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“Tu puoi aumentare il potere del tuo cervello da tre a cinque volte 

semplicemente ridendo e divertendoti prima di lavorare ad un problema.”  

DOUG HALL 
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ABSTRACT 

The brain is a complex system of which anatomical and functional organization is both 

segregated and integrated. A longstanding question for the neuroscience community has 

been to elucidate the mutual influences between structure and function. To that aim, 

first, structural and functional connectivity need to be explored individually. Structural 

connectivity can be measured by the Diffusion Magnetic Resonance signal followed by 

successive computational steps up to virtual tractography. Functional connectivity can be 

established by correlation between the brain activity time courses measured by different 

modalities, such as functional Magnetic Resonance Imaging or Electro/Magneto 

Encephalography. Recently, the Graph Signal Processing (GSP) framework has provided 

a new way to jointly analyse structure and function. In particular, this framework extends 

and generalizes many classical signal-processing operations to graphs (e.g., spectral 

analysis, filtering, and so on). The graph here is built by the structural connectome; i.e., 

the anatomical backbone of the brain where nodes represent brain regions and edge 

weights strength of structural connectivity. The functional signals are considered as time-

dependent graph signals; i.e., measures associated to the nodes of the graph. The concept 

of the Graph Fourier Transform then allows decomposing regional functional signals 

into, on one side, a portion that strongly aligned with the underlying structural network 

(“aligned"), and, on the other side, a portion that is not well aligned with structure 

(“liberal"). The proportion of aligned-vs-liberal energy in functional signals has been 

associated with cognitive flexibility. However, the interpretation of these multimodal 

relationships is still limited and unexplored for higher temporal resolution functional 

signals such as M/EEG. Moreover, the construction of the structural connectome itself 

using tractography is still a challenging topic, for which, in the last decade, many new 

advanced models were proposed, but their impact on the connectome remains unclear. 

In the first part of this thesis, I disentangled the variability of tractograms derived from 

different tractography methods, comparing them with a test-retest paradigm, which 

allows to define specificity and sensitivity of each model. I want to find the best trade-off 

between specificity and sensitivity to define the best model that can be deployed for 

analysis of functional signals. Moreover, I addressed the issue of weighing the graph 

comparing few estimates, highlighting the sufficiency of binary connectivity, and the 

power of the latest-generation microstructural properties in clinical applications.  

In the second part, I developed a GSP method that allows applying the aligned and 

liberal filters to M/EEG signals. The model extends the structural constraints to 

consider indirect connections, which recently demonstrated to be powerful in the 

structure/function link. I then show that it is possible to identify dynamic changes in 

aligned-vs-liberal energy, highlighting fluctuations present motor task and resting state. 

This model opens the perspective of novel biomarkers. Indeed, M/EEG are often used 

in clinical applications; e.g., multimodal integration in data from Parkinson’s disease or 

stroke could combine changes of both structural and functional connectivity.  
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SOMMARIO 

Il cervello è un sistema che integra organizzazioni anatomiche e funzionali. Negli ultimi 

dieci anni, la comunità neuroscientifica si è posta la domanda sulla relazione struttura-

funzione. Essa può essere esplorata attraverso lo studio della connettività. Nello 

specifico, la connettività strutturale può essere definita dal segnale di risonanza magnetica 

pesato in diffusione seguito dalla computazione della trattografia; mentre la correlazione 

funzionale del cervello può essere calcolata a partire da diversi segnali, come la risonanza 

magnetica funzionale o l’elettro-/magneto-encefalografia, che consente la cattura del 

segnale di attivazione cerebrale a una risoluzione temporale più elevata. Recentemente, la 

relazione struttura-funzione è stata esplorata utilizzando strumenti di elaborazione del 

segnale sui grafi, che estendono e generalizzano le operazioni di elaborazione del segnale 

ai grafi.  In specifico, alcuni studi utilizzano la trasformata di Fourier applicata alla 

connettività strutturale per misurare la decomposizione del segnale funzionale in 

porzioni che si allineano (“aligned”) e non si allineano (“liberal”) con la sottostante rete 

di materia bianca.  Il relativo allineamento funzionale con l’anatomia è stato associato alla 

flessibilità cognitiva, sottolineando forti allineamenti di attività corticali, e suggerendo che 

i sistemi sottocorticali contengono più segnali liberi rispetto alla corteccia. Queste 

relazioni multimodali non sono, però, ancora chiare per segnali con elevata risoluzione 

temporale, oltre ad essere ristretti a specifiche zone cerebrali. Oltretutto, al giorno d'oggi 

la ricostruzione della trattografia è ancora un argomento impegnativo, soprattutto se 

utilizzata per l'estrazione della connettività strutturale. Nel corso dell'ultimo decennio si è 

vista una proliferazione di nuovi modelli per ricostruire la trattografia, ma il loro 

conseguente effetto sullo strumento di connettività non è ancora chiaro. 

In questa tesi, ho districato i dubbi sulla variabilità dei trattogrammi derivati da diversi 

metodi di trattografia, confrontandoli con un paradigma di test-retest, che consente di 

definire la specificità e la sensibilità di ciascun modello. Ho cercato di trovare un 

compromesso tra queste, per definire un miglior metodo trattografico. Inoltre, ho 

affrontato il problema dei grafi pesati confrontando alcune possibili stime, evidenziando 

la sufficienza della connettività binaria e la potenza delle proprietà microstrutturali di 

nuova generazione nelle applicazioni cliniche. Qui, ho sviluppato un modello di 

proiezione che consente l'uso dei filtri aligned e liberal per i segnali di encefalografia. Il 

modello estende i vincoli strutturali per considerare le connessioni indirette, che 

recentemente si sono dimostrate utili nella relazione struttura-funzione. 

I risultati preliminari del nuovo modello indicano un’implicazione dinamica di momenti 

più aligned e momenti più liberal, evidenziando le fluttuazioni presenti nello stato di 

riposo. Inoltre, viene presentata una relazione specifica di periodi più allineati e liberali 

per il paradigma motorio. Questo modello apre la prospettiva alla definizione di nuovi 

biomarcatori. Considerando che l’encefalografia è spesso usata nelle applicazioni cliniche, 

questa integrazione multimodale applicata su dati di Parkinson o di ictus potrebbe 

combinare le informazioni dei cambiamenti strutturali e funzionali nelle connessioni 

cerebrali, che al momento sono state dimostrate individualmente.  
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The human brain is one of the biggest and complex structures of the body. The 

cerebral cortex contains approximately from 15 to 30 billion neurons, and each one 

is connected by synapses to several thousand other neurons. These neurons 

communicate together with electrical train pulses carried along protoplasmic fibers 

called axons (presented in Figure 1.1). These axons can transfer information from 

one side of the brain to another far away with very long fibers, also more than 1 m in 

length. 

 
Figure 1.1: Neuronal system representation (with permission from B. Alberts et al., Molecular Biology of the Cell, 

Fourth Edition: Garland Science 2002, p. 1228). 

An intrinsic multiscale architecture can be retrieved in the brain, defining 

different physical levels: 

• Microscale (shown in Figure 1.2-A) is the level of single neurons and 

synapses (1μm resolution). It could be explored with electron 

microscopy, but the number of neurons comprising the brain easily 

ranges into the billions in more highly evolved organisms. The human 

cerebral cortex alone contains on the order of 1010 neurons linked by 1014 

synaptic connections.  

• Mesoscale (shown in Figure 1.2-B) is the level of neuronal group of 

populations (100μm resolution), which form local circuits that link 

hundreds or thousands of individual neurons. This scale can be explored 

with invasive techniques such as histological dissection and staining, 

degeneration methods, and axonal tracing. 

• Macroscale (shown in Figure 1.2-C) is the level of anatomically distinct 

brain regions and inter-regional pathways (mm resolution), which can be 

explored with in-vivo imaging techniques such as the Computed axial 
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Tomography (CT), Optical Imaging (OI) and Magnetic Resonance 

Imaging (MRI). 

 
Figure 1.2: Example of different scales, from micro-scale (neurons) on left to meso- (groups of neurons) to macro-scale 

(cortical regions) on the right. 

As shown, the brain is a complex and highly dynamic biological network, which 

has only been partially mapped to date. The intrinsic differentiation of the brain in 

scales allows neuroscientists to study at different levels the networks describing the 

dynamicity of this complex organ. 

1.1 THE ERA OF HUMAN CONNECTOMICS 

In neuroscience, the term “connectome” was introduced in 2005 to define the 

mapping of neural interactions within the brain. Inspired by the ongoing effort to 

sequence the human genetic code to build a so-called genome, two different 

scientists, Sporns [1] and Hagmann [2], suggested the term "connectome", 

simultaneously but independently, to refer to a map of the neural connections. 

Accordingly, the study of connectomes is known as connectomics, which might 

range from the detailed microscale of the full set of neurons and synapses within the 

nervous system of an organism (or part of it), to the macroscale description of the 

connectivity between bigger cortical and subcortical structures. The Hagmann 

declination of connectome was referred to the structural description of the human 

brains as a physical structure, but the brain is more than a physical set of tissues. 

Sporns had a more complex declination, defining different conceptualizations of the 

brain and consequently of the connectome (see Figure 1.3): 

• Structural connectivity represents a physical network of connections, 

which may correspond to fiber pathways or individual synapses. It may 
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be investigated with patterns approaches, which include tract tracing and 

reconstruction of axon from serial sections of neural tissue [3]. 

Alternatively, diffusion imaging techniques yield probabilistic connection 

profiles, which are in-vivo estimations of structural connectivity at a 

specific spatial scale [4]. 

• Functional connectivity measures patterns of dynamic interactions 

among recording sites or brain parcels and investigates changes in these 

interactions during experimental perturbations [5]. It can be empirically 

measured as correlation/covariance between brain regions’ signals which 

change over time. Different in-vivo techniques can acquire the functional 

signal from the scalp, such as Electro and Magneto Encephalography 

(EEG/MEG), or in the brain; e.g., functional MRI (fMRI). 

• Effective connectivity describes causal effects of one neural system 

over another one [5].  This connectivity can be inferred from high 

temporal resolution data acquired through EEG/MEG, by performing 

sophisticated time series analysis.  

 
Figure 1.3: Illustration of structural, functional and effective brain connectivity and their difference in a graphical view. 

A connectome defined at the microscale is feasible for species with relatively 

simple brains (for example C. elegans) and desirable given the valuable information it 

provides for single cell studies of development and physiology. However, for species 

with larger brains, remarkably humans, a definition of the connectome at micro- and 

meso-scales implies several considerable methodological and computational 

obstacles. For example, a reconstruction of high-resolution mammalian brain (1 

mm3) may generate on the order of a thousand terabytes of data. Reconstructing a 

whole human brain at such resolution would certainly exceed a million petabytes, a 

data set larger than all the written material in all the libraries of the world [6]. While 

methods for mapping the connectome at the microscale are still under development, 
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numerous established empirical approaches based on modern neuroimaging 

techniques allow nowadays the construction of connectome data sets at the level of 

macroscopic connectivity.  

1.2 MODERN NEUROIMAGING TECHNIQUES 

The macro-scale connectivity can be estimated from different signals acquired 

with different imaging modalities. We can distinguish between two main categories 

based on the signal which is acquired: 

- Structural imaging, which permit to investigate the structure of the nervous 

system; 

- Functional imaging, which is used to define the activity of the brain and 

therefore the synchronization or desynchronization of regions. 

The modern set of neuroimaging techniques is composed by non-invasive methods 

that allow estimating structural and functional signals, such as Magnetic resonance 

imaging for both structure and function and Encephalography for the functional 

signal. More details will follow in the next paragraphs about these techniques. 

 

1.2.1 Magnetic resonance imaging 

Magnetic Resonance Imaging (MRI) is a modern medical imaging technique that 

uses strong magnetic fields and radio waves to generate images of the different 

tissues in the body. MRI is largely used in clinical medical diagnosis, thanks to its 

ability of defining the different stages of disease and follow-up non-invasively; i.e., 

avoiding radiation exposure. On the other hand, MRI scans are typically longer and 

louder compared to computer tomography (CT), and need the subject to enter in a 

narrow and constringing tube, which might cause issues in case of claustrophobia. 

Moreover, subjects with medical implants or non-removable metal objects inside the 

body cannot enter the MRI scanner.  

The signal is measured from a receiving coil, which acquires a radio frequency 

signal emitted by excited hydrogen atoms inside the body, after the application of a 

temporarily oscillating magnetic field at the appropriate resonance frequency. 
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Changing the frequency signal applied to the acquisition, images with different 

contrasts can be acquired, making MRI a versatile and useful tool for a large 

spectrum of applications. For example, in the application to the brain, the T1-

weighted contrast permits to reconstruct an image with appreciable anatomical detail 

and differentiate really well different brain tissues, i.e., white matter, gray matter and 

cerebrospinal fluid. Instead, the blood-oxygen-level dependent (BOLD) contrast [7] 

on which functional MRI (fMRI) is based, detects changes associated to blood flow, 

that can be brought back to brain activity. Alternatively, diffusion-weighted MRI 

(DW-MRI) measures the Brownian motion of water molecules inside the body, 

acquiring the energy response of several spatially-varying magnetic fields (i.e., 

gradients) applied in different directions [8]. We will detail in the next paragraph the 

main principles of DW-MRI processing in order to investigate structural 

connectivity.  

 

1.2.2 Advanced diffusion-weighted MRI to build structural connectomes 

Theoretically, DW-MRI acquisitions with three gradient directions are sufficient 

to estimate a three-dimensional diffusion profile, represented by a simple diffusion 

tensor [9]. However, this representation is unable to characterize complex 

architectures, such as crossing, kissing or fanning between fiber bundles, that require 

more than one tensor to be correctly reconstructed. In the last years, advanced DW-

MRI techniques were developed in order to avoid this limitation, employing more 

diffusion gradients and opening the possibility to use sophisticated mathematical 

models to better estimate the white matter axonal pathways, even in presence of 

complex architectures. The estimation of the axonal pathways, generally called fibers, 

allows to virtually reconstructing axonal connections between all voxels in the brain. 

Structural connectomes can then be derived by quantifying the presence of 

connections between pairs of brain parcels, generally derived from standard atlases. 

Multiple metrics of connectivity can be used, such as the number of connections (i.e., 

the number of reconstructed fibers in the bundle), the mean length of the connection 

or metrics describing the microstructural properties of bundles, such as fractional 

anisotropy (FA, more detail in Chapter 2). In the last few years, the usage of 

microstructural properties to weigh the structural connectivity has become popular, 
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for example Falcon and colleagues proposed the use of FA normalized with the 

number of fibers for each connection as connectivity metric [10]. This allows for a 

more precise connectivity model, informed with microstructural properties of the 

network, which might be particularly useful in clinical applications, where a 

deterioration of these properties is often found. Extensive details about structural 

connectivity measures and methods will be given in Chapter 2/3. 

 

1.2.3 Encephalography and source imaging to obtain functional 

connectomes 

Both Electroencephalography (EEG) and magnetoencephalography (MEG) 

localize neural electrical activity with extracranial recordings. They measure, 

respectively, electric potential differences and weak magnetic fields that are generated 

by the electric activity of the neural cells. When a neuron is excited, it produces 

excitatory postsynaptic potentials at the level of the apical dendritic tree, producing a 

potential difference between the soma cell and the basal dendrites and the apical 

dendritic tree. This potential difference causes a current that flows from the non-

excited soma and the basal dendrites to the apical tree. There are two different types 

of currents: the primary and the secondary one, which are related to intracellular and 

extracellular currents, respectively. EEG and MEG differentiate from each other by 

the sensitivity to the effects of primary and secondary currents. In details, MEG is 

more sensitive to the primary currents respect to EEG, which is extremely sensitive 

to the effects of the secondary currents [11].  Both EEG and MEG are acquired 

from the scalp, therefore a source localization approach is required to reconstruct the 

activation of the brain. The source localization process is a two-step method that 

solves two problems.  

The first step is related to the forward problem, which map the propagation 

from the neural sources to the EEG electrodes and/or the MEG SQUID on the 

scalp. It can be formulated as: 

𝑌̂𝑡 = 𝐺𝑋𝑡 

where 𝑌̂𝑡 = [𝑦1,𝑡, 𝑦2,𝑡, … , 𝑦𝑁𝐸,𝑡] represents the observations in the 𝑁𝐸 channels at 

time 𝑡, 𝑋𝑡 = [𝑥1,𝑡, 𝑥2,𝑡, … , 𝑥𝑁𝑆,𝑡] represents the signals of 𝑁𝑆 dipole sources at time 𝑡 
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and 𝐺 is the solution of the forward problem. The forward problem needs to first 

estimate the volume conductor that model the conductivity between brain and scalp. 

The important aspects to configure the volume conductor are the geometry of the 

head, the tissue conductivities and the electrodes/magnetometers placement respect 

to the head. Starting from the geometry of the head, different types of geometrical 

model exist in literature. The simplest model is based on one or three/four 

concentric spheres that represent the different tissues of the head, such as the scalp, 

the brain matter and the liquid between scalp and brain. This spherical approach is 

enough for most EEG/MEG numerical solutions. However, the head is not 

spherical, and the localization of the deep sources requires a realistic shape for the 

head volume conductor [12]. The realistic models are more accurate, improving the 

dipole localization of few centimetres [13] [14] [15]. The models based on a realistic 

shape utilized different imaging modalities, such as the T1-weighted MRI or the CT. 

Some examples of realistic geometry models are the Boundary Element Method 

(BEM) or the Finite Element Method (FEM), which approximate head shape better 

than the spherical model, but with a computational complexity. The second 

requirement for the forward problem is the electrical characteristics of biological 

tissues, which are inhomogeneous, anisotropic, dispersive, and nonlinear. Head 

tissues such as the skull, scalp, muscles, cerebrospinal fluid, grey and white matter 

have different conductivities σ, permittivity ε, and magnetic permeabilities μ. The 

skull as well as the scalp shows a multilayer structure, which presents different 

electrical properties. The multilayer modelling is a possible solution to describe the 

geometry of the tissue [16]. Another possibility attribute inhomogeneous properties 

to the tissue, assigning different tensors of conductivity σ = σ(x, y, z) and permittivity 

ε = ε(x, y, z) on each triangular elements of the brain surface mesh. These 

conductivity values influence the forward problems and the inverse solution. 

Consequently, it is critical to assign proper and accurate conductivity values of an 

individual’s head. As reported in literature, an average value can be extrapolated from 

electrical property ranges for most head tissues in terms of conductivity σ and 

permittivity ε [12] [17] [18] [19] [20]. Using the average values may result in 

inaccurate solutions due to a function of position [21] or of age [22]. However, some 

studies have shown that the usage of approximated conductivities is reasonable if 

combined with an accurate geometrical description of the head (i.e. based on a 
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subject’s T1-weighted or CT images) [23]. In order to determine the 

electrodes/magnetometers placement respect to the head two different systems are 

used. In EEG some reference points may be acquired respect to a fix reference 

system in order to reconstruct the brain in space and perfectly overlap the electrodes 

over the scalp reference system. Generally, three points are required for the head. 

These points are the nasion (intersection of the frontal bone and the two nasal 

bones) and the two tragu (small pointed eminence of the external ear). Moreover, the 

coordinates of all electrodes may be acquired to have the position of the cap on the 

head. In case of MEG, the magnetometers are fix in space. Consequently, only three 

reference points (nasion and two tragus) are acquired as coordinates respect to the 

centre of the magnetic coil. After the reconstruction of the brain reference system 

with the setup of the sources and their relationship with the electrodes, the Maxwell’s 

equations are solved to extract the linear operator 𝐺, which links the conduction of 

the different layers from the scalp to the brain. The leadfield matrix 𝐺 is a matrix in 

which each source point is described as a combination of 𝑁𝐸 fields. 

The second step of the source localization is related to the inverse problem, 

which defines the relationship between the source in the brain and the electric or 

magnetic field acquired on the scalp. The inverse problem is formulated as: 

𝑋𝑡 = 𝐺−1𝑌𝑡 + 𝜐𝑡 

where 𝑋𝑡 = [𝑥1,𝑡, 𝑥2,𝑡, … , 𝑥𝑁𝑆,𝑡] represents the solution of 𝑁𝑆 sources at time 𝑡, 𝑌𝑡 =

[𝑦1,𝑡, 𝑦2,𝑡, … , 𝑦𝑁𝐸,𝑡] represents the observations in the 𝑁𝐸 channels at time 𝑡, 𝐺 is the 

leadfield matrix estimate with the forward problem and 𝜐𝑡 is the added noise, 

generally modelled as a Gaussian vector [24]. The estimation of the location and the 

strengths of the 𝑁𝑆 sources is essentially an ill-posed problem due to the infinite 

number of possible solutions. For this reason, different inverse modelling 

approaches exist as particular inverse solutions. The earliest and most straightforward 

strategy is to fix the number of sources and use a nonlinear estimation algorithm to 

minimize the squared error between the data and the fields, calculating the Frobenius 

norm of the residual  [11] [25] [26]: 

min
𝑠

‖𝑌 − 𝑌̂‖
𝐹

2
 

where s refers to all the dipole sources as a set of positions 𝑟𝑖 and orientations 𝜃𝑖 ; 𝑌 

is the set of EEG/MEG signals, and 𝑌̂ = 𝐺𝑋 is the estimated signals from the 
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leadfield matrix 𝐺 and the set of dipole sources 𝑋 derived by the inverse problem. 

This model represents only one of the models present in literature, but it will be the 

model used in this thesis, referring as Minimum Norm Estimation (MNE).  

 

1.2.4 Multimodal approaches for connectomics 

A relationship between different types of connectomes (anatomical, functional, 

effective) is expected to exist, because they represent the results of different probes 

of the same network, the brain. The investigation of this relationship still represents a 

significant challenge to present-day and has been the focus several works in the field 

in the last decade. The application of graph network analysis allows the comparison 

of brain connectivity patterns obtained from different connectivity modalities. For 

example, the discovery of small-world attributes in functional connectivity patterns 

derived from fMRI, EEG and MEG studies raises the question of how closely 

functional connections map onto structural connections. An emerging view suggests 

that structural connection patterns are indeed major constraints for the dynamics of 

cortical circuits and systems, which are captured by functional and effective 

connectivity. In addition to the constraining influence of structural connections, 

rapid temporal fluctuations in functional or effective connectivity may reflect 

additional changes in physiological variables or input. Given these links between 

structural and functional connectivity, it is likely that at least some structural 

characteristics of brain regions are reflected in their functional interactions. For 

example, structural hub regions should maintain a large numbers of functional 

relations. A computational model of the large-scale structure of cerebral cortex [27] 

suggested a partial correspondence between structural and functional hubs even at 

very short time scales. Moreover, Honey et al [28] tried a predicting approach of 

resting-state functional connectivity from structural one, using distance and indirect 

anatomical connections to mediate the relationship between connectivities. Then, 

van den Heuvel and colleagues proved the presence of a link between resting state 

networks (RSNs) and structural architecture, demonstrating the existence of 

structural white matter connections between the functionally linked regions of RSNs 

[29]. After that, in 2012 Bowman et al [30] proposed a cluster analysis with a novel 
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distance measure to underlie the importance of structural connectivity to supplement 

the functional MRI data. They described the combined functional-structure 

dissimilarity measure to infer their anatomically-weighted functional connectivity 

(awFC). Finally, in 2015 Falcon and colleagues used a novel application, i.e. The 

Virtual Brain (TVB), which uses Fractional Anisotropy (FA) weighted for number of 

streamlines in combination with lengths of individual connections, to simulate the 

functional BOLD signal [10].  

Recently, some studies explored the use of graph signal-processing (see par. 1,3 

for extensive details), which generalizes basic operations of signal processing to 

graphs, to combine functional and structural data [31] [32]. The Graph Fourier 

Transform (GFT) associated with spectral filtering operations, for instance, allows 

for the decomposition of the functional signal into a portion that aligns tightly to the 

structural backbone of connectivity, and a portion which detached from that. 

Medaglia and colleagues interestingly showed how measures of alignment/liberality 

of functional connectivity respect to the white matter structure are indeed subject-

specific and relate to individual scores of cognitive flexibilities. However, this study is 

limited to the exploration of functional signals with fMRI. A recent study [33] 

demonstrates that estimations from structural networks were more accurate when 

predicting MEG networks on both individual and group levels than when predicting 

fMRI networks. This justifies the need of new approaches integrating structural 

connectivity with functional signals derived from electroencephalography. 

 

1.3 GRAPH THEORY AND GRAPH SIGNAL PROCESSING 

Many data in the world reflect underlying complex structure as, for example, the 

brain. Network modelling using graphs is offering the ability to address this 

complexity. The graph perspective can be naturally used for whole-brain 

“connectomics”, where the graph 𝐺 = 〈𝑉, 𝐸〉 is identified with a set of nodes 𝑉 as 

parcels of brain and the edges 𝐸 are the structural or functional links between 

parcels. The edge weights can be binarized or weighted. At the beginning, graph 

theory was used first in functional connectivity studies [34], but in the past few years 

this kind of approach has also been applied to structural studies [35]. In particular, 

Falcon and colleagues presented a connectivity analysis applying graph theory on a 
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weighted structural graph with quantitative standard microstructural properties (FA 

values) normalized by the number of fibers [10]. Graph theory then allows estimating 

graph-theoretical local or global measures that summarize the topological structure. 

For instance, assortative measures, distance measures, motifs measures, centrality 

measures, efficiency measures and many other can be estimated for each node [36]. 

In many cases, these estimations are used to compare different graphs, finding 

similarity and differences between them. For example, the Laplacian matrix can be 

used to find many useful properties of a graph. Given a graph 𝐺, its Laplacian matrix 

𝐿 is defined as: 

𝐿 = 𝐷 − 𝐴 

where 𝐷 is the degree matrix and 𝐴 is the adjacency matrix of the graph. This graph 

Laplacian has some interesting properties (i.e, symmetric and diagonally dominant, 

positive-semidefinite [𝜆𝑖 ≥ 0, for all 𝑖] ecc.) that makes it a powerful representation 

also for complex graphs. 

The introduction of graph signal processing permits to approach the analysis of 

the graph with a different perspective. It represents a powerful tool for the 

representation, processing and analysis of complex graphs [37]. The Graph Fourier 

Transform (GFT) is one of the main graph signal processing tools, which define a 

Fourier transform in a graph. Specifically, an analogy can be described with the 

classical Fourier transform of a function 𝑓 in terms of the complex exponentials: 

f̂(ξ) ≔ ⟨f, e2πiξt⟩ = ∫𝑓(𝑡)𝑒−2𝜋𝑖𝜉𝑡

ℝ

dt 

where it can be observed that the Fourier kernel is also an eigenfunction of the derivative 

operator. Therefore, the GFT 𝑓 of a graph signal 𝑓 ∈ ℝ𝑁 associated to the vertices of a 

graph 𝒢 can be defined in terms of the eigenvectors of the graph Laplacian: 

𝑓(𝜆ℓ) ≔ ⟨𝑓, 𝑢ℓ⟩ = ∑𝑓(𝑖)𝑢ℓ
∗

𝑁

𝑖=1

(𝑖) 

Then, similar notions of frequencies and frequency components are provided by 

Laplacian eigenvalues and eigenvectors, respectively [37]. Connected graphs present a 

constant Laplacian eigenvector 𝑢0 associated with the eigenvalue 0, which has the 

constant value 1
√𝑁

⁄  in each vertex. Moreover, the graph Laplacian eigenvectors 
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associated with low frequencies 𝜆ℓ vary slowly across the graph, while the ones 

associated with larger eigenvalues oscillate more rapidly. 

 

1.4 OPEN CHALLENGES 

Advanced connectivity model. Validation of connectivity models is nowadays 

one of the most important question. Indeed, the fibers represent only an estimation 

of the axonal pathways, and there are a lot of different signal reconstruction model 

that can result on different accuracy on the reconstruction of the main directions in 

each voxel. Moreover, the spatial concept of the connectivity might change choosing 

different parcellation, and there are a lot of different atlases based on the function or 

on the cytoarchitecture or simply based on particles subdivision. No solutions are 

currently available to validate the entire connectome. Partial validation based on 

histology can be performed for the structural part and the use of phantoms and 

synthetic data is of help, but a clear way to identify the accuracy of the structural 

connectivity at the global level is still missing. 

Advanced weighting model. Although the most used structural connectivity is 

the binary one, Falcon and colleagues [10] open the issues of using some informative 

properties in the connectivity. Recently, the proliferation of reconstruction models 

has been followed by a proliferation of new diffusion indices, which can be more 

informative respect to a measure of the anisotropy. These new generation 

microstructural indices are just presented in the literature and no assessment in 

clinical application is present in the state-of-art. Moreover, the assessment and 

usability of more informative techniques in the connectivity model is not explored 

yet. 

Function/structure link. The state-of-art about the multimodal approaches 

presents some examples of integration between structure and function, but does not 

appear fully explored yet. The adoption of multimodal techniques is important to 

increase the knowledge of brain mapping. Almost all approaches presented above 

investigates the link between static connectivities, which is the simplest case. But, as 

already described, the brain is a complex high dynamic biological network and some 



 Chapter 1 – Introduction 

36 

 

studies suggested that the correspondence between structure and function is only 

partial. Graph signal processing opens new interesting possibilities to integrate the 

information of structure and function with a dynamic point of view. Recent results 

on this topic are encouraging, but many aspects of this methodology still need to be 

extended and refined.  Medaglia and colleagues [31] limited their study to brain 

activation signals derived from fMRI, while using different modalities with higher 

temporal resolution would lead to new interesting explorations. Moreover, they 

selected manually the cut-off for signal filtering; i.e., the number of components to 

derive the subdivision in aligned and liberal signals. Identifying a criterium to 

optimally define the filtering cut-offs would generalize the method and make it more 

stable and insensitive to arbitrary choices. 

 

1.5 CONTRIBUTION OF THIS WORK 

The goal of this thesis is first to assess and reduce the uncertainty embedded in 

the structural connectome estimation pipeline in such a way that the resulting model 

is neuroanatomically and neurophysiologically plausible, as well as maximally precise 

and reliable. Second, to introduce a novel multimodality approach allowing to 

dynamically integrate structure and function. In detail, we can therefore identify two 

main sections of the work, covering: 

1. Quantification and modelling of the impact of each step in the pipeline for 

structural connectivity estimation. This implies the investigation of the 

methods and parameters of each step (from the acquisition scheme, to signal 

reconstruction, to microstructure measures, to connectivity matrices and 

graphs).  

2. Investigation and modelling of the link between structural and dynamic 

functional connectivity to get to a holistic self-consistent anatomically and 

functionally plausible link over time.  

In this thesis, the estimation of the structural connectivity is evaluated from 

different points of view. First, a preliminary assessment of the recently proposed 
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microstructural properties is presented in the specific clinical application of stroke, 

one of the most diffused neurological diseases. This allows evaluating the importance 

of considering these new sets of properties based on advanced DW-MRI methods, 

which add complexity to the model and require longer time for acquisition and signal 

reconstruction analysis. Second, the reproducibility of the structural connectivity is 

estimated using different methods to reconstruct the fibers, showing the importance 

of choosing the optimal model to solve complex architectures. In this step, the 

inclusion of the microstructural properties is also evaluated through their 

reproducibility in the whole connectivity. Third, the combination that presents the 

best reproducibility is used to obtain the structural connectome, and a new method 

to integrate this with dynamic functional connectivity is introduced. 

 

In details, Chapter 2 of this thesis presents an overview of the state-of-the-art 

methods of structural connectivity estimation, describing different fiber 

reconstruction models and the assessment of fiber properties that can be used as 

biomarker.  

Chapter 3 shows the work I performed to assess some recently proposed 

indices. We start from simple focalized connections, driven by the idea to study 

loops and restricted networks related to the impairments caused by a focalized lesion. 

Then, whole-brain structural connectivity analysis is applied, using two different 

approaches: graph theory and machine learning.  

In Chapter 4, I introduce a paradigm that allows answering to the 

reproducibility question of the different methods. A possible good tractography 

eaxtraction model that better represents the stability across healthy subjects is 

defined in combination with the best properties. 

Finally, Chapter 5 describes a new model that integrates the structural 

connectivity and functional signals, derived from encephalography. The graph signal 

processing framework is adopted and allows to analyse the dynamics of functional 

signals, while considering their structural backbone underneath. 

Limitations and future perspectives of my work are then summarized and 

discussed in Chapter 6. 
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Diffusion Imaging is an in-vivo technique that allows mapping the white matter 

fibers estimating the path of the axons. In this Chapter the main steps to map the 

white matter fibers are presented. The main steps include: 

1. Acquisition of diffusion signal; 

2. Signal reconstruction; 

3. Microstructural computation; 

4. White matter fibers estimation (tractography); 

5. Parcellation definition; 

6. Connectivity extraction. 

2.1 ACQUISITION OF DWI-MRI 

The most common way to measure diffusion inside a tissue is using diffusion 

Magnetic Resonance pulses. The most common pulse is called Pulsed Gradient Spin 

Echo (PGSE). The latter was invented by Stejskal and Tanner [38]. The PGSE is 

defined by two gradients with strength G and duration δ, separated by the time Δ.  

The main idea is to measure the Brownian movement of the water molecules 

principally represented as a rotational energy state also called spin. The first gradient 

is applied after a 90 degree Radio Frequency (RF) spin-echo pulse and the second 

one after a 180 degree RF pulse. The first pulse takes the spin in the plane transverse 

to the main magnetization direction. After the time Δ the 180 degree pulse is applied 

refocusing the spins, which inverts the magnetisation vectors. This refocus is perfect 

only if the water molecules and their corresponding spins have not moved along the 

direction in which G is applied. If the water molecules have indeed diffused, the 

refocus is not perfect and the detected signal is smaller than the one that would be 

originated from static molecules. In order to quantify this signal loss, it is generally 

necessary to acquire the signal without any diffusion gradient (G = 0). This 

acquisition allows obtaining the reference signal, which only depends on the amount 

of spins in the voxel (b0 image). The amplitude of the detected diffusion signal 

depends on four factors: the direction of the diffusion gradient 𝐮, the gradient 

strength G, the pulse width δ, and the pulse separation time Δ. 

In literature, the diffusion signal S is generally expressed as a function of the so-

called q-value:  
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q =
γδ𝐆

2π
 

with 𝐆 =  G𝐮, and the water gyromagnetic ratio γ, corresponding to 2.67513·108 

T/s. The effective diffusion time τ can be calculated as Δ − δ/3 and consequently 

the b-value can be formulated as:  

b = 4π2τq2 = γ2G2δ2(Δ − δ/3) 

which is measured in s/mm2. 

Using the PGSE sequence at a certain b-value it is possible to obtain a snapshot 

of the diffusion process in a given direction, and the name of this technique is 

Diffusion Weighted Imaging (DWI). The number of gradients and b-values used to 

acquire DWIs is limited by two factors. One is the acquisition time, which increases 

with the number of directions acquired. The second is the maximal b-value 

obtainable by the scanner, which depends also on the maximal gradient strength 

Gmax. The most common diffusion weighted acquisition scheme is composed of 

multiple gradients acquired at the same b-values but in multiple directions that are 

spread uniformly on the surface of a sphere, which is called “shell” (example schema 

in Figure 2.1-A). If the number of diffusion directions is high (typically over 60 

diffusion directions) the acquisition is considered suitable for the High Angular 

Resolution Diffusion Imaging (HARDI) techniques. Acquisition presenting gradient 

spread on the surface of the sphere, but with multiple b-values, are called multi-shell 

and are suitable for advanced reconstruction models (example schema in Figure 2.1-

B). Another type of DW acquisition is the Cartesian grid acquisition scheme in which 

the three-dimensional q-space is sampled uniformly in a cube or a sphere of a certain 

radius that is called Diffusion Spectrum Imaging (DSI) (example schema in Figure 

2.1-C). 

 
Figure 2.1: example of different acquisition schemas in the q-space 
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2.2 SIGNAL RECONSTRUCTION IN DW-MRI 

The diffusion signal characterizes the tissue diffusion pattern, modelling the 

signal with mathematical approaches. Nevertheless, there are a lot of different 

models to recover the complexity of the brain tissue, which can be subdivided into 

three main categories, according to the characteristics of the models: the Propagator 

models; the Fiber Orientation models; and the Compartmental models. 

 

2.2.1 Propagator models 

The main goal for the Propagator models is the reconstruction of the Ensemble 

Average Propagator (EAP) from the diffusion signal, which represents the 

probability function of water molecules displacement in each direction: 

P(r) = ∫ E(q)e−2πiq⋅r

q∈R3

 dq 

where P(r) is linked to diffusion signal E(q) =S(q)/S0 by an inverse Fourier 

relationship. The simplest model is the most popular Diffusion Tensor Imaging 

(DTI). It was proposed by Basser and colleagues [9] modelling the signal attenuation 

in the voxels as a multivariate Gaussian function. The mathematical expression for 

the signal was the following 

E(q) = exp(−4π2ΔqT𝐃𝐪) 

where D represents the diffusivities along the three directions on the diagonal 

elements, while the other elements correspond to the correlation between 

displacements along those orthogonal axes. To estimate this model an acquisition of 

six directions is sufficient, making the total acquisition time very short. The ODF is 

modelled as a single tensor which is clearly inadequate in voxels containing complex 

fibers architectures like crossing, fanning and kissing [39] [40] [41]. 

 

2.2.2 ODF driven reconstruction model 

Conversely, the main objective of the Fiber Orientation models is to reconstruct the 

directionalities, in order to solve the problem of complex architectures, 

reconstructing more than one main direction per voxel. The most popular model is 
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the Spherical Deconvolution (SD), proposed by Tournier, in 2004 [42]. The SD 

describe the signal as the result of a convolution operation between the expected true 

fiber distribution and the response function produced by a single fiber, as shown in 

Figure 2.2 on the first row. Consequently, the expected fiber distribution, defined as 

fiber ODF (fODF), can be derived performing the inverse operation, the 

deconvolution between the measured diffusion signal profile and the response 

function (single fiber) as shown on second row of Figure 2.2. 

 
Figure 2.2: The convolution between single fiber propagation and a crossing orientation to obtain crossing propagation on 

first row, and the consequently deconvolution to obtain fiber ODF. 

This method correctly recovers the crossing fiber configuration, but it suffers of 

deconvolution problems as ill-positioning and susceptibility to noise [42]. Besides, it 

needs to assume a priori the fiber response function, which might be realistic only in 

particular bundles in the human brain; e.g., the well-known corpus callosum offers a 

good chance to have a single fiber profile in the specific direction [43]. 

 

2.2.3 Compartmental models 

The third and last class of models, the Compartmental models, focuses on 

microstructural properties and describes the signal as a composition of signals from 

different kind of tissues called compartments. The Neurite Orientation Dispersion 
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and Density Imaging (NODDI) model distinguishes three types of microstructural 

environments as compartments: the intra-cellular, the extra-cellular, and the 

cerebrospinal fluid [44]. The intracellular compartment refers to the space bounded 

by the membrane of neurites, the extra-cellular refers to the space around the 

neurites (show in Figure 2.3), and the isotropic refers to the space occupied by 

cerebrospinal fluid. Then, the signal is modelled as: 

E = (1 − viso)(vicEic + (1 − vic)Eec) + visoEiso 

where 𝑣𝑖𝑠𝑜and 𝐸𝑖𝑠𝑜 are respectively the volume fraction and the signal associated 

with the cerebrospinal fluid, 𝑣𝑖𝑐 and 𝐸𝑖𝑐 are the same for the intra-cellular 

environment, and  𝐸𝑒𝑐 are for the extra-cellular environment.   

 
Figure 2.3: The intra and extra axonal spaces seen in a representation from the above (on the right) and from the side 

(on the left). (figure from [45], with permission of Dr. Kleinnijenhuis) 

 

2.2.4 Advanced model for signal reconstruction 

In the last few years some new advanced models were defined in order to solve 

the problems of the ODF shape describing the complex architecture of 

crossing/kissing. In details, two different new formalization of Propagator models, in 

which the reference frame changed, were introduced. The cartesian model called 

Simple Harmonic Oscillator based Reconstruction and Estimation (SHORE) [46] 

was firstly introduced by Özarslan. While, in 2013 he formulated the same approach 

in Cartesian coordinates calling the method Mean Apparent Propagator (MAP) MRI 

[47]. Moreover, in 2018 Zucchelli et al. [48] introduced a revisiting NODDI model 

that combine the constraint of the Compartmental models with the possibility to extract 

the fODF with a spherical harmonics (SH) encoding. 
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In SHORE the signal is defined as a combination of orthonormal functions, 

which consists of the solutions of the three-dimensional quantum mechanical 

harmonic oscillator. The formulation in spherical coordinates was introduced in 

mono-dimensionality by Özarslan [49] and generalized to the three-dimensional 

space [46]. The signal is defined as 

E(qu) = ∑ ∑ ∑ cnlm

l

m=−l

(Nmax+l)/2

n=l

Nmax

l=0,even

Φnlm(qu) 

where 𝑁𝑚𝑎𝑥is the maximal order of the functions in the truncated series and 

Φ𝑛𝑙𝑚(𝐪) is the orthonormal SHORE basis. This family of functions is defined as 

Φnlm(qu) = [
2(n − l)!

ζ3/2Γ(n + 3/2)
]

1/2

(
q2

ζ
)

l/2

exp (
−q2

2ζ
) Ln−l

l+1/2
(
q2

ζ
) Yl

m(u) 

where Γ is the Gamma function, 𝜁 =
1

8𝜋2𝜏𝐷
 is the scaling parameter [𝜏: diffusion 

time; 𝐷: diffusivity].  

In MAP MRI the formulation can be obtained rotating the reference frame as 

E(qu) = ∑ ∑ cnxnynz

{nx,ny,nz}

Nmax

N=0

Φnxnynz
(A, q) 

where the basis functions are in the form 

Φnxnynz
(A, q) = Φnx

(ux, qx)Φny
(uy, qy)Φnz

(uz, qz) 

and A = 2Dtd is the covariance matrix of displacements [𝐃 is the diffusion tensor in 

the anatomical reference frame]. However, when comparing SHORE and MAP we 

can remark that the fiber crossing angle is underestimated by MAP when the angle is 

smaller than 90°, while SHORE does not resolve crossing smaller than 40°, as shown 

in Figure 2.4 [50]. 

 
Figure 2.4: ODFS of a noiseless multi-tensor crossing obtained using MAPMRI and 3D-SHORE. When a crossing 
is detected, the ground truth and the estimated fiber directions are shown as green and red lines. MAP is able to resolve 
much smaller crossing angles than the other techniques, but also consistently underestimates the crossing angles smaller 

than 90°. (figure from [50]) 

@[2015] IEEE 
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Last year Zucchelli et al. [48] formalized an extension of the NODDI model. 

The model, called NODDI-SH, is basically a Spherical Mean Transform (SMT)-

based extension of the NODDI model, providing a Spherical Harmonics (SH)-

encoded fODF [51] and using the volume fractions to represent the local 

directionality spreading.  The idea consists in plugging the three-compartments 

NODDI model in a signal reconstruction formula where the fODF is expressed by 

SHs. First, the neurite densities are recovered by the SMT. Then, SH coefficients are 

estimated by linear minimization [51]. Following the multi-shell SD scheme [51], the 

contribution to the diffusion signal from each compartment is obtained as the 

convolution of a single fiber response function F(b, u, v) times the fODF ρ(v) 

E(b, u) = ∫ 𝐹(𝑏, 𝐮, 𝐯)𝜌(𝐯)
v⃗⃗ ∈𝒮2

dv 

where 𝑏 is the b-value, 𝐮 is a certain gradient direction, and 𝐯 is a unit vector 

representing the considered fiber orientation. Replacing  𝜌(𝐯) with its representation 

using real symmetric SH 𝑌(𝐯), the integral can be solved in closed form: 

E(b, u) = ∑ ∑ clmfl(b)Yl
m(u)

l

m=−l

N

l=0,even

 

where 𝑁 is the maximum harmonic order, and 𝑓𝑙(𝑏) are the projection coefficients 

of the single fiber response 𝐹(𝑏) onto the SH basis [52] [53] [51]. For a three-

compartment model, 𝐹(𝑏) can be written as: 

F(b, u, v) = νicFic(b, u, v) + νecFec(b, u, v) + νcsfFcsf(b) 

where 𝜈𝑖𝑐, 𝜈𝑒𝑐, and 𝜈𝑐𝑠𝑓 are respectively the relative volume fractions of the three 

compartments intra-cellular (ic), extra-cellular (ec) and CSF (csf) with the constraint 

νic + νec + νcsf = 1. Note that the formulation of 𝐹(𝑏, 𝐮, 𝐯) is slightly different that 

the hierarchical formulation proposed in the original NODDI paper [44]. In order to 

link the two formulations, it is necessary to normalize the NODDI derived 

intracellular volume fraction by 1 − νcsf, as in [54]. The Plugging-in of NODDI 

compartments into the equation 𝐹(𝑏, 𝐮, 𝐯) represent the intra-cellular compartment 

as a stick (or cylinder with zero radius) Fic = exp (−bλ∥ (uTv⃗ ⃗⃗⃗⃗⃗⃗  ⃗)
2

), the extracellular 

signal as a Gaussian function Fec = exp (−b [(λ∥ − λ⊥) (uTv⃗ ⃗⃗⃗⃗⃗⃗  ⃗)
2

+ λ⊥]), and the 

CSF signal as an isotropic Gaussian, Fcsf = exp(−b λcsf). Moreover,  the CSF 
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diffusivity is set to λcsf =3 ⋅ 10-3 mm2/s, the parallel diffusivities (intra and extra 

cellular) are assumed to be equal to λ∥=1.7 ⋅ 10-3 mm2/s and the extra-cellular 

perpendicular diffusivity depends on the parallel diffusivity and the volume fractions:  

λ⊥ = λ∥
νec

νec+νic
. As mentioned above, the model parameters 𝜈𝑖𝑐 and 𝜈𝑒𝑐 (𝜈𝑐𝑠𝑓 and 𝜆⊥ 

are derived measures) were obtained using the SMT, as in [52] and [53]. 

 

2.3 EXTRACTION OF MICROSTRUCTURAL PROPERTIES 

From all the described methods, microstructural measures that describe the 

brain tissues properties can be derived. We will describe them in the following. 

 

2.3.1 Tensor Microstructure 

The Propagator models provide a different kind of indirect measure related to 

microstructural properties. In the case of DTI, the tensor eigenvalues and 

eigenvectors can be directly linked to biological properties of the tissues 

D = λ1v1v1
T + λ2v2v2

T + λ3v3v3
T 

where 𝜆𝑖  is the ith biggest eigenvalue associated to the eigenvector v𝑖  (𝑖 = 1; 2; 3). 

The biggest eigenvector v1 corresponds to the main diffusion direction in the tissue, 

which represents the average direction of axons in each voxel. The associated 

eigenvalue 𝜆1 represents the apparent diffusion coefficient of this principal diffusion 

direction. 

Several microstructural indices based on the tensor eigenvalues have been 

proposed in literature, such as Fractional Anisotropy (FA), Mean Diffusivity (MD), 

Radial Diffusivity (RD), Axial Diffusivity (AD). 

FA is a scalar value that describes the degree of anisotropy of the diffusion 

process. When FA equals 0, it means that diffusion is isotropic, while an FA value of 

1 means that diffusion occurs only along one axis and is fully restricted along all 

other directions. In the DTI model, FA is calculated from the eigenvalues ( 𝜆1, 𝜆2, 

𝜆3) of the diffusion tensor following this formula [55]: 
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FA =  √
1

2

(λ1 − λ2)2 + (λ1 − λ3)2 + (λ2 − λ3)2

λ1
2 + λ2

2 + λ3
2  

The FA index is often graphically represented as a brain map with colours 

corresponding to the direction indicated by v1 (colour FA). In this representation the 

colour red is associated with the x direction, green for y direction, and blue for z 

direction (example in Figure 2.5, which shows the maps of DTI FA and colour FA 

for a coronal slice of a healthy subject). 

 
Figure 2.5: FA index (left) and FA colour (right) of a healthy subject in a coronal slice. 

FA depends strictly on the structures present in the voxel: axons tubular shapes 

give high anisotropy (value > 0.5), the cell bodies in the cortex have an intermediate 

value since diffusion is generally more isotropic, and free displacement conditions 

(like in the cerebrospinal fluid) feature very low values expressing the fact that 

diffusion is perfectly isotropic (value =0).  

FA was extended to the so-called Generalized Fractional Anisotropy (GFA), 

giving it the same relationship with the structure in the voxel. GFA is calculated as 

the standard deviation of the ODF sampled on a discrete sphere in N points divided 

by its quadratic mean: 

GFA = √
N ∑ (ODF(𝐮i) − ODF̅̅ ̅̅ ̅̅ )2N

i=1

(N − 1)∑  ODF(𝐮i)2N
i=1

 

where (ODF̅̅ ̅̅ ̅̅ ) is the arithmetical mean of the ODF [56]. 

Diffusivity measures are related to the total amount of diffusion in each voxel. 

While FA is a summary measure of microstructural integrity, the diffusivity 

properties reflect different features of the brain membrane. In details, Mean 

diffusivity (MD) is an inverse measure of the membrane density, formulating as the 

mean of the three largest eigenvalues:  
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MD =
λ1 + λ2 + λ3

3
 

The other measures of diffusivity represent the relationship with the main direction, 

i.e the Axial Diffusivity (AD): 

AD = λ1 

and the mean of the other two directions, i.e the Radial Diffusivity (RD): 

RD =
λ2 + λ3

2
 

These two measures are related to the dimension of the axons measuring the 

diffusion along the axons and in the perpendicular plane, respectively. 

 

2.3.2 Compartmental Properties 

The Compartmental models permit to derive the volume of each compartment 

describing the space as a contribution of balls and sticks in the case of NODDI 

model. This method allows to estimate some measures of the tissues, such as the 

intra-cellular (𝜐𝑖𝑐), the extra-cellular (𝜐𝑒𝑐) and the isotropic (𝜐𝑖𝑠𝑜) volume fraction 

plus an index called Orientation Dispersion Index (ODI). 

The volume fraction represents a concentration of the compartment described 

in each voxel. Respectively, NODDI model allows the estimation of the following 

volume fraction measures: 

• 𝜐𝑖𝑐 refers to the space bounded by the membrane of neurites, which are 

modelled as a set of sticks (i.e. cylinders of zero radius) to capture the 

highly restricted nature of diffusion perpendicular to axons and the 

unhindered diffusion along them. 

• 𝜐𝑒𝑐 refers to the space around the axons, which is generally occupied by 

different types of glial cells or cell bodies. Here, the diffusion is 

hindered by the presence of the neurites, but it is not restricted. For this 

reason, this space is modelled as a simple anisotropic diffusion 

(Gaussian). 

• 𝜐𝑖𝑠𝑜 represents the CSF component and its space, modelled as isotropic 

Gaussian diffusion. 
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At the beginning Zhang and colleagues [57] introduced a measure of the 

dispersion or fanning of the axonal fibers or dendrites, called ODI, simply defining 

the concentration parameter of the orientation distribution function 𝜅. This measure 

was not intuitive because it mapped higher orientation dispersion with lower values. 

For this reason, in 2012, they redefined the ODI measure as:  

ODI =
2

π
arctan(1/κ) 

which ranges from 0 to 1, becoming more straightforward to visualize than κ [44]. 

 

2.3.3 Advanced Microstructural Properties 

From the advanced Propagator models some new microstructural indices were 

recently introduced in the literature. These indices are the Return To the Origin 

Probability (RTOP), the Return To the Axis Probability (RTAP), and the Return To 

the Plane Probability (RTPP). They can be calculated in two ways, either from the 

signal or from the propagator. Other two microstructural properties were defined 

with SHORE and MAPMRI definition as Propagator Anisotropy (PA) and Mean 

Square Displacement (MSD); these kinds of measure are specific characterization of 

anisotropy components and water displacement in spherical harmonics equation. 

RTOP is calculated as the volume integral of the signal or, alternately, following 

the properties of the Fourier transform, as the Ensemble Average Propagator (EAP) 

in zero: 

RTOP = ∫ E(q)
R𝟛

 d3q = P(0) 

RTOP corresponds to the probability that the water molecules do not move (or 

return to the starting point) during the time of the application of the two diffusion 

pulses of the gradient sequence (higher for more smaller cerebral tissues pores in 

WM). There are some conditions in which this index is the inverse of the apparent 

mean volume ⟨V⟩ of the pores inside the voxel: 

• long diffusion time ( Δ ≪ δ ); 

• narrow pulse ( δ ∼ 0 ). 
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Similarly, RTAP can be obtained either as the integral of the signal in the plane 

passing through the origin and perpendicular to the main diffusion direction, q⊥, or 

as the integral of the EAP along the main diffusion direction r∥⃗⃗⃗  : 

RTAP = ∫ E(q⊥)
R𝟚

 d2q⊥ = ∫P(r∥⃗⃗⃗  )
R

 dr 

RTAP represents the probability that the water molecules displacement is conned to 

the same axis during the diffusion pulses (higher for narrower pores). RTAP in long 

diffusion time and narrow pulse assumption is related to apparent mean cross-

sectional area ⟨𝐴⟩  of the pores inside the voxel as follow: 

RTAP =
1

⟨A⟩
 

RTPP can be obtained as the integral of the signal along the main diffusion 

direction or as the integral of the EAP over the plane passing through the origin and 

perpendicular to the main diffusion direction: 

RTPP = ∫E(q∥)
R

 d2q = ∫ P(r⊥)
R𝟚

 d2r⊥  

RTPP is the orthogonal indices with respect to RTAP, expressing the probability that 

the water molecules displacement is conned to the same plane (higher for shorter 

pore). RTPP in long diffusion time and narrow pulse assumption is related to 

apparent mean cross-sectional length ⟨𝐿⟩ of the pores inside the voxel as follow: 

RTPP =
1

⟨L⟩
 

PA could capture information that is unavailable in more traditional measures of 

anisotropy like FA. The idea of this index is to define the distance from the isotropic 

components: 

PA = √1 −
∑ cn00

2(Nmax/2)+1
n=0

∑ ∑ cnlm
2l

m=−l
Nmax

l=0,even

 

where cnlm is the coefficients of SHORE and MAP models. 

The MSD represents the mean square displacement of the water molecules in 

the unit time and is computed as follows: 

𝑀𝑆𝐷 = ∫ 𝑃(𝒓)𝑟2𝑑3𝒓
𝑅3
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MSD has been proven to be closely related to the classical MD index, sharing similar 

patterns [58]. 

 

2.4 TRACTOGRAPHY 

Following the principal diffusion directions in each voxels, it is possible to 

obtain a representation of the WM as "streamlines" [59] [60] [61]. These streamlines 

are a computer graphic representation of WM bundles which connect the different 

areas of the brain, although there is no guarantee that the streamlines correspond 

directly to fiber orientations, since they could also include false positives and 

negatives. The algorithms used to calculate the streamlines are called tractography 

algorithms [62]. Tractography algorithms reconstruct streamlines by following the 

principal diffusion direction in each voxel. This information is derived from the 

ODF which is dependent from the reconstruction model as described in the previous 

subsection. Stopping criteria of the reconstruction algorithm have to be introduced 

to define some rule which follows the anatomy of the brain, and these correspond 

usually two the following conditions: 

• for an acute turning white matter tract, the connection of two neighbouring 

voxels would unlikely be formed at such a large turning angle; 

• when the degree of isotropy is higher, tract tracing should stop because the 

voxel under examination is likely to contain mostly grey matter or the 

Cerebrospinal Fluid. 

Moreover, tractograms can be evaluated depending on the solving of complex 

architectures like crossing, kissing and fanning. This depends on the adopted 

reconstruction model and consequently on ODFs. Several reconstruction models are 

available and they can be dived in two main categories: Deterministic and Probabilistic 

tractography (Figure 2.6 shows an example of two main categories). 

 
Figure 2.6: Depiction of the left descending motor pathways on example subject. Local deterministic (A), probabilistic 

(B) tractography are shown respectively to give an idea of their differences. 
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2.4.1 Deterministic algorithm 

The most intuitive way to reconstruct a 3D trajectory from a 3D vector field is 

to propagate a line from a seed point by following the local vector orientation. 

However, if a line is propagated simply by connecting voxels, which are discrete 

entities, the vector information contained at each voxel may not be fully reflected in 

the propagation. The simplest way to convert the discrete voxel information into a 

continuous tracking line is to linearly propagate ‘a line’, in a continuous number field 

(see Figure 2.6-A as example). This linear propagation approach, which was called 

fiber assignment by continuous tracking (FACT), was used for the first successful 

tract reconstruction, which was accomplished for a fixed rat brain and showed good 

agreement with histological knowledge [63] [60]. This simple linear approach can be 

modified to create a smooth (curved) path, which should be more accurate when is 

permitted by the image resolution. Line propagation must be terminated at some 

point. The most intuitive termination criterion is the extent of anisotropy. In a low 

anisotropy region, such as grey matter (GM), there may not be a coherent tract 

orientation within a voxel and the orientation of the largest principal axis is more 

sensitive to noise errors (for isotropic diffusion, the anisotropy information is 

dominated by noise and becomes purely random). The disadvantage of local 

methods, particularly the FACT algorithm, is the accumulation of errors during the 

algorithm propagation. Most deterministic algorithms follow the principal orientation 

of diffusion, leading erroneous results, if there are fibers within a voxel running in 

different directions. In addition, fibers with a strong curvature may be difficult to 

reconstruct. 

2.4.2 Probabilistic algorithm 

Probabilistic tractography assesses the probability that a voxel is connected to a 

given starting point (seed), by means of iterative random walks. This method exploits 

the statistical nature of the information obtained by DWI and determines the most 

probable mathematic pathway. Figure 2.6-B shows an example of probabilistic 

tractography in which the colour from blue to red is scaled on the probability. 
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Probabilistic tractography is more robust than deterministic tractography in areas of 

high uncertainty (e.g., areas of high noise or fiber crossings). 

 

2.5 PARCELLATION 

Defining the nodes of a macroscale connectome is a complex task as we lack 

agreement on how best to define the constituent brain units. Depending on the goal 

of the investigation, the specific brain subunits represented by nodes can range from 

the small patches of cortex contained in individual MRI voxels to larger brain areas. 

 

2.5.1 Voxel-based 

The simplest approach is the using spatial unit (voxel) as Region of Interest 

(ROI). This approach permit to understand how well connected any given voxel is to 

the rest of the grey matter voxels in the brain [64] [65]. Though voxel-based nodes 

overcome the problem of defining and choosing ROIs, this represents a very 

complex problem in terms of space and in terms of visualization: a whole brain 

volume includes a number of voxels in the order 105 of magnitude. 

 

2.5.2 Particles-based 

Network nodes may be defined without reference to connection patterns, by 

defining spatial ROIs that partition the cortical surface. This approach generates 

homogeneous volume or spatial extent groups of voxels, defined particles. One 

drawback is the need to pre-specify the number of areas to be generated, which can 

be estimated based on homogeneity, accuracy, reproducibility or stability of the brain 

areas [66] [67]. 
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2.5.3 Atlas-based 

Architectural templates may be used to define anatomical regions that are aligned 

with macroscopic anatomical surface features (atlas-based parcellation). Although the 

large-scale human brain patterns captured using different strategies of parcelling data 

(gyral based atlas: ie, a gyrus was defined as running between the bottoms of two 

adjacent sulci; histological atlas: ie, post-mortem cyto- and myelo-architectonic 

segmentations; functional atlas: ie, reporting locations of activation foci in functional 

brain mapping) may bear a gross similarity to one another, the specific details 

conveyed vary substantially. Ideally, both brain function and structural information 

should be used to delineate brain areas allowing a clear definition of brain partition 

usable in both functional and structural connectivities that permit the easier 

interpretability of relationship records. 

 

2.6 STRUCTURAL CONNECTOME: FROM TRACTOGRAPHY TO 

CONNECTIVITY 

For the purpose of connectivity analysis, a mapping method is needed to 

summarize tractography, which contains about one million streamlines, in an object 

that can be analysed and compared across subjects or across cohorts, i.e.,  the 

structural connectome. 

A structural connectome reflects the extent of connection between each pair 

ROIs, so it can be represented as a matrix with ROIs as entries of rows and columns, 

where each cell aij contains the number of fibers in the tractogram connecting ROIs i 

and j. A threshold t can be defined as minimum number of fibers to define the 

presence of a connection and permits to binarize the structural connectivity matrix as 

follows: 

𝑠𝑖𝑗 = {
0    𝑖𝑓   0 ≤  𝑎𝑖𝑗  <  𝑡

1    𝑖𝑓  𝑎𝑖𝑗  ≥ 𝑡
 

Moreover, in the last few years the way to compute structural connectivity started to 

change in literature, by including more informative properties than the number of 

reconstructed streamlines; e.g., the average length of fibers or their microstructural 

properties [10].  
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Recently, new microstructural indices derived from advanced reconstruction 

models that require multi-shell acquisitions have been introduced in literature. This 

Chapter summarizes the work we performed to assess the validity of this new 

parameters as brain biomarkers in healthy subjects [Mendez, et al. 2016] and in 

stroke, from specific networks analysis [Brusini, et al. 2015, Brusini, et al. 2016; 

Boscolo, et al. 2017] to the whole connectivity [Obertino, et al. 2016 (PRNI); 

Obertino, et al. 2016 (OHBM)]. 

 

3.1 COMPARISON BETWEEN DIFFERENT INDEXES OF 

MICROSTRUCTURAL PROPERTIES 

The compartment properties (νic, νec, νiso, ODI), presented in Chapter 2, have 

been recently suggested as specific markers of white matter abnormality in stroke 

disease [68], comparing them to the well-known tensor microstructural measures, 

conventionally adopted in literature as biomarkers [69]. The advanced Propagator 

models, instead, have never been used as a set of possible markers of white matter 

changes. In order to understand if these new set of properties capture meaningful 

microstructural information, a preliminary comparison between indices based on 

different reconstruction models was performed, scoring the indices with feature 

selection approach in healthy subjects [Mendez, et al. 2016]. I contribute to this work 

doing part of the analysis, writing the paper and preparing the presentation for the 

conference. 

 

3.1.1 Methods 

Three leading diffusion MRI models were selected: the compartmental NODDI 

model, and two advanced Propagator models, i.e the SHORE and the MAP. The 

information conveyed by the respective set of indices were analysed with some 

information-theoretic measures. The features, considered in this case as different 

microstructural properties, were selected progressively, one at a time in a greedy 

scheme, in which the ith feature is selected by maximizing the objective function 
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Extended minimum Redundancy, Maximum Relevance (EmRMR) [70] which express the 

trade-off between relevance and redundancy. 

A collection of in-vivo data were obtained from the Human Connectome Project 

(HCP) [71]. A total of nine subjects was considered in this work. The HCP 

acquisition scheme consists of nine b0 values and 90 diffusion gradients distributed 

on three different shells with b = 1000; 2000; 3000 s=mm2. The diffusion HCP data 

have an isotropic spatial resolution of 1.25 mm. For each subject, a subset of the 

central image slices corresponding to the location of the ventricles was selected for 

voxel-wise analysis, amounting to an average of 3 × 104 voxels. 

In order to assess the descriptive power of some different indices (νic, νiso, ODI, 

RTAP, RTOP, RTPP, MSD and PA) in capturing microstructural features, a simple 

case was considered in which only three classes corresponding to white matter (WM), 

grey matter (GM) and cerebrospinal fluid (CSF) were present. Even though this is a 

fairly simple classification task, it allows a first ranking of the considered features 

according to the chosen criteria. To define the three different target labels, the masks 

selecting the three types of tissue provided by the HCP were used.  

Given the input dataset 𝕏 with a set of n features 𝕏 = {X1, … , Xn}, labelled with 

a target class C, the classic feature selection problem consists in identifying a 

subspace which best characterizes C from the complete attribute space ℝ𝑁 [72]. One 

of the most famous methods for feature selection based on information theory, 

called minimum Redundancy Maximum Relevance (mRMR), was presented in [72]. 

According to mRMR, the features are selected progressively, one at a time in a greedy 

scheme in which the ith feature is selected by maximizing the objective function 

expressing the trade-off between relevance and redundancy. 

max
Xi∈

𝕏
𝕊⁄
{𝑅𝑒𝑙(Xi) − 𝑅𝑒𝑑(Xi|𝕊) } 

where 

𝑅𝑒𝑙(Xi)  =  ∑𝑃(Xi, 𝐶)𝑙𝑜𝑔
𝑃(Xi, 𝐶)

𝑃(Xi)𝑃(𝐶)
Xi,𝐶

 

𝑅𝑒𝑑(Xi|𝕊) =  
1

|𝕊|
∑ 𝐼(Xi; Xj)

Xj∈𝕊

 

In this work, the EmRMR objective function was used: 
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max
Xi∈

𝕏
𝕊⁄
{𝐼(Xi; C) − 𝛼 ∑[𝐼(Xi; Xj) − 𝐼(Xi; Xj|𝐶)]

Xj∈𝕊

 } 

where relevance 𝑅𝑒𝑙(Xi) of a feature Xi is calculated as its mutual information 

𝐼(Xi; 𝐶) with the target class C, and 𝛼 is a weighting factor used for casting the 

problem as extended quadratic programming and  𝐼(Xi; Xj|𝐶) is the conditional 

mutual information [73]. 

 

3.1.2 Results  

The set of microstructural properties considered is composed by: 

• the νic and νiso volume fraction and the orientation dispersion index ODI for 

the compartmental NODDI model; 

• the RTOP, RTAP, RTPP, MSD and PA from the SHORE model; 

• the RTOP, RTAP, RTPP from MAP MRI. 

The Relevance score and subsequently the EmRMR criterium was used to rank 

all the features according to the criterium of maximum relevance and minimum total 

redundancy. Given the EmRMR as an iterative selection procedure, it was also used 

to rank the features on each model individually. The procedure was repeated by 

performing bootstrap resampling 50 times per subject in order to obtain a more 

accurate distribution of the ranking and scores. 

Figure 3.1-A shows the distribution of relevance scores calculated for the three 

target classes. The highest score was reached by MAP RTAP and RTOP followed by 

the same indices derived from SHORE and by PA. This highlights the prominence 

of the ability of SHORE-based descriptors in capturing microstructural features 

where diffusion is restricted. 

Figure 3.1-B illustrates the results of the final selection by the EmRMR method, 

in which lower scores correspond to better ranking. SHORE RTAP, PA and MAP 

RTAP reach the best performance, reinforcing the leading role of these features as 

indicated by relevance analysis. RTOP in both MAP and SHORE has a slightly worse 

score consistent with the results of the previous analysis. 
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Figure 3.1: Relevance scores (Panel A) and EmRMR ranking (Panel B) on NODDI, SHORE and MAP MRI 
indices. 

 

3.2 ASSESSMENT AND VALIDATION OF ADVANCED 

MICROSTRUCTURAL PROPERTIES IN MOTOR NETWORKS 

Giving the better ranking of the advanced Propagator models respect to NODDI, 

the assessment of the diffusion indexes extracted from these reconstruction models 

was tested in a stroke population.  The clinical dataset at the base of these 

preliminary works is composed by 10 stroke patients acquired in three different time 

points: within one week (tp1), one month (± one week, tp2), and six months (± 

fifteen days, tp3) after stroke; and ten healthy controls in two time points a month 

apart (tp1c and tp2c). All subjects underwent a DSI scans in each acquisition 

(Repetition time/Echo time [TR/TE] = 6600/138 msec, FOV = 212×212 mm, 34 

slices, 2.2×2.2×3 mm3 esolution, 258 gradient directions, bmax = 8000 s/mm2). High-

resolution 3D T1-weighted images were also included (TR/TE = 2300/3 msec, FOV 

= 256×256 mm2, 160 slices, 1×1×1.2 mm3 resolution, scan time = 6.13 min). 

Besides MRI acquisitions, patients underwent clinical neurological assessment 

following the National Institutes of Health Stroke Scale (NIHSS) at each tp. Only the 

motor part of the NIHSS score was retained for further analysis. Stroke volumes 

were derived from the individual high resolution T1-weighted images using the 

statistical parametric mapping (SPM) lesion segmentation toolbox 
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(www.fil.ion.ucl.ac.uk/spm/). The inclusion criteria, and the pre-processing of the 

data are described in [69]. 

In the following subchapters, a subsequent set of works are presented. Starting 

from a set of SHORE indexes, a qualitative analysis between cohorts was performed 

focusing on some motor connections [Brusini, et al. 2015].  While, in a second step 

the axonal remodelling was quantified in the uninjured motor cortical and subcortical 

networks [Brusini, et al. 2016], extending the set of microstructural properties 

[Boscolo, et al. 2017]. 

 

3.2.1 Clinical relevance of SHORE indices in motor-tracts 

SHORE indices, including RTAP, PA and the Axon Diameter (D) in the form 

of D =
2

π
 RTAP, were evaluated in the inter-callosal connections of the primary 

motor area (M1), the supplementary motor area (SMA), the somatosensory cortex 

(SC) and the thalamus (Thl). SHORE indices were compared with GFA, which 

previously provided evidence of plasticity in the uninjured motor network in stroke 

patients with motor deficits [69] [74]. The statistical significance of the difference 

between patients and controls was quantified, jointly with the analysis of the clinical 

status to predict motor outcomes [Brusini, et al. 2015]. My contribution to this work 

consisted in the pre-processing of the data, index extraction, help in designing the 

methods and writing of part of the paper. 

 

3.2.1.1 Methods 

For each microstructural index, the percentage absolute changes in mean values 

between time points were evaluated on both groups as: 

∆tp12c(𝑚)  = |(𝑚tp2c − 𝑚tp1c)|/𝑚tp1c 

∆tp12(𝑚)  = |(𝑚tp2 − 𝑚tp1)|/𝑚tp1 

∆tp23(𝑚)  = |(𝑚tp3 − 𝑚tp2)|/𝑚tp2 

∆tp13(𝑚)  = |(𝑚tp3 − 𝑚tp1)|/𝑚tp1 

http://www.fil.ion.ucl.ac.uk/spm/
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where m denotes the mean value of the considered index along the fibers of a given 

connection, and the subscript c denotes the control group.  

 Normality test (Kolmogorov-Smirnov) revealed that the values were normally 

distributed enabling the use of parametric statistics. Accordingly, the unpaired t-test 

with p < 0.05 was performed to establish the significant differences between 

∆tp12c(𝑚) and ∆tp12(𝑚). The predictive value of each metric was assessed by a 

linear regression model where the motor outcome at six months after stroke (tp3) 

was the dependent variable and the mean values of each index for all the connections 

at tp1, age, stroke size, and NIHSS motor scores at tp1 and tp2 were the predictors. A 

backward selection process was used to select the optimal predictor model with p = 

0.05 as significance threshold. 

 

3.2.1.2 Results 

In controls, the reproducibility of the mean GFA, RTAP, D and PA values was 

confirmed by the t-test which showed no statistical significant difference between 

tp1c and tp2c (p > 0.05).  

Figure  illustrates the mean absolute percent changes of the different indices for 

patients and controls. For each index, the absolute changes between tp1 and tp2 in 

patients' connections were significantly different from the absolute changes between 

the same regions in controls between tp1c and tp2c (0.01 ≤ p ≤ 0.05). 
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Figure 3.2: Percent mean absolute longitudinal changes in controls and patients of (A) GFA, (B) PA, (C) D and (D) 
RTAP with the statistical differences (*p < 0.05, **p < 0.01). 

In the patients' group, a baseline linear regression model including only age and 

NIHSS at tp1 and tp2 gave low correlation as well as a model including only NIHSS 

at tp1 and tp2 (R2 = 0.691; adjusted R2 = 0.652). Conversely, for each index, the 

models including also its mean values across the different connections were able to 

predict the NIHSS at tp3 with higher significance (Table 3.1: Performance of each 

prediction model.).  

Table 3.1: Performance of each prediction model. 

Index Multiple R2 Adjusted R2 p-value 

GFA 0.970 0.932 0.004 

RTAP 0.919 0.818 0.026 

D 0.998 0.990 0.008 

PA 0.991 0.973 0.004 

 



 Chapter 3 – Relevance of microstructural properties extracted from DW-MRI 

65 

 

The best prediction model was obtained with the axonal diameter D (adjusted R2 

= 0.99). However, all models led to high significance, with Adjusted R2 > 0.8, 

confirming the importance of GFA and highlighting the relevance of SHORE 

indices for an early prediction of the patient clinical outcome. Moreover, although 

GFA and PA are both anisotropy indices, PA has a higher prediction significance 

pointing at a stronger reliability of this new descriptor. 

 

3.2.2 Identifying group differences between patients and controls in WM 

networks and GM regions 

Seeing that SHORE measures are relevant for some motor inter-callosal 

connections, the analysis was extended to a series of networks involved in different 

motor skills, which were identified with the help of neurologists. The analysis on 

cortical and subcortical tissues was extended to all SHORE indices, including RTOP, 

RTPP [Brusini, et al. 2016] and MSD, comparing the significance of both statistical 

analyses of group differences between patients and controls, and the longitudinal 

prediction in patients, with the results obtained with the simple tensor measures FA 

and MD [Boscolo, et al. 2017]. Moreover, the analysis was exploited for GM regions 

in order to reach the ability to detect the neuroplasticity due by the stroke 

impairment of advanced Propagator models’ indices also in GM. For both 

contributions, my work focused on the main idea of using global WM networks 

instead only few connections. Then, I contributed to the idea of analysing the 

microstructural properties in the GM. I performed the evaluations of the weighted 

connections and region values, and I performed the analysis of both WM and GM, 

writing in particular the draft of the second paper. 

 

3.2.2.1 Methods 

The considered regions belong to M1, SMA, SC and Thl the cortical premotor 

area (PM), and some subcortical nuclei as caudatus (Cau), putamen (Put) and globus 

pallidus (GPi). The following ensembles of tracts were considered: (1) the set of 

connections between the regions cited above in the contralesional area and the 
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corpus callosum (Figure -a) that will be here indicated as trans-callosal circuit (CC); 

(2) the ensemble of connections linking the cortical regions defined as cortical loop 

(CORT) (Figure -b); (3) the ensemble of connections linking subcortical regions 

called subcortical loop (SUBCORT) (Figure -c). To provide a more detailed 

description of the SUBCORT motor pathways, five main sub-networks were 

identified: (a) M1 loop (Figure -d), (b) SMA1 loop (Figure -e), (c) SMA2 loop (Figure 

-f), (d) PM1 loop (Figure -g), (e) PM2 loop (Figure -h). 

 

Figure 3.3: Schematic representation of the trans-callosal (CC), cortical (CORT) and subcortical (SUBCORT) 
networks. The five sub-networks of this latter circuit are also reported on the right panel (d–h). 

The individual high-resolution T1-weighted images were segmented into WM, 

GM and CSF tissues using the SPM toolbox [75]. A binary mask was derived for GM 

using a conservative 95% threshold on the individual probability maps. Eighty 

regions from the Freesurfer parcellation were considered (Brainstem and Corpus 

Callosum were excluded) and masked with the binary GM mask. Four small 

subcortical regions per hemisphere resulted to be empty after GM masking and were 

excluded from further analyses, for a total of seventy-two regions. For all indices, the 

mean GM value across each masked ROI was then calculated. In particular, average 

measures were calculated across corresponding regions in both hemispheres for 

controls, while averaging was constrained to the contralateral hemisphere for 

patients, leading in both cases to thirty-six representative GM values for each index 

and subject. 
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The reproducibility of indices’ mean values were assessed by evaluating the 

intraclass correlation coefficients (ICC) and the intra- and inter-subject coefficients 

of variation (CVintra and CVinter) [76] [77] [78]. ICC is one of the most important 

methods to assess the reliability of a measure, reflecting both intra- and inter-subject 

variability. It allows evaluating how measurements derived from the same subject are 

reproducible across sessions. ICC levels and reliability can be evaluated using the 

following recommendations: poor (< 0.4), fair (0.41 – 0.59), good (0.60 – 0.74) and 

excellent (> 0.75) [79] [80]. The CVintra (within-subject CV) measures the variability 

between sessions of the same subject, reflecting both physiological variations that 

can occur in a natural way and possible measurement errors [78]. Finally, the CVinter 

(between-subject CV) measures the stability across the group, reflecting the inter-

individual variability. The representative CVinter measure was then computed as the 

mean of the CVinterj from the two sessions.  For biological measurements from MRI, 

CVintra ≤ 10% and CVinter < 15% are considered as acceptable [81] [82]. 

To compare the indices in WM, since the Kolmogorov–Smirnov normality test 

confirmed the normal distribution of the percentage values, statistical comparisons 

with an unpaired t-test were performed to detect significant differences between the 

percentage absolute changes between time points (∆𝑡𝑝12𝑐 and ∆𝑡𝑝12, ∆𝑡𝑝23, ∆𝑡𝑝13 

presented in the methods of the previous subchapter), with a strong conservative 

Bonferroni correction for multiple comparison (α = 0.05). 

In addition, in order to assess the predictive power of both tensor-derived and 

3D-SHORE-derived indices, different linear regression models were considered and 

their performance in predicting the clinical motor outcome at six months (NIHSS at 

tp3) was tested. For each network, three types of regression models were built and 

compared. In detail, the following models were considered:  

• Tensor-based model (TBM): the average across all the connections of the 

considered loop at tp1 was calculated for each index (MD, FA) and both 

mean values were included as predictors along with age, stroke size and 

NIHSS at tp1.  

• SHORE-based model (SBM): the average across all the connections of the 

considered loop at tp1 was calculated for each index (GFA, PA, RTAP, 

RTPP, MSD) and these mean values were included as predictors along with 

age, stroke size and NIHSS at tp1. 
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• Global microstructural model (GBM): all the indices (both tensor-derived and 3D-

SHORE-derived) were included as predictors, after having calculated their 

individual mean value across all the connections of the considered loop. No 

clinical information was included. 

In each case, the optimal model was identified by a backward selection process 

(significance threshold: p = 0.05).  

In order to compare the GM region-based measures, a three-way mixed (within-

between) analysis of variance (ANOVA) was firstly performed for each 

microstructural index to test the significance of different factors, using the mean 

index value as dependent variable. Three independent variables were considered: 

Time with two levels, Region with thirty-six levels (within-subject factors) and Group 

with two levels as between-subject factor. In addition, a further two-way repeated 

measures ANOVA was performed on the patient group data in order to assess for 

the presence of longitudinal changes in contralateral GM structures across all 

temporal scales. Also, in this case the mean value for each index was used as 

dependent variable in the corresponding ANOVA, while two independent variables 

were included: Time with three levels and Region with thirty-six levels. For each 

ANOVA, Mauchley test was used to assess the sphericity assumption and 

Greenhouse-Geisser epsilon adjustments for non-sphericity were applied where 

appropriate. Post-hoc tests adjusted for multiple comparisons with the Bonferroni 

correction were used when significant interactions were found. For all statistical tests, 

p < 0.05 was considered to be significant. 

 

3.2.2.2 Results 

WM networks. In terms of test-retest reproducibility, tract-based results 

highlighted excellent consistency across sessions in the three networks for tensor-

derived as well as 3D-SHORE indices, with ICC > 0.8 in almost all cases and values 

close to unity for the SUBCORT loop. This high reliability was matched with high 

intra-subject stability across sessions as measured by CVintra values, well below 10% 

and, in most of the cases, also below 5%. As expected, the between-subject variability 

was higher than the within-subject, although the mean CVinter values were ≤ 15% in 
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all networks, with similar patterns in the three loops for each index.  For each index 

and network, the mean of the percentage absolute changes between all tp is reported 

in Figure  along with standard deviation across subjects.  

 

Figure 3.4: Mean ± standard deviation longitudinal changes across subjects in percent absolute values in controls and 
patients with significant differences between cohort distributions (*p < 0.05, **p < 0.01, ***p< 0.001) for each index 

in trans-callosal (CC), cortical (CORT), and subcortical (SUBCORT) networks. 

The p-values resulting from the statistical analysis are shown as stars with three 

levels of significance (*p < 0.05, **p < 0.01, ***p < 0.001). Regarding the CC 

network, all the anisotropy measures (GFA, PA and FA) reached the highest 

significance when comparing ∆tp12c and ∆tp12 as well as ∆tp12c and ∆tp13 (p < 0.001). 

Moreover, GFA and FA showed higher significance than the other microstructural 

indices in the comparison between ∆tp12c and ∆tp23 (p < 0.01). MSD and MD 

highlighted the same patterns across time and the same statistical differences, with no 

significant changes between ∆tp12c and ∆tp23. In the CORT network, only few 

significant differences were detected between controls and patients (∆tp12) by GFA 

and RTAP, while for all the other indices the longitudinal changes, although 

appreciable, did not reach the statistical threshold. Conversely, several significant 

differences were detected again in the SUBCORT loop by all the indices at multiple 

time scales, except for RTAP and RTPP which did not depict significant changes 

between ∆tp12c and ∆tp23. All the anisotropy measures confirmed the presence of 

marked changes over time involving also this network, with similar patterns to the 

findings shown in CC.  

The reference linear regression model including only clinical variables at baseline 

(age, stroke size and NIHSS motor score at tp1) and avoiding microstructural indices 
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could predict the NIHSS outcome at tp3 with low correlation (R2 = 0.546; adjusted 

R2 = 0.489; p < 0.05). The TBM, enclosing MD-FA at tp1 plus the clinical variables, 

allowed increasing the prediction capability of the reference model in the CORT and 

SUBCORT networks. In detail, the TBM for SUBCORT presented the best 

performance (R2 = 0.975; adjusted R2 = 0.955; p < 0.001) holding MD, FA, stroke 

size and age as relevant predictors. In the case of the CORT network, a higher 

correlation than the reference model was found with the TBM retaining only stroke 

size and MD as significant predictors (R2 = 0.700; adjusted R2 = 0.614; p < 0.05). 

Conversely, the tensor-based model for CC did not include any microstructural 

index, returning the reference model as the optimal one.  

The SBM, embedding the five SHORE indices at tp1 plus the clinical variables, 

reached the highest correlation in the SUBCORT network (R2 = 1; adjusted R2 = 

0.998; p < 0.001). The optimal predictive model held clinical variables plus GFA, 

MSD, RTPP and PA as significant predictors. The SBM for CORT excluded all the 

microstructural indices, leading to the reference model as the optimal one. Finally, in 

the CC network the SBM presented a slightly lower correlation than the reference 

(R2 = 0.454; adjusted R2 = 0.385; p < 0.05) but highlighting RTPP as the only 

significant predictor. 

The GBM, including only the DWI-based indices, allowed to substantially 

increase the capability to timely predict the motor outcome compared to the clinical 

reference model. In detail, the SUBCORT network provided again the highest 

correlation (R2 = 0.728; adjusted R2 = 0.694; p < 0.01) keeping only RTPP as 

significant predictor. The predictive model for the CC network also featured high 

correlation (R2 = 0.713; adjusted R2 = 0.631; p < 0.05) maintaining MD and RTPP 

as predictors, while GFA, RTAP and MD were retained in the predictive model for 

CORT. This network led to the GBM with the lowest correlation (R2 = 0.724; 

adjusted R2 = 0.586; p < 0.05), but still higher than the reference model. 

The results emphasize the importance of using networks’ information rather 

than the single connections considered one by one, possibly highlighting the highly 

cooperative behaviour of the brain. 
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GM regions. GM region-based reproducibility results are reported in Table  in 

terms of mean and SD values across ROIs. RTAP, RTPP, MSD and MD reached 

excellent consistency, with mean ICC > 0.90 and very low SD across ROIs (< 0.10). 

Conversely, all the anisotropy measures showed only good reliability and more 

variability across the different GM structures. This was further confirmed by the 

CVintra measure, reporting mean values < 10% in all cases albeit higher for GFA, PA 

and FA in comparison to the other microstructural indices. Similar to those resulting 

from WM networks analysis the mean CVinter values were ≤ 15% in all regions, 

respecting the recommended range [81] [82]. 

Table 3.2: Reproducibility for grey matter (GM) outcomes reported as mean ± standard deviation values across all the 
considered GM regions. Results are quantified in terms of intra-class correlation coefficient (ICC) and intra-subject 

coefficient of variation (CVintra) for all the indices. 

       ICC    CVINTRA % 

GFA  0.63 ± 0.22  7.36 ± 2.96 

PA  0.61 ± 0.24  6.82 ± 2.42 

RTAP  0.91 ± 0.07  3.40 ± 1.63 

RTPP  0.92 ± 0.07  1.73 ± 0.78 

MSD  0.93 ± 0.09  1.97 ± 0.75 

FA  0.66 ± 0.17  9.25 ± 3.59 

MD  0.94 ± 0.08  3.09 ± 1.71 

Regarding the controls vs patients analyses on the outcomes from the region-

based quantification in GM tissues, the mixed ANOVA revealed a significant three-

way interaction between Group, Time (TP) and Region (ROI) for all the anisotropy 

measures (GFA, PA, and FA) and RTPP. For the four indices, post-hoc Bonferroni 

tests revealed significant between-group differences in several regions at both time 

scales, showing in these cases higher values in patients than controls (Figure -A,B). 

While the most widespread changes were detected in terms of anisotropy at tp1, four 

common regions were identified as significantly altered (Patients > Controls) also by 

RTPP. The remaining indices failed to reach a significant three-way interaction even 

though control vs patient differences can be visually appreciated in Figure -A. 

Moving a step backwards in the mixed ANOVA, all the indices except RTAP 

revealed a significant two-way interaction between Group and ROI confirming that, 
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considering the overall time scales, there were differences in specific GM regions 

between the two groups. The anisotropy measures were highly consistent, with FA 

highlighting more widespread increased values in GM for patients as before. Finally, 

only GFA, PA and FA revealed an overall significant main effect of Group. 

Considering the longitudinal analysis on the patient measures only, again all the 

anisotropy indices along with RTPP and MD revealed a significant interaction 

between TP and ROI. Post-hoc Bonferroni tests (Figure ) detected higher values just 

after the stroke event (tp1) in comparison to tp2 and tp3. Conversely, an opposite 

trend was found for RTPP detecting a single region with higher values at tp2 

compared to tp1. For MD, despite the significant interaction no regions survived the 

Bonferroni corrections of the post-hoc paired tests (Figure -B,C).  

In stroke patients, studies in GM are less consistent and generally consider the 

tissues in the contralateral hemisphere as normal [83]. However, regions remote 

(upstream or downstream) from the infarct have been demonstrated to undergo 

marked changes over a time course of 2 days to 1 year [84]. Maniega et al. [83], which 

used the contralateral part as reference, showed a trend of increased MD/decreased 

FA values within the lesion starting from the first week after the injury. Here, the 

longitudinal analyses on the patient group demonstrated a similar pattern but in the 

contralateral hemisphere, revealing an increase in MD values over time that mainly 

involved GM motor regions. Conversely, FA exhibited an initial widespread increase 

at tp1 over temporo-frontal and motor areas, followed by a gradual decrease towards 

normality at tp3. However, the fact that differences across time within a patient 

population and across groups can be detected using such indices provide evidence in 

favour of their exploitability as potential numerical biomarkers for GM plasticity in 

disease, leaving their interpretation in terms of microstructural properties an open 

issue. 
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Figure 3.5: A) Mean index values for each index and each time point (tp) block, the first column represents the controls 
while the second column the patients. B) Post-hoc results of the significant interactions between Group, TP and Region 
(ROI), expressed in red if the difference between control and patient mean values is positive (controls>patients) and in 
blue if the difference is negative (controls<patients). (C) Corresponding p-values for the significant ROIs resulting from 

the post-hoc tests. These values (p<0.05) are Bonferroni corrected for multiple comparisons. 
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Figure 3.6: A) For each index, the first column represents the mean index values at tp1, the second column at tp2 and 
the third at tp3. B) Post-hoc results of the significant interactions between Time Point (TP) and Region (ROI) for the 
different time scales (light blue: tp1-tp2; yellow: tp2-tp3; red: tp1-tp3), expressed with their sign as positive or negative 
depending on the difference results. (C) Corresponding p-values for the significant ROIs resulting from the post-hoc tests. 

These values (p<0.05) are Bonferroni corrected for multiple comparisons. 
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3.3 ASSESSMENT OF MICROSTRUCTURAL INDEXES IN THE WHOLE 

CONNECTOME 

After the simpler analyses focused on limited brain areas, further investigation 

was performed to extend the index evaluation to the whole connectome. We defined 

the connectome as an undirected graph G = (V, E), where V is the set of vertices 

corresponding to the ROIs of a full brain parcellation, and E is the set of weighted 

edges, corresponding to the connectivity values among pairs of ROIs. The 

microstructural indexes are injecting in the connectivity matrix, evaluating the mean 

value for each index along the bundle for each pair regions. In details, the mean value 

for each connection is derived by averaging all the mean values from fibers that 

belong to that connection. As already presented in Chapter 2, the structural 

connectivity summarizes the connectivity between all pairs of regions in one matrix. 

By injecting the microstructural properties, the adjacency matrix become weighted. 

In the following subchapters, two different approaches were applied: the first is a 

feature selection approach [Obertino, et al. 2016 (PRNI)], which takes into account 

the set of connections as features; the second is a graph theory approach [Obertino, 

et al. 2016 (OHBM)], in which the properties of the whole-brain connectivity are 

summarised in specific measures for each ROI, as presented in the previous Chapter. 

For this work, I helped in designing the methods, processed the data (reconstructed 

the connectome for all the subjects in each time point, injected the microstructural 

properties, applying feature selection and graph theory approaches) and contributed 

to the writing process of the papers. 

 

3.3.1 Feature selection on graph 

The weighted adjacency matrices were used as input of the infinite feature 

selection (Inf-FS) [85] algorithm to rank the features (connections) by importance 

regarding the patients versus controls classification task [Obertino, et al. 2016 

(PRNI)]. RTAP, R=D/2, GFA and PA were chosen for these analyses based on the 

previous results. In this work, 18 subjects were selected (one patient was excluded, 

because of noisy connectivity values, and consequently one control to maintain the 



 Chapter 3 – Relevance of microstructural properties extracted from DW-MRI 

76 

 

balance between classes). The ∆tp12c and ∆tp12 were taken into account in order to 

obtain the representative longitudinal values considering the highlighted importance 

of the tp1 in the previous works. As above, the average of the two hemispheres was 

considered for controls, while only the contralateral part was used for patients. 

 

3.3.1.1 Methods 

The graph G of each subject was represented by the adjacency matrix Dn, where 

each element 𝑑𝑖𝑗
𝑛 , 1 ≤ i; j ≤ N, N = 39 is the corresponding entry of the connectivity 

matrix of subject n = 1, …, 18. In order to measure how well each connection 

separates the two classes of patients (P) and controls (C), a discriminant matrix M 

was defined using a simple heuristic method for measuring class separation, based on 

the separation of the class means. For each entry, (i.e., for each feature), the mean 

and variance are estimated across subjects to generate the matrix M whose entries 

are: 

Mi,j =
μi,j

c − μi,j
p

(σi,j
c )

2
+ (σi,j

c )
2 

where 

μi,j
k =

1

Nk
∑ 𝑑𝑖,𝑗

𝑘

n∈Nk

,   k ∈ {C, P} 

In the same way, the standard deviation vectors 𝜎𝑖,𝑗
𝑘  for each feature 𝑑𝑖,𝑗

𝑘  of class k 

was calculated. The approach proposes to rank the features by importance regarding 

the patients versus controls classification task. To this end, the matrix M was used as 

input of the infinite feature selection (Inf-FS) [85] algorithm, where connections of 

the graph are seen as features. By construction, the Inf-FS method allows to use 

convergence properties of the power series of matrices and evaluate the relevance of 

a feature with respect to all the other ones taken together. In the Inf-FS formulation, 

each path of a certain length l over the graph is seen as a possible selection of 

features. Letting these paths tend to an infinite number, it permits the investigation 

of the importance of each feature. As a result, this method assigns a score of 

“importance” to each feature by taking into account all the possible feature subsets, 

therefore the higher the final score, the most important the feature. The final rank is 
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then used in the experimental section, where it was proved that the selected 

connections turn out to be effective from the classification point of view. 

In order to obtain some measure of relevance of the subset of features 

(connections), a classification approach was followed, which provides an accuracy 

measure, with precision and recall. Moreover, the receiver operating characteristic 

(ROC) curve was obtained as well as the corresponding the area under the curve 

(AUC). Training and testing pools were created using a cross-validation process 

leave-1-out method, while a Support Vector Machine was used for classification. 

 

3.3.1.2 Results 

Good performance, in terms of accuracy, precision, recall and AUC, were 

obtained using a relatively low number of features, suggesting that few connections 

could be the key for discriminating patients from controls. Among the set of the first 

20 features, six are common to the four indices. Reducing the feature set to this 

ensemble, the classification performance is slightly degraded especially for GFA and 

RTAP. However, the still good performance could be an indication of the relevance 

of such connections in the considered task, pointing to a network modulation 

involving areas in different cortical and subcortical regions. 

For the sake of comparison, Table  provides the performance of the 

classification algorithm using the 23 connections manually selected involving the 

cortical and subcortical motor loops, previously presented.  

Table 3.3: Classification performance on the 23 manually selected features from cortical and subcortical networks. 

Index Accuracy AUC Precision Recall 

GFA 66.67 56.79 61.53 88.89 

RTAP 50 54.32 50 22.22 

R 55.56 50.62 55.56 55.56 

PA 50 41.98 50 33.33 
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The discriminative power of those features is lower than that one obtained using 

the same number of features that are first ranked by the Inf-FS algorithm 

(performance reported in Table 3.4).  

Table 3.4: Classification performance on the 23 first ranked features following Inf-FS. 

Index Accuracy AUC Precision Recall 

GFA 88.89 97.53 100 77.78 

RTAP 88.89 100 100 77.78 

R 88.89 97.56 87.50 77.78 

PA 83.33 92.59 87.50 77.78 

This could suggest that a more extended portion of the network is involved in 

the plasticity process and thus that a wider perspective should be taken for its 

assessment. However, results show that connection paths with high discriminative 

power can be identified out of motor networks allowing a classification accuracy 

ranging between 83% and 98% for the different indices. 

 

3.3.2 Clinical relevance of graph analysis 

Simultaneously, the whole-brain connectivity was evaluated with graph analysis, 

estimating node (regions) properties, and testing the differences between two cohorts 

[Obertino, et al. 2016 (OHBM)]. In this work, two diffusion indices were used: GFA 

and PA. 

 

3.3.2.1 Methods 

Weighted connectivity matrices derived from each scan for each subject, 

considering contralateral hemisphere of patients, were analysed to estimate the 

following node (regions) properties:  

- Betweenness Centrality (BC): fraction of all shortest paths in the 

network that contain a given node 
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bi =
1

(n − 1)(n − 2)
∑

ρhj(i)

ρhj
j,h∈N,h≠j,h≠i,j≠i

 

where n is the number of vertices of the graph, 𝜌ℎ𝑗 is the number of 

shortest paths between h and j, and 𝜌ℎ𝑗(𝑖) is the number of shortest 

paths between h and j that pass-through i; 

- Clustering Coefficient (CC): average of the local clustering 

coefficients of all the vertices, which measure the proportion of 

links between the vertices within its neighbourhood divided by the 

number of links that could possibly exist between them 

𝐶 =
1

𝑛
∑

2𝑡𝑖
𝑘𝑖(𝑘𝑖 − 1)

𝑖∈𝑁

 

where n is the number of vertices of the graph, N is the set of graph 

nodes, ti = number of triangles around a node i and ki the 

neighbours; 

- Eigenvector Centrality (EC): influence of a node in a network  

ei =
1

λ
∑aijej

j∈N

 

where n is the number of vertices of the graph, λ is a constant, aij 

represents the presence (aij = 1) or absence (aij = 0) of link between 

nodes i and j; 

- Strength (S): sum of weights of link connected to the nod. 

For each graph measure and each microstructural information, a Kolmogorov-

Smirnov test between tp1c and each tp of patients was performed followed by 

Bonferroni's correction (P <0.05) for multiple comparisons. 

 

3.3.2.2 Results 

All microstructural indices showed significant differences only for S, EC and BC 

in two regions: Frontal and Temporal Pole (FP and TP, respectively). In particular, 

the differences between groups in the acute time point (tp1) and at 1-month follow-
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up (tp2) was reached in all cases presented above. While, only BC catches differences 

between groups among all time points tp1, tp2 and tp3 (Figure ). 

 

Figure 3.7: Graph analysis results on GFA index on the first row and PA on the second line. Only the regions (FP, 
TP) and nodes properties (S, EC and BC) with significant * p < 0.05 and ** p < 0.01 (corrected) are here reported. 

 

3.4 CONCLUSION 

The indices derived from advanced Propagator models performed better than 

classical DTI derived indices, achieving a high predictive power for clinical outcome 

over cortico-subcortical connections and a good discrimination between patients and 

controls at different time scales, further confirming their validity in the application to 

neurological disorders such as ischemic stroke. The specificity of the SHORE 

indexes is demonstrated by their significant focus in the six months changes (tp1-tp3) 

and focus in few regions respect to the generalized changes of FA in almost all the 

regions and all time points. Their combination can allow to convey a more detailed 

microstructural description, marking a step forward in the definition of a novel 

family of biomarkers. The benefit of taken into account the properties along all the 

connectivity is evidenced from the whole brain connectivity analysis with both 

feature selection and graph theory approaches. 

More in general, the set of microstructural properties derived from the advanced 

Propagator models represent stable biomarkers that should be included in the clinical-

decision processes. In particular, their values in tp1 boost the prediction of the 
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outcome of 6 month after the injury. They provide some microstructural information 

that are hidden in the classical measures, performing better than Compartmental model -

derived indices in terms of relevance and redundancy, and reaching significant results 

in healthy subjects vs patients discrimination.   



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 EVALUATION OF DIFFERENT ESTIMATES 

OF STRUCTURAL CONNECTIVITY 
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Structural connectivity analysis is a powerful tool for both neuroscience and 

clinical applications. The last ten years have witnessed a proliferation of methods for 

all the processing steps needed to obtain structural connectivity, as presented in 

Chapter 2. In particular, in the last decade the reconstruction models were improved 

with advanced models that required a multiple-shell acquisition scheme. Previously, 

an assessment of these new generation models was obtained by evaluating the error 

of the ODF [50]. However, an evaluation of these new ODF in a connectivity model 

is still lacking, leading to uncertainty on the reliability of structural connectivity with 

these advanced models.  

The utility of the injection of microstructural properties in the structural 

connectivity was demonstrated in Chapter 3 in some clinical applications. However, 

the reproducibility of the weighted structural connectivity is still unclear. In this 

Chapter, I present some published contributions in which I evaluated the 

reproducibility of different estimates of the structural connectivity. A preliminary 

work compares different procedures from the simplest DTI model to the advanced 

SHORE model [Obertino, et al. 2017 (ISMRM)]. Then, SHORE and NODDI-SH 

are compared in terms of sensitivity and specificity of the model using different 

weighting properties. The approach used for this comparison represents a framework 

that allows to assess the reproducibility of each estimate [Obertino, et al. 2017 

(CDMRI)]. 

 

4.1 COMPARING DIFFERENT CONNECTIVITY PROCEDURES 

The comparison between different procedures to obtain the connectivity matrix was 

tackled investigating the impact of the main steps of the pipeline adopted to extract 

the structural connectivity. Indeed, the choice of the reconstruction model and the 

tractography algorithm can change completely the results. Nine subjects were used to 

assess the intrinsic variability of the connectivity extracted with a different pre-

processing, considering a simplified case. To this end, the density measure (i.e the 

normalized number of streamlines that connect each pair of brain regions) was 

chosen and used to derive the connectivity matrix relying on a predefined Freesurfer 
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parcellation. DTI, CSD and SHORE were used for recovering the main diffusion 

directions through ODF reconstruction. Tractography was performed following 

either the deterministic or the probabilistic approaches relying on different software 

implementations [Obertino, et al. 2017 (ISMRM)]. In this work, I contributed 

partially to the extraction of tractographies and connectivities, I analysed them, and I 

have written the abstract for the conference. 

4.1.1 Methods 

In collaboration with the Department of Neuroradiology, in Verona University 

Hospital, nine healthy volunteers (age = 36.4 ± 9.7) were enrolled in the study. All 

participations provided written informed consent. All subjects underwent DWI 

acquisition consisting of two shells with b = 700, 2000 s/mm2, 24 and 48 gradients, 

respectively, TR/TE =8500/91 ms, FOV =230×230 mm2, 60 slices, 222 mm3 

isotropic spatial resolution (Philips 3T Achieva). Ten additional b=0 s/mm2 volumes 

were acquired, five with anterior-posterior phase-encoding and the others with 

reversed blip, resulting in pairs of images with distortions going in opposite 

directions. T1-weighted anatomical scans were also acquired in all the sessions 

(TR/TE= 8.1/3.7 ms, 180 slices, 111 mm3 resolution). 

All DWI datasets were corrected for echo-planar imaging (EPI) and eddy current 

distortions using FSL 5.0.9 and the b0 volumes that were acquired with reversed 

phase-encoding directions. In particular, the FSL TOPUP tool [86] was used for 

estimating and correcting susceptibility-induced geometric distortions. Then, the FSL 

EDDY tool [87] was applied to correct for eddy-current distortions and head 

movements. Once the data have been pre-processed, b0 images were aligned to T1 

with a linear registration, using FSL Linear Registration Tool (FLIRT) [6 degrees of 

freedom and normalised mutual information as cost function]. A set of regions of 

interest (ROIs) were extracted from the individual T1-weighted images using the 

Freesurfer Desikan-Killiany atlas (33 cortical and 8 subcortical regions per 

hemisphere plus Brain-stem and Corpus Callosum) [88].  

Three different fiber tracking softwares were considered: Diffusion Toolkit 

(DTK) [88], MRTrix [88] and DIPY [62]. The chosen softwares are the most cited in 

the literature. The study here presented allows comparing three different 

reconstruction methods (DTI, CSD, and SHORE), associated with different 
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tractography algorithms specified for each software (summarized in Table 4.1).  In 

detail: 

• In DTK, DTI reconstruction was performed using only one shell (b=2000) 

and considering four different tractography algorithms (FACT, Kutta, 

Streamline, and Tensorline); 

• In DIPY, deterministic tractography (EuDX) was performed on the three 

reconstruction models (DTI, SHORE, and CSD). 

• In MRTrix, deterministic tractography was applied to both DTI and CSD 

reconstruction, performed on the big shell (b=2000), while probabilistic 

tractography was performed using only CSD. 

Structural connectivity matrices were derived for each subject and method. As 

connectivity measure, we chose the normalized number of fibers connecting region 

pairs. A distance measure was estimated as the mean absolute difference between 

pairs of connectivity matrices [90]:  

d(X, Y) = ∑|Xij − Yij|/2

ij

 

where X and Y are two connectivity matrices. The distance analysis was performed 

across subjects for each method, across methods for each subject and over the group 

of subjects. In the latter case, the mean matrices were calculated across subjects for 

each method. 

Table 4.1: summary of all methods applied 

DTI CSD SHORE 

(DTK) FACT (DIPY) EuDX (DIPY) EuDX 

(DTK) Kutta (MRTrix) deterministic  

(DTK) Streamline (MRTrix) probabilistic  

(DTK) Tensorline   

(DIPY) EuDX   

(MRTrix) deterministic   
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4.1.2 Results 

Figure  and Table 4.2 illustrate the variability of the distance between pairs of 

subjects for each method. MRTrix probabilistic tractography following CSD 

provides the best stability across subjects (0.25-0.33).  FACT DTK followed by DTI 

MRTrix and the other DTI-based DTK methods, instead, resulted in the highest 

variability. CSD (DYPY and MRTrix) and SHORE (DYPY) deterministic 

tractography led to comparable results. The ability to disambiguate crossings 

provides to these methods an advantage over DTI, even though the DYPY 

implementation is quite close in performance. DIPY deterministic tractography 

showed the highest agreement across reconstruction models. The lowest distance is 

the one between CSD DIPY and SHORE DIPY (0.25). This result can be explained 

by the fact that the principal directions of diffusion extracted from SHORE and 

CSD ODFs are very similar. 

 

Figure 4.1: Distance analysis across subjects for each method. 

Table 4.2: Values of maximum and minimum distances across subjects for each method. 

 FACT 

DTK 

Kutta 

DTK 

Streamline 

DTK 

Tensorline 

DTK 

DTI 

DIPY 

CSD 

DIPY 

SHORE 

DIPY 

Tensor 

MRTrix 

CSD 

MRTrix 

CSD prob 

MRTrix 

max 0.55 0.51 0.52 0.50 0.44 0.43 0.45 0.55 0.41 0.33 

min 0.37 0.37 0.33 0.35 0.34 0.33 0.35 0.38 0.32 0.25 
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Figure 4.2 shows the variability of the SC distance measure for each subject 

across methods. MRTrix methods differ with respect to the others, as also confirmed 

by the group analysis (Figure 4.3), probably due by the difference of the tractography 

algorithms of MRTrix respect to the others.  

 

Figure 4.2: Distance analysis across methods for each subject. 

 
Figure 4.3: Distance analysis across methods on mean matrices of subject group. 

Overall, these results suggest that MRTrix provides structural connectivity 

measures that are different from those obtained by the other methods and that lead 

to higher stability across subjects, especially following CSD. 
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4.2 COMBINATION OF ADVANCED ACQUISITION PROTOCOL AND 

ADVANCED MEASURES 

The main limitation of the previous work regards the impossibility to 

quantitively compare different techniques. In order to define an optimal model, it is 

necessary to find a method that quantifies the precision of each tractogram model. A 

possible way to define the precision of a tractogram is to measure the reproducibility. 

The test-retest paradigm represents a convenient method to find the best 

compromise between sensitivity and specificity. This paradigm can maximize the 

differences between different subjects, estimating the sensitivity of a model, and it 

can recognize the similarity over several acquisitions for the same subject, estimating 

the specificity of the model.  

Examples of this paradigm are reported in [91] [92] [93] [94] [95] [96] [97], where 

the test-retest paradigm was used to assess the robustness and the reproducibility of 

the tractography and connectivity pipeline, given the same reconstruction model. In 

particular, quality measures were quantified using well-known parameters as the ICC 

and the CV applied to several graph measures (e.g., degree, strength, centrality, path 

length), as derived from weighted structural matrices. In most of the previous test-

retest studies, the weighted adjacency matrix was obtained counting the number of 

fibers connecting each pair of nodes and correcting this value by the fiber lengths or 

by the size of the two regions. However, this approach might introduce some biases 

in the analyses, as the number of fibers is strictly dependent on the reconstruction 

models and the tractography algorithms chosen. The injection of microstructural 

information could be more informative compared to the number of fibers, 

generalizing the values across different reconstruction models and the tractography 

algorithms, providing additional information as shown in Chapter 3. However, a 

recent study of Buchanan and colleagues [97], which compared the FA to the other 

weighting factors reported in literature, retrieved poor ICC performance for FA-

weighting graphs. Therefore, the authors suggested further investigations with 

different types of analysis.  



 Chapter 4 – Evaluation of different estimates of structural connectivity 

90 

 

 

In this subchapter, different advanced properties are injected in the structural 

connectivity, testing the specificity and the sensitivity with the test-retest paradigm. 

The analysis is restricted on two advanced ODF estimation methods and three 

tractography algorithms, injecting different weighting measures [Obertino, et al. 2017 

(CDMRI)]. I extracted the tractography that used the MRTrix tool, estimating also 

the FA map from the same tool. Then, I calculated all the connectivities with all 

weighting values, analysing and comparing all of them with the correlation parameter 

and the classification approach. Moreover, I contribute to the concept of this work, 

writing and presenting the work to the conference. 

 

4.2.1 Methods 

The healthy cohort presented in the subchapter 4.1 was extended. Two subjects 

were acquired after 1 year from the previous acquisition, repeating the scan twice 30 

minutes apart, generating three different acquisition for each subject. Two new 

subjects were also acquired two times. The resulting cohort of eleven subjects (age = 

34.5 ± 9.6) underwent at least at one full acquisition with two-shells DWI schema 

and a T1-weighted acquisition, contributing in a total of seventeen datasets. 

The pre-processing presented in the subchapter 4.1.1 was applied to all subjects 

and all acquisitions. 

Starting from a two-shells acquisition, two different fODFs were reconstructed 

using advanced deconvolution-based methods. The tractography was then performed 

following either the deterministic or the probabilistic approach. One of the two 

fODF reconstruction methods is estimate from the NODDI-SH [48], which 

represents a compartmental model that allows reconstructing the fODF (see Chapter 

2 for more details). The other fODF reconstruction method considered here is an 

extension of the CSD model for multi shell acquisitions called Multi-Shell Multi-

Tissue CSD (MSMT) [98], which is available in MRTrix. This model is widely used 

because it substantially increases the precision of the fODF fiber orientation 

estimation and reduces the presence of spurious fODF peaks in voxels contaminated 

by partial volumes of GM or CSF with respect to the classical implementation. In 

this work a SH order of N=8 was considered for both MSMT and NODDI-SH. 

Two different tractography softwares were used: MRTrix and DIPY. Deterministic 
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tractography using EuDX algorithm in DIPY [62] was performed, while MRTrix was 

used for both deterministic and probabilistic tractography [89], resulting in 6 

different tractograms, summarized in Table 4.3. 

Table 4.3: summary of all methods applied 

 DIPY (EuDX) MRTrix (det/prob) 

MRTrix (MSMT) MSMT – DIPY EuDX 

MSMT – MRTrix det 

MSMT – MRTrix prob 

DIPY (NODDI-SH) NODDI-SH – DIPY EuDX 

NODDI-SH – MRTrix det 

NODDI-SH – MRTrix prob 

 

The following parameters were selected for tractography: angular threshold of 

35-degree, 106 seed points randomly selected from the Freesurfer white matter 

segmentation, maximum fiber length 250 mm. In DIPY EuDX the fODF peaks 

threshold was set to 0.2, based on previous experiments on synthetic phantom. All 

the other parameters were left at the default values for both softwares.  

Connectivity matrices were obtained relying on four different connectivity 

measures: the binary connectivity, the fiber density connectivity, and two types of 

microstructural based connectivity (FA and νic). The binary connectivity (B-CM) was 

obtained by hard thresholding of the streamline number with threshold equal to 10. 

The Fiber density connectivity (FD-CM) was derived by normalizing the fiber count 

for the total number of streamlines in the matrix, such that the sum of the elements 

in the matrix is equal to one. Instead, microstructural properties, in this case FA and 

νic, were averaged along the streamlines for each pair regions obtaining the FA-CM 

and νic-CM, respectively. 

Pair-wise similarity between connectivity matrices was expressed by the 2D 

Pearson correlation coefficient. Two groups of subjects were formed consisting of 

those who underwent a single scan (seven subjects) and those having two (two 

subjects) or three (two subjects) acquisitions. The correlation matrix between 

subjects and acquisitions was used as a feature vector in a simple threshold-based 
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classifier. In particular, a Receiver Operating Characteristic (ROC) curve analysis was 

performed to determine the ability of the method to classify the correlation values in 

different subjects and different acquisitions of the same subject. For each method, 

ROC curves were created varying the classification thresholds in the range [0-1] with 

a step size of 0.0001 (10001 points) and calculating for each point the sensitivity and 

specificity values. These measures were defined as the True Positive Rate (TPR = 

TP/(TP + FN)) and True Negative Rate (TNR =TN/(FP + TN)), respectively, were 

TP = true positive, FP = false positive, TN = true negative and FN = false negative. 

The Area Under the Curve (AUC) was then calculated to assess the classification 

performance of each method. Finally, the accuracy values were calculated for each 

threshold and visualized as curves, in order to better highlight the different classifier 

behaviours. 

4.2.2 Results 

The group-average connectivity matrices presented a lack of connections in 

MSMT with DIPY EuDX tractography respect to the other methods, though 

reporting higher correlation values with FA-CM and 𝜈𝑖𝑐-CM than other combined 

methods. As expected, in agreement with the literature, MRTrix probabilistic 

approach leads to the densest solution, followed by the deterministic method of the 

same software. Compared to MSMT, preliminary results show that NODDI-SH 

fODF presents in general a higher number of peaks (principal directions), potentially 

leading to the reconstruction of a higher number of streamlines. Indeed, NODDI-

SH followed by MRTrix probabilistic fiber tracking leads to the densest connectivity 

matrix. This could be an indication of high sensitivity, although it can compromise 

the specificity, which is the ability to better capturing the inter-subject variability, 

providing lower performance in the classification task than other methods. 

The analysis of the intra/inter-subject correlation matrices highlights that high 

correlation values are obtained for multiple acquisitions of the same subject. This is 

clearly visible in Figure 4.4 and Figure 4.5 where blocks appear across the matrix 

diagonal and corresponding to the same subject.  
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Figure 4.4: B-CM (A) and FD-CM (B) correlation analysis across subjects (s) and acquisitions (a). 



 Chapter 4 – Evaluation of different estimates of structural connectivity 

94 

 

 

 

Figure 4.5: FA-CM (A) and 𝜈𝑖𝑐 -CM (B) correlation analysis across subjects (s) and acquisitions (a). 

This effect is weaker for subject s02, which presents the lowest intra-subject 

correlation, in particular between the first acquisition and the others. Visual 

inspection of the data revealed that the raw data were affected by noise, which seems 

to be the prevalent effect. This highlights the potential of this analysis in revealing 

acquisition problems once the performance is adequately characterized for a given 



Chapter 4 – Evaluation of different estimates of structural connectivity 

 

95 

 

 

acquisition scenario. The range of observed correlation values depends on the 

connectivity index. In particular, FD-CM (Figure 4.4-B) features the highest set of 

values both intra- and inter-subject, and NODDI-SH leads to the highest correlation 

values, both intra- and inter-subject, reaching the maximum with DIPY EuDX 

tractography (𝜌 > 0.96 for intra-class correlations and 𝜌 > 0.9 as inter-class values). 

MSMT with probabilistic tractography comes next with lower values for both intra- 

(𝜌 > 0.925) and inter-class correlation (𝜌 > 0.8). While the injection of the fiber 

number in the correlation matrix (CM) increases the correlation range for all 

methods with respect to B-CM, microstructural information produces a shift to 

lower values, as it can be observed in FA-CM and νic-CM (Figure 4.5). This could 

possibly be due to partial volume effects and noise. 

ROC and accuracy curves parallel these results. Considering ROC curves, 

NODDI-SH provides the best classification performance when combined with 

DIPY EuDX for all the connectivity indices followed by MSMT with MRTrix 

probabilistic tractography, as shown in Table 4.4. 

Table 4.4:Performance of classification in terms of Area of the ROC curves (AUC) for all methods. 

  MSMT  NODDI-SH 

 DIPY EuDX MRTrix det MRTrix prob DIPY EuDX MRTrix det MRTrix prob 

B-CM 0.995 0.989 1 1 0.785 0.863 

FD-CM 0.979 0.921 1 1 0.834 0.795 

FA-CM 0.993 0.994 0.986 1 0.768 0.941 

𝛖𝐢𝐜-CM 0.998 0.994 1 0.997 0.763 0.845 

A possible interpretation of these results is that NODDI-SH fODF, in general, 

has a larger number of peaks than MSMT. As observed before, this results in a 

denser (less sparse) connectivity matrix across all microstructural indices. On the 

other end, EuDX is the most restrictive among all the considered tractography 

methods. The combination of NODDI-SH and EuDX then appears to generate a 

tractogram that is “minimum” but holds the relevant information for the 

discrimination task. In other words, it has very good specificity eventually sacrificing 
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sensitivity. In the case of MSMT, on the other end, the fODF is more selective with 

respect to the detection of diffusion directions in each voxel, leading to a sparser 

matrix than NODDI-SH for all tractography algorithms. Consistently, the accuracy 

analysis allows highlighting the methods that are more effective in separating the two 

classes, supporting the ROC results and providing detailed information about the 

optimal correlation threshold for appropriate classification. More in details, these 

curves, shown in Figure 4.6, highlight the differences among methods when 

weighting information (FD-CM, FA-CM, νic-CM) are injected in CM respect to the 

B-CM consideration.  

 

Figure 4.6: Accuracy curves calculated for all the methods. 

Both MSMT combined with the probabilistic tractography and NODDI-SH 

combined with DIPY EuDX tractography reach the optimal accuracy with three of 

four weighted methods. The perfect classification is available only for a specific 

threshold as shown in Figure 4.6, probable due by the unbalance of the two classes. 

Since this dataset is composed of healthy subjects a narrow range of separation 

thresholds between the two classes would be expected as reported in the literature in 

terms of small variation coefficient between subjects [100]. Results then highlight 

that the application of the EuDX algorithm results in an excessive pruning of the 

tractogram that does not convey enough information for discriminating the two 

classes of subjects. Switching to MRTrix deterministic, that is less rigid in the 

constraints for tracking, results in an increased number of fibers and a denser 

connectivity matrix. If this leads to an improvement in performance for MSMT, 

which takes advantage of the increased redundancy, it reduces the performance of 

NODDI-SH. In this respect, for NODDI-SH the denser matrix results to be noisier 
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as if non-relevant information are added. When passing to MRTrix probabilistic, the 

same trend is observed for MSMT, which reaches the maximum AUC for all indices 

except FA, while an inversion is observed for NODDI-SH, whose performance 

improves for all indices except for FD. This could be explained by the exponential 

increase in the number of fibers and connections to such an extent that it 

compensates for the increase of noise, though, without reaching the performance 

granted by EuDX. Interestingly, the mean values of the FA and υic parameters along 

the detected connections are higher for MSMT than for NODDI-SH reconstruction 

across tractography methods, that could be an indication of a more anatomically 

plausible detection of the white matter wiring. However, results seem to suggest that 

this information is not sufficient for discriminating between groups until the 

restriction to the tracking algorithm is relaxed at a point to which enough specificity 

is gained. Table 4.4 shows that the AUC values for the MSMT decrease when passing 

to the FD weighting methods and increase uniformly across microstructural indices 

with deterministic algorithms. This means that even though the second tractogram is 

denser than the first, its descriptive power is lower. A similar trend could be 

observed for NODDI-SH with a probabilistic tractography when passing from 

binary matrices to weighting matrices with the exception of υic, while the 

combination with the deterministic algorithm from MRTrix led to a different pattern, 

reaching the highest AUC value for the FD-CM. AUC values equal to 1 were reached 

for MSMT combined with the probabilistic algorithm (B-CM, FD-CM and υic-CM) 

and for NODDI-SH combined with DIPY EuDX (B-CM, FD-CM, FA-CM). 

 

4.3 PARTIAL CONCLUSION 

Results highlight the variability of the different approaches in both single subject 

and group level analysis with the first contribution. In details, the advanced SHORE 

models, which required the multiple-shell acquisition, decrease the distance between 

subjects compared to the simplest DTI. However, the CSD model, which uses only 

one shell schema, presents stable results across subjects when, in particular, it is 

combined with the probabilistic tractography algorithm. The second contribution 
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identifies a good approach to define the sensitivity and specificity of a model. In 

details, by extending the CSD to the advanced MSMT estimation and evaluating the 

new NODDI-SH that uses a multi-shell acquisition, results suggest a trade-off 

between the selectivity of the fODF (expressed as a function of the number of 

peaks) and the hardness on the constraints of the tracking algorithm. If the fODF is 

richer, the combination with a high degree of freedom in tracking would generate 

more noisy connectivity matrices. However, the variability of tractograms shows a 

high inter-subject stability in the case of probabilistic tractography, confirming the 

previous results. In summary, as far as the detection of test-retest subjects is 

concerned, the MSMT solution seems to be preferable as it provides optimal 

performance in almost all cases across all microstructural indices. In particular, 

MSMT paired with the probabilistic tractography reaches the best specificity, 

maintaining a very high reproducibility across different healthy subjects. Concerning 

the injection of advanced properties in the connectivity, results clearly highlighted the 

decrease of the correlation measures across both subjects and acquisitions, and the 

not perfect reproducibility, although the performance in terms of classification 

remain high. It can be concluded that the binary matrix, which records only the 

presence or absence of a link, better reaches the reproducibility of the models, while 

the inclusion of microstructural properties can be more informative in the case of 

clinical applications as presented in Chapter 3. 
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5 GRAPH SIGNAL PROCESSING TO 

COMBINE STRUCTURE AND FUNCTION  
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The recently explored application of graph signal processing to the study of 

brain connectivity opened an interesting opportunity for a multimodal approach, 

which allows for the integration of structure and function [31]. However, given the 

novelty of the field, there are plenty of directions that appear worth investigating, but 

are currently still unexplored. As already mentioned in Chapter 1, Medaglia and 

colleagues limited their study to fMRI, therefore to low temporal resolution signals, 

and they haven’t optimized the choice of cut-off frequency for the filtering operation 

defining the aligned/liberal portions of the signals. Further, their investigation 

remains confined to static analyses of functional signals. Here, we present a new 

method for function/structure integration that aims at overcoming these limitations. 

We combine MEG or EEG signals with structural bases that are extracted with 

Graph Fourier Transform (GFT) applied to the structural connectivity. Moreover, an 

automated way to define aligned and liberal components is here presented, exploiting 

the idea of the diffusion kernels. The diffusion kernels permit to relate the aligned 

and liberal contributions to the path length in the connectivity, which was recently 

demonstrated important for the mapping of functional activity [99]. In fact, long 

structural connectivity pathways of length 3 and up to 8 steps contain most of the 

information needed to map functional correlations with fMRI data. Specifically, the 

direct structural links mapped only the 57% of the functional correlation, increasing 

to 77% when adding paths with length of 2, and about 80% with paths passing 

through 3 nodes. Diffusion kernels integrated in the eigendecomposition of the 

connectivity matrix have recently been demonstrated to be related to the indirect 

links [100], opening to the perspective of modelling a new definition of aligned and 

liberal components.  

The contribution that is presented in this Chapter is the result of my visiting 

period in the Medical Image Processing Lab (MIP:Lab) in Geneva, Switzerland, 

under the supervision of Prof. Dimitri Van De Ville. In collaboration with Prof. Van 

De Ville and Dr. Elvira Pirondini, I designed the methods, generated a simulation 

framework to test the introduced approach, and performed all the analyses on 

simulated and real data (structural connectivity analysis and EEG/MEG source 

localization). The study is in preparation for publication. 
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5.1 DATA ACQUISITION AND SIMULATION 

 

Structural connectivity.  In this study, a binary adjacency matrix is derived 

averaging 26 subject binary matrices. The presence of the connection in the group is 

defined if at least half subjects present the link in their single binary matrix. The set 

of subjects is selected from the Human Connectome Project (HCP), pre-processed 

as follow.  The DWI images are already pre-processed by the HCP team (glasser 

minimal preprocessing reference), following conventional pre-processing steps. 

Precisely, movements, eddy-current and susceptibility-induced geometric distortions 

corrections are applied, with the TOPUP and EDDY tools of FSL. Then, the b0 

images are aligned to T1-weighted ones with a linear registration, using FLIRT [6 

degrees of freedom and normalised mutual information as cost function]. Moreover, 

the non-linear registration (using FNIRT tool of FSL) is estimated between them and 

the MNI space to register the Automated Anatomical Labeling (AAL) atlas to the 

subject space. The AAL atlas is chosen for this analysis in order to have a brain 

parcellation that could represent the function of the different parcels, instead of a 

subdivision based on gyri and sulci, such as the Freesurfer parcellation. The 

combination of MSMT CSD reconstruction model followed by the probabilistic 

tractography, which is, as demonstrated in Chapter 4, the most reliable method to 

extract the structural connectivity, is used to derive the fibers for each subject. The 

AAL atlas and the fibers are then overlapped in the subject specific space, deriving 

the subject binary structural connectivity matrix (SC). 

Functional signal. We define the functional signal 𝑥𝑡 (spatial pattern at each 

timepoint t), which can be obtained by source localization from EEG or MEG. In 

this study a source localization signal is first simulated to validate the model and then 

real MEG recordings are used from HCP data.  

The simulated source localization is constructed applying a sinusoidal signal 

(frequency = 10Hz) in a specific region (as the example presented in Errore. L

'origine riferimento non è stata trovata.).  
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Figure 5.1: Sinusoidal signal (Panel A) in precentral left region (Panel B) with the selected sources points belong to the 
region (red filled dots) presented in axial, coronal and sagittal views (Panel C). 

The signal is then propagated along aligned and liberal components using smooth 

diffusion kernels defined in a source level set of eigenmodes. The eigenmodes at the 

source points level are derived applying the GFT on the matrix 𝐴 = 𝑀 ∗ 𝑆𝐶 in which 

𝑀 is a mapping matrix between the used parcellation (AAL in this case, with 82 

regions) and the source vertices (~5000 sources), and 𝑆𝐶 is the group binary 

connectivity matrix derived from the MSMT probabilistic tractography using the 

AAL parcellation. In details, the mapping 𝑀 is defined with a simple approach as a 

binary matrix with the belonging of each source point to each region: 

𝑀𝑖𝑗 = {
1      if source point 𝑖 is in the ROI 𝑗
0      otherwise                                      

 

Following the idea of Atasoy and colleagues [103], the local connections that 

correspond to the links of the vertices on the cortical surface mesh are added to the 

𝐴 matrix, resulting in smooth eigenmodes (shown in Errore. L'origine riferimento n

on è stata trovata.Errore. L'origine riferimento non è stata trovata.). 
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Figure 5.2: First 10 eigenmodes of the example subject (id=106521). 

 

Liberal and Aligned components are defined using a diffusion kernel with 𝜏=-1, in 

order to simulate a signal as closer as possible to reality. However, the middle 

components contribution is excluded to simplify the simulation, concentrating the 

spectrum in the tightly aligned and liberal elements. The simulated time course of 2 

seconds is divided in two parts: half period (1 second) propagated with the aligned 

kernel, and half period (1 second) propagated with the liberal kernel. 

The HCP dataset includes subjects with MEG acquisition (248 magnetometer 

channels with 23 reference channels, 18 magnetometers and 5 first-order gradiometer 

channels, recorded at 2034.51 Hz sampling rate) co-registered to the MRI structural 

scans. Three subjects having both resting-state and motor task MEG acquisitions are 

selected (id=106521, 108323 and 205119). In details, resting-state (rMEG) data are 

divide in 3 runs of about 6 minute each. The subjects were instructed to relax supine 

with eyes open, fixing a projected red crosshair on a dark background. 

Electrocardiography and electrooculography electrodes were used for cardiac and 

oculomotor monitoring and offline artefact rejection. In the case of movement task 

(tMEG) acquisition, sensory-motor evoked potentials (adapted from the one 
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developed by Buckner and colleagues [103] [104]) were acquired. The participants 

were instructed to tap their left or right index and thumb fingers or squeeze their left 

or right toes. The limb (hand or foot) and the side (left or right) were instructed by a 

visual cue, and the timing of each movement was controlled by a pacing arrow 

presented on the center of the screen (as shown in Figure 5.3Errore. L'origine 

riferimento non è stata trovata.). The paradigm included 32 blocks of 12 seconds 

each, with 16 of hand movements (8 right and 8 left), and 16 of foot movements (8 

right and 8 left) plus 9 rest blocks of 15 seconds. 

 

Figure 5.3: Summary of motor task paradigm with the movement of hand and foot in panel A, and the block design in 
panel B [107]. 

Electromyography electrodes were applied to hands and feet (as shown in Figure 

5.4Errore. L'origine riferimento non è stata trovata.) to acquire the muscle 

electrical signals and pre-process the tMEG dividing the scan in trials.  

  

Figure 5.4: Photo of electromyography sensors placed in each hand and foot\cite{Larson-Prior2013}. 

The MEG signals are provided pre-processed by the HCP team. Particularly, the bad 

channels (values>112) and bad trials (values>12σ, where σ is the variance of the trial) 

are removed, data are filtered (Butterworth band-pass filter 1-40 Hz), subdivided in 
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trials, and baseline correction is applied in case of task signals. Taken the clean 

signals, the forward and inverse model are applied using the MNE model as 

presented in detail in Chapter 1, using MNE python tool [102]. 

 

Simulated signal analysis. The simulated signal is used as an initial source 

signal, which is averaged on the chosen ROIs, to demonstrate that the real structural 

bases are needed for the model. For this reason, a randomization process is used on 

the group structural connectivity, at the AAL space resolution (82 ROIs). The 

structural connectivity is randomized 1000 times with a function that maintains the 

degree of the nodes. In each iteration the randomize matrix is used to extract the 

eigenmodes to project the simulated source localization. To evaluate the performance 

of each iteration a ratio between aligned and liberal signals is evaluated, formulating 

as 

𝜀𝑟𝑎𝑡𝑖𝑜
    𝑡 = 𝑙𝑜𝑔10 (

|𝑥𝑡̂𝐴|
𝑐𝑤𝐴

⁄

|𝑥𝑡̂𝐿|
𝑐𝑤𝐿

⁄

) 

where each filtered signal in 𝑥𝑡̂ is normalized to the mean one (𝑐𝑤). To summarize 

the performance of each iteration the ratio (𝜀𝑟𝑎𝑡𝑖𝑜
    𝑡 ) is averaged along regions and 

compare to the ratio obtained using the eigenmodes derived from the real structural 

connectivity 

Real data analysis. The analysis on the real data preliminary tests the projection 

model in both tMEG and rMEG signals localized in the sources of the three selected 

subjects. Each MEG subject data is projected individually using the eigenmodes 

derived from the group binary structural connectivity. In details, only right and left 

hands movement are selected for tMEG, in which trials are averaged for each limb 

side to obtain a stable time course according to the timing from electromyography 

signals. On the other hand, for rMEG analysis, only 20 trials of 2 seconds each are 

selected in each subject for computational problems. The performance is evaluated 

using three 𝜀𝑟𝑎𝑡𝑖𝑜
    𝑡  that compared the different filtered signals: 
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-  A/L, which represents the ratio between aligned and liberal signals with 

negative values for liberal prevalence and positive values for aligned; 

- A/M that shows the ratio between aligned and middle, in which negative 

values represent middle prevalence, while positive values are aligned; 

- M/L, which is the ratio between middle and liberal signals, with negative 

values for liberal prevalence and positive values for middle components. 

5.2 GSP FRAMEWORK 

Structural Eigenmodes. Applying the GFT to the structural connectivity, 

structural eigenmodes can be obtained as connectome harmonics [101]. The 

eigenmodes represent the complete set of orthonormal eigenvectors extracted by the 

eigendecomposition: 

ℒ̌ = 𝑈𝐿 ∙ 𝑆 ∙ 𝑈𝐿𝑇
 

of the normalized Laplacian matrix, which is formulated as: 

ℒ̌ =  𝐷−1/2 ∙ ℒ ∙ 𝐷−1/2 

where ℒ = 𝐷 − 𝑆𝐶 is the unnormalized Laplacian and 𝐷 is the degree matrix of the 

structural connectivity 𝑆𝐶 (binary or weighted). The set 𝑈𝐿 includes patterns of 

connectivities with different degree of alignment to the structural graph, and 

different amount of local variation, as shown in the group example in Errore. L

'origine riferimento non è stata trovata.: the first eigenmodes, corresponding to 

lower eigenvalues (i.e., lower frequency), vary slowly across the brain and reflect 

more the underlying structure, while the eigenmodes corresponding to higher 

eigenvalues (higher frequencies) are characterized by faster variations and less 

alignment to the structure.  

Indirect links. As aforementioned, it is possible to identify the contribution of 

indirect links through the formalization of the diffusion kernel. Specifically, Van De 

Ville et al. [100] demonstrated the presence of a link between the 

eigendecomposition and indirect links. Applying the eigendecomposition to a 

structural connectivity matrix, a set 𝑈𝑠𝑐 of eigenvectors and a set 𝑆 of eigenvalues 𝜆𝑙 

are defined as: 

𝑆𝐶 = 𝑈𝑠𝑐 ∙ 𝑆 ∙ 𝑈𝑠𝑐𝑇
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where 𝑆𝐶 represents the binary matrix of white matter connections. The sum of all 

length-2 walks between 𝑖 and 𝑗 can be read out from the squared adjacency matrix as 

demonstrated by [100] and rewritten as an eigendecomposition: 

𝑆𝐶2  = 𝑆𝐶 ∙ 𝑆𝐶 = 𝑈𝑠𝑐 ∙ 𝑆 ∙ 𝑈𝑠𝑐𝑇 ∙ 𝑈𝑠𝑐 ∙ 𝑆 ∙ 𝑈𝑠𝑐𝑇
 

 = 𝑈𝑠𝑐 ∙ 𝑆 ∙ 𝑆 ∙ 𝑈𝑠𝑐𝑇 = 𝑈𝑠𝑐 ∙ 𝑆2 ∙ 𝑈𝑠𝑐𝑇
 

Similarly, higher powers of SC relate to longer walks, and all of them are related only 

with the power of the set of eigenvalues. Moreover, Van De Ville et al. [100] related 

the indirect paths to the exponential diffusion kernel, defining: 

𝐾  = 𝑈𝑠𝑐 ∙ 𝑒𝑥 𝑝(𝜏𝑆) ∙ 𝑈𝑠𝑐𝑇 = 𝑈𝑠𝑐 ∙ ∑
𝜏𝑛

𝑛!
𝑆𝑛

∞

𝑛=0

∙ 𝑈𝑠𝑐𝑇
 

where 𝜏 is the decay factor to decrease the influence of longer walks. With this 

formulation, the diffusion kernel can be injected in the GFT to relate the indirect 

links to the eigenmodes (i.e., using the diffusion kernel to weight the eigenmodes).  

Combination of DW-MRI and Encephalography. Medaglia and colleagues 

[31] decomposed the fMRI signal in aligned and liberal components filtering the 

signal with a selected set of eigenmodes. As already presented in Chapter 1, the GFT 

of a graph signal 𝑥 ∈ ℝ𝓃 can be written as: 

𝑥̃ = 𝑉𝑇𝑥 

where 𝑉𝑇 is the set of eigenvectors derived from the eigendecomposition of a 

connectivity matrix 𝐴 = 𝑉Λ𝑉𝑇. Λ represents the set of eigenvalues, ordered so that 

𝜆0 ≤ 𝜆1 ≤. . . ≤ 𝜆𝑛−1, and 𝑉 =  {𝑣𝑘}𝑘=0
𝑛−1 is the set of associated eigenvectors. From 

this notions, the signal can be described as a combination of its spectral components 

of different frequencies as follows: 

𝑥 =  ∑ 𝑥̃𝑘𝑣𝑘

𝓃−1

𝑘=0
 

given 𝑥̃ = [𝑥̃0, . . . , 𝑥̃𝓃−1]
𝑇, representing the GFT component 𝑥̃𝑘 as the contribution 

of 𝑣𝑘 to the signal 𝑥. In details, Medaglia used this formulation to decompose the 

fMRI signal into three portions: a portion 𝑥𝐴 showing strong alignment with respect 

to the structure, i.e., reconstructed from the combination of low frequency 

components; a portion 𝑥𝑀 characterized by medium alignment, i.e. reconstructed 

from middle freuquencies; and a portion 𝑥𝐿, more liberal with respect to the graph 
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and defined in fact as the combination of high frequency components. They defined 

𝐾𝐿 =10 as the set of liberal components and 𝐾𝐴 = 10 as the set of aligned 

components, which they found as the best cut-offs for the specific cognitive task 

adopted in their study. Consequently, middle components are identified as 𝐾𝑀 =

𝓃 − 𝐾𝐴 − 𝐾𝐿. The original signal can then be written as the sum 𝑥 = 𝑥𝐴 + 𝑥𝐿 + 𝑥𝑀. 

The arbitrary choice of the cut-offs represents a limitation of the Medaglia study. 

Here, an automated solution is presented linking the concept of the indirect paths 

with the aligned and liberal regimes. 

Considering the link between the indirect paths and the diffusion kernel, a 

relationship between the diffusion kernel and the aligned and liberal signal 

components can be defined. Using a diffusion kernel 𝐷, the GFT signal can be 

expressed as: 

𝑥̃ = 𝑉𝑇𝐷𝑥 

and the filtered signal can be consequently derived extending the formula with the 

inverse GFT step: 

𝑥̂ = 𝑉(𝑉𝑇𝐷𝑥) 

Applying the eigendecomposition on the Laplacian matrix, the filtered signal can be 

reformulated as: 

𝑥̂ = 𝑈𝐿(𝑈𝐿𝑇
𝐷𝑥) 

where D takes the respective formulation 𝐷𝐴 for aligned, 𝐷𝐿 for liberal and 𝐷𝑀 for 

middle, generating the consequently filtered signals 𝑥̂𝐴, 𝑥̂𝐿 or 𝑥̂𝑀. 

The introduction of the diffusion kernel allows to replace the choice of a 

specific number of components with a parameter 𝜏, formulating  

- the aligned diffusion kernel as a smooth low-pass filter, formulated as 𝐷𝐴 =

𝑒𝑥𝑝(𝜏𝑆) which decreases the influence of the high spatial frequency 

components by decreasing 𝜏, as shown in Errore. L'origine riferimento n

on è stata trovata.: 

- the liberal diffusion kernel is formulated as 𝐷𝐿 = 𝑒𝑥𝑝(𝜏(𝜆𝑚𝑎𝑥 − 𝑆)) which 

represents a smooth high-pass filter, where the influence of the low spatial 
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frequency components decreases by decreasing 𝜏, as shown in Errore. L

'origine riferimento non è stata trovata.; 

- the remaining middle components can be consequently defined as 𝐷𝑀 =

1 − (𝐷𝐴 + 𝐷𝐿). 

 

Figure 5.5: Example of the aligned diffusion kernel with a real set of eigenvalues compose from a structural connectivity 
of 82 parcels. 

 

Figure 5.6: Example of the liberal diffusion kernel with a real set of eigenvalues compose from a structural connectivity 
of 82 parcels. 

To avoid the empirical selection of the parameter, which is one of the limitations 

of Medaglia and colleagues’ work [31], a paradigm can be defined on the spectrum of 

each set of components, formulated as: 

𝐸 = (𝑈𝐿𝑇
𝑥̂)

2

= (𝑈𝐿𝑇
𝑈𝐿 (𝑈𝐿𝑇

𝐷𝑥))
2

= (𝑈𝐿𝑇
𝐷𝑥)

2

 

Ideally the parameter 𝜏, which is equivalent for aligned and liberal diffusion kernels, 

gives the same energy to aligned and liberal regime. However, to find the best 𝜏, the 

contribution of the middle regime is important. In particular, to equally distribute 
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aligned, liberal and middle components the energy has to be equivalent, but the 

middle regime represents the discarded part of the signal from both aligned and 

liberal. For this reason, here the constraint is formulated as: the middle component 

signal must have the same energy as the sum of the aligned and liberal signals, 

generating smooth band filters. 

Empirically, the constraint highlighted a high contribution of middle 

components, choosing a smaller set then 10 components for aligned and liberal 

filters. Mathematically, calculating the middle regime energy, it is demonstrated that 

the composition of the middle diffusion kernel generates mixed aligned and liberal 

components. These components add power to the middle regime, hiding the 

contribution of the middle and aligned components. For this reason, a square root is 

added in the aligned and liberal diffusion kernel definitions, which permit to have 

higher diffusion kernel values in the energy calculation: 

𝐷𝐴 = √𝑒𝑥𝑝(𝜏 ∗ 𝑆) 

𝐷𝐿 = √𝑒𝑥𝑝(𝜏 ∗ (𝑚𝑎𝑥(𝑆) − 𝑆)) 

Consequently, 𝐷𝑀 remains:  

𝐷𝑀 = 1 − (𝐷𝐴 + 𝐷𝐿) 

 

5.3 RESULTS 

Simulation. The randomization process highlighted the importance of the real 

structural eigenmodes. The differences between the set of eigenmodes from a real 

connectivity (Figure 5.7-A) and from the randomize matrix (Figure 5.7-B) are clearly 

remarkable already from a visual inspection. 
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Figure 5.7: set of first ten real eigenmodes (Panel A) with an example of the first 10 eigenmodes extracted from a 

randomize matrix. 

Indeed, the real set of structural bases presents some geometrical global connections, 

such as the Left-Right connection, the Fronto-Parietal one and the Fronto-temporal 

one. The randomized example, instead, shows some focused eigenmodes 

highlighting only local connections. The 𝜀𝑟𝑎𝑡𝑖𝑜
    𝑡  quantifies the prevalence of aligned or 

liberal components using the respectively filtered signals. In details, negative values of 

the 𝜀𝑟𝑎𝑡𝑖𝑜
    𝑡  mean a prevalence of liberal components (blue scale in Figure 5.8), while positive 

values mean prevalence of aligned components (red scale in Figure 5.8). The real set of 

eigenmodes permits to verify the correct definition of aligned and liberal 

components, while the randomize ones validate the need of the real eigenmodes in 

the model. The mean 𝜀𝑟𝑎𝑡𝑖𝑜
    𝑡  using the real set of structural bases estimate exactly the 

separation of the two periods, the first second aligned and the second one liberal (see 

Figure 5.8-A). The result shows the direct implication of the structure in the process 

and give a first step of validation of the approach. The ratio of the randomization 

process shows overall a prevalence of liberal components in both periods (see Figure 5.8-

B). Moreover, in some of the 1000 simulations an opposite estimation of the two periods is 

retrieved, i.e. negative values in the aligned period and positive values in the liberal part.  
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Figure 5.8: 𝜀𝑟𝑎𝑡𝑖𝑜
    𝑡  using the real set of eigenmodes. 

Real data. After the preliminary validation of the structural eigenmodes, the real 

data are analysed in both motor movement task and resting state, to demonstrate the 

usability of the model as a structural-functional biomarker. The structural 

eigenmodes for each subject is derived from the group connectivity in the atlas 

resolution (see Figure 5.7-A). All of them present the typical geometrical global 

connections as already presented in the simulation analysis. All the three definitions 

(aligned, middle and liberal) are used in this analysis, reporting the results in three 

different ratios (A/L, A/M and M/L). Using the tMEG signal in both right and left 

hand movement, the ratio estimated shows high aligned prevalence before the timing 

0 – i.e. when the movement starts (see the increasing of the EMG signal in Figure 

5.9-A), which are highlighted with positive values (red colour) in both A/L (see first 

line of Figure 5.9-A) and A/M (see second line of Figure 5.9-A). This period can be 

related to the preparation timing, in which the brain uses global connections to 

spread the instruction for the movement.  On the other hand, during the movement 

a prevalence of liberal components is highlighted with negative values in both A/L 

(see first line of Figure 5.9-A) and M/L (see third line of Figure 5.9-A). The line M/L 

(see third line of Figure 5.9-A) presents low values, meaning that the middle 

components are quite similar to the liberal ones. In general, it is easier to see the 

pattern in left hand in all the subjects presented. This could be explained by the fact 

that all subjects are right-handed, so they were probably more concentrated during 
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the left-hand task. Unfortunately, a left-hand dataset is still missing in the MEG-HCP 

database. On the other hand, the resting state analysis shows a continue fluctuation 

between aligned and liberal, as a periodic signal with a specific frequency (shown in 

Figure 5.9-B).  However, the middle components still present low ratio values when 

they are compared with the liberal ones, reinforcing the similarity between the two 

components. 

 

Figure 5.9: summary of the three ratios for the example subject (id 106521) in the left-hand task movement (Panel A) 
and resting state (Panel B). 

 

5.4 PARTIAL CONCLUSION 

This work represents a preliminary study in real subjects, which demonstrates 

the reliability of GSP as possible method to investigate the structure-function link in 

the human brain. It allowed to highlight the contribution of long and global 

structural connections at rest and during motor task. In details, a period of high 

alignment of functional signals to the brain structure is identified right before the 

motor task. This temporal interval is probably related to the preparation of the 

movement that uses the global long indirect connections of the brain to spread the 

instruction. While during the motor task the activation in the brain can be more 

focused on the regions related to the task (the motor cortex in the case of 

movement), causing a prevalence of liberal components that are related to the short, 

almost direct, structural connection of those regions.  
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The model is tested with MEG data, because they provide a more accurate 

source localization, but it is possible to use this multimodal approach also with EEG. 

This opens the possibility to test the model in clinical applications in which EEG 

recordings are more suitable. For example, applying the GFT on the adjacency 

matrices of stroke subjects, the eigenmodes could show the lack of some connections 

related to stroke lesions. Moreover, acquiring EEG or MEG signals in stroke 

subjects during a motor task and resting-state, the link between function and 

structure could be evaluated revealing alternative paths that the brain can use thanks 

to the plasticity process after the injury. 

 

 



 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6 CONCLUSIONS AND OUTLOOK 
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The major novel contribution of this PhD Thesis focuses on the design of a new 

multimodal approach for the study of brain connectivity, highlighting the importance 

of considering structural connectivity when analysing functional signals in the brain. 

The proliferation of different methods to acquire and reconstruct the signal of the 

Diffusion Weighted Magnetic Resonance Imaging offers a plethora of choices for the 

estimation of structural connectivity. A detailed analysis to compare the different 

estimates of structural connectivity appears therefore necessary to define the best 

combination of models to reliably reconstruct connectomes. Moreover, even if the 

presence of a correlation between functional and structural connections is nowadays 

clear, the literature still lacks a precise description of this link. Recent attempts of 

using graph signal processing to investigate this association were presented with 

promising findings [31] [32]. For these reasons, I have focused in this work first on a 

detailed comparison of the different methods to extract structural connectivity, 

followed by the modelling of a multimodal framework that combines the best 

estimate of structural connectivity with the high temporal resolution functional 

signals acquired on the scalp via encephalography. 

6.1 SUMMARY OF THE MAIN FINDINGS 

In Chapter 3, I presented a preliminary assessment of the most informative 

properties that can be estimated from the diffusion signal, using advanced 

reconstruction models. The microstructural indices became popular in the last 

decade as weighting properties for structural graph, but the proliferation of new 

advanced models provoked an increase of the number of the different properties that 

can be used. Different well-known indices, such as Fractional Anisotropy, are already 

defined as biomarkers in literature and used to define a preliminary correlation 

between structure and function presented in literature [10]. In this context, we 

evaluated the set of indices extracted from more advanced propagator models 

(SHORE and MAP MRI) in the clinical application of stroke, defining a set of 

possible biomarkers. This allowed to highlight significant differences between stroke 

patients and healthy controls at different structural connectivity levels, from specific 

connections related to the motor impairment, to the whole connectivity evaluated 

with graph theory and machine learning approaches.  
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In Chapter 4, I focused on identifying the best estimate of structural 

connectivity with the actual possible knowledge. The reliability of structural 

connectivity was evaluated with different reconstruction models, tractography 

algorithms and weighting properties. Different reconstruction models, i.e. Spherical 

Deconvolution and the advanced Propagator and Compartmental models, are evaluated in 

comparison to the simplest Diffusion Tensor model. A paradigm that allows to 

estimate sensitivity and specificity of each combination was used to identify the 

model that reaches the best specificity, maintaining a very high reproducibility across 

different healthy subjects. The variability of the different approaches in both subject 

and group level analysis was highlighted. The best performance was reached by the 

Multiple Shell Multi Tissue model, which represents an advanced extension of the 

Spherical Deconvolution model, paired with probabilistic tractography. The findings 

suggested a trade-off between the restricted reconstruction model and the degrees of 

freedom of tractography. In details, the advanced Spherical Deconvolution model 

permits to solve partially the complex architecture, allowing to have a conservative 

reconstruction across different acquisitions of the same subject. On top of that, 

probabilistic tractography allows to maintain a high reproducibility across subjects 

with its robustness in areas of high uncertainty, such as crossing or noise areas. The 

binary structural connectivity achieved the best correlation range across subjects and 

acquisitions, performing the best classification between subjects across all methods. 

However, the highest correlation across subjects was reached by the weighted 

connectivity with the fiber density property, decreasing the performance values in 

almost all cases. On the other hand, the microstructural properties tested with the 

test-retest paradigm highlighted the high variability across healthy subject that 

required further investigation to allow using different properties in the model that 

integrates structure and function. 

Finally, in Chapter 5 I addressed the most challenging issue described in this 

thesis, i.e. the integration of structural and functional signals. A new model based on 

graph signal processing is presented, that permits to combine the structural bases, 

extracted with graph Fourier transform, and the encephalography signals, defined on 

the nodes of the structural graphs. The model follows the idea to filter the functional 

signal based on its degree of alignment to the underlying structural connectivity. With 

respect to the literature, different limitations are here addressed and overcome, as, 
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for example, the use high temporal functional signals (EEG and MEG), and the 

automated definition of the filter cut-offs for the functional signal. A validation on 

simulated data and a preliminary testing step on real data at rest and during motor 

task showed that a specific pattern can be reached using align and liberal 

components. In details, the resting state analysis retrieved the expected fluctuation as 

a periodic signal that change from liberal to aligned and vice versa with a specific 

frequency. On the other hand, the motor task presents a specific pattern comprising 

a strong aligned period, probably related to the preparation of the movement, and a 

liberal period during the motor task, due by the activation of short path related to the 

activated motor cortex.  

 

6.2 LIMITATION OF THE RESEARCH 

The analysis of the possible estimates of structural connectivity showed in 

Chapter 4 focused on different classical and advanced recent models. In details, it is 

restricted in the properties derived from the models used in the analysis, missing all 

the advanced microstructural properties derived from, for example, the Simple 

Harmonic Oscillator based Reconstruction and Estimation model. The study could 

be extended to the analysis of those indices, viewing the stability presented in 

Chapter 3. The results in Chapter 3, about the suitability of some microstructural 

properties to characterize the stroke impairment, open the issue of the comparison 

between different structural connectivity estimation in the application to different 

clinical diseases, extending the analysis to the microstructural properties. Moreover, 

the comparison between different estimations of structural connectivity can be 

particularly useful in a clinical datasets, giving more information then the lonely 

reproducibility.  

Another limitation of this study is presented by the model that combines 

structure and function (Chapter 5), which is restricted in the derivation of the 

eigenmodes from the binary structural connectivity. This can lead to the extension of 

weighted structural graph, using for example microstructural properties derived from 

advanced models if they will present a good reproducibility in terms of classification 

performance using the test-retest paradigm and correlation values across healthy 
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subjects. Moreover, some statistical analyses presented in Chapter 3 can be used to 

test the reproducibility and the relevance in the clinical applications.  

In this work, only a preliminary validation is presented for the multimodal 

approach using simulated data and few real datasets. In order to test the new model 

in in-vivo data, a deep analysis is required that extends the real data analysis on more 

subjects. Precisely, the results extracted from real subjects give the chance to better 

understand the resting state acquisition, studying the frequency of fluctuations in 

different subjects, and answering specific questions, as for example if the fluctuations 

represent a basal rhythm of the brain for each specific subject, or if there is a specific 

range of this rhythm maybe based on the age. This implies different types of studies, 

as the analysis of brain development, familiarity, etc. On the other hand, the results 

of the motor task analysis would be enriched by the analysis with different tasks, 

already presented in the HCP data, as the working memory, language, social and 

emotional cognitive. Finally, the multimodal approach is preliminary tested only on 

healthy subjects, and would therefore benefit from future application to clinical 

context. 

 

6.3 FUTURE PERSPECTIVES FOR CLINICAL APPLICATIONS 

Several extensions of this work to the clinical field could be envisaged. First, the 

characterization of the best trade-off between sensitivity and specificity of the 

structural connectivity could be extended comparing several reconstruction models 

and using different microstructural properties, which are relevant for specific 

diseases, as shown in Chapter 3 for stroke patients. Moreover, the integrated model 

for binary structural and encephalography functional signals could open the 

perspective for clinical applications. Nowadays, different neurodegenerative and 

mental disorders are studies in clinical neurology. The definition of reliable imaging-

based biomarkers for clinical decision and therapeutic interventions necessitates the 

identification of clearer associations between structure and function. The majority of 

the previous work in literature considered individually function or structure in brain 

impairment, such as stroke [105] [106] [69], parkinsonism [107] [108] [109], 

Alzheimer disease [110] [111] [112], epilepsy [113] [114] [115] and more other. Future 
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studies should investigate the combination of these through multimodal approaches 

in order to provide a more detailed and complete description of the pathological 

phenomena causing abnormalities in brain connections. The multimodal approach 

could characterize disease phenotypes and progression, improving therapeutic 

strategies. The integrated model presented in this thesis could represent a first step in 

this way, that can be applied on different diseases using high temporal resolution 

encephalography datasets. Preliminary applications in this direction could be easily 

done for instance in Parkinson disease, using the available Parkinson progression 

marker initiative (PPMI) database, from a multi-center study comprising 400 

diagnosed Parkinsonian subjects and 200 healthy ones with both DW-MRI and EEG 

acquisitions [116]. 
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