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1. ABSTRACT 

Erythropoiesis is a dynamic and multistep process where early erythroid progenitors 

undergo differentiation into matured red cells. Nrf2 is a transcription factor that 

participates in acute response to oxidative stress and controls the expression of anti-

oxidant and cytoprotective systems. Mice genetically lacking Nrf2 show a mild 

chronic hemolytic anemia due to erythrophagocytosis. Here, we show that Nrf2-/- 

mice display an age-dependent anemia characterized by accelerated senescence of 

circulating erythrocytes and  reduced reticulocyte count, suggesting a perturbation of 

erythroid maturation process. Indeed, we found  ineffective erythropoiesis in 12 

months-old Nrf2-/- mice as supported by extramedullar erythropoiesis, increased ROS 

levels and cell apoptosis. In agreement, Nrf2-/- mice showed a blunted response to 

stress erythropoiesis induced by either PHZ or Doxo, suggesting an impairment of 

cellular back up mechanisms against oxidative stress such anti-oxidants and 

cytoprotective systems. The persistent oxidation promoted activation of UPR system 

and autophagy, which are unable to fully counteract oxidation re-directing cells 

towards apoptosis as supported by the increased caspase 3 activity. As a proof of 

concept, we used Astaxanthin as powerful anti-oxidant administrated in PLGA loaded 

nanoparticles (ATS-NP). In Nrf2-/- mice, ATS-NP ameliorated the age-dependent 

anemia and improved ineffective erythropoiesis with inactivation of UPR system and 

autophagy. In conclusion, we propose Nrf2 as key transcriptional factor against aged 

related oxidation to ensure erythroid maturation and growth. Future studies should 

be designed to evaluate the impact of Nrf2 activators as well as of ATS-NP 

administration in models of pathologic erythropoiesis.   
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2. ABBREVIATIONS 

ARE: antioxidant responsive element 

ATF6: activating transcription factor 6 

Atg 3: autophagy related protein 3 

Atg4: autophagy related protein 4 

Atg5: autophagy related protein 5 

Atg 7: autophagy related protein 7 

Atg 13: autophagy related protein 13 

ATS: astaxanthin 

ATS-NP: astaxanthin Loaded PLGA nanoparticles 

Bcl-XL: B-cell lymphoma extra large 

Bcl-Xs: B-cell lymphoma extra short 

Bcl2l1: Bcl2-Like 1 

BFU-E: burst forming unit-erythroid 

Cdc37: Cell division cycle protein 37 

CHOP : CCAAT-enhancer-binding protein homologous protein 

Cish: Cytokine-inducible SH2 containing protein  

CFU-E: colony forming unit erythroid 

Doxo: doxorubicin 

EPO: erythropoietin 

EPO-R: erythropoietin receptor 

FOXO3: Forkhead box O3 

Gadd34: growth arrest and DNA damage gene 34 

GATA-1: GATA-binding factor 1 

Gpx-1: Glutathione peroxidase-1 

Gst: Glutathione-S-transferase 

Gclc: Glutamate-cysteine ligase catalytic subunit 
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Gclm: Glutamate-cysteine ligase modifier subunit 

HSCs: Hematopoietic stem cells 

ho-1: Hemeoxygenase-1 

HSP70: Heat-shock protein 70 

HSP90: Heat-shock protein 90 

IRE: inositol-requiring enzyme  

Jak2: Janus-kinase 2 

KIR: Keap-1 interacting region 

Lamp1: Lysosomal-associated membrane protein 1  

LC3(MAP1LC3B): Microtubule-associated proteins 1A/1B light chain 3B 

Maf F: Musculoaponeurotic fibrosarcoma protein F 

Maf G: Musculoaponeurotic fibrosarcoma protein G 

Maf K: Musculoaponeurotic fibrosarcoma protein K 

mTOR: Mammalian target of Rapamycin 

MCV: mean corpuscular volume 

NF-kB: nuclear factor kappa-light-chain-enhancer of activated B cells 

Nqo-1: NADPH-quinine oxidoreductase-1 

Nrf2: Nuclear factor (Erythroid derived 2) Like 2 

PERK: protein kinase R-like endoplasmic reticulum kinase  

PHZ: phenylhydrazine 

PI3: Phosphatidylinositol-3  

PLGA: poly -lactic-co-glycolic acid 

Prx2: Peroxiredoxin-2  

PrxSO3: Peroxiredoxin SO3  

Rab 5: Ras-related protein Rab-5 

RBCs: Red blood cells 

ROS: Reactive oxygen species 

RXRα: Retinoid X receptor α 
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SH2: Src homology 2 domains 

Socs3: Suppressor of cytokines signaling 3  

SOD2: Superoxide dismutase 2  

Srxn: sulfiredoxin 

STAT5: Signal transducer and activator of transcription 5 

Txn: Thioredoxin 

Txnr: Thioredoxin reductase 

ULK1: UNC 51 Like kinase-1 

UPR: unfolded protein response 
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3. INTRODUCTION 

 3.1 Erythropoiesis: a dynamic process 

Erythropoiesis is a dynamic, complex and multistep process where early erythroid  

progenitors undergo differentiation into matured red cells, necessary for O2/CO2 

exchange.1-2 Erythrocytes represent the most common cell type in adult blood and 

their average life span in human blood is of 120 days. New red cells are constantly 

produced (2*1011 daily)3 to ensure the renewal of aged erythrocytes that are 

efficiently removed by macrophages mainly present in the spleen. Thus, 

erythropoiesis plays an important role in maintaining the erythroid lineage.4 

During embryonic development, early production of erythroid lineage (primitive 

erythropoiesis) occurs within the extraembryonic mesoderm of the yolk sac.5  

Later in the developing fetal liver, primitive erythropoiesis is then replaced by 

definitive erythropoiesis, where enucleated mature erythrocytes are produced from  

hematopoietic stem cells (HSCs).4 This committed differentiation process constantly 

occurs in the bone marrow, which provides a niche composed of macrophages, 

osteoblasts, endothelial cells, hematopoietic cells, stromal cells, and extracellular 

matrix. The known function of the niche is to favor direct cell-cell contact and 

exposure of developing erythroid progenitors to growth factors and cytokines.3  

The maturation of erythroid precursors occurs into the erythroblastic islands, which 

are defined structural units in the bone marrow. In spleen, as site of extramedullar 

erythropoiesis, erythroblastic islands have been described in murine models of 

anemia. Each erythroblastic island is organized with a central macrophage 

surrounded by differentiating and enucleating erythroblasts (Fig. 1).6-7 In normal 

erythropoiesis, the enucleation occurs in the erythroblastic island and expelled nuclei 

are rapidly phagocytized by the central macrophage. Released nuclei contain very 

low levels of ATP and a higher exposure of phosphatidylserine on their surface. This 

serves as an “eat me” signal for apoptotic cells that is used by macrophages to ensure 

the engulfment of the nuclei.8     
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Fig. 1. Micrographs of erythroblastic islands. From left to right are respectively: Transmission electron and  

scanning electron micrographs and confocal immunofluorescence image. The green arrows indicate macrophage 

surrounded by maturating erythroblasts. Modified from Mohandas N. et al. Erythroblastic islands: niches for 

erythropoiesis. Blood 2008; 112(3): 470-478 

 

 

  3.1.1 Erythropoiesis is a dynamic process 

The production of matured red cells involves proliferation, differentiation and 

commitment of progenitor cells, which acquire progressively functional and 

morphological characteristics of erythroid cells. This complex process is divided in 

two main phases: early erythropoiesis and late erythropoiesis.  During the early 

phase, multi-potential hematopoietic stem cells proliferate and differentiate into 

committed erythroid progenitors (Fig. 2).2 The burst forming unit-erythroid (BFU-E) 

are large or broken colonies, which expand and develop into colony forming units-

erythroid (CFU-Es). These are tightly packed small colonies, which are more abundant 

than BFU-Es in the bone marrow.9 BFU-Es and CFU-Es are typical primitive 

hematopoietic blast expressing EPO receptors, cell surface markers, signaling 

intermediates and transcription factors required for differentiation into mature 

erythroblasts.  

The terminal or late phase of erythropoiesis is a stage starting from pro-erythroblasts 

to reticulocytes that are later dismissed in the peripheral circulation. In this phase, 

erythroid precursors undergo several morphological changes characterized by a 

gradual reduction of cell size, nuclear condensation, cytoplasmatic acidification and a 

marked increase in hemoglobin concentration.10 These events are associated with 

changes in membrane protein organization and clearance of organelles towards the 

generation of mature reticulocyte ready for being transfer from bone marrow to the 

peripheral circulation.  
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Fig. 2. Schematic diagram of erythroid differentiation. Modified from Dzierzak E. et al. Erythropoiesis: 

Development and Differentiation. CSHPM 2013; 3(4): a011601 

 

 

  3.1.2 Erythropoietin cascade signaling and oxidation 

Erythropoietin (EPO) is the primary regulator of erythropoiesis and it has been 

demonstrated that erythroid maturation is strictly dependent to EPO signaling 

cascade.11-12 EPO stimulates erythroid cells proliferation and differentiation through a 

specific high affinity binding to its receptor (EPO-R), which forms homo-dimers.11,13-14 

This receptor is expressed on all erythroid cells (from the BFU-E stage to 

orthochromatic erythroblasts).  EPO cascade promotes the production of reactive 

oxygen species (ROS), which are also generated during heme biosynthesis through 

iron import in erythroid cells.15 Upon EPO binding, EPO-R undergoes conformational 

change that activates a primary tyrosine kinase, Janus-kinase-2 (Jak2).16 

Subsequently, Jak2 phosphorylates eight tyrosine residues in the cytoplasmic tail of  

EPO-R, generating docking sites for proteins with (SH2) domains, capable of 

promoting the activation of multiple signaling pathways. Jak2 targets the 

transcriptional factors STAT5, a master regulator of erythroid maturation events. 

Recent studies provide evidence that additional Tyr-kinase participates to the EPO 

signaling cascade beside Jak2. We and others have shown the importance of 

additional Tyr-kinase in EPO cascade: Lyn and Fyn, two Tyr-kinases of the Src 

family.17-18 Noteworthy, both Lyn and Fyn also modulate STAT5 function, resulting in 
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STAT5 activation.19-22 STAT5 controls the transcription of several genes involved in 

the terminal erythroid maturation such as Socs3, Cish, and Bcl2l1, which are 

responsible for the down regulation of EPO-R signaling, chromatin compaction and  

production of pro-survival factor Bcl-Xs and anti-apoptotic factor Bcl-XL.
22   

Jak2 as well as Lyn and Fyn intersect other signaling pathways important in cell 

growth and differentiation during erythropoiesis. Indeed, Jak2 activates PI-3 and Akt 

kinases. 

The activation of PI-3 Kinase participates to phospholipids signaling and Ca2+ 

mobilization.23 Whereas, Akt is involved in cellular response against oxidative  stress 

through (i) the activation of transcription factors such as Forkhead box-O3 (FOXO3) 

and Nrf2; or (ii) the modulation of mTOR, the gatekeeper of autophagy.24-25 In 

response to oxidation, active FOXO3 translocates into the nucleus with up-regulation 

of  genes involved in redox response such as catalase, superoxide dismutase 2 (SOD2) 

and glutathione peroxidase 1 (Gpx-1).26 The importance of FOXO3 in erythropoiesis is 

further supported by evidence in mice genetically lacking FOXO3, which show 

ineffective erythropoiesis and increased Akt activity. This results in activation of  

Jak2/Akt/mTOR pathway with repression of autophagy, which contributes to 

amplified ineffective erythropoiesis of FOXO3-/- mice.24 It is of note that Akt intersects 

the transcription factor GATA-1, a key regulator of erythroid differentiation.27  

Nrf2 is another redox-sensitive transcription factor, which is tightly regulated. In 

erythropoiesis, Nrf2 is activated in response to oxidation, resulting in up-regulation of 

genes encoding for anti-oxidant and cytoprotective systems. We have recently shown 

that the persistent activation of Nrf2 in mice genetically lacking Fyn, that switch-off 

active Nrf2. This results in accumulation of non-functional/damaged proteins and 

impaired autophagy with severe oxidative stress and abnormalities in erythropoiesis 

(Fig. 3).17 

In erythropoiesis, anti-oxidant and cytoprotective systems are crucial.  Indeed, 

previous studies have shown the importance of anti-oxidant and cytoprotective 

systems in erythropoiesis from engineered knockout mice for anti-oxidant systems.15, 

28-29 Among them, mice genetically lacking Prx2 show oxidation and ineffective 

erythropoiesis associated with intense activation of Nrf2 transcription factor as 

compensatory mechanism against oxidative stress during erythropoiesis.29  
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Fig. 3. Schematic diagram of erythropoietin (EPO) cascade. Modified from Beneduce E. et al. Fyn kinase a novel 

modulator of erythropoietin signaling and stress erythropoiesis. Am J Hematol.2019;94:10-20. 

 

 

 

 

 

 

 

 
 

 3.2. Nrf2 : Structure and function  

Nuclear-factor erythroid-derived 2 (Nrf2, also called Nfe2l2) is a cap’n’collar (CNC) 

basic-region leucine zipper(bZIP) transcription factor that participates in acute phase 

response to oxidative stress and controls the expression of adaptive systems to 

environmental stressors. This transcriptional factor was firstly described in the 

laboratory of Yuet Wai Kan.30 Nfr2 is characterized by seven domains known as Nrf2-

ECH homology (Neh) domains (Fig. 4).31-33 Each one fulfills specific functions: 

- Neh1 domain comprises the CNC-bZIP region that both dimerizes with small 

musculoaponeurotic fibrosarcoma (Maf)proteins and binds with DNA. 

- Neh2 and Neh6 domains negatively controls Nrf2 
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-  Neh3, Neh4 and Neh5 domains are transactivation regions important in the 

recruitment of various proteins. 

-  Neh 7 domain mediate the repression of Nrf2 by the retinoid X receptor (RXR)α. 

 

 

 

Fig. 4. Nrf2 protein structure and Neh domains indicated. modified from Hayes JD, et al. Trends Biochem Sci, 2014 

 

 

Nrf2 transcription factor is ubiquitously expressed in human and mouse tissues. Nrf2 

binds DNA as heterodimer with small (Maf) proteins such as MafF, MafG and MafK. 34 

To characterize the function role of Nrf2, different knockout mouse strains have been 

generated, but the absence of Nrf2 did not produce a clear phenotype.  However, in 

vivo animal based studies show that Nrf2 plays a key role in acute phase response to 

different stresses such as oxidation through its ability to  modulate the expression of 

(i) antioxidant responsive element (ARE-) related genes encoding for enzymes such as 

Hemeoxygenase-1 (HO-1) or Glutathione peroxidase  (Gpx); (ii) drug-metabolizing 

systems,  such as   glutathione S-transferase (Gst), NAD(P)H: quinine oxidoreductase-

1 (Nqo-1) or phase III drug-detoxifying enzymes involved in cellular efflux and (iii) 

metabolic pathways.35 

In addition, Nrf2 has been showed to control the expression of xCT subunit of system 

X-
c, which import cystine into cells36 along with glutamate-cysteine ligase 

catalytic(GCLC) and modifier(GCLM) subunits that together catalyze the rate-limiting 

step in glutathione synthesis.37 Nrf2 also participates to the expression of 

thioredoxin1 (txn),38 thioredoxin reductase (txnr)39-42 and sulfiredoxin(srxn)43-44 that 

are important systems involved in Prx2 reduction through NADPH system. 

 

3.3 The Interplay between Prx2 and Nrf2 

Prx2 is a typical 2-cysteine peroxiredoxin that is involved in the defense against 

oxidative stress through its ability to reduce and detoxify a vast range of oxidative 
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elements. It is the third most abundant cytoplasmic protein in red blood cells (RBCs) 

and it is efficiently able to scavenge low concentration of hydrogen peroxide (H2O2) 

without inactivation due to over-oxidation.45-46  Studies have suggested a potential 

role of Prx2 in stress-response cytoprotective system in pathological erythropoiesis 

given its upregulated expression in both murine and human β-thalassemic 

erythropoiesis.45-46  β-thalassemia is characterized by increased oxidative stress and 

ROS production related to the imbalance between alpha-beta globin chain 

synthesis.47  Our group has recently showed a functional interplay between Nrf2 and 

Prx2 to face oxidation in β-thalassemia.29 Our data suggest that in stress 

erythropoiesis Prx2 is a key cytoprotective system  in conjunction with Nrf2  to limit 

oxidative damage in β-thalassemic mouse erythropoiesis. Nrf2 might function as 

back-up mechanism in the absence of Prx2, supporting pathologic erythropoiesis to 

ensure terminal differentiation.  

Evidence from Prx2-/- mice exposed to an iron overload diet indicates that Prx2 is a 

new regulator of iron homeostasis and proposed the modulation of Prx2 activity as a 

novel clinical strategy to face iron overload clinical problems.48  

 

          3.4 Studies in mouse models: Nrf2-/- mice or Nrf2 up/up mice 

In the last decade, different Nrf2-/- mouse strains have been generated to study the in 

vivo role of Nrf2 in response to stresses such as oxidation or acute inflammation. We 

carried out a revision of the literature and the results of the main studies on Nrf2-/- 

mice or Nrf2 up/up mice are reported in Table 1. 

Table 1.    Summary of the main studies in Nrf2 
-/-

 and Nrf2
up/up

 mice 

Mouse strain Phenotype Ref. 

 

 

 

 

 

- Extramedullar erythropoiesis (splenomegaly) 

- Age-dependent hemolytic anemia 

- Anisopoikilocytosis and presence of Howell-jolly body, marker 
of Hb oxidation  

- Severe anemia in response to in vivo hydrogen peroxide 
(H2O2) treatment 

- Increased erythrophagocytosis 

Lee  J M    

2004
49
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Nrf2 
-/-

 mice 

 

- Down-regulation of Nrf2-related antioxidant systems such as 
GSH 

- Splenomegaly and age-related weight loss in female mice 

- Autoantibody production and immune complex deposition  
(C3, IgG and IgM) in multiple organs such as kidney, liver and 
heart 

- Amplified inflammatory response (mononuclear cell 
infiltration) in kidney, liver and heart 

- Increased apoptosis and cell oxidation in kidney and liver 

- Down-regulation of Nrf2 related detoxification genes (ALDH, 
GSTs and FMO) in liver 

Jiang Li   

2004
50

 

- Significant delay in regeneration of ischemic induced  liver 
injury 

- Increased  cell apoptosis and oxidation cell in hepatectomized 
liver 

- Reduced expression of Nrf2 target genes such as Gst and Nqo1 
in liver 

- Reduced cell survival and proliferation in ischemic induced 
liver injury, most likely related reduction in activation of PI3 
kinase/Akt signaling 

Beyer T  

2008
51

 

- Down-regulation of iron transporters: Fpn1 and Nramp1 in 
macrophages 

- Reduced mRNA expression of Hepcidin and TfR1  macrophages 

Harada N  

2011
35

 

-  Up-regulation of G6Pase in liver during fasting 

-  Increased lipid peroxidation (oxidative stress) in liver 

- Reduced hepatic expression of detoxification enzymes (Nqo1 
and Gsta1) and redox proteins (Txn) 

Zhang Y J  

2013
52

 

-  High sensibility of  Nrf2 
-/-

 hepatocytes to iron overload 

- Necrotic and apoptotic areas in iron-induced liver 

- Increased inflammatory cell infiltrates  in  iron-induced liver 
cytotoxity 

- Increased markers of oxidation in  iron-induced liver cytotoxity   

Silva-Gomes  

2014
53

 

- Increased sensitivity risk to develop lung tumors 

- Reduction in pulmonary T cells populations  

Zhang D     

2017
54 
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           3.5 Autophagy and Erythropoiesis 

 Autophagy, literally meaning “Self-eating” is an organized process where cellular    

components and organelles are sequestered into a double membrane vesicle called 

“autophagosome”, and targeted for lysosomal degradation.60 In cell homeostasis, 

autophagy plays an important role in maintaining a quality control of essential 

cellular component on protein degradation/clearance. In presence of severe 

oxidation, autophagy levels can be dramatically increased to ensure cell survival.60   

- Increased T cell suppressors in spleen 

- Increased cytokines 

- Reduction in Nrf1 expression 

- Down-regulation of detoxifying and antioxidant enzymes in 
female mice 

- Delayed rate of bone acquisition in female mice 

- High rate of bone acquisition in male mice 

Pellegrini GC 

2017
55

 

- Increased eNOS expression in aorta and heart 

- Increased cardioprotection against I/R 

Erkens R   

2018
56

 

- Reduced sensitivity to induce Snat3 expression during 

metabolic acidosis 

- Up-regulation of  oxidative stress markers during metabolic 

acidosis 

Lister A    

2018
57

 

Nrf2 
up/up

 mice 

 

-   Delay red cell maturation  

- Aberrant retention of mitochondria within the phenotypically 
mature cells 

- Defect in ribophagy (high retention of ribosomes) in mature 
cells 

- Abnormal expression of autophagy genes (NIX and ULK1) 

Gothwal M 

2016
58

 

- Down-regulation of pro-inflammatory genes (C4) 

- Reduced loss of optic tract 

Sigfridsson E 

2018
59
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Erythropoiesis is a dynamic process requiring reduction of cell volume, clearance of 

unfolded/damaged proteins and organelles to gain at the end the generation of 

reticulocytes. Previous studies have shown that autophagy–related genes such as 

Ulk1 and Atg13, interacts with the HSP90-Cdc37 complex, promoting mitochondrial 

clearance (mitophagy) during erythroid differentiation.61 In addition, Ulk1 and Atg7 

have also been described to be involved in mitophagy during erythroid maturation. 

Studies in Atg7-/- mouse erythroid cells show an impairment of autophagosome 

elongation with mitochondrial engulfment, resulting in delayed mitochondrial 

clearance.62-63 Similar data have been also reported in Ulk1-/- mice model in which 

reticulocytes display a defect in degradation of mitochondria and RNA-bound 

ribosomes during in vitro maturation process.64 In addition, Ulk1 also mediates an 

alternative Atg5/Atg7 independent macroautophagy, a dominant process during 

mitochondrial clearance in maturing reticulocytes.65 Noteworthy, Ulk1-/- mice is also 

characterized by the presence of red cell populations retaining mitochondria, 

suggesting an increased hemoglobin content in both reticulocytes and matured red 

cells.  

Recently we have documented the role of Ulk1, Atg13 and Atg7 in autophagic flux 

during erythroid maturation in “in vitro” model of human erythropoiesis derived from 

CD34+ cells of patients with chorea-acanthocytosis, a neurodegenerative disorder 

involving basal ganglia and erythroid cells.66 

The importance of autophagy in erythroid maturation is further supported by 

evidence provided by pharmacologic inhibitors of mTOR, the gatekeeper of 

autophagy. In β-thalassemic mice, a model of stress erythropoiesis, rapamycin blocks 

mTOR and activates autophagy, inducing proliferation of immature erythroblasts with 

increased red cells production.23 Similar data have been also reported in mouse 

model for sickle cell disease, supporting the critical role of autophagy in assisting 

erythroid maturation and quality control processes.  

 

3.6 Autophagy/apoptosis: Role of caspase 

Oxidative stress promotes the activation of autophagy as a strategy of the cell to 

adapt and cope with a stressful environment. Whenever the stress is severe or 

prolonged, apoptotic programs are activated and autophagy is blocked. Thus, the 
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balance between autophagy and apoptosis is crucial in cell fate. The activation of 

autophagy generally precedes cell apoptosis which is the terminal event for cells.67  

In presence of severe or prolonged stress, autophagy might be blocked by the action 

of protease such as caspases, which cleave key autophagy related proteins, resulting 

in acceleration of cellular death. Among autophagy related proteins, Atg3 and Beclin1 

have been reported to be directly targeted by caspases.68-69 In erythropoiesis, 

caspase-1, -2, -3, -5,- 6, -7, -8 and -9 have been described to play a relevant role in 

cell maturation and growth.70-71 Indeed, caspases-3 and 7 have been suggested to 

cleave transcription factors such as GATA-1, promoting the arrest of cell growth and 

maturation.72-73 Furthermore, caspase-3 has been also involved in chromatin 

condensation and loss of nucleus during the terminal phase of erythropoiesis, 

supporting the multitarget action of caspase in erythroid maturation events.74 

 

3.7 The functional link between Nrf2 and autophagy  

           The transcription factor Nrf2 is activated in response to oxidative stress, modulating 

the expression of anti-oxidant or cytoprotective systems such as Prx2. Previous 

studies have shown a functional interplay between Nrf2 and Prx2 against severe or 

prolonged oxidation in erythropoiesis.29 Once activated Nrf2 is translocated to the 

nucleus, up-regulating the ARE genes such as Heme-oxygenase-1 (HO-1), which is 

important for the breakdown of heme, or Nqo-1 and GCLM (glutamate-cysteine 

ligase modifier subunit) as anti-oxidant systems. When Nrf2 is switched off, Keap-1 

complexes with Nrf2 and promotes its ubiquitylation through autophagy. The 

autophagy adaptor protein p62 facilitates the selective degradation of protein cargo. 

p62 contains a KIR motif that binds with Keap-1 during the transport of cargo protein 

into “autophagosome” (Fig. 5).75 Recent studies in cells genetically lacking Atg5 or 

Atg7 have documented a prolonged activation of Nrf2, as result of the accumulation 

of p62-Keap-1 aggregates in the cytosol.76-77 These findings support the functional 

crosstalk between autophagy and Nrf2 and indicate the importance of preservation 

of regulatory pathways modulating Nrf2 activation/inhibition.   
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Fig. 5. Regulatory pathways of Nrf2 Signaling. Modified from Zhang DD. et al. p62 links autophagy and Nrf2 

Signaling. FRBM.2015;88:199-204. 
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4. AIM OF STUDY 

Understanding the role of Nrf2 in erythroid maturation  
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5. MATERIALS AND METHODS 

           5.1 Drugs and chemicals 

NaCl, Na3VO4, TRIS, Tween 20, EDTA, choline, MgCl2, MOPS, Na2HPO4, KH2PO4, NaF, 

bicine, β-mercaptoethanol, benzamidine, glycine, glycerol, potassium cyanide, 

bromphenol blue, sodium dodecil sulphate (SDS), hydrocortisone, albumin from 

bovine serum (BSA), May-Grunwald-Giemsa’s Azur-Eosin-Methylene Blue solution, 

Astaxanthin, Poly(D,L-lactide-co-glycolide) (PLGA) were obtained from Sigma/Aldrich 

(St Louis, MO, USA); dithiotreithol (DTT), was from Fluka (Buchs, Switzerland); 

protease inhibitor cocktail tablets were from Roche (Basel, Switzerland); Prestained 

protein ladder, Triton X-100 and Temed were purchased from GE Healthcare Life 

Biosciences (Little Chalfont, UK); 40% Acrylamide/Bis Solution, 37.5:1 was from BIO-

RAD (California, USA); Luminata Forte and Luminata classico Western Hrp solutions 

were from Mercks Group (Armstad, Germany); Annexin V Binding Buffer was from 

eBioscience (San Diego, USA); Dulbecco’s Phosphate Buffered Saline (DPBS) was from 

Lonza (Belgium). Alpha-MEM, L-glutamine and Fetal Cow Serum (FCS) were from 

ThermoFisher (Massachusetts, USA); Penicillin-Streptamicin and Amphotericin were 

from Euroclone (Milan, Italy); MethoCult™ M3234 was from StemCell Techologies 

(Milan, Italy).  

 

5.2 Mouse strains and design of the study 

We studied the following mouse strains: C57BL/6J as normal control (wild-type; WT), 

and Nrf2-/- mice.49 Based on our preliminary experiments, we used female mice aging 

from 4 to 12 months old for both C57BL/6J and Nrf2-/- strains. Mouse blood was 

collected by retro-orbital venipuncture in anesthetized mice using heparinized 

capillares according to the general guidelines of local animal facility, University of 

Verona. Whenever indicated, severe anemia induction was done by intraperitoneal 

injection of PHZ (40 mg/Kg body weight)78 or Doxorubicin (0.25 mg/Kg body 

weight).79 Blood was collected at day 2, 4, 8, 11 and 14 from PHZ injection and at day 
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3, 6 and 9 after Doxorubicin injection. Spleen and bone marrow were collected at day 

4 from PHZ injection and at day 9 after Doxorubicin injection. Whenever indicated, 

mice were treated through intraperitoneal injection with Astaxanthin Loaded PLGA 

nanoparticles ( ATS-NP) at the dosage of 2mg/kg or vehicle every two days for four 

weeks.  

Hematological parameters, red cell indices and reticulocyte count were evaluated on 

ADVIA 120 Hematology System (Siemens Healthcare GmbH, Germany) as previously 

described.80 Hematocrit and hemoglobin were manually determined.81-82  

 

5.3 Treatment of red cells with oxidative agents 

Red Blood cells (RBCs) from WT and Nrf2-/- mice were treated in vitro with three 

different oxidative agents: Hydrogen peroxide (H2O2; 50 µM), Diamide (2 mM) and 

PHZ( 20 µM) based on data previously reported in mouse erythrocytes.46 Whenever 

indicated, RBCs were pretreated with sodium azide (NaN3; 100mM) to inhibit catalase 

before exposure to oxidative agents.83-84 Treated and untreated red cells were either 

analyzed  to measure ROS levels and Annexin V+ cells or lysed for membrane ghost 

and cytosolic fraction preparation.80  

 

5.4 Immunoblot analysis of mouse red cell membrane ghost and cytosol fraction 

Red cell membrane ghost and cytosol fraction were prepared as previously 

described.80  Whenever  Prx2 was evaluated trough western blot, 100mM of NEM 

was added in the lysis buffer to avoid possible artifacts related to Prx2 oxidation 

during cell preparation.46 Proteins from ghosts and the cytosol fraction were 

solubilized in reducing or non-reducing sample buffer (50 mM Tris, pH 6.8, 2% SDS, 

10% glycerol, few grains of bromphenol blue added of 5% β-mercaptoethanol for 

reducing conditions) and analyzed by one-dimensional SDS–polyacrylamide gel 

electrophoresis. Gels were either stained with colloidal Coomassie or transferred to 

nitrocellulose membranes for immunoblot analysis with specific antibodies: anti-

phospho-Syk (Tyr 525/526) (Cell signaling Technology, Leiden, NL); anti-Syk (Cell 
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signaling Technology, Leiden, NL); anti-Prx2 (Clone1E8, Abcam, Cambridge, UK); anti-

peroxiredoxin-SO3 antibody (clone LF-PA0004; LabFrontier); anti-band 3 antibody 

(clone IVF12, DSHB, IA, USA) ); anti-catalase (Abcam, Cambridge, UK); anti-HSP70, 

anti-G6PD, anti-TrxR-1 and anti-NQO1 (Santa Cruz Biotechnology, Texas, USA); anti-

HSP90 (Cell signaling Technology, Leiden, NL); anti-Actin (clone BIII-136; Sigma–

Aldrich) and anti-carbonic anidrase (Chemicon, Temecula, USA) as loading controls. 

Anti Phospho-Tyrosine immunoprecipitation (IP) experiments were carried out as 

previously reported;66 anti IgG rabbit (GE Healthcare Life Sciences, Little Chalfont, UK) 

was used as loading control. Blots were developed using the Luminata Forte or 

Luminata Classico Western chemiluminescence reagents. Images were acquired using 

Image Quant Las Mini 4000 Digital Imaging System (GE Healthcare Life Sciences, Little 

Chalfont, UK) and densitometric analysis of band intensities was carried out using  

the ImageQuant TL software (GE Healthcare Life Sciences). 

 

5.5 Flow cytometric analysis of mouse bone marrow and spleen erythroid 

precursors 

Flow cytometric analysis of erythroid precursors from bone marrow and spleen of 

mice  was carried out using CD44-Ter119 gating strategy as previously described.85 

Briefly cells were centrifuged at 1,500 rpm for 5 min at 4°C and resuspended in the 

proper volume of BEPS (PBS 1X, BSA 1%, EDTA 2 mM, NaCl 25 mM). Cells were 

incubated first with CD16/32 to block Fc receptor for 15 min at 4°C in the dark, then 

later incubated with CD45-APC-Cy7, CD44-FITC, CD71-PE and Ter119-APC 

(eBioscience, San Diego, USA) antibodies for 45 min at 4°C in the dark. Cells were 

washed and centrifuged at 1,500 rpm for 5 min at 4°C, resuspended in BEPS,  and 

7AAD for cell viability was added immediately before the analysis. (Fig. 6)  

 

 



23 
 

               

Fig. 6.  Example of cytofluorimetric scatter for erythroid precursors from WT mice. Left panel: analysis of CD44
low

-

Ter119
+
 Pop I corresponding to pro-erythroblasts. Right panel: analysis of CD44

+
 Pop II, III, IV corresponding to 

basophilic, polychromatic and orthochromatic erythroblasts respectively. 

ROS levels of the erythroid precursors were determined using the General Oxidative 

Stress Indicator, CM-H2DCFDA (LifeTechnologies, Carlsbad, CA) on CD44-Ter119 

gated populations as previously described. 16,29 

Apoptotic erythroblasts were analyzed on CD44-Ter119 gated populations using the 

Annexin-V PE Apoptosis detection kit (eBioscience, San Diego, CA), following the 

manufacturer’s instructions.27 

Oxidative DNA damage was determined by 8OHdG flow cytometric analysis as 

previously described with some modifications.86 Briefly erythroid precursors from 

mouse bone marrow were stained with CD44-FITC, CD71-PE and Ter119-BV450 

(eBiosciences, CA, USA);  fixed and permeabilized with BD Cytofix/Cytoperm and the 

BD Cytoperm Plus permeabilization reagent (BD Biosciences,CA, USA) respectively. 

Cells were then stained with primary anti-8OHdG (Santa Cruz Biotechnology, CA, 

USA) and secondary anti-mouse eFluor647 (Santa Cruz Biotechnology, CA, USA).  

All the analysis were performed with the FACSCanto-IITM flow cytometer (Becton 

Dickinson, San Jose, CA, USA) and data were analyzed with the FlowJo software (Tree 

Star, Ashland, OR, USA). 
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5.6 Cell sorting of murine bone marrow erythroblasts 

Total erythroblasts (CD44+Ter119+FSChigh) were sorted from WT and Nrf2-/- mouse 

bone marrow using a FACS Aria-IIITM cell sorter (Becton Dickinson, San Jose, CA, USA) 

as previously reported.85  Sorted cells were used for (i) immunofluorescence assay; 29 

(ii) immunoblot analysis;29 (iii) molecular analysis through QRT-PCR;48 and (iv) 

CPP32/Caspase-3 Fluorometric protease assay (BioVision, Milpitas, CA, USA; following 

the manufacturer’s instructions); and (v) nuclear protein isolation, using the Q-

proteome Nuclear Protein Kit (Qiagen, Hilden, Germany; following the 

manufacturer’s instructions).   

The Immunofluorescence analysis of sorted erythroblasts was carried out using the 

following antibodies: anti-Nrf2 and anti-Lamp-1 (Abcam, Cambrige, UK); anti-

Prx2(EPR51554, Abcam, Cambridge, UK); anti-APG7 (Atg7) (ProSci, Poway, CA, USA).  

For Immunoblot analysis  the following specific antibodies were used: anti-NFkB-

phospho-S536 (Cell Signaling Technology, Leiden, NL); anti-NFkB p65 and anti-Atg5 

(Cell Signaling Technology, Leiden, NL); anti-Nrf2-phospho-S40 (Clone EP1809Y, 

Abcam, Cambridge,UK); anti-Nrf2 (Abcam, Cambrige, UK); anti Gadd34, anti-Lamp-1, 

anti-SQSTM1/P62, anti-Rab5 and anti-LC3A/B (Abcam, Cambrige,UK); anti-Atg4 

(Santa Cruz Biotechnology, Heidelberg, Germany); anti-APG7 (Atg7) (ProSci, Poway, 

CA, USA); anti-ATF6 (Novus Biologicals, Centenial, CO, USA); anti-CHOP (Thermo 

Fisher Scientific, Massachusetts, USA); anti-Actin (clone BIII-136; Sigma–Aldrich, Saint 

Louis, MO, USA) and anti-GAPDH (Sigma–Aldrich, Saint Louis, MO, USA) as loading 

controls.  

 

5.7  Preparation of Astaxanthin Loaded PLGA nanoparticles ( ATS-NP) 

A single emulsion solvent evaporation method was used for the synthesis of the 

Astaxanthin Loaded PLGA nanoparticles ( ATS-NP) .87 Briefly, 20 mg of PLGA (7–17 

kDa PLGA 50:50 with uncapped end‐groups; Sigma‐Aldrich, St. Louis, MO) were 

dissolved in 2 mL of a mixture of 85% acetone and 15% ethanol. The organic phase 

was added dropwise to 20 mL of 0.5% aqueous polyvinyl alcohol surfactant under 
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stirring. The obtained emulsion was maintained under stirring overnight to let the 

organic solvents evaporate. Produced nanoparticles were collected by centrifugation 

at 13,000 g for 20 min at 10 °C and washed several times with 0.01M 

phosphate‐buffered saline, pH 7.4 (PBS) to remove residues. Finally, 5% mannitol was 

added as a cryoprotectant and the NPs were divided into proper aliquots and 

lyophilized for storage.  

 

5.8  Statistical analysis 

Data were analyzed using either the t-test or the 2-way analysis of variance (ANOVA) 

for repeated measures between mice of various genotypes. A difference with a           

P < 0.05 was considered significant. 
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6. CRITICAL RESULTS 

6.1 Nrf2-/- mouse red cells show low expression of Nrf2 dependent anti-oxidant 

systems and increased susceptibility to oxidation 

Nrf2-/- mice showed anisopoikilocytosis and Howell-Jolly body in red cells (arrows in 

Fig. 7a).49 Increased ROS levels was documented in Nrf2-/- mouse red cells when 

compared to wild-type erythrocytes (Fig. 7b). This was mainly related to the 

reduction in the expression of Nrf2 related anti-oxidant systems such as NAD(P)H: 

quinine oxidoreductase-1 (Nqo1), Prx2 and catalase (Fig. 7c). The high pro-oxidant 

environment of Nrf2-/- mouse red cells was also supported by increased membrane 

translocation of HSP70 and 90 compared to wild-type erythrocytes. Noteworthy, we 

observed a reduction in the amount of Prx2 associated to the membrane similarly to 

that reported in β-thalassemic red cells (Fig. 7d). This may be related to either low 

expression of Prx2 or occupancy of the integral membrane protein band 3, which is a 

known docking site for Prx2.46 In Nrf2-/- mouse red cells, increased amount of 

phosphatydil-serine (PS) positive erythrocytes indicate the presence of membrane 

lipid-peroxidation, contributing to reduce Nrf2-/- mouse red cell membrane 

mechanical stability (Fig. 7e). Taken together, our data indicate that the absence of 

Nrf2 results in reduction of red cell anti-oxidant and cytoprotective systems, 

promoting oxidation and accelerated senescence of erythrocytes from Nrf2-/- mice.   
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Fig. 7. (a) Morphology of red cells from Nrf2
-/-

 and WT mice. (b) ROS in red cells from Nrf2
-/-

 and WT mice. Data 

are presented as means±SD (n=6) *P<0.05 compared to WT. (c) and (d) Western blot analysis of cytosolic fraction 

and membrane fraction of red cells from Nrf2
-/-

 and WT mice. One experiment of other six with similar result is 

shown. (e) Annexin V
+
 red cells in Nrf2

-/-
 and WT mice. Data are presented as means±SD (n=6) *P<0.05 compared 

to WT.  (f) ROS and annexin V
+
 cells in red cells from Nrf2

-/-
 and WT mice exposed respectively to D: diamide, 

H2O2: Hydrogen peroxide; PHZ: Phenylhydrazine. Data are presented as means±SD (n=6) *P<0.05 compared to 

WT. 

 

We then used exogenous oxidants such as diamide, H2O2 or phenylhydrazine (PHZ) to 

test the response of Nrf2-/- erythrocytes to in vitro oxidative stress.  Nrf2-/- mouse 

erythrocytes showed a higher sensitivity to H2O2 compared to wild-type erythrocytes 

(Fig. 7f). Whereas, no major difference between Nrf2-/- and WT mouse red cells was 

observed in presence of either diamide or PHZ (Fig. 7f). Since in red cells Prx2 is one 

the main cytoprotective systems against H2O2, we evaluated Prx2 dimerization and 

the amount of PrxSO3 in red cells from both mouse strains exposed to H2O2 and PHZ. 

As shown in Fig. 8a, Prx2 dimerization was higher in PHZ wild-type red cells compared 

to Nrf2-/- mouse red cells. Whereas the amount of PrxSO3, corresponding to over-

oxidized Prx2,88 was higher in Nrf2-/- mouse red cells exposed to both H2O2 or PHZ 

compared to wild-type erythrocytes (Fig. 8b). These data indicate that Nrf2-/- 

erythrocytes are more susceptible to H2O2 and PHZ mediated oxidative stress than 

wild-type erythrocytes. Indeed, when catalase was blocked by sodium-azide, Prx2 

dimerization was higher in Nrf2-/- red cells exposed to H2O2 than in wild type 
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erythrocytes, supporting the increased susceptibility of Nrf2-/- erythrocytes to H2O2 

and PHZ oxidation.   

 

          

Fig. 8. (a) Western blot analysis of cytosolic fraction of treated RBCs for Prx2 dimers. (D) is for Dimers while (M) 

for monomers. Exogenous oxidants are: H2O2 = Hydrogen peroxide; PHZ = Phenylhydrazine.  (b) PrxSO3 expression 

in the cytosolic fraction of treated RBCs. Carbonic anidrase was used as protein loading control.  (c) Western blot 

analysis of cytosolic fraction of treated RBCs for Prx2 dimmers. The Exogenous oxidants is H2O2 and NaN3 = 

sodium azide (Potent catalase inhibitor). (d) Tyr-phoshorylation state of band 3 in Nrf2
-/-

 erythrocytes associated 

with the activation of Syk pathway in response to H2O2 treatment. Data are presented as means±SD (n=6) *P<0.05 

compared to WT. 

 

Previous studies have shown that oxidation modulates intracellular signaling 

targeting band 3 throughout the activation of Src kinase or Syk related kinase.89   

Nrf2-/- erythrocytes displayed increased Tyr-phoshorylation of band 3 on steady state 

and in response to H2O2 when compared to wild-type mouse erythrocytes. This was 

associated with the activation of the canonical Syk pathway in red cells from both 

mouse strains, but again to a higher extend in Nrf2-/- erythrocytes as compared to 

treated wild-type red cells (Fig. 8d). Collectively, our data indicate that Nrf2-/- 

erythrocytes have lower anti-oxidant capacity than wild-type red cells, requiring an 

intense activation of intracellular signaling to ensure Nrf2-/- red cell survival against 

oxidation.   
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6.2 Age-dependent ineffective erythropoiesis characterized Nrf2-/- mice 

Since aging is a process characterized by oxidative stress, we reasoned that Nrf2 

might be important in erythroid maturation events during mouse aging.  

Table 2. Hematological Parameters and Red Cell Indices in Aging 

Wild-Type and Nrf2
-/-

 Mice 

 Wild-type animals  

 4 months-old 
mice (n=6) 

8 months-old mice 
(n=6) 

12 months-old mice 
(n=6) 

Hct (%) 46.1 ± 1.4 45.9 0.7 44.8±0.2 

Hb (g/dl) 14.8 ± 0.5 15 0.1 14.3±0.4 

MCV (fl) 51.3 ± 0.2 51.0 0.1 52.2±0.3 

MCH (g/dl) 15.9 ± 0.7 16.5 0.3 15.6±0.2 

RDW (%) 12.4±0.08 13.5 0.1 12.7±0.3 

Retics (10
3
 

cells/uL) 
450 ± 22 431 51 248±24° 

MCVr(fl) 54.9± 2 56.7 3 59.9±1.8° 

 Nrf2
-/-

 animals 

 4 months-old 
mice (n=6) 

8 months-old mice 
(n=6) 

12 months-old mice 
(n=6) 

Hct (%) 44.3 ± 0.8 41.8 1.1°* 33.6±3°* 

Hb (g/dl) 13.2 ± 0.5 12 0.2°* 11±0.5°* 

MCV (fl) 51.8 ± 1.5 50.0 2.0 57.2±1.3°* 

MCH (g/dl) 16.7 ± 1.1 16 0.3 16.1±0.4 

RDW (%) 13.9 ± 0.55 13.2 0.4 14.1±0.4°* 

Retics (10
3
 

cells/uL) 
380± 20* 190 59°* 180±12°* 

MCVr(fl) 61.2± 1.3* 61 1.4* 65±0.2°* 

Hct: hematocrit; Hb: hemoglobin; MCV: mean corpuscular volume; MCH: mean 
corpuscular hemoglobin; RDW: red cell distribution width; Retics: reticulocytes; *p< 0.05 
compared to wild-type mice; °p<0.05 compared to 4 months-old mice. 

 

As shown in table 2, Nrf2-/-mice developed an age-dependent macrocytic anemia 

associated with increased RDW as index of anisopkilcytosis and a marked reduction in 

reticulocytes, which displayed increased cell volume (MVCr). This finding suggests the 
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presence of ineffective erythropoiesis in Nrf2-/- mice when compared to aging wild-

type animals.  

To study erythropoiesis in Nrf2-/-mice, we used a recently developed flow cytometry 

strategy.29 Nrf2-/- mice displayed an aged dependent splenomegaly associated with 

the appearance of extramedullary erythropoiesis as supported by the increased 

amount of splenic CD44+ Ter119+cells (Fig. 9a-b) without significant change in 

erythroid maturation profile (data not shown). Increased ROS levels was evident in 

erythroblasts in the early phase of erythropoiesis without major difference in 

orthochromatic erythroblasts when compared to wild-type animals. The increased 

amount of 8-Hydroxydeoxyguanosine (8-OHdG) supports the presence of oxidative 

DNA damage in Nrf2-/- mouse erythroblasts compared to wild-type cells (Fig. 9c-d). 

We also observed increase apoptotic (Annexin V+ Cells) Nrf2-/- erythroblasts from the 

early phase of erythropoiesis compared to wild-type cells (Fig. 9e). These data 

suggest an increased pro-oxidant environment in Nrf2-/- erythroblasts, which might 

be possibly related to down-regulation of Nrf2 dependent ARE genes. Indeed, we 

found down-regulation of Catalase, Srxn2, Ho-1, Trx and Prx2 (Fig. 9f). As back-up 

mechanism to support stress erythropoiesis, we found increased activation of NF-kB, 

another redox sensitive transcriptional factor, in sorted erythroblasts from Nrf2-/- 

mice compared to wild-type animals (data not shown). All together, these findings 

suggest that the absence of Nrf2 increases the susceptibility of erythroblasts to 

oxidative stress with the development of an age dependent ineffective 

erythropoiesis. 
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Fig. 9. (a) Spleen weight/mouse weight ratio of WT and Nrf2
-/-

mice. (b) Cytofluorimetric analysis of maturation 

pattern of erythroid precursors from bone marrow and spleen using the following surface markers: CD44 and 

Ter119.  (c) ROS levels in erythroid precursors from bone marrow and spleen of Nrf2
-/-

 mice and WT control. (d) 

DNA oxidative damage of erythroblast populations from Nrf2
-/-

 mice and WT control. (e) Amount of Annexin V
+
 

cells in erythroid precursors from bone marrow and spleen of Nrf2
-/-

 mice and WT control. (f) RT-PCR expression 

of Catalase, Srxn2, Ho-1, Trx and Prx2 on sorted mouse erythroblast populations from Nrf2
-/-

 mice and WT control. 

Data are presented as means±SD (n=6) *P<0.05 compared to WT. 

 

6.3 Age dependent activation of Nrf2 sustains erythropoiesis in wild-type mice 

To understand whether Nrf2 might be important during mouse aging in normal 

erythropoiesis, we evaluated Nrf2 localization and activity in sorted erythroblasts 

from wild-type at 4 and 12 months of age.  As shown in Fig. 10a, Nfr2 was activated in 

sorted erythroid precursors from 12 months-old wild-type mice compared to younger 

animals (Nrf2 nuclear translocation in Fig. 10a; phospho-Nrf2 as active Nrf2 in          

Fig. 10b). Whereas, no major change in activation of NF-kB was evident in erythroid 

precursors from aging wild-type mice (Fig. 10b). This suggest an age dependent 

activation of Nrf2 in wild-type mice as confirmed by the up-regulation of two ARE-

related genes such as Ho-1 and Prx2 (Fig. 10c). Previously, we described a functional 

link between Nrf2 and Prx2 in models of stress erythropoiesis.29 Since aging is 

characterized by increased oxidative stress, we asked whether Prx2 might translocate 

to the nucleus acting as local cytoprotector. As shown in Fig. 10d, we observed a 
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nuclear localization of Prx2 in 12 months-old wild-type sorted erythroid precursors by 

immunofluorescent microscopy. This was further validated by immunoblot analysis of 

nuclear fraction from sorted polychromatic (population III) and orthochromatic 

(population IV) erythroblasts of wild-type animals, confirming the nuclear localization 

of Prx2 in erythroblasts (Fig. 10e). We used sorted erythroblasts from Prx2-/- mice as 

control.  All together, these data indicate the importance of Nfr2 to limit oxidation in 

aging by up-regulation of ARE-genes and nuclear translocation of Prx2 to assist cell 

growth and maturation.   

     

             

Fig. 10. (a) Nrf2 immunostaining of sorted erythroid precursors from bone marrow of 4 and 12-months old wild-

type (WT) mice. (b) Western blot analysis of phosphor-Nrf2(p-Nrf2), Nrf2, phosphor-NFkB(p-NFkB) and NFkB in 

sorted erythroid precursors from bone marrow of 4 and 12-months old WT mice. GAPDH was used as protein 

loading control. (c) RT-PCR expression of Ho-1 and Prx2 on sorted mouse erythroblast populations from bone 

marrow of 4 and 12-months old WT mice. Data are presented as means±SD (n=6) *P<0.05 compared to WT. (d) 

Prx2 immunostaining of sorted erythroid precursors from bone marrow of 4 and 12-months old WT mice. (e) 

Western blot analysis of Prx2 in sorted erythroid precursors (nuclear fraction) from bone marrow of 4 and 12-

months old WT mice. HisH3 was used as protein loading control.  

 

6.4  Nrf2-/- mice showed a delay response to stress erythropoiesis 

We then explored the response of Nrf2-/- mice to stress erythropoiesis induced 

respectively by PHZ or doxorubicin (Doxo). PHZ treatment induced acute hemolytic 

anemia in both mouse strains; however, the drop in hematocrit level was more 

pronounced in Nrf2-/- mice when compared to wild-type animals (Fig. 11a, upper 
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panel). This was associated with a marked reduction in reticulocyte count in Nrf2-/- 

mice at day 4 after PHZ treatment compared to wild-type animals (Fig. 11a, lower 

panel).  In agreement we found no change in extramedullar erythropoiesis in Nrf2-/- 

mice when compared to wild-type animals, which displayed a marked increase in 

erythropoietic spleen activity as expected in response to PHZ treatment (Fig. 11b).16 

We also found an accumulation of both polychromatic and orthochromatic 

erythroblasts in bone marrow and spleen from both mouse strains, which was 

associated with increased amount of apoptotic polychromatic and orthochromatic 

erythroblasts in bone marrow and spleen from both mouse strains. Noteworthy, the 

amount of apoptotic orthochromatic erythroblasts was higher in Nrf2-/- mice when 

compared to wild-type animals (Fig. 11c-d).  

We then evaluated the effect of Doxo treatment on erythropoiesis of both mouse 

strains. As shown in Fig. 11e (upper panel), we found a significant reduction of Hct in 

Nrf2-/- mice after 9 days of Doxo administration compared to wild-type. This was 

associated with a marked decrease in reticulocyte count in Nrf2-/- mice at day 9 after 

Doxo administration  (Fig. 11e, lower panel). This agreed with the reduction in total 

erythroblasts in both bone marrow and spleen site (Fig. 11f-g). In addition, the 

amount Annexin V+ cells was significantly increased in polychromatic and 

orthochromatic erythroblasts of Nrf2-/- mice as compared to wild-type animals (Fig. 

11h). Collectively, these findings indicate a blunted response to stress erythropoiesis 

in mice genetically lacking Nrf2.  
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Fig. 11. (a) Hematocrit (%) and Reticulocyte count in WT and Nrf2
-/-

mice exposed to PHZ injection. (b)  

Cytofluorimetric analysis of total erythroid precursors from bone marrow and spleen of WT and Nrf2
-/-

mice using 

the following surface markers: CD44 and Ter119. (c) Cytofluorimetric analysis of maturation pattern of erythroid 

precursors from bone marrow and spleen of WT and Nrf2
-/-

mice using the following surface markers: CD44 and 

Ter119. (d) Amount of annexin V
+
 cells in populations III corresponding to polychromatic erythroblasts (Pop III) 

and population IV corresponding to orthochromatic erythroblasts (Pop IV) from either spleen or bone marrow of 

WT and Nrf2
-/-

mice respectively ad day 4 after PHZ administration. (e) Hematocrit (%) and Reticulocyte count in 

WT and Nrf2
-/-

mice exposed to Doxo injection. (f) Cytofluorimetric analysis of total erythroid precursors from 

bone marrow and spleen of WT and Nrf2
-/-

mice using the following surface markers: CD44 and Ter119. (g) 

Cytofluorimetric analysis of maturation pattern of erythroid precursors from bone marrow and spleen of WT and 

Nrf2
-/-

mice using the following surface markers: CD44 and Ter119. (h) Amount of annexin V
+
 cells in populations III 

corresponding to polychromatic erythroblasts (Pop III) and population IV corresponding to orthochromatic 

erythroblasts (Pop IV) from either spleen or bone marrow of WT and Nrf2
-/-

mice respectively ad day 9 after Doxo 

administration. Data are presented as means±SD (n=6) *P<0.05 compared to WT. 

 

6.5  Nrf2-/- erythroblasts showed activation of UPR system and impaired autophagy 

To better understand the impact of chronic oxidation in Nrf2-/- mouse erythropoiesis, 

we explored the back-up mechanisms involved in proteostasis network against 

oxidation such as the unfolded protein response system (UPR) and the autophagy-

lysosomal pathway.  UPR system has a cytoprotective role in restoring endoplasmic 

reticulum homeostasis in presence of cellular stress.90 The activation of UPR 

facilitates proteins degradation and/or processing of unfolded/damaged proteins to 
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ensure cell survival. UPR system is organized in three arms: (i) ATF6, (ii) IRE and (iii) 

PERK, which included CHOP and Gadd34.91  

Previous reports have shown that abnormalities in UPR system deeply affect 

hematopoiesis as reported in a mouse model defective of UFBPI, which is 

characterized by severe endoplasmic reticulum (ER)-stress and pancytopenia.90 Nrf2-/- 

erythroid precursors displayed a blockage of UPR system activity as supported by the 

increased expression of ATF6 and Gadd34 associated with reduction of CHOP (Fig. 

12a).91 These data suggest that chronic oxidation in Nrf2-/- erythroid cells overcomes 

the ability of UPR system to maintain cell homeostasis. 

To support cell homeostasis in presence of severe or prolonged stress, UPR system is 

able to induce autophagy and in turn autophagy might alleviate UPR system, 

counterbalancing ERS.92-93 Given that efficient autophagy is required for erythroid 

maturation, we therefore evaluated the expression of some key proteins of 

autophagy in sorted erythroid precursors from bone marrow of both mouse strains. 

We focused our analysis on (i) LC3 as initiator of autophagy; (ii) Atg4, involved in 

fusion of autophagosomes with lysosomes; (iii) Atg7, involved in autophagosome 

structure; (iv) Atg5 involved in maturation of autophagosome together with Rab 5 

which contributes to recycling endosomes; and  (v) specific markers of different 

trafficking compartments such as Lamp1 for multivesicular bodies/late endosomes, 

or p62 as protein cargo.76 As shown in Fig. 12b, we found activation of LC3, associated 

with reduction in Atg4, Atg5 and Atg7, suggesting an activation of autophagy. 

However, we observed an accumulation of Rab5, indicating a possible impairment of 

the autophagic flux (Fig. 12b). The amount of Lamp1 was slightly reduced in Nrf2-/- 

erythroblasts, whereas p62 was significantly decreased compared to wild-type 

erythroblasts. Since p62 expression depends on Nrf2 function, we evaluated p62 

mRNA level in erythroblasts from both mouse strains.  p62 mRNA level was down-

regulated in Nrf2-/- erythroblasts compared to wild-type cells (data not shown), 

possibly contributing to the lower expression of p62 observed in Nrf2-/- erythroblasts. 

To better understand whether the impaired autophagy involved autophagosome and 

endosome recycling, we used immunofluorescent microscopy with specific 

antibodies. As shown in Fig. 12c, Nrf2-/- erythroblasts displayed punctae of Atg7 
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organized in large clusters more abundant than in wild-type erythroblasts. Whereas, 

the amounts of Lamp-1 punctae in Nrf2-/- erythroblasts were higher than in wild-type 

erythroblasts, suggesting a cell engulfment of LAMP-1 positive autophagosome  (Fig. 

12c). Our data indicate the attempt of Nrf2-/- erythroblasts to face oxidation by 

activation of UPR system and autophagy. However, the persistent oxidative stress re-

directs cells towards apoptosis as supported by the increase of caspase-3 activity 

observed in Nrf2-/- erythroblasts when compared to wild-type cells (Fig. 12d). 

           

Fig. 12. (a) Western blot (Wb) analysis of ATF6, CHOP and Gadd34 in sorted erythroid precursors from bone 

marrow of 12-months old WT and Nrf2
-/-

mice. Actin was used as protein loading control. (b) Western blot (Wb) 

analysis of Atg4, Atg5, Atg7, Lamp-1, p62, Rab5 and LC3 in sorted erythroid precursors from bone marrow of 12-

months old WT and Nrf2
-/-

mice. Actin was used as protein loading control. Actin was used as protein loading 

control. (c) Atg7 and Lamp-1 immunostaining of sorted erythroid precursors from bone marrow of 12-months old 

WT and Nrf2
-/-

mice. (d) Detection of caspase 3 activation by its cleavage of a fluorescent substrate in sorted 

erythroid precursors from bone marrow of WT and Nrf2
-/-

mice.  Data are presented as means±SD (n=6) *P<0.05 

compared to WT. 

 

6.6  Astaxanthin treatment ameliorates  stress erythropoiesis in Nrf2-/- mice 

To understand whether the reduction of oxidative stress might beneficially impact 

Nrf2-/- mouse erythropoiesis, we treated Nrf2-/-mice with Astaxanthin, a powerful 

antioxidant, loaded in lyophilized PLGA nanoparticles (ATS-NP; Fig. 13a).  
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Astaxanthin (3,3’-dihydroxy-β-carotene-4,4’-dione) is nontoxic and organic 

carotenoid, mostly present in aquatic organisms. Astaxanthin displays a wide variety 

of biological effects including: anti-inflammatory, antiapoptotic, neuroprotective and 

cardioprotective effects (Table 3). 94-95  

Table 3.    Effects of Astaxanthin in cell-based and animal-based systems 

Models Effects of Astaxanthin Ref. 

In vitro Studies 

 

ARPE-19 cells, pretreated 24h with ATS (20µM) and exposed to Hydrogen 
peroxide (200µM) for 24h  

- Inhibition of intracellular ROS production 

- Activation of antioxidant systems (HO-1, Nqo1, Gclc and Gclm). 

Zhongrui Li       
2013 

96
 

BV2 Cells pretreated 4h with ATS (10µM) and exposed to LPS-induced 
inflammation for 4h   

- Inhibition of LPS-induced microglia activation 

- Regulation of M2 microglia polarization 

Xiaojun W. 
2017 

97
 

Breast cancer cell lines (MCF and MDA-MB-231), treated for 24h with ATS 
(25 µM  or 50 µM )  

- Inhibition of breast cancer cell migration 

- Activation of cancer cell apoptosis (High concentration) 

Buckley Mc.  
2018 

98
 

 

 

 

 

In vivo Studies 

Animal models 

 Cyclophosphamide-induced oxidative stress in rats pretreated orally 3 
days and 10 days after cyclophosphamide injection with ATS (25 mg/kg 
daily)    

- Protection from DNA damage (DNA fragmentation) 

- Down regulation of Pro-apoptotic protein(p38 and p53) 

Tripathi DN  
2009 

99
 

Streptozotocin-induced diabetes mellitus (DM) rats, treated through 
intraperitoneal injection with ATS (10, 20 and 40 mg/kg)  for 5 days 

- Reduction of blood glucose levels 

- Reduced activity of caspase 3 and 9 in cerebral cortex of DM rats 

Xu Lianbao 
2015 

100
 

MPTP-induced Parkinson mouse model, treated through ATS-enriched diet 
to achieve the dose of 30 mg/kg daily for 5 weeks 

Grimmig B 
2017 

101
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Astaxanthin is a carotenoid with strong anti-oxidative and without any pro-oxidative 

properties.106 Astaxanthin has unique molecular structure, quenching single oxygen 

and scavenging free radicals, preventing lipid peroxidation.107-108 The impact of 

astaxanthin has been evaluated in previous in vitro and in vivo animal based models 

as well as in human subjects (dosage ranging from 4 to 100 mg/day) (Table 3). 

Although Astaxanthin is a lipophilic molecule characterized by a low oral 

bioavailability. The bioavailability of Astaxanthin might be enhanced by lipid-based 

formulations or by using nanotechnologic approaches such as nanostructured lipids 

carriers, nanoemulsions or nanodispersion systems.109-112 

- Protection from oxidative induced neurodegeneration 

- Reduction of Microglia migration in SNpc 

Streptozotocin-induced diabetic rats, treated through intraperitoneal 
injection with ATS (25 mg/kg daily) for 12 weeks 

- Protection from oxidative damage in the kidney 

- Reduced accumulation of ECM components 

Xiaoyu Zhu 
2018 

102
 

Human clinical studies 

Non obese subjects with high levels of serum triglyceride, treated with 
ATS (6, 12, 18 mg/day) for 12 weeks 

- Reduced serum triglyceride levels 

- Increased HDL-cholesterol 

Yoshida H    
2010 

103
 

Young and adult healthy females, treated with ATS (8 mg/day) for 8 
weeks 

- Reduced DNA damage 

- Increased immune response in young healthy females 

Park Soon J  
2010 

104
 

Obese adults, treated with ATS (5 and 8 mg/day) for 3 weeks 

- Suppression of lipid peroxidation 

- Activation of antioxidant systems  

Choi Duck H  
2011 

105
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Food and Drug Administration as well as EMEA have approved the use of different 

therapeutic molecules encapsulated in PLGA nanoparticles, which are poly -lactic-co-

glycolic acid (PLGA) based biodegradable and biocompatible polymers.113 This 

strategy allows the optimization of drug delivery and the reduction of drug toxicity. 

PLGA nanoparticles are generally cleared by (i) phagocytic uptake in spleen and liver; 

(ii) hepatic filtration; (iii) kidney extraction.114  

In our study, mice were treated with Astaxanthin-NP at the dosage of 2 mg/Kg every 

two days for four weeks. Organ distribution of ATS was determined by mass 

spectrometric analysis at 24 hours after ATS administration (Fig. 13a). ATS was 

identified in spleen, liver and kidney from both mouse strains (Fig. 13a). However, 

ATS concentration was higher in Nrf2-/- mouse organs when compared to wild-type 

animals. This might be related to different clearance-time between wild-type and 

Nrf2-/- mice, possibly determined by activated macrophages in spleen and liver as 

well as to the presence of extramedullary erythropoiesis in Nrf2-/- mice.  

ATS-NP ameliorates anemia of Nrf2-/- mice, with normalization of red cell volume, 

reduction in RDW, indicating a decrease in red cell anisopoikilocytosis and increase of 

reticulocyte count compared to vehicle treated animals (Table 4).   

 

Table 4. Effects of ATS-PLGA Nanoparticles on Hematological Parameters and Red Cell 
Indices of Wild-Type and Nrf2

-/-
 Mice  

 Vehicle 
Wild-type mice 

(12 months-old) 
(n=6) 

ATS-NP 
Wild-type mice 

(12 months-old) 
(n=6) 

Vehicle 
Nrf2

-/-
 mice 

(12 months-old) 
(n=6 

ATS-NP       
Nrf2

-/-
 mice 

(12 months-old) 
(n=5) 

Hct (%) 44.8±0.2 45.9 0.7 33.6±3* 43.5±0.9*^ 

Hb (g/dl) 14.3±0.4 15 0.1 11±0.5* 14.0±0.4^ 

MCV (fl) 52.2±0.3 51.0 0.1 57.2±1.3* 53.5±1.1^ 

MCH (g/dl) 15.6±0.2 16.5 0.3 16.1±0.4 16.3±0.2 

RDW (%) 12.7±0.3 13.5 0.1 14.1±0.4* 12.6±0.4^ 

Retics  
(10

3
 cells/uL) 

248±24 431 51^ 180±12* 355±65^ 

MCVr(fl) 59.9±1.8 56.1±2 65±0.2°* 62±1.6^ 
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Hct: hematocrit; Hb: hemoglobin; MCV: mean corpuscular volume; MCH: mean corpuscular 
hemoglobin; RDW: red cell distribution width; Retics: reticulocytes; *p< 0.05 compared to wild-
type mice; ^p<0.05 compared to vehicle treated animals.   

 

ATS-NP improved Nrf2-/- erythropoiesis as indicated by (i) the marked reduction of (i) 

splenic erythropoiesis (stress erythropoiesis) and (ii) the amount of apoptotic Nrf2-/- 

erythroblasts compared to vehicle treated animals (Fig. 13b-c). In agreement we 

found lower caspase-3 activity in sorted Nrf2-/- erythroblasts than in vehicle treated 

Nrf2-/- cells (Fig. 13d). The beneficial effects of ATS-NP on Nrf2-/- erythropoiesis was 

associated with the reduction of UPR system, suggesting a restoring function of ER; 

and (ii) the increase autophagy related proteins, indicating an inactivation of 

autophagy (Fig. 13e). These findings indicate that ATS-NP efficiently reduced 

oxidative stress in erythropoiesis from Nrf2-/- mice, ensuring cell survival with 

reduction of pro-apoptotic events and amelioration of quality control processes in 

generation of mature red cells. Indeed, ATS-NP Nrf2-/- mice showed a significant 

reduction in red cell ROS levels and in the amount of annexin V+ erythrocytes 

compared to vehicle treated Nrf2-/- animals (Fig. 13f).  
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Fig. 13. (a) Schematic representation of an Astaxanthin Loaded PLGA nanoparticle and organ distribution of 

Astaxanthin molecules in both mice strains during treatment. In red, the Astaxanthin molecule encapsulated in 

the PLGA nanoparticle structure (b) Cytofluorimetric analysis of maturation pattern of erythroid precursors from 

bone marrow and spleen of vehicle and treated WT and Nrf2
-/-

mice using the following surface markers: CD44 and 

Ter119. (c) Amount of Annexin V
+
 cells in erythroid precursors from bone marrow and spleen of vehicle and 

treated WT and Nrf2
-/-

 mice. (d) Detection of caspase 3 activation by its cleavage of a fluorescent substrate in 

sorted erythroid precursors from bone marrow of vehicle and treated Nrf2
-/-

mice. (e) RT-PCR expression of Atf6 

on sorted mouse erythroblast populations from bone marrow of vehicle and treated Nrf2
-/-

 mice (upper panel). 

Western blot (Wb) analysis of Atg4, Atg5, Atg7 and LAMP1 in sorted erythroid precursors from bone marrow of 

vehicle and treated Nrf2
-/-

 mice (lower panel). Tubulin was used as protein loading control. (f) Annexin V
+
 red cells 

in vehicle and treated Nrf2
-/-

 and WT mice (upper panel). ROS in red cells from vehicle and treated Nrf2
-/-

 and WT 

mice (lower panel). Data are presented as means±SD (n=6) *P<0.05 compared to WT. 
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7. DISCUSSION 

In the present study, we show for the first time the key role of Nrf2 in stress 

erythropoiesis and in quality control process involved in erythroid maturation. In 

agreement with a previous study, we found increased membrane protein and lipid 

oxidation in Nrf2-/- mouse red cells when compared to wild-type erythrocytes.49  This 

was associated with red cell membrane translocation of classical chaperone proteins 

(HSP70 and 90) and activation of canonical signaling pathway mediated by Syk kinase, 

targeting the integral membrane protein band 3. The reduction of red cell anti-

oxidant machinery, related to the absence of Nrf2, increases the susceptibility of  

Nrf2-/- mouse red cells to in vitro H2O2 stress. This also sustains an accelerated in vivo 

red cell senescence, resulting in  a slight but significant reduction of Nrf2-/- red cell 

survival compared to wild-type erythrocytes (data not shown).  A previous study has 

shown increased erythrophagocytosis of Nrf2-/- mouse erythrocytes mediated by 

both PS exposure and naturally occurring anti-band 3 antibody.49 Here, we confirmed 

the presence of natural occurring anti-band 3 antibody; however, in Nrf2-/- mice, we 

documented an age-dependent anemia associated with reduced reticulocyte count in 

presence of constant levels of natural occurring anti-band 3 antibody, suggesting a 

perturbation of erythropoiesis as additional factor to the accelerated red cell 

senescence in generating anemia of Nrf2-/- mice. Indeed, ineffective erythropoiesis 

was found in 12 months-old Nrf2-/- mice as supported by (i) extramedullar 

erythropoiesis; (ii) increased ROS levels throughout maturating erythroblasts; (iii) 

erythroblasts oxidative DNA damage; and (iv) increased cell apoptosis in all 

erythroblast subpopulations. Our data indicate that the down-regulation of Nrf2 

dependent ARE-genes encoding for anti-oxidant systems promotes a highly pro-

oxidant environment with detrimental effects on Nrf2-/- erythropoiesis. The increased 

susceptibility of Nrf2-/- mice to oxidative stress is also supported by the blunted 

response to stress erythropoiesis induced by either PHZ or Doxo. Thus, the activation 

of Nrf2 is required against exogenous oxidative stress or endogenous oxidation as 

observed in aging process. Indeed, we found activation of Nrf2 in erythroblasts from 

12 months-old wild-type mice associated with a slight reduction in Hb and a 
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significant decrease in reticulocyte count compared to younger wild-type animals. 

The up-regulation of Prx2 and its nuclear translocation further support the 

cooperation between Nrf2 and Prx2 to limit cell oxidation and to assist cell growth 

and maturation. 

Perturbation of cellular back up mechanisms against oxidation such as UPR system 

and autophagy might also contribute to ineffective erythropoiesis of aging Nrf2-/- 

mice. Nrf2 is generally activated by UPR system and is involved in the synthesis of 

autophagy related proteins. Thus, the blockage in the UPR system and the 

inactivation of autophagy observed in Nrf2-/- mice might be related to the persistent 

oxidation due to the defective cellular anti-oxidant machinery, re-directing cells 

towards apoptosis. The beneficial effects of Astaxanthin-NP treatment further 

support this working model. In fact, in Nrf2-/- mice ATS-NP ameliorates age-

dependent macrocytic anemia and improves ineffective erythropoiesis with 

inactivation of cellular adaptive mechanisms such as UPR system and autophagy.  

 

Fig. 14.  Schematic diagram of the working model proposed for Nrf2 transcription factor to limit oxidative stress 

induced by aging during erythropoiesis. In wild-type mice, the physiological generation of ROS during aging is 

controlled by antioxidant systems related to the activation of Nrf2. In Nrf2
-/-

 mice, the absence of Nrf2 promotes 

perturbation of cellular back up mechanism against oxidation such as UPR system and autophagy, leading to cells 

apoptosis.   

In conclusion, we propose Nrf2 as key transcriptional factor in erythropoiesis against 

oxidation induced by aging or by exogenous oxidants (e.g. PHZ or Doxo). The 

beneficial effects of ATS-NP on anemia of Nrf2-/- mice further support the importance 

of Nrf2 to ensure a powerful anti-oxidant machinery during erythroid maturation 

events.   
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Future perspective 

Since Nrf2 is important to limit aging induced oxidation in erythropoiesis, we plan to 

evaluate Nrf2 function in other models of pathologic erythropoiesis such as sickle cell 

disease or Pyruvate kinase deficiency. In addition, we will evaluate the impact of  

Nrf2 activating agents such as dimethyl-fumarate in pathologic erythropoiesis (β-

thalassemia) or in stress erythropoiesis (i.e. PHZ treatment).  

Since Astaxanthin-NP treatment showed beneficial effects in Nrf2-/- mouse 

erythropoiesis, we plan to test ATS-NP in a mouse model for β-thalassemia, which is 

characterized by severe oxidative stress and block in erythroid maturation. We will 

compared the effects of ATS-NP with other anti-oxidant such as N-acetylcysteine or 

resveratrol that we and others previously reported to be improve anemia of β-

thalassemia. 27-28 
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Abstract
The signaling cascade induced by the interaction of erythropoietin (EPO) with its receptor (EPO-

R) is a key event of erythropoiesis. We present here data indicating that Fyn, a Src-family-

kinase, participates in the EPO signaling-pathway, since Fyn−/− mice exhibit reduced Tyr-

phosphorylation of EPO-R and decreased STAT5-activity. The importance of Fyn in erythropoi-

esis is also supported by the blunted responsiveness of Fyn−/− mice to stress erythropoiesis.

Fyn−/− mouse erythroblasts adapt to reactive oxygen species (ROS) by activating the redox-

related-transcription-factor Nrf2. However, since Fyn is a physiologic repressor of Nrf2, absence

of Fyn resulted in persistent-activation of Nrf2 and accumulation of nonfunctional proteins.

ROS-induced over-activation of Jak2-Akt-mTOR-pathway and repression of autophagy with

perturbation of lysosomal-clearance were also noted. Treatment with Rapamycin, a mTOR-

inhibitor and autophagy activator, ameliorates Fyn−/− mouse baseline erythropoiesis and eryth-

ropoietic response to oxidative-stress. These findings identify a novel multimodal action of Fyn

in the regulation of normal and stress erythropoiesis.

1 | INTRODUCTION

Erythropoiesis is a complex multistep process during which committed

erythroid progenitors undergo terminal differentiation to produce cir-

culating mature red cells. Erythroid differentiation is characterized by

the production of reactive oxygen species (ROS) in response to eryth-

ropoietin (EPO) and by the large amount of iron imported into the

cells for heme biosynthesis.1 During erythropoiesis, ROS could func-

tion as second messenger by modulating intracellular signaling path-

ways. EPO activates a signaling cascade, involving Jak2, as the

primary kinase, and Lyn, a Tyr-kinase of the Src family (SFK), as sec-

ondary kinase.2–4 These two kinases target STAT5 transcription fac-

tor, one of the key master transcription regulators involved in

erythroid maturation events.2–5

Previous studies have shown that the mice genetically lacking Lyn

(Lyn−/−) display reduced STAT5 activation and defective response to

phenylhydrazine- (PHZ) induced stress erythropoiesis.2–4 Fyn, is

another member of the SFKs that is also expressed in hematopoietic

cells.6–10 Fyn has been invoked as an additional regulatory kinase for

the canonical thrombopoietin/Jak2 pathway in megakaryopoiesis.11 In

addition, Fyn has been shown to target STAT5 and to participate to

STAT5 activation in mast-cells in response to FCRI engagement.8 Fur-

thermore, Fyn intersects different intracellular signaling pathways

such as Toll like receptor in macrophages or in T cells12,13 and partici-

pates to the regulation of the redox sensitive transcriptional factor

Nrf2.14–16 Following acute phase response, Fyn switches-off active

Nrf2, triggering its exit from the nucleus and degradation.14–17 In ery-

throid maturation events, the activation of Nrf2 is crucial to support

stress erythropoiesis induced by the oxidant, PHZ, and in modulating

ineffective erythropoiesis in β-thalassemic mice.18,19 In other cellular

models, it has been shown that impairment of Nrf2 post-induction

regulation results in perturbation of cell homeostasis and in accumula-

tion of poly-ubiquitylated protein aggregates due to deregulated

autophagy.16 Autophagy is activated in response to different cellular
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stresses to ensure cell survival and ensure the clearance of the dam-

aged proteins.18,19 We recently showed that in chorea-acanthocytosis

the impairment of autophagy promotes accumulation of proteins,

resulting in engulfment of the cells and in perturbation of erythropoie-

sis combined with increased oxidative stress.20

In present study, we explored the role of Fyn in regulating nor-

mal and stress erythropoiesis. We show that in addition to Jak2

and Lyn, Fyn is an additional kinase involved in EPO signaling cas-

cade by targeting STAT5 activation. The absence of Fyn reduces

the efficiency of the EPO signal and promotes the generation of

ROS and the over-activation of Jak2-Akt-mTOR pathway, with

repression of autophagy. The absence of Fyn also results in persis-

tent activation of Nrf2 and accumulation of damaged proteins. This

is further amplified by the blockage of autophagy mediated by

mTOR activation, which markedly perturbs the response to stress

erythropoiesis induced by either phenylhydrazine (PHZ) or Doxo-

rubicin. In Fyn−/− mice, the rescue experiments with Rapamycin,

an mTOR inhibitor and autophagy activator, co-administrated to

PHZ further validated the importance of autophagy as adaptive

mechanism to stress erythropoiesis in presence of perturbation of

EPO cascade.

2 | METHODS

2.1 | Mouse strains and design of the study

The Institutional Animal Experimental Committee of University of

Verona (CIRSAL) and the Italian Ministry of Health approved the

experimental protocols. Two-month old female wild-type (WT) and

Fyn−/− mice were studied. Where indicated, WT and Fyn−/− mice

were treated with EPO (10 U/mouse/day for 5 days by intraperito-

neal injection),3 or Phenylhydrazine (PHZ: 40 mg/kg on day 0 by

intraperitoneal injection)19 or Doxorubicin (DOXO: 0.25 mg/kg on

day 0 by intraperitoneal injection)21 to study stress erythropoiesis.

Rapamycin was administrated at the dosage of 10 mg/kg/d by

intraperitoneal injection for 1 week, then mice were analyzed. In

experiments with PHZ co-administration, Rapamycin was given at

the dosage of 10 mg/kg/d by intraperitoneal injection 1 day before

PHZ administration (40 mg/kg body; single dose at day 0) and then

Rapamycin was maintained for additional 14 days. N-

Acetylcysteine (NAC, 100 mg/kg body; intraperitoneally injected)

was administrated for 3 weeks as antioxidant treatment.18,19 In

mouse strains, hematological parameters, red cell indices and retic-

ulocyte count were evaluated at baseline and at different time

points (6, 8, and 11 days after EPO injection; at 2, 4, 8, and 14 days

after PHZ injection; at 3, 6, and 9 days after DOXO injection; at

2, 4, 8, 14 days after Rapamycin plus PHZ injection) as previously

reported.22,23 Blood was collected with retro-orbital venipuncture

in anesthetized mice using heparinized microcapillary tubes. Hema-

tological parameters were evaluated on a Siemens Hematology

Analyzer (ADVIA 2120). Hematocrit and hemoglobin were manually

determined.24,25

2.2 | Flow cytometric analysis of mouse erythroid
precursors and molecular analysis of sorted erythroid
cells

Flow cytometric analysis of erythroid precursors from bone marrow

and spleen from WT and Fyn−/− was carried out as previously

described using the CD44-Ter119 or CD71-Ter119 strategies.18,26,27

Analysis of apoptotic basophilic, polychromatic and orthochromatic

erythroblasts was carried out on the CD44-Ter119 gated cells using

the Annexin-V PE Apoptosis detection kit (eBioscience, San Diego,

CA) following the manufacturer's instructions. Erythroblasts ROS

levels were measured as previously reported by Matte et al.18 Sorted

cells were used for (i) morphological analysis of erythroid precursors

on cytospin preparations stained with May Grunwald-Giemsa;

(ii) immuno-blot analysis with specific antibodies against anti-P-

Ser473-Akt, anti-Akt, anti-P-Ser2448-mTOR, anti-mTOR, anti-Jak2

(Cell Signaling, Massachusetts); anti-P-Ser40-Nrf2, anti-Nrf2, anti-

p62, anti-Rab5 (Abcam, Cambridge, UK); anti-Keap1 (Proteintech,

Manchester, UK); anti-EPO-R (Sigma-Aldrich, Missouri); anti-STAT5,

anti-Lyn (Santa Cruz Biotechnology, Texas); anti-GAPDH (Santa Cruz

Biotechnology, Texas) and anti-catalase (Abcam, Cambridge, UK) were

used as loading control; (iii) immunoprecipitation assay; and (iv) RT-

PCR analysis. Details of immunoprecipitation, RT-PCR and immuno-

blot protocols used for the analysis of sorted erythroblasts are

described in Supplementary materials and methods.

2.3 | CFU-E, BFU-E assay

CFU-E and BFU-E assay was carried out using MethoCult as previ-

ously reported.28 Details are present in Supplementary Methods.

2.4 | Immunofluorescence assay for p62 and FOXO3
in sorted erythroblasts

Immunofluorescence assay for p62 and FOXO3 in sorted erythro-

blasts was carried out as previously described.20,25,29 Details are

reported in Supplementary materials and methods.

2.5 | LysoTracker and MitoTracker analysis in
maturating reticulocytes

To obtain reticulocyte enriched RBC fraction, WT and Fyn−/− mice

were intraperitoneally injected with PHZ (40 mg/kg) at day 0, 1, 3 to

induce reticulocytosis, and blood was collected in heparinized tubes at

day 7, as previously described.30 RBCs were washed three times with

the maturation medium (60% IMDM, 2 mM L-glutamine, 100 U

Penicillin-Streptomicin, 30% FBS, 1% BSA and 0.5 μg/mL Amphoteri-

cin), diluted 1/500 in maturation medium and cultured in a cell culture

incubator at 37�C, 5% of CO2 for 3 days. Clearance of Lysosome and

Mitochondria, on the CD71/Ter119 gated RBC populations, were

analyzed at day 0 and 3 of culture using the Lysotracker Green DND-

26 (ThermoFisher Scientific) and the MitoTracker Deep Red

(ThermoFisher Scientific) probes, respectively, following the manufac-

turer's instructions. Samples were acquired using the FACSCantoII

flow cytometer (Becton Dickinson, San Jose, CA) and data were
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processed with the FlowJo software (Tree Star, Ashland, OR) as previ-

ously described.18,25

2.6 | Pearl's analysis of liver and spleen

Immediately following dissection, spleen and liver were formalin-fixed

and paraffin-embedded for Pearl's staining and blinded analyzed.

2.7 | Molecular analysis of liver

Protocols used for RNA isolation, cDNA preparation and quantitative

qRT-PCR have been previously described.31 Detailed primer

sequences are available on request and shown in Supporting Informa-

tion Table 1S. Liver immuno-blot analysis was performed as previously

described.18,32

2.8 | Measurement of heme and heme-oxygenase-1
activity

Liver heme content was measured using a fluorescence assay, as pre-

viously reported.33 Details are reported in Supporting Information.

HO-1 activity was evaluated in tissue microsomal fractions by spec-

trophotometric determination of bilirubin produced from hemin added

as the substrate, as previously reported.34

2.9 | Statistical analysis

Data were analyzed using either t-test or the 2-way analysis of vari-

ance (ANOVA) for repeated measures between the mice of various

genotypes. A difference with a P < .05 was considered significant.

3 | RESULTS

3.1 | The absence of Fyn results in decreased
efficiency of EPO-signaling pathway

Fyn−/− mice displayed a slight microcytic anemia characterized by a

small but significant reduction in hemoglobin, microcytosis and

increased reticulocyte counts compared to WT animals (Table 1). To

understand whether iron deficiency might account for the observed

microcytosis, we evaluated iron accumulation in the liver and spleen.

No differences in Pearl's staining for iron in either liver or spleen of

Fyn−/− compared to wild type mice was observed (Supporting Infor-

mation Figure 1Sa). In agreement, expression levels of H-Ferritin in

liver were similar in both mouse strains, whereas expression of L-

Ferritin was slightly, but significantly lower in Fyn−/− mice compared

to WT mice (Supporting Information Figure 1Sb). Haptoglobin levels

were measured to determine the possible contribution of hemolysis

to microcytic anemia in Fyn−/− mouse. Up-regulation of haptoglobin

mRNA levels was noted in liver from Fyn−/− mice, while plasma hapto-

globin levels were similar in both mouse strains (Supporting Informa-

tion Figure 1Sc, d). These findings suggest that in mice genetically

lacking Fyn, the noted mildly compensated anemia is not related to

either iron deficiency or chronic hemolysis.

To better define the Fyn−/− mouse hematologic phenotype, we

carried out the morphologic analysis of erythroblasts at distinct stages

of terminal erythroid differentiation. As shown in Figure 1A,

decreased chromatin condensation and larger cellular size was a char-

acteristic feature of different populations of sorted Fyn−/− mouse

erythroblasts (pop II: basophilic erythroblasts; pop III: polychromatic

erythroblasts and pop IV: orthochromatic erythroblasts; Figure 1A).

Furthermore, an increase in number of total erythroblasts in bone

marrow was noted (Figure 1B), without evidence of extramedullary

erythropoiesis (data not shown). The maturation profile of erythro-

blasts revealed an accumulation of orthochromatic erythroblasts

(Supporting Information Figure 2Sa). When CD44/Ter119 approach

was used to characterize erythropoiesis, no major differences in either

total erythroblasts or in erythroblasts subpopulations between WT

and Fyn−/− mice were observed (Supporting Information Figure 2Sb,

c). Up-regulation of EPO gene expression in kidney was found in

Fyn−/− mice compared to that of WT animals (Supporting Information

Figure 2Sd). In addition, we found increased ROS levels throughout

Fyn−/− erythroid maturation from basophilic erythroblasts (pop II) to

polychromatic (pop III) and orthochromatic erythroblasts (pop IV) com-

pared to WT cells (Figure 1C, upper panel). This was associated with

higher amounts of Annexin V+ cells in the different subpopulation of

erythroblasts compared to WT cells (Figure 1C, lower panel). Collec-

tively, these findings indicate a decreased efficiency of EPO signaling

pathway in the absence of Fyn. To understand the impact of Fyn on

EPO cascade, we evaluated the EPO-Jak2-STAT5 signaling pathway

in sorted Fyn−/− erythroblasts. As shown in Figure 1D, reduced activa-

tion of EPO-receptor (EPO-R) as reflected by decreased EPO-R Tyr-

phosphorylation, was noted in erythroblasts genetically lacking Fyn

(Figure 1D). This was associated with increased activation of Jak2

kinase without any change in Lyn activity compared to WT cells

(Figure 1D). Total expression of EPO-R was similar in sorted erythro-

blasts from both mouse strains; whereas Jak2 expression was higher

in Fyn−/− erythroblasts compared to healthy cells (Supporting Infor-

mation Figure 2Se). In agreement with the reduction in EPO-R activa-

tion, we observed a significant decrease in STAT5 activity with

concomitant down-regulation of Cish expression, a well-documented

gene target of STAT5 in sorted Fyn−/− erythroblasts (Figure 1D; Sup-

porting Information Figure 2Sf ). Following treatment with recombi-

nant EPO (10 U/day for 5 days), Fyn−/− mice showed blunted

increases in Hct and reticulocyte counts compared to WT animals

(Figure 1E).

TABLE 1 Hematological parameters and red cell indices in wild-type

and Fyn-/- mice

Wildtype mice Fyn-/- mice
(n = 15) (n = 15)

Hct (%) 48.2 � 1.3 46.1 � 0.8*

Hb (g/dL) 15.9 � 0.6 14.3 � 0.5*

MCV (fL) 50.3 � 0.4 46.5 � 1.3*

MCH (g/dL) 15.3 � 0.3 14.8 � 1.1

RDW (%) 11.6 � 0.3 13.2 � 0.4*

Retics (103 cells/μL) 451� 40.7 559 � 45*

Abbreviations: Hb, hemoglobin; Hct, hematocrit; MCH, mean corpuscular
hemoglobin; MCV, mean corpuscular volume; RDW, red cell distribution
width; Retics, reticulocytes.
*p< 0.05 compared to wild-type mice.
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To explore whether the reduced efficiency of EPO cascade might

also involve erythroid progenitors, we carried out the in vitro ery-

throid cell colony forming assay. A lower number of CFU-E and BFU-

E colony forming cells were found in Fyn−/− bone marrow (Figure 1F).

This was associated again with lower activation of EPO-R mediated

signaling cascade with a reduced activation of STAT5 but hyper-

activation of Jak2 in Fyn−/− CFU-E (Supporting Information

Figure 2Sg).

Our data indicate that Fyn is involved in EPO signaling cas-

cade and that absence of Fyn lead to increased ROS generation,

which may contribute to the hyper-activation of Jak2 in presence

of reduced efficiency of EPO signaling pathway.35 Thus, the very

mild microcytic anemia phenotype of Fyn−/− mice is likely to be

related more to reduced STAT5 activation, as observed in mice

genetically lacking STAT5 than to perturbation of iron

metabolism.36

FIGURE 1 The absence of Fyn results in perturbation of EPO signaling cascade. A, Left panel. Morphology of sorted erythroid precursors:

population II (pop II), corresponding to basophilic erythroblasts; population III (pop III), corresponding to polychromatic erythroblasts and
population IV (pop IV), corresponding to orthochromatic erythroblasts, from bone marrow of wild-type (WT) and Fyn−/− mice. Cytospins were
stained with may-Grunwald-Giemsa. One representative image from a total of 10 for each mouse strains. Right panel. Abnormal nuclear shaped
erythroblasts and binuclear erythroblasts from WT and Fyn −/− mice evaluated on cytospin stained with may-Grunwald-Giemsa. Data are

presented as means �SD (n = 8 from each strain); *P < .05 compared to WT; ^P < .05 compared to pop II−. B, Cyto-fluorimetric analysis of total
erythroid precursors from the bone marrow of WT and Fyn−/− mice using the following surface markers: CD71 and Ter119 (see also the
Supporting Information Materials and Methods and Figure 2Sa for maturation profile). Data are presented as means �SD (n = 8); * P < .05
compared to WT. C, Upper panel: ROS levels in erythroid precursors from bone marrow of wild-type (WT) and Fyn−/− mice. Data are presented
as means �SD (n = 10 from each strain); * P < .05 compared to WT. Lower panel: Amount of Annexin V+ cells in pop II, III, and IV from bone
marrow of WT and Fyn−/− mice. Data are presented as means �SD (n = 8 from each strain); * P < .05 compared to WT. D, Total Tyrosin-(Tyr)
phosphorylated proteins were immunoprecipitated from 2.5 1̂06 bone marrow sorted erythroblasts of WT and Fyn−/− mice and detected with
antibody to EPO- receptor (EPO-R), Janus kinase-2 (Jak-2), Lyn kinase (Lyn), signal transducer and activator of transcription 5 (STAT5). The
experiment shown is representative of six such experiments. IgG was used as loading control. Right panel: Densitometric analyses of the
immunoblot bands similar to those shown are presented at right (DU: Densitometric unit). Data are shown as means �SD (n = 6; *P < .01
compared to WT). E, Hematocrit (%) and reticulocyte count in (n = 6) and Fyn−/− (n = 6) mice exposed to recombinant erythropoietin injection
(EPO 50 U/kg/die, red arrows). Data are presented as means �SD; *P < .05 compared to WT mice; �P < .05 compared to baseline values. F, The
CFU-E and BFU-E from WT and Fyn−/− mice were quantified (#CFU-E or BFU-E/dish; lower panel); data are shown as means �SD (n = 6; P < .05
compared to WT) [Color figure can be viewed at wileyonlinelibrary.com]
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3.2 | Fyn−/− mice display increased sensitivity to
PHZ or doxorubicin induced stress erythropoiesis

Since EPO is the primary signal in stress erythropoiesis, we treated

Fyn−/− mice with either PHZ to induce acute hemolytic anemia due to

severe oxidative stress or Doxorubicin that temporary represses

erythropoiesis with generation of ROS.19,21 PHZ treatment induced a

similar drop in Hct levels in both mouse strains at day 2 following

PHZ administration (Figure 2A, upper panel). However, the Hct and

reticulocyte recovery were blunted in Fyn−/− mice compared to con-

trol animals (Figure 2A, upper and lower panel). Extramedullary eryth-

ropoiesis as assessed by increased splenic erythropoiesis showed a

blunted response in Fyn−/− mice at day 4 following PHZ treatment

with a compensatory increase by day 14 (Figure 2B, upper panel, see

also Supporting Information Figure 3Sa for absolute values of number

of erythroblasts at day 4 after PHZ). In bone marrow, we observed a

mild increase in total erythroblasts in both mouse strains at day 2 and

4 after PHZ injection (Figure 2B, lower panel). It is of interest to note

that in Fyn−/− mice at day 8 following PHZ treatment, we observed a

significant increase in the total number of bone marrow erythroblasts

as possible compensatory mechanism due to the failure in efficient

activation of splenic extramedullary erythropoiesis (Figure 2B, lower

panel). The amount of Annexin V+ cells following PHZ treatment was

FIGURE 2 A blunted response to stress erythropoiesis characterizes Fyn−/− mice. A, Hematocrit (%) and reticulocyte count in WT (n = 6) and

Fyn−/− (n = 6) mice exposed to phenylhydrazine injection (PHZ/kg/die, red arrows). Data are presented as means �SD; *P < .05 compared to WT
mice; �P < .05 compared to baseline values. B, Cyto-fluorimetric analysis of total erythroid precursors from the bone marrow and the spleen of
WT and Fyn−/− mice using the following surface markers: CD44 and Ter119 (see also the Supporting Information and Methods and Figure 3Sa
for absolute values). Data are presented as means �SD (n = 6); * P < .05 compared to WT. since we focus on day 4 and day 8 after PHZ
administration, we highlighted them respectively in green and red. This color code is used also in C. C, Amount of Annexin-V+ cells in population
III (pop III), corresponding to polychromatic erythroblasts and population IV (pop IV), corresponding to orthochromatic erythroblasts from either
spleen or bone marrow of WT and Fyn−/− mice respectively at 4 (green) and 8 (red) days after PHZ administration. Data are presented as means
�SD (n = 6 from each strain); *P < .05 compared to WT. D, Hematocrit (%) and reticulocyte count in WT (n = 6) and Fyn−/− (n = 6) mice exposed
to doxorubicin injection (DOXO 0,25 mg/kg/die, red arrows). Data are presented as means �SD; *P < .05 compared to WT mice; �P < .05
compared to baseline values. E, Cyto-fluorimetric analysis of total erythroid precursors from the bone marrow and the spleen of WT and Fyn−/−

mice using the following surface markers: CD44 and Ter119 (see also the Supporting Information and Methods and Figure 3Sb for absolute
values) 9 days after doxorubicin injection. Data are presented as means � SD (n = 6); * P < .05 compared to WT; �P < .05 compared to baseline
values [Color figure can be viewed at wileyonlinelibrary.com]
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higher in Fyn−/− polychromatic and orthochromatic erythroblasts

compared to WT cells (Figure 2C).

Doxorubicin induced a more severe and prolonged anemia in Fyn−/−

mice than in WT animals (Figure 2D, left panel). At day 3 and 6 following

Doxorubicin treatment, we noted a plateau in reticulocyte count in

Fyn−/− mice (Figure 2D), suggesting a substantial impairment in the retic-

ulocyte response compared to Doxorubicin treated WT animals. Enumer-

ation of total number of erythroblasts in spleen and bone marrow at day

9 after Doxorubicin administration, showed a substantial reduction in

both bone marrow and splenic erythropoiesis in Fyn−/− mice compared

to WT animals (Figure 2E; see also Supporting Information Figure 3Sb for

absolute values). Increases in the numbers of Annexin V+ polychromatic

and orthochromatic erythroblasts were noted in Fyn−/− mice compared

to WT animals at 9 days after Doxorubicin administration (Supporting

Information Figure 3Sc). The findings of diminished responsiveness of

Fyn−/− mice to stress erythropoiesis induced by PHZ or Doxorubicin, fur-

ther validate the importance of Fyn in EPO signaling cascade.

3.3 | Increased activation of Akt in Fyn−/− mice
contributes to the modulation of redox cellular
response during erythropoiesis

In normal and disordered erythropoiesis, previous studies have shown

that Jak2 and oxidation can activate Akt, which affects multiple targets

during erythropoiesis (Supporting Information Figure 4Sa).4 Notably, Akt

is also important in mediating cellular response to oxidation by the acti-

vation of two redox sensitive transcriptional factors, Forkhead box-O3

(FOXO3) and Nrf2, as well as of mTOR, the gatekeeper of autophagy

activation.37–39 Fyn−/− mouse erythroblasts displayed higher levels of

active Akt (Ser 473) compared to WT cells (Supporting Information

Figure 4Sb). The activation of FOXO3 was evaluated by both immuno-

microscopy and immunoblot analysis, this latter using a specific antibody

against inactive phospho-FOXO3. In Fyn−/− mouse erythroblasts, we

found a slight but not significant increase in activation of FOXO3 com-

pared to WT erythroblasts (Supporting Information Figure 4Sc).

We then focused on Nrf2 since Fyn is important in post-induction

regulation of Nrf2.16 We found increased activation of Nrf2, as indicated

by higher phospho-Nrf2 form in Fyn−/− mouse erythroblasts compared

to WT cells (Supporting Information Figure 5Sa). The up-regulation of

ARE-genes for anti-oxidant systems such as catalase, Gpx1, HO1, and

Prx2 confirmed the increased Nrf2 function in Fyn−/− mouse erythro-

blasts (Supporting Information Figure 5Sb). Immunoblot analysis with

specific antibodies for the corresponding proteins further validated the

activation of Nrf2 pathway (Supporting Information Figure 5Sc).

However, the increased expression of anti-oxidant and cyto-

protective system related to Nrf2 function does not completely coun-

teract the induced oxidative damage of Fyn−/− mouse erythroblasts.

Overall these effects are similar to those observed in both cell and ani-

mal models characterized by prolonged Nrf2 activation, which is associ-

ated with severe and even lethal phenotype,15,40 mainly related to the

accumulation of damaged proteins and the perturbation of autophagy.

Among the many Nrf2 related genes up-regulated in Fyn−/−

mouse erythroblasts, we focused on HO-1, the main heme-

catabolizing enzyme under stress conditions and a major player in the

maintenance of cell homeostasis.41

3.4 | Heme-oxygenase activity and heme levels are
similar in Fyn−/− and WT mice

Since systemic heme homeostasis is orchestrated by the liver, we evalu-

ated the impact of Fyn deficiency on hepatic heme catabolism. First, we

confirmed the increased activation of Nrf2 in Fyn−/− liver compared to

WT counterpart (Supporting Information Figure 6Sa). When we ana-

lyzed HO-1 expression and HO-1 activity in this organ, despite similar

levels of HO-1 mRNA in the livers of WT and Fyn−/− mice, HO-1 pro-

tein level was higher in the Fyn−/− mice. Similar findings were also noted

in erythroid cells (Supporting Information Figure 6Sb). Interestingly, in

spite of increased protein levels, hepatic HO activity was unchanged in

Fyn−/− animals (Supporting Information Figure 6Sc) suggesting no alter-

ation in heme catabolism. This conclusion was supported by the finding

that the heme content in the liver twas similar in WT and Fyn−/− mice

(Supporting Information Figure 6Sd). Thus, in the absence of Fyn, HO-1

protein is increased but its activity is unchanged in Fyn−/− mice, sug-

gesting the accumulation of functionally inactive HO-1.16 Autophagy is

the master control system regulating protein quality and clearance of

damaged proteins.37,39,42 The lysosomal related cargo p62 protein can

be used as indirect marker of autophagy and its accumulation correlates

with impairment of autophagy.43 In liver from Fyn−/− mice, we found an

accumulation of p62, suggesting a blockage of autophagy in the absence

of Fyn (Supporting Information Figure 6Se, f ). In agreement, mTOR was

more active in liver from Fyn−/− mice compared to WT animals

(Supporting Information Figure 6Sg).37,44,45 These data imply impaired

autophagy in liver from mice genetically lacking Fyn.

3.5 | Impaired autophagy related to mTOR
activation characterizes Fyn−/− mouse erythropoiesis

Since autophagy is also important during erythropoiesis,42 we explored

mTOR signaling during erythroid maturation in Fyn−/− mouse. As

shown in Figure 4A, Fyn−/− mouse erythroblasts displayed increased

activation of phosho-mTOR compared to WT cells in association with

accumulation of p62, similarly to that noted in Fyn−/− mouse liver

(Figure 3A) as well as of Rab5, a small GTP protein involved in the late

phases of autophagy (Figure 3A).39 Consistent with impaired autophagy

during erythropoiesis in Fyn−/− mouse, we noted accumulation of p62

in large clusters in Fyn−/− erythroblasts compared to WT cells

(Figure 3B, Supporting Information Figure 7Sa). Since p62 acts as

autophagy adaptor, controlling proteins turnover,15,16 we evaluated

Keap1, a known substrate of p62.16,43 In Fyn−/− erythroblasts, we

found increased accumulation of Keap1 compared to WT cells

(Supporting Information Figure 7Sb). Co-immunoprecipitation with

either antibodies to p62 (Figure 3C) or Keap1 (Figure 3D) showed accu-

mulation of p62-Keap1 complex in Fyn−/− mouse erythroblasts. If the

perturbation of autophagy in Fyn−/− mice is physiologically relevant to

erythroid maturation, it is also likely to affect reticulocyte matura-

tion.30,42,46 To test this possibility, we evaluated the in vitro maturation

of reticulocytes from PHZ treated mice.30 Decreased maturation of

Fyn−/− mouse reticulocyte was detected by decreased lysosomal clear-

ance with LysoTracker analysis (Supporting Information Figure 7Sc, d).

Interesting, no difference in mitochondrial clearance using MitoTracker

analysis was noted (Supporting Information Figure 7Sd, lower panel).
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Documentation of increased accumulation of p62 in Fyn−/− reticulo-

cyte further supports the impairment of autophagy during erythroid

maturation in Fyn−/− mice (Supporting Information Figure 7Se).

3.6 | The mTOR inhibitor Rapamycin unblocks
autophagy defect and ameliorates erythropoiesis in
Fyn−/− mice

We next tested whether Rapamycin, a known mTOR inhibitor, may

modulate Fyn−/− mouse erythropoiesis as reported for other models of

pathologic erythropoiesis.37,38,42,47 In Fyn−/− mice, Rapamycin adminis-

tration reduced total erythroblasts, while no significant effects were

observed in control animals as previously reported37,38,42,47 (Figure 4A).

In Fyn−/− mice treated with Rapamycin, this was associated with ame-

lioration of the terminal phase of erythropoiesis (Supporting Informa-

tion Figure 8Sa). Rapamycin significantly reduced the generation of

ROS and the amount of Annexin- V+ positive cells only in erythroid

precursors from Fyn−/− mice (Figure 4B, C). In agreement with

Rapamycin induced activation of autophagy, we found a significant

reduction in levels of p62 in erythroblasts from Rapamycin treated

Fyn−/− mice compared to vehicle treated animals (Figure 4D).

We also evaluated the impact of anti-oxidant treatment with N-

acetylcysteine (NAC), which has been shown to indirectly modulate

autophagy by reducing intracellular oxidation.48,49 In Fyn−/− mice,

NAC reduced total number of erythroblasts, increased orthochromatic

erythroblasts and reduced the amount of Annexin V+ cells, indicating

an amelioration of erythropoiesis in Fyn−/− mice (Supporting Informa-

tion Figure 8Sb, c, d). The findings indicate that Rapamycin unblocks

autophagy, allowing the degradation of accumulated proteins and

ameliorating erythropoiesis in Fyn−/− mice.

3.7 | Rapamycin rescues the abnormal response of
Fyn−/− erythroblasts to stress erythropoiesis

Next, we investigated whether Rapamycin may alleviate the PHZ-

induced stress erythropoiesis in Fyn−/− mice. As shown in Figure 4F,

FIGURE 3 Activation of mTOR and impaired autophagy characterize Fyn−/− mouse erythroblasts. A, Western-blot (Wb) analysis of phospho-mTOR

(p-mTOR), m-TOR, p62 and Rab 5 in sorted 1.5 1̂06 CD44+Ter119+FSCHigh bone marrow cells fromWT (n = 4) and Fyn−/− mice. GAPDHwas used as
protein loading control. Densitometric analyses of the immunoblot bands similar to those shown are presented at right (DU: Densitometric unit). Data
are shown as means �SD (n = 4; *P < .01 compared to WT). B, p62 immunostained cytospin preparations of sorted CD44+Ter119+FSCHigh bone
marrow cells fromWT and Fyn−/− mice counterstained with DAPI. Lower panel: The puncta mean fluorescence was measured using image J software.
Data are presented as means �SD (n = 3); *P < .05 compared toWT. C, Immunoprecipitates (IP) containing equal amounts of p62 were obtained from
2.5 1̂06 sorted CD44+Ter119+FSCHigh bone marrow cells fromWT and Fyn−/− mice, then subjected to immunoblot with anti-Keap1 or p62 antibody
(Wb: Western-blot). The experimental results shown are representative of four similar separate experiments. IgG was used as loading control.
Densitometric analyses of the immunoblot bands similar to those shown are presented at lower panel (DU). Data are shown as means �SD (n = 4;
*P < .01 compared toWT). D, IP of Keap 1 were obtained from sorted 2.5 1̂06 CD44+Ter119+FSChigh bone marrow cells fromWT and Fyn−/− mice,
then subjected to immunoblot with anti- p62 antibody (Wb: Western-blot). The experimental results shown are representative of 4 similar separate
experiments. IgG was used as loading control. Densitometric analyses of the immunoblot bands similar to those shown are presented at lower panel
(DU). Data are shown as means �SD (n = 4; *P < .01 compared to WT) [Color figure can be viewed at wileyonlinelibrary.com]
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the administration of Rapamycin in PHZ treated Fyn−/− mice resulted

in milder anemia and faster recovery compared to PHZ treated Fyn−/−

mice. At day 4 following PHZ administration, a plateau in Hct value is

evident in both Fyn−/− mouse groups; we focused therefore on this

time point to carry out a detailed analysis of. As shown in Figure 4G,

we found decreased extramedullary splenic erythropoiesis and

increased bone marrow erythropoiesis in PHZ-Rapamycin treated

Fyn−/− mice compared to PHZ treated animals.

Annexin-V+ cells were also markedly reduced by the co-

administration of Rapamycin and PHZ in Fyn−/− mouse erythroblasts

from both bone marrow and spleen compared to PHZ alone

(Figure 4H). It is interesting to note that, in WT animals the co-

administration of Rapamycin worsened the PHZ induced stress

erythropoiesis as previously reported38 (Supporting Information

Figure 9Sa-c). Collectively, these data support the idea that by activat-

ing autophagy it is possible to rescue the altered response of Fyn−/−

mice to stress erythropoiesis.

4 | DISCUSSION

We have identified Fyn as a new kinase involved in EPO signaling cas-

cade during normal and stress erythropoiesis. Previous studies have

documented a similar role for Jak2 and Lyn kinases in

erythropoiesis.2–4,50,51 The reduction in EPO induced phosphorylation

of STAT5 noted in Fyn−/− mouse erythroid cells implies a role for Fyn

FIGURE 4 The mTOR inhibitor, Rapamycin rescues the abnormal response of Fyn−/− erythroblasts to stress erythropoiesis. A, Effect of treatment

with Rapamycin (Rapa) on total erythroid precursors (CD71-Ter119) from the bone marrow of WT and Fyn−/− mice. Data are presented as means
�SD (n = 6); *P < .05 compared to WT; �P < .05 compared to vehicle treated animals. B and C, Effect of Rapamycin treatment (Rapa) on ROS levels
and Annexin V+ cells in erythroid precursors: Population II (pop II), corresponding to basophilic erythroblasts; population III (pop III), corresponding to
polychromatic erythroblasts and population IV (pop IV), corresponding to orthochromatic erythroblasts from bone marrow of WT and Fyn−/− mice.
Data are presented as means �SD (n = 6 from each strain); * P < .05 compared to WT; �P < .05 compared to vehicle treated animals. D, Western-
blot (Wb) analysis of p62 in 1.5 1̂06 sorted CD44+Ter119+FSChigh bone marrow cells with and without Rapamycin from Fyn−/− mice. Catalase was
used as protein loading control. Densitometric analyses of the immunoblot bands similar to those shown are presented at right (DU: Densitometric
unit). Data are shown as means �SD (n = 4; *P < .01 compared to WT). E, Hematocrit (%) in Fyn−/− (n = 6) mice treated with either phenylhydrazine
alone (PHZ) or combined with Rapamycin (Rapa- red bar is the time of treatment with it). The red arrow indicates the injection of PHZ. Data are
presented as means �SD; *P < .05 compared to PHZ treated animals; �P < .05 compared to baseline values. The gray area identifies the window
time for characterization of the stress erythropoiesis in Fyn−/− mice. F, Cyto-fluorimetric analysis of total erythroid precursors from either bone

marrow or spleen of Fyn−/− mice treated with either PHZ alone or Rapamycin (Rapa) plus PHZ (4 days after injection). Results from CD44-Ter119
(lower panel) or CD71Ter119 (upper panel) strategies are shown. Data are presented as means �SD (n = 4); *P < .05 compared to PHZ treated
animals; �P < .05 compared to baseline values. (G) Amount of Annexin V+ cells in population III (pop III), corresponding to polychromatic
erythroblasts and population IV (pop IV), corresponding to orthochromatic erythroblasts from either spleen or bone marrow of Fyn−/− mice. Data are
presented as means �SD (n = 4 from each strain); *P < .05 compared to WT [Color figure can be viewed at wileyonlinelibrary.com]
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downstream of STAT5 and suggests that Fyn is implicated in EPO sig-

naling pathway by modulating the activation of EPO-R through

STAT5. Similar findings have been reported for mice genetically lack-

ing Lyn,50 supporting the important and nonredundant role of Fyn in

the EPO-mediated signaling cascade. Our findings also suggest that

multiple kinases may be important in coordinating stress erythropoie-

sis in health and disease.

In Fyn−/− mice, the reduced effectiveness of EPO signaling is

associated with increase ROS generation and cell apoptosis. The

attempt of Fyn−/− mouse erythroblasts to adapt to oxidative stress is

indicated by the activation of the redox related transcription factor

Nrf2.35,37 However, the persistent activation of Nrf2 due to the

absence of its physiologic repressor Fyn, resulted in accumulation of

damaged/nonfunctional proteins that further amplified the intracellu-

lar oxidative stress.15,16 Indeed, Fyn−/− mice display impaired func-

tioning of several cytoprotective systems, such as HO-1 indicating an

impairment of the protein quality control process mediated by

autophagy.

Previous studies have shown that perturbation of autophagy is

detrimental for erythroid maturation and has been documented in

condition with disordered erythropoiesis such as β-thalassemic syn-

dromes or chorea-acanthocytosis or during iron deficiency.20,37,46,52,53

In Fyn −/− mice, the ROS mediated activation of Jak2-Akt–mTOR

pathway represses autophagy and thereby contributes to the ineffec-

tive erythropoiesis of Fyn−/− mice.4,39 Consistent with this hypothe-

sis, in Fyn−/− mouse erythroblasts we found accumulation of the

autophagy cargo protein p62, a marker of autophagy inhibition. In

addition, p62 was also complexed with Keap1, the Nrf2 shuttle

protein,16 further supporting the dysregulation of Nrf2 and the block-

age of autophagy during Fyn−/− erythropoiesis. The accumulation of

Rab5, a small GTPase involved in endocytic vesicular transport,54 sug-

gested a possible perturbation of the autophagy lysosomal system in

Fyn−/− mice. Indeed, we found a reduction in lysosome clearance dur-

ing Fyn−/− mouse reticulocyte maturation in presence of preserved

clearance of mitochondria compartment.

The ability of Rapamycin, a known mTOR inhibitor and autophagy

activator, to ameliorate Fyn−/− mouse baseline erythropoiesis and to

prevent accumulation of p62 support the notion of impaired autop-

hagy in Fyn−/− mice. This is further corroborated by the observation

that Rapamycin co-administrated with PHZ restored the erythropoi-

etic response in Fyn−/− mice. These finding shed a new light on the

link between dysregulation of Nrf2 and impairment of autophagy in

stress erythropoiesis, demonstrating the multimodal action of Fyn in

establishing the developmental program of erythropoiesis.

In conclusion, our data indicate that Fyn kinase is a novel and rele-

vant regulator of erythropoiesis, contributing to activation of the EPO

signaling cascade, and further increasing the complexity of this path-

way. The absence of Fyn and the reduced efficiency of EPO signal gen-

erate a “domino effect” affecting several mechanisms associated with

response to an increased oxidative stress (Supporting Information

Figure 9Sd). The dysregulation of post-induction regulation of Nrf2 due

to the absence of Fyn, results in accumulation of aggregated proteins,

which further increase cellular oxidative stress. A concomitant activa-

tion of Jak2-Akt-mTOR pathway results in repression of autophagy

(Supporting Information Figure 9Sd), which can by rescued with

Rapamycin, further reinforce the importance of autophagy as adaptive

mechanism to stressful conditions associated with perturbations of the

EPO signaling pathway. Future studies will be required to fully charac-

terize the role Fyn in cellular signaling in pathologic erythropoiesis.
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Sickle bone disease (SBD) is a severe and invalidating complication related to 

recurrent bone vaso-occlusive events affecting patients with sickle cell disease 

(SCD). In a humanized mouse model for SCD, we previously showed that SBD is 

sustained by impaired osteoblast function and increased osteoclast activity 

associated with local up-regulation of pro-inflammatory cytokines and anti-oxidant 

systems (Dalle Carbonare L., Blood 2015;126:2320-2328). Growing evidence 

supports a role of ω-3 fatty acid supplementation in improving bone homeostasis 

(Fallon EM, et al J Surg Res 2014;191:148-155.). A diet enriched with ω-3 fatty 

acids beneficially impacts SCD inflammatory vasculopathy, and blunts the acute 

and chronic SCD-related organ damage in humanized SCD mice (Kalish BT et al 

Haematologica 2015;100:870-880). Here, we sought to compare the dietary effects 

of ω-6 (soybean oil-based, SD)- vs ω-3 (fish oilbased, FD)-enriched diets on SBD 

in SCD mice (Hbatm1(HBA)Tow Hbbtm2(HBG1,HBB*)Tow). Treated SCD and control healthy 

mice (AA, Hbatm1(HBA)Tow Hbbtm3(HBG1,HBB)Tow) (n=6 animals in each group) were 

exposed to recurrent hypoxia/reoxygenation (rH/R) stress, which closely mimics 

SBD natural history (Dalle Carbonare L., Blood 2015). In SCD mice, FD prevented 

rH/R-induced bone loss compared to animals exposed to SD by decreasing 

osteoclast and increasing osteoblast activities. Up-regulation of molecular 

osteogenic markers such as Runx2 and Sparc and downregulation of Rank and 

RankL, molecular markers of osteoclast recruitment and activity were observed in 

FD SCD mice exposed to rH/R compared to SD SCD animals. Similar changes, but 

to a lesser extent, were also observed in AA control mice exposed to rH/R stress. 

Expression of IL-6 (Il6) and matrix-metalloproteinase-9 (Mmp9) regulators which 



interact with RankL on osteoclastic activity and bone resorption were studied. In 

SCD mice, FD markedly reduced the up-regulation of both genes compared to SD 

SCD animals in conjunction with down-regulation of peroxiredoxin-2 (Prx2) gene 

expression, an important cytoprotective and antioxidant system. We also evaluated 

bone adipogenesis, which is believed to be an important contributor to bone 

impairment in SBD. Bone immunohistochemistry for Peripilin-1 which coats storage 

lipid droplets revealed increased adipogenesis in SD SCD mice compared to either 

FD SCD animals or AA controls, in association with downregulation of miR205, 

which decreases adipogenesis and enhances osteogenic activity. Our data thus 

indicate that in SCD exposed to rH/R, FD (i) improves osteoblastogenesis; (ii) 

decreases osteoclast activity; (iii) modulates the bone inflammatory response; iv) 

reduces adipogenesis. These findings provide new insights on the mechanism of 

action of ω-3 fatty acid supplementation on the pathogenesis of SBD and 

strengthen the rationale for ω-3 fatty acid dietary supplementation in SCD as a 

complementary therapeutic intervention targeting an amplified inflammatory 

response and sickle cell-related bone impairment. 
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Imatinib is an oral Tyrosine (Tyr)-kinase inhibitor, developed for the treatment of 

chronic myeloid leukemia (CML). Few case reports on SCD patients with CML 

undergoing imatinib treatment highlight the beneficial impact of imatinib on severity 

and recurrence of acute VOCs in SCD. In red blood cells (RBCs), Imatinib has 

been shown to interfere with Tyr-phosphorylation state of the integral membrane 

protein band 3, affecting RBC microparticle formation. Here, we study the actions of 

Imatinib on a model of acute VOCs using humanized SCD mice 

(Hbatm1(HBA)TowHbbtm2(HBG1,HBB*)Tow). We treated SCD and control healthy mice (AA, 

Hbatm1(HBA)Tow Hbbtm3(HBG1,HBB)Tow) (n=6-7 animals in each group) with Imatinib 50 

mg/Kg/d for 2 weeks before hypoxia/Reoxygenation (H/R) stress used to mimic 

acute VOCs. Under normoxia, we found that in SCD mice Imatinib significantly 

reduced (i) Tyr-phosphorylation state of sickle red cell membrane proteins; (ii) the 

amount of phosphatidyl-serine (PS)+ sickle RBCs; and (iii) the release of erythroid 

microparticles, which was associated with accumulation of hemichromes and a 

more efficient erythrophagocytosis compared to vehicle treated animals. In SCD 

mice exposed to H/R stress, imatinib significantly decreased the H/R-induced (i) 



increase in peripheral neutrophil count; (ii) lung inflammatory cell infiltrate; (iii) 

kidney inflammatory cell infiltrate. In the lung of H/R SCD mice, Imatinib inhibited 

the H/R induced NF-kB activation and prevented the up-regulation of (i) pro-

inflammatory cytokines such as ET-1; (ii) vascular endothelial activation markers 

(VCAM-1, ICAM-1); (iii) pro-fibrotic markers such as PDGF-B and (iv) the activation 

of UPR system. In the kidney of H/R SCD mice, Imatinib significantly reduced H/R 

induced expression of ET-1, VCAM-1 and E-selectin, which were again associated 

with inhibition of NF-kB. In addition, Imatinib significantly upregulated the 

expression of the microRNAs miR200a/b, which has been described to reduce 

renal fibrosis. Finally, in isolated aorta from Imatinib treated SCD exposed to H/R 

stress, a significant reduction in vascular activation markers was observed 

compared to vehicle treated animals. Collectively, our data indicate that Imatinib 

acts on multiple targets, modulating signal transduction and reducing inflammatory 

vasculopathy and extracellular matrix remodeling process related to VOC in SCD. 

Thus, Imatinib might represent a new therapeutic tool in clinical management of 

SCD patients. 

 



59th Congress of the American Society of Hematology, December 2017, Atlanta, Georgia 

REPROGRAMMING CELL-SIGNALING BY DELIVERING THE CATALYTIC 

DOMAIN OF PTPRG AMELIORATES ANEMIA OF β-THALASSEMIA 

 

Matte Alessandro, Elisabetta Beneduce,* Michela Mirenda,* Roberta Russo,* Achille 

Iolascon, Antonella Pantaleo, Franco Turrini, Angela Siciliano, Enrica Federti, Serge 

Cedrick MbiandjeuToya, Janin Anne, Lebouef Christophe, Carlo Laudanna, Lucia De 

Franceschi 

 
*These authors have equally contributed 

 

β-thalassemia (β-thal) is one of the most common monogenetic disorders 

worldwide, characterized by ineffective erythropoiesis leading to a chronic, 

debilitating anemia associated with high morbidity and mortality. Erythroid 

maturation is a dynamic process tightly regulated by complex signaling 

mechanisms, only partially described either in normal and diseased erythropoiesis. 

To investigate this issue, we carried out a high throughput kinome analysis by 

taking advantage of Kinexus array technology (http://www.kinexus.ca), in sorted 

erythroid precursors from mouse model of (Hbb3th/+) compared to wild-type animals. 

In β-thal mice, we found differential modulation of many protein kinases. Network 

computational analysis unveiled common as well as erythroid precursor-specific 

signaling mechanisms of altered erythrocyte differentiation in beta thalassemia, 

suggesting a selective perturbation in protein kinase/phosphatase balance in β-thal 

erythropoiesis. 

We reasoned that balancing kinome anomalies, by increasing phosphatome 

activity, could normalize kinome signaling pathways, thus ameliorating 

erythropoiesis. We explore the expression and function of different protein 

phosphatase and we found reduced expression and function of protein Tyr-

phosphatase receptor type, gamma (PTPRG). To investigate PTPRG role in 

erythropoiesis, we exploited a novel Trojanfusion protein (TAT-ICD) we recently 

patented that delivers intracellularly the catalytic domain of PTPRG and up-

modulates its signaling cascade, as both a research tool to map dysfunctional 

pathways and as a potential therapeutic agent. In β-thal mice, TAT-ICD acted on 

multiple abnormally activated targets identified by computational analysis. TAT-ICD 



significantly reduced the activation of (i) Jak2-STAT5 pathway; (ii) Bruton tyrosine 

kinase (BTK) that has been reported to be part of the erythropoietin cascade; (iii) 

Akt that is involved in TGF-b-smad signaling pathway. This was associated with 

down-regulation of Erfe and Gdf11 gene expression in sorted erythroblasts from 

TAT-ICD treated β-thal mice. Collectively, TAT-ICD treatment resulted in 

amelioration of β-thal ineffective erythropoiesis, evaluated by multiple approaches, 

including the profile of erythroid maturation and the amount of Annexin-V+ erythroid 

cells, reticulocyte count, circulating erythroblasts and hemolytic indices (U.S. Patent 

#62/109,555). The improvement of anemia was also associated with reduction in 

alpha aggregates and membrane bound hemichromes in circulating erythrocytes. 

We also found a reduction of liver and spleen iron accumulation in agreement with 

the beneficial effects on the hematologic phenotype. It is of note that TAT-ICD 

treatment did not affect either peripheral leukocyte counts or spleen lymphocyte 

pattern.  

Our data unveil abnormalities in signal transduction pathways as new mechanism 

involved in β-thal erythropoiesis, and validate a novel, breakthrough, therapeutic 

approach to reset back to homeostatic equilibrium altered kinome in diseased 

erythropoiesis. 
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Erythropoiesis is a complex multistep process during which committed erythroid 

progenitors undergo terminal differentiation to produce circulating mature red cells. 

Erythroid differentiation is characterized by the production of reactive oxygen 

species (ROS) both in response to erythropoietin (EPO) and to the large amount of 

iron imported into the cells for heme biosynthesis. During erythropoiesis, ROS 

might function as second messenger by modulating intracellular signaling 

pathways. Fyn, an Src kinase, has been previously reported to participate in 

signaling pathways in response to ROS in various cell types. Here, we explore the 

potential contribution of Fyn to normal and stress erythropoiesis by studying 2-4 

months-old Fyn knockout mouse strain (Fyn-/-) and C57B6/2J as wild-type controls. 

Fyn-/- mice showed a mild compensated microcytic anemia associated with signs of 

dyserythropoiesis. Increased ROS levels and Annexin-V+ cells were presented in all 

Fyn-/- erythroblast subpopulations compared to wild-type, suggesting a possible 

reduction in the efficiency of erythropoietin (EPO) signaling pathway in the absence 

of Fyn. Indeed, in Fyn-/- erythroblasts, we observed a reduction in Tyr-

phosphorylation state of EPOR associated with a compensatory activation of Jak2 

without major change in Lyn activity. A reduction in STAT5 activation resulting in 

down-regulation of Cish, a known direct STAT5 target gene, was noted in Fyn-/- 

erythroblasts. This was paralleled by a reduction in GATA1 and increased HSP70 

nuclear translocation compared to wild type, supporting a higher cellular pro-

oxidant environment in the absence of Fyn. Using the vitro cell forming colony unit 

assay, we found a lower in CFU-E and BFU-E cells production, which once again 

was associated with decreased activation of EPO mediated cascade in the absence 

of Fyn. To explore the possible role of Fyn in stress erythropoiesis, mice were 

treated with either phenylhydrazine (PHZ) or doxorubicin (Doxo). Fyn-/- mice 

showed prolonged anemia after either PHZ or Doxo treatment with a delayed 

hematologic recovery compared to wild-type animals. When we analyzed the 

expression of a battery of ARE-genes related to oxidative response such as 

catalase, Gpx, heme-oxygenase 1 and peroxiredoxin-2, we noted up-regulated 



expression of these genes in sorted Fyn-/- erythroblasts compared to wild-type cells. 

In agreement, we observed increased activation of the redox-sensitive 

transcriptional factor Nrf2 targeting ARE-genes, whose regulation has been 

previously linked to Fyn. In fact, Nrf2 is switched-off by Fyn, ubiquitylated and 

delivered to the autophagosome by the p62 cargo protein. In Fyn-/- sorted 

erythroblasts, we observed (i) accumulation of p62 in large clusters; and (ii) 

reduction of Nrf2-p62 complex compared to wild-type cells. To address the question 

whether the perturbation of Nrf2-p62 system results in impairment of autophagy in 

the absence of Fyn, we used Lysotrack to explore late phases of autophagy. 

Lysosomal progression was defective in Fyn-/- reticulocytes and it was associated 

with accumulation of p62 during in vitro reticulocyte maturation. These data indicate 

that the absence of Fyn blocks the Nrf2 post-induction response to oxidation, 

resulting in impaired autophagy. To validate our working hypothesis, we treated 

Fyn-/- mice with Rapamycin, an inducer of autophagy. In Fyn-/- mice, Rapamycin 

treatment resulted in decrease dyserythropoiesis, ROS levels and Annexin V+ cells, 

associated with reduction in accumulation of p62 in Fyn-/- erythroblasts. As a proof 

of concept, we treated both mouse strains with PHZ with or without Rapamycin. 

This latter worsened PHZ induced acute anemia in wild-type mice but not in Fyn-/-

animals. Collectively, our data enabled us to document a novel role for Fyn in 

erythropoiesis, contributing to EPO-R activation and harmonizing the Nrf2-p62 

adaptive cellular response against oxidation during normal and more importantly in 

stress erythropoiesis. 
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Background 
Fyn is a member of the Src family of tyrosine kinases (SFKs) and shares high 
homology with Lyn that has been previously involved in erythropoiesis. Previous 
reports have shown that Lyn targets EPO-R/Jak2/STAT5 signaling pathway. Although 
progresses have been done in the knowledge of molecular mechanisms involved in 
normal and diseased erythropoiesis, much still remains to be investigated on signal 
transduction pathway during erythroid differentiation and maturation. 
 
Aims 
Functional characterization of erythropoiesis in Fyn-/- mice. 
 
Methods 
Female aged between 2-4 months from C57BL/6J, as wild-type (WT) controls, and 
Fyn-/- mouse strains were used. Phenylhydrazine (PHZ) at 40 mg/kg or Doxorubicin at 
0,25mg/kg by intraperitoneal injection were used to explore stress erythropoiesis. 
Hematologic parameters, red indices and reticulocyte count were evaluated as 
previously reported (Matte A, et al. ARS, 2015). Mouse erythropoiesis was studied 
using the CD44/Ter119 gating strategy by FACS. ROS levels and the amount of 
Annexin V+ cells were also evaluated in erythroblast subpopulations. In vitro colony-
forming unit assay was performed to obtain CFU-Es and BFU-Es. Immunoblot analysis 
was carried out to study early and late erythropoiesis. 
 
Results 
Fyn-/- mice showed signs of dyserythropoiesis associated with increased total 
erythroblasts (CD44+TER119+FSChigh), without extramedullar erythropoiesis. Fyn-/- 

erythroblasts showed higher ROS levels and increased amount of Annexin V+ cells, 
compared to WT, indicating increase oxidative stress and cell aptoptosis. High ROS 
levels in erythroblasts have been described in β-thalassemic mouse erythroid cells as 
model of stress erythropoiesis. This has been linked with instability of GATA-1, which 
nuclear translocation is prevented and requires the stabilization of heat shock protein 
(HSP70-90). In Fyn-/- mice, we explored GATA-1/HSP70 distribution in subcellular 
fractions. Fyn-/- erythroblasts showed reduction in GATA-1 nuclear translocation, 
compared to WT. In agreement with reduced GATA-1 nuclear translocation, a marked 
decrease in β–globin chain synthesis, resulting in an imbalance in α/β globin chain 
levels, was observed in Fyn-/- mice. To further characterize the impact of the absence 
of Fyn on erythropoiesis, we set up a colony-forming unit assay for CFU-E and BFU-E. 
The lack of Fyn resulted in a significant decrease in CFU-E and BFU-E colonies, 
suggesting an impairment of early erythropoiesis. Erythroid commitment and 
differentiation is strictly dependent on EPOR/Jak2/STAT5 signaling pathway. The 
absence of Fyn resulted in a marked decrease in STAT5 activation, supported by a 
significant down-regulation of Cish, that is strictly regulated by STAT5 function. 



Using Doxorubicin and PHZ, we found a delay in increased reticulocyte count related 
to either Doxorubicin or PHZ treatment, shedding new light on the role of Fyn in stress 
erythropoiesis. 
In addition, we found chronic activation of Nrf2 related to lack of its physiologic 
inhibitor, Fyn. Indeed, we found increased ARE-related genes such as heme 
oxygenase-1 (HO-1), which expression seems to became independent from heme 
concentration in the absence of Fyn. In fact, bilverdin reductase (BVR) that is 
functionally link to Nrf2 but it depends from another transcriptional factor was similar to 
that observed in WT mice. 
 
Conclusions 
Our preliminary data support a novel role of Fyn as both oxidative sensor and new 
modulator of the EPO/STAT5 pathway. 
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Background. Nuclear  factor erythroid-derived 2 (Nrf2) is a transcription factor that 
participates in acute phase response to oxidative stress and controls the expression of 
adaptive systems to environmental stressors. Nrf2 modulates the expression of 
antioxidant responsive element (ARE-) related genes, drug-metabolizing systems and 
metabolic pathways. Mice genetically lacking Nrf2 show a chronic  hemolytic anemia 
related to an increased of phagocytosis of damaged red blood cells (Lee M. J. et al 
PNAS 2004). In mouse pathologic erythropoiesis, a functional interplay between  Nrf2 
and peroxiredoxin-2 (Prx2) has been recently reported (Matte A et al ARS 2015). 
Here, we carried out functional characterization of  erythroid cells genetically lacking 
Nrf2 (in  Nrf2-/- mice).  
Methods. We used 6 -12 months-old wild type (WT) and Nrf2 knockout mice   (Nrf2-/-) 
divided in groups of 5-6 mice each. Intracellular levels of reactive oxygen species 
(ROS) and exposition of phosphatydil-serine (PS) in circulating red cells (RBCs). We 
separated the cytosolic fraction from membrane proteins of mouse RBCs for Western-
blot analysis. We examined the in vitro effects on mouse RBCs of treated with different 
oxidative agent (Diamide, Hydrogen peroxide and Phenylhydrazine). We carried out 
cell-based assay on CFU-E and BFU-E cell forming colonies and prepared isolated 
cells for Western-blot analysis. 
Results. In Nrf2-/- mouse RBCs, we observed increased ROS levels associated with 
higher exposition of phosphatydil-serine (PS), as a marker of membrane lipid 
peroxidation. In addition, Nrf2-/- mouse RBCs showed reduced expression of key anti-
oxidant systems such as Nqo1, Prx2 and Catalase linked to Nrf2 function. This was 
associated with increased membrane translocation of HSP 70 and 90, supporting 
higher levels of membrane protein oxidation that requires chaperone intervention. Nrf2-

/- RBCs also displayed a higher sensitivity to exogenous H2O2 mediated oxidation as 
compared to WT. This was further supported by increased levels of ROS levels and of 
Annexin V+ cells in Nrf2-/- erythrocytes compared to either treated WT RBCs or 
untreated erytrhocytes. In addition, we found increased Prx2 dimmer formation and 
PrxSO3 levels in H2O2 treated Nrf2-/- red cells, supporting the amplified oxidation of 
Nrf2-/- erythrocytes compared to either WT or untreated Nrf2-/- red cells. In agreement, 
we found significant increase in band 3 Tyr-phosphorylation state related to activation 
of Syk pathway in response to H2O2 treatment in Nrf2-/- erythrocytes. We then we 
explored the effects of the absence of Nrf2 on erythropoiesis. We first carried out cell-
based assay on CFU-E and BFU-E cell forming colonies. Nrf2-/- CFU-Es were 
significantly lower compared to WT. Reduced expression of Nrf2 related anti-oxidant 
systems such as Catalase, Prx2 and Nqo1 were documented in Nrf2 -/- CFU-Es by 
Western-blot analysis.  
Conclusions. Our data suggest that the absence of Nrf2 promotes a high pro-oxidant 
environment, resulting in increase sensitivity of red cells to exogenous H2O2 treatment. 
The preliminary results on CFU-E support an important role of Nrf2  in the early phase 
of erythropoiesis. 
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