeptidase SCPL17 Brassinosteroid insensitive 1-associated receptor kinase 1 No hit
Brassinosteroid insensitive 1-associated receptor kinase 1
Unknown
STT3B (staurosporin and temperature sensitive 3-like B)
Replication factor A 1, rfa1
Replication protein A 70 kDa DNA-binding subunit
Replication protein A 70b
Isoflavone reductase
Serine carboxypeptidase S10
No hit
Ribosomal RNA small subunit methyltransferase E
Phytosulfokines PSK2
Unknown
No hit
Peptidase M50 F-box protein 7

No hit
Unknown
Unknown protein
Tubulin alpha

VIT_03s0088g00390	3	8414516	8423780
VIT_03s0088g00400	3	8427000	8430780
VIT_03s0088g00410	3	8432142	8436432
VIT_03s0088g00420	3	8443429	8445079
VIT_03s0088g00450	3	8486720	8618518
VIT_03s0088g00460	3	8630875	8631169
VIT_03s0088g00470	3	8631326	8631646
VIT_03s0088g00490	3	8653859	8658460
VIT_03s0088g00500	3	8660759	8679489
VIT_03s0088g00510	3	8696026	8697570
VIT_03s0088g00540	3	8736929	8743307
VIT_03s0088g00550	3	8744237	8744878
VIT_03s0088g00560	3	8763759	8765911
VIT_03s0088g00570	3	8766129	8766881
VIT_03s0088g00590	3	8776002	8776646
VIT_03s0088g00600	3	8793246	8793890
VIT_03s0088g00610	3	8820035	8820694
VIT_03s0088g00620	3	8825504	8827218
VIT_03s0088g00630	3	8828264	8830122
VIT_03s0088g00650	3	8842942	8844322
VIT_03s0088g00680	3	8883856	8884465
VIT_03s0088g00690	3	8895244	8909155
VIT_03s0088g00700	3	8911524	8912111
VIT_03s0088g00710	3	8916223	8916893
VIT_03s0088g00720	3	8923838	8924209
VIT_03s0088g00730	3	8927274	8927983
VIT_03s0088g00750	3	8949588	8950233
VIT_03s0088g00760	3	8955534	8962261
VIT_03s0088g00780	3	8986184	8986955
VIT_03s0088g00810	3	9044529	9045211
VIT_03s0088g00820	3	9050245	9055257
VIT_03s0088g00840	3	9072903	9073766
VIT_03s0088g00860	3	9080159	9081145
VIT_03s0088g00880	3	9083004	9083780
VIT_03s0088g00890	3	9101007	9101495
VIT_03s0088g00900	3	9106967	9110222

DnaJ homolog, subfamily C, member 17
Tubulin alpha-6 chain
Pyruvate kinase isozyme A, chloroplast precursor Gag-pol polyprotein FKBP12-rapamycin complex-associated protein

Angustifolia
Auxin responsive SAUR protein
Unknown
TRNA synthetase class II (D, K and N)
hypothetical MADS-box type 1 alpha 1b (VviMADS1A1b)
No hit
putative MADS-box type 1 alpha 1a (VviMADS1A1a) Citrate synthase
Glutamine synthetase B1 GLB1
hypothetical MADS-box type 1 alpha 1 g (VviMADS1A1g) putative MADS-box type 1 alpha 1c (VviMADS1A1c) hypothetical MADS-box type 1 alpha 1 f (VviMADS1A1f)

Stress-induced
Unknown protein
Xyloglucan:xyloglucosyl transferase Pathogenesis-related protein 1 precursor (PRP 1) Pathogenesis-related protein 1 precursor (PRP 1) Pathogenesis related protein 1 precursor (pr1 gene) Pathogenesis-related protein 1 precursor (PRP 1) Pathogenesis-related protein 1 precursor (PRP 1)

Methionine sulfoxide reductase Pathogenesis related protein 1 precursor [Vitis vinifera]

No hit
Pathogenesis-related protein 1 precursor (PRP 1) Pathogenesis-related protein 1 precursor (PRP 1)

Unknown
No hit
Lectin-like receptor kinase Kinase
Pathogenesis related protein 1 precursor [Vitis vinifera]
Pathogenesis-related protein 1B

VIT_03s0088g00910	3	9119915	9130668
VIT_03s0088g00920	3	9145287	9145858
VIT_03s0088g00930	3	9146189	9147403
VIT_03s0088g00940	3	9150089	9150575
VIT_03s0088g00950	3	9153293	9162432
VIT_03s0088g00960	3	9168413	9182543
VIT_03s0088g00970	3	9190121	9193027
VIT_03s0088g00980	3	9205881	9213548
VIT_03s0088g00990	3	9216064	9223316
VIT_03s0088g01000	3	9223670	9231652
VIT_03s0088g01030	3	9249737	9251605
VIT_03s0088g01040	3	9270928	9285459
VIT_03s0088g01050	3	9286043	9295905
VIT_03s0088g01060	3	9296849	9309519
VIT_03s0088g01070	3	9310070	9311966
VIT_03s0088g01080	3	9311967	9314129
VIT_03s0088g01090	3	9340156	9341562
VIT_03s0088g01100	3	9342100	9347312
VIT_03s0088g01130	3	9373663	9376242
VIT_03s0088g01140	3	9385888	9388788
VIT_03s0088g01150	3	9394421	9397946
VIT_03s0088g01160	3	9408764	9412394
VIT_03s0088g01170	3	9414656	9433536
VIT_03s0088g01180	3	9438885	9442060
VIT_03s0088g01190	3	9452241	9454982
VIT_03s0088g01200	3	9455172	9457915
VIT_03s0088g01220	3	9506440	9508439
VIT_03s0088g01240	3	9525109	9527109
VIT_03s0088g01250	3	9538993	9552353
VIT_03s0088g01260	3	9553280	9614184
VIT_03s0088g01270	3	9672111	9672900
VIT_03s0088g01280	3	9675335	9678621
VIT_03s0088g01290	3	9698489	9706945
VIT_03s0088g01300	3	9707224	9708876
VIT_00s0282g00060	3	9723604	9724492
VIT_00s0282g00050	3	9731330	9732112

Pathogenesis related protein 1 precursor [Vitis vinifera]
Unknown
Zinc finger (C3HC4-type ring finger) Pathogenesis-related protein 1 precursor (PRP 1)

Unknown protein
Unknown protein
No hit
Unknown protein
Metal transporter CNNM4 (Cyclin-M4) Unknown protein

No hit Aminotransferase AGD2
Transposon protein, Mutator sub-class Aminotransferase AGD2 Mutator-like transposase

No hit
Zinc finger (C3HC4-type ring finger) Leaf senescence related protein-like EMB2758 (embryo defective 2758)

Squalene monooxygenase 2
Squalene monooxygenase
Unknown protein
Proline iminopeptidase Proline iminopeptidase
Malate dehydrogenase, glyoxysomal precursor
Unknown protein
Unknown protein
basic helix-loop-helix (bHLH) family
D-threo-aldose 1-dehydrogenase TIP growth defective 1

No hit
No hit
Inorganic pyrophosphatase
No hit
No hit
Separase

VIT_00s0282g00040	3	9752559	9770979	Major facilitator superfamily protein (MFS) Spinster
VIT_00s0282g00030	3	9781570	9797118	Leaf senescence protein
VIT_00s0282g00020	3	9805549	9820005	K+ efflux antiporter (KEA3)
VIT_00s0282g00010	3	9821313	9827537	Methionine sulfoxide reductase
VIT_03s0097g00010	3	9843656	9843781	No hit
VIT_03s0097g00030	3	9871902	9873992	Concanavalin A lectin
VIT_03s0097g00040	3	9876165	9877081	No hit
VIT_03s0097g00060	3	9887464	9888181	Arginine-tRNA-protein transferase 1
VIT_03s0097g00070	3	9889442	9890273	Lectin protein kinase
VIT_03s0097g00080	3	9894840	9900035	Lectin protein kinase
VIT_03s0097g00090	3	9909044	9909574	Lectin protein kinase
VIT_03s0097g00110	3	9958876	9960414	Concanavalin A lectin
VIT_03s0097g00120	3	9991550	9993565	Concanavalin A lectin
VIT_03s0097g00130	3	10022997	10024832	Concanavalin A lectin
VIT_03s0097g00140	3	10025188	10025953	No hit
VIT_03s0097g00160	3	10121969	10123630	putative MADS-box Agamous-like 17b (VviAGL17b)
VIT_03s0097g00210	3	10224330	10224440	No hit
VIT_03s0097g00220	3	10252090	10253094	1,4-beta-mannan endohydrolase
VIT_03s0097g00230	3	10258196	10258417	No hit
VIT_03s0097g00240	3	10269562	10272060	No hit
VIT_03s0097g00250	3	10282948	10283841	No hit
VIT_03s0097g00280	3	10349623	10350180	Unknown protein
VIT_03s0097g00290	3	10361093	10362571	Unknown
VIT_03s0097g00300	3	10363405	10365027	Myosin-like protein XIK
VIT_03s0097g00330	3	10451345	10452028	No hit
VIT_03s0097g00340	3	10470864	10472031	Monofunctional aspartokinase
VIT_03s0097g00350	3	10472994	10475771	Myosin-like protein XIK
VIT_03s0097g00360	3	10534330	10535472	No hit
VIT_03s0097g00370	3	10558884	10559186	No hit
VIT_03s0097g00380	3	10665097	10666177	Monofunctional aspartokinase
VIT_03s0097g00390	3	10666726	10676862	Unknown protein
VIT_03s0097g00400	3	10714440	10714920	No hit
VIT_03s0097g00410	3	10717626	10717748	No hit
VIT_03s0097g00450	3	10822230	10823579	No hit
VIT_03s0097g00460	3	10833705	10835724	Geraniol 10-hydroxylase

VIT_05s0029g00990 5 1707179217090213 VIT_05s0029g01000 $\quad 5 \quad 17106964 \quad 17111001$ $\begin{array}{lllll}\text { VIT_05s0029g01030 } & 5 & 17241274 & 17241571\end{array}$ VIT_05s0029g01040 $5 \quad 1724158217243823$ $\begin{array}{lllll}\text { VIT_05s0029g01050 } & 5 & 17254865 & 17255236\end{array}$ $\begin{array}{lllll}\text { VIT_05s0029g01060 } & 5 & 17287266 & 17288837\end{array}$ VIT_05s0029g01070 $5 \quad 17290076 \quad 17305071$ VIT_05s0029g01080 $5 \quad 17305146 \quad 17321891$ VIT_05s0029g01090 5 5 $17330068 \quad 17349574$ $\begin{array}{lllll}\text { VIT_05s } 0029 \mathrm{~g} 01100 & 5 & 17352483 & 17364242\end{array}$ VIT_05s0029g01110 $5 \quad 1738065317382173$ VIT_05s0029g01120 $5 \quad 17387012 \quad 17388607$ $\begin{array}{lllll}\text { VIT_05s } 0029 \mathrm{~g} 01130 & 5 & 17397255 & 17402916\end{array}$ $\begin{array}{lllll}\text { VIT_05s0029g01140 } & 5 & 17405622 & 17411752\end{array}$ VIT_05s0029g01150 $5 \quad 17421093 \quad 17421226$ VIT_05s0029g01160 501742122717421628 VIT_05s0029g01180 5 VIT_05s0029g01200 $5 \quad 1748177317510650$ VIT_05s0029g01210 $5 \quad 17512328 \quad 17526686$ $\begin{array}{lllll}\text { VIT_-05s } 0029 \mathrm{~g} 01220 & 5 & 17527161 & 17548530\end{array}$ $\begin{array}{lllll}\text { VIT_05s0029g01230 } & 5 & 17566105 & 17570227\end{array}$ $\begin{array}{lllll}\text { VIT_05s0029g01240 } & 5 & 17581401 & 17589938\end{array}$ $\begin{array}{lllll}\text { VIT_05s0029g01260 } & 5 & 17601845 & 17608169\end{array}$ VIT_05s0029g01270 5 VIT_05s0029g01280 5 VIT_05s0029g01290 $5 \quad 17661362 \quad 17667411$ VIT_-05s0029g01300 5 $\begin{array}{lllll}\text { VIT_05s0029g01310 } & 5 & 17672690 & 17691790\end{array}$ VIT_05s0029g01340 $5 \quad 17729528 \quad 17779782$ VIT_05s0029g01350 501778068317808865 $\begin{array}{lllll}\text { VIT_05s } 0029 \mathrm{~g} 01360 & 5 & 17816849 & 17817058\end{array}$ VIT_05s0029g01370 $5 \quad 1781823717852241$ VIT_05s0029g01380 $5 \quad 1786545017890042$

Tripeptidyl-peptidase 2
No hit
Tripeptidyl-peptidase 2 HcrVf3 protein Aspartate aminotransferase Aspartate aminotransferase

No hit
ATELC/ELC
Ribosome biogenesis protein Bms1 Ribosome biogenesis protein Bms1

Alpha 1,3-glucosidase
RNA recognition motif (RRM)-containing protein
Unknown protein
WD-repeat protein
Pentatricopeptide (PPR) repeat-containing protein
Sucrose-phosphate synthase
Elongation factor 1-alpha 1
Elongation factor 1-alpha 1
Unknown
Methionyl-tRNA synthetase
Alkaline phytoceramidase Unknown protein
Unknown protein
Unknown protein
Unknown protein
Unknown protein
Unknown protein
Aspartic protease
MAGE (melanoma antigen-encoding gene) Actin related protein $2 / 3$ complex, subunit 4 Auxin-independent growth promoter (axi 1) RabGAP/TBC domain-containing protein

No hit
Ubiquitin-associated (UBA)
UV radiation resistance associated

VIT_05s0029g01390	5	17892783	17894587
VIT_05s0029g01410	5	17910253	17910654
VIT_05s0029g01420	5	17958264	17962588
VIT_05s0029g01430	5	17962589	17980463
VIT_05s0029g01440	5	17982084	17983215
VIT_05s0029g01450	5	17991431	17992219
VIT_05s0029g01460	5	17997058	18001928
VIT_05s0029g01470	5	18038062	18038862
VIT_05s0029g01480	5	18039108	18041182
VIT_05s0029g01490	5	18051810	18062080
VIT_05s0029g01500	5	18083541	18084599
VIT_05s0029g01510	5	18145463	18145669
VIT_05s0029g01520	5	18164134	18166380
VIT_05s0029g01530	5	18176485	18176941
VIT_05s0029g01540	5	18204070	18207297
VIT_05s0029g01570	5	18305556	18306917
VIT_05s0029g01580	5	18309911	18310471
VIT_05s0062g00010	5	18385412	18406790
VIT_05s0062g00020	5	18414218	18419262
VIT_05s0062g00050	5	18586887	18587566
VIT_05s0062g00060	5	18595309	18596094
VIT_05s0062g00110	5	18634743	18638371
VIT_05s0062g00120	5	18674775	18679369
VIT_05s0062g00130	5	18682670	18707735
VIT_05s0062g00140	5	18711528	18719113
VIT_05s0062g00150	5	18721220	18732785
VIT_05s0062g00160	5	18735084	18743648
VIT_05s0062g00200	5	18783093	18784137
VIT_05s0062g00210	5	18784791	18791811
VIT_05s0062g00220	5	18792041	18801353
VIT_05s0062g00240	5	18818659	18820264
VIT_05s0062g00250	5	18831568	18833016
VIT_05s0062g00260	5	18834498	18839309
VIT_05s0062g00270	5	18843664	18845204
VIT_05s0062g00300	5	18872492	18879621
VIT_05s0062g00310	5	18881653	18883335

[^0]| | | | |
| :--- | :--- | :--- | :--- |
| VIT_05s0062g00320 | 5 | 18886880 | 18887014 |
| VIT_05s0062g00340 | 5 | 18889800 | 18892378 |
| VIT_05s0062g00350 | 5 | 18895153 | 18896550 |
| VIT_05s0062g00360 | 5 | 18899918 | 18901613 |
| VIT_05s0062g00370 | 5 | 18920244 | 18920915 |
| VIT_05s0062g00400 | 5 | 18966256 | 18968160 |
| VIT_05s0062g00410 | 5 | 18968252 | 18970326 |
| VIT_05s0062g00430 | 5 | 18991958 | 18993513 |
| VIT_05s0062g00450 | 5 | 19023771 | 19025352 |
| VIT_05s0062g00460 | 5 | 19027377 | 19028774 |
| VIT_05s0062g00470 | 5 | 19035904 | 19037295 |
| VIT_05s0062g00480 | 5 | 19056125 | 19057777 |
| VIT_05s0062g00490 | 5 | 19060743 | 19062243 |
| VIT_05s 0062 g 00500 | 5 | 19065380 | 19066637 |
| VIT_05s0062g00510 | 5 | 19074901 | 19075119 |
| VIT_05s 0062 g 00520 | 5 | 19088785 | 19090792 |
| VIT_05s0062g00560 | 5 | 19149824 | 19158516 |
| VIT_05s0062g00570 | 5 | 19171107 | 19175569 |
| VIT_05s0062g00590 | 5 | 19182683 | 19184074 |
| VIT_05s0062g00610 | 5 | 19193950 | 19195592 |
| VIT_05s 0062 g 00620 | 5 | 19200908 | 19216029 |
| VIT_05s0062g00630 | 5 | 19226293 | 19228218 |
| VIT_05s0062g00640 | 5 | 19275169 | 19276859 |
| VIT_05s0062g00650 | 5 | 19303220 | 19312340 |
| VIT_05s0062g00660 | 5 | 19312821 | 19313569 |
| VIT_05s0062g00670 | 5 | 19328962 | 19334904 |
| VIT_05s0062g00680 | 5 | 19337594 | 19340715 |
| VIT_05s0062g00690 | 5 | 19347255 | 19348250 |
| VIT_05s0062g00700 | 5 | 19355732 | 19357242 |
| VIT_05s0062g00710 | 5 | 19377833 | 19379259 |
| VIT_05s0062g00720 | 5 | 19413520 | 19414986 |
| VIT_05s0062g00730 | 5 | 19415117 | 19418358 |
| VIT_05s0062g00740 | 5 | 19421537 | 19423163 |
| VIT_05s0062g00760 | 5 | 19469712 | 19473848 |
| VIT_05s 0062 g 00770 | 5 | 19490732 | 19492576 |
| VIT_05s0062g00780 | 5 | 19498492 | 19500009 |
| | | | |

No hit
UDP-glucose:flavonoid 7-O-glucosyltransferase
UDP-glucose:flavonoid 7-O-glucosyltransferase
UDP-glucose:flavonoid 7-O-glucosyltransferase
No hit
Indole-3-acetate beta-glucosyltransferase 1
No hit
UDP-glucose:flavonoid 7-O-glucosyltransferase
No hit
UDP-glucose:flavonoid 7-O-glucosyltransferase
UDP-glucose:flavonoid 7-O-glucosyltransferase
Xyloglucan endo-transglycosylase, C-terminal
No hit
No hit
Unknown
UDP-glucose:flavonoid 7-O-glucosyltransferase
No hit
UDP-glucose:flavonoid 7-O-glucosyltransferase
UDP-glucose:flavonoid 7-O-glucosyltransferase
Xyloglucan endotransglucosylase/hydrolase 23
Unknown
UDP-glucose transferase (UGT75B2)
UDP-glucose:flavonoid 7-O-glucosyltransferase
No hit
UDP-glucose:flavonoid 7-O-glucosyltransferase
No hit
Maturase
Heat shock protein 81-2 (HSP81-2)
UDP-glucose:flavonoid 7-O-glucosyltransferase
UDP-glucose:flavonoid 7-O-glucosyltransferase
UDP-glucoronosyl/UDP-glucosyl transferase UGT75C1
No hit
UDP-glucoronosyl/UDP-glucosyl transferase UGT75C1 Receptor kinase RHG4

Beta-1,3-glucanase
Rho GDP-dissociation inhibitor 2

	VIT_05s0062g00790	5	19501484	19509384	NSL1 (necrotic spotted lesions 1)
	VIT_05s0062g00800	5	19530733	19532850	No hit
	VIT 05s0062g00810	5	19532960	19534168	Lipoprotein
pheno_7_1	VIT_07s0151g00020	7	1111699	1112960	Ankyrin
	VIT_07s0151g00030	7	1116653	1117940	Ankyrin
	VIT_07s0151g00070	7	1121621	1122629	Ankyrin
	VIT_07s0151g00080	7	1124567	1125468	Ankyrin
	VIT_07s0151g00100	7	1127267	1139316	Ankyrin
	VIT_07s0151g00110	7	1143815	1145064	Chlorophyllase 1
	VIT_07s0151g00130	7	1150474	1152362	Chlorophyllase 1
	VIT_07s0151g00150	7	1156509	1163510	Ankyrin
	VIT_07s0151g00170	7	1164369	1165503	Ankyrin
	VIT_07s0151g00180	7	1168055	1169359	Ankyrin
	VIT_07s0151g00190	7	1171172	1172409	Chlorophyllase 1
	VIT_07s0151g00210	7	1176483	1178421	Chlorophyllase 1
	VIT_07s0151g00220	7	1180875	1191846	Ankyrin
	VIT_07s0151g00240	7	1194385	1195514	Ankyrin
	VIT_07s0151g00250	7	1197507	1198777	Chlorophyllase
	VIT_07s0151g00270	7	1206559	1206948	Chlorophyllase 1
	VIT_07s0151g00280	7	1223073	1225810	Bax inhibitor
	VIT_07s0151g00290	7	1226423	1230024	Unknown protein
	VIT_07s0151g00300	7	1231259	1234402	Unknown protein
	VIT_07s0151g00310	7	1234739	1241465	NIMA protein kinase NEK1
	VIT_07s0151g00340	7	1264579	1270254	Sulfate transporter 3.1 (AST12) (AtST1)
	VIT_07s0151g00360	7	1272684	1275182	Unknown protein
	VIT_07s0151g00370	7	1276735	1277605	Kinase interacting
	VIT_07s0151g00390	7	1284716	1284960	Ribosomal protein S14 30S
	VIT_07s0151g00410	7	1288652	1294516	Sulfate transporter 3.1 (AST12) (AtST1)
	VIT_07s0151g00430	7	1295689	1305019	Kinase interacting family protein
	VIT_07s0151g00460	7	1313821	1325350	3-methylcrotonyl-CoA carboxylase
	VIT_07s0151g00500	7	1326958	1332156	MLK/Raf-related protein kinase 1
	VIT_07s0151g00520	7	1334807	1343225	Homocysteine S-methyltransferase 3
	VIT_07s0151g00530	7	1344129	1346891	Unknown protein
	VIT_07s0151g00550	7	1350567	1353627	BUD32 family protein kinase
	VIT_07s0151g00570	7	1356706	1357645	OB-fold nucleic acid binding domain containing protein
	VIT_07s0151g00590	7	1363622	1368249	Inositol-1,4,5-trisphosphate 5-phosphatase CVP2, type I

	VIT_07s0151g00610	7	1386497	1394126
	VIT_07s0151g00620	7	1402324	1404679
	VIT_07s0151g00630	7	1405392	1407468
	VIT_07s0151g00640	7	1408097	1410570
	VIT_07s0151g00660	7	1411745	1415073
	VIT_07s0151g00670	7	1415670	1416297
	VIT_07s0151g00690	7	1417935	1421821
	VIT_07s0151g00700	7	1422111	1423298
	VIT_07s0151g00720	7	1424054	1424497
	VIT_07s0151g00730	7	1428488	1429004
	VIT_07s0151g00740	7	1430006	1434168
	VIT_07s0151g00760	7	1435365	1436689
	VIT_07s0151g00770	7	1437817	1442530
	VIT_07s0151g00790	7	1443772	1448869
	VIT_07s0151g00800	7	1454149	1456559
	VIT_07s0151g00810	7	1459489	1462135
	VIT_07s0151g00830	7	1467714	1468455
	VIT_07s0151g00840	7	1469525	1471546
	VIT_07s0151g00850	7	1475572	1476564
	VIT_07s0151g00870	7	1478086	1496830
	VIT_07s0151g00900	7	1499105	1501968
	VIT_07s0151g00910	7	1507287	1509238
	VIT_07s0151g00930	7	1535022	1535998
	VIT_07s0151g00950	7	1540668	1543574
	VIT_07s0151g00960	7	1545126	1547795
	VIT_07s0151g00970	7	1548436	1560633
pheno_11_1	VIT_11s0016g03590	11	2932300	2940485
	VIT_11s0016g03600	11	2943205	2945209
	VIT_11s0016g03610	11	2948392	2950502
	VIT_11s0016g03630	11	2964436	2968009
	VIT_11s0016g03640	11	2972017	2974625
	VIT_11s0016g03650	11	2976690	2979682
	VIT_11s0016g03660	11	2982086	2991775
	VIT_11s0016g03670	11	2994483	3005396
	VIT_11s0016g03680	11	3008220	3017923
	VIT 11s0016g03690	11	3021953	3031545

Pentatricopeptide (PPR) repeat-containing protein
Globulin-1 S allele precursor
Globulin-1 S allele precursor
Ribosomal protein L24 (At5g23535) 50S
No hit
Proteasome 20S beta subunit D (PBD1) (PRGB)
EDA4 (embryo sac development arrest 4)
Lipid transfer protein
Unknown
Non-specific lipid-transfer protein
Lipid transfer protein
Kelch repeat-containing F-box protein Transducin family protein / WD-40 repeat

Unknown
Unknown protein HSP20 chaperone
Late embryogenesis abundant protein D-34 (LEA D-34)
Unknown
PHD finger transcription factor
Ribosomal protein S24 (RPS24A) 40S
Unknown
Unknown protein
Unknown protein
WD repeat domain 5
F-box protein
Proton-dependent oligopeptide transport (POT) family protein Proton-dependent oligopeptide transport (POT) family protein Peroxiredoxin-5
Rac-like GTP-binding protein ARAC7 (GTPase protein ROP9)
CDKF; 1 (CDK-activating kinase 1A Glucose transporter 2 plastidic Zinc finger (Ran-binding)
Tesmin/TSO1-like CXC domain-containing
Peroxisomal fatty acid beta-oxidation multifunctional protein (aim1)

VIT_11s0016g03700	11	3037438	3043744
VIT_11s0016g03710	11	3044618	3049139
VIT_11s0016g03720	11	3049799	3055105
VIT_11s0016g03730	11	3057394	3057525
VIT_11s0016g03740	11	3057526	3060476
VIT_11s0016g03750	11	3061340	3072065
VIT_11s0016g03760	11	3079092	3081830
VIT_11s0016g03770	11	3082194	3082576
VIT_11s0016g03780	11	3088819	3105779
VIT_11s0016g03790	11	3107842	3108617
VIT_11s0016g03800	11	3108853	3113767
VIT_11s0016g03810	11	3121899	3123934
VIT_11s0016g03820	11	3124371	3128849
VIT_11s0016g03830	11	3130738	3133954
VIT_11s0016g03840	11	3134022	3136115
VIT_11s0016g03850	11	3138660	3143394
VIT_11s0016g03860	11	3143481	3153202
VIT_11s0016g03870	11	3153879	3162165
VIT_11s0016g03880	11	3163900	3169609
VIT_11s0016g03890	11	3174051	3179257
VIT_11s0016g03900	11	3182349	3186809
VIT_11s0016g03910	11	3186960	3190875
VIT_11s0016g03920	11	3191384	3193086
VIT_11s0016g03930	11	3213014	3215223
VIT_11s0016g03940	11	3224068	3225265
VIT_11s0016g03950	11	3234837	3236255
VIT_11s0016g03960	11	3236395	3243211
VIT_11s0016g03970	11	3245946	3247926
VIT_11s0016g03980	11	3249496	3250787
VIT_11s0016g03990	11	3251962	3254889
VIT_11s0016g04000	11	3255776	3256586
VIT_11s0016g04010	11	3263191	3268784
VIT_11s0016g04020	11	3271684	3276160
VIT_11s0016g04030	11	3276161	3276314
VIT_11s0016g04040	11	3289562	3294574
VIT_11s0016g04050	11	3298356	3299653

Pentatricopeptide (PPR) repeat-containing protein
Abl interactor protein 1 (ABIL1)
Aspartate aminotransferase, cytoplasmic (Transaminase A)

No hit

Rho guanyl-nucleotide exchange factor ROPGEF8 Myb-related protein 3R-1 (Plant c-MYB-like protein 1) MYB3R1 Unknown protein
Dynein light chain LC6, flagellar outer arm Continuous vascular ring (COV1)

Unknown protein
Signal peptidase I
Protein kinase

No hit

Peroxisomal membrane 22 kDa
Raspberry 3 Subtilisin
Receptor protein kinase PERK1
Short-chain dehydrogenase/reductase (SDR)
AAA-type ATPase
Unknown protein
Polyol transporter 5
Dimethylaniline monooxygenase, N -oxide-forming
Heat shock transcription factor C1
Dehydration-responsive protein (RD22)
Kinesin family member 2/24
Ubiquitin-conjugating enzyme E2 D/E
Unknown protein
R protein PRF disease resistance protein
Unknown protein
Unknown protein
Ras-related protein Rab-5A
No hit
Unknown protein
No hit

	VIT_11s0016g04060	11	3306255	3323305	MUT9-related serine/threonine protein kinase
	VIT_11s0016g04070	11	3329915	3336836	Hydroxyproline-rich glycoprotein
	VIT_11s0016g04080	11	3340651	3341251	Multiprotein-bridging factor 1c MBF1C
	VIT_11s0016g04090	11	3341776	3358113	DNA repair protein MutS
pheno_12_1	VIT_12s0035g01900	12	23792777	23795385	Pectinesterase family
	VIT_12s0035g01910	12	23795440	23796622	Heat shock protein 18.2 kDa class II
	VIT_12s0035g01920	12	23807633	23823774	Methionine S-methyltransferase
	VIT_12s0035g01930	12	23823775	23826921	No hit
	VIT_12s0035g01940	12	23827787	23828051	Unknown protein
	VIT_12s0035g01950	12	23830296	23836655	4-diphosphocytidyl-2-C-methyl-D-erythritol synthase
	VIT_12s0035g01960	12	23837408	23847527	Stichel
	VIT_12s0035g01970	12	23852741	23854836	Pentatricopeptide (PPR) repeat-containing
	VIT_12s0035g01980	12	23855859	23862754	PHD finger protein alfin
	VIT_12s0035g01990	12	23866171	23877161	Intron maturase, type II
	VIT_12s0035g02000	12	23879356	23879778	Arachidonic acid-induced protein DEA1
	VIT_12s0035g02010	12	23888449	23889619	Ribosomal RNA 23S
	VIT_12s0035g02020	12	23896510	23899220	NAC domain-containing protein (VvNAC40)
	VIT_12s0035g02030	12	23915422	23924545	Unknown protein
	VIT_12s0035g02040	12	23925751	23927332	No hit
	VIT_12s0035g02060	12	23949395	23955283	Methionine S-methyltransferase
	VIT_12s0035g02070	12	23964667	23970073	Cinnamoyl-CoA reductase
	VIT_12s0035g02080	12	23970815	23972655	Unknown protein
	VIT_12s0035g02090	12	23983677	23999372	Leucine-rich repeat family protein
	VIT_12s0035g02100	12	24024790	24027813	Glutathione S-transferase Z1 GSTZ1
	VIT_12s0035g02110	12	24028288	24038974	Glutathione S-transferase Z1 GSTZ1
	VIT_12s0035g02120	12	24046092	24050103	Unknown
	VIT_12s0035g02150	12	24097742	24106206	ferric reduction oxidase 7 FRO7
	VIT_12s0035g02160	12	24122892	24125541	No hit
	VIT_12s0035g02170	12	24125542	24127807	No hit
	VIT_12s0035g02180	12	24145254	24150267	Endo-1,4-beta-glucanase
	VIT 12s0035g02190	12	24151051	24158793	MLO-like protein 13
pheno_14_1	VIT_14s0083g00390	14	22431591	22456772	Calcium exchanger
	VIT_14s0083g00400	14	22465090	22468501	Leaf senescence protein
	VIT_14s0083g00410	14	22474094	22475171	Unknown
	VIT_14s0083g00420	14	22498682	22502947	TRN2 (TORNADO 2)

VIT_14s0083g00430	14	22507642	22508026
VIT_14s0083g00440	14	22511577	22526125
VIT_14s0083g00450	14	22528546	22535692
VIT_14s0083g00460	14	22547153	22550143
VIT_14s0083g00470	14	22556235	22557761
VIT_14s0083g00480	14	22557762	22560665
VIT_14s0083g00490	14	22560666	22560982
VIT_14s0083g00500	14	22560983	22561672
VIT_14s0083g00510	14	22562747	22563358
VIT_14s0083g00520	14	22568746	22570772
VIT_14s0083g00530	14	22581005	22585214
VIT_14s0083g00540	14	22586239	22598780
VIT_14s0083g00550	14	22600241	22604340
VIT_14s0083g00570	14	22609625	22614966
VIT_14s0083g00580	14	22620849	22623743
VIT_14s0083g00590	14	22625232	22637079
VIT_14s0083g00600	14	22639538	22640532
VIT_14s0083g00610	14	22649341	22651396
VIT_14s0083g00620	14	22672469	22675655
VIT_14s0083g00630	14	22677598	22687861
VIT_14s0083g00640	14	22696160	22698346
VIT_14s0083g00650	14	22700284	22702204
VIT_14s0083g00660	14	22712276	22717744
VIT_14s0083g00670	14	22722348	22722787
VIT_14s0083g00680	14	22768564	22768923
VIT_14s0083g00690	14	22797698	22802306
VIT_14s0083g00700	14	22839619	22840360
VIT_14s0083g00710	14	22855118	22856402
VIT_14s0083g00720	14	22862598	22865888
VIT_14s0083g00730	14	22866088	22869527
VIT_14s0083g00740	14	22886669	22892408
VIT_14s0083g00750	14	22893111	22952397
VIT_14s0083g00760	14	22952398	22953336
VIT_14s0083g00770	14	22957850	22959392
VIT_14s0083g00780	14	22961013	22976952
VIT 14s0083g00790	14	22977589	22994438

PHD finger transcription factor
Protein kinase PKN/PRK1, effector
Tryptophan synthase beta chain 2
2,3-biphosphoglycerate-independent phosphoglycerate mutase
2,3-biphosphoglycerate-independent phosphoglycerate mutase
Phosphoglycerate mutase
No hit
No hit
Proline oxidase
Cell division protein FtsH Plant adhesion molecule 1 (PAM1) Pentatricopeptide (PPR) repeat-containing Plant adhesion molecule 1 (PAM1)
S-adenosyl-L-methionine decarboxylase Ribosomal RNA-processing protein 7

Unknown
Pentatricopeptide (PPR) repeat-containing protein
NIK1 (NSP- interacting kinase 1)
F-box domain containing protein
Constans 2 (COL2)
No hit
Aspartic-type endopeptidase
No hit
No hit
Glycosyl transferase family 8 protein Basic Leucine Zipper Transcription Factor (VvbZIP39) Zinc finger (C3HC4-type ring finger) Pentatricopeptide (PPR) repeat-containing

Unknown protein
Amino acid permease
Unknown protein
No hit
Phytoene desaturase
Anion exchanger adaptor protein Kanadaptin
DNA-directed RNA polymerase

VIT_14s0083g00800	14	23001150	23005055
VIT_14s0083g00810	14	23017927	23019683
VIT_14s0083g00820	14	23022233	23026183
VIT_14s0083g00830	14	23043321	23046274
VIT_14s0083g00840	14	23047679	23050334
VIT_14s0083g00850	14	23056787	23058566
VIT_14s0083g00870	14	23073964	23082418
VIT_14s0083g00880	14	23082779	23088930
VIT_14s0083g00890	14	23094965	23095719
VIT_14s0083g00900	14	23095736	23096308
VIT_14s0083g00910	14	23106621	23115040
VIT_14s0083g00920	14	23121142	23123350
VIT_14s0083g00930	14	23125718	23136127
VIT_14s0083g00940	14	23137130	23143930
VIT_14s0083g00950	14	23153810	23160185
VIT_14s0083g00960	14	23160685	23194222
VIT_14s0083g00970	14	23215781	23219760
VIT_14s0083g00980	14	23255198	23256315
VIT_14s0083g00990	14	23257443	23277391
VIT_14s0083g01000	14	23286167	23293023
VIT_14s0083g01010	14	23295051	23298839
VIT_14s0083g01020	14	23306141	23319918
VIT_14s0083g01030	14	23320331	23341036
VIT_14s0083g01050	14	23363261	23379498
VIT_14s0083g01060	14	23384136	23385107
VIT_14s0083g01070	14	23391103	23396928
VIT_14s0083g01090	14	23416450	23425111
VIT_14s0083g01100	14	23425741	23428785
VIT_14s0083g01110	14	23435436	23438457
VIT_14s0083g01120	14	23456752	23469960
VIT_14s0083g01130	14	23470715	23473749
VIT_14s0083g01140	14	23478460	23480345
VIT_14s0083g01150	14	23524839	23527545
VIT_14s0083g01160	14	23527926	23532692
VIT_14s0083g01170	14	23552658	23569757
VIT_14s0083g01180	14	23573219	23576042
	14		

Esterase/lipase/thioesterase
F-box family protein
Lipase GDSL 7
Lipase GDSL 7
Lipase GDSL 7
Lipase GDSL 7
Nodulation receptor kinase
Phosphatidylinositol 4-kinase type-II Transport inhibitor response 1 protein

Aspartate aminotransferase
Auxin-independent growth promoter
No hit
BIM2 (BES1-interacting Myc-like protein 2) Auxin-independent growth promoter
U3 small nucleolar RNA-associated protein IMP3
Auxin transport protein (BIG)
Ribosomal protein L7A (RPL7aB) 60S
Pollen Ole e 1 allergen and extensin
IMP dehydrogenase
Zinc finger (C3HC4-type ring finger)
Protein disulfide oxidoreductase DSBA oxidoreductase
Regulator of chromosome condensation (RCC1) putative MADS-box Fruitfull 2 (VviFUL2) putative MADS-box sepallata 1 (VviSEP1)
myb domain protein 121
No hit
N2,N2-dimethylguanosine tRNA methyltransferase
Alpha-1,4-glucan-protein synthase 1 Brassinosteroid-6-oxidase MAP3K-like protein kinase, putative, expressed MAP3K-like protein kinase, putative, expressed

B12D
COBRA protein COBRA protein
Mitochondrial substrate carrier family protein
Unknown protein

14s0083g01190	14	23585947	23586226
VIT_14s0083g01200	14	23603520	23606026
VIT_14s0083g01210	14	23631468	23634185
VIT_14s0083g01220	14	23647671	23648618
VIT_14s0083g01230	14	23687371	23687925
VIT_14	14	23691896	23694505
VIT_14s0068g00020	14	23702632	23703602
VIT_14s0068g00030	14	23710282	23713253
VIT_14s0068g00040	14	23730955	23731566
VIT_14s0068g00050	14	23741203	23741804
VIT_14s0068g00060	14	23761143	23763198
VIT_14s0068g00070	14	23763889	23765688
VIT_14s0068g00080	14	23790042	23793197
VIT_14s0068g00090	14	23793482	23796203
VIT_14s0068g00100	14	23804737	23805618
VIT_14s0068g00110	14	23806944	23824202
VIT_14s0068g00120	14	2382420	23824397
VIT_14s0068g00130	14	23824529	23825866
VIT_14s0068g00140	14	23848301	23848892
VIT_14s0068g00150	14	23858719	23859396
VIT_14s0068g00160	14	23866963	23867506
VIT_14s0068g00170	14	23880217	23880588
VIT_14s0068g00190	14	23901133	23901667
VIT_14s0068g00200	14	23903015	23903642
VIT_14s0068g00210	14	23920911	23938861
VIT_14s0068g00220	14	23939286	23945038
VIT_14s0068g00230	14	23946758	23949751
VIT_14s0068g00240	14	23956348	23964987
VIT_14s0068g00250	14	23967557	23970244
VIT_14s0068g00260	14	23972158	23975509
VIT_14s0068g00270	14	23981569	23982426
VIT_14s0068g00280	14	23982459	23984970
VIT_14s0068g00290	14	23993049	23996736
VIT_14s0068g00300	14	23997514	24000870
VIT_14s0068g00310	14	24001531	24018716
VIT_14s0068g00320	14	24031909	2403194

S-adenosylmethionine synthetase 1 (SAM1)
Nitrilase
feronia receptor-like kinase feronia receptor-like kinase Heat shock protein 81-4 (HSP81-4) feronia receptor-like kinase

No hit
feronia receptor-like kinase
No hit
No hit
No hit
feronia receptor-like kinase
Non-symbiotic hemoglobin class 1 feronia receptor-like kinase feronia receptor-like kinase feronia receptor-like kinase feronia receptor-like kinase feronia receptor-like kinase

ABC Transporter (VvMDR16-VvABCB16)
Proteasome
Spiral 1 like 2
Rough sheath2-interacting KH-domain protein Exocyst subunit EXO70 E1 Serine carboxypeptidase S10
Hydroxyproline-rich glycoprotein
Unknown protein
RPK1 (receptor-like protein kinase 1)
ABRC5
Nuclear transport factor 2 (NTF2)
No hit

VIT_14s0068g00330	14	24046880	24048369
VIT_14s0068g00340	14	24058921	24060831
VIT_14s0068g00360	14	24075902	24080124
VIT_14s0068g00370	14	24080150	24081477
VIT_14s0068g00380	14	24088765	24091151
VIT_14s0068g00390	14	24101322	24107332
VIT_14s0068g00400	14	24127197	24145861
VIT_14s0068g00410	14	24150294	24158106
VIT_14s0068g00420	14	24160652	24204411
VIT_14s0068g00430	14	24208142	24215337
VIT_14s0068g00440	14	24220054	24221587
VIT_14s0068g00450	14	24222577	24224432
VIT_14s0068g00460	14	24225718	24227484
VIT_14s0068g00470	14	24232271	24232869
VIT_14s0068g00480	14	24235845	24236264
VIT_14s0068g00490	14	24236265	24240475
VIT_14s0068g00500	14	24240476	24246281
VIT_14s0068g00510	14	24246986	24247718
VIT_14s0068g00520	14	24253217	24259740
VIT_14s0068g00600	14	24335233	24336088
VIT_14s0068g00630	14	24364739	24437849
VIT_14s0068g00640	14	24438706	24450994
VIT_14s0068g00650	14	24461539	24463112
VIT_14s0068g00660	14	24473597	24477950
VIT_14s0068g00670	14	24478682	24479739
VIT_14s0068g00680	14	24482406	24484689
VIT_14s0068g00690	14	24485059	24492325
VIT_14s0068g00700	14	24492483	24497875
VIT_14s0068g00710	14	24498868	24504221
VIT_14s0068g00720	14	24509679	24524403
VIT_14s0068g00730	14	24525207	24525867
VIT_14s0068g00740	14	24532101	24533135
VIT_14s0068g00750	14	24534760	24535908
VIT_14s0068g00760	14	24536260	24538272
VIT_14s0068g00770	14	24540054	24544838
VIT_14s0068g00780	14	24545158	24555142

PTF1 (plastid transcription factor 1) TCP13
Transcription initiation factor TFIID subunit 8
LNG1 (LONGIFOLIA1)
No hit
NLI interacting factor (NIF) family protein
Esterase PIR7B
Hydrolase, alpha/beta fold family
Transducin family protein / WD-40 repeat Alpha-amylase isozyme C2 precursor Dentin sialophosphoprotein
UDP-glucosyl transferase
UDP-glucoronosyl/UDP-glucosyl transferase
UDP-glucosyl transferase
UDP-glucosyl transferase
UDP-glucosyl transferase
UDP-glucuronosyl/UDP-glucosyltransferase
Indole-3-acetate beta-glucosyltransferase
Unknown
F-box domain containing protein Expansin (VvEXPA15)

Importin
Acetyl-CoA synthetase
Unknown
ATAN11 (ANTHOCYANIN11) (VvWDR2)
Heavy-metal-associated domain-containing protein
Glyceraldehyde-3-phosphate dehydrogenase A, chloroplast precursor OTU cysteine protease

EMB1895
DEAD/DEAH box helicase
Tudor domain protein 4 SNc
Unknown protein
Avr9/Cf-9 rapidly elicited protein 146
C 2 domain-containing protein
Pentatricopeptide (PPR) repeat-containing
FAR1-related sequence 5
Nematode chemoreceptor

	VIT_14s0068g00790	14	24569502	24570830	Unknown protein
	VIT_14s0068g00800	14	24574332	24590300	Syntaxin 7
	VIT_14s0068g00810	14	24592155	24604605	Helicase
	VIT_14s0068g00820	14	24605414	24606138	Lipid transfer protein
	VIT_14s0068g00830	14	24606690	24609786	2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N -succinyltransferase
	VIT_14s0068g00840	14	24612133	24616683	RBR1 (retinoblastoma-related 1)
	VIT_14s0068g00850	14	24616889	24623539	Potassium transporter (KUP3)
	VIT_14s0068g00860	14	24626255	24627037	ERF/AP2 Gene Family (VvERF070)
	VIT 14s0068g00870	14	24631161	24634996	Nudix hydrolase 13
pheno_16_1	VIT_16s0022g00940	16	14019798	14021005	Pectinesterase PME3
	VIT_16s0022g00950	16	14025273	14027095	No hit
	VIT_16s0022g00960	16	14028716	14029381	Invertase/pectin methylesterase inhibitor
	VIT_16s0022g00970	16	14044085	14045832	Pentatricopeptide (PPR) repeat-containing protein
	VIT_16s0022g00980	16	14047757	14059196	Adenylate kinase
	VIT_16s0022g00990	16	14066536	14067062	Acetolactate synthase SuRB
	VIT_16s0022g01000	16	14102897	14103279	Chalcone synthase [Vitis vinifera]
	VIT_16s0022g01010	16	14114761	14116548	Acetohydroxyacid synthase
	VIT_16s0022g01020	16	14148552	14149551	Chalcone synthase [Vitis vinifera]
	VIT_16s0022g01030	16	14158599	14160569	Acetolactate synthase SuRB
	VIT_16s0022g01040	16	14229326	14229815	Acetolactate synthase SuRB
	VIT_16s0022g01050	16	14229816	14231180	Acetolactate synthase 1, chloroplast precursor
	VIT_16s0022g01070	16	14274118	14275623	Chalcone synthase [Vitis vinifera]
	VIT_16s0022g01080	16	14288985	14290858	Acetolactate synthase 1, chloroplast precursor
	VIT_16s0022g01100	16	14353302	14354444	Acetohydroxyacid synthase 1
	VIT_16s0022g01110	16	14354445	14355089	Acetohydroxyacid synthase 1
	VIT_16s0022g01120	16	14397803	14399181	Acyl-CoA oxidase ACX3
	VIT_16s0022g01130	16	14433197	14459122	No hit
	VIT_16s0022g01140	16	14459402	14460328	Chalcone synthase [Vitis vinifera]
	VIT_16s0022g01150	16	14470887	14471577	Acyl-CoA oxidase ACX3
	VIT_16s0022g01160	16	14471578	14472628	Acyl-CoA oxidase ACX3
	VIT_16s0022g01190	16	14557320	14558246	Chalcone synthase [Vitis vinifera]
	VIT_16s0022g01210	16	14618249	14620000	myb domain protein 85
	VIT_16s0022g01240	16	14679983	14700893	IRE (incomplete root hair elongation)
	VIT_16s0022g01250	16	14701443	14723650	Unknown protein
	VIT_16s0022g01260	16	14727207	14745148	Metalloendopeptidase
	VIT_16s0022g01280	16	14750817	14755409	Metalloendopeptidase

VIT_16s0022g01290 $16 \quad 14759440 \quad 14760595$ VIT_16s0022g01310 16 VIT_16s0022g01330 $16 \quad 14814938 \quad 14816839$ VIT 16s0022g01340 $16 \quad 1482150214838464$ VIT 16s $0022 \mathrm{~g} 01350 \quad 16 \quad 14853500 \quad 14855350$ VIT_16s0022g01360 16 VIT_16s0022g01370 $16 \quad 14864696 \quad 14869194$ VIT 16s0022g01380 $16 \quad 14886712 \quad 14887520$ VIT_16s0022g01390 $16 \quad 14889269 \quad 14893469$ VIT_16s0022g01400 $16 \quad 14900577 \quad 14901340$ VIT_16s0022g01410 $16 \quad 14908101 \quad 14910093$ VIT 16s0022g01420 $16 \quad 1491133414916210$ VIT_16s0022g01430 16 VIT_16s0022g01440 16 VIT 16s0022g01450 $16 \quad 14979177 \quad 14980434$ VIT_16s0022g01460 16 VIT_16s0022g01480 $16 \quad 16008412 \quad 15027993$ VIT_16s0022g01490 $16 \quad 1503059515031594$ VIT 16s0022g01500 $16 \quad 15042831 \quad 15045000$ VIT_16s0022g01510 16 VIT_16s0022g01520 $16 \quad 16117078 \quad 1511783$ $\begin{array}{lllll}\text { VIT } 16 \mathrm{~s} 0022 \mathrm{~g} 01540 & 16 & 15129838 & 1513108\end{array}$ VIT ${ }^{-} 16 \mathrm{~s} 0022 \mathrm{~g} 01560 \quad 16 \quad 15152968 \quad 15157791$ $\begin{array}{lllll}\text { VIT_16s0022g01570 } & 16 & 15160352 & 15162044\end{array}$ VIT_16s0022g01580 $16 \quad 15171729 \quad 15173776$ VIT 16s0022g01590 $16 \quad 15178350 \quad 15181780$ VIT_16s0022g01610 16 VIT_16s0022g01620 $16 \quad 15219297 \quad 15223055$ VIT 16s0022g01630 $16 \quad 15226817 \quad 15227624$ VIT 16s0022g01640 $16 \begin{array}{llll}15237111 & 15238586\end{array}$ VIT_16s0022g01650 $16 \quad 15243820 \quad 15246842$ VIT_16s0022g01660 $16 \quad 15252302 \quad 15254570$ VIT 16s0022g01670 $161515264752 \quad 15268846$ VIT_16s0022g01680 16 VIT_16s0022g01690 $16 \quad 1529013415296405$ VIT 16s0022g01700 $161615327451 \quad 1532766$

SDG29 (SET Domain group 29)
Hydroxymethylglutaryl coenzyme A synthase R protein PRF disease resistance protein Deoxyribodipyrimidine photolyase

No hit
Unknown
No hit
No hit
flavonoid 3-monooxygenase Cellulose synthase CSLD5

No hit
Unknown protein
Phosphate-induced protein 1
Transketolase, chloroplast precursor
UDP-D- glcucuronate 4-epimerase 2 GAE2 Ribosomal protein S20 (RPS20A) 40S

No hit
4,5-DOPA dioxygenase extradiol flavonoid $3^{\prime}, 5^{\prime}$-hydroxylase -like protein flavonoid $3^{\prime}, 5$-hydroxylase -like protein

4,5-DOPA dioxygenase extradiol
Flavonoid 3',5'-hydroxylase Nucleotide-sensitive chloride conductance regulator (ICln)

3-ketoacyl-CoA synthase
3-ketoacyl-CoA synthase
Ribosomal protein S13 (RPS13A) 40S
No hit
Receptor protein kinase
Unknown protein
Receptor serine/threonine kinase Receptor serine/threonine kinase PR5K

Receptor kinase homolog LRK10
Receptor kinase LRK10
Zinc finger (AN1-like)
Band 7 family
No hit
$\begin{array}{lllll}\text { VIT } & 16 \mathrm{~s} 0022 \mathrm{~g} 01710 & 16 & 15328128 & 15330621\end{array}$ VIT_16s0022g01720 $\begin{array}{lllll}16 & 15331961 & 15333786\end{array}$ VIT_16s0022g01730 $16 \quad 1534733815347814$ VIT 16s0022g01740 $1615361931 \quad 15364513$ VIT_16s0022g01760 16 VIT_16s0022g01770 $16 \begin{array}{llll}16467138 & 15473529\end{array}$ VIT_16s0022g01780 161548928115497566 $\begin{array}{lllll}\text { VIT } & 16 \mathrm{~s} 0022 \mathrm{~g} 01790 & 16 & 15503664 & 15504109\end{array}$ VIT_16s0022g01800 $\quad 16 \quad 15512356 \quad 15514461$ VIT_16s0022g01810 $16 \quad 1551899415527030$ VIT_16s0022g01820 $16 \quad 1552827815533919$ VIT_16s0022g01830 $16 \quad 15540620 \quad 15546227$ VIT_16s0022g01840 $16 \quad 15565361 \quad 15572463$ VIT_16s0022g01850 $16 \quad 15594331 \quad 15596264$ $\begin{array}{llllll}\text { VIT } & 16 s 0022 \mathrm{~g} 01860 & 16 & 15611019 & 15730450\end{array}$ VIT_16s0022g01870 $\quad 16 \quad 15736355 \quad 15738229$ VIT_16s0022g01880 $16 \quad 16 \quad 15741012 \quad 15741260$ VIT_16s0022g01890 $16 \quad 1574283215752020$ VIT 16s $0022 \mathrm{~g} 01900 \quad 16 \quad 15757973 \quad 15758305$ VIT_16s0022g01910 $16 \begin{array}{llll}15758306 & 15759314\end{array}$ VIT_16s0022g01920 $16 \quad 15760945 \quad 15763090$ VIT_16s0022g01960 $16 \quad 15771659 \quad 15773575$ $\begin{array}{lllll}\text { VIT_16s0022g01970 } & 16 & 15780583 & 15782142\end{array}$ VIT_16s0022g01980 $16 \begin{array}{lllll}15810041 & 15810499\end{array}$ VIT_16s0022g01990 $16 \quad 15812472 \quad 15812931$ VIT 16s0022g02000 $16 \quad 1581304715813946$ VIT_16s0022g02010 $16 \begin{array}{llll}16 & 15813947 & 15818102\end{array}$ VIT_16s0022g02020 $16 \begin{array}{llll}16847600 & 15848975\end{array}$ VIT_16s0022g02030 16161585559415861902 VIT_16s0022g02040 $16 \quad 1588856315895646$ VIT_16s0022g02050 $\quad 16 \quad 15931002 \quad 15931871$ VIT_16s0022g02060 $16 \quad 15955898 \quad 15988486$ VIT_16s0022g02070 $16 \quad 1603250716033281$ VIT_16s0022g02080 $\quad 16 \quad 16041486$ VIT_16s0022g02090 $16 \quad 16055649 \quad 16056600$ VIT_16s0022g02100 161606013616061359

Ser/Thr receptor-like kinase1
Receptor kinase homolog LRK10
6-phosphogluconate dehydrogenase
Unknown protein
FK506-binding protein genes family (VvFKBP43-1)
Phosphopyruvate hydratase.
Pentatricopeptide (PPR) repeat-containing protein
Histone deacetylase complex, SIN3 component -like 2 SNL2
RRNA-processing protein EBP2
AT-hook protein 1
Microtubule associated protein (MAP65/ASE1) pleiade
YLS7 (yellow-leaf-specific gene 7)
Clp amino terminal domain-containing protein
No hit
Cleavage and polyadenylation specificity factor subunit 1 Unknown protein

No hit
GTP-binding protein engA Pentatricopeptide (PPR) repeat Pentatricopeptide (PPR) repeat
Pentatricopeptide (PPR) repeat-containing protein
ATP-dependent Clp protease ATP-binding subunit ClpX1 (CLPX)
Anthocyanidin 3-O-glucosyltransferase
Zf A20 and AN1 domain-containing stress-associated protein 1
Unknown
Unknown
1-aminocyclopropane-1-carboxylate synthase
No hit
ERL1 (ERECTA 1)
PBS2 (PPHB susceptible 2)
Lateral organ boundaries domain gene 36
K+ efflux antiporter (KEA5)
Unknown protein
Exostosin family protein
Embryo-specific 3
Embryo-specific 3

	VIT_16s0022g02110	16	16067495	16075144	DEAD box RNA helicase (PRH75)
	VIT_16s0022g02120	16	16078156	16082489	Metalloendopeptidase OMA1
	VIT_16s0022g02130	16	16084547	16085104	No hit
	VIT_16s0022g02140	16	16087685	16102990	CYP704A2
	VIT_16s0022g02150	16	16103565	16105639	Lectin
	VIT_16s0022g02170	16	16130501	16143461	Alpha-L-fucosidase
	VIT_16s0022g02190	16	16182278	16183814	Chalcone and stilbene synthases
	VIT_16s0022g02200	16	16203664	16206181	Subtilase
	VIT_16s0022g02210	16	16215979	16220680	Protein phosphatase 2CA AHG1 PP2CA (VvPP2C-8)
	VIT_16s0022g02220	16	16230501	16231445	Receptor Like Protein 48 RLP48
	VIT_16s0022g02230	16	16240572	16248680	Leucine-rich repeat receptor protein kinase EXS
	VIT_16s0022g02240	16	16255908	16257035	basic helix-loop-helix (bHLH) family
	VIT_16s0022g02250	16	16266462	16267491	basic helix-loop-helix (bHLH) family
	VIT_16s0022g02270	16	16287811	16288987	basic helix-loop-helix (bHLH) family
	VIT_16s0022g02280	16	16301165	16302698	Receptor protein kinase PERK1
	VIT_16s0022g02290	16	16334395	16337736	Unknown
	VIT_16s0022g02300	16	16350758	16351750	CXE carboxylesterase CXE20
	VIT_16s0022g02310	16	16372484	16374087	Gibberellin 3-beta-dioxygenase.
	VIT_16s0022g02320	16	16388979	16407441	Phosphoglucomutase chloroplast precursor
	VIT_16s0022g02330	16	16451140	16466299	putative MADS-box Agamous-like 6b (VviAGL6b)
	VIT_16s0022g02340	16	16470141	16475595	fructokinase-2
	VIT_16s0022g02350	16	16481981	16491201	ACI13
	VIT_16s0022g02370	16	16500433	16503019	Unknown protein
pheno_16_2	VIT_16s0022g02380	16	16506566	16519567	putative MADS-box Supressor of Constans overexpression 1b (VviSOC1b)
	VIT_16s0022g02400	16	16529521	16544563	MADS-box agamous-like 42
	VIT_16s0022g02410	16	16558074	16566697	Oxidoreductase
	VIT_16s0022g02420	16	16568466	16571206	Subtilisin protease C1
	VIT_16s0022g02430	16	16590597	16591356	Carboxyesterase 20 CXE20
	VIT_16s0022g02440	16	16658913	16659634	Carboxyesterase 20 CXE20
	VIT_16s0022g02450	16	16672729	16677077	Subtilisin protease C1
	VIT_16s0022g02460	16	16707603	16710429	Subtilisin protease C1
	VIT_16s0022g02470	16	16715289	16716489	Cationic peroxidase
	VIT_16s0022g02480	16	16721578	16723006	TCP family transcription factor TCP9
	VIT_16s0022g02490	16	16725022	16732924	Hydroxymethylglutaryl coenzyme A synthase
	VIT_16s0022g02500	16	16753448	16753788	No hit
	VIT_16s0022g02510	16	16758120	16758664	Protein phosphatase 2C

$\begin{array}{lllll}\text { VIT } & 16 s 0022 \mathrm{~g} 02520 & 16 & 16783470 & 16784544\end{array}$ VIT_16s0022g02530 16 $\begin{array}{lllll}\text { VIT_16s0022g02540 } & 16 & 16787851 & 16788601\end{array}$ VIT_16s0100g00010 $16 \quad 16802160 \quad 16803228$ VIT_16s0100g00030 $\quad 16 \quad 1681886416821466$ VIT_16s0100g00040 $16 \begin{array}{llll}16 & 16331329 & 16832283\end{array}$ VIT_16s0100g00050 $161616833888 \quad 16834887$ $\begin{array}{lllll}\text { VIT 16s } 0100 \mathrm{~g} 00060 & 16 & 16867556 & 16872590\end{array}$ VIT_16s0100g00070 $\quad 16 \quad 16882780 \quad 16883663$ VIT_16s0100g00080 $16 \quad 168889920 \quad 16890662$ VIT_16s0100g00090 161689624616897439 VIT 16s0100g00110 $16 \quad 16928141 \quad 16929702$ VIT_16s0100g00120 $\quad 16 \quad 16951370 \quad 16951710$ VIT_16s0100g00130 $16 \quad 16955981 \quad 16956564$ VIT_16s0100g00140 $16 \quad 16974820 \quad 16975365$ VIT_16s0100g00150 $16 \quad 1697710316977433$ VIT_16s0100g00160 $16 \quad 1698760216993787$ VIT_16s0100g00170 $16 \quad 17000645 \quad 17002770$ VIT 16s0100g00180 $16 \quad 17071017 \quad 17071584$ VIT_16s0100g00190 $\quad 16 \quad 17115669 \quad 17121681$ VIT_16s0100g00200 $16 \begin{array}{lllll}17122769 & 17124779\end{array}$ VIT_16s0100g00210 $16 \quad 17124780 \quad 17125575$ $\begin{array}{lllll}\text { VIT }{ }^{-} 16 s 0100 \mathrm{~g} 00220 & 16 & 17132026 & 17132339\end{array}$ VIT_16s0100g00230 16171713255317134891 VIT_16s0100g00240 $16 \quad 17134892 \quad 17139634$ VIT 16s0100g00250 $16 \quad 17139635 \quad 17141094$ VIT_16s0100g00260 $16 \begin{array}{llll}16 & 17149698 & 17150478\end{array}$ VIT_16s0100g00270 $16 \begin{array}{lllll}17150479 & 17150928\end{array}$ VIT_16s0100g00280 $161717157127 \quad 17161415$ $\begin{array}{lllll}\text { VIT_16s0100g00290 } & 16 & 17162424 & 17180217\end{array}$ VIT_16s0100g00300 $16 \quad 17186416 \quad 17190028$ VIT_16s0100g00310 $16 \quad 17196699 \quad 17198841$ VIT_16s0100g00320 $16 \quad 17225835 \quad 17233936$ VIT_16s0100g00330 $\quad 16 \quad 17237416 \quad 17238326$ VIT_16s0100g00340 $16 \quad 17239840 \quad 17244491$ VIT_16s0100g00350 $16 \quad 17248816 \quad 17261155$

ZFWD1 (zinc finger WD40 repeat protein 1)
ZFWD1 (zinc finger WD40 repeat protein 1)
No hit
Carboxyesterase 20 CXE20
Cucumisin precursor
No hit
Protein kinase
Subtilisin protease C1
Prohibitin 1
Subtilisin serine protease
Cationic peroxidase
Hydroxymethylglutaryl coenzyme A synthase
No hit
Protein phosphatase 2C / PP2C
Protein phosphatase 2C / PP2C
COP9 signalosome complex subunit 5
HMG-CoA synthase 2
Xyloglucan endotransglucosylase/hydrolaseXTR2
ATP-dependent Clp protease ClpB protein Pentatricopeptide (PPR) repeat-containing protein

Unknown protein

No hit

No hit
Glucose-methanol-choline (GMC) oxidoreductase family protein
Mandelonitrile lyase-like protein
Mandelonitrile lyase-like protein
No hit
Peptidoglycan-binding LysM domain-containing protein
EMB2758 (embryo defective 2758)
L-idonate dehydrogenase
Sorbitol dehydrogenase
Unknown protein
Zfwd2 protein (ZFWD2)
Unknown protein

ABC Transporter (VvTAP3 - VvABCB23)
$\begin{array}{lllll}\text { VIT } 16 \mathrm{~s} 0100 \mathrm{~g} 00360 & 16 & 17265204 & 17272005\end{array}$

	VIT_16s0100g00370	16	17274084	17324348	Valyl-tRNA synthetase
pheno_17_1	VIT_17s0000g04630	17	4965012	5015746	Phenylalanyl-tRNA synthetase beta chain
	VIT_17s0000g04640	17	5017391	5020555	H/ACA ribonucleoprotein complex subunit 2
	VIT_17s0000g04650	17	5021431	5035538	Phosphoribulokinase/uridine kinase
	VIT_17s0000g04660	17	5042400	5052215	Agmatine deiminase
	VIT_17s0000g04670	17	5052921	5063485	Serine/threonine protein kinase ATPK3
	VIT_17s0000g04680	17	5090954	5095558	Signal peptide peptidase SPPA
	VIT_17s0000g04690	17	5096080	5107168	Protease SppA
	VIT_17s0000g04700	17	5145018	5145988	Protease SppA
	VIT_17s0000g04710	17	5236137	5239225	Pentatricopeptide (PPR) repeat-containing protein
	VIT_17s0000g04720	17	5241247	5243311	No hit
	VIT_17s0000g04730	17	5257791	5259482	Zinc finger (C3HC4-type ring finger)
	VIT_17s0000g04740	17	5261337	5267944	Transducin family protein / WD-40 repeat
	VIT_17s0000g04750	17	5279676	5281368	UDP-glycosyltransferase 89B2
	VIT_17s0000g04760	17	5281484	5283173	UDP-glycosyltransferase 89B2
	VIT_17s0000g04770	17	5286031	5291504	PHD finger transcription factor
	VIT_17s0000g04780	17	5292045	5296110	Phosphatidylinositol 4-kinase type-II
	VIT_17s0000g04790	17	5309123	5318428	BIM1 (BES1-interacting Myc-like protein 1)
	VIT_17s0000g04800	17	5318431	5318559	No hit
	VIT_17s0000g04810	17	5321964	5325762	Auxin-independent growth promoter
	VIT_17s0000g04820	17	5331026	5337299	BSD domain-containing protein
	VIT_17s0000g04830	17	5338567	5345150	DNA Polymerase epsilon, subunit B
	VIT_17s0000g04840	17	5357937	5362286	Sterile alpha motif (SAM) domain-containing
	VIT_17s0000g04850	17	5372091	5373566	OBF binding protein 4
	VIT_17s0000g04860	17	5375984	5380301	Unknown
	VIT_17s0000g04870	17	5390557	5401864	Microtubule-associated protein MBP2C
	VIT_17s0000g04880	17	5408698	5409427	Dirigent protein
	VIT_17s0000g04890	17	5409996	5423899	D-aminoacyl-tRNA deacylase GEKO1
	VIT_17s0000g04900	17	5426843	5441775	ATP-dependent RNA helicase
	VIT_17s0000g04910	17	5446682	5449753	L-asparaginase
	VIT_17s0000g04920	17	5486192	5489071	Histidine kinase (AHK3)
	VIT_17s0000g04930	17	5507759	5509033	Desulfo-glucosinolate sulfotransferase 18
	VIT_17s0000g04940	17	5525332	5525670	Brassinosteroid sulfotransferase ST4A
	VIT_17s0000g04950	17	5528234	5529544	Steroid sulfotransferase
	VIT_17s0000g04960	17	5531301	5546181	Polygalacturonate 4-alpha-galacturonosyltransferase GAUT11

VIT_17s0000g04970	17	5551329	5561922
VIT_17s0000g04980	17	5562484	5563956
VIT_17s0000g04990	17	5565646	5584353
VIT_17s0000g05000	17	5589362	5596096
VIT_17s0000g05010	17	5614348	5626304
VIT_17s0000g05020	17	5637669	5644801
VIT_17s0000g05030	17	5645732	5648492
VIT_17s0000g05040	17	5654593	5656105
VIT_17s0000g05050	17	5659282	5660704
VIT_17s0000g05060	17	5661333	5676012
VIT_17s0000g05070	17	5676169	5679862
VIT_17s0000g05080	17	5690884	5710034
VIT_17s0000g05090	17	5710035	5711791
VIT_17s0000g05100	17	5723289	5730063
VIT_17s0000g05110	17	5731853	5734268
VIT_17s0000g05120	17	5751736	5758856
VIT_17s0000g05130	17	5759551	5761024
VIT_17s0000g05140	17	5763617	5769816
VIT_17s0000g05150	17	5773018	5780793
VIT_17s0000g05160	17	5783842	5789162
VIT_17s0000g05170	17	5793575	5794544
VIT_17s0000g05180	17	5794802	5795725
VIT_17s0000g05190	17	5801569	5810790
VIT_17s0000g05200	17	5819731	5826246
VIT_17s0000g05210	17	5832003	5838142
VIT_17s0000g05220	17	5845847	5850744
VIT_17s0000g05230	17	5851190	5861913
VIT_17s0000g05240	17	5869290	5885095
VIT_17s0000g05250	17	5885327	5886300
VIT_17s0000g05260	17	5886472	5890773
VIT_17s0000g05270	17	5892658	5896385
VIT_17s0000g05280	17	5898984	5902122
VIT_17s0000g05290	17	5924194	5926786
VIT_17s0000g05300	17	5926787	5928753
VIT_17s0000g05310	17	5933739	5939818
VIT_17s0000g05320	17	5940805	5944765

ADP, ATP carrier protein Universal stress protein (USP) family protein putative MADS-box Fruitfull 1 (VviFUL1) putative MADS-box sepallata 2 (VviSEP2)

Unknown
Squamosa promoter-binding protein 6 (SPL6)
Alpha-1,4-glucan-protein synthase 1
No hit
COBRA-like protein 4 Phytochelatin synthetase Phytochelatin synthetase Cleavage stimulation factor subunit 1 Pentatricopeptide (PPR) repeat-containing protein

No hit
CYP78A4
ABC Transporter (VvTAP2 - VvABCB22)
Transcription termination factor mitochondrial mTERF
Rhomboid
Enoyl-CoA hydratase SP1L2 (SPIRAL2)

No hit
Unknown
Unknown protein
NLI interacting factor (NIF) family protein LNG1 (LONGIFOLIA1) TCP family transcription factor TCP5

Unknown protein
Nuclear transport factor 2 (NTF2)
Unknown protein
Unknown protein
Unknown protein
UPF0737 protein AFP3
Pre-mRNA cleavage complex II protein Clp1 Pre-mRNA cleavage complex II protein Clp1 Pre-mRNA cleavage complex II protein Clp 1

IFA binding protein

VIT_17s0000g05330	17	5946645	5949934
VIT_17s0000g05350	17	5958587	5963699
VIT_17s0000g05360	17	5965138	5966181
VIT_17s0000g05370	17	5966462	5970848
VIT_17s0000g05380	17	5975939	5976998
VIT_17s0000g05390	17	5978634	5988830
VIT_17s0000g05400	17	5992385	5993924
VIT_17s0000g05410	17	5997792	6001685
VIT_17s0000g05420	17	6003755	6005138
VIT_17s0000g05430	17	6005483	6026193
VIT_17s0000g05440	17	6061730	6069222
VIT_17s0000g05450	17	6070433	6082026
VIT_17s0000g05460	17	6088077	6090457
VIT_17s0000g05470	17	6090728	6093181
VIT_17s0000g05480	17	6100712	6112781
VIT_17s0000g05490	17	6117662	6118846
VIT_17s0000g05500	17	6120295	6131114
VIT_17s0000g05510	17	6132145	6137273
VIT_17s0000g05520	17	6144571	6153251
VIT_17s0000g055530	17	6153633	6161033
VIT_17s0000g05540	17	6174485	6182145
VIT_17s0000g05550	17	6183508	6195130
VIT_17s0000g05560	17	6199502	6202250
VIT_17s0000g05570	17	6207677	6212987
VIT_17s0000g05580	17	6213229	6221132
VIT_17s0000g05600	17	6255629	6256773
VIT_17s0000g05610	17	6257443	6258438
VIT_17s0000g05620	17	6259762	6262348
VIT_17s0000g05630	17	6265801	6268050
VIT_17s0000g05640	17	6276619	6279624
VIT_17s0000g05650	17	6279745	6280799
VIT_17s0000g05660	17	6282923	6285609
VIT_17s0000g05670	17	6286277	6288346
VIT_17s0000g05680	17	6293644	6298086
VIT_17s0000g05690	17	6299282	6301763
VIT_17s0000g05700	17	6304590	6308202
VIT			

Serine/threonine protein phosphatase PP2A-5 catalytic subunit (PP2A5)
5-formyltetrahydrofolate cycloligase
Germin
MYC ZCW32 (bigpetal, bigpetalub) Dynein light chain LC8-type

Unknown protein
myb domain protein 35
Galactosyltransferase
AAA-type ATPase family Aminoacyl-tRNA synthetase Unknown protein ELF5 (early flowering 5) Nodulin
Nodulin
EMB2454 (embryo defective 2454) Lateral organ boundaries domain family protein (LBD27)

Cysteine endopeptidase
Pentatricopeptide (PPR) repeat-containing protein
Calcium Dependent Protein Kinase (VvCPK14)
DnaJ homolog, subfamily B, member 4
$\mathrm{H}(+)$-ATPase 11 AHA11
Proton-dependent oligopeptide transport (POT) family protein Proton-dependent oligopeptide transport (POT) family protein

Receptor protein kinase
Isopiperitenol dehydrogenase
(-)-isopiperitenol dehydrogenase
Isopiperitenol dehydrogenase
Integral membrane HPP family protein Homeodomain leucine zipper protein HB-1

Nitrate transporter 1:2
Unknown protein
Polygalacturonase GH28
Polygalacturonase GH28
Band 7 family
Isochorismate synthase 1, chloroplast precursor
Phosphoribosylanthranilate transferase

	VIT_17s0000g05710	17	6312022	6312896	Unknown
	VIT_17s0000g05720	17	6319018	6320270	No hit
	VIT_17s0000g05730	17	6343021	6345217	No hit
	VIT_17s0000g05740	17	6347635	6349215	Pectate lyase, N-terminal
	VIT_17s0000g05750	17	6350085	6359530	Isochorismate synthase
	VIT_17s0000g05760	17	6361704	6385247	Nuclear protein ZAP
	VIT_17s0000g05770	17	6397487	6410902	Nuclear ribonuclease Z
pheno_17_2	VIT_17s0000g07830	17	8918616	8923034	Asp/Glu racemase; Tetratricopeptide helical
	VIT_17s0000g07840	17	8924188	8925529	Unknown protein
	VIT_17s0000g07850	17	8931341	8937870	Nucleobase-ascorbate transporter 6 (NAT6)
	VIT_17s0000g07870	17	8950730	8962366	Ribosomal protein L29
	VIT_17s0000g07880	17	8963993	8974679	Bromo-adjacenty (BAH) domain-containing protein
	VIT_17s0000g07890	17	8976835	8985225	Rac-like GTP-binding protein ARAC10 (GTPase protein ROP10)
	VIT_17s0000g07900	17	9005528	9011550	Protease Do 9
	VIT_17s0000g07910	17	9011840	9014726	Nodulin MtN21 family
	VIT_17s0000g07920	17	9030527	9032996	Hypoxia-responsive
	VIT_17s0000g07930	17	9034815	9036877	Nodulin MtN21 family
	VIT_17s0000g07940	17	9041797	9042384	ERF/AP2 Gene Family (VvERF024)
	VIT 17s0000g07950	17	9054392	9056553	Unknown protein
pheno_18_1	VIT_18s0001g01250	18	1835240	1837419	Senescence-inducible chloroplast stay-green protein 2
	VIT_18s0001g01270	18	1856972	1863925	Ankyrin
	VIT_18s0001g01300	18	1877353	1877899	Wall-associated receptor kinase 5
	VIT_18s0001g01310	18	1877900	1880259	Wall-associated receptor kinase 5
	VIT_18s0001g01320	18	1885028	1894797	Wall-associated receptor kinase 5
	VIT_18s0001g01350	18	1897393	1914523	Toprim domain-containing protein
	VIT_18s0001g01360	18	1934332	1948604	Toprim domain-containing protein
	VIT_18s0001g01370	18	1952680	1968096	Wall-associated receptor kinase 5
	VIT_18s0001g01390	18	1982983	1985445	GA 20-oxidase
	VIT_18s0001g01410	18	1996714	1997619	Unknown
	VIT_18s0001g01440	18	2005999	2006364	No hit
	VIT_18s0001g01460	18	2028167	2028620	No hit
	VIT_18s0001g01470	18	2040472	2040960	No hit
	VIT_18s0001g01480	18	2050288	2050581	No hit
	VIT_18s0001g01500	18	2060078	2060598	No hit
	VIT_18s0001g01510	18	2075169	2084464	No hit

VIT_18s0001g01530	18	2086640	2087608
VIT_18s0001g01550	18	2123749	2127932
VIT_18s0001g01560	18	2130873	2138916
VIT_18s0001g01580	18	2149563	2165796
VIT_18s0001g01590	18	2174967	2177070
VIT_18s0001g01600	18	2177493	2197513
VIT_18s0001g01630	18	2200625	2201333
VIT_18s0001g01640	18	2203044	2218030
VIT_18s0001g01650	18	2222531	2227556
VIT_18s0001g01660	18	2227558	2229622
VIT_18s0001g01670	18	2231148	2244524
VIT_18s0001g01680	18	2245944	2250220
VIT_18s0001g01690	18	2256608	2258038
VIT_18s0001g01700	18	2259998	2279932
VIT_18s0001g01740	18	2281218	2286726
VIT_18s0001g01760	18	2291789	2294046
VIT_18s0001g01770	18	2299018	2303152
VIT_18s0001g01780	18	2306657	2322950
VIT_18s0001g01810	18	2324024	2335447
VIT_18s0001g01830	18	2336971	2345138
VIT_18s0001g01840	18	2347198	2348370
VIT_18s0001g01850	18	2352063	2359939
VIT_18s0001g01860	18	2359940	2405390
VIT_18s0001g01930	18	2406583	2411640
VIT_18s0001g01950	18	2413199	2414815
VIT_18s0001g01960	18	2415255	2417215
VIT_18s0001g01980	18	2418945	2426660
VIT_18s0001g02000	18	2438485	2442668
VIT_18s0001g02010	18	2442718	2443387
VIT_18s0001g02020	18	2450437	2453364
VIT_18s0001g02030	18	2460774	2467119
VIT_18s0001g02050	18	2477226	2479822
VIT_18s0001g02060	18	2479868	2484109
VIT_18s0001g02080	18	2485740	2489654
VIT_18s0001g02090	18	2496692	2503378
VIT_18s0001g02100	18	2504341	2505039

VIT_18s0001g02120	18	2513739	2517442
VIT_18s0001g02130	18	2519567	2521025
VIT_18s0001g02140	18	2521402	2529629
VIT_18s0001g02160	18	2543141	2554330
VIT_18s0001g02190	18	2564080	2567938
VIT_18s0001g02200	18	2573308	2584831
VIT_18s0001g02220	18	2592072	2601990
VIT_18s0001g02230	18	2604468	2613076
VIT_18s0001g02260	18	2618439	2626112
VIT_18s0001g02270	18	2627885	2629132
VIT_18s0001g02280	18	2629486	2630245
VIT_18s0001g02300	18	2643266	2645234
VIT_18s0001g02340	18	2663270	2675579
VIT_18s0001g02370	18	2677244	2684335
VIT_18s0001g02380	18	2688559	2734881
VIT_18s0001g02420	18	2734882	2737586
VIT_18s0001g02440	18	2745381	2754460
VIT_18s0001g02470	18	2761252	2772231
VIT_18s0001g02480	18	2777880	2785087
VIT_18s0001g02510	18	2791934	2798318
VIT_18s0001g02540	18	2802829	2805078
VIT_18s0001g02550	18	2813209	2821688
VIT_18s0001g02570	18	2822064	2827157
VIT_18s0001g02610	18	2845415	2847110
VIT_18s0001g02630	18	2855229	2860609
VIT_18s0001g02640	18	2861119	2864695
VIT_18s0001g02650	18	2866342	2870749
VIT_18s0001g02670	18	2875900	2876019
VIT_18s0001g02680	18	2877451	2880061
VIT_18s0001g02690	18	2881165	2881615
VIT_18s0001g02700	18	2881700	2884919
VIT_18s0001g02710	18	2885819	2894159
VIT_18s0001g02730	18	2898842	2905274
VIT_18s0001g02740	18	2905882	2907423
VIT_18s0001g02750	18	2909150	2910927
VIT_18s0001g02760	18	2910928	2914749

Metal transporter Nramp6
Metal transporter Nramp6
Metal transporter Nramp1
Switching protein 3C ATSWI3C
Switching protein 3C ATSWI3C
8-oxoguanine-DNA glycosylase (OGG1)
Beta-galactosidase / lactase
Beta-galactosidase / lactase Proteasome 20S beta subunit C1 (PBC1) (PRCT)

Unknown
Zinc finger (C3HC4-type ring finger) family protein NAC domain-containing protein (VvNAC08)

Armadillo/beta-catenin repeat
DNA replication factor C complex subunit 5
Kinesin protein (MKRP1)
Aspartic Protease (VvAP40)
Aldehyde Dehydrogenase (VvALDH3H1)
L-ascorbate peroxidase, thylakoid-bound (tAPX)
Unknown protein
Protein disulfide-isomerase A1
ARR9 typeA
Delta-aminolevulinic acid dehydratase, chloroplast precursor
IAA-amino acid hydrolase 6
Caffeic acid methyltransferase
F-box only protein 9
Unknown protein
V-type $\mathrm{H}+$-transporting ATPase 16 kDa proteolipid subunit
No hit
$\mathrm{BTB} / \mathrm{POZ}$ domain-containing protein Unknown protein
Chlorophyll a oxygenase (CAO) Unknown protein

Unknown
Photosystem II 22 kDa protein PSBS Unknown protein

Lipase GDSL

VIT_18s0001g02770	18	2914955	2920663
VIT_18s0001g02780	18	2921245	2922708
VIT_18s0001g02790	18	2925094	2926968
VIT_18s0001g02810 2	18	2929082	2940502
VIT_18s0001g02820	18	2950570	2959607
VIT_18s0001g02830 18	18	2960201	2973823
VIT_18s0001g02860	18	2987834	2994441
VIT_18s0001g02950	18	3042485	3045575
VIT_18s0001g02970	18	3057427	3063862
VIT_18s0001g03000	18	3064354	3065865
VIT_18s0001g03020	18	3069509	3079236
VIT_18s0001g03060	18	3084053	3095775
VIT_18s0001g03080	18	3098022	3101041
VIT_18s0001g03090	18	3102029	3103369
VIT_18s0001g03100	18	3109637	3133804
VIT_18s0001g03110	18	3134535	3146362
VIT_18s0001g03130	18	3149249	3169173
VIT_18s0001g03150	18	3170440	3174962
VIT_18s0001g03160	18	3176998	3180139
VIT_18s0001g03170	18	3180624	3188491
VIT_18s0001g03180	18	3190049	3192531
VIT_18s0001g03190	18	3197133	3198315
VIT_18s0001g03200	18	3198754	3201304
VIT_18s0001g03220	18	3206237	3206969
VIT_18s0001g03230	18	3208995	3214247
VIT_18s0001g03240	18	3219544	3220699
VIT_18s0001g03250	18	3222134	3232291
VIT_18s0001g03270	18	3233803	3234804
VIT_18s0001g03290	18	3244469	3246948
VIT_18s0001g03300	18	3249246	3253146
VIT_18s0001g03310	18	3254531	3256064
VIT_18s0001g03330	18	3261422	3268381
VIT_18s0001g03370	18	3282634	3291512
VIT_18s0001g03390	18	3298924	3306685
VIT_18s0001g03420	18	3307440	3307550
VIT_18s0001g03430	18	3309917	3311940

VIT_18s0001g03440	18	3313991	3315438
VIT_18s0001g03450	18	3320975	3328281
VIT_18s0001g03470	18	3338337	3340959
VIT_18s0001g03490	18	3349225	3350592
VIT_18s0001g03510	18	3354104	3359003
VIT_18s0001g03520	18	3359393	3369207
VIT_18s0001g03540	18	3380455	3383288
VIT_18s0001g03570	18	3387900	3389335
VIT_18s0001g03580	18	3389546	3393993
VIT_18s0001g03610	18	3401893	3411144
VIT_18s0001g03630	18	3412345	3414417
VIT_18s0001g03640	18	3417193	3418012
VIT_18s0001g03650	18	3418650	3419295
VIT_18s0001g03670	18	3422279	3424214
VIT_18s0001g03680	18	3433101	3445210
VIT_18s0001g03720	18	3445760	3445939
VIT_18s0001g03730	18	3445960	3490992
VIT_18s0001g03760	18	3492878	3505322
VIT_18s0001g03790	18	3515123	3530220
VIT_18s0001g03820	18	3536802	3542078
VIT_18s0001g03840	18	3555522	3560233
VIT_18s0001g03850	18	3562597	3563546
VIT_18s0001g03870	18	3564229	3564690
VIT_18s0001g03880	18	3565751	3567556
VIT_18s0001g03910	18	3577992	3582255
VIT_18s0001g03930	18	3585471	3585895
VIT_18s0001g03940	18	3586978	3587567
VIT_18s0001g03950	18	3587990	3596239
VIT_18s0001g03960	18	3596240	3606771
VIT_18s0001g03990	18	3638981	3646405
VIT_18s0001g04010	18	3648331	3660863
VIT_18s0001g04040	18	3668613	3697492
VIT_18s0001g04100	18	3700504	3718045
VIT_18s0001g04130	18	3720073	3720771
VIT_18s0001g04140	18	3725171	3732449
VIT_18s0001g04150	18	3732776	3738425
VIT			

No hit
Glycine-rich protein
Flavonol synthase
Flavonol synthase
flavonol synthase XM 002284374.1 Camphor resistance CrcB Auxin transporter protein 4

Thaumatin ATLP-1
Ubiquitin-fold modifier 1 precursor Auxin-independent growth promoter
Pentatricopeptide (PPR) repeat-containing protein
No hit
No hit
Zinc finger (C 2 H 2 type) family
Protein kinase
No hit
SET Domain group 37
Holocarboxylase synthetase 1 (HCS1)
Oxysterol binding protein
Phosphatidylinositol-4-phosphate 5-kinase 1
TEL2 (Terminal EAR1-like 2)
Ribosomal protein S10 30S
No hit
Polcalcin
Nitrate reductase 2 (NR2)
No hit
No hit
Pm27 protein
Mekk1
Stearoyl-ACP desaturase
Salt tolerant protein
PHD finger transcription factor Histone acetyl transferase HAM1

Unknown
Vacuolar protein sorting 9 (VPS9)
Avr9 elicitor response protein

VIT_18s0001g04160	18	3741241	3745559
VIT_18s0001g04180	18	3749619	3757678
VIT_18s0001g04190	18	3759293	3763520
VIT_18s0001g04270	18	3791368	3794765
VIT_18s0001g04290	18	3798810	3805936
VIT_18s0001g04340	18	3822948	3829597
VIT_18s0001g04380	18	3831159	3832784
VIT_18s0001g04400	18	3842548	3845101
VIT_18s0001g04420	18	3846995	3851906
VIT_18s0001g04440	18	3852065	3861217
VIT_18s0001g04470	18	3861987	3867762
VIT_18s0001g04500	18	3875315	3878509
VIT_18s0001g04520	18	3879307	3882849
VIT_18s0001g04540	18	3883733	3898683
VIT_18s0001g04580	18	3900400	3905806
VIT_18s0001g04590	18	3906073	3907918
VIT_18s0001g04600	18	3913481	3917327
VIT_18s0001g04610	18	3918203	3923636
VIT_18s0001g04630	18	3924182	3930381
VIT_18s0001g04640	18	3931182	3931761
VIT_18s0001g04660	18	3935472	3935878
VIT_18s0001g04680	18	3938582	3956444
VIT_18s0001g04700	18	3956796	3960644
VIT_18s0001g04730	18	3963413	3965554
VIT_18s0001g04750	18	3967437	3969192
VIT_18s0001g04760	18	3976114	3980165
VIT_18s0001g04770	18	3980567	3987316
VIT_18s0001g04790	18	3994178	4000375
VIT_18s0001g04800	18	4003656	4004282
VIT_18s0001g04810	18	4014840	4015257
VIT_18s0001g04850	18	4033185	4034494
VIT_18s0001g04860	18	4035264	4040608
VIT_18s0001g04880	18	4041678	4046983
VIT_18s0001g04890	18	4048925	4052950
VIT_18s0001g04910	18	4062087	4068935
VIT_18s0001g04920	18	4068936	4069711

Translation initiation factor eIF-5
Auxin response factor ARF17
Co-chaperone grpE

Pentatricopeptide (PPR) repeat-containing
No hit
Glycine hydroxymethyltransferase
Unknown protein
Rhomboid family KOM (kompeito) Phosphopantothenate--cysteine ligase

Co-chaperone protein DnaJ
Basic Leucine Zipper Transcription Factor (VvbZIP42)
Enhanced EM level EEL (VvABF-2), Basic Leucine Zipper Transcription Factor (VvbZIP43)
No hit
Unknown protein Unknown protein

Binding
Glutaredoxin Unknown protein
Aspartate aminotransferase
No hit
No hit
RPG related protein 1 RR1 GP5 ubiquitin-like
Kelch repeat-containing F-box protein Acetylcholinesterase
Ribosomal protein L30 (RPL30B) 60S
Apoptotic chromatin condensation inducer 1 ACIN1
Aspartic Protease (VvAP42)
Hyperosmotically inducible periplasmic protein putative MADS-box type delta 1b (VviMADSD1b)

Unknown
Aspartate transaminase.
Unknown protein
Low affinity sulphate transporter
Sulfate transporter 1.3
No hit

VIT_18s0001g04930	18	4070013	4071952
VIT_18s0001g04940	18	4072111	4072857
VIT_18s0001g04960	18	4076661	4078865
VIT_18s0001g04970	18	4087210	4096302
VIT_18s0001g04980	18	4097931	4113803
VIT_18s0001g05020	18	4122072	4123281
VIT_18s0001g05030	18	4130541	4134290
VIT_18s0001g05040	18	4138118	4140727
VIT_18s0001g05060	18	4143615	4147853
VIT_18s0001g05080	18	4148968	4155129
VIT_18s0001g05100	18	4156671	4159130
VIT_18s0001g05110	18	4159695	4167493
VIT_18s0001g05130	18	4176691	4179995
VIT_18s0001g05160	18	4181102	4184913
VIT_18s0001g05180	18	4185500	4189977
VIT_18s0001g05220	18	4205002	4212978
VIT_18s0001g05250	18	4220268	4222313
VIT_18s0001g05270	18	4225485	4241449
VIT_18s0001g05300	18	4254678	4257480
VIT_18s0001g05310	18	4268207	4269413
VIT_18s0001g05330	18	4272391	4273949
VIT_18s0001g05340	18	4274062	4275436
VIT_18s0001g05370	18	4279252	4280705
VIT_18s0001g05380	18	4284177	4287720
VIT_18s0001g05400	18	4299165	4300807
VIT_18s0001g05420	18	4306846	4309947
VIT_18s0001g05440	18	4310333	4319306
VIT_18s0001g05480	18	4326127	4329358
VIT_18s0001g05490	18	4329359	4329584
VIT_18s0001g05500	18	4331692	4337441
VIT_18s0001g05530	18	4338743	4341637
VIT_18s0001g05550	18	4349906	4352613
VIT_18s0001g05570	18	4363673	4368991
VIT_18s0001g05580	18	4373859	4374826
VIT_18s0001g05590	18	4377588	4386070
VIT_18s0001g05600	18	4390485	4398813
VIT			

Sulfate transporter 1.3
No hit
Sulfate transporter 1.2
TRNA modification GTPase trmE
Acetyl-CoA carboxylase 2 (ACC2)
Senescence-associated protein
Glucan 1,3-beta-glucosidase precursor Pollen Ole e 1 allergen and extensin
2,3-bisphosphoglycerate-dependent phosphoglycerate mutase
SEC14 cytosolic factor, putative
No hit
DNA2-NAM7 helicase
Unknown protein
Glycosyl hydrolase family 3 protein
Beta-D-xylosidase
WD-40 repeat
Dehydration Responsive Element-Binding Transcription Factor (VvDREB27)
ERGIC and golgi 3
Trehalose-6-phosphate phosphatase
F-box domain containing protein
No hit
Transcription termination factor mitochondrial mTERF
Unknown protein
TTL1 (tetratricopetide-repeat thioredoxin-like 1)
Unknown
UNE2 (unfertilized embryo sac 2); carbohydrate transporter
Methyltransferase type 11
Unknown protein
No hit
PUMILIO 7 (APUM7)
Annexin 1 (ANN1)
Splicing factor, arginine/serine-rich 2
Hexose transporter HT2
Unknown protein
CCR4-NOT transcription complex subunit 6
Synaptonemal complex protein 1 (ZYP1A)

VIT_18s0001g05620	18	4399508	4405646
VIT_18s0001g05640	18	4407516	4416666
VIT_18s0001g05670	18	4425461	4426613
VIT_18s0001g05680 18	18	4433417	4440032
VIT_18s0001g05690	18	4442502	4445540
VIT_18s0001g05710	18	4445541	4452656
VIT_18s0001g05720	18	4453327	4457820
VIT_18s0001g05730	18	4458540	4462662
VIT_18s0001g05740	18	4465943	4475083
VIT_18s0001g05780	18	4483440	4486850
VIT_18s0001g05790	18	4491794	4493362
VIT_18s0001g05800	18	4494490	4503957
VIT_18s0001g05840	18	4520619	4529938
VIT_18s0001g05860	18	4531169	4532101
VIT_18s0001g05870	18	4535173	4537082
VIT_18s0001g05900	18	4544137	4544831
VIT_18s0001g05910	18	4550436	4552401
VIT_18s0001g05950	18	4564102	4565743
VIT_18s0001g05970	18	4566745	4574723
VIT_18s0001g05990	18	4574889	4586041
VIT_18s0001g06000	18	4586571	4589855
VIT_18s0001g06020	18	4594155	4595268
VIT_18s0001g06030	18	4597940	4599044
VIT_18s0001g06040	18	4600121	4600746
VIT_18s0001g06050	18	4600747	4602556
VIT_18s0001g06060	18	4605365	4607009
VIT_18s0001g06080	18	4610459	4612060
VIT_18s0001g06090	18	4613633	4615316
VIT_18s0001g06120	18	4629508	4631173
VIT_18s0001g06130	18	4631192	4631628
VIT_18s0001g06140	18	4643431	4644462
VIT_18s0001g06150	18	4652464	4653648
VIT_18s0001g06170	18	4658419	4659571
VIT_18s0001g06180	18	4659693	4663192
VIT_18s0001g06200	18	4674500	4678247
VIT_18s0001g06220	18	4684266	4686537

[^1]| VIT_18s0001g06250 | 18 | 4700787 | 4704775 |
| :--- | :--- | :--- | :--- |
| VIT_18s0001g06270 | 18 | 4705961 | 4722205 |
| VIT_18s0001g06290 | 18 | 4724387 | 4727239 |
| VIT_18s0001g06300 | 18 | 4728333 | 4729667 |
| VIT_18s0001g06310 | 18 | 4733340 | 4737514 |
| VIT_18s001g06320 18 | 18 | 4738323 | 4739992 |
| VIT_18s0001g06330 | 18 | 4742712 | 4744730 |
| VIT_18s0001g06350 | 18 | 4751168 | 4752609 |
| VIT_18s0001g06360 | 18 | 4760150 | 4762878 |
| VIT_18s0001g06370 | 18 | 4765814 | 4772318 |
| VIT_18s0001g06390 | 18 | 4773069 | 4780063 |
| VIT_18s0001g06400 | 18 | 4788251 | 4789021 |
| VIT_18s0001g06410 | 18 | 4791622 | 4794578 |
| VIT_18s0001g06420 | 18 | 4796509 | 4805339 |
| VIT_18s0001g06430 | 18 | 4806981 | 4808947 |
| VIT_18s0001g06440 | 18 | 4810193 | 4815522 |
| VIT_18s0001g06460 | 18 | 4815751 | 4855137 |
| VIT_18s0001g06500 | 18 | 4859577 | 4898877 |
| VIT_18s0001g06520 | 18 | 4900037 | 4954270 |
| VIT_18s001g06560 | 18 | 4962807 | 4963515 |
| VIT_18s0001g06580 | 18 | 4966021 | 4966915 |
| VIT_18s0001g06590 | 18 | 4970021 | 4973908 |
| VIT_18s0001g06600 | 18 | 4974906 | 4979125 |
| VIT_18s0001g06610 | 18 | 4982073 | 4983574 |
| VIT_18s0001g06630 | 18 | 4993758 | 4999430 |
| VIT_18s0001g06640 | 18 | 5000284 | 5003505 |
| VIT_18s001g06650 | 18 | 5009725 | 5011125 |
| VIT_18s0001g06670 | 18 | 5020431 | 5021751 |
| VIT_18s0001g06690 | 18 | 5029717 | 5032277 |
| VIT_18s0001g06710 | 18 | 5035063 | 5039911 |
| VIT_18s0001g06760 | 18 | 5054380 | 5055720 |
| VIT_18s0001g06770 | 18 | 5058487 | 5059001 |
| VIT_18s0001g06790 | 18 | 5062066 | 5066242 |
| VIT_18s0001g06820 | 18 | 5077418 | 5081480 |
| VIT_18s0001g06840 | 18 | 5092164 | 5094226 |
| VIT_18s0001g06850 | 18 | 5102796 | 5105019 |
| | | | |

3-deoxy-D-arabino-heptulosonate 7-phosphate synthase Transcription factor jumonji (jmjC) domain-containing protein

Ribosomal protein S6 (RPS6B) 40S
Purine permease 1 PUP1
SnRK2-8
Cupin, RmlC-type
14-3-3 protein GF14 omega (GRF2)
VQ motif-containing protein
Alcohol dehydrogenase
L-ascorbate peroxidase, chloroplast
Auxin-independent growth promoter
No hit
Ribosomal protein 60S
No hit
Homeobox-leucine zipper protein ATHB-6
No hit
Queuine tRNA-ribosyltransferase
Unknown protein
Isoamylase protein.
No hit
Plastocyanin domain-containing protein
Pigment defective 322
Unknown protein
Plastid-targeted protein 2
No hit
Zinc finger (C3HC4-type ring finger) basic helix-loop-helix (bHLH) family

Ring-H2 finger protein ATL1N
Gibberellin 20 oxidase 2
Oxidoreductase, 2OG-Fe(II) oxygenase
Clathrin assembly protein 16
No hit
Protein TRANSPARENT TESTA 12 (DDTFR18) MATE efflux family protein ripening responsive

Peroxidase GvPx2b class III
Peroxidase GvPx2b class III

	VIT_18s0001g06890	18	5121954	5123595	Peroxidase GvPx2b, class III [Vitis vinifera]
	VIT_18s0001g06910	18	5139237	5140617	Purine permease 1 PUP1
	VIT_18s0001g06940	18	5163243	5164681	Purine permease 1 (PUP1)
	VIT_18s0001g06950	18	5169728	5171215	Purine permease 1 (PUP1)
	VIT_18s0001g06970	18	5184425	5218375	DnaJ homolog, subfamily A, member 3
	VIT_18s0001g06980	18	5220072	5221115	Pentatricopeptide repeat-containing protein
	VIT_18s0001g07000	18	5240693	5244484	Pentatricopeptide (PPR) repeat-containing protein
	VIT_18s0001g07010	18	5244635	5245588	GLUTATHIONE S-TRANSFERASE TAU 8
	VIT_18s0001g07020	18	5247639	5250783	No hit
	VIT_18s0001g07060	18	5256010	5263653	Phosphoribosylaminoimidazole-succinocarboxamide synthase.
	VIT_18s0001g07070	18	5266578	5271872	Phosphoenolpyruvate carboxylase kinase 2 (PEPKR2)
	VIT_18s0001g07080	18	5275135	5280005	Protein transport protein SFT1
	VIT_18s0001g07090	18	5290562	5293561	Unknown protein
	VIT_18s0001g07100	18	5294004	5304799	Pyridoxamine 5'-phosphate oxidase
	VIT_18s0001g07110	18	5310450	5311506	No hit
	VIT_18s0001g07120	18	5311507	5314031	Transport inhibitor response 1 protein
	VIT_18s0001g07130	18	5323899	5335911	GEM-like 1
	VIT_18s0001g07140	18	5343590	5344691	Zinc Finger Homeodomain Transcription Factor (VvZHD10)
pheno_18_2	VIT_18s0001g12820	18	10924591	10933193	Dihydroflavonol 4-reductase
	VIT_18s0001g12830	18	10937041	10940329	1,4-beta-mannan endohydrolase
	VIT_18s0001g12840	18	10940330	10945165	ADP-glucose pyrophosphorylase large subunit CagpL2
	VIT_18s0001g12850	18	10951026	10951788	Ribosomal protein L31
	VIT_18s0001g12860	18	10961548	10963014	Unknown protein
	VIT_-18s0001g12870	18	10968173	10971522	CYP722A1
	VIT_18s0001g12880	18	10974280	10990318	Jasmonate O-methyltransferase
	VIT_18s0001g12890	18	10990319	10995000	Jasmonate O-methyltransferase
	VIT_18s0001g12900	18	10999096	11003121	S-adenosyl-L-methionine:salicylic acid carboxyl methyltransferase
	VIT_18s0001g12910	18	11011979	11016761	Inositol-pentakisphosphate 2-kinase 1 ATIPK1
	VIT_18s0001g12920	18	11018628	11019094	No hit
	VIT_18s0001g12930	18	11019643	11020221	Heavy-metal-associated domain-containing protein
	VIT_18s0001g12940	18	11025678	11029403	Dihydrofolate reductase-thymidylate synthase
	VIT_18s0001g12950	18	11035878	11042058	SEC14 cytosolic factor
	VIT_18s0001g12960	18	11043696	11049454	Wound-responsive protein
	VIT_18s0001g12970	18	11056806	11060964	Ethylene-responsive protein
	VIT_18s0001g12980	18	11070674	11090733	Cyclin-dependent protein kinase CYCT1;4
	VIT_-18s0001g12990	18	11099778	11102242	Anthranilate N-benzoyltransferase protein 1

VIT_18s0001g13000	18	11105764	11116980
VIT_18s0001g13010	18	11126023	11129236
VIT_18s0001g13020	18	11137583	11137919
VIT_18s0001g13030	18	11137920	11138195
VIT_18s0001g13040	18	11138196	11139020
VIT_18s0001g13050	18	11143793	11148102
VIT_18s0001g13060	18	11153980	11161250
VIT_18s0001g13070	18	11161718	11165469
VIT_18s0001g13080	18	11166531	11167946
VIT_18s0001g13090	18	11169585	11174073
VIT_18s0001g13100	18	11175122	11179283
VIT_18s0001g13110	18	11184119	11185662
VIT_18s0001g13120	18	11188323	11195903
VIT_18s0001g13130	18	11196526	11198302
VIT_18s0001g13140	18	11199295	11200843
VIT_18s0001g13150	18	11201495	11206144
VIT_18s0001g13160	18	11209086	11221435
VIT_18s0001g13180	18	11241300	11245481
VIT_18s0001g13190	18	11247397	11252857
VIT_18s0001g13200	18	11256653	11261569
VIT_18s0001g13210	18	11268578	11271421
VIT_18s0001g13220	18	11275604	11278396
VIT_18s0001g13230	18	11286706	11293739
VIT_18s0001g13240	18	11293740	11296751
VIT_18s0001g13250	18	11297040	11299715
VIT_18s0001g13260	18	11307834	11309051
VIT_18s0001g13270	18	11311350	11316053
VIT_18s0001g13280	18	11318782	11330916
VIT_18s0001g13290	18	11331768	11334686
VIT_18s0001g13300	18	11335834	11336703
VIT_18s0001g13310	18	11338330	11346082
VIT_18s0001g13320	18	11347342	11348103
VIT_18s0001g13330	18	11348587	11353628
VIT_18s0001g13340	18	11355046	11359625
VIT_18s0001g13350	18	11374221	11381621
VIT_18s0001g13360	18	11384285	11387145

Adaptor-related protein complex AP-4, mu 1 Mitogen-activated Protein Kinase (VvMPK11)

$$
\begin{aligned}
& \text { No hit } \\
& \text { No hit }
\end{aligned}
$$

Basic Leucine Zipper Transcription Factor (VvbZIP47)
Protein translocase Tic20 C 3 H 2 C 3 ring-finger protein NAD-dependent epimerase/dehydratase

Unknown protein
Proteasome 26S AAA-ATPase subunit (RPT4)
Glycosyl transferase family 1 protein
Peroxidase
GTP-binding protein hflX BEL1-like homeodomain 10

No hit
BEL1 homeotic protein 3
Tetrapyrrole methylase
Ubiquitin-conjugating enzyme E2 W
MAPK (MPK9)
Cytokinin dehydrogenase 5 precursor
Lectin jacalin
Pentatricopeptide (PPR) repeat-containing protein Beta-galactosidase BG1 [Vitis vinifera]

Thioredoxin H-type 1
Thioredoxin H-type 1
ATP-dependent protease La (LON) domain-containing protein
Papain cysteine peptidase XBCP3
RanBPM
GTP1/OBG family
Unknown
GTP1/OBG family protein
ERF/AP2 Gene Family (VvERF039),Dehydration Responsive Element-Binding Transcription Factor (VvDREB29) Purple acid phosphatase 32- ATPAP32/PAP32 Purple acid phosphatase 32- ATPAP32/PAP32
Proton-dependent oligopeptide transport (POT) family protein
Nodulin MtN21 family

VIT_18s0001g13370	18	11397795	11406180
VIT_18s0001g13380	18	11409762	11411534
VIT_18s0001g13390	18	11419071	11420557
VIT_18s0001g13400	18	11425591	11427332
VIT_18s0001g13410	18	11429258	11475180
VIT_18s0001g13420	18	11486984	11488357
VIT_18s0001g13430	18	11496666	11502715
VIT_18s0001g13440	18	11503598	11504539
VIT_18s0001g13450	18	11505093	11505323
VIT_18s0001g13460	18	11506606	11512370
VIT_18s0001g13490	18	11525758	11527691
VIT_18s0001g13500	18	11528060	11539323
VIT_18s0001g13510	18	11539928	11541250
VIT_18s0001g13520	18	11546677	11548061
VIT_18s0001g13530	18	11552151	11558455
VIT_18s0001g13540	18	11559472	11560071
VIT_18s0001g13550	18	11561321	11567816
VIT_18s0001g13560	18	11577367	11581885
VIT_18s0001g13570	18	11584918	11587466
VIT_18s0001g13580	18	11600569	11607735
VIT_18s0001g13590	18	11608623	11612061
VIT_18s0001g13600	18	11612878	11613828
VIT_18s0001g13610	18	11613829	11620092
VIT_18s0001g13620	18	11630815	11630958
VIT_18s0001g13630	18	11631001	11633191
VIT_18s0001g13640	18	11636802	11640737
VIT_18s0001g13650	18	11640899	11647357
VIT_18s0001g13660	18	11656750	11691457
VIT_18s0001g13670	18	11698060	11699721
VIT_18s0001g13680	18	11710329	11711606
VIT_18s0001g13690	18	11723026	11723485
VIT_18s0001g13700	18	11726587	11729541
VIT_18s0001g13710	18	11729964	11734394
VIT_18s0001g13720	18	11734395	11741936
VIT_18s0001g13730	18	11741937	11743502
VIT 18s0001g13740	18	11745491	11746246

Transcription initiation factor TFIIF beta subunit (TFIIF-beta)
Papain cysteine proteinase isoform I
Papain cysteine proteinase isoform II
Papain cysteine proteinase isoform I
V-type $\mathrm{H}+$-transporting ATPase subunit I
SHI-related sequence 5
Coatomer alpha subunit
SLAH1 (SLAC1 homologue 1)
SLAH1 (SLAC1 homologue 1)
putative MADS-box Apetala 3a (VviAP3a)
Maturase K
forkhead-associated domain-containing protein
Her2-p6
Zinc finger (B-box type)
SH3 domain-containing protein 2
Glycine-rich protein
Zinc knuckle (CCHC-type) family Unknown protein
Calcium ion binding protein
Kinesin motor protein
Leucine-rich repeat protein kinase

No hit

Abhydrolase domain-containing protein 5
No hit
V-type $\mathrm{H}+$-transporting ATPase 16 kDa proteolipid subunit Amine oxidase Amine oxidase
EMB2757/TAN (embryo defective 2757)
Glyoxal oxidase-related
Histone H3
No hit
Cell growth defect factor -2 BPC6/BBR/BPC6/BPC6 BPC6/BBR/BPC6/BPC6 ВРС6/BBR/BPC6/BPC6
Basic Leucine Zipper Transcription Factor (VvbZIP48)

VIT_18s0001g13750	18	11750154	11761059
VIT_18s0001g13760	18	11761760	11763067
VIT_18s0001g13770	18	11767560	11769317
VIT_18s0001g13780	18	11774368	11775896
VIT_18s0001g13790	18	11779263	11781156
VIT_18s0001g13800	18	11784344	11786071
VIT_18s0001g13810	18	11789356	11791909
VIT_18s0001g13820	18	11794593	11796161
VIT_18s0001g13830	18	11801940	11803508
VIT_18s0001g13850	18	11832431	11833905
VIT_18s0001g13870	18	11862607	11871541
VIT_18s0001g13880	18	11876078	11892231
VIT_18s0001g13890	18	11893711	11897887
VIT_18s0001g13900	18	11898378	11909253
VIT_18s0001g13910	18	11909699	11914734
VIT_18s0001g13920	18	11917645	11919060
VIT_18s0001g13930	18	11920505	11928962
VIT_18s0001g13940	18	11933806	11936210
VIT_18s0001g13950	18	11940712	11949407
VIT_18s0001g13960	18	11959623	11960345
VIT_18s0001g13970	18	11974983	11980862
VIT_18s0001g13980	18	11987475	11987922
VIT_18s0001g13990	18	11989161	11997757
VIT_18s0001g14000	18	12002927	12003389
VIT_18s0001g14010	18	12004532	12014082
VIT_18s0001g14020	18	12032185	12069047
VIT_18s0001g14030	18	12073618	12075722
VIT_18s0001g14040	18	12086327	12090970
VIT_18s0001g14060	18	12117278	12118772
VIT_18s0001g14070	18	12133743	12135762
VIT_18s0001g14080	18	12136487	12140512
VIT_18s0001g14090	18	12141515	12144267
VIT_18s0001g14100	18	12146146	12150550
VIT_18s0001g14110	18	12151849	12158339
VIT_18s0001g14120	18	12160472	12174229
VIT_18s0001g14130	18	12179540	12181647

Regulator of chromosome condensation (RCC1)
CYP71AT2v2
Cytochrome P450, family 83 , subfamily B, polypeptide 1 Cytochrome P450, family 83, subfamily B, polypeptide 1 Cytochrome P450, family 83, subfamily B, polypeptide 1 CYP71AT2v2
Heat shock protein-related
Cytochrome P450, family 83, subfamily B, polypeptide 1 Cytochrome P450, family 83 , subfamily B, polypeptide 1 Cytochrome P450, family 83, subfamily B, polypeptide 1

Calmodulin binding protein Zinc finger (CCCH-type) family protein Unknown protein
Unknown protein
Unknown protein
Unknown protein
Auxin response factor 5 (Transcription factor MONOPTEROS) Pentatricopeptide (PPR) repeat-containing

RNA polymerase Rpa43 subunit
SAUR_E
Myosin-related
Auxin responsive SAUR protein
No hit
Auxin-induced SAUR
Sulfate adenylyltransferase
$5^{\prime}-3$ ' exoribonuclease 2
Lysine decarboxylase
Endo-1,4-beta-glucanase
Transposon protein, CACTA, En/Spm sub-class
Unknown
Diphthine synthase (DPH5) Molecular chaperone DnaJ
ABA-responsive protein (HVA22)HVA22H Transcription factor E2F/dimerisation partner (TDP) E2F2 Translation initiation factor eIF-3 subunit 3 Zinc finger (C2H2 type) family

VIT_18s0001g14140	18	12191289	12193271
VIT_18s0001g14150	18	12197073	12197669
VIT_18s0001g14160	18	12205115	12205631
VIT_18s0001g14170	18	12212398	12215228
VIT_18s0001g14180	18	12216225	12219253
VIT_18s0001g14190	18	12223875	12228196
VIT_18s0001g14200	18	12229450	12229914
VIT_18s0001g14210	18	12230572	12231893
VIT_18s0001g14230	18	12252526	12257027
VIT_18s0001g14240	18	12257459	12261168
VIT_18s0001g14250	18	12262636	12268135
VIT_18s0001g14260	18	12273788	12276090
VIT_18s0001g14270	18	12276091	12276597
VIT_18s0001g14280	18	12281671	12286855
VIT_18s0001g14290	18	12292329	12294516
VIT_18s0001g14300	18	12299065	12301674
VIT_18s0001g14310	18	12303077	12305027
VIT_18s0001g14320	18	12306644	12309420
VIT_18s0001g14330	18	12310077	12311494
VIT_18s0001g14340	18	12313857	12316276
VIT_18s0001g14350	18	12335581	12336788
VIT_18s0001g14360	18	12337145	12340985
VIT_18s0001g14370	18	12341546	12342790
VIT_18s0001g14380	18	12343090	12350501
VIT_18s0001g14390	18	12362497	12370721
VIT_18s0001g14400	18	12377314	12378089
VIT_18s0001g14410	18	12383680	12402362
VIT_18s0001g14420	18	12403268	12404144
VIT_18s0001g14430	18	12431386	12431715
VIT_18s0001g14440	18	12432955	12439459
VIT_18s0001g14450	18	12453766	12456583
VIT_18s0001g14460	18	12457152	12463238
VIT_18s0001g14470	18	12465257	12466480
VIT_18s0001g14480	18	12468330	12470542
VIT_18s0001g14490	18	12488747	12490747
VIT_18s0001g14500	18	12501841	12507813

No hit
No hit
Heat-and acid-stable phosphoprotein
Cyclin-dependent protein kinase regulator CYCB2 4 Armadillo/beta-catenin repeat family protein

Unknown
No hit
Unknown protein
Hexokinase
Adaptor-related protein complex 2, sigma 1 sub
Unknown protein
No hit
Gibberellin-regulated protein 1 (GASA1)
ER lumen protein retaining receptor
Invertase-like protein
Cytomatrix protein
flavanone-3-hydroxylase 2 (F3H2) [Vitis vinifera]
Unknown protein
No hit
No hit
No hit
Tubulin beta-1 chain
No hit
Brain and reproductive organ-expressed protein
Transducin protein
Peptidyl-prolyl cis-trans isomerase ROC5 (rotamase CYP 5)
Unknown protein
Unknown
Unknown

Molecular chaperone DnaJ

Ferredoxin:nadp+ Oxidoreductase PETH
Unknown protein
No hit
Thaumatin SCUTL1
Thaumatin
SHD (shepherd)

VIT_18s0001g14510	18	12509258	12513293
VIT_18s0001g14520	18	12526253	12526939
VIT_18s0001g14530	18	12533609	12536412
VIT_18s0001g14540	18	12545280	12566106
VIT_18s0001g14550	18	12579175	12591899
VIT_18s0001g14560	18	12608249	12608970
VIT_18s0001g14580	18	12620422	12628019
VIT_18s0001g14590	18	12634521	12635111
VIT_18s0001g14600	18	12645229	12650755
VIT_18s0001g14610	18	12668387	12671744
VIT_18s0001g14620	18	12678950	12679433
VIT_18s0001g14630	18	12682841	12691610
VIT_18s0001g14640	18	12698089	12699502
VIT_18s0001g14650	18	12699590	12707069
VIT_18s0001g14660	18	12710695	12716340
VIT_18s0001g14670	18	12719099	12724188
VIT_18s0001g14680	18	12725219	12753021
VIT_18s0001g14690	18	12763424	12766855
VIT_18s0001g14700	18	12767403	12770616
VIT_18s0001g14710	18	12772148	12773056
VIT_18s0001g14720	18	12773057	12773368
VIT_18s0001g14730	18	12776655	12781411
VIT_18s0001g14740	18	12783608	12784580
VIT_18s0001g14750	18	12787199	12809768
VIT_18s0001g14760	18	12821158	12822999
VIT_18s0001g14770	18	12823491	12840711
VIT_18s0001g14780	18	12841218	12848820
VIT_18s0001g14790	18	12853195	12855945
VIT_18s0001g14800	18	12859139	12862545
VIT_18s0001g14810	18	12863066	12871408
VIT_18s0001g14840	18	12887405	12890179
VIT_18s0001g14850	18	12893670	12898347
VIT_18s0001g14860	18	12900823	12904890
VIT_18s0001g14870	18	12908766	12912392
VIT_18s0001g14880	18	12914221	12923327
VIT_18s0001g14890	18	12936974	12937903

Ribosomal protein L28
Unknown protein
Ubiquitin-protein ligase CIP8 (COP1-interacting protein 8) DEAD-box ATP-dependent RNA helicase 28

Unknown protein
Unknown
Kinesin family member 18/19 ATSYTC/NTMC2T1.3/NTMC2TYPE1.3/SYTC Pentatricopeptide (PPR) repeat-containing protein

Clavata1 receptor kinase (CLV1)
Ribosomal protein S16
ATSYTB/NTMC2T1.2/NTMC2TYPE1.2/SYTB
No hit
DNA-directed RNA polymerase I subunit A12 ABC Transporter (VvMDR3 - VvABCB3) Rac-like GTP-binding protein RAC1

Vacuolar protein sorting 35
Protein kinase
Unknown
Ketol-acid reductoisomerase precursor
Ankyrin repeat family protein
Glutaredoxin
Protein binding
Zinc finger (FYVE type) VPS19 Lipase 3 (EXL3) family II extracellular Nickel ion transporter Unknown protein

Subtilisin-type protease precursor Unknown protein
ABA-responsive element-binding protein 3 (AREB3), Basic Leucine Zipper Transcription Factor (VvbZIP49)

VIT_18s0001g14900	18	12941612	12948377
VIT_18s0001g14910	18	12954423	12956365
VIT_18s0001g14920	18	12959804	12961455
VIT_18s0001g14930	18	12964045	12967757
VIT_18s0001g14940	18	12969264	12971832
VIT_18s0001g14950	18	12978238	12979279
VIT_18s0001g14960	18	12980373	12984313
VIT_18s0001g14970	18	12985919	12987853
VIT_18s0001g14980	18	12992480	12996562
VIT_18s0001g14990	18	12997417	13013251
VIT_18s0001g15000	18	13026931	13036065
VIT_18s0001g15010	18	13037311	13042185
VIT_18s0001g15020	18	13043063	13050564
VIT_18s0001g15050	18	13073854	13087034
VIT_18s0001g15060	18	13104442	13105749
VIT_18s0001g15070	18	13107851	13109297
VIT_18s0001g15080	18	13112575	13112793
VIT_18s0001g15090	18	13133931	13152578
VIT_18s0001g15100	18	13176556	13178357
VIT_18s0001g15110	18	13195418	13195879
VIT_18s0001g15120	18	13199060	13200303
VIT_18s0001g15130	18	13201886	13203120
VIT_18s0001g15140	18	13208994	13210315
VIT_18s0001g15150	18	13231125	13232440
VIT_18s0001g15160	18	13277786	13278346
VIT_18s0001g15170	18	13278347	13278514
VIT_18s0001g15180	18	13279241	13280607
VIT_18s0001g15190	18	13303082	13304738
VIT_18s0001g15200	18	13306083	13306887
VIT_18s0001g15220	18	13312158	13313392
VIT_18s0001g15230	18	13322054	13323283
VIT_18s0001g15240	18	13365469	13366663
VIT_18s0001g15250	18	13389043	13389957
VIT_18s0001g15260	18	13397962	13399162
VIT_18s0001g15270	18	13408234	13413047
VIT_18s0001g15280	18	13418393	13429810

La domain-containing protein
Mannitol dehydrogenase
Unknown protein
Unknown protein
Pentatricopeptide (PPR) repeat-containing EMB2170 (embryo defective 2170) Pentatricopeptide (PPR) repeat-containing Pentatricopeptide (PPR) repeat-containing 3-methyl-2-oxobutanoate dehydrogenase

Dual-specific kinase DSK1
ACT domain containing protein (ACR4)
F-box and leucine-rich repeat protein 1 DnaJ homolog, subfamily A, member 4

Protein phosphatase 2C
No hit
No hit
No hit
RAB GTPase RAB18
flavin-containing monooxygenase, putative Flavin-containing monooxygenases

Unknown protein
WD40 repeat protein
Unknown
Unknown protein
S-adenosylmethionine sythetase 2
S-adenosylmethionine sythetase 2
No hit
flavin-containing monooxygenase, putative
SIK1 (serine/threonine kinase 1)
Unknown protein
Unknown
Blue (type 1) copper domain
Unknown
myb domain protein 52
SCL1 (scarecrow-like 1)
RNA exonuclease 1

VIT_18s0001g15290	18	13430862	13443967
VIT_18s0001g15300	18	13444139	13444288
VIT_18s0001g15310	18	13444700	13445878
VIT_18s0001g15320	18	13446395	13458670
VIT_18s0001g15330	18	13476403	13478586
VIT_18s0001g15340	18	13488810	13490580
VIT_18s0001g15350	18	13493089	13494429
VIT_18s0001g15360	18	13495083	13497819
VIT_18s0001g15370	18	13498468	13504540
VIT_18s0001g15380	18	13511653	13519868
VIT_18s0001g15390	18	13521135	13522636
VIT_18s0001g15400	18	13526007	13535458
VIT_18s0001g15410	18	13539135	13541625
VIT_18s0001g15420	18	13551359	13554243
VIT_18s0001g15430	18	13563113	13563819
VIT_18s0001g15450	18	13581959	13584888
VIT_18s0001g15460	18	13616618	13618309
VIT_18s0001g15470	18	13620924	13622663
VIT_18s0001g15510	18	13646454	13647443
VIT_18s0001g15520	18	13650247	13655312
VIT_18s0001g15530	18	13662369	13665624
VIT_18s0001g15540	18	13666500	13667021
VIT_18s0001g15550	18	13667832	13671220
VIT_18s0001g15560	18	13676072	13681500
VIT_18s0001g15570	18	13682439	13700040
VIT_18s0001g15580	18	13701036	13706265
VIT_18s0001g15600	18	13720692	13730593
VIT_18s0001g15610	18	13733152	13734200
VIT_18s0001g15620	18	13735971	13739523
VIT_18s0001g15630	18	13793649	13799974
VIT_18s0001g15640	18	13803789	13805200
VIT_18s0001g15650	18	13805201	13806648
VIT_18s0001g15660	18	13810659	13811793
VIT_18s0001g15670	18	13812058	13816979
VIT_18s0001g15680	18	13833441	13835421
VIT_18s0001g15690	18	13835422	13835790

Ribosome maturation protein SDO1
No hit

Thioredoxin M-type

 SEU3B proteinNodulin MtN3 family
Pentatricopeptide (PPR) repeat-containing protein Pentatricopeptide (PPR) repeat-containing protein

Thylakoid lumenal 29.8 kDa protein Exostosin family protein No hit
Gaiacol peroxidase
KOW domain-containing transcription factor family protein
Alcohol dehydrogenase 1
Auxin efflux carrier protein 6
Alliin lyase
Alcohol dehydrogenase 3 Stearyl acyl carrier protein desaturase Leaf senescence related protein-like

Unknown
Leaf senescence protein
Pentatricopeptide (PPR) repeat-containing
No hit
Serine carboxypeptidase II
Unknown protein
Zinc finger (CCCH-type) family protein Glycogenin glucosyltransferase (glycogenin)

Vacuolar protein sorting 45
Unknown
Receptor kinase TRKe
MAP kinase activating protein
Pathogenesis-related
Pathogenesis related protein
Pathogen-related
Cytoplasm protein
Cellulase
Endo-1,4-beta-glucanase

18s0001g15700	18	13836500	13838302
VIT_18s0001g15710	18	13848186	13855092
VIT_18s0001g15720	18	13856940	13861020
VIT_18s0001g15730	18	13865318	13866466
VIT_18s0001g15740	18	13869407	13877879
VIT_18s0001g15	18	13901947	13917102
VIT_18s0001g15760	18	13920267	9
VIT_18s0001g15790	18	13930846	13931145
VIT_18s0001g15800	18	13945801	13947522
VIT_18s0166g00010	18	13949617	13952330
VIT_18s0166g00020	18	13966224	13967049
VIT_18s0166g00030	18	13981658	13985444
VIT_18s0166g00040	18	13989688	13993683
VIT_18s0166g00050	18	13995521	14000593
VIT_18s0166g00060	18	14002147	14002275
VIT_18s0166g00070	18	14002488	14002937
VIT_18s0166g00080	18	14023042	14027197
VIT_18s0166g00090	18	14033533	14034350
VIT_18s0166g00100	18	14041093	14041505
VIT_18s0166g00110	18	14041566	14042290
VIT_18s0166g00120	18	14071620	14072689
VIT_18s0166g00130	18	14076141	14077530
VIT_18s0166g00140	18	14096408	14097042
VIT_18s0166g00150	18	14109274	14109357
VIT_18s0166g00160	18	14116931	14117425
VIT_18s0166g00170	18	14122252	14123294
VIT_18s0166g00180	18	14130785	14134673
VIT_18s0166g00190	18	14139015	14140400
VIT_18s0166g00210	18	14160272	14171887
VIT_18s0166g00220	18	14204751	14205007
VIT_18s0166g00230	18	14207946	14210222
VIT_18s0166g00240	18	14210516	14228120
VIT_18s0166g00250	18	14230226	14231594
VIT_18s0166g00260	18	14233967	14234837
VIT_18s0166g00270	18	14276150	14276380
VIT_18s0166g00280	18	14293747	142944

GLTP3 (glycolipid transfer protein 3)
Electron carrier/ oxidoreductase
Leucine Rich Repeat receptor-like kinase Dof zinc finger protein DOF3.5

No hit
Protein kinase Xa21
Copine BON3 (BONZAI 3)
V-type H+-transporting ATPase 16 kDa proteolipid subunit Protein kinase Xa21
Protein kinase Xa21
RWP-RK domain-containing protein
No hit
Protein kinase Xa21 EFR (EF-TU receptor)

No hit
ABC Transporter (VvWBC1 - VvABCG1)
VQ motif-containing protein
No hit
E4/E8 binding protein-1
Concanavalin A lectin
Substrate carrier, Mitochondrial
Oligopeptidase A
No hit
No hit
Unknown
Zinc finger protein ATRZ-1A
U-box domain-containing protein
Regulator of chromosome condensation (RCC1)
No hit
S-receptor kinase
RNA recognition motif (RRM)-containing protein
No hit
No hit
Mutator-like transposase-like protein
Transcription factor related

VIT_18s0166g00290	18	14296029	14329589
VIT_18s0166g00300	18	14365849	14379716
VIT_18s0166g00310	18	14379717	14382427
VIT_18s0166g00320	18	14382428	14384232
VIT_18s0076g00380	18	14405761	14410018
VIT_18s0076g00370	18	14415354	14416016
VIT_18s0076g00360	18	14424417	14427563
VIT_18s0076g00350	18	14479728	14481025
VIT_18s0076g00340	18	14491505	14493905
VIT_18s0076g00330	18	14494814	14503181
VIT_18s0076g00320	18	14527632	14528344
VIT_18s0076g00310	18	14550818	14563944
VIT_18s0076g00300	18	14575052	14575648
VIT_18s0076g00290	18	14619070	14619498
VIT_18s0076g00280	18	14659006	14685257
VIT_18s0076g00270	18	14725759	14726714
VIT_18s0076g00260	18	14726740	14745454
VIT_18s0076g00250	18	14786911	14789327
VIT_18s0076g00240	18	14807850	14815102
VIT_18s0076g00230	18	14827587	14833371
VIT_18s0076g00220	18	14843815	14846194
VIT_18s0076g00210	18	14868749	14920388
VIT_18s0076g00200	18	14926786	14927997
VIT_18s0076g00190	18	14937941	14939662

Protein kinase
Histidinol dehydrogenase, chloroplast precursor ABC transporter F member 4 ABC Transporter (VvGCN1 - VvABCF1) ABC Transporter (VvGCN5 - VvABCF5)
Ribosomal protein P2 (RPP2A) acidic 60S
EMB1075 (embryo defective 1075) carboxy-lyase
F-box protein (FBX3)
CYP707A3
Basic Leucine Zipper Transcription Factor (VvbZIP50)
Nodulin
Translation initiation factor eIF-5B Hexokinase-like protein No hit
Protein tyrosine phosphatase No hit
Unknown protein
Sucrose-proton symporter 2 SUC2 (SUT2-2) Preprotein translocase Sec Y subunit No hit
Sucrose-proton symporter 2 SUC2 (SUT2-3)
Alpha/beta hydrolase fold
DELLA protein RGL2 (RGA-like protein 2)

Supplementary Table 10. Definition of "molecular veraison". Number of modulated genes $(|\log 2 F C|>2)$, in red, across the time points during berry development. In black the number of days before phenological veraison.

	Days	t 0		t 1		t 2		t 3		t 4		t 5
2012		-36	27	-28	0	-18	127	-9	4	0	0	
2013		-20	11	-14	52	-7	26	0	0		0	
2014		-20	6	-14	38	-6	58	0	0		0	

Supplementary Table 11

Meta-QTL	Gene ID	Chr	Start (bp)	End(bp)	Annotation_V1	Transcriptomic candidates
pheno_3_1	VIT_03s0038g00670	3	592539	594503	fructose-bisphosphate aldolase, chloroplast precursor	Palumbo et al 2014, Massonet et al 2017
	VIT_03s0038g00760	3	644491	647420	Arginine decarboxylase (Fragment)	Fasoli et al 2018
	VIT_03s0038g00860	3	689247	693308	Basic Leucine Zipper Transcription Factor (VvbZIP05)	Fasoli et al 2018
	VIT_03s0038g01090	3	862995	863398	Auxin responsive SAUR protein	Palumbo et al 2014, Massonet et al 2017
	VIT_03s0038g01110	3	866357	866897	Auxin-responsive SAUR31	Palumbo et al 2014, Massonet et al 2017
	VIT_03s0038g01310	3	921733	927965	Auxin responsive SAUR protein	Fasoli et al 2018
	VIT_03s0038g01380	3	971266	975571	Calcium-binding EF hand	Palumbo et al 2014, Massonet et al 2017, Fasoli et al 2018
	VIT_03s0038g01410	3	984045	985466	Aquaporin PIP PIP1A	Palumbo et al 2014, Massonet et al 2017, Fasoli et al 2018
	VIT_03s0038g01510	3	1041388	1041967	Unknown protein	Fasoli et al 2018
	VIT_03s0038g01830	3	1283253	1285733	Proline-rich protein 4	Palumbo et al 2014, Massonet et al 2017, Fasoli et al 2018

	VIT_03s0038g02050	3	1412118	1412819	Dirigent protein pDIR7	Palumbo et al 2014, Massonet et al 2017
	VIT_03s0038g02090	3	1441262	1442535	Phospholipase C.	Palumbo et al 2014, Massonet et al 2017, Fasoli et al 2018
	VIT_03s0038g02110	3	1449330	1451521	Co-chaperone-curved DNA binding protein A	Fasoli et al 2018
	VIT_03s0038g02130	3	1468239	1469371	Cold shock protein-1	Fasoli et al 2018
	VIT_03s0038g02150	3	1482091	1483271	Unknown	Palumbo et al 2014, Massonet et al 2017
	VIT_03s0038g02170	3	1492918	1494778	Thaumatin	Palumbo et al 2014, Massonet et al 2017 Fasoli et al 2018
	VIT_03s0038g02190	3	1502133	1506299	Nodulin	Fasoli et al 2018
	VIT_03s0038g02220	3	1528083	1528899	Cofilin	Palumbo et al 2014, Massonet et al 2017
	VIT_03s0038g02230	3	1535564	1538193	Subtilisin-like serine protease 2	Palumbo et al 2014, Massonet et al 2017
pheno_3_2	VIT_03s0180g00010	3	5934501	5937492	Cysteine proteinase	$\begin{array}{r} \hline \text { Fasoli et al } \\ 2018 \end{array}$
	VIT_03s0180g00040	3	5973785	5975813	Cyclin D3_2	Fasoli et al 2018
	VIT_03s0180g00090	3	6023040	6024531	Receptor kinase	Fasoli et al 2018

VIT_03s0180g00200	3	6124465	6126202	Limonoid UDP-glucosyltransferase (VvGT2)	Palumbo et al 2014, Massonet et al 2017, Fasoli et al 2018
VIT_03s0180g00280	3	6255489	6257208	Indole-3-acetate beta-glucosyltransferase	Fasoli et al 2018
VIT_03s0180g00320	3	6281986	6283705	indole-3-acetate beta-glucosyltransferase (VvGT3)	Palumbo et al 2014, Massonet et al 2017
VIT_03s0091g00210	3	6507392	6509263	Ethylene-responsive protein	Palumbo et al 2014, Massonet et al 2017
VIT_03s0091g00240	3	6521904	6537905	Haloacid dehalogenase hydrolase	Fasoli et al 2018
VIT_03s0091g00260	3	6548677	6549577	Zinc finger protein 4	Palumbo et al 2014, Massonet et al 2017, Fasoli et al 2018
VIT_03s0091g00420	3	6785458	6787059	No hit	Palumbo et al 2014, Massonet et al 2017, Fasoli et al 2018
VIT_03s0091g00450	3	6811798	6813280	Progesterone 5-beta-reductase	Palumbo et al 2014, Massonet et al 2017
VIT_03s0091g00490	3	6859815	6860409	Unknown protein	Palumbo et al 2014, Massonet et al 2017
VIT_03s0091g00500	3	6871858	6872341	Unknown protein	Palumbo et al 2014, Massonet et al 2017
VIT_03s0091g00580	3	7035451	7039010	Protein Mpv17	Fasoli et al 2018

VIT_03s0091g00670	3	7099015	7099742
VIT_03s0091g00680	3	7103281	7113666
VIT_03s0091g00870	3	7342165	7357074
VIT_03s0091g01010	3	7535063	7536574
VIT_03s0091g01060	3	7673917	7675754
VIT_03s0091g01130	3	7741682	7743818
VIT_03s0091g01240	3	7903958	7907570
VIT_03s0091g01290	3	7951175	7955690
VIT_03s0088g00320	3	8343365	8347681
VIT_03s 00088 s 0088 g 00050	3	8035215	8039037
		8315170	8315924

Lateral organ boundaries protein 38	Palumbo et al 2014, Massonet et al 2017, Fasoli et al 2018
NPY2 (naked pins in yuc mutants 2)	Fasoli et al 2018
Adenylylsulfate kinase 1 (AKN1)	Fasoli et al 2018
LIM domain protein WLIM1	Palumbo et al 2014, Massonet et al 2017, Fasoli et al 2018
Cyclin delta-2	Fasoli et al 2018
Meprin and TRAF homology domain-containing protein	Palumbo et al 2014, Massonet et al 2017
Serine carboxypeptidase S10 / Anthocyanin Acyl-transferase	Palumbo et al 2014, Massonet et al 2017, Fasoli et al 2018
Serine carboxypeptidase S10	Palumbo et al 2014, Massonet et al 2017
Serine carboxypeptitase 1	Palumbo et al 2014, Massonet et al 2017
Phytosulfokines PSK2	Palumbo et al 2014, Massonet et al 2017
Peptidase M50	Palumbo et al 2014, Massonet et al 2017

	VIT_03s0088g00710	3	8916223	8916893	Pathogenesis-related protein 1 precursor (PRP 1)	Palumbo et al 2014, Massonet et al 2017
	VIT_03s0088g00810	3	9044529	9045211	Pathogenesis-related protein 1 precursor (PRP 1)	Palumbo et al 2014, Massonet et al 2017
	VIT_03s0088g01180	3	9438885	9442060	Proline iminopeptidase	Fasoli et al 2018
	VIT_03s0088g01250	3	9538993	9552353	D-threo-aldose 1-dehydrogenase	Palumbo et al 2014, Massonet et al 2017
pheno_5_1	VIT_05s0029g01140	5	17405622	17411752	Sucrose-phosphate synthase	Palumbo et al 2014, Massonet et al 2017, Fasoli et al 2018
	VIT_05s0062g00240	5	18818659	18820264	Xyloglucan endotransglucosylase/hydrolase 23	Palumbo et al 2014, Massonet et al 2017
	VIT_05s0062g00250	5	18831568	18833016	Xyloglucan endotransglucosylase/hydrolase 15	Palumbo et al 2014, Massonet et al 2017
	VIT_05s0062g00270	5	18843664	18845204	UDP-glucose:flavonoid 7-O-glucosyltransferase	Fasoli et al 2018
	VIT_05s0062g00430	5	18991958	18993513	UDP-glucose:flavonoid 7-O-glucosyltransferase	Palumbo et al 2014, Massonet et al 2017
	VIT_05s0062g00480	5	19056125	19057777	Xyloglucan endo-transglycosylase, C-terminal	Palumbo et al 2014, Massonet et al 2017, Fasoli et al 2018
	VIT_05s0062g00520	5	19088785	19090792	UDP-glucose:flavonoid 7-O-glucosyltransferase	Palumbo et al 2014, Massonet et al 2017

| | | | Palumbo et al
 2014, Massonet
 et al 2017, |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Fasoli et al | | | |
| 2018 | | | |

	VIT_11s0016g03940	11	3224068	3225265	Heat shock transcription factor C1	Palumbo et al 2014, Massonet et al 2017
	VIT_11s0016g03980	11	3249496	3250787	Unknown protein	Fasoli et al 2018
pheno_12_1	VIT_12s0035g02080	12	23970815	23972655	Unknown protein	Fasoli et al 2018
	VIT_12s0035g02090	12	23983677	23999372	Leucine-rich repeat family protein	Fasoli et al 2018
	VIT_12s0035g02120	12	24046092	24050103	Unknown	Fasoli et al 2018
	VIT_12s0035g02150	12	24097742	24106206	ferric reduction oxidase 7 FRO7	Palumbo et al 2014, Massonet et al 2017, Fasoli et al 2018
pheno_14_1	VIT_14s0083g00580	14	22620849	22623743	S-adenosyl-L-methionine decarboxylase	Fasoli et al 2018
	VIT_14s0083g00620	14	22672469	22675655	NIK1 (NSP- interacting kinase 1)	Palumbo et al 2014, Massonet et al 2017
	VIT_14s0083g00640	14	22696160	22698346	Constans 2 (COL2)	Palumbo et al 2014, Massonet et al 2017
	VIT_14s0083g00910	14	23106621	23115040	Auxin-independent growth promoter	Fasoli et al 2018
	VIT_14s0083g00940	14	23137130	23143930	Auxin-independent growth promoter	Palumbo et al 2014, Massonet et al 2017, Fasoli et al 2018
	VIT_14s0083g01030	14	23320331	23341036	putative MADS-box Fruitfull 2 (VviFUL2)	Palumbo et al 2014, Massonet et al 2017, Fasoli et al 2018

| VIT_14s0083g01100 | 14 | 23425741 | 23428785 |
| :--- | :--- | :--- | :--- | :--- |
| VIT_14s0083g01110 | 14 | 23435436 | 23438457 |
| VIT_14s0083g01140 | 14 | 23478460 | 23480345 |
| VIT_14s0083g01160 | 14 | 23527926 | 23532692 |
| VIT_14s0083g01170 | 14 | 23552658 | 23569757 |
| VIT_14s0083g01210 | 14 | 23631468 | 23634185 |
| VIT_14s0083g01220 | 14 | 23647671 | 23648618 |
| | | | |
| VIT_14s0068g00010 | 14 | 23691896 | 23694505 |
| VIT_14s0068g00030 | 14 | 23710282 | 23713253 |
| VIT_14s0068g00040 | 14 | 23730955 | 23731566 |
| | | | |

Alpha-1,4-glucan-protein synthase 1	Palumbo et al 2014, Massonet et al 2017
Brassinosteroid-6-oxidase	Palumbo et al 2014, Massonet et al 2017
B12D	Palumbo et al 2014, Massonet et al 2017
COBRA protein	Fasoli et al 2018
Mitochondrial substrate carrier family protein	Fasoli et al 2018
feronia receptor-like kinase	Palumbo et al 2014, Massonet et al 2017
feronia receptor-like kinase	Palumbo et al 2014, Massonet et al 2017
feronia receptor-like kinase	Palumbo et al 2014, Massonet et al 2017
feronia receptor-like kinase	Palumbo et al 2014, Massonet et al 2017
No hit	Palumbo et al 2014, Massonet et al 2017
No hit	Palumbo et al 2014, Massonet et al 2017

| | | | | Palumbo et al
 2014, Massonet
 et al 2017 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| VIT_14s0068g00140 | | | | |

	VIT_16s0022g01770	16	15467138	15473529	Phosphopyruvate hydratase.	Palumbo et al 2014, Massonet et al 2017, Fasoli et al 2018
	VIT_16s0022g01870	16	15736355	15738229	Unknown protein	Fasoli et al 2018
	VIT_16s0022g02080	16	16041486	16043235	Exostosin family protein	Fasoli et al 2018
	VIT_16s0022g02100	16	16060136	16061359	Embryo-specific 3	Fasoli et al 2018
	VIT_16s0022g02200	16	16203664	16206181	Subtilase	Palumbo et al 2014, Massonet et al 2017
	VIT_16s0022g02230	16	16240572	16248680	Leucine-rich repeat receptor protein kinase EXS	Fasoli et al 2018
	VIT_16s0022g02340	16	16470141	16475595	fructokinase-2	Fasoli et al 2018
pheno_16_2	VIT_16s0100g00220	16	17132026	17132339	No hit	Fasoli et al 2018
	VIT_16s0100g00270	16	17150479	17150928	Peptidoglycan-binding LysM domain-containing protein	Palumbo et al 2014, Massonet et al 2017
	VIT_16s0100g00290	16	17162424	17180217	L-idonate dehydrogenase	Palumbo et al 2014, Massonet et al 2017
	VIT_16s0100g00350	16	17248816	17261155	ABC Transporter (VvTAP3 - VvABCB23)	$\begin{array}{r} \text { Fasoli et al } \\ 2018 \\ \hline \end{array}$
pheno_17_1	VIT_17s0000g04750	17	5279676	5281368	UDP-glycosyltransferase 89B2	Fasoli et al 2018
	VIT_17s0000g04840	17	5357937	5362286	Sterile alpha motif (SAM) domain-containing	Palumbo et al 2014, Massonet et al 2017
	VIT_17s0000g04890	17	5409996	5423899	D-aminoacyl-tRNA deacylase GEKO1	Fasoli et al 2018
	VIT_17s0000g05020	17	5637669	5644801	Squamosa promoter-binding protein 6 (SPL6)	Palumbo et al 2014, Massonet et al 2017

VIT_17s0000g05030	17	5645732	5648492	Alpha-1,4-glucan-protein synthase 1	Fasoli et al 2018
VIT_17s0000g05040	17	5654593	5656105	No hit	Fasoli et al 2018
VIT_17s0000g05050	17	5659282	5660704	COBRA-like protein 4	Fasoli et al 2018
VIT_17s0000g05070	17	5676169	5679862	Phytochelatin synthetase	Palumbo et al 2014, Massonet et al 2017, Fasoli et al 2018
VIT_17s0000g05110	17	5731853	5734268	CYP78A4	Palumbo et al 2014, Massonet et al 2017
VIT_17s0000g05240	17	5869290	5885095	Nuclear transport factor 2 (NTF2)	Fasoli et al 2018
VIT_17s0000g05250	17	5885327	5886300	Unknown protein	Palumbo et al 2014, Massonet et al 2017
VIT_17s0000g05460	17	6088077	6090457	Nodulin	Palumbo et al 2014, Massonet et al 2017
VIT_17s0000g05550	17	6183508	6195130	Proton-dependent oligopeptide transport (POT) family protein	Palumbo et al 2014, Massonet et al 2017
VIT_17s0000g05580	17	6213229	6221132	Isopiperitenol dehydrogenase	Palumbo et al 2014, Massonet et al 2017, Fasoli et al 2018
VIT_17s0000g05600	17	6255629	6256773	(-)-isopiperitenol dehydrogenase	Fasoli et al 2018
VIT_17s0000g05610	17	6257443	6258438	Isopiperitenol dehydrogenase	Fasoli et al 2018

$\left.\begin{array}{llllll} & & & \begin{array}{r}\text { Palumbo et al } \\ \text { 2014, Massonet } \\ \text { et al } 2017\end{array} \\ \text { Fasoli et al }\end{array}\right)$

VIT_18s0001g03610	18	3401893	3411144	Auxin-independent growth promoter	Palumbo et al 2014, Massonet et al 2017
VIT_18s0001g03670	18	3422279	3424214	Zinc finger (C2H2 type) family	Palumbo et al 2014, Massonet et al 2017
VIT_18s0001g03880	18	3565751	3567556	Polcalcin	Fasoli et al 2018
VIT_18s0001g04150	18	3732776	3738425	Avr9 elicitor response protein	Fasoli et al 2018
VIT_18s0001g04340	18	3822948	3829597	Glycine hydroxymethyltransferase	Fasoli et al 2018
VIT_18s0001g04680	18	3938582	3956444	RPG related protein 1 RR1	Palumbo et al 2014, Massonet et al 2017
VIT_18s0001g04790	18	3994178	4000375	Aspartic Protease (VvAP42)	Palumbo et al 2014, Massonet et al 2017
VIT_18s0001g04920	18	4068936	4069711	No hit	Palumbo et al 2014, Massonet et al 2017
VIT_18s0001g04930	18	4070013	4071952	Sulfate transporter 1.3	Palumbo et al 2014, Massonet et al 2017
VIT_18s0001g05020	18	4122072	4123281	Senescence-associated protein	Palumbo et al 2014, Massonet et al 2017
VIT_18s0001g05040	18	4138118	4140727	Pollen Ole e 1 allergen and extensin	Palumbo et al 2014, Massonet et al 2017
VIT_18s0001g05180	18	4185500	4189977	Beta-D-xylosidase	Palumbo et al 2014, Massonet et al 2017, Fasoli et al 2018

VIT_18s0001g05220	18	4205002	4212978	WD-40 repeat	Fasoli et al 2018
VIT_18s0001g05300	18	4254678	4257480	Trehalose-6-phosphate phosphatase	Fasoli et al 2018
VIT_18s0001g05570	18	4363673	4368991	Hexose transporter HT2	Fasoli et al 2018
VIT_18s0001g05910	18	4550436	4552401	Cis-zeatin O-beta-D-glucosyltransferase	Palumbo et al 2014, Massonet et al 2017
VIT_18s0001g05990	18	4574889	4586041	UDP-glycosyltransferase 85A1	Palumbo et al 2014, Massonet et al 2017
VIT_18s0001g06060	18	4605365	4607009	UDP-glycosyltransferase 85A1	Palumbo et al 2014, Massonet et al 2017, Fasoli et al 2018
VIT_18s0001g06180	18	4659693	4663192	Phosphate-induced protein 1	Palumbo et al 2014, Massonet et al 2017
VIT_18s0001g06220	18	4684266	4686537	F-box protein (FBW2)	Palumbo et al 2014, Massonet et al 2017
VIT_18s0001g06370	18	4765814	4772318	L-ascorbate peroxidase, chloroplast	Palumbo et al 2014, Massonet et al 2017
VIT_18s0001g06430	18	4806981	4808947	Homeobox-leucine zipper protein ATHB-6	Palumbo et al 2014, Massonet et al 2017, Fasoli et al 2018
VIT_18s0001g06580	18	4966021	4966915	Plastocyanin domain-containing protein	Palumbo et al 2014, Massonet et al 2017

	VIT_18s0001g06690	18	5029717	5032277	Gibberellin 20 oxidase 2	Palumbo et al 2014, Massonet et al 2017
	VIT_18s0001g06820	18	5077418	5081480	MATE efflux family protein ripening responsive	Fasoli et al 2018
	VIT_18s0001g07090	18	5290562	5293561	Unknown protein	Fasoli et al 2018
pheno_18_2	VIT_18s0001g12830	18	10937041	10940329	1,4-beta-mannan endohydrolase	Palumbo et al 2014, Massonet et al 2017, Fasoli et al 2018
	VIT_18s0001g12840	18	10940330	10945165	ADP-glucose pyrophosphorylase large subunit CagpL2	Fasoli et al 2018
	VIT_18s0001g12960	18	11043696	11049454	Wound-responsive protein	Fasoli et al 2018
	VIT_18s0001g12990	18	11099778	11102242	Anthranilate N-benzoyltransferase protein 1	Fasoli et al 2018
	VIT_18s0001g13010	18	11126023	11129236	Mitogen-activated Protein Kinase (VvMPK11)	Fasoli et al 2018
	VIT_18s0001g13200	18	11256653	11261569	Cytokinin dehydrogenase 5 precursor	Palumbo et al 2014, Massonet et al 2017
	VIT_18s0001g13230	18	11286706	11293739	Beta-galactosidase BG1 [Vitis vinifera]	Palumbo et al 2014, Massonet et al 2017
	VIT_18s0001g13360	18	11384285	11387145	Nodulin MtN21 family	Palumbo et al 2014, Massonet et al 2017
	VIT_18s0001g13610	18	11613829	11620092	Abhydrolase domain-containing protein 5	Fasoli et al 2018
	VIT_18s0001g13770	18	11767560	11769317	Cytochrome P450, family 83, subfamily B, polypeptide 1	Fasoli et al 2018
	VIT_18s0001g13780	18	11774368	11775896	Cytochrome P450, family 83, subfamily B, polypeptide 1	Fasoli et al 2018
	VIT_18s0001g13790	18	11779263	11781156	Cytochrome P450, family 83, subfamily B, polypeptide 1	Fasoli et al 2018

VIT_18s0001g13970	18	11974983	11980862
VIT_18s0001g14040	18	12086327	12090970
VIT_18s0001g14130	18	12179540	12181647
VIT_18s0001g14260	18	12273788	12276090
VIT_18s0001g14270	18	12276091	12276597
VIT_18s0001g14360	18	12337145	12340985
VIT_18s0001g14440	18	12432955	12439459
VIT_18s0001g14450	18	12453766	12456583
VIT_18s 0001 s 00014780	18	12841218	12848820

Myosin-related	Palumbo et al 2014, Massonet et al 2017, Fasoli et al 2018
Endo-1,4-beta-glucanase	Palumbo et al 2014, Massonet et al 2017
Zinc finger (C2H2 type) family	Palumbo et al 2014, Massonet et al 2017
No hit	Palumbo et al 2014, Massonet et al 2017, Fasoli et al 2018
Gibberellin-regulated protein 1 (GASA1)	Palumbo et al 2014, Massonet et al 2017, Fasoli et al 2018
Tubulin beta-1 chain	Palumbo et al 2014, Massonet et al 2017
Molecular chaperone DnaJ	Palumbo et al 2014, Massonet et al 2017
Ferredoxin:nadp+ Oxidoreductase PETH	Palumbo et al 2014, Massonet et al 2017
No hit	Fasoli et al 2018
Lipase 3 (EXL3) family II extracellular	Fasoli et al 2018

VIT_18s0001g14980	18	12992480	12996562	3-methyl-2-oxobutanoate dehydrogenase	Palumbo et al 2014, Massonet et al 2017
VIT_18s0001g15000	18	13026931	13036065	ACT domain containing protein (ACR4)	Palumbo et al 2014, Massonet et al 2017, Fasoli et al 2018
VIT_18s0001g15120	18	13199060	13200303	Unknown protein	Palumbo et al 2014, Massonet et al 2017, Fasoli et al 2018
VIT_18s0001g15360	18	13495083	13497819	Thylakoid lumenal 29.8 kDa protein	Fasoli et al 2018
VIT_18s0001g15390	18	13521135	13522636	Gaiacol peroxidase	Fasoli et al 2018
VIT_18s0001g15410	18	13539135	13541625	Alcohol dehydrogenase 1	Palumbo et al 2014, Massonet et al 2017, Fasoli et al 2018
VIT_18s0001g15460	18	13616618	13618309	Stearyl acyl carrier protein desaturase	Palumbo et al 2014, Massonet et al 2017
VIT_18s0001g15520	18	13650247	13655312	Leaf senescence protein	Palumbo et al 2014, Massonet et al 2017, Fasoli et al 2018
VIT_18s0001g15720	18	13856940	13861020	Leucine Rich Repeat receptor-like kinase	Palumbo et al 2014, Massonet et al 2017, Fasoli et al 2018
VIT_18s0001g15730	18	13865318	13866466	Dof zinc finger protein DOF3.5	Fasoli et al 2018
VIT_18s0166g00250	18	14230226	14231594	No hit	Fasoli et al 2018

VIT_18s0076g00330	18	14494814	14503181	Basic Leucine Zipper Transcription Factor (VvbZIP50)	Fasoli et al 2018		
VIT_18s0076g00310	18	14550818	14563944			Translation initiation factor eIF-5B	Fasoli et al
2018							

Supplementary Table 12

NAME	$\begin{aligned} & \text { COD } \\ & \text { E } \end{aligned}$	NAME	$\begin{aligned} & \text { COD } \\ & \text { E } \end{aligned}$	NAME	$\begin{aligned} & \text { COD } \\ & \mathbf{E} \end{aligned}$	NAME	$\begin{aligned} & \text { COD } \\ & \text { E } \end{aligned}$
ABBOTTABOTTI	943	BERLA_GROSA	1069	CAPIBIANCHI	1159	CORNIOLA	1103
ABBUOTO	1	BERTINORA	1030	CAPOBIANCO_BIANCO	507	CORSO_BIANCO	1046
ABELLO	677	BERZAMINO	692	CAPOBIANCO_NERO	508	CORVINA	82
ABRUSCO	2	BIANCHETTA_DI_BACEDASC O	693	CAPOLONGO_1	1045	CORVINA_ASOLO	624
AGHEDENE	678	BIANCHETTA_DI_DIOLO	694	CAPOLUNGO	509	CORVINONE	83
AGLIANICO	3	BIANCHETTA_TREVIGIANA	32	CAPRETTA	510	COVE	84
AGLIANICO_GRANA_GROSSA	944	BIANCO_DALESSANO	33	CAPRUGNONE	1160	CREPALLOCCHI	722
AHMEUR_MONARDE	1146	BIANCOLELLA	34	CARDINAL	433	CROATINA	85
AIREN	676	BIANCONE	37	CARICAGIOLA	66	CROVASSA	86
ALBANA	6	BIANCONE_DELLANTELLA	1034	CARIGNANO	67	CUNEUTE	723
ALBANA_BORDINI	1061	BIANCUZZO	695	CARMENERE	50	DALL	724
ALBANA_DEL_PANIERE	679	BICANE	424	CARRICANTE	68	DAMASCHINO	87
ALBANELLO	7	BIGOLONA	696	CASAVECCHIA	366	DAMIANO	726
ALBARANZEULI_BIANCO	10	BLANC_DE_MORGEX	35	CASENTINO	1161	DANUTA	484

ALBAROLA	30	BOGGIONE_NERO	1151	CASETTA	362	DATTIER_DE_BEYROUTH	431
ALBAROSSA	8	BOGGIONE_ROSSO	698	CATALANESCA_BIANCA	425	DELIGHT	493
ALEANTE_RIVALTO	690	BOMBINO_BIANCO	38	CATARRATTO_BIANCO_COMUNE	70	DIAMANT	1113
ALEATICO	11	BOMBINO_NERO	39	CATARRATTONE	1093	DIMIAT	1105
ALICANTE_BOUSCHET	12	BONAMICO	48	CAVECIA	710	DINDARELLA	88
ALIONZA	16	BONARDA	40	CAVRARA_NERA	1068	DIOLINOIR	89
ALPHONSE_LAVALLEE	430	BONDA	41	CENERENTE	512	DOLCIAME	91
AMERICA	984	BORBOTTONE	700	CENTESIMINO	299	DON_MARIANO	435
ANCELLOTTA	17	BOSCHERA	42	CERASOLO	712	DOUX_DHENRY	92
ANSONICA	18	BOSCO	43	CESANESE_DEI_CASTELLI_ROMA NI	513	DURAPECCIO_DI_SLORENZO	729
ANTINELLO	979	BOVALE	45	CHARDONNAY	244	DURELLA	93
APIRENA_BRUNI	495	BRACCIOLA_NERA	46	CHASSELAS_BLANC	426	EARLY_MUSCAT	479
APRILLA	946	BRACHETTO	47	CHENIN	298	EMERALD_RIESLING	667
ARAMONE	703	BRAMBANA	701	CIAVARELLA_FRANCESE	514	EMPEROR	1107
ARGUMANNU	684	BRESSANA	502	CICCHIOLA	986	ERBALUCE	94
ARIS	641	BRUGNOLA	503	CICINESE_GROSSO	715	ERBISEDDA	521
ARNEIS	19	BRUGNOLINO	1037	CILIEGIOLO	74	ERVI	95
ARSILICO	685	BUBBIA	702	CIMINNITA	429	FALANGHINA	96
ARVESINIADU	20	BURGHESANA	1067	CLAIRETTE	75	FERTILIA	97
AURORA_2	1116	BUSSANELLO	49	CLARETTE	1071	FIANO_ROSA_LOCOROTONDO_2	1013
AVANA	22	CABERNET_FRANC	51	CLOTILDE_PROSPERI	449	FLAVIS	99
AVARENGO	23	CABERNET_SAUVIGNON	52	COCCIATOSTA	716	FOGARINA	731
AXINA_DE_FRANCIA	687	CACCIADEBITI	705	COCOCCIOLA	76	FOGLIA_TONDA	100
AXINA_DE_TRES_BIAS	688	CACCIO_DI_FERMO_1	951	CODA_DI_VOLPE_BIANCA	77	FOGLIONA	1076
BACCHUS	642	CADDIU	57	CODELUNGHE	717	FORASTERA	101
BARBERA	24	CAGNULARI	58	COLOMBANA_NERA	78	FORCELLA	1042

BARBERA_BIANCA	25	CALABRESE	59	COLORINO_FORTE	1167	FORCESE_DASCOLI	1043
BARBERA_SELVATICO	1150	CALAMARO	708	COPETA	985	FORGIARIN	102
BARESANA	422	CALORIA	60	CORBINELLA_PADOVANA	518	FORSELLINA	103
BARSAGLINA	27	CANAIOLO_NERO	62	CORBINONA_13_GT	1074	FORTANA	104
BECUET	290	CANINA_1_1	1157	CORINTO_BIANCO	477	FOSCA	732
BEGUGNOL	689	CANINA_NERA	64	CORINTO_NERO	488	FRACIDELLA	733
BELLINO	432	CANNAMELE	709	CORNACCHIA	1170	FRANCONIA	106
BELLISE	1029	CANNER_SEEDLESS	483	CORNALLIN	79	FRAPPATO	107
BELLONE	28	CAPENA	506	CORNAREA	80	FREISA	108
NAME	$\begin{aligned} & \text { COD } \\ & \text { E } \end{aligned}$	NAME	$\begin{aligned} & \text { COD } \\ & \text { E } \end{aligned}$	NAME	$\begin{aligned} & \text { COD } \\ & \text { E } \end{aligned}$	NAME	$\begin{aligned} & \text { COD } \\ & \text { E } \end{aligned}$
FRENCH_COLOMBARD	1025	INCTERZI_N1	134	MALVASIA_DI_CANDIA_AROMA TICA	160	MOSCATO_DADDA	443
FUBIANO	109	INVERNENGA	135	MALVASIA_DI_CASORZO	161	MOSCATO_DAMBURGO	444
FULIGNO	738	INVERNESCA	455	MALVASIA_DI_SCHIERANO	164	MOSCATO_DI_SCANZO	185
FUMIN	110	INZOLIA_IMPERIALE	471	MALVASIA_FINA	666	MOSCATO_DI_SPAGNA	1183
FURMINT	647	INZOLIA_PARCHITANA	1110	MALVASIA_FURMHANN	547	MOSCATO_DI_TERRACINA	460
GABBA_VOLPE	525	ITALIA	473	MALVASIA_ISTRIANA	165	MOSCATO_GIALLO	186
GAGLIOPPO	111	ITALICA	136	MALVASIA_NERA_DI_BRINDISI_1	166	MOSCATO_NERO	559
GALLICO	966	JULY_MUSCAT	472	MALVASIA_NERA_LUNGA	368	MOSCATO_NERO_D`ACQUI	187
GAMARET	112	JUVARELLO	542	MAMMOLETTA	1178	MOSCATO_ROSA_2	188
GAMAY	243	KADARKA	674	MAMMOLO	169	MOSCATO_VIOLETTO	557
GAMBUGLIANA	739	KALILI	486	MANTONICO_BIANCO	978	MULLER_THURGAU	197
GARANOIR	115	KERNER	137	MANTONICONE	977	MUSCAT_OTTONEL	637
GAROFANA	747	KINGS_RUBY	481	MANZONI_BIANCO	170	NASCETTA	367
GATTA	740	LACRIMA	138	MANZONI_MOSCATO	292	NASCO	198
GERUSALEMME	1094	LACRIMA_DI_MARIA	456	MANZONI_ROSA	293	NEBBIERA	199

GIRO
GIUSTOLISI
GOLDRIESLING
GOLDTRAMINER
GORGOTTESCO
GOSEN
GRAPPI_DE_LA_BORDOGNE
GRAY_RIESLING
GRECHETTO_DI_TODI
GRECO_DI_TUFO
GRECO_NERO_1
GRENACHE_NOIR
GRIGNOLINO
GRILLO
GRILLONE
GROPPELLA
GROPPELLO_DI_MOCASINA
GROPPELLO_DI_REVO
GROPPELLO_GENTILE
GROS BOUSCHET
GROSPARIOL
GROSSOLANO
gUARDAVALLE
harslevelu
IMPIGNO

114	LAGREIN	139	MARCHIONE_2
742	LAMBRUSCA_DI_ALESSAND RIA	140	MARCONE
651	LAMBRUSCO_A_FOGLIA_FRA ST	141	MARSANNE
365	LAMBRUSCO_DI_SORBARA	142	MARSIGLIANA_NERA_1
1176	LAMBRUSCO_GRASPAROSSA	143	MARUGA
364	LAMBRUSCO_MAESTRI	144	MARUGGIO_1
629	LAMBRUSCO_MARANI	145	MARZEMINA_2
668	LAMBRUSCO_MONTERICCO	146	MARZEMINO
1048	LAMBRUSCO_OLIVA	149	MATILDE
120	LAMBRUSCO_SALAMINO	147	MATURANO
122	LAMBRUSCO_VIADANESE	148	MAYOLET
654	LATTUARIO_NERO	437	MAZZESE
123	LICRONAXIU	1051	MEDRULINU
124	LINNEO_NERO	439	MELARA_1
746	LIVORNESE_BIANCA	289	MERERA
1078	LUGLIOLA_ROSSA	753	MERLOT
125	LUGLIOLA_ROSSA	753	MICHELE_PALIERI
291	LUMASSINA	150	MINNELLA_BIANCA_2
127	LUPECCIO_(pisa)	634	MOLINARA
530	MACERATINO	151	MOLINELLI
745	MADALONA	754	MONDEUSE
751	MADDALENA_BRUNI	457	MONICA
128	MAGLIOCCO_CANINO_2	152	MONICA_BIANCA
636	MAGLIOCCO_DOLCE	970	MONTE_MADONNA_1_GT
130	MAIOLICA_2	153	MONTEPULCIANO

987 NEBBIOLO 200
545 NEGRETTO 202
171 NEGRETTO_DI_SALUZZO 778
440 NEGRO_AMARO 204
758 NER DALA 209
548 NERA GROSSA 569
052 NERELLO_MASCALESE 205
174 NERETTA_CUNEESE 206
421 NERETTO DI BAIRO 207
549 NERO_DI_VASCA 572
175 NERONA 1181
176 NEYRET 210
770 NIBIO 779
177 NIEDDERA 211
769 NIEDDU_MANNU_1 212
54 NIGRA 213
441 NOCCHIANELLO DI GAZZARETTO 1 780
178 NOCCHIANELLO_NERO 781
179 NOCCHIANELLO_PELOSO 782
768 NOCERA 214
1014 NOCERONE DI MILAZZO 1 445
180 NOSIOLA 215
553 NOTARDOMENICO_2 216
772 NURAGUS 217
181 OLIVELLA NERA 2 1095

INC_BRUNI_185
INC_MALVASIA_X_TREBBIANO_TOSC ANO
INC_MANZONI_2_14
INCBIANCO_FEDIT_51_C_S_C
INCBRUNI_54
INCMANZONI_2_15
INCMATHIASZ_210
INCOGNITA
INCPIROVANO_105_VOLTA
NAME
PALLAGRELLO NERO

PALOMBA
Palomino
PAMPANARO GRANDE
PANFINONE
PANSE_BLANCHE
PANSE_PRECOCE
PANSE_ROSA_DIMALAGA
PASCALE
Passau
pattaresco
PAVANA
PECHINO
PECORELLO
PECORINO

535 MALBECH
537 MALBO GENTILE
538 MALIGIA_1
131 MALVASIA
132 MALVASIA_BIANCA_2
133 MALVASIA BIANCA_DI_CAN
3 DIA
423 MALVASIA_BIANCA_LUNGA
541 MALVASIA_DEL_LAZIO
1090 MALVASIA_DELLE_LIPARI COD NAME

190 PRECOCISSIMA MALIANI
787 PRIE_ROUGE
1024 PRIMITIVO
1060 PRIMITIVO 31 Pr
788 PRODEST
462 PROSECCO
463 PROSECCO_LUNGO
1102 PRUNESTA
223 PRUNESTA_BIANCA
$22{ }^{\mathrm{P}} \mathrm{A}$
PRUNESTA ROSSO VIOLACE A

783 QUAGLIANO
226 QUEEN
789 RABOSO_PIAVE
227 RABOSO_VERONESE
228 RAGUSANO

53 MONTONICO_BIANCO
154 MONTONICO_NERO
544 MONTONICO_PINTO
155 MONTU
156 MONUKKA
157 MORELLINO
158 mOSCATO
159 MOSCATO_BCASALESE
162 MOSCATO_BIANCO
COD NAME

807 SANTA MARIA
252 SANTO_STEFANO_BIANCO
253 SAUVIGNON
1012 SAUVIGNON_GROS
254 SAUVIGNON_VERT
255 SCACCIADEBITI
256 SCACCO
258 SCHIAVA
1112 SCHIAVA_GENTILE
475 SCHIAVA_GRIGIA
259 SCHIAVA_GROSSA
451 SChiAvotto
580 SCHIOCCOLETTO
260 SCHIOPPETTINO
982 SCIAGLIN
182 OLIVETTA BIANCA 1111
998 OLIVETTA VIBONESE 1109
1009 ORA 485
194 ORSINA 574
1097 ORTRUGO 219
774 OSELETA 220
1081 OSERIE_DU_FARODE 786
565 OTTAVIANELLO 221
184 PALLAGRELLO BIANCO 189
COD NAME COD
283 TINTILIA 191
193 TINTORIA_2 833
300 TOCAI_FRIULANO 301
829 TORBATO 318
672 TRAMINER_AROMATICO 319
706 TREBBIANO_ABRUZZESE_(biotipo_Sbag 320
830 TREBBIANO_ABRUZZESE_(biotipo_Svag 321
284 TREBBIANO GIALLO 322
285 TREBBIANO_MODENESE 323
286 TREBBIANO_ROMAGNOLO 324
287 TREBBIANO_SPOLETINO 325
594 TREBBIANO_TOSCANO 326
1194 TREVISANA NERA 328
302 TROISCINA 1020
303 TUCCANESE 992

PEDEVENDA
PEDICELLO_ROSSO PEDRO_XIMENES pelaverga PELAVERGA_PICCOLO PELAVERGA S GRATO PENSICATO
PERERA
PERGOLESE DI TIVOLI PERLA_DI_CSABA

PERLETTE
PERLONA
PERRICONE
PETIT_ROUGE
PETIT_VERDOT
PETITE_ARVINE
PICCOLA NERA PICOLIT

PICULIT_NERI
PIEDIROSSO
PIGNOLA
PIGNOLO
PINELLA
PINOT_BIANCO
PIZZUTELLO BIANCO
PIZZUTELLO NERO

229	RAMONDA	1190	SCIASCINOSO
575	REBO	261	SCIASCINOSO
1027	RECANTINA	590	SCIMISCIA_1
230	RED_GLOBE_1	480	SCONOSCIUTA_MARTINETTI
231	RED_OHANEZ	1115	SELEZIONE_BRUNI_54
577	REFOSCO_DAL_PEDROSSO	262	SEMIDANO
792	REFOSCO_DI_RAUSCEDO	1015	SEMILLON
232	REFOSCO_NOSTRANO	263	SENNEN
447	REGINA_DEI_VIGNETI	468	SGAVETTA
464	RETAGLIADO_BIANCO	264	SGIUSEPPE_BIANCO
494	RIBOLLA_GIALLA	265	SGIUSEPPE_NERO
436	RIESLING	266	SILA
233	RIESLING_BLAU	675	SIRIO
234	RIESLING_ITALICO	267	SLORENZO
55	RIMINESE	810	SLUNARDO
235	ROIETTO_GRISO	815	SMARTINO
236	RONDINELLA	269	SMICHELE
237	ROSA_TARDIVA	816	SOMARELLO_ROSSO
238	ROSETTA	1191	SOPERGA
239	ROSSA_DI_BITONTO	452	SPAGNA_BIANCA
240	ROSSESE	271	SULTANA
241	ROSSESE_BIANCO	294	SULTANINA_BIANCA
242	ROSSIGNOLA	272	SURBANO
245	ROSSO_DI_LECCE	993	SUSUMANIELLO
465	ROSSOLA_NERA	273	SYLVANER_VERDE
448	ROUSSIN	275	TAGLIAFERRO

304	TURCA	329
304	UCELUT	330
295	ULIVELLO	1084
1126	UNKNOWN	823
596	UNKNOWN	534
305	UNKNOWN	183
306	UVA_ACETO	839
363	UVA_CARNE	841
307	UVA_CARRIERI	842
591	UVA_DEI_VECCHI	844
277	UVA_DI_COLOGNE	845
962	UVA_DI_CRIMEA	846
308	UVA_DI_MORNICO	837
593	UVA_DI_TROIA	332
278	UVA_GATTA	849
279	UVA_LONGANESI	331
280	UVA_MELONA	459
598	UVA_POLCE	1139
309	UVA_PRUGNA	868
836	UVA_RARA	333
1099	UVA_REALE	613
1098	UVA_TOSCA	334
820	UVALINO	361
310	VALENTINO	336
311	VECCIUTELLO	36
601	VEGA	

304 TURCA 329U04 UCIVELOT1084
126 UNKNOWN534839
363 UVARN842844846
308 UVA DI MORNICO33233159
98 UVA POLCE868
836 UVA_RARA613
098 UVA TOSCA361
601 VEGA 336

PLASSA	249	RUBI_RED	454	TANNAT	312	VELTLINER	337
PLISSONA	803	RUCHE	276	TAZZELENGHE	313	VELTLINER_ROSSO_PRECOCE	1086
POLLERA_NERA	250	S_ANNA_DI_LIPSIA	469	TEMPRANILLO	314	VERANO	618
POLLINO	804	S. TERESA	995	TERBASCI_cp2	602	VERDACCHIO	858
POLOGHELLO	581	SAGRANTINO	281	TEROLDEGO	315	VERDANA_BIANCA	975
PORCINA	582	SAN_PIETRO	827	TERRANO	316	VERDANE	1141
PORCINA_BIANCA	805	SANGIOVESE	119	TIMORASSO	317	VERDEA	338
PORTOGHESE	251	SANGIOVESE_DEL_VERRUCC HIO	592	TINTIGLIA	603	VERDECA	339
NAME	$\begin{aligned} & \text { COD } \\ & \text { E } \end{aligned}$						
VERDELLO_DI_BRACCIANO	859						
VERDESE	341						
VERDICCHIO_BIANCO	342						
VERDISO	344						
VERDUSCHIA	345						
VERDUZZO_FRIULANO	346						
VERDUZZO_TREVIGIANO	347						
VERMENTINO	350						
VERMENTINO_NERO	351						
VERNACCIA_DI_ORISTANO	352						
VERNACCIA_DI_SGIMIGNANO	353						
VERNACCIA_NERA	354						
VESPAIOLA	355						
VESPOLINA	356						
VESPRINO	963						
VICTORIA	458						

VIEN_DE_NUS	357
VIOGNIER	1021
VITOUSKA	358
VUILLERMIN	359
WILDBACHER	360
WURZER	645
ZAPPOLINO	862
ZELEN	1144
ZIBIBBO	470
ZIMAVACCA	1096
ZINGARELLO	622
ZIZAK	964
ZUCCACCIO	864

Supplementary Table 13. Country of origin, skin colour and usage of the 530 accessions used for the genetic characterization.

NAME	ORIGIN	COLOUR	USAGE	NAME	ORIGIN	COLOUR	USAGE	NAME	ORIGIN	COLOUR	USAGE
ABBOTTABOTTI	CI	blanc	wine	BIANCUZZO	IT	blanc	wine	CATARRATTO_BIANCO_COMUNE	IS	blanc	wine
ABBUOTO	CI	noir	w/t	BICANE	WE	blanc	w/t	CATARRATTONE	IS	blanc	table
ABELLO	CI	blanc	wine	BIGOLONA	IT	blanc	wine	CAVECIA	NI	blanc	wine
ABRUSCO	CI	noir	wine	BLANC_DE_MORGEX	NI	blanc	wine	CAVRARA_NERA	NI	noir	wine
AGHEDENE	IT	blanc	wine	BOGGIONE_NERO	IT	noir	w/t	CENERENTE	CI	noir	wine
AGLIANICO	CI	noir	wine	BOGGIONE_ROSSO	IT	noir	wine	CESANESE_DEI_CASTELLI_ROMANI	CI	noir	wine
AGLIANICO_GRANA_GROSSA	SI	noir	wine	BOMBINO_BIANCO	CI	blanc	wine	CHARDONNAY	WE	blanc	wine
AHMEUR_MONARDE	WE	rose/noir	table	BOMBINO_NERO	SI	noir	w/t	CHASSELAS_BLANC	WE	blanc	w/t
ALBANA	CI	blanc	wine	BONAMICO	CI	noir	wine	CHENIN	WE	blanc	wine
ALBANA_BORDINI	CI	noir	wine	BONARDA	CI	noir	wine	CICINESE_GROSSO	CI	noir	wine
ALBANA_DEL_PANIERE	CI	blanc	wine	BONDA	NI	noir	wine	CILIEGIOLO	IT	noir	w/t
ALBANELLO	IS	blanc	wine	BORBOTTONE	IT	blanc	wine	CIMINNITA	WE	blanc	$\mathrm{w} / \mathrm{t} / \mathrm{r}$

ALBARANZEULI_BIANCO	IS	blanc	wine	BOSCHERA	NI	blanc	wine	CLAIRETTE	WE	blanc	w/t
ALBAROLA	CI	blanc	w/t	BOSCO	NI	blanc	w/t	CLOTILDE_PROSPERI	IT	blanc	table
ALBAROSSA	NI	noir	wine	BOVALE	WE	noir	wine	COCCIATOSTA	IT	blanc	wine
ALEANTE_RIVALTO	CI	noir	wine	BRACCIOLA_NERA	CI	noir	wine	COCOCCIOLA	CI	blanc	w/t
ALEATICO	CI	noir	w/t	BRACHETTO	NI	noir	wine	CODA_DI_VOLPE_BIANCA	SI	blanc	w/t
ALICANTE_BOUSCHET	WE	noir	wine	BRAMBANA	IT	noir	wine	CODELUNGHE	IT	noir	wine
ALIONZA	CI	blanc	w/t	BUBBIA	IT	noir	w/t	COPETA	SI	noir	w/t
ALPHONSE_LAVALLEE	WE	noir	w/t/r	BURGHESANA	IT	noir	wine	CORBINELLA_PADOVANA	NI	noir	wine
AMERICA	AM	noir/blanc	wine	BUSSANELLO	NI	blanc	wine	CORBINONA_13_GT	NI	noir	wine
ANCELLOTTA	CI	noir	wine	CABERNET_FRANC	WE	noir	wine	CORINTO_BIANCO	EE	blanc	table
ANSONICA	CI	blanc	w/t	CABERNET_SAUVIGNON	WE	noir	wine	CORINTO_NERO	EE	noir	table
ANTINELLO	SI	blanc	wine	CACCIADEBITI	CI	blanc	wine	CORNACCHIA	CI	noir	wine
APRILLA	IT	noir	wine	CACCIO_DI_FERMO_1	CI	blanc/noir	wine	CORNALLIN	NI	noir	wine
ARGUMANNU	IS	blanc	wine	CADDIU	IS	noir	w/t	CORNAREA	NI	noir	wine
ARNEIS	NI	blanc	wine	CAGNULARI	WE	noir	wine	CORNIOLA	IT	blanc	table
ARSILICO	CI	noir	wine	CALABRESE	SI	noir	wine	CORVINA	NI	noir	wine
ARVESINIADU	IS	blanc	w/t	CALAMARO	IT	noir	wine	CORVINA_ASOLO	NI	noir	wine
AVANA	NI	noir	w/t	CALORIA	CI	noir	wine	CORVINONE	NI	noir	wine
AVARENGO	NI	noir	w/t	CANAIOLO_NERO	CI	noir	wine	cove	NI	blanc	wine
AXINA_DE_FRANCIA	IS	noir	wine	CANINA_1_1	CI	noir	wine	CREPALLOCCHI	CI	noir	wine
AXINA_DE_TRES_BIAS	IT	noir	wine	CANNAMELE	SI	noir	wine	CROATINA	NI	noir	wine
BARBERA	NI	noir	wine	CANNER_SEEDLESS	AM	blanc	table	CROVASSA	NI	noir	wine
BARBERA_BIANCA	NI	blanc	wine	CAPENA	CI	blanc	wine	CUNEUTE	CI	noir	wine
BARESANA	IT	blanc	table	CAPIBIANCHI	CI	noir/blanc	wine	DALL	UKN	ukn	ukn
BARSAGLINA	CI	noir	wine	CAPOBIANCO_BIANCO	CI	blanc	wine	DAMASCHINO	EE	blanc	wine
BECUET	WE	noir	wine	CAPOBIANCO_NERO	CI	noir	wine	DAMIANO	IT	blanc	wine
BEGUGNOL	UKN	blanc	wine	CAPOLONGO_1	CI	blanc	wine	DATTIER_DE_BEYROUTH	WE	blanc	table
BELLINO	WE	noir	w/t	CAPOLUNGO	CI	blanc	wine	DELIGHT	AM	blanc	table
BELLONE	CI	blanc	wine	CAPRETTA	SI	blanc	wine	DIAMANT	EE	blanc	table
BERTINORA	IT	blanc	wine	CARDINAL	AM	rouge/noir	w/t	DIMIAT	WE	blanc	w/t
BERZAMINO	IT	noir	wine	CARICAGIOLA	IS	noir	wine	DINDARELLA	NI	noir	wine
BIANCHETTA_DI_BACEDASCO	CI	blanc	wine	CARIGNANO	CI	noir	wine	DIOLINOIR	CNE	noir	wine
BIANCHETTA_DI_DIOLO	CI	blanc	wine	CARMENERE	WE	noir	wine	DOLCIAME	IT	blanc	wine
BIANCHETTA_TREVIGIANA	NI	blanc	wine	CARRICANTE	IS	blanc	wine	DON_MARIANO	WE	noir	table
BIANCO_DALESSANO	SI	noir	wine	CASAVECCHIA	SI	noir	wine	DOUX_DHENRY	WE	noir	w/t
BIANCOLELLA	SI	blanc	wine	CASENTINO	CI	noir	wine	DURAPECCIO_DI_SLORENZO	IT	blanc	wine

| BIANCONE | CI | blanc | wine | CASETTA | NI | noir | wine | DURELLA |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| BIANCONE_DELLANTELLA | CI | blanc | wine | CATALANESCA_BIANCA | SI | blanc | w/t | EARLY_MUSCAT |\quad wine

NAME	ORIGIN	COLOUR	USAGE	NAME	ORIGIN	COLOUR	USAGE
ERBALUCE	NI	blanc	w/t	INC_MALVASIA_X_TREBBIANO_TOSCANO	CI	blanc	wine
FALANGHINA	SI	blanc	wine	INC_MANZONI_2_14	NI	noir	wine
FERTILIA	NI	noir	wine	INCBIANCO_FEDIT_51_C_S_G	CI	blanc	wine
FIANO_ROSA_LOCOROTONDO_2	SI	blanc	wine	INCBRUNI_54	CI	blanc	w/t
FLAVIS	NI	blanc	wine	INCMANZONI_2_15	NI	noir	wine
FOGARINA	CI	noir	wine	INCMATHIASZ_210	EE	blanc	table
FOGLIA_TONDA	CI	noir	wine	INCTERZI_N1	NI	noir	wine
FOGLIONA	IT	blanc	w/t	INVERNENGA	WE	blanc	w/t
FORASTERA	WE	blanc	wine	INVERNESCA	IT	blanc	table
FORCESE_DASCOLI	CI	blanc	wine	INZOLIA_IMPERIALE	WE	noir	table
FORGIARIN	NI	noir	wine	INZOLIA_PARCHITANA	WE	blanc	table
FORSELLINA	NI	noir	wine	ITALIA	IT	blanc	table
FORTANA	CI	noir	wine	ITALICA	NI	blanc	wine
FOSCA	CI	blanc	wine	JULY_MUSCAT	AM	blanc	w/t
FRACIDELLA	CI	blanc	wine	KADARKA	EE	noir	wine
FRANCONIA	WE	noir	wine	KALILI	WE	blanc	table
FRAPPATO	IS	noir	wine	KERNER	CNE	blanc	wine
FREISA	NI	noir	wine	LACRIMA	CI	noir	wine
FUBIANO	NI	blanc	wine	LACRIMA_DI_MARIA	SI	blanc	table
FULIGNO	CI	noir	wine	LAGREIN	NI	noir	wine
FUMIN	NI	noir	wine	LAMBRUSCA_DI_ALESSANDRIA	NI	noir	wine
GABBA_VOLPE	UKN	blanc	wine	LAMBRUSCO_A_FOGLIA_FRAST	CI	noir	wine
GAGLIOPPO	SI	noir	wine	LAMBRUSCO_DI_SORBARA	CI	noir	wine
GALLICO	IT	ukn	wine	LAMBRUSCO_GRASPAROSSA	CI	noir	wine
GAMARET	WE	noir	wine	LAMBRUSCO_MAESTRI	CI	noir	wine
GAMAY	WE	noir	wine	LAMBRUSCO_MARANI	CI	noir	wine
GAROFANA	CI	noir	wine	LAMBRUSCO_MONTERICCO	CI	noir	wine
GATTA	IT	blanc/noir	wine	LAMBRUSCO_OLIVA	CI	noir	wine
GERUSALEMME	IT	blanc	table	LAMBRUSCO_SALAMINO	CI	noir	wine

GIRO	WE	blanc/noir/rouge	wine	LAMBRUSCO_VIADANESE	CI	noir	wine
GIUSTOLISI	IT	blanc	wine	LATTUARIO_NERO	EE	noir	table
GOLDTRAMINER	NI	blanc	wine	LINNEO_NERO	IT	noir	table
GOSEN	NI	noir	wine	LIVORNESE_BIANCA	CI	blanc	wine
GRANOIR	CNE	noir	wine	LUGLIOLA_ROSSA	CI	noir	wine
GRECHETTO_DI_TODI	CI	blanc	wine	LUMASSINA	NI	blanc	wine
GRECO_DI_TUFO	SI	blanc	w/t	MACERATINO	CI	blanc	w/t
GRECO_NERO_1	SI	noir	w/t	MADALONA	IT	noir	wine
GRENACHE_NOIR	WE	noir	wine	MADDALENA_BRUNI	IT	blanc	table
GRIGNOLINO	NI	noir	wine	MAGLIOCCO_CANINO_2	SI	noir	wine
GRILLO	SI	blanc	wine	MAGLIOCCO_DOLCE	SI	noir	wine
GRILLONE	IT	noir	wine	MAIOLICA_2	CI	noir	wine
GROPPELLA	NI	noir	wine	MALBECH	WE	noir	wine
GROPPELLO_DI_MOCASINA	NI	noir	wine	MALBO_GENTILE	CI	noir	wine
GROPPELLO_DI_REVO	NI	noir	wine	MALIGIA_1	UKN	blanc	wine
GROPPELLO_GENTILE	CI	noir	wine	MALVASIA	WE	blanc	wine
GROS_BOUSCHET	WE	noir	wine	MALVASIA_BIANCA_2	SI	blanc	w/t
GROSPARIOL	IT	blanc	wine	MALVASIA_BIANCA_DI_CANDIA	CI	blanc	wine
GUARDAVALLE	SI	blanc	wine	MALVASIA_BIANCA_LUNGA	CI	blanc	wine
HARSLEVELU	EE	blanc	w/t	MALVASIA_DEL_LAZIO	CI	blanc	wine
IMPIGNO	SI	blanc	wine	MALVASIA_DELLE_LIPARI	SI	blanc	wine

| NAME | ORIGIN | COLOUR | USAGE | NAME | ORIGIN | COLOUR | USAGE |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| MALVASIA_DI_CANDIA_AROMATICA | CI | blanc | w/t | MULLER_THURGAU | CNE | blanc | wine |
| MALVASIA_DI_CASORZO | NI | noir | wine | NASCETTA | NI | blanc | wine |
| MALVASIA_DI_SCHIERANO | NI | noir | wine | NASCO | IS | blanc | wine |
| MALVASIA_FURMHANN | CI | blanc | wine | NEBBIERA | NI | noir | wine |
| MALVASIA_ISTRIANA | EE | blanc | wine | NEBBIOLO | NI | noir | wine |
| MALVASIA_NERA_DI_BRINDISI_1 | CI | noir | w/t | NEGRETTO | CI | noir | wine |
| MALVASIA_NERA_LUNGA | NI | noir | wine | NEGRETTO_DI_SALUZZO | NI | noir | w/t |
| MAMMOLETTA | CI | noir | w/t | NEGRO_AMARO | SI | noir | wine |
| MAMMOLO | CI | noir | wine | NER_DALA | NI | noir | wine |
| MANTONICO_BIANCO | SI | blanc | wine | NERELLO_MASCALESE | SI | noir | wine |

MANTONICONE	SI	noir	wine	NERETTA_CUNEESE	NI	noir
MANZONI_BIANCO	NI	blanc	wine	NERETTO_DI_BAIRO	NI	noir
MANZONI_MOSCATO	NI	noir	wine	NERO_DI_VASCA	CI	noir
MANZONI_ROSA	NI	rouge	wine	NEYRET	NI	noir
MARCHIONE_2	SI	blanc	wine	NIBIO	IT	noir
MARSANNE	WE	blanc	wine	NIEDDERA	IS	noir
MARUGA	CI	noir	wine	NIEDDU_MANNU_1	IS	noir
MARUGGIO_1	UKN	blanc	wine	NIGRA	NI	noir
MARZEMINA_2	NI	noir	wine	NOCCHIANELLO_DI_GAZZARETTO_1	IT	blanc
MARZEMINO	CI	noir	w/t	NOCCHIANELLO_NERO	IT	noir
MATILDE	IT	blanc	table	NOCCHIANELLO_PELOSO	IT	blanc
MATURANO	UKN	blanc	wine	NOCERA	SI	noir
MAYOLET	NI	rouge	wine	NOCERONE_DI_MILAZZO_1	SI	noir
MAZZESE	CI	noir	wine	NOSIOLA	NI	blanc
MELARA_1	CI	blanc	wine	NOTARDOMENICO_2	SI	noir
MERERA	IT	noir	wine	NURAGUS	IS	blanc
MERLOT	WE	noir	wine	OLIVELLA_NERA_1	CI	noir
MICHELE_PALIERI	IT	noir	table	OLIVELLA_NERA_2	CI	noir
MINNELLA_BIANCA_2	IS	blanc	wine	OLIVETTA_BIANCA	CI	blanc
MOLINARA	NI	noir	wine	OLIVETTA_VIBONESE	CI	noir
MONICA	WE	noir	wine	ORA	WE	blanc
MONTE_MADONNA_1_GT	IT	blanc	wine	ORTRUGO	CI	blanc
MONTEPULCIANO	IT	noir	wine	OSELETA	NI	noir
MONTONICO_BIANCO	SI	blanc	w/t	OSERIE_DU_FARODE	WE	rose
MONTONICO_NERO	IT	noir	wine	OTTAVIANELLO	SI	noir
MONTONICO_PINTO	IT	noir	wine	PALLAGRELLO_BIANCO	SI	blanc
MONTU	CI	ukn	ukn	PALLAGRELLO_NERO	SI	noir
MONUKKA	EE	blanc/noir	t/r	PALOMBA	IT	noir
MORELLINO	CI	noir	wine	PALOMINO	WE	noir/blanc
MOSCATO_BCASALESE	NI	blanc	wine	PAMPANARO_GRANDE	CI	blanc
MOSCATO_BIANCO	IT	blanc	wine	PANFINONE	CI	blanc
MOSCATO_DADDA	IT	noir	table	PANSE_BLANCHE	WE	blanc
MOSCATO_DAMBURGO	CNE	noir	w/t	PANSE_PRECOCE	WE	blanc
MOSCATO_DI_SCANZO	NI	noir	wine	PANSE_ROSA_DIMALAGA	WE	rose
MOSCATO_DI_TERRACINA	CI	blanc	w/t	PASCALE	IS	noir
MOSCATO_GIALLO	IT	blanc	w/t	PASSAU	NI	noir

MOSCATO_NERO	NI	noir	wine	PATTARESCO	IT	noir	wine
MOSCATO_NERO_D_ACQUI	NI	noir	wine	PAVANA	NI	noir	wine
MOSCATO_ROSA_2	NI	rouge	wine	PECHINO	IT	blanc	wine
MOSCATO_VIOLETTO	NI	noir	wine	PECORELLO	SI	blanc	wine

NAME	ORIGIN	COLOUR	USAGE	NAME	ORIGIN	COLOUR	USAGE
PEDEVENDA	NI	blanc	wine	REFOSCO_NOSTRANO	NI	noir	wine
PEDICELLO_ROSSO	CI	noir	wine	REGINA_DEI_VIGNETI	EE	blanc	table
PEDRO_XIMENES	WE	blanc	wine	RETAGLIADO_BIANCO	IS	blanc	w/t
PELAVERGA	NI	noir	table	RIBOLLA_GIALLA	NI	blanc	w/t
PELAVERGA_PICCOLO	NI	noir	wine	RIESLING	CNE	blanc	wine
PELAVERGA_S_GRATO	NI	noir	wine	RIESLING_ITALICO	IT	blanc	wine
PERERA	NI	blanc	wine	ROIETTO_GRISO	IT	gris	table
PERLA_DI_CSABA	EE	blanc	w/t	RONDINELLA	NI	noir	wine
PERLETTE	AM	blanc	t/r	ROSA_TARDIVA	IT	noir	table
PERLONA	IT	blanc	table	ROSSA_DI_BITONTO	SI	rose	table
PERRICONE	IS	noir	wine	ROSSESE	NI	noir	wine
PETIT_ROUGE	NI	noir	wine	ROSSESE_BIANCO	NI	blanc	wine
PETIT_VERDOT	WE	noir	wine	ROSSIGNOLA	NI	noir	wine
PETITE_ARVINE	CNE	blanc	wine	ROSSO_DI_LECCE	SI	red	wine
PICCOLA_NERA	NI	noir	wine	ROSSOLA_NERA	NI	noir	wine
PICOLIT	NI	blanc	wine	ROUSSIN	CNE	noir	wine
PICULIT_NERI	NI	noir	wine	RUBI_RED	AM	rouge	table
PIEDIROSSO	SI	noir	wine	RUCHE	NI	noir	wine
PIGNOLA	NI	noir	wine	S_ANNA_DI_LIPSIA	IT	blanc	table
PIGNOLO	NI	noir	wine	SAGRANTINO	CI	noir	wine
PINELLA	NI	blanc	wine	SALVATICO	CI	noir	w/t
PINOT_BIANCO	WE	blanc	wine	SAN_PIETRO	WE	blanc	wine
PIZZUTELLO_BIANCO	IT	blanc	table	SANGIOVESE	NI	noir	wine
PIZZUTELLO_NERO	WE	noir	table	SANGIOVESE_DEL_VERRUCCHIO	IT	noir	wine
PLASSA	NI	noir	wine	SANTA_MARIA	CI	blanc	wine
PLISSONA	IT	noir	wine	SAUVIGNON	WE	blanc	wine
POLLERA_NERA	CI	noir	wine	SAUVIGNON_GROS	WE	gris	wine

POLLINO	IT	blanc	wine	SCACCIADEBITI	CI	blanc	wine
POLOGHELLO	CI	blanc	wine	SCACCO	IT	blanc	wine
PORCINA_BIANCA	IT	blanc	wine	SCHIAVA	NI	noir	wine
PORTOGHESE	CNE	ukn	wine	SCHIAVA_GENTILE	CI	noir	wine
PRECOCISSIMA_MALIANI	IT	noir	wine	SCHIAVA_GRIGIA	NI	noir	wine
PRIE_ROUGE	NI	rouge	wine	SCHIAVA_GROSSA	NI	noir	w/t
PRIMITIVO	CI	noir	wine	SCHIOPPETTINO	NI	noir	wine
PRODEST	NI	noir	wine	SCIAGLIN	NI	blanc	wine
PROSECCO	NI	blanc	wine	SCIASCINOSO	CI	noir	wine
PROSECCO_LUNGO	NI	blanc	wine	SCIMISCIA_1	NI	blanc	wine
PRUNESTA	SI	noir	w/t	SELEZIONE_BRUNI_54	NI	blanc	wine
PRUNESTA_BIANCA	SI	blanc	w/t	SEMIDANO	IS	blanc	wine
PRUNESTA_ROSSO_VIOLACEA	SI	noir	table	SEMILLON	WE	blanc	wine
QUAGLIANO	NI	noir	table	SENNEN	NI	noir	wine
QUEEN	AM	noir	table	SGAVETTA	CI	noir	wine
RABOSO_PIAVE	NI	noir	wine	SGIUSEPPE_NERO	IT	noir	wine
RABOSO_VERONESE	CI	noir	wine	SILA	SI	blanc	wine
RAGUSANO	SI	blanc	wine	SIRIO	NI	blanc	wine
REBO	CI	noir	wine	SLORENZO	IT	noir	wine
RECANTINA	NI	noir	wine	SLUNARDO	SI	blanc	wine
RED_GLOBE_1	AM	rouge	table	SMARTINO	IT	noir	wine
RED_OHANEZ	AM	red	table	SMICHELE	IT	noir	wine
REFOSCO_DAL_PEDROSSO	IT	noir	wine	SOMARELLO_ROSSO	SI	blanc	wine

NAME	ORIGIN	COLOUR	USAGE	NAME	ORIGIN	COLOUR	USAGE
SOPERGA	NI	noir	wine	VELTLINER	CNE	blanc	wine
SPAGNA_BIANCA	WE	blanc	wine	VERANO	CI	red	wine
STERESA	IT	blanc	w/t	VERDACCHIO	IT	blanc	wine
SULTANA	EE	blanc	table	VERDANA_BIANCA	IT	blanc	wine
SULTANINA_BIANCA	EE	blanc	w/t/r	VERDEA	CI	blanc	w/t
SURBANO	UKN	ukn	ukn	VERDECA	SI	blanc	wine
SUSUMANIELLO	SI	noir	wine	VERDELLO_DI_BRACCIANO	CI	blanc	wine
SYLVANER_VERDE	CNE	blanc	wine	VERDICCHIO_BIANCO	IT	blanc	wine

TAGLIAFERRO	CI	noir	wine	VERDISO	NI	blanc	w/t
TANNAT	WE	noir	wine	VERDUSCHIA	CI	blanc	wine
TAZZELENGHE	NI	noir	wine	VERDUZZO_FRIULANO	NI	blanc	wine
TEMPRANILLO	WE	noir	wine	VERDUZZO_TREVIGIANO	NI	blanc	wine
TERBASCI_cp2	EE	noir	wine	VERMENTINO	CI	blanc	wine
TEROLDEGO	NI	noir	wine	VERMENTINO_NERO	CI	noir	wine
TERRANO	CI	noir	wine	VERNACCIA_DI_ORISTANO	IS	blanc	wine
TIMORASSO	NI	blanc	wine	VERNACCIA_DI_SGIMIGNANO	CI	blanc	wine
TINTILIA	SI	noir	wine	VERNACCIA_NERA	CI	noir	wine
TINTORIA_2	WE	noir	wine	VESPAIOLA	NI	blanc	wine
TOCAI_FRIULANO	NI	blanc	wine	VESPOLINA	NI	noir	wine
TORBATO	WE	blanc	wine	VESPRINO	IT	blanc	wine
TRAMINER_AROMATICO	NI	rouge	wine	VICTORIA	EE	blanc	table
TREBBIANO_ABRUZZESE_1	CI	blanc	wine	VIEN_DE_NUS	WE	noir	wine
TREBBIANO_ABRUZZESE_2	CI	blanc	wine	VITOUSKA	EE	blanc	wine
TREBBIANO_GIALLO	CI	blanc	wine	VUILLERMIN	CNE	noir	wine
TREBBIANO_MODENESE	CI	blanc	wine	WILDBACHER	CNE	noir	wine
TREBBIANO_SPOLETINO	CI	blanc	wine	ZAPPOLINO	IT	noir	wine
TREBBIANO_TOSCANO	IT	blanc	wine	ZELEN	EE	blanc	wine
TREVISANA_NERA	NI	noir	w/t	ZIBIBBO	SI	blanc	w/t
TROISCINA	IT	ukn	wine	ZIMAVACCA	CI	blanc	table
TUCCANESE	SI	noir	wine	ZINGARELLO	CI	noir	wine
TURCA	NI	noir	wine				
UCELUT	NI	blanc	wine				
ULIVELLO	CI	noir	wine				
UVA_ACETO	IT	blanc	wine				
UVA_CARNE	IT	noir/rouge	wine				
UVA_CARRIERI	IT	blanc	wine				
UVA_DEI_VECCHI	CI	blanc	wine				
UVA_DI_COLOGNE	WE	blanc	wine				
UVA_DI_CRIMEA	IT	noir	wine				
UVA_DI_TROIA	SI	noir	wine				
UVA_GATTA	IT	noir	wine				
UVA_LONGANESI	CI	noir	wine				
UVA_MELONA	IS	rouge	table				
UVA_PRUGNA	IT	blanc/noir	table				

UVA_RARA	NI	noir	wine
UVA_REALE	CI	blanc	wine
UVA_TOSCA	CI	noir	wine
UVALINO	NI	noir	wine
VALENTINO	NI	noir	wine
VECCIUTELLO	CI	noir	wine

Supplementary Table 14. Description of the 132 cultivars included in the GWAS diversity panel.

NAME	Genotyped by	Country	Color	Usage	STR-3	STR-6
AHMEUR_MONARDE	CCC	WE	rose/noir	table	A-STR	a
ALBANA	CCC	CI	blanc	wine	ADMIXED	g
ALBARANZEULI_BIANCO	Laucou	IS	blanc	wine	A-STR	a
ALEANTE_RIVALTO	CCC	CI	noir	wine	A-STR	g
ALEATICO	Laucou	CI	noir	w/t	A-STR	g
ALICANTE_BOUSCHET	Laucou	WE	noir	wine	A-STR	g
ALPHONSE_LAVALLEE	Laucou	WE	noir	w/t/r	ADMIXED	b
ANCELLOTTA	Laucou	CI	noir	wine	B-STR	d
ANSONICA	Laucou	CI	blanc	w/t	A-STR	g
BELLONE	Laucou	CI	blanc	wine	A-STR	f
AXINA_DE_TRES_BIAS	CCC	IT	noir	wine	A-STR	g
BARBERA_BIANCA	CCC	NI	blanc	wine	A-STR	g
BARESANA	Laucou	IT	noir/rose	table	A-STR	a
CREPALLOCCHI	CCC	CI	noir	wine	B-STR	d
BIANCO_DALESSANO	Laucou	SI	noir	wine	A-STR	g
BOMBINO_BIANCO	Laucou	CI	blanc	wine	A-STR	f
BICANE	Laucou	WE	blanc	w/t	ADMIXED	g
BONAMICO	Laucou	CI	noir	wine	ADMIXED	g
BRACHETTO	Laucou	NI	noir	wine	ADMIXED	g
CABERNET_FRANC	Laucou	WE	noir	wine	ADMIXED	g
CAGNULARI	CCC	WE	noir	wine	ADMIXED	g
CALABRESE	Laucou	SI	noir	wine	ADMIXED	g
CANNER_SEEDLESS	CCC	AM	blanc	table	A-STR	a
CARDINAL	Laucou	AM	rouge/noir	w/t	ADMIXED	b
CARIGNANO	Laucou	CI	noir	wine	A-STR	g
FORTANA	CCC	CI	noir	wine	ADMIXED	d
CATALANESCA_BIANCA	Laucou	SI	blanc	w/t	A-STR	a
INC_MALVASIA_X_TREBBIANO_TOSCANO	CCC	CI	ukn	wine	A-STR	f
LAMBRUSCO_A_FOGLIA_FRAST	CCC	CI	noir	wine	B-STR	d
CHARDONNAY	Laucou	WE	blanc	wine	ADMIXED	g
CHASSELAS_BLANC	Laucou	WE	blanc	w/t	B-STR	g
CILIEGIOLO	Laucou	IT	noir	w/t	ADMIXED	g
CLAIRETTE	Laucou	WE	blanc	w/t	ADMIXED	g

COCOCCIOLA	Laucou	CI	blanc	w/t	A-STR	g
LAMBRUSCO_DI_SORBARA	Laucou	CI	noir	wine	B-STR	d
CORINTO_NERO	CCC	EE	noir	table	A-STR	g
LAMBRUSCO_MAESTRI	Laucou	CI	noir	wine	B-STR	d
LAMBRUSCO_MARANI	Laucou	CI	noir	wine	B-STR	d
CORNIOLA	Laucou	IT	blanc/noir	table	A-STR	a
LAMBRUSCO_SALAMINO	Laucou	CI	noir	wine	B-STR	d
CROATINA	Laucou	NI	noir	wine	ADMIXED	g
CROVASSA	CCC	NI	noir	wine	ADMIXED	g
DATTIER_DE_BEYROUTH	Laucou	WE	blanc	table	A-STR	a
DIMIAT	Laucou	WE	blanc	w/t	A-STR	g
DON_MARIANO	Laucou	WE	noir	table	A-STR	a
EARLY_MUSCAT	CCC	AM	blanc	w/t	ADMIXED	b
FALANGHINA	Laucou	SI	blanc	wine	ADMIXED	g
FLAVIS	CCC	NI	blanc	wine	B-STR	g
FORASTERA	Laucou	WE	blanc	wine	ADMIXED	g
GAMARET	Laucou	WE	noir	wine	B-STR	g
GAMAY	Laucou	WE	noir	wine	ADMIXED	g
GIUSTOLISI	Laucou	IT	blanc	wine	A-STR	g
GRECO_DI_TUFO	Laucou	SI	blanc	w/t	ADMIXED	g
GRILLO	Laucou	SI	blanc	wine	A-STR	g
GROSPARIOL	CCC	IT	blanc	wine	B-STR	d
HARSLEVELU	Laucou	EE	blanc	w/t	A-STR	g
IMPIGNO	Laucou	SI	blanc	wine	A-STR	g
INZOLIA_IMPERIALE	CCC	WE	noir	table	A-STR	a
ITALIA	Laucou	IT	blanc	table	ADMIXED	g
JULY_MUSCAT	Laucou	AM	blanc	w/t	ADMIXED	b
KADARKA	Laucou	EE	blanc/noir/gris/rose	wine	A-STR	g
KALILI	CCC	WE	ukn	table	A-STR	g
KERNER	Laucou	CNE	blanc	wine	B-STR	g
LAGREIN	Laucou	NI	noir	wine	B-STR	g
LAMBRUSCA_DI_ALESSANDRIA	CCC	NI	noir	wine	ADMIXED	g
ARNEIS	Laucou	NI	blanc	wine	B-STR	d
AVARENGO	Laucou	NI	noir	w/t	B-STR	d
CASETTA	Laucou	NI	noir	wine	B-STR	d
LAMBRUSCO_VIADANESE	CCC	CI	noir	wine	ADMIXED	g

LUMASSINA	Laucou	NI	blanc	wine	ADMIXED	g
MALBO_GENTILE	CCC	CI	noir	wine	ADMIXED	g
MALIGIA_1	CCC	UKN	blanc	wine	ADMIXED	g
MALVASIA_FURMHANN	CCC	CI	blanc	wine	ADMIXED	c
MALVASIA_ISTRIANA	Laucou	EE	blanc	wine	ADMIXED	c
MAMMOLETTA	CCC	CI	noir	w/t	ADMIXED	g
CATARRATTO_BIANCO_COMUNE	Laucou	IS	blanc	wine	ADMIXED	f
PERRICONE	Laucou	IS	noir	wine	A-STR	f
MATILDE	Laucou	IT	blanc	table	ADMIXED	b
MONTONICO_NERO	CCC	IT	noir	wine	ADMIXED	g
MONUKKA	Laucou	EE	blanc/noir	t/r	A-STR	a
MOSCATO_DI_TERRACINA	Laucou	CI	blanc	w/t	A-STR	g
MOSCATO_GIALLO	Laucou	IT	blanc	w/t	A-STR	g
MULLER_THURGAU	Laucou	CNE	blanc	wine	B-STR	g
FORSELLINA	CCC	NI	noir	wine	B-STR	d
MONTEPULCIANO	Laucou	IT	noir	wine	A-STR	f
FREISA	Laucou	NI	noir	wine	B-STR	d
NIBIO	Laucou	IT	noir	wine	ADMIXED	g
NIEDDERA	Laucou	IS	noir	wine	ADMIXED	g
OLIVETTA_BIANCA	Laucou	CI	blanc	table	A-STR	a
OLIVETTA_VIBONESE	CCC	CI	noir	table	ADMIXED	a
ORA	Laucou	WE	blanc	table	A-STR	g
FUMIN	Laucou	NI	noir	wine	B-STR	d
PANSE_PRECOCE	Laucou	WE	blanc	w/t	A-STR	g
GRIGNOLINO	Laucou	NI	noir	wine	B-STR	d
PEDRO_XIMENES	Laucou	WE	blanc	wine	A-STR	a
PERLA_DI_CSABA	Laucou	EE	blanc	w/t	ADMIXED	g
PETIT_VERDOT	Laucou	WE	noir	wine	B-STR	g
PIEDIROSSO	Laucou	SI	noir	wine	ADMIXED	g
PRIMITIVO	Laucou	CI	noir	wine	ADMIXED	g
PICOLIT	Laucou	NI	blanc	wine	B-STR	d
RED_GLOBE_1	Laucou	AM	rouge	table	A-STR	a
RED_OHANEZ	Laucou	AM	red	table	A-STR	a
RIESLING	Laucou	CNE	blanc	wine	B-STR	g
RIESLING_ITALICO	Laucou	IT	blanc	wine	B-STR	g
ROSSIGNOLA	Laucou	NI	noir	wine	ADMIXED	g

PIGNOLO	CCC	NI	noir	wine	B-STR	d
SAGRANTINO	Laucou	CI	noir	wine	ADMIXED	g
CODA_DI_VOLPE_BIANCA	Laucou	SI	blanc	w/t	ADMIXED	f
SCHIAVA_GRIGIA	CCC	NI	noir	wine	ADMIXED	g
RABOSO_PIAVE	Laucou	NI	noir	wine	B-STR	d
SCIMISCIA_1	CCC	NI	blanc	wine	B-STR	g
SELEZIONE_BRUNI_54	CCC	NI	blanc	wine	A-STR	g
SEMIDANO	Laucou	IS	blanc	wine	A-STR	g
MERLOT	Laucou	WE	noir	wine	B-STR	e
SULTANA	Laucou	EE	blanc	table	A-STR	a
TEMPRANILLO	Laucou	WE	noir	wine	A-STR	g
TERBASCI_cp2	CCC	EE	noir	wine	A-STR	a
TORBATO	CCC	WE	blanc	wine	A-STR	a
SEMILLON	Laucou	WE	blanc	wine	B-STR	e
TREBBIANO_SPOLETINO	Laucou	CI	blanc	wine	ADMIXED	g
CHENIN	Laucou	WE	blanc	wine	B-STR	e
UVA_DI_TROIA	Laucou	SI	noir	wine	A-STR	g
RAGUSANO	CCC	SI	blanc	wine	A-STR	f
VELTLINER	CCC	CNE	blanc	wine	ADMIXED	g
TINTILIA	CCC	SI	noir	wine	ADMIXED	f
VERDEA	Laucou	CI	blanc	w/t	ADMIXED	g
VERDISO	Laucou	NI	blanc	w/t	B-STR	d
VERDUZZO_FRIULANO	Laucou	NI	blanc	wine	B-STR	g
VERMENTINO_NERO	Laucou	CI	noir	wine	ADMIXED	g
VERNACCIA_DI_SGIMIGNANO	Laucou	CI	blanc	wine	ADMIXED	g
VICTORIA	Laucou	EE	blanc	table	A-STR	g
ZAPPOLINO	CCC	IT	noir	wine	ADMIXED	g

Supplementary Table 15. Concentration and quality ratio as estimated with the Nanodrop of the 37 additional samples of the CCC used to reach the 132 for the diversity panel.

NAME	Concentration (ng/ul)	A260/A280	A260/A230
ALBANA	36.42	1.813	1.472
BARBERA_BIANCA	18.69	1.827	1.296
CAGNULARI	12.62	1.742	0.869
CROVASSA	17.40	1.862	1.857
FLAVIS	26.10	1.749	1.175
FORSELLINA	34.12	1.808	1.770
FORTANA	7.30	1.537	0.342
LAMBRUSCA_DI_ALESSANDRIA	8.74	1.710	0.736
LAMBRUSCO_A_FOGLIA_FRAST	16.60	1.726	1.219
LAMBRUSCO_VIADANESE	18.67	1.804	1.530
MALBO_GENTILE	10.91	1.761	0.991
TINTILIA	32.32	1.792	1.450
PIGNOLO	25.51	1.789	1.179
SCHIAVA_GRIGIA	27.59	1.695	0.758
SCIMISCIA_1	16.83	1.666	1.075
TORBATO	21.46	1.657	0.689
VELTLINER	18.54	1.773	1.188
INZOLIA_IMPERIALE	28.85	1.777	1.460
EARLY_MUSCAT	9.49	1.615	0.522
CANNER_SEEDLESS	26.32	1.743	1.137
KALILI	54.39	NA	NA
CORINTO_NERO	39.41	NA	
INC_MALVASIA_X_TREBBIANO_TOSCANO	8.14	1.763	0.876
MALIGIA_1	33.03	1.803	1.623
MALVASIA_FURMHANN	16.55	1.797	1.101
SELEZIONE_BRUNI_54	12.84	1.674	0.706
TERBASCI_cp2	11.54	1.602	0.532
AXINA_DE_TRES_BIAS	26.89	1.777	1.084
ALEANTE_RIVALTO	13.19	1.600	0.642
CREPALLOCCHI	24.79	1.782	1.299
GROSPARIOL	15.14	1.810	1.420
ZAPPOLINO	13.90	1.669	0.711
RAGUSANO	10.06	1.492	0.349
MONTONICO_NERO	16.30	1.709	0.896
OLIVETTA_VIBONESE		1.774	0.984
AHMEUR_MONARDE	1.577	0.453	
MAMMOLETTA		1.726	1.005

Supplementary Table 16. Decay of linkage disequilibrium at 0.2 estimated with the 10 K SNPs on the diversity panel and corrected by kinship using the package LDcorSV (Mangin et al., 2012).

Chromosome	bp
$\mathbf{1}$	85845
$\mathbf{2}$	124009
$\mathbf{3}$	73080
$\mathbf{4}$	122093
$\mathbf{5}$	82377
$\mathbf{6}$	85783
$\mathbf{7}$	63387
$\mathbf{8}$	84859
$\mathbf{9}$	53133
$\mathbf{1 0}$	45839
$\mathbf{1 1}$	68616
$\mathbf{1 2}$	53121
$\mathbf{1 3}$	62514
$\mathbf{1 4}$	81352
$\mathbf{1 5}$	63304
$\mathbf{1 6}$	37407
$\mathbf{1 7}$	104773
$\mathbf{1 8}$	107425
$\mathbf{1 9}$	77366
Mean	77699

Supplementary Table 17. Results of GWAS run on each year independently. No significant results were found with QTCAT software. In red are highlighted SNPs that are common between either two approaches or two traits within the same approach. ${ }^{*} F D R<0.05$; ${ }^{* *} F D R<0.01$ as obtained from the approach under which the association was found.

		Emmax	Gapit
FB	2008	Chr5_2541834*	Chr5_2541834**
		Chr5_4058168*	Chr5_4058168*
		Chr5_4194452*	Chr5_4194452 **
	2011	Chr5_1134974*	
		Chr5_2541834**	
	2012	Chr7_10408692 **	
		Chr15_9638997 **	
		Chr15_10198185 **	
	2013	Chr16_2792486*	
VB	2010		Chr15_15612783 *
	2013		Chr18_29062596 **
F-V	2013		Chr12_7294026*
			Chr12_4097019 *
			Chr17_2824109*
			Chr17_2677298*
			Chr18_29062596 **

 EMMAX.

Acknowledgements

We are very grateful to our partners in CREA-VIT of Conegliano, in particular to Dr. Manna Crespan, Dr. Massimo Gardiman, Dr. Mirella Giust, Dr. Diego Tomasi and Dr. Riccardo Velasco, for providing data, materials and assistance.

Acknowledgments goes to Prof. Silvio Salvi for providing code to produce circos plots.

Thanks to the people that helped me in the lab: Bita, Riccardo, Luca, Matteo.

Thanks to Prof. Diana Bellin for the opportunity to conduct a research project under her supervision.

Thanks to Dr. Sara Zenoni and Prof. Giamba Tornielli.

Thanks to the awesome \#rstats community from Twitter and the StackOverflow users for providing assistance for any kind of $R /$ statistics/computer science related problem.

[^0]: No hit
 No hit
 Ankyrin repeat
 Ankyrin
 Protein kinase Xa21
 No hit
 No hit
 Protein kinase Xa21
 Receptor kinase TRKe
 Ankyrin repeat
 Ankyrin repeat protein
 No hit
 Seven in absentia SINA4
 No hit
 Ankyrin repeat
 CTV. 20
 Ankyrin repeat protein PUMILIO 5 (APUM5)
 F-box family protein
 Protease Do-like 2, chloroplastic DEGP2
 Retrotransposon protein
 Unknown protein Ribosomal protein S8 (RPS8B) 40S Protein transport protein Sec23A

 PRD1
 Pentatricopeptide repeat protein
 No hit
 Pentatricopeptide repeat-containing protein
 Vacuolar ATP synthase subunit F
 Inner membrane import protein Tic22, Chloroplast
 Xyloglucan endotransglucosylase/hydrolase 23
 Xyloglucan endotransglucosylase/hydrolase 15
 Unknown
 UDP-glucose:flavonoid 7-O-glucosyltransferase
 UDP-glucoronosyl/UDP-glucosyl transferase UGT75C1
 UDP-glucoronosyl/UDP-glucosyl transferase UGT75C1

[^1]: Carrier protein, Mitochondrial
 Unknown protein myb domain protein 93 Cryptochrome 1
 Protein phosphatase 2C
 Hydrolase, alpha/beta fold
 14-3-3 protein GF14 epsilon (GRF10) Adenosine 5 '-phosphosulfate reductase 3

 DNA-binding protein
 Leucine-rich repeat family protein Unknown protein
 Dehydration-responsive protein
 RNA recognition motif (RRM)-containing protein
 Transparent testa 1
 WPP domain-associated protein
 No hit
 Cis-zeatin O-beta-D-glucosyltransferase Cis-zeatin O-beta-D-glucosyltransferase

 No hit
 UDP-glycosyltransferase 85A1
 No hit
 Phosphate-induced protein 1 Erg-1
 Phosphotyrosyl phosphatase activator PTPA (GB:X73478) Phosphotyrosyl phosphatase activator PTPA (GB:X73478)

 UDP-glycosyltransferase 85A1
 UDP-glycosyltransferase 85A1 Cis-zeatin O-beta-D-glucosyltransferase Cis-zeatin O-beta-D-glucosyltransferase

 No hit
 Phosphate-induced protein 1
 Phosphate-induced protein 1
 Phosphate-induced protein 1
 Phosphate-induced protein 1
 Phosphotyrosyl phosphatase activator (PTPA)
 F-box protein (FBW2)

