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1. Riassunto 

La fotosintesi ossigenica è un processo per mezzo del quale l’energia solare e l’anidride 

carbonica (CO2) sono utilizzate per produrre ossigeno (O2) e biomassa. La conversione 

dell’energia luminosa in energia chimica è condotta da complessi multiproteici 

denominati Fotosistema II (PSII) e Fotosistema I (PSI). Il PSII e il PSI mediano la 

separazione di carica, la raccolta della luce e il trasporto di elettroni dall’acqua, 

producendo il potere riducente necessario per fissare la CO2 in carboidrati (ATP e 

NADPH). I Fotosistemi sono composti da due unità principali: il centro di reazione, sito 

in cui avvengono le reazioni biochimiche e la separazione di carica, e il sistema antenna, 

costituito da complessi proteici di raccolta della luce (LHC), coinvolti principalmente 

nella raccolta della luce e nel trasferimento dell’energia d’eccitazione al centro di 

reazione. Gli organismi fotosintetici sfruttano la radiazione fotosinteticamente attiva 

(PAR) a fini metabolici. Variazioni nell'irradianza, quali l’eccesso di luce, possono 

determinare condizioni limitanti o di stress, portando alla formazione di specie reattive 

dell’ossigeno (ROS), le quali, influenzando la crescita delle piante e ne riducono la 

produttività. L'attivazione del processo di dissipazione termica, denominato Non-

Photochemical Quenching (NPQ), ha un ruolo fondamentale nella reazione di quenching 

(smorzamento) degli stati eccitati di singoletto della clorofilla, dissipando l'energia di 

eccitazione sotto forma di calore, prevenendo quindi lo stress foto-ossidativo. Nelle 

microalghe fino all'80% dell'energia luminosa assorbita può essere riemessa sotto forma 

di calore con conseguente riduzione della produttività totale di biomassa.  

Questa tesi è incentrata sullo studio della regolazione dell’NPQ in diverse specie di 

alghe. A tale scopo sono stati applicati diversi approcci quali la trasformazione genetica, 

la caratterizzazione fenotipica e spettroscopica di cellule intere e di complessi proteici 

isolati. La regolazione dell’NPQ a livello del PSII e del PSI è stata ampiamente studiata 

anche in relazione alle proteine LHC nell’organismo modello per le alghe verdi, 

Chlamydomonas reinhardtii, in cui è stata evidenziata un'attività di quenching in 

entrambi i Fotosistemi. Nella specie di microalga di uso commerciale, Chlorella 

vulgaris, la regolazione dell’NPQ è stata studiata in relazione all'accumulo di zeaxantina, 

evidenziandone una forte dipendenza. Infine, la regolazione fotosintetica è stata 

monitorata in cellule intere e in complessi isolati nella microalga Haematococcus 



 

6 

 

pluvialis, in presenza di forti stress indotti dall’eccesso di energia luminosa e dalla 

carenza di nutrienti.  

CAPITOLO I 

Il Capitolo I di questa tesi è stato incentrato sullo studio del regolamento dell’NPQ 

nell'organismo modello Chlamydomonas reinhardtii. In questa microalga l’NPQ è 

principalmente regolato da LHCSR1 e LHCSR3, ma, la maggior parte delle 

informazioni presenti in letteratura, riportano un'attività di quenching su complessi 

LHCII-PSII, mentre sono presenti poche informazioni sul PSI. Nella sezione A del 

Capitolo I, è stata studiata l'attività di quenching delle subunità LHCSRs sui super-

complessi LHCII-PSII e PSI. Il contributo di fluorescenza dal PSI è stato valutato 

registrando gli spettri di emissione e di eccitazione ed eseguendo analisi risolte nel 

tempo a 77K di cellule intere in stato “smorzato” e “non smorzato”. Le proprietà di 

quenching sono state misurate in mutanti sull'espressione dei prodotti genici LHCSR1 o 

LHCSR3 e/o sulle transizioni stato-1-stato 2. Da questo lavoro è stato possibile 

concludere che l'NPQ si verifica attraverso il PSII e attraverso le proteine LHCII legate 

al PSI con un meccanismo velocemente reversibile che richiede LHCSRs e dipende dal 

pH lumenale delle membrane tilacoidali. I sistemi antenna hanno un ruolo cruciale in 

questo processo e una conoscenza dettagliata della famiglia proteica LHC è di 

particolare importanza nell'addomesticazione delle alghe unicellulari. Nella sezione B di 

questo capitolo è stata data maggiore attenzione alle LHCII e al loro contributo sulla 

regolazione dell’NPQ. Le proteine LHCII sono complessi trimerici, codificati da nove 

geni altamente conservati e funzionalmente specializzati chiamati LHCBM1-LHCBM9. 

In questa sezione è stata determinata la funzione di tre proteine antenna (LHCBM4/6/8) 

con un duplice approccio. I prodotti genici sono stati analizzati mediante ricostituzione 

in vitro e analizzando le loro caratteristiche biochimiche e spettroscopiche. Inoltre, la 

loro funzione fisiologica è stata studiata producendo ceppi mutanti silenziati e 

caratterizzandoli in vivo. Da questo lavoro concludiamo che le subunità LHCBM4/6/8 

possono essere trovate nei super-complessi del PSII liberi nelle membrane o scarsamente 

connessi al PSII. La riduzione dell’accumulo delle subunità LHCBM4/6/8 ha inoltre 

causato una riduzione significativa dell'attività di NPQ e della fotoprotezione. 
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CAPITOLO II 

Nel Capitolo II, è stata rivolta maggiore attenzione a specie di microalghe di uso 

industriale quali, C. vulgaris e H. pluvialis. Chlorella vulgaris è un'alga verde coltivata 

per la produzione di cibo e biocarburanti, ma sono presenti poche informazioni sulla sua 

genetica. Nella sezione A del Capitolo II sono stati presentati i genomi nucleari e degli 

organelli di Chlorella vulgaris 211/11P. A tale scopo, il next generation sequencing e 

l’optical mapping di molecole di DNA isolate sono stati combinati con dati di RNAseq 

di cellule cresciute in alta o bassa luce per l'annotazione funzionale del genoma. Il 

genoma nucleare è stato assemblato in 14 pseudo-molecole e sono stati riconosciuti 

10746 geni. L'annotazione funzionale delle sequenze genomiche del nucleo, del 

cloroplasto e del mitocondrio mostra un trasferimento genico orizzontale dal cloroplasto 

al genoma mitocondriale. È interessante notare che, inoltre, è stato identificato un 

singolo grande gene codificante per un complesso multi-subunità fungal/animal fatty-

acid-synthase type I. Grazie alle informazioni riportate nella sezione A di questo 

capitolo, siamo stati in grado di focalizzare la nostra attenzione su un altro meccanismo 

coinvolto nella regolazione dell’NPQ nelle piante superiori: il ciclo delle xantofille. In 

questo ciclo, in condizioni di stress, la violaxantina viene de-epossidata in zeaxantina 

dall'enzima violaxantina de-epossidasi (VDE) che non è conservata tra piante superiori e 

le alghe verdi. Nella sezione B del Capitolo II, abbiamo identificato e caratterizzato 

l'enzima VDE in C. vulgaris. L'allineamento multiplo delle sequenze di VDE, da C. 

vulgaris e da altri organismi, ha consentito l’identificazione di quasi tutti i residui chiave 

necessari per l'attività enzimatica nelle piante superiori. L'attività catalitica della VDE è 

stata valutata mediante saggio in vitro della proteina ricombinante e in vivo utilizzando 

un inibitore specifico per la sua attività (DL-Dithiothreitol; DTT), dimostrando 

l'esistenza dell’attivazione e della funzione del ciclo delle xantofille simile alle piante in 

C. vulgaris, diversamente dagli altri Chlorophyta come C. reinhardtii. Nel Capitolo II, 

sezione C e D, abbiamo analizzato la regolazione fotosintetica dell'alga H. pluvialis in 

condizioni di stress. H. pluvialis è una microalga verde, studiata per la sua capacità di 

accumulare alti livelli di astaxantina, un potente ketocarotenoide con una forte attività 

antiossidante, prodotta in condizioni di stress. Nella sezione C sono state studiate le 

influenze della crescita in condizione di alta luce e/o di carenza d’azoto sulle proprietà 

fotosintetiche. Si è dimostrato che la carenza di azoto stimola la degradazione della 
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clorofilla b, la clororespirazione e il trasporto ciclico degli elettroni con la conseguente 

inibizione della biosintesi delle clorofille, mentre elevate concentrazioni di luce 

determinano una destabilizzazione del PSII. Inoltre, la combinazione di entrambe queste 

condizioni di stress induce una risposta fotoprotettiva più rapida e una massima 

produzione di astaxantina. Nella sezione D sono state analizzate le proprietà biochimiche 

e spettroscopiche di complessi proteici leganti pigmenti di H. pluvialis responsabili della 

raccolta della luce e della conversione dell’energia. In particolare, è stato dimostrato che 

la transizione dalla fase verde a quella rossa non migliora la fotoprotezione dei 

Fotosistemi, mentre inducendo la sostituzione parziale del β-carotene nel PSI e nel PSII 

porta alla destabilizzazione entrambi. Inoltre, l'astaxantina legandosi ai Fotosistemi 

riduce l'efficienza di trasferimento dell’energia di eccitazione ai centri di reazione. 
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1. Summary 

Oxygenic photosynthesis is a process by which sunlight energy and CO2 are used to 

produce O2 and biomass. The light energy conversion into chemical energy is carried 

forth by multiproteic complexes called Photosystem II (PSII) and Photosystem I (PSI). 

PSII and PSI drive charge separation, light harvesting and electron transport from water, 

producing the reducing power necessary to fix CO2 into carbohydrates (ATP and 

NADPH). Photosystems are composed by two moieties: a core reaction center, site of 

biochemical reactions and charge separation, and an antenna system constituted by Light 

Harvesting Complex (LHC) proteins mainly involved in light harvesting and excitation 

energy transfer to the reaction center. Photosynthetic organisms use the 

photosynthetically active radiation (PAR) for their metabolic processes but irradiance 

undergo changes and light excess becomes a limit or even a stressor leading to the 

formation of Reactive Oxygen Species (ROS) which influence plant growth and could 

decrease crop productivity. Photo-oxidative stress can be prevented by activation of 

thermal dissipation process called Non-Photochemical Quenching (NPQ), which has an 

important role in quenching chlorophylls singlet excited states dissipating the excitation 

energy in form of heat. In microalgae, up to 80% of absorbed light energy can be re-

emitted as heat with a consequent reduction of total biomass productivity. This thesis 

was focused into the investigation of NPQ regulation in several algae species. For this 

purpose, different approaches were applied including genetic transformation, phenotypic 

and spectroscopic characterization of entire cells and of isolated complexes. The NPQ 

regulation at the level of both PSII and PSI also in relation with LHC proteins was fully 

investigated in the model green alga Chlamydomonas reinhardtii evidencing a 

quenching activity in both Photosystems. In the commercial microalga specie, Chlorella 

vulgaris, the NPQ regulation was studied in relation with zeaxanthin accumulation 

evidencing a strong dependency. Finally, in the microalga Haematococcus pluvialis, the 

photosynthetic regulation was also monitored in entire cells and isolated complexes, in 

presence of strong stresses induced by light excess and nutrients depletion.  

CHAPTER I 

The Chapter I of this thesis was focused on study of the NPQ regulation in the model 

organism Chlamydomonas reinhardtii. In this microalga NPQ is mainly regulated by 
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LHCSR1 and LHCSR3 but, most of the information present in literature, report a 

quenching activity on LHCII-PSII complexes, while few information about PSI are 

present. In the Chapter I section A, the quenching activity of LHCSRs subunits on 

LHCII-PSII and PSI supercomplexes was investigated. The PSI fluorescence 

contribution was evaluated by recording emission and excitation spectra, and by 

performing time-resolved analysis at 77K of whole cells in quenched and unquenched 

states. The quenching properties were measured in mutants affected on the expression of 

LHCSR1 or LHCSR3 gene products and/or state-1-state 2 transitions. From this work 

we conclude that NPQ occurs through PSII and LHCII bound to PSI with a fast-

reversible mechanism which requires LHCSRs and is dependent on thylakoid lumenal 

pH. The antenna systems have a crucial role in this process and a detailed knowledge of 

LHC protein family is of special importance in the domestication of unicellular algae. In 

the section B of this Chapter more attention was given to LHCII and their contribution 

on NPQ regulation. LHCII are trimeric protein complexes, encoded by nine highly 

conserved genes called LHCBM1–LHCBM9 and each protein component is functionally 

specialized. In this Chapter we analyzed the role of three antenna proteins 

(LHCBM4/6/8) with a double approach. The gene products were analyzed by in vitro 

refolding and by analyzing their biochemical and spectroscopic characteristics. 

Furthermore, their physiologic function was studied by producing of knock down mutant 

strains and characterizing them in vivo. From this work we conclude that LHCBM4/6/8 

subunits could be found in the PSII supercomplexes free in the membranes or poorly 

connected to PSII. The reduction of LHCBM4/6/8 subunits caused a significant 

reduction of the NPQ activity and photoprotection.  

CHAPTER II 

In the Chapter II, more attention was given to commercial species of microalgae strains 

like C. vulgaris and H. pluvialis, due to their industrial application. Chlorella vulgaris is 

a green alga cultivated at industrial level for food and biofuel production, but few 

information about its genetic are present. In the Chapter II section A, the Chlorella 

vulgaris 211/11P nuclear and organelle genomes were presented. For this aim, next 

generation sequencing and optical mapping of isolated DNA molecules were combined 

with RNAseq data of low or high light grown cells for the genome functional annotation. 

Nuclear genome was assembled into 14 pseudo-molecules and 10746 genes were 
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recognized. The functional annotation of nuclear, chloroplast and mitochondrial genome 

sequences demonstrate a horizontal gene transfer from chloroplast to mitochondrial 

genome. Interestingly, a single large gene encoding for a fungal/animal-like fatty-acid-

synthase type I multi-subunit complex was also identified. Thanks to the information 

reported in the section A of this Chapter, we were able to focus our attention on another 

mechanism involved in the regulation of NPQ in higher plants: the xanthophyll cycle. In 

this cycle, upon stress condition, violaxanthin is de-epoxidated into zeaxanthin by the 

violaxanthin de-epoxidase (VDE) enzyme which is not conserved among higher plants 

and green algae. In the Chapter II section B, we identified and characterized the VDE 

enzyme in C. vulgaris. Multiple alignment of VDE sequences, from C. vulgaris and 

other organisms, allow us to identify almost all the key residues required for the 

enzymatic activity in higher plants. The VDE catalytic activity was evaluated by in vitro 

assay of the recombinant protein, and in vivo by using a specific inhibitor for its activity 

(DL-Dithiothreitol; DTT), demonstrating the existence of plant-like xanthophyll cycle 

activation and function in C. vulgaris, differently from other Chlorophyta as C. 

reinhardtii. In the Chapter II section C and D, we analysed the photosynthetic regulation 

of the alga H. pluvialis under stress conditions. H. pluvialis is a green microalga, studied 

for its ability to accumulate high levels of astaxanthin, a potent ketocarotenoid with a 

strong anti-oxidant activity, produced upon stress conditions. In the section C, the 

influence of high irradiances and/or nitrogen starvation on the photosynthetic properties 

were investigated. We showed that nitrogen starvation stimulates the chlorophyll b 

degradation, chlororespiration and cyclic electron transport with the concomitant 

chlorophyll biosynthesis repression, while high light induced a PSII destabilization. 

Moreover, the combination of these two stresses induced the fastest photoprotective 

response and highest astaxanthin production. In the section D, the biochemical and 

spectroscopic properties of the H. pluvialis pigment binding complexes responsible for 

light harvesting and energy conversion were analysed. We showed that the transition 

from the green to red phase does not improve the Photosystem photoprotection, while 

induce the partial β-carotene substitution in PSI and II destabilizing both. The 

astaxanthin binding to the Photosystems also reduces the efficiency of excitation energy 

transfer to the reaction centers.  
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2. Introduction 

2.1. Microalgae 

Subcellular organization and sexual cycle 

Algae are the first oxygen-releasing photosynthetic organisms, with a simple cellular 

organization, appeared on Earth. Microalgae are described as “lower plants” without a 

cellular differentiation like stems, roots and leaves mainly living in aquatic ecosystems. 

Currently, more than 246,000 species are knew but this number is continuously 

increasing. Algae group comprehends both eukaryotic and prokaryotic organisms. The 

first group is composed by green algae (Chloropyceae), diatoms (Bacillariophyceae), 

yellow-green algae (Xanthophyceae), golden algae (Chrysophyceae), red algae 

(Rodophyceae), brown algae (Phaeophyceae), dinoflagellates (Dinophyceae) and pico-

plankton (Prasinophyceae and Eustigmatophyceae). The prokaryotic algae are 

represented by cyanobacteria (Cyanophyceae). The size of algal cells is highly variable 

(1µm-60m); the smallest described is Ostreococcus tauri (Prasinophyceae), 

characterized by a cell diameter of less than 1µm; in contrast the largest is a brown alga 

Macrocystis pyrifera (Phaeophyceae) which grows up to 60m and is often the prevailing 

organism in kelp forests (Hallmann, 2007) (Figure 1). 

 

Figure 1 Example of different phenotypes and size of algae species. In this figure a logarithmic scale of cells 

dimension is showed. (Hallmann, 2007). 
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Microalgae have different morphologies not only in relation to species but also to 

different life stages. There are various cellular organization structures such as ameboid, 

palmelloid (capsoid), coccoid, filamentous, flagellate and sarcinoid. The internal algae 

cell structure is characterized by high variability. The cyanobacteria or blue-green algae 

have a prokaryotic organization which closely resembles bacteria. Eukaryotic algae have 

a nucleus, one or more chloroplasts, mitochondria, endoplasmic reticulum, Golgi bodies 

and other typical eukaryotic organelles. The model species, for the study of microalgae, 

is Chlamydomonas reinhardtii, a unicellular flagellate alga of Volvaceae family and 

Chlorophyta division. Its cultivation is simple, it has a short mitotic cycle, small cell 

dimension (10 µm diameter) and both mitochondrial and chloroplastic genomes have 

been sequenced (Harris, 2001; Merchant et al., 2007). Moreover, the techniques for its 

sexual cycle manipulation and both nuclear and chloroplastic genome transformation are 

well knew (Harris, 2001; Remacle et al., 2006; Purton, 2007). C. reinhardtii grows on 

liquid and solid media, with neutral pH and without vitamins or other additional factors 

in both autotrophic and heterotrophic environments; it lives at temperature between 20-

25°C with a light intensity of 200-400 µmol photons m-2sec-1. C. reinhardtii has a cell 

wall mainly composed by seven layers of proteoglycans, hydroxyproline-rich 

glycoproteins, from which two anterior flagella of 10-12 µm in length, protrude 

(Woessner and Goodenough, 1994). Nuclear membranes are near one of the four Golgi 

bodies in continuous with the endoplasmic reticulum (Figure 2).  

 

Figure 2 A scheme (a) of C. reinhardtii cell. (E, eyespot; G, Golgi bodies; L, lipid bodies; M, mitochondrion; 

P, pyrenoid; S, starch granules; N, nucleus; Nu, nucleolus. Section (b) of C. reinhardtii WT grow 

mixotrophically (entire cell A and portion of the same cell at higher magnification B) (Harris, 2009). 
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There are two contractile vacuoles located at the anterior of the cell which pulsate 

alternately at intervals of 10-15 seconds depending on the conditions while the 

chloroplast, site of photosynthesis, occupies two thirds of the cell (Luykx et al., 1997). 

The chloroplast is the result of an endosymbiotic process deriving from a photosynthetic 

prokaryote (a cyanobacterium-like cell) engulfed by a mitochondriate eukaryote (Raven 

and Allen, 2003). This organelle has become fully integrated into the biology of the host 

eukaryotic cell resulting in loss of most plastid genes, whose functions were substituted 

by nucleus-encoded proteins. Many chloroplast multi-protein complexes contain 

subunits encoded by both the plastid and the nucleus and their assembly requires the 

expression of both chloroplast and nuclear genes (Martin and Herrmann, 1998). 

Chloroplast is delimited by two membranes called envelope: the external membrane is 

permeable and the internal is more selective due to the presence of specialized 

transporter systems. Within the chloroplast, there are complex lipoprotein membrane 

systems called thylakoids which divide the organelle’s volume into two compartments: 

the lumen and the stroma (Staehelin, 1986). In the stroma, Calvin-Benson cycle enzymes 

are located together with the chloroplastic genome and the machineries for protein 

synthesis and plastome replication (Benson and Calvin, 2000). Differently from higher 

plants in the chloroplast of microalgae single pyrenoid is located in the broad basal area. 

Pyrenoid is a spherical body with a high Rubisco concentration, the dominant protein 

involved in the Calvin-Benson cycle where inorganic CO2 is fixed to organic sugars. An 

additional important variance with higher plants is the thylakoid membranes 

organization, which can be either single or arranged in stacks of 2-10 discs, but multidisc 

grana are not present. The eyespot (or stigma), orange in colour due to the high 

carotenoids concentration, represents a specialized lipid accumulation site associated 

with flagellum. With the eyespot, cell detects incident light direction and swim toward or 

away from the light source (Harris, 2009). The nuclear genome of C. reinhardtii is 

haploid, composed by 17 chromosomes and the size is estimated to be 1.2*10^5 Kbp 

with a GC composition of 64% (Merchant et al., 2007). The chloroplastic genome is 

circular and composed by approximately 200 Kbp (Maul et al., 2002); the mitochondrial 

genome is linear and smaller (15.8 Kbp) (Michaelis et al., 1990). C. reinhardtii is a 

haploid organism which replicate by mitosis, but it can start a sexual reproduction cycle 

to survive under stress conditions (Figure 3). 
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Figure 3. Life cycle of C. reinhardtii. In the asexual reproduction cycle cells divide by fission, the protoplast 

divide forming 4-8 zoospores similar to the parent. During stress condition cells became isogametes starting 

the sexual reproduction. Gametes fuse in pairs forming a zygote, which lose flagella and produces a thick wall 

until the environmental conditions return favourable. The zygote undergoes meiosis to form 4 haploid 

zoospores (Harris, 2001). 

Cells have a mating type locus with two different alleles, plus (mt+) or minus (mt-), 

which are expressed in stress condition such as nitrogen starvation. Contact between a 

plus and minus gamete is mediated by agglutinin molecules, exposed on the flagella 

surface. This adhesion generates a transduction signal involving cAMP, which allows for 

gamete fusion with the activation of a transcription factor for zygote differentiation. 

Nuclei fuse, flagella are reabsorbed, and a thick cell wall is assembled around the zygote 

to increase stress resistance. When the environmental conditions are advantageous, 

meiotic division occurs to generate four haploid cells with mitochondria from minus 

gamete and chloroplast from plus gamete (Goodenough et al., 2007). Microalgae are 

interesting organisms for their ability to produce high value chemicals and 

pharmaceuticals (Spolaore et al., 2006; Hallmann, 2007) and for their use as 

bioenergetic resource (Hannon et al., 2010). Moreover C. reinhardtii has been studied 

for the possibility to use as a substrate for anaerobic fermentation in the biogas 

production (Mussgnug et al., 2010) and to photobiologically generate molecular 

hydrogen (Melis et al., 1999; Zhang and Melis, 2002; Kruse et al., 2005). 
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2.2. Oxygenic photosynthesis 

Photosynthesis is a process in which sunlight energy and CO2 are converted into organic 

matter. The first photosynthetic organism, evolving this mechanism about 3 billion years 

ago, was a bacterium which used light in order to pump protons across a membrane 

driving electrons from electron donor as Fe2+ or H2S to CO2. The development of 

oxygenic photosynthesis was one of the most important event in Earth’s history for it 

changed the redox balance, and allowed for development of an aerobic metabolism. The 

key, in developing oxygenic photosynthesis, was the development of the OEC (Oxygen 

Evolving Complex) manganese complex, capable of water oxidation. Prokaryotic 

cyanobacteria and, later, eukaryotic algae created oxygenic atmosphere starting about 2 

billion years ago. In photosynthesis, water is used as reducing substrate to produce 

carbohydrates (CH2O) and molecular oxygen (O2) through a series of redox reactions 

collectively summarized as (1):  

6H2O + 6CO2 → C6H12O6 + 6O2   (1) 

This endergonic reaction causes an increase of free energy by +2840 kJ per mole of 

esose produced. The measurement of photosynthetic activity is based on detection of 

oxygen evolution versus light intensity, in the so called light-response (P/I) curve 

(Figure 4) (A., Richmond; H., 2013). 

 

Figure 4. Photosynthesis light response curve (A., Richmond; H., 2013). 

The initial slope (α = Pmax/Ik) represents the maximum rate of photosynthesis where Ik is 

the saturation irradiance. In the dark, the net oxygen consumption is a consequence of 

respiration (negative part of the curve, Figure 4). With low irradiance the rate of 

photosynthesis has a linear correlation with light intensity, while increasing light 

intensity photosynthesis becomes less efficient. The maximum rate Pmax it’s defined as 
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the light intensity at which plateau is reached. Under continuous supra-optimal 

irradiance, the rate of photosynthesis declines from the light-saturated value due to 

photoinhibition. The photosynthesis process is functionally divided in two main units, 

light reactions and dark reactions. In the light reactions, which occurs in the 

photosynthetic membranes, the light energy is converted into chemical energy with the 

final production of NADPH2 and ATP. In the dark reactions, which takes place in the 

stroma, NADPH+, H+ and ATP are used in the sequential biochemical reduction of CO2 

to carbohydrates. 

2.2.1. The light phase 

Five proteins complexes, located in the thylakoids membrane, are involved in the light 

phase reactions: light-harvesting antennae, Photosystem II (PSII), Photosystem I (PSI), 

cytochrome b6/f and ATP synthase (ATPase). All these complexes, together, represent 

the photosynthetic electron transport chain and the photophosphorylation system for 

solar energy conversion into chemical energy and reducing power (Figure 5). 

 

Figure 5. A schematic model detailing the main photosynthetic complexes engaged in oxygenic photosynthesis. 

(http://macromol.sbcs.qmul.ac.uk/oldsite/psIIimages/oxygenicphotosynthmodel.html)  

PSII and PSI are responsible for energy conversion, cytochrome b6/f mediates electron 

transport between PSII and PSI and contributes to proton translocation in the lumen (Hill 

and Bendall, 1960). ATPase catalyses ATP synthesis using the proton-motive force 

(pmf), generated during the light reactions and by the cytochrome b6/f. PSI and PSII 

bound pigments which absorb photons used for charge transfer. Basing on the redox 
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potential of reagents and products, the energy required for the production of NADPH2 

cannot be provided by only one photon in the visible range of light: for this reason the 

photosystems work in series in the so called “Z” scheme (Figure 6) (Hill and Bendall, 

1960).  

 

Figure 6. The “Z” scheme of electron transport chain from water to NADPH2. Cofactors and redox potentials 

are indicated (A., Richmond; H., 2013). 

In the “Z” scheme, the electron transport goes on from lower to higher values of 

equilibrium midpoint potential of the individual redox components. In the reaction 

centers, when a chlorophyll a dimer (special couple) is excited, a separation charge event 

is generated, and one electron is transferred to specific transporters in the thylakoid 

membranes. When the PSII reaction center is excited by light (λ = 680nm), a strong 

oxidant (P680+) and a strong reductant (plastosemiquinone, QA
-) are produced, leading a 

charge separation of 1.2V. The positive charge on P680 is neutralized by electron 

transport from the Mn cluster of OEC via Tyr Z. Four manganese ions, in turn, oxidize 

water upon accumulation of 4 charges as a consequence of 4 consecutive photo-

reactions. Subsequently, the quinone cycle is activated to carry on the electron transport 

in the cyt b6/f and the proton translocation to the lumen. In detail, after 

plastosemiquinone (QA) reduction by the pheophytin, two electrons are sequentially 

transferred from QA to a secondary acceptor QB, which is oxidized by the cyt b6/f 

complex. Cytochrome b6f (plastohydroquinone:plastocyanin oxidoreductase) works with 

a mechanism called Q-cycle in which electrons are transferred from PQH2 and protons 

are translocated with a generation of a transmembrane electrochemical H+ gradient 
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(ΔµH+) (Stroebel et al., 2003). The Q-cycle represents the limitation step of the 

electronic transport, it requests 1-2ms due to the diffusion of PQH2 across the 

membrane. From PQH2 two protons are released at the Qo site at the lumenal side of the 

membrane. One electron is transferred, through an iron–sulphur cluster (Fe2S2) attached 

to the Rieske protein to haem f, in the cytochrome f, where it is taken by plastocyanin 

(PC) (Kurisu et al., 2003). The second electron, through haems bL and bH, is conducted 

to reduce quinone at the Qi site near the stroma side of the membrane; after two 

consecutive reduction events, at the Qi site, two protons are taken up from the stroma. 

From this cycle two plastoquinols are oxidised and 4 H+ are translocated for every 2 

electrons transported to PSI; moreover, an electro-chemical gradient is formed across the 

membrane. Through PC, a small copper-containing protein, one electron is carried to the 

P700 in the reaction center of the PSI. The PSI excitation by light (λ = 700nm) produces 

a strong and stable reductant (Fe-S center, FX
-) and a weak oxidant (P700+). On the 

acceptor site of PSI, electrons are transferred from a series of transporters to the 

ferredoxin. Finally, the reductant ferredoxin transfers the electrons to NADP+ to produce 

NADPH. The transportation of electrons through thylakoid membranes is coupled with 

the proton movement from the stroma to the lumen, with the creation of a pH gradient 

used by the ATPase to produce ATP (Mitchell, 1961). ATPase (ADP kinase ΔpH 

dependent) is composed by nine subunits arranged into two main subunits CF0 and CF1. 

The CF0 subunit, inside the thylakoid membranes, is involved in the protons 

translocation across the thylakoid membrane. Proton movement through CF0 is coupled 

to ATP synthesis/hydrolysis at the CF1 catalytic site which is exposed to the stroma. 

When the ratio between NADPH2 and NADP+ is high the electron transport chain can 

works in a cyclic way in order to generate a proton gradient without PSII involvement. 

This process is called cyclic photophosphorylation or cyclic electron flow and is used to 

accumulate ATP but with no NADPH2 and oxygen production. In this mechanism 

electrons from ferredoxin are transferred to the cytochrome b6f complex through the 

ferredoxin-plastoquinone oxidoreductase (NADH dehydrogenase); producing a proton 

gradient and transferring the electrons to PC with the regeneration of the P700 reaction 

center (Harbinson and Foyer, 1991). 

The general reactions of the light phase can be described as (2, 3): 

2NADP+ + 2H20 + light → 2NADPH + O2 + 2H+  (2) 

ADP + Pi +energy → ATP    (3) 
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2.2.2. Dark phase 

In the dark phase, NADPH2 and ATP, produced during the light phase of photosynthesis, 

are used to fix O2 to sugars through the Calvin-Benson cycle (Figure 7) (Benson and 

Calvin, 2000). The reaction is expressed as: 

 

Figure 7. The Calvin-Banson cycle (A., Richmond; H., 2013). 

The Calvin-Benson cycle can be subdivided in four phases: carboxylation, reduction, 

regeneration and production. During the carboxylation the ribulose bisphosphate 

carboxylase/oxygenase (Rubisco) catalyses the addiction of two CO2 molecules to 

ribulose bisphosphate (Ribulose-bis-P) to produce two molecules of phosphoglycerate 

(Glycerate-P). During the reduction the glycerate-P is converted in a Triose-P by using 

NADPH2 and ATP. In the regeneration, the ribulose-P is regenerated for further CO2 

fixation in several reactions. Lastly the final photosynthesis products such as 

carbohydrates, fatty acids and organic acids are produced. The carboxylation phase has a 

competing process, the photorespiration. In the photorespiration the phosphoglicolate, 

produced by oxygenation of RubP in the presence of the competitive inhibitor O2, 

organic carbon is converted into CO2 without metabolic gain. Photorespiration depends 

on the relative O2/CO2 ratio; for this reason, microalgae had evolved carbon-

concentrating mechanism to provide Rubisco with high levels of CO2.  

2.2.3. Photosynthetic pigments 

In the light phase, photosynthetic complexes use pigments for light harvesting and for 

use of excitation energy. Pigments absorb light at the wavelength corresponding to a 
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quantum jump in their energy levels, to produce excited states. Microalgae contain three 

major classes of pigments: Chlorophylls (Chl), Carotenoids (Car) and phycobilines. 

Algae classification is based on their pigments composition. Green algae (Chlorophyta, 

Charophyta, Euglenophyta) such as C. reinhardtii have a pigments composition similar 

to higher plants, with Chl a, Chl b, xanthophylls and β-carotene (β-Car). 

Eustigmatophyceae lack Chl b and have only Chl a and β-Car. The brown algae 

(Phaeophyta, Chrysophyta, Pyrrhophyta e Cryptophyta) are rich in Chl a, Chl c and 

xanthophylls. 

2.2.3.1. Chlorophylls 

Chlorophylls are characterized by a tetrapyrrole ring structure (porphyrin) with a central 

magnesium atom coordinated by four nitrogen atoms. Chls are classified in five main 

types depending on their side-group substituents: Chl a, b, c d and f. The number of 

double conjugated bonds on the porphyrin and the side-group substituents, change the 

light absorption ability in the visible region and, therefore, their spectroscopic properties. 

In higher plants and green algae are present Chl a and b, which are distinguished by the 

carbon substitute in the second pyrrolic ring: Chl a has a methyl group (-CH3), Chl b has 

a formyl group (-COH) (Figure 8A). 

 

Figure 8. A) Structure and B) absorption spectrum of Chl a and b. 

Their synthesis starts from a glutamic acid and occurs inside the chloroplast; moreover 

,except for Chl c, a terpenoid alcohol chain, important for their stability in membranes 

(20 carbon atoms phytol chain), is presents (Malkin and Niyogi, 2000). Chlorophylls 

absorb in the Soret region (450-475nm) and in the Qy region (630-675nm) and are 

characterized by a high molar coefficient of extinction (<105 M-1 cm-1) (Figure 8B). Qy 
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region corresponds to the S0 to S1 electron transition while the Soret band is related to 

higher transition states. These pigments have an important role also in protein 

stabilization by water or lipid molecules or with the central Mg which bound 

nucleophilic amino acids residues like histidine (Jordan et al., 2001; Liu et al., 2004). 

Chl a is present in all oxygenic photoautotrophs, in the core and reaction center pigment-

protein complexes. In the light-harvesting antennae, it is present together with Chl b or 

Chl c, and are necessary for the correct proteins folding, like for LHC (Light harvesting 

complex) (Paulsen et al., 1993). 

2.2.3.2. Carotenoids 

Carotenoids are polyisoprenoid composed by 40 carbons atoms produced in plants, 

algae, some bacteria and fungi. These pigments are synthetized in the chloroplast by 

eight isoprene molecules condensation, and are characterized by a polyenic chain, two 

terminal rings with six carbons atoms. The chromophoric system is constituted by a 

central light-absorbing conjugated polyene compound, which absorb light between 400-

500nm in the visible region of the electromagnetic spectrum. Carotenoids are divided 

into two classes: carotenes which are composed by carbon and hydrogen, and 

xhantophylls which include also oxygen, responsible for the higher molecule polarity 

(Bhosale and Bernstein, 2005). Carotenes are mainly found connected to the core 

complex of both photosystems, while xanthophylls to the antenna complexes (Bassi et 

al., 1993; Ruban et al., 1999; Caffarri et al., 2001). In higher plants carotenoids include 

α and β carotene and the xanthophylls lutein, violaxanthin, neoxanthin and zeaxanthin. 

C. reinhardtii, also contains another carotenoid, absents in higher plants, called 

loroxanthin which is synthesized in the α-carotene branch (Figure 9A). Another 

important keto-carotenoid is astaxanthin which is accumulated in high level in the green 

alga Haematococcus pluvialis (Boussiba, 2000; Lemoine and Schoefs, 2010;  Han et al., 

2013). Astaxanthin is mainly used as colouring agent in aquaculture, for the animal red 

pigmentation, but has been also reported its strong effect in preventing reactive oxygen 

species (ROS) production and lipids peroxidation in solution and in several membrane 

systems (Terao, 1989; Lorenz and Cysewski, 2000; Guerin et al., 2003; Stahl and Sies, 

2005) (Figure 9B). 
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Figure 9. A) Carotenoids biosynthetic pathway in C. reinhardtii B) Astaxanthin biosynthetic pathway. 

Carotenoids have different roles in the photosynthetic apparatus: they are accessory 

light-harvesting pigments for transferring excitation energy to Chl a and are necessary, 

like Chls, for the right assembly and stabilization of proteins complexes in thylakoids 

membranes (Plumley and Schmidt, 1987; Mimuro and Katoh, 1991; Paulsen et al., 

1993). Carotenoids interact with proteins through non-covalent bounds, across 

hydrophobic interaction (Gastaldelli et al., 2003). They are also important for photo-

protection dissipating energy excess to bring back chlorophylls to the ground state and 

for oxygen free radicals (ROS) scavenging (Moore et al., 1982; Havaux and Niyogi, 

1999). 

2.2.3.3. Xanthophyll cycle 

The xanthophyll or violaxanthin (Vx) cycle is a group of reactions in which Vx is de-

epoxidated into zeaxanthin (Zx) (Figure 10). 

 

Figure 10. Violaxanthin cycle. The enzymes, substrates and cofactor involved are show in the figure. Simbol + 

indicates that high amount of substrates needed for enzymatic activity. VDE violaxanthin de-epoxidase, e, ZEP 

zeaxanthin epoxidase, Asc ascorbate, MGDG, monogalactosyl-diacylglycerole (Goss and Jakob, 2010) 
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The conversion of Vx into Zx is important for the excess excitation energy dissipation in 

the PSII antenna system, in order to prevent the photodamage of the photosynthetic 

apparatus, through for example non- photochemical quenching (NPQ) (Demmig-Adams 

et al., 1990; Horton and Ruban, 1992; Gilmore and Yamamoto, 1993). The xanthophylls 

cycle is presents in higher plants, green and brown algae (Yamamoto et al., 1962). The 

Vx is converted into Zx across two de-epoxidation steps, catalysed by the enzyme 

violaxanthin de-epoxidase (VDE); while the reverse reaction is catalysed by the enzyme 

zeaxanthin epoxidase (Yamamoto and Kamite, 1972). The intermediate of the reaction is 

antheraxanthin (Ax) which contains one epoxy group. VDE is a nuclear encoded protein, 

transported in the thylakoid lumen through a transit peptide. This enzyme is activated by 

lumenal acidification upon transmembrane proton gradient formation, consequence of an 

high light environment (Gilmore and Yamamoto, 1993). The de-epoxidation reactions 

require ascorbate to reduce the epoxy group producing water (A., Richmond; H., 2013). 

VDE activity is inhibited by dithiothreitol (DTT) which reduces one or more disulfide 

bonds formed by cysteine residues (Yamamoto and Kamite, 1972). In microalgae, unlike 

higher plants, the role of xanthophyll cycle seems to be not homogeneous. In the model 

green alga C. reinhardtii was seen that the Zx production is not required for the ApH-

dependent NPQ (Niyogi et al., 1997a). Instead Chlorella vulgaris and Chlorella 

saccharophila show a zeaxanthin-dependent NPQ (Quaas et al., 2015). 

2.2.4. Photosystems 

Photosystems are multisubunit transmembrane pigment protein complexes involved in 

light energy conversion and electrons transport, composed by a core reaction center and 

antenna complexes (Boekema et al., 1995; Ben-Shem et al., 2003). The core reaction 

center is the site of biochemical reactions and charge separation and binds β-carotene 

and chlorophyll a. Antenna complexes are mainly involved in light harvesting and 

excitation energy transfer to the reaction center, placed energetically downhill, bounding 

xanthophylls, chlorophyll a and b. Core complexes work as energy trap for the excitation 

energy derived from the peripheral antenna promoting the excitation transfer to the 

electron transport chain. This behaviour is allowed by their spectroscopic characteristics 

and in particular by their absorption spectra which are shifted to higher wavelengths 

compared to antenna proteins. PSII and PSI show differences in light absorption and in 

charge separation quantum efficiency. The PSI absorbs far-red light with a quantum 
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efficiency of charge separation around 1; the PSII absorbs red light and its quantum 

efficiency is more variable also depending on the antenna system (Wientjes et al., 2013). 

Genes encoding core proteins are called Psa and Psb for the PSI and the PSII, 

respectively. Encoding genes are located in both plastidial and nuclear genome and the 

polypeptides, which codified, show homology between photosynthetic organisms 

(Ballottari et al., 2012). The antenna complexes, belong to LHC (Light Harvesting 

Complex) family, are called LHCI or LHCII depending on the principal association with 

the PSI or PSII and are codified by Lhca or Lhcb genes respectively for the PSI and 

PSII, showing more variability through the evolution (Jansson, 1999; Dekker and 

Boekema, 2005). LHCs proteins are encoded by nuclear genes and translated in the 

cytoplasm, after which they are targeted to the two translocons traversing the outer (Toc) 

and inner (Tic) envelope membranes, which catalyse proteins import into the stroma. In 

the stroma, the transit peptide is removed and the proteins assemble with chlorophylls 

and carotenoids in the thylakoids membrane (Oreb et al., 2008).  

2.2.4.1. Photosystem II 

 
Figure 11. 3D crystal structure of PSII core complex from the cynobacterium T. elongatus (Ferreira et al., 

2004). 

PSII is a homodimeric multiproteic complex that catalyse electron transfer from water to 

PQ producing oxygen. It’s located in the thylakoid membranes and is composed by 20-

30 subunits with a relative molecular mass of about 350 kDa (Figure 11). The precise 

number of subunits which composed this complex is unknown and is species-specific. 

PSII is composed by a quinone type reaction center (6Q-type/type II), an Oxygen-

Evolving Complex (OEC) and by an inner light-harvesting complexes. PSII core 

complex of C. reinhardtii is predicted to have a dimeric structure as plants and 
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cyanobacteria. The PSII reaction center contains D1 and D2 proteins, and the α and β 

subunits of cyt b559 (PsbE and PsbF). D1 and D2, encoded by the plastidial genes PsbA 

and PsbD, carry all prosthetic groups for charge separation, and also binds the special 

Chl a pair of P680 and the cofactors necessary for electron transport (pheophytin, QA, 

QB). D1 and D2 bind 6 Chl a, 2 pheophytins, 2 β-carotenes, 2 phylloquinones and iron. 

In the lumenal side the OEC is composed by the gene products PsbO, PsbP, PsbQ, PsbR, 

which stabilize the manganese cluster (4 Mn). Inner antenna proteins CP47 and CP43, 

important for excitation energy transfer from peripheral antenna to the reaction center, 

are located on either sides of D1 and D2 and bind 29 Chl a and β-carotene. PSII core 

binds about 45 Chl a and 11-12 β-carotenes (Ferreira et al., 2004; Umena et al., 2011; 

Caffarri et al., 2014). LHCII antenna proteins, mainly associated with PSII, include 

monomeric and trimeric isoforms. Monomeric minor antenna in C. reinhardtii are 

LHCB5 (CP26) and LHCB4 (CP29) which are located near the PSII core complex, 

binding CP43 and CP47 (Bassi et al., 1993). These proteins contribute in PSII-LHCII 

super complexes formation with three LHCII trimers attached to both sides of the 

dimeric core (C2S2M2L2) (Tokutsu et al., 2012; Drop et al., 2014). In C. reinhardtii 

about six LHCII trimers for monomeric PSII core are present and are encoded by nine 

Lhcbm genes called Lhcbm1-Lhcbm9 (Figure 12) (Merchant et al., 2007; Drop et al., 

2014).  

 

Figure 12. A) Model of LHCII monomer binding chlorophylls and carotenoids. Pink: polypeptide, Green: 

chlorophylls, Orange: Carotenoids. (Ballottari et al., 2012) B) Phylogenetic tree of LHCBM CDSs (Ferrante 

et al., 2012). 

LHC proteins are characterized by three α-helical membrane spanning domains named 

A-B-C connected by stroma and lumen exposed loops and two amphipathic helices 

exposed on the luminal surface, with a Chl-binding motif of approximately 25 residues 
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(Kühlbrandt et al., 1994; Green and Durnford, 1996; Ballottari et al., 2012). Each 

protein binds 9-13 Chl a and b and xanthophylls (2 luteins, 1 neoxanthin and 1 

violaxanthin, converted into zeaxanthin in the xanthophyll cycle). Carotenoids bind to 

the monomer are important for chlorophyll tripled excited states quenching and ROS 

scavenging. Trimerization and stability of LHCII is given by lipid molecules of 

phosphatidyl glycerol (PG) and digalactosyl diacyl glycerol (DGDG). LHCII 

trimerization is coordinated my a motif (WYGPDR) which is similar or identical to 

higher plants (Hobe et al., 1995). Trimeric LHCII complexes in C. reinhardtii are 

encoded by nine Lhcb-m genes called Lhcbm1-Lhcbm9, with M referring to “major” 

antenna complex (Merchant et al., 2007) (Figure 12B). Four Lhcbm genes are localized 

on chromosome 6 (Lhcbm4, 6, 8 and 9), two on chromosome 12 (Lhcbm 2 and 7), one 

on chromosome 3 (Lhcbm5) whereas the isoforms Lhcbm1 and Lhcbm3 have not yet be 

mapped. All these proteins show a high identity degree in amino acid sequences, except 

for the N-terminal region. The LHCBM proteins are subdivided into four groups 

depending on their sequences identity (Figure 12B): Type I (LHCBM3, LHCBM4, 

LHCBM6 LHCBM8 and LHCBM9), Type II (LHCBM5), Type III (LHCBM 2 and 

LHCBM7) and Type IV (LHCBM1). Function of almost all LHCBM proteins have been 

already clarified using mutagenesis or iRNA technologies. LHCBM1 inactivation in C. 

reinhardtii causes a decrease in the thermal dissipation of excess light energy acting like 

an excitation energy quencher (Elrad, 2002). The preferential expression of Lhcbm9 

under sulphur and nitrogen starvation and anaerobiosis was shown to be important in 

preventing stress-dependent reduction of LHCII content, and its presence results in faster 

chlorophyll fluorescence decay and reduced production of singlet oxygen (Nguyen et al., 

2008; Grewe et al., 2014). LHCBM2/7 are encoded by two highly homologous genes, 

which codify identical mature polypeptides, and their function were investigated with 

microRNA (amiRNA) silencing technology, showing an alteration in state transitions 

(Ferrante et al., 2012). Similar phenotype was observed for LHCBM5 (Takahashi et al., 

2006; Tokutsu et al., 2009). Finally LHCBM4/6/8 were found to be important in 

photoprotection showing a NPQ alternated phenotype in knock down mutants 

(Girolomoni et al., 2016). In C. reinhardtii, PSII supercomplexes organization was 

clarified using electron microscopy and single particle analysis (Drop et al., 2014). 

LHCII trimers are classified depending on their position and on their strong (S), 

moderate (M) or loose (L) association with the core (C) (Boekema et al., 1995). Has 
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been reported that in C. reinhardtii at least six LHCII trimers per monomeric PSII core 

complex can be found in the conformation C2S2M2N2, differently in A. thaliana only 

four LHCII were observed (C2S2M2), resulting in a higher harvesting capacity of the 

green alga (Figure 13).  

 

 

Figure 13. 

Supramolecular 

organization of PSII-

LHCII in A) C. 

reinhardtii and B) A. 

thaliana (Minagawa 

and Tokutsu, 2015) 

 

Structural analysis indicate that LHCBM1, LHCBM2/7 and LHCBM3 are the dominant 

LHCBM proteins and represent the main components of PSII supercomplexes while 

LHCBM5 and LHCBM4/6/8 belong to the “extra” LHCII poll loosely associated to the 

PSII core and free in the membrane (Drop et al., 2014; Girolomoni et al., 2016).  

2.2.4.2. Photosystem I 

PSI in C. reinhardtii was predicted to be a monomeric complex as plants with an iron-

sulphur reaction center (type I) with a terminal acceptor more reducing then the type II. 

PSI generates the low redox potential used for reducing ferredoxin and producing 

NADPH2. High resolution structure has been resolved for both cyanobacteria and higher 

plants (Figure 14) (Jordan et al., 2001; Amunts et al., 2010). 

 

 

Figure 14. Structural model of PSI from 

Pisum sativum at 3.4 Å resolution (Amunts 

et al., 2010). 
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Core complex is composed by 17 polypeptides, PsaB and PsaA are the larger (80 KDa) 

and bind cofactors for light harvesting (80 Chl a and 20 β-carotenes) and cofactors 

involved in electron transfer (6 Chl a, 2 phylloquinones and a Fe-S cluster). PSI contains 

also smaller subunits (4-18 KDa) which include, PsaF involved in plastocyanin docking, 

PsaC binds the terminal electron acceptor (Fe-S cluster), PsaC, PsaD and PsaE involved 

in ferredoxin docking in the stroma side. PsaK and PsaG are involved in LHCI 

stabilization, PsaH and PsaO are important for LHCII interaction during state transitions. 

PSI bind at least 173 Chls (100 Chls bound to the core) with a Chl a/b ratio of about 

8,2/9,7 and 33-34 carotenoids (12 bound to LHCA and 22 β-carotenes bound to the core) 

(Amunts et al., 2010; Galka et al., 2012). In the PSI of higher plants are also present 8-

10 low energy Chls which absorb at wavelengths above those of P700 that are absent in 

the PSII. These red forms are mostly associated with LHCA and their function seems to 

be associated with light harvesting shading light conditions (Morosinotto et al., 2003; 

Caffarri et al., 2014). 

 

Figure 15. Supramolecular organization of PSI-LHCI in A) C. reinhardtii and B) A. thaliana (Minagawa and 

Tokutsu, 2015) 

Nine lhca genes encoding LHCI have been identified in C. reinhardtii form a double-

layered LHCI bind to the site of PsaJ/F/G in low light condition (Drop et al., 2011). 

Lhca have been divided into three subclasses based on their content of high wavelength 

adsorbing Chls (red forms) which affect their fluorescence emission peak. The first 

subclass is the “blue LHCA” which include LHCA1, LHCA3 and LHCA7 with emission 

maxima at 682.5-683.5nm; the second group, called “intermediate LHCA”, is composed 

by LHCA5, LHCA6 and LHCA8 with peaks between 694.5 and 697.5nm. Finally, the 
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third class, “red LHCA” is composed by LHCA2, LHCA4 and LHCA9 with emission 

maxima between 707 and 715nm (Mozzo et al., 2010). 

2.2.5. Alternative pathways 

The basic mechanism of photosynthesis is represented by the Linear Electron Flow 

(LEF) in which PSII, Cyt b6f, PSI and ATPase work in series to produce ATP and 

NADPH2 subsequently used in the Calvin Benson cycle. The ratio of ATP and NADPH2 

produced with this process is not sufficient to sustain the nitrogen, lipids, amino acids, 

pigments and proteins metabolisms, meaning that other mechanisms must work to 

provide extra ATP for the carbon assimilation. Those processes include the water-water 

cycle mediated by the Mehler reaction or by PTOX and the Cyclic Electron Flow (CEF) 

(Cardol et al., 2011).

 

Figure 16. Alternative pathways of electron transport chain. 

In microalgae, unlike higher plants, most of oxygen consumption is not due by 

photorespiration but is a result of oxygen reduction at the acceptor site of PSI through 

the Mehler reaction (Mehler, 1951). In the Mehler reaction molecular oxygen is 

converted into superoxide (O2
-) which is then used by the superoxide dismutase (SOD) 

enzyme to produce H2O2. In C. reinhardtii was reported the activity of the ascorbate 

peroxide (APX) to produce H2O and monodehydroascorbate (MDA) from hydrogen 

peroxide and ascorbate (Takeda et al., 1997). MDA is finally reduced by PSI core by the 

MDA reductase. Flavodiiron (Flv) proteins, which in cyanobacteria catalyse the oxygen 

reduction using NADPH2, was proposed to be involved as catalyst of the Mehler reaction 
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(Zhang et al., 2009; Peltier et al., 2010). In the water-water cycle oxygen is reduce to 

water by the plastoquinone terminal oxidase (PTOX) which uses electrons derived from 

the reduced phanquinone. When this cycle is active the LEF is reduced to prevent the 

formation of NADPH2 by electrons from PSI but maintaining the ATP synthesis (Kuntz, 

2004). The over-reduction of PSI could be balance by the Cyclic Electron Flow (CEF) 

that in C. reinhardtii is enhanced when cells are in state 2 (Finazzi, 2005). Interestingly 

by reducing this mechanism in microalgae, not significant effects were observed if not 

also coupled with a reduction of respiration (Cardol et al., 2009). CEF could acts 

through the activity of the NAD(P)H dehydrogenase (Ndh) which is present in higher 

plants, but the same reaction is catalyse by Nda2 in microalgae (Jans et al., 2008). 

Another possibility could by the reduction of the plastoquinone pool by the ferredoxin-

quinone reductase via the c, heme of the cytochrome, which could correspond to 

cytochrome b6f complex or to a membrane complex formed by PGR5 and PGRL1 

(DalCorso et al., 2008; Iwai et al., 2010). The reducing power produced during 

photosynthesis could be transferred across the malate-oxaloacetate or aspartate 

oxaloacetate shuttle in the mitochondria. Finically when C. reinhardtii cells are stressed 

with anaerobiosis the hydrogenase HydA1 is activated and catalyse the H2 production by 

taking electrons from ferredoxin and preventing the oxidative damage (Hemschemeier 

and Happe, 2011). 

2.3. Photoinhibition and photoprotection 

Photosynthetic process is strongly influenced by environmental conditions such as 

temperature, light intensity and nutrients availability. Photosynthetic organisms use the 

Photosynthetically Active Radiation (PAR) for their metabolic processes but irradiances 

quality and intensity changes during seasons, a single day or within the day. Algae 

developed several strategies to tune light absorption and/or utilization, but light can be a 

limit or even a stressor. This typically occurs when the light phase products are not fully 

consumed by the Calvin-Benson cycle and accumulate in the chloroplast. Additionally, 

environmental conditions might cause limitations in the electron transport chain, thus in 

photon energy. When the light energy absorbed exceed the capacity for photochemistry 

utilization and ATP and NADPH2 are over-accumulated, the electron transport chain is 

over-reduced and the PSII chlorophyll excited states (1Chl*), increase their life time. The 
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excitation energy associated to the chlorophylls cannot be used in photochemistry, which 

is saturated. Thus, it can be re-emitted as fluorescence in small fraction or decay via the 

triplet excited state (3Chl*) in the intersystem crossing process. 3Chl* has a longer 

lifetime (ms) compared to 1Chl* (ns) and thus have a higher probability to react with 

molecular oxygen (3O2) producing singlet oxygen (1O2*). 1O2* is highly reactive and can 

modify lipids, nucleic acids and proteins causing photoinhibition. All these events lead 

to the photo-oxidative stress unless de-excited by activation of thermal dissipation 

processes. In the photosynthetic transport chain one of the central site of ROS formation 

is the PSII. Usually after the primary charge transfer, P680
+ and Ph- species are formed; 

after electron transfer to QA Ph- return to Ph, while P680
+ is reconverted to P680 through 

Tyr oxidation. In light excess conditions QA is fully reduced and electron transport is 

impaired, which can lead to recombination between P680
+ and Ph-, producing 3P680

*, 

which can generate singlet oxygen leading to damage of D1 core protein (Aro et al., 

1993). Compared to PSII, the PSI reaction center P700
+ is more stable acting as a 

quencher of the excitation energy (Dau, 1994). Instead ferredoxin, the acceptor site of 

PSI, can reduce the O2 to O2
- that can be metabolize as H2O2 or OH*, which are strong 

ROS. Oxygenic photosynthetic organisms have developed different strategies to contrast 

over-excitation which can be classified in short (minutes or seconds) and long (hours or 

days) term responses (Figure 17). 

 

Figure 17. Relative time scale of short and long term response to high light stress (Erickson et al., 2015). 
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The first response to high light stress triggered in C. reinhardtii is the escape from light 

by activating the negative phototaxis. If this mechanism in not enough to avoid stress the 

excess of light can be dissipated by heat thought Non-Photochemical Quenching (NPQ) 

and/or carotenoids, modulating the antenna size of photosystems or changing the 

electron transport (see paragraph 2.2.5.). After longer exposure to high light long term 

response mechanisms are activated such as PSII turnover or changing in genes 

expression (Erickson et al., 2015). 

2.3.1. Short term response 

2.3.1.1. Non-Photochemical quenching 

The main mechanism in preventing ROS formation is a set of mechanisms called Non-

Photochemical Quenching (NPQ) which dissipate excess energy absorbed as heat and 

that can be monitored as quenching of Chls fluorescence (Demmig-Adams and Adams, 

1992). NPQ is measured by delivering a saturating light pulse (>3000 µmol photon m-2 

sec-1) in order to saturate photosynthetic light reactions and reach the maximum 

fluorescence level (Fm). Treating with continuous saturating light intensity the 

dissipation mechanisms remain active and the value of maximal fluorescence, in these 

conditions called Fm’, decreases and is used for NPQ quantification. Switching off the 

light, a recovery of Fm’ for the relaxation of NPQ is induced (Müller et al., 2001) (Figure 

18).  

 

Figure 18. Chl fluorescence measurement from Arabidopsis leaf (Müller et al., 2001). 
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NPQ is composed by at least three different components depending on the kinetics of 

their rise upon illumination and decay at dark. The first component is the pH- or energy-

dependent component, qE, which is turned on and off in few seconds or minutes and is 

related to changes in luminal acidification (ApH) when thylakoids membranes are 

exposed to high light. The second is qT, more important in algae compared to higher 

plants, related to the phenomenon of the state transition. The last and slowest component 

is related to photoinhibition of photosynthesis (damaged of PSII centers) and/or 

zeaxanthin accumulation and is called qI (Dall’Osto et al., 2005).  

ApH dependent NPQ (qE)  

qE has a triple role in photoprotection by reducing the 1Chl* life time, preventing the 

over-reduction of the plastoquinone pool and the over-acidification of the thylakoids 

lumen. In C. reinhardtii the qE activation requires the ApH formation and the expression 

of the stress related LHC protein called LHCSR (Peers et al., 2009). In the chromosome 

8 of C. reinhardtii three genes which encode for LHCSR isoforms are present (Lhcsr3.1, 

Lhcsr3.2 and Lhcsr1) (Merchant et al., 2007). Lhcsr3.1 and Lhcsr3.2 encode the same 

polypeptide and are overexpressed in high light conditions, while Lhcsr1 is 

overexpressed with high CO2 concentration (Maruyama et al., 2014). LHCSR isoforms 

bind Chl a, Chl b (six or seven per polypeptide; Chl a/b ratio 6,3 ± 0,3) and carotenoids 

(lutein and violaxanthin) (Bonente et al., 2011). LHCSR3 has a key role as quencher of 

1Chl* and in pH sensing through aspartic and glutamic residues present in its C-terminal 

domain (Liguori et al., 2013). In particular, when algal cells are stressed with high light 

LHCSR3 expression is induced and associated with the supercomplex PSII-LHCII 

forming the complex PSII-LHCII-LHCSR3. In dark or low light the supercomplex PSII-

LHCII-LHCSR3 is in a light harvesting state but when the thylakoids lumen is acidified 

it becomes energy dissipative (Minagawa and Tokutsu, 2015). Two mutants altered in 

LHCSR accumulation are present. The npq4 mutant lack in LHCSR3 showing a strong 

reduce in qE capacity while in the npq4 lhcsr1 mutant no qE is present (Peers et al., 

2009). In vascular plant the Lhc-like complex involved in NPQ is PSBS which act as a 

sensor of lumen pH but doesn’t binds pigments, instead LHCSR3 wasn’t found (Li et al., 

2000). An important finding was the identification of both LHCSR and PSBS in the 

moss Physcomitrella patents, an intermediate between vascular plants and algae 
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(Alboresi et al., 2010). Recently in C. reinhardtii a transiently PSBS expression under 

high light was observed suggesting its role in photoprotection (Tibiletti et al., 2016). 

State transition (qT)  

In plants and algae the excess of excitation energy on PSII can be reduced by moving 

LHCII antenna from PSII to PSI where excitation is quenched by PSI in the so called 

state transition (qT). During the “State 1” the excitation energy is balanced between the 

two photosystem and LHCII are bound to PSII and LHCI are bound to PSI. If the light 

quality changes to PSII favour (blue) the plastoquinone pool becomes reduced activating 

the STT7 serine/threonine kinase (Lemeille et al., 2009). STT7 phosphorylates LHCII 

inducing the dissociation from PSII to PSI in the “State 2” thus increasing the PSI 

antenna size and re-equilibrating energy distribution between the two photosystems. This 

process is reversible through the phosphatase that dephosphorylates the LHCII which 

return to the PSII (Depege et al., 2003). STT7 kinase is also one of the most important 

agent in LHCSR3 phosphorylation, but is not needed for NPQ activity (Bonente et al., 

2011). 

Zeaxanthin dependent quenching (qZ)  

As described in paragraph 2.2.3.3 zeaxanthin is accumulated in high light condition by 

the activity of the VDE enzyme. In C. reinhardtii the VDE enzyme is different from 

higher plants and no ortholog of the plant gene was found in its genome. The role of this 

xanthophyll, in C. reinhardtii was studied by producing the npq1 mutant which is unable 

to accumulate zeaxanthin and shows a decrease of the second phase of NPQ compared to 

WT (Niyogi, 1997a). Carotenoids act as scavenger of 1O2* and quencher of 3Chl* (5, 6). 

3Chl* + 1Car → 1Chl + 3Car*  (5) 

3Car* → 1Car + heat   (6) 

Inhibitory quenching (qI)  

The main target of the photo-oxidative damage is D1 protein of PSII reaction center, its 

photodamage shows a linear correlation with light intensity. In photosynthetic organism 

the damage D1 is degraded and reassemble with new synthesized PSII proteins (Aro et 

al., 1993). The speed of repair is regulated by environmental changes and by the 

energetic state of the chloroplast. The PSII photodamage is correlated with qI quenching 

helping in control electron flow to PSI. 
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2.3.2. Long term response 

2.3.2.1. Light harvesting antenna size modulation 

When plants or algae are stressed for a long period long-term photoprotective 

mechanisms are activated. In this case are induced changes in plant architecture through 

expression or repression of specific proteins. Examples are regulation of LHC genes 

expression or degradation. The light harvesting antenna size is strictly regulated in 

response to the growth environment requiring a balance between the light need for the 

photochemistry and minimizing the light damage. During acclimation from low light to 

high light several regulation pathways are activated such as halve the Chls content and 

double up two times the carotenoids amount (Niyogi et al., 1997b; Shapira et al., 1997).  

2.4. Microalgae for biofuel and high values 

products production 

Microalgae are used as factories for producing biofuels, food, feed and high-value 

bioactive substances. The potential of biofuels production from algae had been already 

discovered in the ‘60s but the incentive for its production began with the oil crisis in the 

‘70s (Oswald and Golueke, 1960). Microalgae present many advantages, such us no 

competition with food production (growth in non-arable lands), fast life cycle, a 

completely photosynthetically active biomass (10-40% in higher plants), high oil 

accumulation, no contribution in atmospheric CO2 accumulation, no relevant 

environment impact and algae can also use nutrients from different wastewater resources 

providing an additional benefit on bio-remediation. Microalgae produce high amount of 

lipids between 20-50% of the dry weight, these values can be increased by optimizing 

the growth determining factors such as nitrogen levels, light intensity, temperature, 

salinity, CO2 concentration and harvesting procedure. Microalgae, usually, are cultivated 

with three different systems: batch, continuous and immobilized cultures. In the batch 

culture system, medium and algal inoculum are placed in a vessel and incubated with 

favourable environmental growth conditions. Agitation is necessary to ensure nutrients 

and gaseous exchanges. In photo-autrophic or mixotrophic cultures, CO2 enriched air is 

added, and the cultures are illuminated by natural, artificial light source or sunlight by 

optical fibers. In continuous system, fresh medium is added to the culture mixed 



 

38 

 

homogeneously and the growth inhibitory products are removed or, diluted continuously 

or intermittently. In the immobilized system, algae are entrapped or absorbed on a 

support to avoid the inhibition by the substrate or to eliminate contamination by other 

algae strains (A., Richmond; H., 2013). Solar to mass conversion efficiency of algae was 

estimated to be 8-10% with a maximum productivity of 77 g biomass m-2day-1 (280 ton 

ha-1year-1), yet the real conversion does not exceed 3% in the best case (73-146 ton dry 

weight ha-1year-1) (Melis, 2009). Mass culture conditions, whit high cell density, are 

preferred but they differ from natural habitats explaining the gap between the theoretical 

and present biomass productivities of algae. The light saturation curve of C. reinhardtii, 

shows that when the light irradiance overcomes the rate of downstream dark phase 

reactions and increases beyond saturation, photoprotective mechanisms are activated and 

leads to decrease photosynthesis quantum yield and, consequently, to reduced biomass 

(Figure 4). In natural water environments, algae escape from light excess by swimming 

in the water column. The excess of sunlight absorption is due to the high number of 

chlorophylls antenna molecules per reaction center in the photosynthetic apparatus. Up 

to 600 Chl a and Chl b are associated to the PSII and PSI reaction centers (Melis, 1996). 

In high density cultivations or mass cultivations, the individual cells at the surface of the 

culture would over-adsorb sunlight and dissipate most of energy via NPQ, limiting 

biomass productivity. One possibility to reduce this phenomenon, is minimize sunlight 

adsorption by individual chloroplast in the surface of the culture to ensure a greater 

transmittance of irradiance through a high density cultivation (Kirst et al., 2012). When 

the Chl concentration exceeds the optimum value a decline of integrated net 

photosynthesis is observed due to excessive shading leading to increased respiration. 

Another strategy suggests for improve the light conversion efficiency for biomass 

production by reducing dissipative mechanisms like NPQ (Berteotti et al., 2016). 

Biofuel production from algae seems to be an important alternative to fossil fuels but the 

production systems have high costs for the production equipment and for the biomass 

treatment. To optimize the productivity, it is necessary to develop bio-refinery systems 

where the biofuels production is combined with high value product synthesis.  
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2.4.1. Biotechnological tools for microalgae strains 

manipulation 

Most of problems regarding biomass production from microalgae derive from using 

wild-type algal strains; they are evolved to adapt in their natural habitat, and some of 

their characteristics do not allow for an optimal growth in mass culture conditions. For 

this reason, it is necessary a new “green revolution”, not only for increase productivity 

but also to study the microalgae biology and physiology. The algae domestication is 

easier than higher plants because the genetic manipulation is more rapid thanks to their 

short life-cycle, and the phenotypic selection can be faster for their haploid nature and 

absence of cellular differentiation. Strategies for algae domestication include searching 

of new strains, breeding and selection, mutagenesis and genetic engineering. Currently, 

about 25 algal species are accessible to genetic transformation, but these do not include 

many algae of commercial interest and only C. reinhardtii is accessible to genetic 

analysis by breeding. Transformation techniques in microalgae mainly depend on cell 

wall presence or absence. In the green alga C. reinhardtii, mutants deficient in the cell 

wall are present but their vitality is lower compare to WT strains. In this case the most 

convenient methods are based on using of glass beads (used with C. reinhardtii and 

Dunaliella salina) and electroporation (used with C. reinhardtii, Nannochloropsis spp. 

and Phaeodactyum tricomutum). Microalgae with a thick cell wall need more invasive 

methods or need to be treated before use electroporation or glass beads. Stronger 

methods include bio-transformation (mediated by A. tumefaciens or E.coli) and biolistic 

method such as particle bombardment (used with H. pluvialis) (Kathiresan et al., 2009; 

Vazquez-Villegas et al., 2018). Metabolic engineering of microalgae is limited also by 

the few information about genomes sequences, promoters and markers. In order to 

generate mutants library or studying specific genes function the most simple and used 

technique is based on random integration of DNA sequences (usually with an antibiotic 

resistance). The truncated gene or DNA sequence can be identified easily by PCR. This 

method is used in all the organisms with well know transformation techniques including 

algae were the genome is not sequenced. Another possibility to study genes functions 

could be to replace them with a modified sequence using the Homologous 

Recombination (HR). In algae HR has produced positives results in C. reinhardtii and N. 

gaditana (Zorin et al., 2009; Kilian et al., 2011). Alternatively to HR is also possible to 
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the decrease the genes expression by using RNA interference (RNAi) and antisense 

RNA. In the RNAi, subclasses of small complementary RNAs (microRNA or miRNA) 

are generated inhibiting the translation or inducing the transcript degradation (Valencia-

Sanchez et al., 2006). Instead, RNA antisense sequences paired targeted genes obscuring 

the translation machinery. The main problems related with those techniques are, the 

stability of the genes silencing due to the high duplication rate of microalgae, the 

availability of RNA transcriptome and the identification of target sequences for small 

RNAs. Microalgae are very efficient proteins expression systems due to their low cost 

production with high yield. The metabolic engineering of microalgae, in particular for C. 

reinhardtii, can be developed at the chloroplast or nucleus level. Examples of 

heterologous proteins expression include expression of human antibodies, oils, novel 

carotenoids, (Mayfield and Franklin, 2005; León-Bañares et al., 2004). Improving 

genetic tools is an important challenge to generate new and more productive mutants not 

only for biofuels production but also for clinical and nutritional aims in particular for 

those algae that are marked as GRAS (generally recognized as safe). For this reason, 

expanding the number of transformable species is the most important challenge for the 

next years of algal-based research. 

2.5 Bibliography 
 
A., Richmond; H. Q. 2013. Handbook of Microalgal Culture. 

Alboresi A, Gerotto C, Giacometti GM, Bassi R, Morosinotto 

T. 2010. Physcomitrella patens mutants affected on heat 

dissipation clarify the evolution of photoprotection mechanisms 

upon land colonization. Proceedings of the National Academy of 

Sciences 107, 11128–11133. 

Amunts A, Toporik H, Borovikova A, Nelson N. 2010. 

Structure determination and improved model of plant photosystem 

I. Journal of Biological Chemistry 285, 3478–3486. 

Aro EM, Virgin I, Andersson B. 1993. Photoinhibition of 

Photosystem II. Inactivation, protein damage and turnover. BBA - 

Bioenergetics 1143, 113–134. 

Ballottari M, Girardon J, Dall’Osto L, Bassi R. 2012. Evolution 

and functional properties of Photosystem II light harvesting 

complexes in eukaryotes. Biochimica et Biophysica Acta - 

Bioenergetics 1817, 143–157. 

Bassi R, Pineau B, Dainese P, Marquardt J. 1993. Carotenoid-

binding proteins of photosystem II. European Journal of 

Biochemistry 212, 297–303. 

Ben-Shem A, Frolow F, Nelson N. 2003. Crystal structure of 

plant photosystem I. Nature 426, 630–635. 

Benson AA, Calvin M. 2000. Carbon dioxide fixation. , 1–34. 

Berteotti S, Ballottari M, Bassi R. 2016. Increased biomass 

productivity in green algae by tuning non-photochemical 

quenching. Scientific reports 6, 21339. 

Bhosale P, Bernstein PS. 2005. Microbial xanthophylls. Applied 

Microbiology and Biotechnology 68, 445–455. 

Boekema EJ, Hankamert B, Baldt D, Kruipt J, Nieldt J, 

Boonstra AF, Barbert J, Rognert M. 1995. Supramolecular 

structure of the photosystem II complex from green plants and 

cyanobacteria (transmission electron microscopy/image 

analysis/subunit positioning). Cell Biology 92, 175–179. 

Bonente G, Ballottari M, Truong TB, Morosinotto T, Ahn TK, 

Fleming GR, Niyogi KK, Bassi R. 2011. Analysis of LHcSR3, a 

protein essential for feedback de-excitation in the green alga 

Chlamydomonas reinhardtii. PLoS Biology 9, e1000577. 

Boussiba S. 2000. Carotenogenesis in the green alga 

Haematococcus pluvialis: Cellular physiology and stress response. 

Physiologia Plantarum 108, 111–117. 

Caffarri S, Croce R, Breton J, Bassi R. 2001. The major antenna 

complex of Photosystem II has a xanthophyll binding site not 

involved in Light Harvesting. Journal of Biological Chemistry 

276, 35924–35933. 

Caffarri S, Tibiletti T, Jennings R, Santabarbara S. 2014. A 

Comparison between plant Photosystem I and Photosystem II 

architecture and functioning. Current Protein & Peptide Science 



 

41 

 

15, 296–331. 

Cardol P, Alric J, Girard-Bascou J, Franck F, Wollman F-A, 

Finazzi G. 2009. Impaired respiration discloses the physiological 

significance of state transitions in Chlamydomonas. Proceedings 

of the National Academy of Sciences 106, 15979–15984. 

Cardol P, Forti G, Finazzi G. 2011. Regulation of electron 

transport in microalgae. Biochimica et Biophysica Acta - 

Bioenergetics 1807, 912–918. 

DalCorso G, Pesaresi P, Masiero S, Aseeva E, Schünemann D, 

Finazzi G, Joliot P, Barbato R, Leister D. 2008. A complex 

containing PGRL1 and PGR5 is involved in the switch between 

Linear and Cyclic Electron Flow in Arabidopsis. Cell 132, 273–

285. 

Dall’Osto L, Caffarri S, Bassi R. 2005. A mechanism of 

nonphotochemical energy dissipation, independent from PsbS, 

revealed by a conformational change in the antenna protein CP26. 

The Plant cell 17, 1217–1232. 

Dau H. 1994. New trends in photobiology. Short-term adaptation 

of plants to changing light intensities and its relation to 

Photosystem II photochemistry and fluorescence emission. Journal 

of Photochemistry and Photobiology, B: Biology 26, 3–27. 

Dekker JP, Boekema EJ. 2005. Supramolecular organization of 

thylakoid membrane proteins in green plants. Biochimica et 

Biophysica Acta - Bioenergetics 1706, 12–39. 

Demmig-Adams B, Adams WW. 1992. Responses of plants to 

high light stress. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43, 

599–626. 

Demmig-Adams B, Adams WW, Heber U, Neimanis S, Winter 

K, Kruger A, Czygan F-C, Bilger W, Bjorkman O. 1990. 

Inhibition of zeaxanthin formation and of rapid changes in 

radiationless energy dissipation by dithiothreitol in spinach leaves 

and chloroplasts. Plant Physiology 92, 293–301. 

Depege N, Bellafiore S, Rochaix JD. 2003. Rote of chloroplast 

protein kinase Stt7 in LHCII phosphorylation and state transition 

in Chlamydomonas. Science 299, 1572–1575. 

Drop B, Webber-Birungi M, Fusetti F, Kourǐl R, Redding KE, 

Boekema EJ, Croce R. 2011. Photosystem I of Chlamydomonas 

reinhardtii contains nine light-harvesting complexes (Lhca) 

located on one side of the core. Journal of Biological Chemistry 

286, 44878–44887. 

Drop B, Webber-Birungi M, Yadav SKN, Filipowicz-

Szymanska A, Fusetti F, Boekema EJ, Croce R. 2014. Light-

harvesting complex II (LHCII) and its supramolecular 

organization in Chlamydomonas reinhardtii. Biochimica et 

biophysica acta 1837, 63–72. 

Elrad D. 2002. A major Light-Harvesting polypeptide of 

Photosystem II functions in thermal Dissipation. the Plant Cell 14, 

1801–1816. 

Erickson E, Wakao S, Niyogi KK. 2015. Light stress and 

photoprotection in Chlamydomonas reinhardtii. Plant Journal 82, 

449–465. 

Ferrante P, Ballottari M, Bonente G, Giuliano G, Bassi R. 

2012. LHCBM1 and LHCBM2/7 polypeptides, components of 

major LHCII complex, have distinct functional roles in 

photosynthetic antenna system of Chlamydomonas reinhardtii. 

Journal of Biological Chemistry 287, 16276–16288. 

Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S. 

2004. Architecture of the Photosynthetic Oxygen-Evolving 

Center. Science 43, 1831–1839. 

Finazzi G. 2005. The central role of the green alga 

Chlamydomonas reinhardtii in revealing the mechanism of state 

transitions. Journal of Experimental Botany 56, 383–388. 

Galka P, Santabarbara S, Khuong TTH, Degand H, 

Morsomme P, Jennings RC, Boekema EJ, Caffarri S. 2012. 

Functional Analyses of the plant Photosystem I-Light-Harvesting 

Complex II supercomplex reveal that Light-Harvesting Complex 

II loosely bound to Photosystem II is a very efficient antenna for 

Photosystem I in State II. The Plant Cell 24, 2963–2978. 

Gastaldelli M, Canino G, Croce R, Bassi R. 2003. Xanthophyll 

binding sites of the CP29 (Lhcb4) subunit of higher plant 

photosystem II investigated by domain swapping and mutation 

analysis. Journal of Biological Chemistry 278, 19190–19198. 

Gilmore AM, Yamamoto HY. 1993. Linear models relating 

xanthophylls and lumen acidity to non-photochemical 

fluorescence quenching. Evidence that antheraxanthin explains 

zeaxanthin-independent quenching. Photosynthesis Research 35, 

67–78. 

Girolomoni L, Ferrante P, Berteotti S, Giuliano G, Bassi R, 

Ballottari M. 2016. The function of LHCBM4/6/8 antenna 

proteins in Chlamydomonas reinhardtii. Journal of experimental 

botany 68, 627–641. 

Goodenough U, Lin H, Lee JH. 2007. Sex determination in 

Chlamydomonas. Seminars in Cell and Developmental Biology 

18, 350–361. 

Goss R, Jakob T. 2010. Regulation and function of xanthophyll 

cycle-dependent photoprotection in algae. Photosynthesis 

Research 106, 103–122. 

Green BR, Durnford DG. 1996. The chlorophyll-carotenoid 

proteins of oxygenic photosynthesis. Annual Review of Plant 

Physiology and Plant Molecular Biology 47, 685–714. 

Grewe S, Ballottari M, Alcocer M, D’Andrea C, Blifernez-

Klassen O, Hankamer B, Mussgnug JH, Bassi R, Kruse O. 

2014. Light-Harvesting Complex protein LHCBM9 is critical for 

Photosystem II activity and hydrogen production in 

Chlamydomonas reinhardtii. The Plant cell 26, 1598–1611. 

Guerin M, Huntley ME, Olaizola M. 2003. Haematococcus 

astaxanthin: applications for human health and nutrition. Trends in 

Biotechnology 21, 210–216. 

Hallmann A. 2007. Algal transgenics and biotechnology. 

Transgenic Plant J 1, 81–98. 

Han D, Li Y, Hu Q. 2013. Astaxanthin in microalgae: Pathways, 

functions and biotechnological implications. Algae 28, 131–147. 

Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S. 2010. 

Biofuels from algae: challenges and potential. Biofuels 1, 763–

784. 

Harbinson J, Foyer CH. 1991. Relationships between the 

efficiencies of Photosystems I and II and stromal redox state in 

CO(2)-free air. Plant physiology 97, 41–49. 

Harris EH. 2001. Chlamydomonas as a odel rganism. Molecular 

Biology 52, 363–406. 



 

42 

 

Harris EH. 2009. The Chlamydomonas Sourcebook: introduction 

to Chlamydomonas and its laboratory use. (Elsevier, Ed.). 

Havaux M, Niyogi KK. 1999. The violaxanthin cycle protects 

plants from photooxidative damage by more than one mechanism. 

Proceedings of the National Academy of Sciences 96, 8762–8767. 

Hemschemeier A, Happe T. 2011. Alternative photosynthetic 

electron transport pathways during anaerobiosis in the green alga 

Chlamydomonas reinhardtii. Biochimica et Biophysica Acta - 

Bioenergetics 1807, 919–926. 

Hill R, Bendall F. 1960. Function of the Two cytochrome 

components in chloroplasts: A Working Hypothesis. Nature 186, 

136–137. 

Hobe S, Förster R, Klingler J, Paulsen H. 1995. N-proximal 

sequence motif in light-harvesting Chlorophyll a/b-binding protein 

is essential for the trimerization of Light-Harvesting Chlorophyll 

alb complex. Biochemistry 34, 10224–10228. 

Horton P, Ruban A V. 1992. Regulation of Photosystem II. 

Photosynthesis Research 34, 375–385. 

Iwai M, Takizawa K, Tokutsu R, Okamuro A, Takahashi Y, 

Minagawa J. 2010. Isolation of the elusive supercomplex that 

drives cyclic electron flow in photosynthesis. Nature 464, 1210–

1213. 

Jans F, Mignolet E, Houyoux P-A, Cardol P, Ghysels B, Cuine 

S, Cournac L, Peltier G, Remacle C, Franck F. 2008. A type II 

NAD(P)H dehydrogenase mediates light-independent 

plastoquinone reduction in the chloroplast of Chlamydomonas. 

Proceedings of the National Academy of Sciences 105, 20546–

20551. 

Jansson S. 1999. A guide to the Lhc genes and their relatives in 

Arabidopsis. Trends in Plant Science 4, 236–240. 

Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauß 

N. 2001. Three-dimensional structure of cyanobacterial 

photosystem I at 2.5 Å resolution. Nature 411, 909–917. 

Kathiresan S, Chandrashekar  a., Ravishankar G a., Sarada 

R. 2009. Agrobacterium-mediated transformation in the green alga 

Haematococcus pluvialis (chlorophyceae, volvocales). Journal of 

Phycology 45, 642–649. 

Kilian O, Benemann CSE, Niyogi KK, Vick B. 2011. High-

efficiency homologous recombination in the oil-producing alga 

Nannochloropsis sp. Proceedings of the National Academy of 

Sciences 108, 21265–21269. 

Kirst H, Garcia-Cerdan JG, Zurbriggen A, Ruehle T, Melis A. 

2012. Truncated Photosystem chlorophyll antenna size in the 

green microalga Chlamydomonas reinhardtii upon deletion of the 

TLA3-CpSRP43 gene. Plant Physiology 160, 2251–2260. 

Kruse O, Rupprecht J, Bader KP, Thomas-Hall S, Schenk 

PM, Finazzi G, Hankamer B. 2005. Improved photobiological 

H2 production in engineered green algal cells. Journal of 

Biological Chemistry 280, 34170–34177. 

Kühlbrandt W, Wang DN, Fujiyoshi Y. 1994. Atomic model of 

plant light-harvesting complex by electron crystallography. Nature 

367, 614–621. 

Kuntz M. 2004. Plastid terminal oxidase and its biological 

significance. Planta 218, 896–899. 

Kurisu G, Zhang H, Smith JL, Cramer WA. 2003. Structure of 

the Cytochrome b 6 f complex of oxygenic Photosynthesis : 

Tuning the Cavity. 302, 1009–1015. 

Lemeille S, Willig A, Depège-Fargeix N, Delessert C, Bassi R, 

Rochaix JD. 2009. Analysis of the chloroplast protein kinase Stt7 

during state transitions. PLoS Biology 7, 0664–0675. 

Lemoine Y, Schoefs B. 2010. Secondary ketocarotenoid 

astaxanthin biosynthesis in algae: a multifunctional response to 

stress. Photosynthesis research 106, 155–177. 

León-Bañares R, González-Ballester D, Galván A, Fernández 

E. 2004. Transgenic microalgae as green cell-factories. Trends in 

Biotechnology 22, 45–52. 

Li X-P, Björkman O, Shih C, Grossman AR, Rosenquist M, 

Jansson S, Niyogi KK. 2000. A pigment-binding protein essential 

for regulation of photosynthetic light harvesting. Nature 403, 391. 

Liguori N, Roy LM, Opacic M, Durand G, Croce R. 2013. 

Regulation of Light Harvesting in the green alga Chlamydomonas 

reinhardtii: The C-Terminus of LHCSR is the knob of a dimmer 

switch. Journal of the American Chemical Society 135, 18339–

18342. 

Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X, 

Chang W. 2004. Crystal structure of spinach major light-

harvesting complex at 2.72 Å resolution. Nature 428, 287–292. 

Lorenz RT, Cysewski GR. 2000. Commercial potential for 

Haematococcus microalgae as a natural source of astaxanthin. 

Trends in Biotechnology 18, 160–167. 

Luykx P, Hopenrath M, Robinson DG. 1997. Osmoregulatory 

mutants that affect the function of the contractile vacuole in 

Chlamydomonas reinhardtii. Protoplasma 200, 99–111. 

Malkin R, Niyogi K. 2000. Photosynthesis. Biochemistry and 

Molecular Biology of Plants, Buchanan B, Gruissem W, Jones 

R,.pp 568-628. 

Martin W, Herrmann RG. 1998. Gene Transfer from Organelles 

to the Nucleus: How Much, What Happens, and Why? Plant 

Physiology 118, 9–17. 

Maruyama S, Tokutsu R, Minagawa J. 2014. Transcriptional 

regulation of the stress-responsive light harvesting complex genes 

in Chlamydomonas reinhardtii. Plant and Cell Physiology 55, 

1304–1310. 

Maul JE, Lilly JW, Cui L, dePamphilis CW, Miller W, Harris 

EH, Stern DB. 2002. The Chlamydomonas reinhardtii plastid 

chromosome: islands of genes in a sea of repeats. The Plant cell 

14, 2659–79. 

Mayfield SP, Franklin SE. 2005. Expression of human 

antibodies in eukaryotic micro-algae. Vaccine 23, 1828–1832. 

Mehler AH. 1951. Studies on reactions of illuminated 

chloroplasts. II. Stimulation and inhibition of the reaction with 

molecular oxygen. Archives of Biochemistry and Biophysics 34, 

339–351. 

Melis A. 1996. Excitation Energy transfer: functional and 

dynamic aspects of Lhc (cab) proteins. In: Ort DR,, In: Yocum 

CF,,  In: Heichel IF, eds. Oxygenic Photosynthesis: The Light 

Reactions. Dordrecht: Springer Netherlands, 523–538. 

Melis A. 2009. Solar energy conversion efficiencies in 

photosynthesis: Minimizing the chlorophyll antennae to maximize 

efficiency. Plant Science 177, 272–280. 



 

43 

 

Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M. 1999. 

Sustained photobiological hydrogen gas production upon 

reversible inactivation of oxygen evolution in the green alga 

Chlamydomonas reinhardtii. 2, 1–19. 

Merchant SS, Prochnik SE, Vallon O, et al. 2007. The 

Chlamydomonas Genome reveals the evolution of key animal and 

plant functions. Science 318, 245–250. 

Michaelis G, Vahrenholz C, Pratje E. 1990. Mitochondrial 

DNA of Chlamydomonas reinhardtii: the gene for apocytochrome 

b and the complete functional map of the 15.8 kb DNA. Molecular 

& general genetics : MGG 223, 211–216. 

Mimuro M, Katoh T. 1991. Carotenoids in photosynthesis: 

absorption, transfer and dissipation of light energy. Pure and 

Applied Chemistry 63, 123–130. 

Minagawa J, Tokutsu R. 2015. Dynamic regulation of 

photosynthesis in Chlamydomonas reinhardtii. Plant Journal 82, 

413–428. 

Mitchell P. 1961. Coupling of phosphorylation to electron and 

hydrogen transfer by a chemi-osmotic type of mechanism. Nature 

191, 144–148. 

Moore AL, Joy A, Tom R, Gust D, Moore TA, Bensasson R V, 

Land EJ. 1982. Photoprotection by carotenoids during 

photosynthesis: motional dependence of intramolecular energy 

transfer. Science 216, 982 LP-984. 

Morosinotto T, Breton J, Bassi R, Croce R. 2003. The nature of 

a chlorophyll ligand in Lhca proteins determines the far red 

fluorescence emission typical of photosystem I. The Journal of 

biological chemistry 278, 49223–49229. 

Mozzo M, Mantelli M, Passarini F, Caffarri S, Croce R, Bassi 

R. 2010. Functional analysis of Photosystem I light-harvesting 

complexes (Lhca) gene products of Chlamydomonas reinhardtii. 

Biochimica et Biophysica Acta - Bioenergetics 1797, 212–221. 

Müller P, Li X-P, Niyogi KK. 2001. Non-Photochemical 

Quenching. A response to excess light energy. Plant Physiology 

125, 1558 LP-1566. 

Mussgnug JH, Klassen V, Schlüter A, Kruse O. 2010. 

Microalgae as substrates for fermentative biogas production in a 

combined biorefinery concept. Journal of Biotechnology 150, 51–

56. 

Nguyen AV, Thomas-Hall SR, Malnoë A, Timmins M, 

Mussgnug JH, Rupprecht J, Kruse O, Hankamer B, Schenk 

PM. 2008. Transcriptome for photobiological hydrogen 

production induced by sulfur deprivation in the green alga 

Chlamydomonas reinhardtii. Eukaryotic Cell 7, 1965–1979. 

Niyogi KK, Bjorkman O, Grossman AR. 1997a. 

Chlamydomonas xanthophyll cycle mutants identified by video 

imaging of chlorophyll fluorescence quenching. the Plant Cell 9, 

1369–1380. 

Niyogi KK, Bjorkman O, Grossman AR. 1997b. The roles of 

specific xanthophylls in photoprotection. Proceedings of the 

National Academy of Sciences 94, 14162–14167. 

Oreb M, Tews I, Schleiff E. 2008. Policing Tic ‘n’ Toc, the 

doorway to chloroplasts. Trends in Cell Biology 18, 19–27. 

Oswald WJ, Golueke CG. 1960. Biological transformation of 

solar energy. Advances in Applied Microbiology 2, 223–262. 

Paulsen H, Finkenzeller B, Kühlein N. 1993. Pigments induce 

folding of light‐harvesting chlorophyll a/b‐binding protein. 

European Journal of Biochemistry 215, 809–816. 

Peers G, Truong TB, Ostendorf E, Busch A, Elrad D, 

Grossman AR, Hippler M, Niyogi KK. 2009. An ancient light-

harvesting protein is critical for the regulation of algal 

photosynthesis. Nature 462, 518–521. 

Peltier G, Tolleter D, Billon E, Cournac L. 2010. Auxiliary 

electron transport pathways in chloroplasts of microalgae. 

Photosynthesis Research 106, 19–31. 

Plumley FG, Schmidt GW. 1987. Reconstitution of chlorophyll 

a/b light-harvesting complexes: Xanthophyll-dependent assembly 

and energy transfer. Cell Biology 84, 146–150. 

Purton S. 2007. Tools and techniques for chloroplast 

transformation of Chlamydomonas. Advances in Experimental 

Medicine and Biology 616, 34–45. 

Quaas T, Berteotti S, Ballottari M, Flieger K, Bassi R, 

Wilhelm C, Goss R. 2015. Non-photochemical quenching and 

xanthophyll cycle activities in six green algal species suggest 

mechanistic differences in the process of excess energy 

dissipation. Journal of Plant Physiology 172, 92–103. 

Raven J a, Allen JF. 2003. Genomics and chloroplast evolution: 

what did cyanobacteria do for plants? Genome biology 4, 209. 

Remacle C, Cardol P, Coosemans N, Gaisne M, Bonnefoy N. 

2006. High-efficiency biolistic transformation of Chlamydomonas 

mitochondria can be used to insert mutations in complex I genes. 

Proceedings of the National Academy of Sciences 103, 4771–

4776. 

Ruban A V., Lee PJ, Wentworth M, Young AJ, Horton P. 

1999. Determination of the stoichiometry and strength of binding 

of xanthophylls to the photosystem II light harvesting complexes. 

Journal of Biological Chemistry 274, 10458–10465. 

Shapira M, Lers A, Heifetz PB, Irihimovitz V, Osmond CB, 

Gillham NW, Boynton JE. 1997. Differential regulation of 

chloroplast gene expression in Chlamydomonas reinhardtii during 

photoacclimation: Light stress transiently suppresses synthesis of 

the Rubisco LSU protein while enhancing synthesis of the PS II 

D1 protein. Plant Molecular Biology 33, 1001–1011. 

Spolaore P, Joannis-Cassan C, Duran E, Isambert A. 2006. 

Commercial applications of microalgae. Journal of Bioscience and 

Bioengineering 101, 87–96. 

Staehelin LA. 1986. Chloroplast structure and supramolecular 

organization of photosynthetic membranes. Photosynthesis III. 

Encyclopedia of Plant Physiology (New Series). Springer, Berlin, 

Heidelberg, Vol 19. 

Stahl W, Sies H. 2005. Bioactivity and protective effects of 

natural carotenoids. Biochimica et Biophysica Acta - Molecular 

Basis of Disease 1740, 101–107. 

Stroebel D, Choquet Y, Popot J-L, Picot D. 2003. An atypical 

haem in the cytochrome b6f complex. Nature 426, 413–418. 

Takahashi H, Iwai M, Takahashi Y, Minagawa J. 2006. 

Identification of the mobile light-harvesting complex II 

polypeptides for state transitions in Chlamydomonas reinhardtii. 

Proceedings of the National Academy of Sciences of the United 

States of America 103, 477–482. 



 

44 

 

Takeda T, Ishikawa T, Shigeoka S. 1997. Metabolism of 

hydrogen peroxide by the scavenging system in Chlamydomonas 

reinhardtii. Physiologia Plantarum 99, 49–55. 

Terao J. 1989. Antioxidant activity of beta-carotene-related 

carotenoids in solution. Lipids 24, 659–661. 

Tibiletti T, Auroy P, Peltier G, Caffarri S. 2016. 

Chlamydomonas reinhardtii PsbS protein is functional and 

accumulates rapidly and transiently under high light. Plant 

Physiology 171, 2717–2730. 

Tokutsu R, Iwai M, Minagawa J. 2009. CP29, a monomeric 

light-harvesting complex II protein, is essential for state transitions 

in Chlamydomonas reinhardtii. Journal of Biological Chemistry 

284, 7777–7782. 

Tokutsu R, Kato N, Bui KH, Ishikawa T, Minagawa J. 2012. 

Revisiting the supramolecular organization of photosystem II in 

Chlamydomonas reinhardtii. Journal of Biological Chemistry 287, 

31574–31581. 

Umena Y, Kawakami K, Shen JR, Kamiya N. 2011. Crystal 

structure of oxygen-evolving photosystem II at a resolution of 

1.9Å. Nature 473, 55–60. 

Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R. 2006. 

Control of translation and mRNA degradation by miRNAs and 

siRNAs. Genes and Development 20, 515–524. 

Vazquez-Villegas P, Torres-Acosta MA, Garcia-Echauri SA, 

Aguilar-Yanez JM, Rito-Palomares M, Ruiz-Ruiz F. 2018. 

Genetic manipulation of microalgae for the production of 

bioproducts. Frontiers in bioscience (Elite edition) 10, 254–275. 

Wientjes E, Van Amerongen H, Croce R. 2013. LHCII is an 

antenna of both photosystems after long-term acclimation. 

Biochimica et Biophysica Acta - Bioenergetics 1827, 420–426. 

Woessner JP, Goodenough UW. 1994. Volvocine cell walls and 

their constituent glycoproteins: An evolutionary perspective. 

Protoplasma 181, 245–258. 

Yamamoto HY, Kamite L. 1972. The effects of dithiothreitol on 

violaxanthin de-epoxidation and absorbance changes in the 500-

nm region. Biochimica et Biophysica Acta (BBA) - Bioenergetics 

267, 538–543. 

Yamamoto HY, Nakayama TO, Chichester CO. 1962. Studies 

on the light and dark interconversions of leaf xanthophylls. 

Archives of biochemistry and biophysics 97, 168–173. 

Zhang P, Allahverdiyeva Y, Eisenhut M, Aro E-M. 2009. 

Flavodiiron proteins in oxygenic photosynthetic organisms: 

photoprotection of Photosystem II by Flv2 and Flv4 in 

Synechocystis sp. PCC 6803. PLoS ONE 4, e5331. 

Zhang L, Melis A. 2002. Probing green algal hydrogen 

production. , 1499–1509. 

Zorin B, Lu Y, Sizova I, Hegemann P. 2009. Nuclear gene 

targeting in Chlamydomonas as exemplified by disruption of the 

PHOT gene. Gene 432, 91–96. 

 



 

45 

 

 

 

 

 

 

 

 

3.Chapter I 

NPQ regulation in C. reinhardtii 

 

 

 

 

 

 

 



 

46 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

47 

 

Section A 

LHCSR3 is a nonphotochemical quencher of both 

photosystems in Chlamydomonas reinhardtii1 

In this chapter’s thesis was investigated the role of LHCSR1 and LHCSR3 in NPQ 

activation in Chlamydomonas reinhardtii, in order to verify whether these proteins are 

involved in thermal dissipation of PSI excitation energy. To this aim we measured the 

fluorescence emitted at 77K by whole cells in quenched or unquenched state using 

Green Fluorescence Protein (GFP) as internal standard. We show that NPQ activation by 

high light treatment in Chlamydomonas reinhardtii leads to energy quenching in both 

PSI and PSII antenna systems. By analyzing quenching properties of mutants affected on 

the expression of LHCSR1 or LHCSR3 gene products and/or state-1-state 2 transitions 

or zeaxanthin accumulation, namely npq4, stt7, stt7 npq4, npq4 lhcsr1, lhcsr3-

complemented npq4 lhcsr1 and npq1, we showed that NPQ of Photosystem I occurs 

through quenching of associated LHCII antenna. This quenching event is fast-reversible 

upon switching light off, requires LHCSRs and is dependent on thylakoid lumenal pH, 

and could be observed in absence of zeaxanthin or STT kinase activity. 

 

In this work I’ve performed all the experiments excluding the life time measurements 

analysis. 

 

Abbreviations: PSI/II, Photosystem I/II; NPQ, Non-Photochemical Quenching; LHC, Light Harvesting 

Complex; ROS, Reactive Oxygen Species; GFP, Green Fluorescent Protein; DAS, Decay Associated Spectral 

Components. 

 

1This section is based on the published article: Girolomoni L, Cazzaniga S, Pinnola A, Perozeni 

F, Ballottari M and Bassi R; LHCSR3 is a nonphotochemical quencher of both photosystems in 

Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences Volume 116, Issue 

10, 5 March 2019, Pages 4212-4217 
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Introduction 

Photosystem II (PSII) and I (PSI) are pigment-protein complexes, located in the 

thylakoid membranes, composed of a core complex, hosting photochemical reactions, 

and a peripheral antenna system formed by Light Harvesting Complexes (LHC) (Wei et 

al., 2016; Mazor et al., 2017). PSI and PSII fuel a light dependent electron transport 

chain from water to NADPH coupled with proton transport to the lumen driving ATP 

synthesis. ATP and NADPH are then used by the Calvin-Benson-Bassham cycle (CBB) 

to reduce CO2 into sugars. In excess light, rate of CBB reactions is saturated, ATP and 

NADPH are produced in excess compared to their metabolic demand, leading to ATPase 

limitation from lack of ADP substrate, which reduces the return of H+ to the stroma 

compartment and causes lumen acidification. Lack of electron acceptors causes charge 

recombination in PSII with triplet chlorophyll (Chl) excited states formation and reaction 

with oxygen, forming toxic Reactive Oxygen Species (ROS) (Niyogi, 1999). A major 

photoprotective mechanism, Non-Photochemical Quenching (NPQ) is activated when 

lumenal pH drops, safely dissipating up to 80% of the excitation energy absorbed into 

heat (Rees et al., 1992). In Chlamydomonas reinhardtii, NPQ activity requires LHCSR1 

and LHCSR3 proteins which are triggered to a quenching state upon sensing low 

lumenal pH (Peers et al., 2009). Both LHCSR1 and LHCSR3 subunits are over-

expressed upon prolonged high light treatment while LHCSR1 expression depends on 

high CO2 (Peers et al., 2009; Maruyama et al., 2014). LHCSRs expression has been 

reported to be triggered by blue light, involving phototropins as photoreceptor which 

activate a signal transduction pathway leading to LHCSR3 accumulation (Petroutsos et 

al., 2016). LHCSR1 has been reported to be triggered by UV light through the activity of 

the UVR8 photoreceptor. LHCSR3 is accumulated to a far higher level than LHCSR1, 

making the former the major player in NPQ activity (Berteotti et al., 2016; Dinc et al., 

2016). The npq4 mutant lacks LHCSR3 and retains a low NPQ, which is abolished in 

npq4 lhcsr1 also lacking LHCSR1 (Peers et al., 2009; Berteotti et al., 2016). In high 

light, violaxanthin is converted to zeaxanthin, a strong NPQ enhancer in plants (Niyogi 

et al., 1998; Ware et al., 2015) but not in C. reinhardtii (npq1) (Bonente et al., 2011). 

Photoprotection is also favoured by reversible phosphorylation of PSII antenna subunits 

LHCII and CP29, upon which they are released from PSII and connect to PSI, enhancing 

its cross-section and balancing PSI vs PSII electron transport rates. This process, called 
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State1 to State2 transition depends on the STT7 kinase (Depege et al., 2003; Bellafiore 

et al., 2005) which, in turn, is activated by interaction with Cytochrome b6f complex 

upon reduction of the PQ pool (Lemeille et al., 2009, 2010; Shapiguzov et al., 2016; 

Dumas et al., 2017). Despite STT7 activity decreases under high light (Lemeille et al., 

2009), a photoprotective effect of state transitions was reported based on enhanced 

photoinhibition observed in the stt7 npq4 double mutant respect to npq4 under high light 

(Allorent et al., 2013). Evidence for interaction between NPQ and state transitions rely 

on LHCSR3 being phosphorylated by STT7 (Bonente et al., 2011; Bergner et al., 2015) 

and interacting with the mobile LHCII fraction (Allorent et al., 2013; Roach and Na, 

2017). However, STT7-independent phosphorylation sites have also been reported in 

LHCSR3 and LHCSR1 (Bergner et al., 2015). LHCSR3 was reported to interact with 

both PSI and PSII complexes (Tokutsu and Minagawa, 2013; Xue et al., 2015; Bergner 

et al., 2015), with phosphorylation negatively affecting LHCSR3 binding to PSI 

(Bergner et al., 2015). Phosphorylation of LHCSR3 and LHCII was reported not to 

affect NPQ (Bonente et al., 2011). While both LHCSR1 and LHCR3 have been reported 

to be quenchers for LHCII and PSII complexes (Dinc et al., 2016; Roach and Na, 2017; 

Semchonok et al., 2017), their involvement in PSI photoprotection is still under debate. 

In the moss Physcomitrella patens, LHCSR1 was found to be localized in stroma 

membranes and to be a quencher of both Photosystems (Pinnola et al., 2015). Recently, 

LHCSR1 was reported to be involved in PSI quenching via excitation energy transfer 

from LHCII in C. reinhardtii (Kosuge et al., 2018). In this work we investigated the 

quenching properties of LHCSR proteins towards LHCII, PSII and PSI-LHCII 

complexes in C. reinhardtii. 

Materials and Methods 

Strains and culture conditions  

C. reinhardtii cells were grown at 25 °C in flask with white light (70 μE m−2 s−1, 16h 

light/8h dark photoperiod) in TAP medium. High light acclimation was induced by 

growing cells at 400 μE m−2 s−1 in HS medium. npq4 lhcsr1 complementation was 

performed as described in Ballottari et al. (2016). 
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NPQ measurements at room temperature 

NPQ measurements were performed with a PAM-101 (Waltz, Germany) with actinic 

and saturating light of 1500 μE m−2 s−1 and 4000 μE m−2 s−1 respectively. The far-red 

LED was kept on during dark recovery. During dark adaptation cells were shaken in HS 

medium.  

Quenching measurements at low temperature 

77K fluorescence emission and excitation spectra were recorded using a Fluoromax3 

(Horiba scientific) on whole C. reinhardtii cells dark adapted or HL treated (1500 μE m−2 

s−1) as described in the text. GFP protein was added to the sample as internal standard 

for normalization of fluorescence emission spectra. Additional details on fluorescence 

spectra acquisition and analysis are reported on SI Appendix. 

Time-resolved fluorescence 

Time-resolved fluorescence measurements were performed at 77K using a Chronos BH 

ISS Photon Counting instrument with picosecond laser excitation at 447 nm operating at 

50 MHz. Laser power was kept below 0.1μW. Fluorescence decay maps were then 

globally fitted with exponential functions as previously reported (Van Stokkum et al., 

2004) using Glotaran v.1.5.1 software (Snellenburg et al., 2012). 

SDS-PAGE and immunoblotting 

SDS-PAGE and immunoblotting were performed as described in (Bonente et al., 2011). 

LHCSR1 and LHCSR3 specific antibodies (AS142819 and AS142766 respectively) 

were acquired from Agrisera company (Sweden). 

Results 

NPQ at room temperature 

While room temperature fluorescence analysis is effective as a probe for NPQ of PSII, 

the low quantum yield of PSI makes its fluorescence a poor signal. As reported in Figure 

1, the npq4 mutant showed low residual NPQ activity from LHCSR1 when the effect of 

excess light was measured at room temperature, i.e. in conditions specific for detection 

of fluorescence from PSII.  
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Figure 1. NPQ induction kinetics measured at room temperature. Pulse-amplitude fluorometric time course at 

room temperature of WT and npq4, npq4 lhcsr1, stt7, stt7 npq4 and npq1 mutants. Standard deviations are 

reported as error bars (n=5). 

NPQ activity was further reduced in the double mutant npq4 lhcsr1. NPQ induction of 

the stt7 mutant was faster than in WT and its amplitude was enhanced, suggesting STT7 

kinase is not essential for NPQ. Interestingly, stt7 npq4 mutant exhibited lower NPQ 

compared to npq4 suggesting that the LHCSR1-dependent quenching might depend on 

STT7 activity, despite LHCSR1 was not a STT7 substrate. Analysis of WT vs npq1 

mutant (Niyogi et al., 1997) showed NPQ in was independent from zeaxanthin (Figure 

1), in agreement with previous reports (Bonente et al., 2011). Since the amplitude of 

NPQ in C. reinhardtii is modulated by the amount of LHCSR subunits, their 

accumulation was quantified in the genotypes investigated by immunoblotting. LHCSRs 

content per PSI or PSII was similar in WT, npq1 and stt7 mutants. In WT and npq1 

strains LHCSR3 appeared as a double band, related to the presence of the 

phosphorylated form, increasing its apparent molecular weight. The LHCSR3 

phosphorylated form was lost in absence of the STT7 kinase. In stt7 mutant, LHCSR1 

accumulation was rather increased compared to WT, as in the case of npq4 and stt7 npq4 

(Supplementary data, Figure S1). 

Light dependent quenching of PSII and PSI in C. reinhardtii measured by 77K 

fluorescence emission spectra 

PSI fluorescence contribution to the overall fluorescence emitted by C. reinhardtii can 

be investigated at 77K, where the PSI photochemistry is essentially blocked, and the 
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fluorescence quantum yield is significantly increased (Cho and Govindjee, 1970). 

Fluorescence emission spectra at low temperature of the WT shows two peaks at 687 nm 

and 710 nm which can be mainly attributed to PSII and PSI contribution respectively. 

Spectral deconvolution with Gaussian forms allowed for extrapolating the contributions 

of the different emitting components (Supplementary data, Figure S2): two Gaussians 

peaking at 684 and 694 nm can be associated to PSII-LHCII complexes, while the 

Gaussian form peaking at 712 nm can associated to PSI contribution. The last Gaussian 

function peaking at 735 nm is used for fitting optimization due to the red tail of Chl 

emission forms. These attributions were then confirmed by deconvolution analysis on 

77K fluorescence emission spectra obtained from mutants with reduced amount of PSI 

(psaB mutant) (Lee et al., 1996), or depleted of PSII (psbD mutant) (Erickson et al., 

1986) or LHCI and LHCII complexes (cbs3) (Tanaka et al., 1998).  

To investigate the role of LHCSR proteins in quenching of PSI and PSII, C. reinhardtii 

cells from WT, npq4, npq4 lhcsr1, stt7, npq1 and stt7 npq4 mutants were acclimated to 

high light (HL, 400 μE m−2 s−1) for at least ten generations to induce LHCSR1 and 

LHCSR3 expression in the genotypes were the genes were expressed. Dark adapted, HL 

acclimated, cells were added with Green Fluorescent Protein (GFP) as internal 

fluorescence intensity standard and split into aliquots for different treatments upon 

which samples were rapidly frozen in liquid nitrogen and stored in the dark at 77K until 

fluorescence measurement were performed. As reported in Supplementary data, Figure 

S3, HL treatment for 6 minutes with strong light (1500 uE) did not change the GFP 

fluorescence emission spectrum or amplitude, enabling its use as internal standard, as 

previously reported (Pinnola et al., 2015). Since a light-independent trans-thylakoidal 

ΔpH was previously reported to form in green algae especially in presence of high 

reducing power in the mitochondria (Finazzi and Rappaport, 1998), in order to exclude 

any potential quenching on PSII or PSI in dark adapted cells, 77K fluorescence emission 

spectra were measured in presence of the uncoupler nigericin, obtaining no significant 

effect on fluorescence emission spectra (Supplementary data, Figure S4). HL treatment 

gave a similar reduction of both PSI and PSII peaks in WT and npq1 (Figure 2A, B).  
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Figure 2. 77K fluorescence emission spectra of C. reinhardtii cells normalized to GFP before and after high 

light exposure. Fluorescence emission spectra of C. reinhardtii were recorded for whole cells dark adapted 

(black) or high light treated (1500 μE m−2 s−1) for 6’ (grey). GFP was added as internal standard for 

normalization. Standard deviations are reported as error bars (n=4). 

The quenching on PSI and PSII observed were confirmed by deconvolution of WT and 

npq1 77K fluorescence emission spectra into Gaussian components, as described in 

Supplementary data, Figure S2, resulting into a reduced amplitude for both PSI and PSII 

spectral components (Figure 3A, B).  
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Figure 3. Spectral deconvolution of 77K fluorescence emission spectra. Fluorescence emission spectra of dark 

adapted (black) or high light treated cells (blue) were reconstructed by spectral deconvolution with Gaussians: 

cumulative fit results are reported in dashed green (dark adapted samples) or dashed red (high light treated 

samples), while the different Gaussians used are reported in green (dark adapted samples) or red (high light 

treated samples). GFP was added as internal standard for normalization. 

In the case of stt7, the overall fluorescence emission of PSI was reduced in stt7 mutant, 

likely due to the deplation of phosphorylated LHCII contributing to PSI emission in this 

mutant (Allorent et al., 2013), where HL treatment caused a more evident quenching of 

the main peak (PSII) rather than on the 709 nm shoulder from PSI (Figure 2C). Gaussian 

deconvolution analysis, however, allowed for detection of decreased emission from PSI 

(Figure 3C), implying the onset of a STT7-independent quenching on PSI. In the case of 

npq4, only a minor effect was detected on PSII components upon HL treatment (Figure 

2D, Figure 3D), while a more evident reduction of PSI contribution at 709 nm was 

detected (Figure 2D). These results suggest that while PSII and PSI quenching were still 

active in npq4, where LHCSR1 is the only LHCSR subunit, even if to a reduced extent 

compared to WT. It is worth to note that the highest PSI/PSII fluorescence ratio was 
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detected in npq4 consistently with previous findings (Allorent et al., 2013; Berteotti et 

al., 2016). This residual quenching on PSI was, however, absent in the double mutant 

stt7 npq4 (Figure 2E, Figure 3E). Both PSI and PSII quenching activities were absent in 

npq4 lhcsr1 (Figure 2F, Figure 3F). In order to further investigate the possible role of 

LHCSR1 in PSI and PSII quenching, a genotype with only LHCSR3 subunit was 

generated by complementation of npq4 lhcsr1 mutant with the lhcsr3.1 gene under the 

control of its endogenous promoter, as previously described (Ballottari et al., 2016). 

Complemented lines, herein called C-lhcsr3-4 and C-lhcsr3-24, were characterized by a 

similar level of LHCSR3 compared to WT, but no LHCSR1 (Supplementary data, 

Figure S1). The resulting NPQ at room temperature was similar to the WT (SI Appendix 

Fig. S5), as previously reported (Ballottari et al., 2016). 77K fluorescence emission 

spectra demonstrated that both PSI and PSII contributions were quenched upon HL 

treatment even in absence of LHCSR1 in C-lhcsr3-4 and C-lhcsr3-24 lines, obtaining 

similar results compared to WT (Supplementary data, Figure S5). 

To characterize the kinetics of quenching, 77K fluorescence emission spectra were 

followed upon HL treatment for 2, 4, 6 minutes and following 2, 5 or 10 minutes of dark 

recovery in the presence of far red light. As reported in Supplementary data, Figure S6-

8, HL treatment of WT, stt7, npq1 and complemented lines C-lhcsr3-4 and C-lhcsr3-24 

induced a progressive decrease of fluorescence emissions from both the main PSII peak 

(685 nm) and the PSI peak (709 nm). Upon dark recovery in dim far-red light to 

maintain plastoquinone pool oxidized, fluorescence emission of pre-illuminated WT 

samples nearly recovered the amplitude observed in dark adapted cells (Supplementary 

data, Figure S6). Differently, npq4 and stt7 npq4 mutants only underwent a transient 

decrease of both 686 and 710/711 nm emission peaks during the first 4’ HL, while a 

slight reduction of 711 nm peak was observed in the case of the npq4 mutant only, with 

poor, if any recovery in the dark (Supplementary data, Figure S7). No significant 

quenching could be observed in the case of npq4 lhcsr1 mutant neither on 682 nor on 

709 nm peaks (Supplementary data, Figure S6D-E). Rather, a minor reduction of 682 nm 

peak was detected during dark recovery in presence of far red light, possibly related to 

activation of PSII repair system. To reconstruct the kinetics of PSI and PSII quenching 

from the fluorescence emission spectra, spectral deconvolution into Gaussians 

components was performed, as described in Figure 3, for the 77K fluorescence emission 

spectra obtained at different times of illumination or dark recovery. Fitting analysis on 
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WT, C-lhcsr3-4 and C-lhcsr3-24, stt7 and npq1 curves showed similar quenching 

kinetics for all the components retrieved, with the 692-696 nm component (PSII) 

showing the highest quenching amplitude upon light treatment (Supplementary data, 

Figure S9-S13). In npq4 and stt7 npq4 mutants, small and virtually irreversible 

quenching effects were detected for the different components (Supplementary data, 

Figure S14 and Figure S15). In npq4 lhcsr1, instead, no quenching was observed in any 

component upon HL treatment (Supplementary data, Figure S16). Based on the 

amplitude of the PSII and PSI Gaussians the quenching on PSII vs PSI was estimated 

(Figure 4): the amplitude at time X (AX) of the different Gaussians components was then 

used to calculate the quenching on PSI or PSII according to the formula (ADark – AX)/AX.  

 

Figure 4. Calculated NPQ induction kinetics at 77K. The NPQ curves were calculated from the area of the 

sum of the Gaussians used for the fitting according to the formula (ADark – AX)/AX where AX and ADark are 

respectively the amplitude at time X (AX) or at time 0 (ADark, dark adapted samples) of the different Gaussians 

attributable to PSII or PSI. Standard deviations are reported as error bars (n=4). 

PSII quenching estimated from Gaussian deconvolution was faster in stt7, npq1 and C-

lhcsr3-4 and C-lhcsr3-24 lines compared to WT while was strong reduced in npq4, stt7 

npq4 mutants and negligible in  npq4 lhcsr1 (Figure 4A; Supplementary data, Figure 

S17), consistent with the NPQ kinetics at room temperature (Figure 1; Supplementary 

data, Figure S5). PSI quenching was observed in WT, stt7, C-lhcsr3-4 and C-lhcsr3-24 

lines and npq1 strains, with a faster induction kinetic in the case of WT and C-lhcsr3-4 

and C-lhcsr3-24 lines. PSI quenching was partially detectable in npq4 and in stt7 npq4 

even if strongly reduced, but absent in the npq4 lhcsr1 mutant. These results imply that 

mainly LHCSR3 is involved in quenching of both PSI and PSII, while STT7 activity and 

zeaxanthin have a minor effect. In absence of LHCSR3a small LHCSR1 dependent 

quenching could be also measured. 
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77K fluorescence excitation spectra: PSI quenching is specifically located on 

antenna complexes 

LHCSRs dependent quenching can be active specifically on LHC antenna proteins, 

acting as an alternative trap of excitation energy, or on the whole PSI or PSII 

supercomplexes. To discriminate between these two possibilities, the fluorescence 

excitation spectra were measured for PSI (emission at 710 nm) or PSII (emission at 685 

nm) in dark adapted or HL treated cells. 77K excitation spectra were characterized by 

two main peaks: 435 nm, (Chl a) and 480 nm, (Chl b). Since LHC antenna proteins bind 

both Chl a and Chl b, while core complexes bind Chl a only, a preferential quenching of 

LHC antenna in HL is expected to yield excitation spectra with a decreased Chl b peak 

amplitude. In WT, NPQ induction did not change the PSII excitation spectrum compared 

to dark adapted sample but reduced the Chl b peak in PSI excitation spectrum (Figure 

5A, B).  

 

Figure 5. 77K fluorescence excitation spectra. Fluorescence excitation spectra were recorded following the 

fluorescence emission at 710 nm, where mainly PSI emits, and 685 nm, where mainly PSII emits. Fluorescence 

excitation spectra were measured in the case of dark adapted (black) and high light treated (grey) cells and 

normalized to the Chl a contribution at 436 nm. Standard deviations are reported as error bars (n=4). 

This result indicates that in the case of PSII, NPQ activation quenches the overall PSII-

LHCII supercomplex, while in the case of PSI the HL treatment specifically reduces the 
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contribution of LHC complexes to the fluorescence emission of PSI. This observation 

was even more striking when the 480 nm/440 nm ratio observed in 77K fluorescence 

excitation spectra was corrected for the partial overlapping of PSII and PSI emission at 

710 nm, according to the Gaussian deconvolution of 77K fluorescence emission spectra 

(Supplementary data, Table S1). Similar results were then obtained in the case of C-

lhcsr3-4 and C-lhcsr3-24 or npq1 (Supplementary data, Figure S18-19). In the case of 

stt7 mutant HL treatment caused a decrease of Chl b contribution in PSI excitation 

spectrum, although smaller compared to WT (Figure 5C, D). No decrease in Chl b 

contribution was observed in npq4 lhcsr1 (Figure 5E, F), npq4 and stt7npq4 

(Supplementary data, Figure S19), consistent with LHCSR being involved in specifically 

quenching LHC proteins connected to PSI while homogeneously quenching LHCII-PSII 

core pigment bed  

77K time resolved analysis 

Time-resolved fluorescence analysis at 77K was performed on WT and npq4 lhcsr1 

strain in dark adapted state or upon activating quenching by HL treatment. Fluorescence 

decay traces were then submitted to global analysis as previously described (Van 

Stokkum et al., 2004) in order to identify the different spectral components and relative 

decay time constants associated. Four DAS (Decay associated spectral components) 

were required for best fit of the fluorescence decay maps (Figure 6).  

 

Figure 6. Global analysis of time 

resolved fluorescence kinetics at 

77K. Fluorescence decay kinetics of 

dark adapted or high light treated 

WT and npq4 lhcsr1 mutant were 

acquired at 77K in the 670 – 750 

nm range with 5 nm step and 

globally fitted with 4 exponentials. 

The decay associated spectra (DAS) 

obtained are reported normalized to 

the same total area for each sample, 

while the associated time constants 

are indicated the legend. Standard 

deviation associated to time 

constants is less than 5% for each 

component. 
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The first component (DAS 1) was characterized by a positive/negative DAS and a time 

constant of 32-47 ps: this component reflects the excitation energy transfer from LHC 

proteins to PSII and PSI core complex, which is not significantly affected by activation 

of NPQ mechanisms (Chukhutsina et al., 2014). The second component (DAS 2) peaked 

in the 680-690 nm region with a shoulder at 710 nm and a decay constent of 630 ps in 

dark adapted WT and in npq4 lhcsr1. Differently, in the case of HL treated WT, DAS 2 

showed a shorter time constant of 454 ps. DAS 2 is principally related to PSII (680-

690nm emission) with a small contribution from PSI (emission at 710 nm), in agreement 

with reports of sub-ns component at 77K from both PSII and PSI (Wlodarczyk et al., 

2016). The third DAS (DAS 3) showed a wide emission in the 690-740 nm, best fitting 

with PSI. The decay constant was 1.72 ns, reduced to 1.29 ns in HL. In the npq4 lhcsr1 

mutant the decay constant of this DAS 3 was not significantly affected by light 

treatment. These results agree with a LHCSR dependent activation of quenching 

mechanisms for both PSI and PSII upon HL treatment. Finally, a small component (DAS 

4) with a decay constant of 2.7 – 4 ns was observed in all samples: this component has 

been previously attributed to loosely bound LHCII and to the longest decay contribution 

from PSI at 77K (Wlodarczyk et al., 2016). In WT, DAS 4 was shortened upon HL 

exposure, from 4.01 ns to 2.70 ns. It should be noticed that npq4 lhcsr1 mutant, also 

underwent a limited reduction in DAS 4 lifetime from 3.8 to 3.6 ns. WT DAS 4, 

however, was specifically decreased at 685 nm respect to npq4 lhcsr1 mutant, 

suggesting a preferential LHCSR-dependent quenching of loosely bound LHCII. Time 

resolved fluorescence analysis was also performed on stt7, npq1, npq4, stt7 npq4 and C-

lhcsr3-4 and C-lhcsr3-24 strains (Supplementary data, Figure S20): in the case of dark-

adapted samples, global analysis yielded similar results compared to WT and npq4 

lhcsr1 genotypes. Upon HL treatment only stt7, npq1 and C-lhcsr3-4 and C-lhcsr3-24 

strain exhibited a shortening of the decay constants of DAS2, 3 and 4 as in the case of 

WT. A minor shortening of decay constant of DAS3 from 1.77 ns to 1.49 nm was also 

observed also for npq4, in agreement with a minor quenching activity on PSI from 

residual LHCSR1. 

Discussion 

LHCSR3 and LHCSR1 are pigment binding proteins involved in NPQ activation in C. 

reinhardtii (Peers et al., 2009; Berteotti et al., 2016; Dinc et al., 2016; Kosuge et al., 
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2018). NPQ measurements have been mainly based on room temperature fluorescence 

measurements monitoring changes of PSII fluorescence while the low fluorescence 

quantum yield of PSI prevents analysis in presence of strong emissions by PSII. At 77K, 

fluorescence quantum yield is high for both PSI and PSII allowing for proper 

quantification of both emissions. Moreover, freezing samples in liquid nitrogen 

preserves the conformations previously induced by actinic light thus allowing for 

spectral characterization of quenched states (Pinnola et al., 2015, Wlodarczyk et al., 

2018). The direct involvement of LHCSR in activating quenching is evident from Figure 

2 and Figure 3, showing that HL was effective in reducing the amplitude of both PSII 

and PSI emissions in presence of LHCSR subunits. Deconvolution of fluorescence 

emission spectra in Gaussians components allowed to isolate the contributions of PSI 

from PSII and showing both were quenched upon HL treatment (Figure 3). Indeed, time 

resolved fluorescence analysis, also at 77K, on dark adapted vs HL treated cells, showed 

a strong reduction of time constants decay of both PSI and PSII in presence of LHCSR 

subunits only (Figure 6). The activity of LHCSR subunits as quenchers for LHCII 

trimers either components of PSII or PSI supercomplexes or loosely bound, is consistent 

with previous reports: LHCSR1 was found active vs LHCII, either free or bound to PSI 

(Dinc et al., 2016; Kosuge et al., 2018), while LHCSR3 subunit was found to bind to 

both PSI and PSII in C. reinhardtii (Tokutsu and Minagawa, 2013; Xue et al., 2015; 

Bergner et al., 2015) and to be active in quenching purified PSII-LHCII supercomplexes 

(Tokutsu and Minagawa, 2013). Interestingly, the absence of LHCSR1 in C-lhcsr3-4 and 

C-lhcsr3-24 lines did not affect PSI or PSII quenching (Supplementary data, Figure 

S17), while only a partial quenching was observed upon LHCSR1 upregulation in npq4 

or stt7 npq4 mutant (Figure 4): these results indicate that LHCSR3 is the major actor in 

PSI and PSII quenching, while only a minor role, if any, can be attributed to LHCSR1. 

Nevertheless, the residual quenching observed in npq4 and stt7 npq4 indicates that 

LHCSR1 might be a quencher for both Photosystems, even if with a much lower 

efficiency compared to LHCSR3. The increased quenching activity of LHCSR3 

compared to LHCSR1 might be related simply to a dose effect and/or to some specific 

interactions with potential partners and/or to a specific intrinsic quenching activity. 

Quenching activity toward PSI or PSII by LHCSR differs: while the fluorescence 

excitation spectra of PSII-LHCII complex was similar in dark adapted or HL-treated 

samples, suggesting homogeneous quenching in HL, a specific reduction of Chl b 
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contribution to PSI emission was observed in the case of LHCSR3-dependent quenching 

of PSI (Figure 5, Supplementary data, Table S1). This result suggests that in the case of 

PSI, LHCSR3 subunits quenches preferentially antenna proteins, rather than PSI core 

complex. Both LHCSR1 and LHCSR3 have been previously reported to interact with the 

“mobile” fraction of LHCII, preferentially involved in state transitions: LHCSR3 was 

suggested to modulate coupling/decoupling of this LHCII population to PSII (Roach and 

Na, 2017), while LHCSR1 to modulate the excitation energy transfer from LHCII to PSI 

(Kosuge et al., 2018). The results herein reported are consistent with the above reports, 

highlighting a specific role of LHCSR subunits, in particular LHCSR3, in quenching 

“mobile” LHCII trimers thus reducing the fraction of LHC subunits involved in efficient 

ET to PSI (Figure 6). At variance with results reported by Kosuge et al. (2018), 77K 

fluorescence excitation spectra and time resolved fluorescence analysis suggest that the 

LHCSR-dependent quenching on LHCII trimers does not correlate with increased 

excitation energy transfer to PSI. This interpretation is supported by several evidences: 

a) Chl b contribution to PSI fluorescence emission was reduced, while an increased 

excitation energy transfer to PSI would be expected to increase the contribution of 

antenna proteins to PSI emission; b) the amplitude of the shortest DAS ( DAS 1, ~30 ps) 

obtained by time resolved fluorescence analysis, from excitation energy transfer to PSI, 

did not increase upon HL treatment as expected from increasing the antenna size; c) time 

constants of DAS attributable to both PSII and PSI in WT dark adapted cells were 

reduced upon HL treatment, consistent with the onset of a quenching mechanism, rather 

than as result of excitation energy transfer to PSI reaction centre; d) PSI fluorescence 

was observed at 77K i.e. with photochemical activity strongly reduced, if any. This 

finding implies that the possible LHCSR dependent quenching mechanism at room 

temperature should be extremely fast in order to compete with PSI photochemistry: a 

quenching conformation decaying in 80 ps was reported in vitro in the case of LHCSR1 

from the moss Physcomitrella patens (Pinnola et al., 2017). This time scales are 

consistent with competition with PSI photochemical traps, even if further investigation is 

required to properly evaluate this point. Nevertheless, we cannot fully rule out the 

possibility that LHCSR-dependent quenching might in part involve energy transfer to 

PSI reaction centres as suggested by Kosuge et al. (2018). or detachment of antenna 

proteins from PSI core, which could account for the preferential loss of Chl b 

contribution to PSI excitation spectra (Figure 5). 
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Kinetics of NPQ on PSII and PSI were reconstructed based on Gaussian deconvolution 

at different illumination times (Figure 4). Zeaxanthin accumulation upon HL treatment 

had little effect on PSII quenching, while PSI quenching was only slightly affected in 

terms of decay kinetics (Figure 4). These results are consistent with a minor role, if any, 

of zeaxanthin in increasing the kinetic for activation of PSI quenching in C. reinhardtii 

(Bonente et al., 2011). In the case of stt7 mutant, the absence of an active STT7 kinase 

did not impair NPQ induction at the level of either PSI or PSII (Figure 4): while LHCII 

phosphorylation is dependent on STT7 activity and related to state transitions (Depege et 

al., 2003), LHCSR3 was also reported to harbour phosphorylation sites which are not 

substrates for STT7 and the binding of LHCSR3 to PSI was negatively affected by its 

phosphorylation (Bergner et al., 2015). The results herein presented and previous 

findings, together, suggest that LHCSR3-dependent quenching of PSI occur on LHC 

proteins bound to PSI-complex which could be either identified as phosphorylated 

LHCII trimers or LHCI proteins (Figure 7), thus explaining the different Chl b 

contribution observed in fluorescence excitation spectra in stt7 mutant upon HL 

treatment.  

 

Figure 7. Model for LHCSRs quenching on PSI and PSII. LHCSR1 and LHCSR3 interaction with PSI an PSII 

supercomplexes is schematically reported as a model for their quenching activity. LHCSR3 has the major role 

in quenching, while a residual LHCSR1 dependent quenching activity can be observed in absence of LHCSR3. 

Red arrows indicate excitation energy transfer. Peripheral LHCII trimers loosely connected to PSI or PSII are 

also reported. In the model, the PSI and PSII subunits quenched by LHCR proteins are highlighted in yellow.  

We conclude that in C. reinhardtii LHCSR3 subunits are involved in quenching both 

PSI and PSII, by both directly interacting with PSII supercomplexes, and with PSI-

bound LHCII (Figure 7). Since in C. reinhardtii PSBS is only transiently expressed 

(Tibiletti et al., 2016; Correa-Galvis et al., 2016) and not detected in the conditions 

hetein applied (Supplementary data, Figure S1), LHCSR3 proteins appear to account for 
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most or all NPQ activity as shown by lack of quenching in npq4 lhcsr1. Quenching 

activity occurs at different sites: (i) PSII complexes, where LHCSR3 was found docking 

to LHCII trimers or CP26 (Semchonok et al., 2017); (ii) LHC complexes bound to PSI 

complexes, and (iii) LHCII “mobile” pool loosely connected to Photosystems (Figure 7). 

In the WT, upon HL stress, PSII quenching rapidly occurred while PSI quenching was 

slower (Figure 4), possibly due to a time lag for LHCSR-dependent detachment of 

LHCII proteins from PSI. The photoprotective relevance for the observed fluorescence 

quenching on PSI was confirmed by the strong PSI photoinhibition observed when PSI 

quenching was completely abolished in the  stt7 npq4 mutant (Allorent et al., 2013).  
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Supplementary material and data 

Quenching measurements at low temperature and Gaussians deconvolution of fluorescence 

emission spectra 

Algal cells were washed twice with water and kept in dark for 1 hour; 1 μM of recombinant GFP was used as 

an internal standard. During dark adaptation cells were shacked in tap water at the concentration of 75 μg/ml 

of chlorophylls. When needed, nigericin was added in the dark 10 minutes before the measurements. The final 

concentration of nigericin was 15μM. Samples were collected before the illumination, after treatment with 

1500 μE m−2 s−1 or following a 5-min recovery in the dark. All samples were frozen in liquid nitrogen. 

Fluorescence at low temperature were recorded using a Fluoromax3 equipped with an optical fiber (Horiba 

scientific). Emission spectra were performed by exciting the sample at 475 nm and recording emission from 

500 to 800 nm, normalizing to the GFP signal at 508 nm. Excitation spectra were performed by recording the 

emission derived from PSII at 685 nm and PSI at 709 nm for excitation in the 400- to 550-nm range. The 

contribution of PSI and PSII was evaluated through the deconvolution of the emission spectra using four 

Gaussians peaking at 681-685 (LHCII-PSII), 692-696 (PSII), 710-712 (PSI), and 735 nm (used for the fitting 

optimization) nm. The spectra analysis was performed using OriginPro 9.0 software (OriginLab). 

Table S1: Contribution of Chl b to PSI and PSII fluorescence. 

Chl b and Chl a contribution to 685 and 710 nm emission were determined on the base of fluorescence 

excitation spectra reported in Figure 6 for WT, stt7 and npq4 lhcsr1, in Figure S18 for complemented lines C-

lhcsr3-4 and C-lhcsr3-24 and in Figure S19 for mutants npq4, npq1 and stt7 npq4 dark adapted (D) or high 

light treated (HL). The contribution of PSII or PSI emission to 685 or 710 nm fluorescence emission is 

reported as based on the Gaussians deconvolution reported in Figure 6 and Figure S12. Due to some 

overlapping of Gaussians attributed to PSI or PSII at 710 nm, the real 480/440 nm ratio in PSI excitation 

spectra (480/440 nm ex PSI*) was calculated by considering the contribution of PSII to 710 nm emission and 

the 480/440 nm ratio observed in the excitation spectra at 685 nm. the contribution of PSI emission to 685 nm 

was assumed to be negligible.  
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Figure S1 Accumulation of LHCSR subunits. Panel A: LHCSR1 and LHCSR3 accumulation in high light 

(400 μmol photons m−2 s−1) acclimated WT, npq1, npq4, stt7, stt7 npq4, npq4 lhcsr1 mutants and npq4 lhcsr1 

complemented lines with lhcsr3 gene (C-lhcsr3-4 and C-lhcsr3-24 lines) were investigated by immunoblotting 

using specific α-LHCSR1 and α-LHCSR3 antibodies recognizing respectively LHCSR1 

(https://www.agrisera.com/en/artiklar/lhcsr1.html) or LHCSR3 

(https://www.agrisera.com/en/artiklar/lhcsr3.html). Total protein extracts were loaded on SDS-PAGE on a 

chlorophyll basis loading 1, 0.5 and 0.25 μg of chlorophyll for each sample analysed. In the case of LHCSR3, 

both the phosphorylated (LHCSR3-P) and unphosphorylated form (LHCSR3, with lower apparent molecular 

weight) were detected by the α-LHCSR3 antibody. Specific antibodies recognizing PSI and PSII subunits PsaA 

and CP43 as described in (1) were also used to determine the PSI and PSII relative content respectively. In 

addition, PsbS accumulation was investigated using specific α-PsbS antibody (2), but no traces of this subunit 

were detected in the different strains herein analysed when acclimated to high light conditions. Panel B: 

positive control for PsbS detection. PsbS subunit was detected upon exposure of low light (LL) acclimated WT 

to 4 hours of high light (1200 μmol photons m−2 s−1) as reported in (3). Panel C: relative LHCSR content 

was retrieved from immunoblots reported in Panel A by densitometry (in the case of LHCSR3, the amount of 

the phosphorylated and unphosphorylated forms were added up) and normalized to PSI or PSII content setting 

the LHCSR/PsaA or LHCSR/CP43 ratios to 100 in the case of WT. The LHCSR/CP43 and LHCSR/PsaA ratios 

obtained for the other genotypes were then normalized to the WT ratios. Data are expressed as mean ± s.d. (n 

= 3). The significantly different value from the WT are marked with an asterisk. (*) (p<0,01). 
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Figure S2. Fluorescence emission spectra of WT and of the mutant psbD, psaB and cbs.  

Fluorescence emission spectra measured at 77K were analysed by spectral deconvolution with Gaussian forms 

to extrapolate the contribution of the different components. Differently from the other experiments reported in 

this work, the fluorescence emission spectra were measured from low light adapted strain (70 μE m−2 s−1) 

grown in TAP medium due to high light sensitivity of the mutant strains herein investigated. In the case of WT, 

two Gaussians peaking at 684 and 694 nm can be associated to PSII-LHCII complexes, while the Gaussian 

form peaking at 712 nm can associated to PSI contribution. The last Gaussian function peaking at 735 nm was 

used for fitting optimization due to the red tail of chlorophyll emission forms. In the case of psbD mutant a 

strong reduction of the Gaussian peaking at 693 nm was evident, confirming its attribution to PSII 

supercomplexes. Fluorescence emission of psaB mutant was instead characterized by a strong reduction of the 

Gaussian peaking at 714 nm, which can be thus attributable to PSI-LHCI complex. The cbs3 mutant was 

instead characterized by a strong reduction of the 685 nm Gaussian, suggesting that this contribution is mainly 

related to LHC complexes which are bound to PSII-LHCII complex or free in the membrane. 

 

Figure S3. Absorption and emission spectra of Green Fluorescence Protein (GFP).  

Panel A: Absorption and emission spectra of GFP in water; emission spectrum was recorded exciting at 

475nm. Panel B: emission spectra of GFP before and after high light treatment for 6 minutes at 1500 uE. 
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Figure S4. Influence of nigericin on 77K fluorescence emission spectra.  

77K fluorescence emission spectra were measured in presence of GFP on dark adapted samples before and 

after addition of nigericin.
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Figure S5. NPQ induction kinetics measured at room temperature and 77K fluorescence emission 

spectra of C-lhcsr3-4 and C-lhcsr3-24 complemented lines.  

Panel A: pulse-amplitude fluorometric time course at room temperature of C-lhcsr3-4 and C-lhcsr3-24 

complemented lines compare to WT. Standard deviations are reported as error bars (n=5). Panel B/C: 

fluorescence emission spectra of C-lhcsr3-4 (B) and C-lhcsr3-24 (C) complemented lines recorded for whole cells 

dark adapted (black) or high light treated (1500 μE m−2 s−1) for 6’ (grey). GFP was added as internal standard 

for normalization. Standard deviations are reported as error bars (n=4).  
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Figure S6. Changes in 77K florescence emission spectra during high light treatment and dark 

recovery.  

77K fluorescence emission spectra of WT, npq4 lhcsr1 and stt7 mutants acquired for dark adapted samples or 

after different times of illumination (2’, 4’ and 6’) followed by dark recovery in presence of far red light are 

reported normalized to GFP emission used as internal standard. Standard deviations are reported as error 

bars (n=4).
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Figure S7. Changes in 77K florescence emission spectra during high light treatment and dark 

recovery in npq1, npq4 and stt7 npq4 mutants.  

77K fluorescence emission spectra of WT, npq1, npq4 and stt7 npq4 mutants acquired for dark adapted 

samples or after different times of illumination (2’, 4’ and 6’) followed by dark recovery in presence of far red 

light are reported normalized to GFP emission used as internal standard. Standard deviations are reported as 

error bars (n=4).
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Figure S8. Changes in 77K florescence emission spectra during high light treatment and dark 

recovery in C-lhcsr3-4 and C-lhcsr3-24 complemented lines.  

77K fluorescence emission spectra of C-lhcsr3-4 and C-lhcsr3-24 acquired for dark adapted samples or after 

different times of illumination (2’, 4’ and 6’) followed by dark recovery in presence of far red light are 

reported normalized to GFP emission used as internal standard. Standard deviations are reported as error 

bars (n=4).  
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Figure S9. Deconvolution of fluorescence emission spectra from WT recorded at 77K. 

a) Dark adapted; b) treated for 2 minutes with high light; c) treated for 4 minutes with high light d) treated for 

6 minutes with high light; e) treated for 6 minutes with high light and for 2 minutes with far red light; f) treated 

for 6 minutes with high light and for 5 minutes with far red light; g) treated for 6 minutes with high light and 

for 10 minutes with far red light; h) NPQ curve reconstruction using the area of the gaussian curves used for 

the fitting.
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Figure S10. Spectra deconvolution of fluorescence emission spectra of C-lhcsr3-4 

complemented line recorded at 77K.  

a) Dark adapted; b) treated for 2 minutes with high light; c) treated for 4 minutes with high light; d) treated 

for 6 minutes with high light; e) treated for 6 minutes with high light and for 2 minutes with far red light; f) 

treated for 6 minutes with high light and for 5 minutes with far red light; g) treated for 6 minutes with high 

light and for 10 minutes with far red light; h)NPQ curved reconstruction using the area of the gaussian curves 

used for the fitting.  
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Figure S11. Spectra deconvolution of fluorescence emission spectra of C-lhcsr3-24 

complemented line recorded at 77K. 

 a) Dark adapted; b) treated for 2 minutes with high light; c) treated for 4 minutes with high light; d) treated 

for 6 minutes with high light; e) treated for 6 minutes with high light and for 2 minutes with far red light; f) 

treated for 6 minutes with high light and for 5 minutes with far red light; g) treated for 6 minutes with high 

light and for 10 minutes with far red light; h)NPQ curved reconstruction using the area of the gaussian curves 

used for the fitting. 
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Figure S12. Spectra deconvolution of fluorescence emission spectra of stt7 mutant recorded at 

77K.  

a) Dark adapted; b) treated for 2 minutes with high light; c) treated for 4 minutes with high light; d) treated 

for 6 minutes with high light; e) treated for 6 minutes with high light and for 2 minutes with far red light; f) 

treated for 6 minutes with high light and for 5 minutes with far red light; g) treated for 6 minutes with high 

light and for 10 minutes with far red light; h) NPQ curved reconstruction using the area of the gaussian curves 

used for the fitting. 
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Figure S13. Spectra deconvolution of fluorescence emission spectra of npq1 mutant recorded at 

77K.  

a) Dark adapted; b) treated for 2 minutes with high light; c) treated for 4 minutes with high light; d) treated 

for 6 minutes with high light; e) treated for 6 minutes with high light and for 2 minutes with far red light; f) 

treated for 6 minutes with high light and for 5 minutes with far red light; g) treated for 6 minutes with high 

light and for 10 minutes with far red light; h)NPQ curved reconstruction using the area of the gaussian curves 

used for the fitting. 
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Figure S14. Spectra deconvolution of fluorescence emission spectra of npq4 mutant recorded at 

77K 

 a) Dark adapted; b) treated for 2 minutes with high light; c) treated for 4 minutes with high light; d) treated 

for 6 minutes with high light; e) treated for 6 minutes with high light and for 2 minutes with far red light; f) 

treated for 6 minutes with high light and for 5 minutes with far red light; g) treated for 6 minutes with high 

light and for 10 minutes with far red light; h)NPQ curved reconstruction using the area of the gaussian curves 

used for the fitting. 
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Figure S15. Spectra deconvolution of fluorescence emission spectra of stt7 npq4 mutant 

recorded at 77K. 

a) Dark adapted; b) treated for 2 minutes with high light; c) treated for 4 minutes with high light; d) treated 

for 6 minutes with high light; e) treated for 6 minutes with high light and for 2 minutes with far red light; f) 

treated for 6 minutes with high light and for 5 minutes with far red light; g) treated for 6 minutes with high 

light and for 10 minutes with far red light; h)NPQ curved reconstruction using the area of the gaussian curves 

used for the fitting. 
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Figure S16. Spectra deconvolution of fluorescence emission spectra of npq4 lhcsr1 mutant 

recorded at 77K. 

a) Dark adapted; b) treated for 2 minutes with high light; c) treated for 4 minutes with high light; d) treated 

for 6 minutes with high light; e) treated for 6 minutes with high light and for 2 minutes with far red light; f) 

treated for 6 minutes with high light and for 5 minutes with far red light; g) treated for 6 minutes with high 

light and for 10 minutes with far red light; h)NPQ curved reconstruction using the area of the gaussian curves 

used for the fitting 
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Figure S17. Calculated NPQ induction kinetics at 77K of C-lhcsr3-4 and C-lhcsr3-24 

complemented lines. 

 The NPQ curves were calculated from the area of the sum of the Gaussians used for the fitting according to 

the formula (ADark – AX)/AX where AX and ADark are respectively the amplitude at time X (AX) or at time 0 (ADark, 

dark adapted samples) of the different Gaussians attributable to PSII or PSI. Standard deviations are reported 

as error bars (n=4). 
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Figure S18. PSI and PSII excitation spectra in dark adapted and high light treated 

complemented lines C-lhcsr3-4 and C-lhcsr3-24.  

77K fluorescence excitation spectra of PSI (fluorescence recorded at 710 nm) and PSII (fluorescence recorded 

at 685 nm) for dark adapted cells (black) and HL treated (grey) cells and normalized to the Chl a contribution 

at 436 nm. Standard deviations are reported as error bars (n=4). 
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Figure S19. PSI and PSII excitation spectra in dark adapted and high light treated samples.  

77K fluorescence excitation spectra of PSI (fluorescence recorded at 710 nm) and PSII (fluorescence recorded 

at 685 nm) for dark adapted cells (black) and HL treated (grey) cells and normalized to the Chl a contribution 

at 436 nm. Standard deviations are reported as error bars (n=4). The increased Chl b contribution upon high 

light treatment in npq4 might suggest a partial degradation of Chl a binding core complexes during high light 

treatment in this strain or a preferential LHCSR1 quenching on PSII core subunits, even if minor as observed 

in Fig. 1 and Fig. 5. Other possible explanations of this finding are a possible reorganization of PSII 

supercomplexes during high light treatment in npq4 with release of Chl b binding antenna proteins with higher 

fluorescence quantum yield. 
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Figure S20. Global analysis of time resolved fluorescence kinetics at 77K of stt7, npq1, npq4, 

stt7 npq4 and C-lhcsr3 -4 and C-lhcsr3 -24 mutants.  

Fluorescence decay kinetics of dark adapted or high light treated strains were acquired at 77K in the 670 – 

750 nm range with 5 nm step and globally fitted with 4 exponentials. The decay associated spectra (DAS) 

obtained are reported normalized to the same total area for each sample, while the associated time constants 

are indicated the legend. Standard deviation associated to time constants is less than 5% for each component.
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Section B 

The function of LHCBM4/6/8 antenna proteins in 

Chlamydomonas reinhardtii2 

In this work we analyzed the function of three antenna proteins (LHCBM4/6/8) which 

are included in the group of major antenna of Photosystem II in Chlamydomonas 

reinhardtii. LHCBM4 and LHCBM6 gene products were analyzed in vitro by 

synthesizing recombinant apoproteins from individual sequences and refolding them 

with pigments. Biochemical and spectroscopic analysis on in vitro refolded proteins 

include: pigments analysis, absorption spectra and emission spectra at room and low 

(77K) temperature. Additionally, we characterized knock down strains in vivo for 

Lhcbm4/6/8 genes. We show that LHCBM4/6/8 subunits could be found as component 

of Photosystem II supercomplexes with different size, although the largest pool was free 

in the membranes and poorly connected to PSII. Impaired accumulation of 

LHCBM4/6/8 caused a decreased LHCII content per Photosystem II and a reduction in 

the amplitude of state 1-state 2 transitions at low temperature. In addition, the reduction 

of LHCBM4/6/8 subunits caused a significant reduction of the Non-Photochemical 

Quenching activity and at the level of photoprotection.  

 

 

In this work I’ve performed all the experiments excluding the mutants strains production 

and screening. 

 

 

Abbreviations: PSI/II, Photosystem I/II; NPQ, Non-Photochemical Quenching; LHC, Light Harvesting 

Complex; amiRNA, artificial micro-RNA; DCMU, (3-(3,4-dichlorophenyl)-1,1-dimethylurea); CN, Clear 

Native; ROS, Reactive Oxygen Species; 1O2, singlet oxygen; DI, de-epoxidation index. 

 

2This section is based on the published article: Girolomoni L, Ferrante P, Berteotti S, Giuliano G, 

Bassi R, Ballottari M; The function of LHCBM4/6/8 antenna proteins in Chlamydomonas 

reinhardtii, Journal of Experimental Botany, Volume 68, Issue 3, 1 January 2017, Pages 627–641. 
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Introduction 

Life on Earth is fueled by photon energy harvested by photosynthetic systems. In green 

algae and land plants photosynthesis occurs in chloroplasts, where two pigment binding 

protein complexes, Photosystem I and II (PSI and PSII) catalyze the light-dependent 

steps of electron transport from water to NADP+ which is coupled to proton transport to 

the thylakoid lumen for ATP synthesis. Each photosystem includes two moieties: a core 

complex binding electron transport cofactors and a peripheral antenna system enhancing 

cross section and providing photoprotection. The PSII core complex is highly conserved 

in all photosynthetic organisms and is composed by the chlorophyll binding subunits D1 

and D2, the chlorophyll a-binding antenna complexes CP43 and CP47, and the 

cytochrome b559. The outer antenna system of PSII is composed by pigment binding 

light-harvesting complexes called LHCII (Light Harvesting Complex II), a trimeric 

complex made by 22-26 kDa polypeptides with three transmembrane and two 

amphipatic a-helices exposed to the lumen (Kühlbrandt et al., 1994; Liu et al., 2004; 

Standfuss et al., 2005), each binding up to 14 Chls and 4 xanthophylls. These 

chromophores are bound to multiple specific sites for xanthophylls (L1, L2, N1, and V1) 

as well as for chlorophylls (Chl601-614) (Croce et al., 1999a, b; Caffarri et al., 2001, 

2004, 2007; Liu et al., 2004; Ballottari et al., 2012). LHC proteins harvest light energy 

and transfer excitons to the core complexes. LHCs also have a crucial role in 

photoprotection (Havaux and Tardy, 1997; Elrad et al., 2002; Ballottari et al., 2012; 

Dall'Osto et al., 2010; Grewe et al., 2014), provided by their carotenoid ligands: lutein, 

neoxanthin and violaxanthin, which are involved in quenching chlorophyll triplet excited 

states and ROS scavenging (Dall'Osto et al., 2006, 2007, 2013; Li et al., 2009; Ballottari 

et al., 2012, 2013). In high light conditions, when absorbed energy exceeds the capacity 

of downstream metabolic reactions, photoprotection is enhanced by synthesis of 

zeaxanthin, which replaces violaxanthin (Havaux et al., 2007; Ahn et al., 2008; 

Dall'Osto et al., 2010). Furthermore, LHC proteins are involved in fast regulative 

responses to unbalanced excitation of PSI vs PSII in limiting light, namely state 1- state 

2 transitions (Allen and Pfannschmidt, 2000; Finazzi et al., 2002; Depege et al., 2003; 

Ferrante et al., 2012; Galka et al., 2012; Allorent et al., 2013; Benson et al., 2015) and in 

non-photochemical quenching of excitation energy (NPQ) (Elrad et al., 2002; Ruban et 

al., 2007; Peers et al., 2009; de Bianchi et al., 2011; Betterle et al., 2015) in excess light. 
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Optimal use of limiting light is obtained by balancing PSII and PSI antenna sizes by 

transferring a subset of the LHCII from PSII to PSI whenever plastoquinone is over-

reduced. Over-reduction of the plastoquinone pool activates a kinase (STT7) 

phosphorylating LHCII and favoring its migration to PSI (Allen and Pfannschmidt, 

2000; Finazzi et al., 2002; Depege et al., 2003; Ferrante et al., 2012; Galka et al., 2012; 

Allorent et al., 2013; Drop et al., 2014a, b; Ünlü et al., 2014; Benson et al., 2015; 

Nawrocki et al., 2016). In Chlamydomonas reinhardtii, trimeric LHCII is encoded by 

nine genes called LHCBM1–LHCBM9, with M referring to “major” antenna complex 

(Merchant et al., 2007; Ferrante et al., 2012). The LHCBM4, 6, 8 and 9 genes are 

localized on chromosome 6, LHCBM2 and 7 on chromosome 12, LHCBM5 on 

chromosome 3, whereas the isoforms LHCBM1 and LHCBM3 have not yet been mapped 

(Drop et al., 2014a). LHCBM gene products have sequence identity of ~70% and cluster 

into four groups: Type I (LHCBM3, LHCBM4, LHCBM6, LHCBM8, and LHCBM9), 

Type II (LHCBM5), Type III (LHCBM2 and LHCBM7), and Type IV (LHCBM1) 

(Drop et al., 2014a) with members of the same sub-group showing identity up to 99% 

(Natali and Croce, 2015). Knowledge of LHCII structure and function is based on the 

orthologous complexes from higher plants. Common features include amino acid ligands 

for chlorophylls, the lumen-exposed tyrosine residue, essential for binding neoxanthin, 

and the N-terminal domain exposed to the chloroplast stroma which mediates 

interactions such as in trimerization (Hobe et al., 1995; Natali and Croce, 2015). Despite 

their high similarity, LHCBM components are functionally specialized: reverse genetics 

applied to LHCBM2/7and LHCBM5 (Takahashi et al., 2006; Ferrante et al., 2012) 

suggest they are involved in state1-state2 transitions, while LHCBM1 (Elrad et al., 

2002) plays an important role in thermal energy dissipation likely as an interactor of 

LHCSR3, the trigger for NPQ (Peers et al., 2009; Bonente et al., 2011). A special case is 

LHCBM9, which is preferentially expressed in nutrient starvation or anaerobiosis 

(Nguyen et al., 2008) to provide protection for PSII (Grewe et al., 2014). Structural 

analysis suggests LHCBM1, LHCBM2 and LHCBM3 participate to PSII 

supercomplexes while LHCBM5 belongs to the “extra” LHCII pool more loosely 

associated to the core complexes (Drop et al., 2014a). Here, we have studied the role of 

the LHCBM4, LHCBM6 and LHCBM8 proteins by using microRNA (amiRNA) 

silencing to coordinately silence genes sub-families sharing identical regions, while 

keeping the level of expression of others unaltered (Molnar et al., 2009; Zhao et al., 
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2009; Ferrante et al., 2012; Grewe et al., 2014). The phenotypic analysis was 

complemented by studying biochemical and spectroscopic proteins of pigment-protein 

subunits obtained by refolding in vitro the apoproteins expressed in bacteria, to yield a 

comprehensive explanation of the function of these three LHC subunits in C. reinhardtii.  

 

Materials and methods 

Strains and culture conditions 

Unless indicated differently, C. reinhardtii cells were grown at 25°C with fluorescent 

white light (60 μE m-2 s-1) with a 16h light: 8h dark photoperiod in HS medium. The cell 

wall less cw15 strain was transformed with the recombinant pChlamyRNA3 vectors 

(Molnar et al., 2009) containing the amiRNAs for silencing of LHCBM6 or LHCBM4, 

LHCBM6 and LHCBM8. Nuclear transformation was performed as described (Kindle, 

1990). Transformants were selected on TAP agar plates containing paromomycin (10 

μg/ml) as previously described (Ferrante et al., 2012). To screen the silenced LHCBM6 

and LHCBM4+6+8 transformants based on Chl a/b ratios, cells were grown in 96-well 

microtiter plates in 200 μl of TAP at 25 °C until the stationary phase (2x107cells ml-1) 

with fluorescent white light (60 μE m-2 s-1) with a 16h light: 8h dark photoperiod. Ninety 

transformants were analyzed for each construct. Chl a/b ratios were determined on 

pigment extracts as described in (Ferrante et al., 2012). To perform quantitative real-

time PCR, transformants showing increased Chl a/b ratios were grown in 4 ml of TAP 

medium in 24-well microtiter plates until the late-log phase with fluorescent white light 

(60 μE m-2 s-1) with a 16h light: 8h dark photoperiod, and cells were harvested for RNA 

extraction.  

Plasmid construction and quantitative Real Time RT-PCR  

amiRNAs used to silence LHCBM genes were designed using the WMD3 software (Web 

micro RNA designer Version3, http://wmd3.weigelworld.org/cgi-

bin/webapp.cgi?page=Home;project=stdwmd) and verified using the EST database 

(http://est.kazusa.or.jp/en/plant/chlamy/EST/blast.html). Two amiRNAs were designed 

for silencing of LHCBM6 gene, the former (LHCBM6A) annealing in the 3’ UTR, the 

latter (LHCBM6B) annealing in the 5’UTR of the gene. Cloning of the amiRNAs in 

pChlamyRNA3 vector, total RNA extraction from Chlamydomonas transformants and 

Real Time RT-PCR were performed as previously described (Ferrante et al., 2012). In 
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particular, cells were harvested for RNA extraction in the light period after 6 hours of 

light. Oligonucleotides used for RT-PCR are reported in Supplementary Table S1. 

Protein purification and in vitro reconstitution. 

LHCBM4 and LHCBM6 coding sequence for the mature proteins were cloned in pET28 

expression vector and overexpressed in Escherichia coli. The signal peptide sequence 

was identify as described in the literature (Turkina et al., 2006). Inclusion bodies we 

purified as previously described (Giuffra et al., 1996) and in vitro refolding upon 

addition of pigments were performed previously reported (Giuffra et al., 1996; Grewe et 

al., 2014). 

Pigment analysis 

Pigments analysis were performed by HPLC as described in Lagarde et al. (2000). Chl 

a/b and Chl/Cars ratios were corrected through fitting analysis of the absorption 

spectrum (Croce et al., 2002).  

Thylakoid preparation from C. reinhardtii cells 

Chlamydomonas reinhardtii stacked thylakoids were purified as described in Ferrante et 

al. (2012). 

SDS-PAGE electrophoresis and immunoblotting  

Denaturing SDS-PAGE was performed in the presence of 6 M Urea with the Tris-

Tricine buffer systems (Schagger and von Jagow, 1987). Immunoblotting analysis were 

performed using α-CP43, α-PsaA and α-LHCBM5 (herein renamed α-LHCII) from 

Agrisera and using α-LHCSR3 described in Bonente et al. (2012) and α-LHCBM6 

described in Berger et al. (2014) . 

Native electrophoresis 

Thylakoid membranes were solubilized in the presence of 1.2% α-dodecyl-maltoside and 

separated by Clear Native (CN)-PAGE as described in Grewe et al. (2014) . 

PSI and PSII functional antenna size 

Relative PSI antenna size was estimated from kinetics of P700 oxidation in limiting 

orange light (12 μE m-2 s-1) in thylakoids treated with DCMU (3-(3,4-dichlorophenyl)-



 

90 

 

1,1-dimethylurea), ascorbate and methyl-viologen, as described in Bonente et al. (2012). 

In particular the P700 oxidation kinetics were fitted with exponential functions and the 

reciprocal of rate constants extrapolated where used to estimate the PSI antenna size 

(Bonente et al., 2012). PSII antenna size has been estimated in whole cells from Fm 

saturation kinetics (1/t2/3) in the presence of DCMU 10-5M (Cardol et al., 2008).  

State Transitions 

The amplitude of State1-State2 transition was investigated by two approaches: (i) LHCII 

detachment from PSII upon State 2 induction was followed by measuring the differences 

in the maximal fluorescence emitted by PSII in state 1 or state 2 conditions as previously 

described (Fleischmann et al., 1999; Bonente et al., 2012; Ferrante et al., 2012). The 

second method (ii) consisted into measuring the 77K fluorescence emission spectra of 

whole cells in state 1 or state 2 conditions: the extent of state transitions induction was 

expressed as the ratio between the peaks of PSI in state2/state1, prior to normalization to 

the peak of PSII in the two different conditions respectively. 

NPQ measurements 

NPQ measurements were performed on cells acclimated to high light conditions (400 μE 

m-2 s-1) at exponential growth phase. Cells were pre-illuminated for 2 minutes with a 

weak (3 μE m-2 s-1) far-red LED before NPQ analysis with a PAM-101 (Waltz, 

Effeltrich, Germany); actinic light was 1600 μE m-2 s-1 and saturating light 4080 μE m-2 

s-1. The far-red LED was kept on during dark recovery.  

Singlet oxygen production 

Singlet oxygen production was measured in vivo by following the 532 nm fluorescence 

emission of a singlet oxygen sensor green probe (Flors et al., 2006). 

Results 

In vitro study of LHCBM4/6/8 proteins 

LHCBM4, LHCBM6, and LHCBM8 genes are paralogous, with a high level of identity to 

each other (Ferrante et al., 2012). The protein sequences of LHCBM4 

(XP_001695344.1), LHCBM6 (XP_001695353.1) and LHCBM8 (XP_001695467.1) are 

characterized by an identity of 97,63%, with only three substitutions in their amino acid 
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sequence (Figure 1), and one deletion in the case of LHCBM6 localized in the first 26 

residues constituting the transit peptide for chloroplast import. 

 

Figure 1. Alignment of LHCBM1, LHCBM2, LHCBM4, LHCBM6 and LHCBM8 polypeptide sequences. 

Signal peptide is indicated in green, trimerization motif in blue, chlorophyll binding sites in red, lutein binding 

motif in purple and the tyrosine responsible for neoxanthin binding in the N1 site is indicated in orange. 

Alignment of LHCBM4, LHCBM6, LHCBM8 sequences with LHCBM1 and LHCBM2, 

suggested all the residues involved in chlorophyll and neoxanthin binding at the N1 site 

were conserved (Liu et al., 2004; Caffarri et al., 2007). Also, the DPLG motif which was 

previously associated with lutein binding (Kühlbrandt and Wang, 1991) is conserved in 

all the subunits herein considered. The trimerization motif WYxxxR was conserved in 

LHCBM1 and LHCBM2 but not in LHCBM4, 6, 8 due to replacement of W by F. The 
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LHCBM4 and LHCBM6 apoproteins were produced by expressing the gene sequences 

in E. coli and holocomplexes were obtained by in vitro refolding with pigments (Giuffra 

et al., 1996). The absorption spectra of both holoproteins showed a red shift of the Qy 

transition compared to free pigments in detergent solution (Figure 2) while the Chl b > 

Chl a energy transfer efficiency was high as measured from overlapping fluorescence 

emission spectra with different excitation, namely 440, 475 and 500 nm for Chl a, b or 

carotenoids (Supplementary data, Figure S1), suggesting a correct folding of the protein-

pigment complex (Giuffra et al., 1996).  

 

Figure 2 Absorption spectra and fluorescence yield of LHCBM1, LHCBM2, LHCBM4 and LHCBM6 

recombinant proteins. (A) Absorption spectra in the 350-750nm range normalized to the maximum peak in the 

Qy region. (B) Absorption spectra of LHCBM complexes zoomed in the 630-700 nm range. (C) 77K 

fluorescence emission spectra of LHCBM complexes upon excitation at 440 nm. (D) Relative fluorescence 

quantum yield of LHCBM1, LHCBM4 and LHCBM6 compared to LHCBM2, set to 100%. Standard deviations 

are reported for each sample (n=5). 

The fluorescence emission spectra at 77K of the LHCBM proteins revealed significant 

differences: LHCBM2 emission was blue-shifted, with emission peak at 677 nm, while 

LHCBM1 and LHCBM4 showed an intermediate behavior and LHCBM6 showed the 

red- most shifted subunit with a peak at 679 nm. “Red” emission forms are associated to 

chlorophyll ligands with low energy transitions. We thus proceeded to assess the relative 
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fluorescence quantum yield of the reconstituted LHCBM4 and LHCBM6 pigment-

proteins. We used as a reference LHCBM1 and LHCBM2 subunits previously 

characterized as the gene products with, respectively, the lowest and the highest 

fluorescence quantum yield (Figure 2) (Grewe et al., 2014; Natali and Croce, 2015). 

LHCBM4 and LHCBM6 showed an intermediate fluorescence yield, more similar to 

LHCBM1 than to LHCBM2. This result suggests a similar role for LHCBM4, LHCBM6 

and LHCBM1 in defining the excited states lifetime of the antenna system. Pigment 

analysis of reconstituted proteins showed a Chl a/b molar ratio ranging between 1.1 and 

1.4, while the number of xanthophylls ranged from 3 to 4 based on 14 chlorophylls 

bound by each subunit (Liu et al., 2004; Grewe et al., 2014; Natali and Croce, 2015). 

The number of lutein ligands varied from 1.21 to 1.81, violaxanthin was sub-

stoichiometric (0.06 to 0.28) and neoxanthin ranged between 1.5 to 2.19. On this basis it 

can be inferred that all LHCBM proteins analyzed bind lutein in the L1 site, as 

previously reported for LHCII (Liu et al., 2004), while the L2 site can be occupied by 

lutein, violaxanthin or neoxanthin, as previously reported for monomeric Lhcb subunits 

from higher plants (Ballottari et al., 2009; Pan et al., 2011). Neoxanthin is likely bound 

to the N1 site while the most peripheral site, V1, can be partially occupied by 

violaxanthin or by neoxanthin according to previous suggestions (Caffarri et al., 2007; 

Natali and Croce, 2015). The high sequence similarity between LHCBM8 and LHCBM4 

(Figure 1), suggests that conclusions drawn for LHCBM4 and LHCBM6 might hold true 

also for LHCBM8. 

LHCBM4/6/8 accumulation in thylakoid membranes 

Accumulation of LHCBM4/6/8 in thylakoid membranes in C. reinhardtii was 

investigated by immunoblotting using recombinant proteins refolded in vitro as 

standards. Immunoblot analysis was performed on thylakoid membranes purified from 

C. reinhardtii wild-type strain using an antibody recognizing all LHCBM proteins (α-

LHCII) and a specific antibody for LHCBM4/6/8 subunits (Berger et al., 2014). α-

LHCBM4/6/8 antibody was tested for cross-reactivity with other LHCBM proteins, 

revealing only a minor cross reaction against LHCBM3 and LHCBM9, with signals 

respectively 16-, 40- and 18-fold weaker compared to LHCBM4 and LHCBM6 

(Supplementary data, Figure S2). Immunoblotting reactions on thylakoid membranes 

using the α-LHCII antibody yielded three main bands with apparent molecular weights 
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of ~26, ~23 and ~22 KDa (Ferrante et al., 2012) (Supplementary data, Figure S3). 

LHCBM1 was reported to be the only gene product in the band with intermediate 

mobility, LHCBM2 and LHCBM7 were reported to migrate with the most mobile band 

(Ferrante et al., 2012), while LHCBM9 migrated with the upper band (Grewe et al., 

2014). Using the α-LHCBM6 antibody yielded a single band, with mobility 

corresponding to the LHCBM band with the highest apparent molecular weight. 

Recombinant LHCBM4 and LHCBM6 were recognized by α-LHCBM6 antibody with a 

slightly higher apparent molecular weight compared to the native LHCBM4/6/8 subunits 

in thylakoid membranes. The same behavior was observed in the case of recombinant 

LHCBM1 compared to the native LHCBM1: this is likely related to the presence of 

extra amino acids at the N-terminus in the recombinant proteins, part of the chloroplast 

transit peptide which are cleaved in the mature native proteins. By using recombinant 

LHCBM proteins and native LHCII trimers as standards it was possible to determine that 

LHCBM4/6/8 are present in the thylakoid membranes to a similar abundance as 

LHCBM1 contributing to a ~30% of the total pool of LHCII (Supplementary data, 

Figure S3).  

Silencing of LHCBM genes 

Chlamydomonas strains with reduced level of LHCBM4, LHCBM6 and LHCBM8 

subunits were produced by artificial miRNA (amiRNA) silencing according to previous 

reports (Molnar et al., 2009; Ferrante et al., 2012; Grewe et al., 2014). Two amiRNAs 

were designed to silence the LHCBM6 gene (Supplementary data, Table S2 and Figure 

S4), while four different amiRNAs were selected for the simultaneous silencing of 

LHCBM4, LHCBM6 and LHCBM8, but only one (Supplementary data, Table S2 and 

Figure S4) was effective in triggering silencing of this subgroup of genes 

(Supplementary data, Figure S4). The designed amiRNAs were expressed under the 

control of the PSAD constitutive promoter in the cw15 strain (referred as the wild type in 

the following) and 90 transformants for each construct were screened based on their 

absorption spectra for Chl a/b ratios and confirmed by HPLC: since Chl b is bound to 

LHC proteins only while Chl a is bound to both LHC and core complexes, an increased 

Chl a/b ratio is a good indicator for reduced LHC protein content. A selection of 

transformants (about ten per construct) showing an increased Chl a/b ratio were 

investigated by Real-Time PCR, in order to confirm the silencing of the target genes. 
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From this analysis we selected the transformants showing the highest level of silencing: 

clones L6_A and L6_B (Supplementary data, Table S2 and Figure S5). As shown in 

Figure 3, the L6_A and L6_B transformants showed a ~40% decrease in LHCBM6 

mRNA level and a concomitant decrease of the LHCBM4 mRNA level, while the 

LHCBM8 gene in these strains was overexpressed as compared with wild type. 

 

Figure 3: Quantification of LHCBM mRNA levels in knock-down strains. LHCBM4, 6, 8 mRNA abundance 

was quantified through quantitative Real Time RT-PCR. The amounts of LHCBM mRNA are expressed using 

as reference the Ribulose Bisphosphate Carboxylase/Oxygenase Small Subunit 2 (RBCS2) mRNA level. Two 

different transformants silenced in the LHCBM6 gene (L6_A and L6_B) and one transformant silenced in 

LHCBM4, LHCBM6 and LHCBM8 genes were analyzed (L_468). 

The increased expression of LHCBM8 gene when LHCBM4 and LHCBM6 are down 

regulated suggests that the functions of these three subunits are redundant and that 

LHCBM8 accumulates likely in order to compensate for the reduction in LHCBM4 and 

LHCBM6. The L_468 transformant shows instead a decrease of ~65%, ~70% and ~50-

60% respectively in the level of LHCBM4, LHCBM6 and LHCBM8 mRNAs. In order to 

evaluate the levels of off-target silencing, the expression level of all LHCBM genes was 

evaluated (Supplementary data, Figure S4). Some off-target silencing was found for 

LHCBM3 in the L6_A transformant and for LHCBM7 and LHCBM5 in L6_B 

transformant while the L_468, did not show statistically significant off-target silencing. 

The off-target effects were different in the different strains and were disregarded in case 

of consistent phenotype among the analyzed strains (Supplementary data, Figure S5). 

Interestingly, in the strain with a lower expression of LHCBM4, LHCBM6 and 

LHCBM8 genes, L_468 strain, an increased LHCBM1 and LHCBM9 expression was 

detected (Supplementary Figure S5). 
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Photosynthetic protein abundance in knock-down strains  

Knock-down strains were analyzed by western blotting in order to evaluate the 

accumulation of LHCBM protein(s) compared to wild type. All knock-down mutants 

showed a decrease in LHCBM6/4/8 content per chlorophyll as compared to the wild 

type, especially in the case of L_468 strain. As reported in Figure 4B the accumulation 

of the different bands recognized by the α-LHCII antibody were similar in all cases, with 

the exception of L_468 where an increased accumulation of LHCBM1 was accompanied 

by a reduction of the signal at the higher apparent molecular weight, consistent with the 

strong reduction LHCBM4/6/8 subunits revealed by the α-LHCBM6 antibody (Figure 

4). 

 

Figure 4. Immunoblot analysis of photosynthetic proteins in knock-down strains. Immunoblot analysis was 

performed using specific antibody for PSI (α-PsaA), PSII (α -CP43), LHCs (α-LHCII) and LHCBM6 (α-

LHCBM6). Three different sample amounts were loaded based on chlorophyll content (0.9, 0.3 and 0.015 µg 

of chlorophyll). Densitometric quantification of each band normalized to the wild type is reported in (B). 

Standard deviations are reported for each quantification (n=4). 
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Partial compensation of LHCBM4/6/8 reduction by accumulation of LHCBM1 is 

consistent with the transcript analysis reported in Figure 3. Knock-down strains were 

characterized by a similar accumulation of CP43 and PsaA per chlorophyll compared to 

wild type. The amount of Rubisco was also investigated, as an indicator for the 

accumulation of Calvin-Benson cycle enzymes in the transformants compared to wild 

type, yielding a similar Rubisco/Chl ratio in wild type and knockdown strains. The 

organization of photosynthetic pigment-proteins was evaluated by 2D electrophoresis of 

solubilized thylakoid membranes on non-denaturing CN-PAGE as first dimension while 

the second dimension was run on SDS-PAGE (Grewe et al., 2014) (Figure 5).  

 

Figure 5. Analysis of the thylakoid membrane pigment-protein complexes by 2D electrophoresis and 

immunoblotting. Thylakoid membranes of knock-down strains grown in control light, were solubilized with 1% 

dodecyl-maltoside (α-DM) and separated by CN-PAGE followed by a second-dimension separation by SDS-

PAGE. Immunoblot detection of LHCBM4/6/8, LHCII, PSI (antibody α-PSAA) and PSII (antibody α-CP43) is 

also reported.  

Distinct subunits of the protein complexes were detected after 2D electrophoresis by 

immunoblotting with specific antibodies against PsaA (subunit of PSI), CP43 (subunit of 

PSII), LHCII and LHCBM4/6/8 (Figure 5). The chlorophyll distribution in the CN-

PAGE and the levels of immunoblot signals were quantified by densitometry and 

reported in Supplementary data, Figure S6, for the wild type. PSII and PSI complexes 
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were resolved at high apparent molecular weight in CN-PAGE as PSI(I)-core, or as 

supercomplexes binding different amounts of LHC subunits. LHCII subunits could be 

found as monomers, trimers or in supercomplexes, together with PSI or PSII subunits 

(Figure 5 and Supplementary data, Figure S6). In the wild type, LHCBM4/6/8 subunit 

distribution was similar to other LHCII subunits and yet the intensity of the signal 

corresponding to trimers and monomers was clearly higher than that corresponding to 

PSII supercomplexes (Supplementary data, Figure S6). The pattern of PsaA, CP43, 

LHCII and LHCBM6 was not significantly altered in knockdown strains compared to 

the wild type, except for a reduced intensity of LHCBM4/6/8, as expected (Figure 5). 

This result suggests that LHCBM4/6/8 could be preferentially found as free LHCII 

trimers, even if a minor fraction of these subunits was associated to PSI and PSII 

supercomplexes of different size.  

Roles of LHCBM4/6/8 in light harvesting and photoprotection  

The effect of LHCBM4/6/8 gene silencing on the stability of Photosystem II was 

monitored in vivo by measuring the maximum quantum efficiency of PSII, Fv/Fm, by 

pulse-amplitude fluorimetry. Fv/Fm values were found to be similar in wild type and 

knock-down strains, scoring between 0.6 and 0.7 in all genotypes (Table 1). 

 

Table 1. Fv/Fm and NPQ parameter of wild-type (WT) and knock-down strains. Fv/Fm values were determined 

by PAM fluorimetery on cells grown in control light (CL) or high light (HL). NPQ values were measured by 

PAM fluorimetry on HL cells.  

Similar values were obtained when cells were grown under high irradiance (400 µmol m-

2s-1), implying PSII was functional even at high excitation pressure (Table 1). In order to 

evaluate the role of LHCBM4/6/8 in light harvesting, PSI and PSII functional antenna 

size was measured in dark adapted wild-type and knock-down strains as previously 

described (Bonente et al., 2012). In the case of PSI (Figure 6A), functional antenna size 

was measured from the kinetics of P700 oxidation in thylakoid membranes treated with 

DCMU and methyl-viologen.  
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Figure 6: PSI and PSII antenna size measurements. PSI antenna size (A) was measured in wild-type (WT) and 

knock-down strains by following the kinetics of P700 oxidation in limiting light conditions in DCMU, 

ascorbate and methyl viologen treated thylakoids. P700 oxidation kinetics were fitted with exponential 

functions and the reciprocal of time constants associated to fitting functions are reported in (B) normalized to 

WT as an estimate of PSI antenna size. PSII antenna size (C) was measured by following the fluorescence 

emission kinetics of PSII in DCMU treated cells. Fluorescence kinetics were fitted with exponential functions 

by which τ2/3 were calculated as the time required to reach two third of the maximum fluorescence emission: 

the reciprocal of τ2/3 is plotted in (D) as an estimation of PSII antenna size. Data reported in (B) and (D) were 

tested for their statistical significance compared to WT by Student t-test (n=3), obtaining in all cases P-values 

>0.05, indicating that the differences observed were not statistically significant. 

In particular PSI antenna size were estimated as the reciprocal of rate constant (1/τ) 

obtained by fitting the oxidation kinetics with exponential function (Bonente et al., 

2012). The kinetics were similar in all genotypes analyzed and the (1/τ) value obtained 

for silencing were not statistically significant compared to the wild type. The antenna 

size of PSII was measured from the kinetic of Chl a fluorescence emission in DCMU-

treated cells: fluorescence kinetics were fitted with exponential function by which the 

time required to reach two third of the maximum fluorescence emission (τ2/3) were 

calculated. The reciprocal of the τ2/3 values were then used to estimate the PSII antenna 

size (Figure 6D) as previously reported (Cardol et al., 2008). No significant difference 

was detected for 1/τ2/3 values in silencing strains compared with the wild type, 
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suggesting that the LHCII trimers destabilized upon LHBCM4/6/8 silencing are not 

essential for light harvesting function, consistent with the hypothesis it belongs to the 

extra-LHCII pool free in the thylakoid membranes (Drop et al., 2014a). We then 

proceeded to verify the effects on regulative processes associated to antenna system. In 

particular we investigated if depletion in LHCBM4/6/8 affected the process of state1-

state 2 transitions, namely the migration of LHCII from PSII to PSI. The amplitude of 

state transitions was evaluated by measuring the differences in fluorescence emission 

upon poising cells in either state 1 or state 2 at room temperature (Fleischmann et al., 

1999; Wollman, 2001) or at 77K (Allorent et al., 2013). Room temperature florescence 

emission from whole cells is essentially coming from PSII, being the fluorescence 

quantum yield of PSI extremely low (Borisov and Il'ina, 1973): changes in maximum 

fluorescence emission at room temperature upon induction of state1 to state 2 transition 

is reported in Figure 7A, showing a similar amplitude for wild-type and knock-down 

strains.  

 

 

Figure 7. State1-state 2 transition analysis. (A) Maximal 

capacity of switching LHCII antenna from PSII to PSI was 

analyzed in wild-type (WT) and knock down strains by 

measuring the variation in maximum fluorescence emission 

in state 1 (Fm
ST1) and state 2 (Fm

ST2) at room temperature. 

The changes in Fm are related to PSII fluorescence 

emission. (B) Fluorescence emission spectra of cells in state 

1 or state 2 were measured at 77K, the spectra were 

normalized to PSII peaks (686 nm) and the ratio between 

the PSI peaks (712 nm) in state 2 and state 1 is reported as 

77K F712 nmST2/77K F712 nmST1. The changes in 712 nm 

fluorescence emission are related to PSI. In both panels the 

stt7 mutant was used as negative control. Error bars 

indicate standard deviation (n=3). 

In order to investigate the effect of state transition on PSI, fluorescence emission spectra 

from whole cells in either state 1 or state 2 were also measured at 77K (Figure 7B): 77K 

fluorescence emission spectra were characterized by two major peaks at 682 nm and 715 

nm (Supplementary data, Figure S7), related to PSII and PSI emissions respectively. 

When cells were induced to state 2, PSI fluorescence emission increased more, upon 

normalization to PSII fluorescence, in the wild type compared to knock-down strains, 

suggesting LHCBM4/6/8 is part of the mobile LHCII pool transferred upon state 
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transitions increasing the antenna size of PSI (Drop et al., 2014b; Le Quiniou et al., 

2015). In particular, since the PSII fluorescence emission measured at room temperature 

decreased similarly in wild-type and knock-down strains upon transition to state2, the 

LHCBM4/6/8 subunits involved in state transitions are probably those located free in the 

membrane. The role of LHCBM4/6/8 in excess energy dissipation was evaluated by 

measuring the NPQ. Since in C. reinhardtii NPQ is fully activated upon acclimation to 

high light (Peers et al., 2009; Bonente et al., 2012; Allorent et al., 2013), these 

measurements were performed upon acclimation to 400 µmol m-2s-1 light. In these 

conditions, the number of LHCBM4/6/8 subunits per PSII in the wild type was 

comparable to that of cells grown in control light, and the decrease of LHCBM4/6/8 in 

knockdown strains was maintained (Figure 8C, E). Knockdown strains acclimated to 

high light were characterized by a reduced NPQ activity (Figure 8D), which was more 

evident in strain L_468. This result suggests a possible role of LHCBM4/6/8 in NPQ 

activity.  

 

Figure 8. LHCBM4/6/8 accumulation and non-photochemical quenching (NPQ) induction in high light. 

Accumulation of LHCBM4/6/8 in high light (HL) compared to control light (CL) was analyzed by western blot 

(A, chlorophyll loading in each lane is reported on the top of the figure) and estimated upon normalization to 

CP43 content (B). The NPQ induction kinetics were collected by using an actinic light of 1500 µmol photons 
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m-2 s-1 on high light acclimated cells (C). Accumulation of LHCII, LHCSR3 and CP43 proteins in high light 

cells were determined using a specific antibody (D, chlorophyll loading in each lane is reported on the top of 

the figure). LHCBM4/6/8, LHCBM1 (the intermediate band recognized by α-LHCII antibody) and LHCSR 

level per PSII (normalized to CP43 content) are reported (E, F, G). The mean value of three independent 

measurements (n=3) and the respective SDs are shown.  

Roles of LHCBM4/6/8 in stabilizing LHCSR3 

Differences in NPQ induction could be related to a different accumulation of LHCSR1-

LHCSR3, since LHCSR proteins are essential for triggering NPQ in C. reinhardtii 

(Peers et al., 2009; Bonente et al., 2011; Bonente et al., 2012). The accumulation of 

LHCSR proteins was thus investigated by immunoblot analysis in samples grown in 

high light, yielding a slightly lower level of LHCSR3 in all knock-down strains as 

compared to wild type (Figure 8C, E), suggesting a possible role of LHCBM4/6/8 in 

stabilizing LHCSR3 in thylakoid membranes. LHCBM1 has been suggested to be 

partner for LHCSR3 since its depletion in the npq5 mutant caused a strong reduction in 

NPQ activity (Elrad et al., 2002; Peers et al., 2009; Bonente et al., 2011). The LHCBM1 

level was measured by immunoblot analysis in the knock-down samples grown in high 

light, showing no significant difference as compared to the wild type (Figure 8C, E). As 

reported in Supplementary data, Figure S8, a positive linear correlation was found 

between the LHCBM4/6/8 accumulation and NPQ activation, but only for NPQ values 

>0.6. In contrast, no such linear correlation was found between NPQ induction and 

LHCBM1 or LHCSR accumulation, suggesting that the NPQ phenotype observed in 

silenced strains was specifically related to LHCBM4/6/8 subunits. The potential role of 

LHCBM4/6/8 as binding site for LHCSR protein was then investigated by 2D 

electrophoresis on CN-SDS PAGE of solubilized thylakoids from samples grown in high 

light conditions (Supplementary data, Figure S9) coupled with immunoblot analysis 

using antibodies directed to PSI and PSII core subunits (PsaA, CP43) and to antenna 

components (LHCBM4/68 and LHCSR). In all clones the LHCSR protein was detected 

with mobility corresponding to that of monomeric LHC proteins or higher. The 

appearance of LHCSR signals at high apparent molecular weight in CN-PAGE, although 

weak, suggests formation of oligomers and or interactions with other thylakoid 

components (Bonente et al., 2011; Tokutsu and Minagawa, 2013; Xue et al., 2015). It 

should be noticed that the LHCSR-specific reaction was very weak at the mobility 

corresponding to LHCII trimers, inconsistent with the presence of LHC heterotrimers 
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including LHCSR3. We cannot exclude, however, the formation of LHCSR3 

homodimers or heterodimers with other LHC subunits, which might then interact with 

PSI and/or PSII supercomplexes. The distribution patterns of LHCSR3 and 

LHCBM4/6/8 in CN-PAGE were different in each strain investigated. Moreover, 

LHCBM4/6/8 strong reduction observed in L_468 strain did not significantly influence 

the LHCSR3 distribution compared with the wild type; these results suggest that 

LHCBM4/6/8 and LHCSR1/3 do not form stable interactions with each-other.  

Roles of LHCBM4/6/8 in stress defense 

In order to investigate further the role of LHCBM4/6/8 in stress defense, the production 

of singlet oxygen (1O2) was measured (Figure 9). 
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Figure 9. Singlet oxygen (1O2) 

production in knock-down strains 

grown. Singlet oxygen production 

was measured in cells grown in 

control light (A) or high light (B) 

conditions upon exposure to red 

light at 840 µmol photons m-2 s-1 

following the increase of the 530 

nm fluorescence of the specific 

probe Singlet Oxygen Sensor Green 

(SOSG). SDs are reported for each 

sample (n=3). 

1O2 is produced from the reaction of molecular oxygen with chlorophyll triplet excited 

states and the which accumulate when the rate of excitation energy quenching is 

exceeded. 1O2 production was measured by using a specific probe, SOSG, which 

increases its fluorescence at 530 nm proportionally to the accumulation of 1O2 (Flors et 

al., 2006). Cells acclimated in low light (60 µmol photons m-2 s-1) and in high light (400 

µmol photons m-2 s-1) conditions were incubated in presence of SOSG and excited by a 

red (680 nm) light at 840 µmol photons m-2 s-1. 1O2 production was higher in the strains 

acclimated in low light than in high light, suggesting that the growth in high light 

activates several photoprotective mechanisms decreasing photo-oxidative stress, in 

agreement with previous reports (Baroli et al., 2003; Bonente et al., 2012; Allorent et 

al., 2013). Increased 1O2 production was observed in knock-down strains acclimated to 

both low and high light as compared to the wild type. In particular, strain L_468 showed 
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the highest 1O2 production both in control light and in high light. These observations 

suggest a role of LHCBM4/6/8 in the mechanism of acclimation to high light conditions 

and photoprotection. One of the processes activated upon high light exposure is the 

xanthophyll cycle, during which violaxanthin is converted to zeaxanthin and 

anteraxanthin. The xanthophyll cycle activity can be estimated from the de-epoxidation 

index (DI), calculated as: 

(zeaxanthin+0.5*anteraxanthin)/(violaxanthin+zeaxanthin+anteraxanthin). A high DI 

was generally observed in high light-acclimated cells (Bonente et al., 2012). Upon high 

light acclimation, a lower DI was observed in the silenced strains compared to the wild 

type (Table 2). This result suggests that the violaxanthin bound by LHCBM4/6/8 

proteins can be more easily de-epoxidated to zeaxanthin as compared to the violaxanthin 

bound by other LHC proteins. The reduced DI observed in silenced strains in high light 

compared to the wild type could be related to the higher singlet oxygen production 

observed in these strains due to the high efficiency of zeaxanthin in scavenging ROS 

(Havaux and Niyogi, 1999).  

 

Table 2. Pigment profiling of knock-down strains grown in control light (CL) and high light (HL). Pigment 

amounts quantified by HPLC are normalized on 100 Chl 

Discussion 

LHCBM gene family is composed of nine members, which are highly similar to each 

other. The functional roles of LHCBM1, LHCBM2/7 and LHCBM9 have been 

previously described: LHCBM1 was reported to be involved in NPQ induction, while 

LHCBM2/7 in state transitions induction (Elrad et al., 2002; Ferrante et al., 2012). The 

LHCBM9 subunit was found to accumulate in stressing conditions only and was 

accompanied by an increased photoprotection activity (Nguyen et al., 2008), as shown 

by the stabilization of both PSII supercomplexes and LHCII trimers (Grewe et al., 

2014). Little information was yet available for the remaining LHCBM subunits: 
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combined silencing of LHCBM1, LHCBM2 and LHCBM3 was reported to increase 

light-driven hydrogen production (Oey et al., 2013). Recently LHCBM1, LHCBM2/7 

and LHCBM3 were demonstrated to be the major components of the heterotrimers 

bound to PSII supercomplexes, while LHCBM5 was suggested to be mainly located in 

the “extra” LHCIIs which are not tightly connected to the PSII core complex (Drop et 

al., 2014a). In agreement with these findings, LHCBM5 has been reported to be 

phosphorylated by STT7 kinase and was found in a complex with PSI upon state 2 

induction (Takahashi et al., 2006). It should be noted that, besides LHCBM5, also 

LHCBM1, LHCBM3, LHCBM4, LHCBM6, LHCBM8 and LHCBM9 can be 

phosphorylated by STT7, and all the different types of LHCBMs together with CP26 and 

CP29 were found in the PSI-LHCII supercomplex, even in non-phosphorylated form 

(Lemeille et al., 2009; Drop et al., 2014b). In this work we analyzed the functional role 

of LHCBM4, LHCBM6 and LHCBM8 subunits, which belong to the same sub-family 

and share high identity (Figure 1). The biochemical and spectroscopic features of 

LHCBM4 and LHCBM6 subunits were first analyzed in vitro and their physiological 

function was then studied in vivo by a reverse genetic approach obtaining strains 

silencing LHCBM4 and LHCBM6 (L6_A and L6_B) or the LHCBM4/6/8 (L_468) genes 

together. Pigment binding properties of LHCBM4 and LHCBM6 (Table 3) were 

comparable to those previously reported for other LHCBM proteins (Grewe et al., 2014; 

Natali and Croce, 2015).  

 

Table 3. HPLC analysis of pigments content in the recombinant and reconstituted LHCBM proteins LHCBM1, 

LHCBM2, LHCBM4 and LHCBM6. The numbers of each pigments are expressed in picomole and normalized 

to 14 chlorophylls (the amount of chlorophylls putatively bound by one LHCII monomer. 

An important property was their low fluorescence yield, consistently measured for both 

LHCBM4 and LHCBM6 as compared to LHCBM2 (Figure 2). Since fluorescence yield 

is modulated by the activity of the concurrent heat dissipation channel, it can be 

concluded that LHCBM4 and LHCBM6 are characterized by higher quenching activity 

compared to LHCBM2, but comparable to LHCBM1, the LHCBM subunit with the 
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lowest fluorescence quantum yield (Elrad et al., 2002; Grewe et al., 2014; Natali and 

Croce, 2015). The reverse genetic experiments reported here were aimed to understand 

how the biochemical/biophysical properties of the individual gene products are 

translated into a functional role when integrated into thylakoid membranes. Analysis of 

selected knock-down strains showed that amiRNA silencing was effective in reducing 

the level of gene products in vivo (Figure 4). The levels of LHCBM4/6/8 subunits were 

reduced on a chlorophyll basis in knock-down strains, especially in the case of L_468 

(Figure 3). Although the amiRNA silencing showed minor untargeted effect on other 

LHCBM genes, the overall stoichiometry of LHCII proteins per PSII was not 

significantly reduced in knock-down strains (Figure 4). LHCBM6 accumulation, in has 

been reported to be controlled by the translation repressor NAB1, which is accumulated 

under CO2 deficiency, inducing an overall reduction in LHCII content and functional 

antenna size of PSII when cells are grown in absence of CO2 (Berger et al., 2014). The 

similar LHCII per PSII stoichiometry and the similar PSII antenna size observed in 

silencing strains in this work suggest that the translational control of NAB1is likely not 

limited to LHCBM6 but involves other LHCBM subunits as well. In C. reinhardtii, PSII 

supercomplexes have been reported to have a larger capacity to bind LHCII trimers 

compared to higher plants, their antenna moiety in supercomplexes constituted by at 

least six LHCII trimers in the C2S2M2N2 conformation, compared to the four LHCII 

trimers observed in A. thaliana (C2S2M2) (Drop et al., 2014a). In addition, a pool of 

“extra” LHCII was identified in C. reinhardtii, constituting LHCII-only domains in the 

thylakoid membranes, possibly acting as a buffer for state transitions. 

The results obtained by 2D CN-SDS-PAGE showed that LHCBM4/6/8 contribute to 

form monomeric and trimeric LHC bands or to PSII supercomplexes of different sizes. 

This evidence suggests that LHCBM4/6/8 can be part of –S, –M or -N trimers. 

Nevertheless, their enrichment in supercomplexes was low, and most of LHBCM4/6/8 

was found in the “free LHCII” pool (Supplementary data, Figure S6). In agreement with 

this finding, PSII antenna size was essentially unaffected by LHCBM4/6/8 gene 

silencing. LHCII trimers free in the thylakoid membrane are suggested to be bound to 

PSI or forming LHCII-only domains (Nagy et al., 2014; Ünlü et al., 2014). When wild-

type and knock-down strains were forced to undergo transition to state 2, the PSII 

fluorescence emission was similarly reduced in wild-type and knock-down strains, while 

the increase of PSI fluorescence emission, detectable at 77K, was significantly smaller in 



 

107 

 

knock-down strains compared to the wild type, indicating a reduced level of LHCII-PSI 

interaction. On this basis we suggest that LHCBM4/6/8 are located in sub-stoichiometric 

amount in –S, –M or -N trimers, while the majority of these subunits are located free in 

the membrane, with the latter participating to state transitions, (i.e. migrating to PSI 

upon state 2 induction). The same conclusion can be extended to the other LHCII 

subunits forming heterotrimes with LHCBM4/6/8.  

The down-regulation of LHCBM4/6/8 protein was correlated with a decrease in the 

amplitude of NPQ activity (Figure 8, Table 1, Figure S8). The high sequence identity of 

LHCBM4, LHCBM6 and LHCBM8 suggests that these proteins have similar functions, 

acting co-operatively, in the energy dissipative mechanisms. How do LHCBM4/6/8 

contribute to NPQ is not clear. One possibility is that they are docking site(s) for the 

interaction of PSII antenna system with LHCSR3, which, owing to its short fluorescence 

lifetime upon lumen acidification, could act as the site for energy dissipation (Peers et 

al., 2009; Bonente et al., 2011; Liguori et al., 2013; Tokutsu and Minagawa, 2013). 

Alternatively, it is possible that quenching sites are formed not only within LHCSR1/3 

proteins but also in the interacting LHC subunits induced to switch to a dissipative 

conformation by the interaction with LHCSR proteins, in a mechanism similar to what 

was previously proposed for the PSBS-dependent quenching in higher plants (Bonente et 

al., 2008). While the present data do not allow to distinguish between these hypotheses, 

the interaction between LHCSR3 and other pigment proteins appears to be very weak, at 

least in the fractionation conditions explored here. Indeed, the LHCSR distribution was 

not affected in knockdown strains, (Supplementary data, Figure S9). Thus, it is unlikely 

that LHCSR3 might form stable hetero-oligomers with LHCBM4/6/8. It is, however, 

possible that the relative abundance of high versus low fluorescence yield LHCM 

subunits might serve in the fine-tuning of antenna system during long-term acclimation 

consistent, with the recent results with LHCBM9 (Grewe et al., 2014) and with the 

LHCII populations with different quenching properties detected in vivo (Tian et al., 

2015), rather than on the light induced short term NPQ mechanism. A role of 

LHCBM4/6/8 in the formation of quenched LHCII domains is also consistent with the 

higher level of singlet oxygen in knock-down strains compared with the wild type 

(Figure 9) during growth in both control and high light conditions. The level of ROS 

produced upon light exposure in pigment–protein antennas depends on the level of 

chlorophyll singlet excited states, the conversion yield into triplets, and the ROS 
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scavenging activity of xanthophylls (Ballottari et al., 2013; Croce et al., 1999b; Niyogi, 

1999). Certainly, the reduced capacity for NPQ is likely to contribute to ROS synthesis 

in excess light conditions (Ferrante et al., 2012). However, differences in ROS-

scavenging activity cannot be excluded, especially considering the decrease of the de-

epoxidation index measured in these strains (Table 2). Indeed, zeaxanthin has been 

involved in singlet chlorophyll excited states (Dall'Osto et al., 2005), quenching of 

triplet chlorophyll excited states quenching (Dall'osto et al., 2012) and ROS scavenging 

(Havaux et al., 2004). Interestingly, while singlet oxygen production in high light-

acclimated cells was generally lower, this was not the case in the L_468 strain, whose 

high light-acclimated cells produced levels of singlet oxygen comparable with cells 

receiving light. These results, together with the reduced LHCSR3 accumulation and 

reduced de-epoxidation index in the L_468 strain suggests that the reduction in level of 

the LHCBM4/6/8 proteins impairs the mechanisms of acclimation to high light.  

We conclude that LHCBM4, LHCBM6 and LHCBM8, rather than having an essential 

function in photon capture, are likely to be involved in photoprotective mechanisms with 

a specific function within a pool of LHCII proteins free or very loosely connected to the 

PSII supercomplex. Beside their interest for the understanding of basic properties of 

light harvesting systems, these results will also be instrumental in designing 

domesticated strains of unicellular algae for optimal growth in photobioreactors by 

modulating the accumulation of specific members of the antenna system in order to 

improve either light harvesting, the photoprotection response or both. 
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Supplementary data 

Table S1: Nucleotide sequence of the primers used for RT-PCR analysis  

Primers used for RT-PCR analysis on LHCBM1-9, RBCS2 (RIBULOSE-1,5-BISPHOSPHATE 

CARBOXYLASE SMALL-SUBUNIT) and CBLP (G-PROTEIN BETA SUBUNIT-LIKE POLYPEPTIDE) genes. 
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Table S2: Nucleotide sequence of the amiRNAs used and position on LHCBM4, LHCBM6 and 

LHCBM8 mRNAs.  

Two different amiRNAs (LHCBM6A and LHCBM6B) were designed for silencing LHCBM6 gene while four 

different amiRNAs were designed for the simultaneous silencing of LHCBM4, LHCBM6 and LHCBM8 genes 

but just one (indicated in the Table) was effective in silencing the three selected genes. Hybridization energy 

between the amiRNA and its target is expressed as kcal/mole. The position of the mismatches is indicated in 

brackets and is relative to the reverse complement sequence of the amiRNA starting from the 5’ nucleotide. 

The schematic position of the amiRNAs on the LHCBM mRNAs is shown in Figure S3. 

Target amiRNA amiRNA sequence Position on mRNA Hybridization 

energy 

Mismatc

hes 

LHCBM6 LHCBM6A TTTGGAATGGGCTC

TCCCCTA 

 

3’UTR (1516-1536)  

 

-41,31 1 (6) 

LHCBM6 LHCBM6B TAAGTGACCCAGGA

CAGGCAT 

 

5’UTR (324-344) -40,99 2 (7 and 

21) 

LHCBM4+6

+8 

LHCBM4+6

+8 

TAACTCAACGCCAG

AGGTCTT 

 

CDS (117-137 for LHCBM4; 

543-563 for LHCBM6; 127-

147 for LHCBM8) 

-38.71 2 (5 and 

21) 

Figure S1: Fluorescence emission spectra of refolded recombinant LHCBM proteins.  

Pigments connectivity on recombinant proteins refolded in vitro was evaluated by measuring the fluorescence 

emission spectra upon excitation of chlorophyll a (440nm), chlorophyll b (475 nm) and carotenoids (500 nm). 

Panel A: LHCBM1. Panel B: LHCBM2. Panel C: LHCBM4. Panel D: LHCBM6. 
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Figure S2. Evaluation of α-LHCII and α-LHCBM6 antibody cross reactivity. 

 α-LHCII and α-LHCBM6 antibodies were tested for their cross-reactivity against different LHCBM and CP26 

and CP29 subunits. Recombinant LHCBM1, LHCBM2, LHCBM3, LHCBM4, LHCBM5, LHCBM6, LHCBM9, 

CP26 and CP29 apoproteins were overexpressed in E. coli and purified as inclusion bodies. 7µg of each 

apoproteins were loaded on SDS-PAGE gel for western blot analysis. Panel A and C reports the Red ponceau 

staining of filter used for immunoblotting. Panel B and D report the result of immunoblotting analysis using 

the antibody α-LHCII (Panel B) and α-LHCBM6 (Panel D). 

 

Figure S3 Determination of LHCBM4/6/8 abundance in thylakoid membrane.  

The amount of LHCBM4/6/8 in thylakoid membranes was evaluated by immunoblotting reactions using the 

recombinant LHCBM4 or LHCBM6 proteins as reference. For comparison the same procedure was applied 

for LHCBM1 and total LHCII trimers using recombinant LHCBM1 and native LHCII purified from thylakoid 

membranes as reference. Panel A: immunoblotting reactions with the indication of the µg of chlorophylls 

(Chls) loaded in each lane. Panel B: amount of LHCII, LHCBM1 and LHCBM4/6/8 in thylakoid membranes 

expressed as the ratio between µg of Chls bound by LHC proteins per µg of Chls in thylakoid membranes. The 

determination of LHCBM4/6/8 amount was calculated using LHCBM4 (a) or LHCBM6 (b) as reference. Error 

bars indicate standard deviation (n=3). 

 
 

 

Figure S4 - Schematic maps of the constructs used.  

A) Silencing cassette in the pChlamyRNA3 vector. This vector was engineered to express a 21 nucleotide 

silencing RNA. The PSAD promoter and terminator control the rate of amiRNA transcription. Two amiRNAs 
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(LCBM6A and LHCBM6B) were designed to silence LHCBM6 gene. One amiRNA (LHCBM4+6+8) of the 

four designed was effective in triggering silencing of LHCBM4, LHCBM6 and LHCBM8 genes. B), C) and D) 

Target regions of the amiRNAs on LHCBM4 (Panel B), LHCBM6 (Panel C) and LHCBM8 mRNAs (Panel D). 

For details on the amiRNAs sequence and features, see Table S1. 

 

Figure S5: Determination of LHCBM mRNA level in WT and knock down strains. 

mRNA level was quantified through quantitative Real Time RT-PCR on RNA extracts from cells of WT and 

knock down strains grown in minimal medium (HS) in control light condition. The amount of LHCBM mRNA 

level is expressed as a ratio with the mRNA of RBCS2 mRNA (ribulose -1, 5 - bisphosphate 

carboxylase/oxygenase small subunit 1 gene). 
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Figure S6. Chlorophylls, Photosystems and LHC distribution in 2D-PAGE.  

The distribution of chlorophylls in CN-PAGE as Integrated Optical Density (IOD) is reported on the top of the 

figure. The distribution of immunoblot signal of PsaA, CP43, LHCII and LHCBM4/6/8 on 2D-PAGE is 

reported as IOD.  The main composition of CN-PAGE spot is indicated on the base of immunoblot results. 

 

Figure S7. Fluorescence emission spectra at 77K of whole cells induced to state 1 or state 2. 

C. reinhardtii cells were induced to state 1 or state 2 as described in the methods section. The 77K florescence 

emission in state 1 and state 2 were normalized to the 686 nm peak, related to PSII emission. The stt7 mutant 

was included as negative control. 
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Figure S8. Correlation of NPQ values with LHCBM4/6/8, LHCBM1 or LHCSR content per 

PSII.  

NPQ values measured for WT and silencing strains reported in Figure 8C were plotted as function of 

LHCBM4-6-8 (Panel A), LHCBM1 (Panel B) or LHCSR (Panel C) content per PSII calculated on the base of 

the western blot analysis reported in Figure 8D-E. Linear regression is reported for Panel A data, with 

Adjusted R2 value of 0.84. Linear regression for data reported in Panel B or C was not successful with 

Adjusted R2 values of 0.62 and -0.19 respectively. 

 

Figure S9. Analysis of the distribution of LHCBM4/6/8 and LHCSR3 protein in the thylakoids 

membrane by 2-D electrophoresis and immunoblotting.  

Thylakoid membranes of knock-down strains acclimated to high light (400 µmol m-2s-1), were solubilized with 

1% of dodecyl-maltoside (α-DM) and separated by a CN-PAGE followed by a second dimension separation by 

SDS-PAGE. Immunoblot detections of LHCSR (antibody α-LHCSR), LHCBM4/6/8 (antibody α-LHCBM6), PSI 

and PSII (antibody α-CP43) are reported. 

 



 

117 

 

 

 

 

 

 

 

 

4.Chapter II 

Photosynthetic adaptation to stress in 

commercial algae species 

 

 

 

 

 

 



 

118 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

119 

 

Section A 

Chlorella vulgaris genome assembly and annotation 

reveal horizontal gene transfer from chloroplast to 

mitochondrial genomes and novel lipid biosynthetic 

pathways in the green lineage3 

in this work we present the Chlorella vulgaris 211/11P nuclear and organelle genomes. 

Chorella vulgaris genome assembly was obtained by combining next generation 

sequencing and optical mapping of isolated DNA molecules. RNAseq data obtained in 

low or high light growth were used for genome functional annotation. Nuclear genome 

was assembled in 14 pseudo-molecules identifying 10746 genes with 11135 transcripts 

with the highest values of scaffolded genome and N50 compared to other green algal 

genomes. Functional annotation of nuclear, chloroplast and mitochondrial genome 

sequences highlighted peculiar features of Chlorella vulgaris previously unknown. 

Horizontal gene transfer from chloroplast to mitochondrial genome was observed and a 

single large gene encoding for a fungal/animal-like fatty-acid-synthase type I multi-

subunit complex was revealed, which was not previously reported in the green lineage. 

Genes involved in motility and sexual reproduction were also identified. This knowledge 

will be useful in setting up genetic tools for biotechnological manipulation of Chorella 

vulgaris or for improving the productivity of other microalgae species. 

 

In this work I’ve performed the experiments regarding the physiological 

characterization. 

Abbreviations: CTAB, Cetyltrimethyl ammonium bromide; SMRT, Single-Molecule Real-Time; PFGE, Pulse-

Field-Electrophoresis; SNVs, Single-Nucleotide Variants; GO, Gene Ontology; PSI/II, Photosystem I/II; NPQ, 

Non-Photochemical Quenching; LHC, Light Harvesting Complex; 

 

3This section is based on the submeetted manuscript: Cecchin M, Marcolungo L, Rossato M, 

Girolomoni L, Cosentino E, Cuine S, Li-Beisson Y, Delledonne M, Ballottari M. Chlorella 

vulgaris genome assembly and annotation reveal horizontal gene transfer from chloroplast to 

mitochondrial genomes and novel lipid biosynthetic pathways in the green lineage. 
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Introduction 

Photosynthetic conversion of light energy into chemical energy for CO2 fixation is the 

primary process for biomass production in our planet. Photosynthetic derived products 

are not only the base of fossil fuels, nowadays used as the main energy sources for our 

society, but also potential sources of renewable biofuels. The improvement of 

photosynthetic biomass production is thus critical to meet the world demand for food 

and energy (Ort et al., 2015). The improvement of photosynthetic efficiency is thus one 

of the major goals to increase biomass production (Ort et al., 2015; Berteotti et al., 2016; 

Kromdijk et al., 2016; Kirst et al., 2017). Among the organisms with the highest 

photosynthetic efficiency observed in real cultivation cases, microalgae scored 

efficiencies of 1-3%: although this is still significantly lower compared to their 

maximum potential of 9-11% (Walker, 2009), it highlighted the potential of microalgae 

for further improvement. In addition, unicellular microalgae are extremely interesting for 

biomass, food or biofuel production, since they can be cultivated in open ponds or in 

closed photobioreactors in none-arable land and in presence of waste products and 

wastewater-derived effluents as nutrients (Lum et al., 2013). Biotechnological 

manipulation of microalgae in order to further boost biomass and metabolite productivity 

require however the availability of high-quality genomes and transcriptomes (Merchant 

et al., 2007; Radakovits et al., 2012; Vieler et al., 2012; Ajjawi et al., 2017; Roth et al., 

2017). This is especially critical considering the newly developed technology of genome 

editing methods (Naduthodi et al., 2018). Among the many candidates of algal strains 

for biotechnological applications, a genus of considerable interest is Chlorella (Blanc et 

al., 2010; Eckardt, 2010; Juneja et al., 2016; Zuniga et al., 2016; Sarayloo et al., 2017; 

Arriola et al., 2018). Several species of Chlorella have been proposed or used 

commercially over the past 40 years as a food and feed supplement for their fast growth 

and their high resistance to biotic and abiotic stresses (Lum et al., 2013). Chlorella 

vulgaris is one of the most cultivated species at industrial level due to the high biomass 

yield and the possibility to grow either in autotrophic or mixotrophic conditions, in the 

latter case with the addition of reduced carbon source to further improve the biomass 

yield (Lv et al., 2010; Zuniga et al., 2016). The genome resources available for 

microalgae species in the Chlorella genus are however limited, with only few species 

having a genome available (Blanc et al., 2010; Eckardt, 2010; Blanc et al., 2012; Gao et 
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al., 2014; Roth et al., 2017; Arriola et al., 2018; Guarnieri et al., 2018), leading in some 

cases to a different classification of the species analyzed (Darienko et al., 2015). In the 

specific case of C. vulgaris, a fragmented genome of 113 scaffolds has been recently 

reported (Guarnieri et al., 2018), which jeopardize an effective implementation of 

genome editing methods. Indeed, the reported C. vulgaris genome has been obtained 

only based on short-reads produced with Illumina sequencing, whose assembly is 

challenging and error-prone (Yoshinaga et al., 2018). Moreover several questions 

remained unsolved, such as the presence of genes involved in sexual reproduction 

(Merchant et al., 2007; Blanc et al., 2010; Roth et al., 2017) or the molecular basis for 

fatty acid biosynthesis (Vieler et al., 2012; Alboresi et al., 2016). In this work, in order 

to fully unravel the genetic information underlying C. vulgaris features, a combination 

of different sequencing technologies and optical mapping led to the reconstruction at 

nearly-chromosome level of the nuclear, chloroplast and mitochondrial genomes of C. 

vulgaris strain 211/11P as well as their functional annotation with the help of 

comparative RNA-seq analyses of strains grown under two most encountered conditions 

i.e. low light versus high light. 

Materials and methods 

Chlorella vulgaris cultivation 

C. vulgaris (CCAP211/11P) cells were grown at 25°C in flask in the air with a white 

light in low (70 µmol m-2 s-1) or high (1000 µmol m-2 s-1) light with a 16h light 8h dark 

photoperiod photoautotrophically in BG-11 medium (Allen & Stanier, 1968). 

Lipid, proteins and starch analysis 

Considering the possession of a strong cell wall, Cells of C. vulgaris were first sonicated 

three times in a solution containing (1 ml EDTA 1 mM and acetic acid 0.15M). 

Sonicated cells were extracted following the method of Bligh and Dyer (BLIGH & 

DYER, 1959). Total lipid extracts were separated on thin layer chromatography and 

quantified for neutral or polar lipid content based on densitometry and the comparison to 

known amount of lipid standards (Siaut et al., 2011). Proteins and starch content was 

analyzed in the harvested biomass as reported in (Cecchin et al., 2018). 
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DNA extraction and quality control 

DNA was extracted starting from 500 ml of a C. vulgaris liquid cultures with a cell 

density of 5x107 cell/ml using the CTAB (Cetyltrimethyl ammonium bromide) 

extraction buffer. Extracted DNA was treated with 200 ug/ml RNAase A at 37°C for 20 

min and subsequently purified with 1,8X AMpureXP beads (Agencourt). DNA purity 

and integrity were assessed at the Nanodrop 1000 spectrophotometer (Thermo 

Scientific) and by capillary electrophoresis on a 2200 TapeStation (Agilent 

Technologies), respectively. DNA quantification was performed with the Qubit dsDNA 

HS Assay kit (Life Technologies).  

Illumina sequencing 

DNA (500 ng) was fragmented by sonication using a Covaris S220 (Covaris) and 

DNAseq libraries were generated using the Truseq DNA kit according to manufacturer’s 

instruction (Illumina). Library length was assessed by capillary electrophoresis on a 

2200 TapeStation (Agilent Technologies) and quantified by qPCR using primers 

annealing on the adapter sequences. DNAseq libraries were sequenced on an Illumina 

HiSeq1000 platform generating 100bp paired-end reads for a total of 2.5 Gb. 

PacBio sequencing 

Genomic DNA (16 µg) was used for the preparation of two independent single-molecule 

real-time (SMRT) bell libraries according to the manufacturer’s protocol (Pacific 

Biosciences; 20-kb template preparation using BluePippin (SageScience) size selection 

system with a 15-kb cut-off). Sequencing was performed at the Earlham Institute 

(Norwich, UK) on a PacBio RS-II platform (Pacific Biosciences, CA, USA) generating 

6.4 Gb of SMRT data using PacBio P6-C4 chemistry. 

BioNano Genome Mapping 

High-molecular-weight DNA was extracted from the pellet of 2 L of cell culture with 

Optical Density750= 5.3 corresponding approximately to a total of 3 grams. Cell wall was 

destroyed by grinding homogenization in liquid nitrogen. The grinded smoothie was 

resuspended in IrysPrep Plant Homogenization Buffer (Bionano Genomics) 

supplemented with 0,2% beta-mercaptoethanol and 1mM spermine-spermidine (HB+) 

and filtered through a 40 µm cell strainer. Nuclei were collected by centrifugation at 
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4500g for 20 min at 4°C. A centrifugation at 60g for 2 min at 4°C was used to remove 

debris, while nuclei were collected from the supernatant (3500g for 20min at 4°C). 

Nuclei were further purified by centrifugation over the IrysPrep Density Gradient 

(Bionano Genomics) at 4500g for 40 min at 4°C. Nuclei band (white layer) was 

collected from the gradient interphase and washed two times in HB+ and collected by 

centrifugation at 2500g for 20 min. Only the nuclei pellet (white band) was collected 

with a wide bore tip and carried on for washing after each centrifugation step. Nuclei 

were embedded in agarose plugs and high-molecular weight DNA was extracted as 

described by (Staňková et al., 2016). The Mega-base size of extracted DNA was verified 

by Pulse-Field-Electrophoresis (PFGE). DNA (300 ng) was labeled and stained using the 

Nt.BspQI nicking endonuclease in combination with the –NLRS DNA labeling kit 

(Bionano Genomics). The nicked and labeled DNA was then loaded onto an IrysChip for 

imaging on the Irys system (BioNano Genomics) for a total of 3 run for 30 cycles in 1 

flow cell. Molecules of <150 kb in length, label SNR < 2.75, label intensity > 0.6 and 

having less than 20 labels were removed. Bionano data were assembled into consensus 

genome maps using the BioNano Solve pipeline (v5678.6119rel) with RefAligner 

(v.6119). 

Genome Assembly 

C. vulgaris genome was assembled using FALCON (Chin et al., 2016) v1.8.7. A second 

assembly run was performed using those 12% of PacBio subreads that did not align on 

the first assembly, applying more relaxed parameters. The two assemblies were merged. 

PacBio subreads were aligned to the assembly using pbalign (v0.2.0.138342) and then 

GenomicConsensus package (v0.9.2) with Quiver algorithm was used to remove errors 

present in the consensus sequences. To further improve the genome quality a second 

polishing iteration was performed using the Illumina data, reads were aligned using 

BWA-MEM (0.7.15-r1140) and then we used Pilon (v1.22) to correct errors.  

Hybrid assembly combining polished PacBio assembly with the Optical map was 

performed with the Bionano Solve Pipeline (v5678.6119rel), RefAligner (v.6119) using 

a merging-step P-Value of 1e-11 and a “Min alignment length and Max endoutlier” 

parameter of 80. 
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Organelle genome assembly 

The Organelle genomes were assembled using Organelle_PBA pipeline (Soorni et al., 

2017). The sequences were then polished following the same approach used for the 

nuclear genome. The circularity was verified using an in-house developed script. The 

alignment between Falcon assembly and the organelle genomes was performed using 

blastn (v2.6.0). Those PacBio contig aligning to organelle genome with a similarity at 

least of 99% were manually removed. 

RNA extraction and RNA-seq analysis 

RNA was extracted from 500 ml of a C. vulgaris liquid cultures with a cell density of 

7x107 cell/ml. RNA quality and quantity were determined using a Nanodrop 2000 

spectrophotometer (Thermo Scientific, Wilmington, DE) and a Bioanalyzer Chip RNA 

7500 series II (Agilent, Santa Clara, CA), respectively. Directional RNA-seq library 

preparation was performed starting from 1 ug total RNA using the TruSeq RNA Sample 

Prep Kit v2 (Illumina Inc., San Diego, CA, USA) after capturing poly-adenylated 

transcripts. Library quality was assessed with a High Sensitivity DNA Kit on a 2200 

Tape Station (Agilent, Wokingham, UK) and quantification of libraries was performed 

by qPCR using primers annealing on the adapter sequences. Libraries were sequenced 

with an Illumina NextSeq500 sequencer (Illumina Inc., San Diego, CA, USA) generating 

~22 million 75bp paired-end reads per sample.  

Gene annotation 

Gene annotation of the nuclear genome was performed using the unsupervised RNAseq-

based BRAKER1 pipeline, which takes advantage of two gene predictors: GeneMark-ET 

4.32 and AUGUSTUS 3.0.3 (Specht et al., 2011). Briefly, both RNA-seq data from the 

two different growth conditions, low light and high light, were used for the annotation. 

Quality of reads obtained from each sample was assessed using FastQC software 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and reads with more than 

10% of undetermined bases or more than 50 bases with a quality score <7 were 

discarded. Reads were then clipped from adapter sequences using Scythe software 

version 0.980 (https://github.com/vsbuffalo/scythe), and low-quality ends (Q score <20 

on a 10-nt window) were trimmed with Sickle version 0.940 

(https://github.com/vsbuffalo/sickle). The two RNAseq data above-mentioned were 
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merged and the alignment of reads to the assembled genome was performed using 

HISAT2 (https://ccb.jhu.edu/software/hisat2/index.shtml) version 2.0.1. Finally, the 

aligned RNA-seq reads were used as input for the BRAKER1 pipeline. Nuclear protein-

coding genes were identified as beginning with a start codon (ATG) and ending with a 

stop codon (TAA, TGA, TAG). The quality and completeness of transcriptome was 

evaluated using BUSCO (Benchmarking Universal Single-Copy Orthologs, 

http://busco.ezlab.org/)(Simão et al., 2015).  

The web application GeSeq was used for the annotation of the organelle genomes with 

default parameters plus the tRNAscan-SE activated and selecting Chlamydomonas 

reinhardtii in the NCBI RefSeq database. Some genes were also manually curated based 

on RNAseq mapped reads. 

Differential expression analysis 

RNA-seq data were filtered as described in the previous section and aligned to the 

assembled reference genome with HISAT2 (v2.0.1). Differential expression analysis 

between the two growth conditions was conducted with DESeq2 (v 1.16.1) using the 

gene annotation generated. 

Transcriptome functional annotation 

Transcriptome functional annotation was performed by Blast2Go platform on the basis 

of the NCBI’s RefSeq database (Conesa et al., 2005). Annotated sequences were 

analyzed by KAAS (KEGG Automatic Annotation Server) platform to obtain KO 

annotation (Kanehisa & Goto, 2000; Kanehisa et al., 2016; Kanehisa et al., 2017). 

Transcripts differently expressed with KO annotation were visualized by KEGG Mapper 

platform, while the remaining transcripts functionally annotated were manually 

inspected by retrieving the function of the closest homolog gene. 

Phylogenetic analysis 

Phylogenetic analysis was performed by BUSCO analysis as previously reported 

(Waterhouse et al., 2017). In particular, 111 single copy genes shared with other species 

which genome is available were used for protein alignment and phylogenetic tree 

construction. BUSCO 3.0.2 with the eukaryota_odb9 database and the genome of each 

species Chlorella vulgaris, Chlorella protothecoides sp0710, Chlorella variabilis 

http://busco.ezlab.org/
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NC64A, Coccomyxa subellipsoidae, Chlamydomonas reinhardtii, Volvox carteri, 

Chromochloris zofingiensis, Arabidopsis thaliana, Micromonas pusilla CCMP1545, 

Ostreococcus tauri were used in order to identify the single-copy orthologous genes. Of 

these only those shared between the ten species were selected. For each protein a 

multiple alignment was performed among the species with MUSCLE 3.8.31 and then the 

alignments were concatenated. The tree was built using the web application Phylogeny.fr 

running PhyMl and TreeDyn for the construction and the visualization, respectively. 

Subcellular localization prediction 

Subcellular localization prediction was performed by using PredAlgo tool as previously 

described (Tardif et al., 2012). 

Data availability / Accession Numbers 

The project of C. vulgaris genome sequencing is registered at NCBI under BioProject 

accession PRJNA495479. The genome assembly and transcriptome data are publicly 

available at NCBI under accession number xxxx and xxxx respectively. The accession 

numbers for the raw PacBio and Illumina reads are SRR8083355-SRR8083370. 

Results 

Chlorella vulgaris growth and biomass production 

C. vulgaris strain 211/11P was grown photoautotrophically in low light (70 µmol m2s-1) 

or in high light (1000 µmol m2s-1) conditions, to evaluate its biomass productivity and 

composition. As shown in Figure 1, in high light the growth curves were faster 

compared to the low light case, reaching a higher cell density. Accordingly, the dry 

weight harvested when cell reached the stationary phase was higher for cells grown in 

high light compared to cell grown in low light. The two-fold increase in biomass 

accumulation observed in high light was mainly related to a strong increase in lipid 

accumulation. In particular, the TAG fraction of the total lipid in the cell was increased 

from 12% in low light to 79% in high light. Starch and protein content per cell were not 

significantly different in low light compared to high light, even if slightly increased in 

the latter. 
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Figure 1. Growth curves, productivity and biomass composition of Chlorella vulgaris in low light compared to 

high light. Panel A: growth curves of Chlorella vulgaris cells grown in low light (LL) and high light (HL) fitted 

by sigmoidal function. Panel B: biomass composition analysis in terms of lipids, proteins and starch. Lipid 

content are indicated as triacylglycerol (TAG) and polar lipids (PL). Panel C: chlorophyll (Chl) content per 

cell in LL and HL. Panel D: dry weight of total biomass harvested at the end of the growth curves reported in 

Panel A. Error bars are reported in terms of standard deviation (n=3). 

Development of a high-quality reference genome sequence of Chlorella vulgaris 

Genome assembly of C. vulgaris strain 211/11P was obtained by integration of different 

genomic approaches displaying complementary features, i.e. PacBio producing long-

reads, Illumina for accurate short-reads and Bionano optical mapping providing high 

scaffolding power. Genome sequencing analysis was conducted considering a genome of 

~50Mb, as in the case of other Chlorella spp. High coverage (~128X) raw PacBio reads 

(Supplementary data, Table S1) were assembled into a draft genome assembly of 

39.8Mb (Supplementary data, Table S2), consisting of 63 contigs with an average contig 

length of 613Kb and N50 of 1.8 Mb. In order to improve the quality of the assembled 

genome, Illumina paired-end reads (~50x, Supplementary data, Table S1), as well as raw 

PacBio reads, were aligned to the PacBio-based assembly to correct sequencing errors: 

2995 single-nucleotide variants (SNVs) and 32631 small insertions and deletions (InDel) 

were corrected, while the remaining 81 SNV and 190 InDel account only for the 
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0.0007% of the reconstructed genome (Supplementary data, Table S3). The resulting 

polished PacBio-based contigs were anchored into a nearly chromosome-scale assembly 

by integrating optical mapping data (~1400X) obtained using the Bionano Genomics 

technology (Supplementary data, Figure S1, Table S1). As reported in Supplementary 

data, Table S1, the integration of Bionano data resulted into a genome assembly where 

26 of the contigs obtained from PacBio data were anchored into 14 scaffolds (Figure 2) 

with an N50 value of 2.8Mb and the longest scaffold of 5.4Mb.  

 

Figure 2. Assembled Chlorella vulgaris CCAP211/11P nuclear genome. Chlorella vulgaris genome was 

assembled in 14 pseudo-molecules on the base of integration of next generation sequencing (NGS) and optical 

maps as described in the main text. The resulting gaps in the assembled genome are reported as white spaces 

in the NGS data. Unplaced contigs are reported representing 1.2% of the Chlorella vulgaris genome. 

These scaffolds contained 98.9% of the assembled C. vulgaris genome, i.e. the highest 

percentage as compared to other algal genomes available (Table 1), while the remaining 

37 unplaced contigs counted only for the <1.11%. Eight unplaced contigs were identified 

by subsequent manual analysis as part of the chloroplast and the mitochondrial genomes 

and they were therefore removed from the nuclear genome assembly. The generated 

assembly represents a greater than 100-fold improvement in contiguity compared with 

the previously published assembly of C. vulgaris (Supplementary data, Table S4) and it 

has the highest N50 among other algal genomes of similar size as Chromochloris 

zofingiensis (Roth et al., 2017) and Chlorella variabilis  (Blanc et al., 2010) (Table 1). 
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Chlorella 

vulgaris 

CCAP211/11P 

Chromochloris 

zofingiensis 

Chlamydomonas 

reinhardtii (v5.5) 

Chlorella 

variabilis 

NC64A 

Nannochloropsis 

gaditana B-31 

Sequenced 

genome size 
40Mbp 57 Mbp 107 Mbp 46.2 Mbp 26.3 Mbp 

Genome 

technologies 

PacBio + 

BioNano + 

Illumina 

PacBio + OpGen 

+ Illumina 

Sanger + 454 + 

BAC + genetic map 

Sanger 

WGS 

454 + SOLiD + 

BAC 

N° scaffold 14 19 17 chromosomes 30 21 

% scaffolded 

genome 
98.9% 95.4% 98.2% 89% 92.2% 

Scaffold N50 2.8Mbp \\ 7Mbp 1.5 Mbp 1 Mbp 

% G+C 61% 51% 64% 67% 54.2% 

N° genes 10903 15274 17741 9791 10646 

Exon average 

length (bp) 
194 291 261 170 449 

Intron average 

Length (bp) 
207 267 269 209 178 

Ave Exons Per 

transcript 
8.12 5 8.5 7.3 2.71 

Table 1. Comparison of Chlorella vulgaris CCAP211/11P genome with other known microalgae genomes. 

Chlorella vulgaris nuclear genome annotation and phylogenetic analysis  

Identification of genes present in the assembled C. vulgaris genome was performed by 

integration of RNAseq data with gene predictions tool. Directional RNAseq data 

obtained from C. vulgaris cells cultivated in low light and high light conditions were 

integrated into the gene annotation pipeline. Conditions of different irradiances were 

selected to extend the range of possible gene expressed. Genome annotation identified 

10903 protein-coding genes, coding for 11262 transcripts with an average length of 

3062bp and 8.12 exons per gene on average (Table 1). The number of protein-coding 

genes is a significantly higher compared to the previous genome presented for C. 

vulgaris, where only 7100 transcripts were predicted (Guarnieri et al., 2018). The gene 

models predicted for C. vulgaris allowed to determine its codon usage (Supplementary 
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data, Table S5), which is similar to the codon usage of C. reinhardtii (Merchant et al., 

2007). 

To further evaluate the transcriptome quality and completeness, BUSCO analysis was 

performed on a benchmark of 303 genes putatively found in all eukaryotes in single 

copy: this analysis identified complete information for 289 (95.4%) of orthologs and 

fragmented information for 3 (1%), while only 11 genes (3.6%) were missing, 

demonstrating a high completeness of the de novo assembled genome. Furthermore, 

when the mRNAseq libraries were aligned to the genome assembly, 85.58±0.32% of 

reads aligned uniquely (mean ± SD, n = 6) and an additional 11.81±0.37% aligned to 

multiple locations, indicating that the genome assembly covered nearly all coding genes. 

Functional genome annotation performed by BLAST2GO analysis reported 5642 

associated to Gene Ontology (GO) Terms (Figure 3).  
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Figure 3. Gene Ontology classification of annotated Chlorella vulgaris genes. Gene Ontology (GO) terms. 

Chlorella vulgaris transcripts annotated by blast2Go were functionally grouped on the basis of Gene 

Onthology (GO) terms cellular component (a), molecular function (b) and biological processes (c). The 

distribution of the different groups is reported based on the node score associated to each group considering 

GO term with node score higher than 1%. 

As reported in Supplementary data, Figure S2, considering the top-hit species 

distribution most of the C. vulgaris gene (~71% of the total genes) were annotated with 

genes from Chorella variabilis, followed by Auxenochlorella prototechoides and 

Coccomyxa subellipsoidea. Functional annotation of C. vulgaris genome was then 

exploited for the analysis of the phylogenies of the 211/11P strain. In particular, 111 

single copy genes shared with other species which genome is available were used for 

protein alignment and phylogenetic tree construction. As reported in Supplementary 

data, Figure S3 C. vulgaris strain 211/11P resulted to be closer to other species from the 

Chlorella genus as C. varabilis and C. prototechoides (Supplementary data, Figure S3). 

Chloroplast and mitochondrial genomes 

Chloroplast and mitochondrial genomes were independently assembled and annotated 

using PacBio data. Complete (circular with no gaps or ambiguous nucleotides) 

chloroplast genomes of C. vulgaris was reconstructed using C. reinhardtii chloroplast 

genome as reference for both assembly and annotation. The chloroplast genome resulted 

to be 165.504bp with 127 genes encoded (Figure 4).  
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Figure 4. Chlorella vulgaris chloroplast and mitochondrial genomes. Chloroplast (a) and mitochondrial (b) 

Chlorella vulgaris genomes assembled from PacBio data. Annotated genes are reported. 

The overall CG content of the chloroplast genome is 32% and the coding sequence is 

3.5%. Among the genes found in the chloroplast genome 6 genes encode for rRNA, 18 

for ribosomal proteins, 46 genes encode for tRNA, 7 genes are component of RNA 

polymerase and 2 genes encode for a translation initiation factor (infA) and a protein 

elongation factor Tu (tufA). Then 33 genes were identified encoding for subunits of the 

complexes involved in the light phase of photosynthesis (PSI, PSII, cytochrome b6f and 

ATP synthase) and a gene for the large subunit of RUBISCO was also identified. In the 

case of psaA and psaB genes a second gene was also identified in the chloroplast 
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genome encoding in both cases for a fragment of the PsaA or PsaB proteins. The 

presence of gene fragments in the C. vulgaris chloroplast genome remind the fragment 

present in higher plants mitochondrial genome encoding for subunits of NDA complex 

which are then trans-spliced to generate the mature transcript encoding the full-length 

protein (Knoop et al., 1991). The role of these gene fragments needs to be further 

investigated by dedicated experiments. Among the other genes present in the C. vulgaris 

chloroplast genome ycf1-4 were identified with the ycf3 and ycf4 involved in PSI 

assembly (Boudreau et al., 1997). Genes involved in plastid division as minD and minE 

were also found in the chloroplast genome, as previously reported for other Chlorella 

species (Wakasugi et al., 1997). Interestingly, three introns were identified in genes 

psbA, rpoC2 and rrnL3 as previously reported in the case of C. reinhardtii (Maul et al., 

2002) . 

C. vulgaris mitochondrial genome was entirely reconstructed as having 91.560bp size 

with 52 genes encoded (Figure 4). The large size of C. vulgaris mitochondrial DNA is 

consistent with the mitochondrial genomes of other green algae as C. zofingensis or 

higher plants, but significantly larger than the mitochondrial genome of the model 

organism for green algae C. reinhardtii (Denovan-Wright et al., 1998; Roth et al., 2017). 

The increased size of C. vulgaris mitochondrial genome is largely due to the high level 

of non-coding sequences. Among the genes in the mitochondrial genome, five genes 

encode for rRNA and 30 for tRNA, while three genes encode for ribosomal proteins. 

Nine genes encoding the Complex I, and 2 genes for Complex III and IV subunits (cob 

and cox1 respectively) were also identified together with a gene for alpha subunit of 

mitochondrial ATP synthase. Interestingly, some chloroplast genes as petD and rpoC2 

were found also in the mitochondrial genome, even if not expressed (petD) o with a low 

expression profile (rpoC2). This result suggests an uncommon horizontal gene transfer 

from chloroplast to mitochondrial genome in Chlorophyta which was previously 

reported only upon land colonization (Wang et al., 2007; Gandini & Sanchez-Puerta, 

2017). 

Identification of genes involved in key metabolic pathways 

The functional annotation of the C. vulgaris genome allowed for identification of genes 

coding for the key enzymes involved in the different metabolic pathways of the cell, 

such as glycolysis, gluconeogenesis, TCA and glyoxylate cycle, photosynthesis, lipid 
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and pigment metabolism (Supplementary data, Table S6-7). In the following sections 

genes involved in some critical metabolic pathways and cellular functions are described 

in detail.  

Photosynthesis 

All genes encoding subunits of the membrane complexes or soluble electron carriers 

involved in the light phase of photosynthesis are present in the C. vulgaris nuclear or 

chloroplast genomes (Supplementary data, Table S6). Genes encoding for PSII core 

subunits were identified in the chloroplast and nuclear genome, in agreement with 

previous data reported for A. thaliana and C. reinhardtii (Daniell et al., 2016). Only in 

the case of psbX gene, no homologous gene could be found in C. vulgaris genome. 

PSBX subunit has been reported previously in higher plants and in some algae: even if 

antisense genotypes on this subunit in A. thaliana or knockout mutants in cyanobacteria 

were characterized by a 30-40% reduction of PSII accumulation, no growth phenotype 

was reported, suggesting this subunit is not essential for PSII assembly and function (Shi 

et al., 2012).  

In the case of PSI complex, all the core subunit could be identified with the exception of 

PsaM and PsaX: PsaM has been previously reported in cyanobacteria, in some green 

algae, mosses and gymnosperms but not angiosperms, while PsaX has only been found 

in cyanobacteria (Scheller et al., 2001). Different genes were identified in C. vulgaris 

genome encoding for Light Harvesting Complexes (LHC), the pigment binding antenna 

proteins bound to the periphery of Photosystems devoted to light harvesting and 

photoprotection . While both LHCII and LHCI type complexes could be identified, 

being bound to PSII and PSI respectively, no gene coding for a LHCB6 (CP24) like 

protein was found, supporting that this PSII antenna proteins appeared only in land plant, 

in agreement with previous finding (Kouřil et al., 2016).  

Interestingly both the LHC-like subunits PSBS and LHCSR were found in C. vulgaris 

encoded by single genes: these subunits are involved in the photoprotective mechanism 

known as Non-photochemical Quenching (NPQ), where a significant portion of the 

excitation energy absorbed by photosystems is thermally dissipated confirmatory 

experiments. Protein subunits reported in C. reinhardtii to be involved in alternative 

chloroplast electron transport pathway as PGR1, PGR5 and NDH, involved in cyclic 

electron flow and PTOX involved in chlororespiration (Rumeau et al., 2007) are present 
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in the C. vulgaris genome but not differently expressed in low light or in high light.  (Li 

et al., 2000; Peers et al., 2009). Differently from C. reinhardtii, where LHCSR subunits 

are strongly overexpressed in high light (Peers et al., 2009), LHCSR in C. vulgaris is 

constitutively expressed either in low light or high light grown cells. Also, in the case of 

PSBS C. vulgaris behaves differently compared to C. reinhardtii, since in the latter 

PSBS is transiently overexpressed in UV or high light condition (Allorent et al., 2016; 

Correa-Galvis et al., 2016; Tibiletti et al., 2016), while in C. vulgaris the psbs gene is 

always expressed but upregulated in high light, as in the case of A. thaliana (Ballottari et 

al., 2007). These results suggest a different regulation of NPQ in C. vulgaris compared 

to C. reinhardtii, even if the potential role of LHCSR and PSBS in NPQ induction in the 

former require additional 

In the case of enzymes involved in the dark phase of photosynthesis and carbon fixation, 

all the different subunits previously reported to be involved in this pathway have been 

identified (Supplementary data, Table S6). Interestingly according to KEGG Mapper 

tool, all the enzymes required for a C4-like carbon fixation pathway are present in the C. 

vulgaris genome (Supplementary data, Figure S4), with the key enzyme involved in 

carbon fixation in C4 compounds, phosphoenolpyruvate carboxylase (PPC), encoded by 

two genes, g3928 and g4635, being predicted in the cytosol and in the mitochondria 

respectively. These two isoforms of PPC might have a role in oxaloacetate formation in 

the anaplerotic reactions, or for gluoconeogenesis or as alternative carbon fixation to 

RUBISCO, as previously suggested in the case of C. sorokiniana (Cecchin et al., 2018). 

Carotenoid biosynthesis 

Carotenoid biosynthetic genes were identified in the C. vulgaris genome and reported in 

Supplementary data, Table S6. Each of the genes involved in carotene and xanthophyll 

biosynthesis was found in single copy and most of them overexpressed in high light, in 

agreement with the increased carotenoid content per cell identified in this condition. 

Interestingly a gene coding for neoxanthin synthase could be identified, catalyzing the 

synthesis of neoxanthin from violaxanthin (Dall'Osto et al., 2007), while this enzyme has 

not been identified yet in the model organism for green algae C. reinhardtii. Differently, 

in the C. vulgaris genome no gene coding for a beta-carotene ketolase (BKT) was 

identified. This is the key enzyme together with a hydroxylase (CRTZ) for astaxanthin 

biosynthesis from beta-carotene or zeaxanthin in different algal species known to 
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accumulate astaxanthin as Haematococcus pluvialis or C. zofingensis (Zhong et al., 

2011). While CTRZ is present in C. vulgaris, the absence of BKT in C. vulgaris explains 

the absence of astaxanthin in this organism and suggests for a possible biotechnological 

manipulation of this species to induce the accumulation of this carotenoid with a high 

value on the market. 

Lipid biosynthesis 

De novo fatty acid biosynthesis occurs in plant cells mainly in the chloroplast catalyzed 

by Fatty Acid Synthase type II (FAS2) multi-subunit complex, while animals and fungi 

possess FAS type I complexes (FAS1) located in the cytosol which appear as large 

multi-enzyme complexes on one or two large polypeptide chains (Alboresi et al., 2016). 

C. vulgaris genes involved in lipid metabolism are reported in Supplementary data, 

Table S7. All genes encoding key enzymes required for fatty acid biosynthesis were 

identified in C. vulgaris genome, with subunits of acetyl-CoA carboxylase being 

encoded by the nuclear or chloroplast genome. Intriguingly, in addition to genes coding 

for FAS type II subunits, a single large gene encoding for FAS type I multisubunit 

complex was also identified (g276). The gene is 55Kbp and contains all the different 

protein domains required for fatty acid biosynthesis (Figure 5).  

 

Figure 5. Schematic organization of the FAS1 gene identified in Chlorella vulgaris. Different catalytic 

domains encoded in the Chlorella vulgaris gene g276.t1 are reported in Panel a. Gene size is 55Kbp and it 

contains all the different domains required for fatty acid biosynthesis. Panel b: schematic alignment of 

Chlorella vulgaris gene g276.t1 and Chlorella sorokiniana gene PRW57359.1. 
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The occurrence of FAS1-like complexes in algal cell have already been suggested in the 

oleaginous species Nannochloropsis oceanica and Nannochloropsis gaditana (Vieler et 

al., 2012; Alboresi et al., 2016), but not yet in the green lineage. BLAST search of C. 

vulgaris g276 gene for other putative FAS1-like multi-domain gene gave only one 

positive result with a gene from C. sorokiniana which displays similar size and features 

(Figure 5). This result demonstrates the presence in C. vulgaris and possibly also in C. 

sorokiniana of dual fatty acid biosynthetic pathways, one which is the plant-like fatty 

acid biosynthetic pathway in the chloroplast and the second one peculiar of fungal and 

animal cells located in the cytosol.  

Consistent with the increased lipid accumulation observed in C. vulgaris grown in high 

light conditions, the transcriptions of the genes coding for enzymes involved in lipid 

metabolism were altered: despite no changes in genes involved in polar membrane lipid 

synthesis and TAG assembly, genes encoding enzymes involved in earlier steps of de 

novo fatty acid synthesis, the formation of G3P and TAG packaging were upregulated in 

high light (Supplementary data, Table S7). Among the highly upregulated genes is a 

gene coding acetyl-CoA synthetase (ACS). ACS is involved in the pyruvate 

dehydrogenase bypass pathway, by which acetyl-CoA is produced by glycolytic 

pyruvate through the intermediates acetaldehyde and acetate (Lin & Oliver, 2008). The 

importance of ACS enzymes in lipid biosynthesis in plant cells has been demonstrated in 

A. thaliana, where mutations on acs genes caused a strong reduction in plant fitness (Lin 

& Oliver, 2008). Two genes coding for ACS enzymes were identified in C. vulgaris, 

g2176 and g2145, the former being predicted in the cytosol, while the latter in the 

chloroplast: only the gene encoding the cytosolic ACS was upregulated in high light, 

suggesting an upregulation of cytoplasmic biosynthesis of fatty acids in high light as 

previously reported in the case of N. gaditana (Alboresi et al., 2016).  

High light adaptation caused the increased accumulation of several plastid 

(PLAP/fibrillin) lipid associated proteins: these subunits have been reported to be 

involved in the formation of lipid droplets observed in cells accumulating neutral lipids 

or carotenoids (Youssef et al., 2010), which are both strongly increased in high light in 

C. vulgaris. Increased lipid accumulation in C. vulgaris in high light can thus be related 

to increased precursor production (acetyl-CoA) by ACS in the cytosol for FAS1 

enzymatic complex and increased stabilization of lipids produced in the chloroplast by 

interaction with PLAP/fibrillin subunits.  
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Identification of genes involved in meiosis and motility 

C. vulgaris strains has been usually described as non-motile and asexual. To go deeper 

into details, genes previously reported to be associated to meiosis event and motility 

were searched in the C. vulgaris genome. As reported in Supplementary data, Table S6 

the main genes involved in meiosis (Malik et al., 2007) are present and transcribed in C. 

vulgaris genome, as previously reported for other green algae as C. zofingensis (Roth et 

al., 2017) or C. variabilis NC64A (Blanc et al., 2010) where sexual reproduction is 

cryptic and not well defined. This result suggests a possible sexual reproductive stage 

also in C. vulgaris with gamete formation. In agreement with these finding a gene in the 

C. vulgaris genome encoding for gametolysin was found (g3347), together with a gene 

encoding for a protein containing a domain with putative CGS1/HAP2 function, which is 

essential for cell fusion (Blanc et al., 2010; Wong & Johnson, 2010) (Supplementary 

data, Figure S5). The genes involved in motility were then investigated looking for genes 

present in the CiliaCut list, a group of genes identified in C. reinhardtii involved in 

formation of sensory or motility cilia and flagella (Merchant et al., 2007). Among the 

195 genes in the CiliaCut list 114 genes were identified also in C. vulgaris (58.4%). In 

particular, 78.2% of the genes in the CiliaCut present in the diatom Thalassiosira 

pseudonana are present also in C. vulgaris (Supplementary data, Table S8): 84.2% of the 

T. pseudonana genes in the MotileCut (genes in the CiliaCut involved in motile flagella 

functions) are present also in C. vulgaris. This result suggests that C. vulgaris might be 

able to form gametes with motile flagella as previously observed for T. pseudonana 

during gametogenesis (Moore et al., 2017). 

Discussion 

Integration of highly-accurate next generation sequencing data (Illumina) with third 

generation long-read sequencing (PacBio) and next-generation mapping (Bionano 

Genomics) allowed to obtain the assembled genome of C. vulgaris in 14 scaffolds with a 

relatively good N50 of 2.8Mb, with a 100-fold improvement compared to the recently 

released C. vulgaris genome (Guarnieri et al., 2018) (Supplementary data, Table S4). 

We can speculate that the 14 pseudo-molecules reconstructed may represent the 

chromosomes of C. vulgaris, with 98.9% of scaffolded genome, a much higher 

percentage compared to all other available genomes of green algae (Table 1). The C. 

vulgaris genome size of 40Mbp is consistent with that of other members of the Chlorella 
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genus or closed related species (Table 1). The GC content of the C. vulgaris genome is 

similar compared to C. variabilis or C. reinhardtii, but higher compared to C. 

zofingensis. The integration of RNAseq data allowed to obtain a detailed functional 

annotation of the assembled C. vulgaris genome, revealing a number of transcripts and 

proteins consistent with the data reported for C. variabilis, but almost halved compared 

to C. reinhardtii or C. zofingesis, revealing a strong variability in the green lineage. For 

comparison, in the case of the microalga Nannochloropsis gadiatana (Heterokonta) with 

a much smaller genome (23Mbp) a similar protein number compared to C. vulgaris was 

observed. Interestingly, exon and intron average length and the number of exons per 

transcript were similar compared to another member of the Chlorella genus, Chlorella 

varibilis NC64A, but smaller compared to C. reinhardtii or C. zofingensis (Table 1).  

The results obtained by genome assembly and functional annotation revealed the 

presence of some peculiar features in C. vulgaris. In particular evidences for horizontal 

transfer from chloroplast to the mitochondria could be found in the organelle genomes as 

in the case of genes petD and rpoC2, while usually the opposite was found in the 

Chlorophyta  (Smith, 2014). Chloroplast gene or gene fragments was indeed previously 

observed only in mitochondria of higher plants, attributing the earlier event of plastid to 

mitochondria horizontal gene transfer to the common ancestor of extant angiosperms and 

gymnosperms: the analysis of C. vulgaris genome demonstrate that this horizontal gene 

transfer can found also in some Chlorophyta, but not in the model organism for green 

algae C. reinhardtii (Wang et al., 2007). The possible functions of plastid gene in 

mitochondrial genome is still not clear, being usually not expressed (Wang et al., 2007). 

In the case of C. vulgaris, the plastid gene rpoC2 found in the mitochondrial genome 

presented a low expression profile: this gene encodes for a RNA polymerase beta 

subunit (Shimada et al., 1990), but further experiments are required in order to 

investigate its possible role in mitochondrial gene expression. 

The analysis of C. vulgaris genome revealed several features in common with higher 

plants, but different from the model organism for green algae, C. reinhardtii, as for 

instance mitochondrial genome size. Considering the genes involved in photoprotection 

and regulation of light use efficiency a mixed situation compared to higher plants and 

other green algae was found in C. vulgaris: psbs and lhcsr genes were found being 

expressed even in low light, with only the former upregulated in high light. LHCSR 

subunits have been reported to be critical for the regulation of the photosynthetic 
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efficiency and photoprotection in microalgae, being overexpressed in high light, while 

PSBS has a similar function and regulation in higher plants, but it has been reported to 

be only transiently expressed in C. reinhardtii: in C. vulgaris lhcsr gene is similarly 

expressed in low and high light, while psbs gene is constitutively expressed and 

upregulated in high light, adding further evidences about the strongly debated role of 

PSBS protein also in green algae  and not only in higher plants. Finally, in the C. 

vulgaris genome a cytosolic fatty acid synthase (FAS) with common traits compared to 

animal or fungal FAS type I was found. This gene has not been observed yet in the green 

lineage, revealing a potential additional pathway in parallel to the chloroplast pathway 

for fatty acid biosynthesis. 

In conclusion, the assembly and functional annotation of C. vulgaris genome allowed the 

identification of potential targets for the biotechnological manipulation of this organism, 

for its exploitation for biomass and high value products or for transferring peculiar C. 

vulgaris properties to other species. 
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Supplementary data 

Table S1 Summary of raw PacBio and Illumina sequencing data and Bionano mapping data 

   PacBio   Illumina 

 

Bionano 

Number of bases 

(Gb) 6.4 2.5 

 

69.0 

Number of reads  1,113,721 25,428,036 

 

566,536 

Genome Coverage 128X 50X 
 

1380X 

Mean Read lenght 

(bp) 5,784 100 

 

121,810 

N50 (in bp) 8,757 100 

 

191,600 

Table S2 Chlorella vulgaris Genome Assembly statistics 

 

 
Falcon 

assembly* 

Bionano 

Consensus 

Genome 

Map 

Hybrid 

Assembly 

Hybrid 

Assembly 

+ 

Unplaced 

Unplaced Chloroplast Mitochondrion 

Hybrid 

Assembly + 

Unplaced 

without 

Organelle 

Contamination 

Total 

assembly 

length (bp) 

39,785,701 171,505 39,740,717 40,466,139 468,358 165,504 91,583 40,180,792 

Number of 

sequences 
62 255 14 51 35 1 1 43 

Sequences 

average 

length (bp) 

641,704 673,000 2,838,622 793,453 13,381 165,504 91,583 934,437 

Sequence 

N50 (bp) 
1,800,706 1,049,000 2,825,136 2,825,136 21,914 165,504 91,583 2,825,136 

Sequence 

L50 
8 54 6 6 5 1 1 6 

Sequence 

N90 (bp) 
795,186 346,446 2,150,204 2,150,204 6,639 165,504 91,583 2,150,204 

Sequence 

L90 
19 160 12 12 19 1 1 12 

Largest 

Sequence 

(bp) 

5,417,522 5,015,440 5,422,624 5,422,624 128,459 165,504 91,583 5,422,624 

Smallest 

Sequence 

(bp) 

416 50,112 795,975 416 416 165,504 91,583 416 

% GC 

Content 
61.6 // 60.2 60.0 59.4 31.7 29.8 60.0 

Number of 

Gap 
0 // 12 12 0 0 0 12 

Total Gap 

length (bp) 
0 // 634,943 634,943 0 0 0 634,943 
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Table S3. Single nucleotide variants (SNV) and insertion-deletion (InDel) in the Chlorella 

vulgaris assembled genome before and after correction with Illumina and PacBio data 

 PacBio PacBio+Illumina 

SNV 3076 81 

InDel 32821 190 

TOTAL 35897 271 

% GENOME 0.09% 0.0007% 

Table S4. Comparison of Chlorella vulgaris genomes reported in Guarnieri et al 2018 and that 

generated in the present work 

 Chlorella vulgaris 
NCBI 

Chlorella Vulgaris  
211/11P 

Total sequence length 37,342,230 40,437,856 

Total assembly gap length 40,625 634,943 

Gaps between scaffolds 0 0 

Number of scaffolds 3,600 14 

Scaffold N50 27,824 2,825,136 

Scaffold L50 358 6 

Number of contigs 4,754 45 

Contig N50 20,333 1,802,178 

Contig L50 501 8 

Total number of chromosomes and 
plasmids 

0 0 chr 2 plasmid 

Number of component sequences 

(WGS or clone) 

3,600 43 

Table S5. Codon usage in Chlorella vulgaris.  

The codon usage table gives for each codon: i. Sequence of the codon. ii. The encoded amino acid. iii. The 

proportion of usage of the codon among its redundant set, i.e. the set of codons which code for this codon's 

amino acid. iv. The expected number of codons, given the input sequence(s), per 1000 bases. v. The observed 

number of codons in the input sequences. 

#Codon AA Fraction Frequency 

Number 

GCA    A     0.253    37.206 

219120 

GCC    A     0.299    44.031 

259312 

GCG    A     0.257    37.744 

222285 

GCT    A     0.191    28.126 

165643 

TGC    C     0.807    13.076  

77007 

TGT    C     0.193     3.132  

18448 

GAC    D     0.673    30.175 

177711 

GAT    D     0.327    14.646  

86253 

GAA    E     0.174     9.821  

57841 

GAG    E     0.826    46.536 

274064 

TTC    F     0.574    15.009  

88392 

TTT    F     0.426    11.137  

65592 

GGA    G     0.101     8.659  

50998 

GGC    G     0.579    49.753 

293009 

GGG    G     0.194    16.684  

98255 

GGT    G     0.126    10.870  

64018 

CAC    H     0.757    17.008 

100166 
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CAT    H     0.243     5.454  

32123 

ATA    I     0.120     3.013  

17743 

ATC    I     0.610    15.291  

90055 

ATT    I     0.270     6.762  

39822 

AAA    K     0.144     4.609  

27143 

AAG    K     0.856    27.343 

161029 

CTA    L     0.030     3.019  

17777 

CTC    L     0.149    14.949  

88040 

CTG    L     0.636    63.856 

376067 

CTT    L     0.072     7.198  

42392 

TTA    L     0.008     0.852   

5017 

TTG    L     0.104    10.452  

61556 

ATG    M     1.000    19.628 

115598 

AAC    N     0.784    16.095  

94787 

AAT    N     0.216     4.424  

26056 

CCA    P     0.210    13.228  

77906 

CCC    P     0.322    20.337 

119770 

CCG    P     0.265    16.701  

98356 

CCT    P     0.204    12.849  

75669 

CAA    Q     0.149     9.126  

53746 

CAG    Q     0.851    51.994 

306208 

AGA    R     0.036     2.264  

13336 

AGG    R     0.133     8.447  

49746 

CGA    R     0.096     6.071  

35754 

CGC    R     0.383    24.222 

142651 

CGG    R     0.260    16.441  

96828 

CGT    R     0.092     5.836  

34368 

AGC    S     0.431    31.268 

184148 

AGT    S     0.068     4.947  

29137 

TCA    S     0.105     7.604  

44785 

TCC    S     0.169    12.228  

72014 

TCG    S     0.127     9.212  

54252 

TCT    S     0.101     7.292  

42943 

ACA    T     0.220    10.108  

59529 

ACC    T     0.392    18.005 

106035 

ACG    T     0.232    10.661  

62786 

ACT    T     0.156     7.150  

42107 

GTA    V     0.052     3.318  

19543 

GTC    V     0.201    12.871  

75804 

GTG    V     0.635    40.676 

239551 

GTT    V     0.112     7.183  

42301 

TGG    W     1.000    13.320  

78445 

TAC    Y     0.754    13.708  

80730 

TAT    Y     0.246     4.481  

26391 

TAA    *     0.086     0.164    

964 

TAG    *     0.210     0.398   

2346 

TGA    *     0.703     1.331   

7840 
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Table S6. Identification of key genes involved in different metabolic pathway in Chlorella 

vulgaris
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Table S7. Identification of key genes involved in lipid biosynthesis and degradation in Chlorella 

vulgaris. 
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Table S8. Identification of genes involved in flagella and cilia formation in Chlorella vulgaris 

according to the CiliaCut list 
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Figure S1. Example of Optical mapping-based scaffolding of Chlorella genome 

PacBio contigs are colored in blue, while map assembly in green; vertical lines represent the recognition sites 

of Nt.BspQI. Figure S2 Distribution of Chlorella vulgaris gene annotation results. 
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Figure S2. Distribution of Chlorella vulgaris gene annotation results 

 

Figure S3 Phylogenetic analysis of Chlorella vulgaris strain 211/11
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Figure S4 Carbon fixation pathway in Chlorella vulgaris identified by KEGG Mapper 
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Figure S5 Alignment of Chlorella vulgaris g3658 gene product with HAP2 from 

Chamydomonas reinhardtii 
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Section B 

Identification of a plant-like Violaxanthin De-

Epoxidase enzyme in the green alga Chlorella 

vulgaris reveals evolutionary divergency of 

photoprotective mechanisms in the green lineage4 

Xanthophyll cycle is a photoprotective metabolic process by which in stress conditions 

violaxanthin is de-epoxidated to zeaxanthin. The enzyme responsible for violaxanthin 

de-epoxidation is not conserved among higher plants and green algae. In this work we 

focused on the identification and characterization of a plant-like violaxanthin de-

epoxidase (VDE) enzyme in one of the most used green alga for industrial cultivation, 

Chlorella vulgaris. In particular, by local alignment and homology modelling 

algorithms, we successfully reconstructed a model structure for C. vulgaris VDE 

identifying almost all the key residues previously reported being important for its 

activity in higher plant VDE. The catalytic activity of this enzyme was thus investigated 

in vitro upon heterologous expression in E. coli, and in vivo in C. vulgaris by using the 

VDE inhibitor DTT (DL-Dithiothreitol). The results obtained demonstrate the existence 

of plant-like xanthophyll cycle activation and function in C. vulgaris, differently from 

other Chlorophyta. The results obtained demonstrate a divergence during evolution in 

the molecular mechanism and function of xanthophyll cycle. 

In this work I’ve performed all the experiments excluding the phylogenetic tree 

construction and the prediction of the protein model 3D structure. 

Abbreviations: PSI/II, Photosystem I/II; NPQ, Non-Photochemical Quenching; LHC, Light Harvesting 

Complex; VDE, Violaxanthin De-Epoxidase; DTT, DL-Dithiothreitol; ROS, Reactive Oxygen Species; DI, de-

epoxidation index. 

 

4This section is based on the manuscript: Girolomoni L, Bellamoli F, Morosinotto T, Cazzaniga 

S, Ballottari M. Identification of a plant-like Violaxanthin De-Epoxidase enzyme in the green alga 

Chlorella vulgaris reveals evolutionary divergency of photoprotective mechanisms in the green 

lineage 
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Introduction 

Photosynthetic organisms use the Photosynthetic Active Radiation (PAR) for their 

metabolic processes but irradiance undergo rapid or seasonal changes during season. 

Depending on the growth conditions, light may be a limit or even a stressor when the 

products of light phase, ATP and NADPH, are not fully consumed by the Calvin-Benson 

Cycle. The impaired regeneration of NADP and ADP by carbon fixation reactions 

indeed causes a saturation of the photosynthetic electron transport chain reducing the 

photochemical quenching of the excitation energy absorbed by Photosystems: this event 

increases the population of chlorophyll singlet excited states increasing the probability of 

energy transfer to oxygen forming the high toxic reactive oxygen species (ROS) 

(Havaux and Niyogi, 1999). Long term exposure to relative high light induces several 

acclimation responses in photosynthetic organisms as changing in the amount and 

quality of pigments, pigment binding and stress-related proteins or molecules, which are 

only partially conserved among the different species (Havaux and Niyogi, 1999; 

Ballottari et al., 2007; Bonente et al., 2012). On a mid-short term scale higher plants 

usually respond to the sun-tracking with specific movements of leaves and chloroplasts 

thus changing orientation and light interception to properly balance light absorption (Li 

et al., 2009), while the main short term mechanism activated for photoprotection is Non-

Photochemical Quenching (NPQ) by which chlorophylls singlet excited states are 

dissipated into heat (Demmig-Adams and Adams, 1992). NPQ is composed by three 

different components, distinguishable by their kinetics. The fastest component activated 

upon illumination is the pH- or energy-dependent component, called qE (Horton et al., 

1996) (Muller, 2001). The mid-range component is qT, related to the phenomenon of the 

state transition, where some antenna proteins of Photosystem II (PSII), called Light 

Harvesting Complexes II (LHCII), moves in a minute scale to Photosystem I (PSI) in 

order to balance the excitation among the two Photosystems (Wollman, 2001). The last 

component of NPQ is related to the photoinhibition of photosynthesis and/or zeaxanthin 

accumulation by xanthophyll cycle activation and is called qI (Dall’Osto et al., 2005) or 

qZ (Nilkens et al., 2010). In higher plants the xanthophyll cycle is induced by luminal 

acidification triggered by the Violaxanthin De-Epoxidase enzyme (VDE) which is 

responsible of violaxanthin conversion into zeaxanthin across two consequential de-

epoxidation steps forming antheraxanthin as intermediate. Zeaxanthin is involved in 
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singlet and triplet chlorophyll excited states quenching and scavenging of reactive 

oxygen species (Betterle et al., 2010; Nilkens et al., 2010; Dall’Osto et al., 2012; 

Ballottari et al., 2014; Xu et al., 2015; Rockholm & Yamamoto, 1996). VDE is a nuclear 

encoded protein activated by lumenal acidification upon transmembrane proton gradient 

formation, which is the consequence of photosynthetic light phase saturation (Gilmore 

and Yamamoto, 1993) and for its activity requires ascorbate to reduce the epoxy group 

with the consequent water production (A., Richmond; H., 2013). Previous studies reveal 

that the VDE activity is inhibited by dithiothreitol (DTT) which reduces one or more di-

sulphide bonds formed by cysteine residues (Yamamoto and Kamite, 1972). The 

proteins sequence of the VDE from A. thaliana contains three main domains: a cysteine 

rich region (13,5% of the residues of this region are cysteines), a catalytic site and a 

glutamate rich region (Simionato et al., 2015). Site directed mutagenesis experiments 

showed that in the catalytic domain the residues essential for the VDE activity are the 

Asp177 and the Tyr198 while the amino acids important for the structural organization 

are the Asp114, Arg138, His121 and the Tyr214 (Saga et al., 2010). The pH dependent 

activity was also proved by substituting the protonatable residues with aliphatic amino 

acids (Fufezan et al., 2012). In microalgae, the role of xanthophyll cycle seems to be not 

homogeneous: in the model green alga Chlamydomonas reinhardtii zeaxanthin 

accumulation has been reported to important for ROS scavenging but its role in NPQ 

induction is still controversial (Niyogi et al., 1997; Bonente et al., 2011; Quaas et al., 

2015). Differently a partial zeaxanthin-dependent NPQ has been reported in some green 

algae (Quaas et al., 2015), in brown algae (García-Mendoza and Colombo-Pallotta, 

2007) or in eustigmatophytes (Chukhutsina et al., 2017). In the case of C. reinhardtii the 

catalytic violaxanthin de-epoxidation activity has been recently attributed to an enzyme 

not related to the plant-VDE, called CVDE, which is related to a lycopene cyclase from 

photosynthetic bacteria (Li et al., 2016). This observation led to the hypothesis that 

green algae and plants evolved a different violaxanthin de-epoxidase enzymes with 

implication on their regulation and functions (Li et al., 2016). In this work the effect of 

zeaxanthin in NPQ induction and the molecular details of enzyme responsible for its 

accumulation were fully investigated in vivo and in vitro in one of the most promising 

green algae for industrial cultivation, Chorella vulgaris.  
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Materials and Methods 

Strains and culture conditions 

C. vulgaris (CCAP211/11P ) cells were grown at 25°C in flask with a white light in low 

(60 µE m-2 s-1) and high (450 µE m-2 s-1) light with a 16h light 8h dark photoperiod in 

BG-11 medium (Allen and Stanier, 1968).  

In vitro de-epoxidation on thylakoids 

C. vulgaris and C. reinhardtii thylakoids were obtained by destroying cells with glass 

beads directly in the de-epoxidation buffer (40mM MES pH 5.1, 330mM sorbitol, 5mM 

MgCl2, 10mM NaCl 20mM ascorbate and BSA 0,5%). In the case of spinach, leaves 

were grinded in 0.4M NaCL,5mM MgCl2, 20mM Tricine/KOH pH 7.8 and 0.5% BSA, 

filtered through a 10µm filter, centrifuged at 10.000g and then resuspended in the in the 

de-epoxidation buffer. De-epoxidation reaction was then performed at 20°C for 4 hours. 

Pigment were then extracted using acetone 80% and analyzed by HPLC. 

VDE identification and phylogenetic analysis 

Putative VDE genes were searched in the assembled C. vulgaris genome by BLAST 

search using A. thaliana VDE1 (AT1G08550) as query and C. vulgaris translated 

genome as database. Sequences carry a VDE lipocalin domain was retrieved from 

InterPro (IPR010788). Sequence alignment was obtained by MAFFD (version 7.394) 

software. The phylogenetic tree graphic was rendered with MEGA (Hall, 2013). 

NPQ measurements  

NPQ was measured using a Dual PAM-101 (Waltz, Effeltrich, Germany). Cells were 

pre-treated for 2 min with far-red light-emitting diode (LED) before NPQ analysis and 

during dark recovery. A 5000 µE m-2 s-1 saturation light was used while actinic lights 

used were reported in the results section. 

Pigment analysis 

Pigment were extracted using dimethyl sulphoxide (DMSO) and analysed by HPLC as 

described in (Lagarde et al., 2000) . 
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VDE expression and purification 

The plasmid expressing mature VDE of A. thaliana was kindly provide by Prof. 

Morosinotto (Saga et al., 2010). The vde gene identifications was based on a local blast 

on the genome of C. vulgaris strain 211/11P aligned with A. thaliana VDE annotated 

protein sequence (At1G08550.1) presents in Phytozome V12.1 

(https://phytozome.jgi.doe.gov/pz/portal.html). Total RNA from C. vulgaris was 

extracted from cell grown in high light using the Direct-zolTM. RNA Miniprep Plus kit 

(Zymo Research). Transcript sequence was amplified from cDNA using specific primers 

designed on transcript g7391 (Supplementary Table 1). Mature VDE coding sequence 

was cloned into pET28 expression vector removing the initial 28 amino acids putative 

signal peptide for the chloroplast. The signal peptide was calculated using ChloroP 1.1 

tool. VDE was expressed in Escherchia coli Origami™ 2(DE3) (Novagen) by inducing 

cells with 1mM isopropyl β-D-1-thiogalactopyranoside for 5 h at 37°C and purified as 

described in Saga et al., 2010.  

VDE activity assay and HPLC 

VDE activity was tested by adding pure violaxanthin as substrate in a de-epoxidation 

buffer as described in Saga et al., 2010. In particular, the de-epoxidation buffer was 

composed by MES at pH 5.1, and 60mM ascorbate and 9µM MGDG. Violaxanthin de-

epoxidation was monitored by changes in absorption spectra in the 480-520 nm region 

and by HPLC analysis.  

SDS-PAGE and western blotting 

Total protein extracts were loaded into SDS-PAGE 12% gels as described in Laemmli, 

1970. Western blot analysis was performed using antibody for A. thaliana VDE 

(Ballottari et al., 2007).  

Results  

In vitro de-epoxidation 

Possible violaxanthin de-epoxidaton activity in C. vulgaris was studied in vitro in 

isolated thylakoids. C. vulgaris, spinach and C. reinhardtii thylakoids were exposed at 

pH 5.1 in presence of 20mM ascorbate as reducing agent to activate VDE enzyme. The 
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VDE inhibitor DTT (DL-Dithiothreitol) was also tested for its possible inhibitory 

activity (Figure 1).  

 

Figure 1 In vitro de-epoxidation of 

thylakoid membranes. De-epoxidation 

index (D.I.) of thylakoids isolated from 

spinach, C. vulgaris (Cv) and C. 

reinhardtii (Cr) before (t0) or after 

(DEP) 4 hours at pH 5.1 in presence of 

ascorbate in order to induce 

violaxanthin de-epoxidation. De-

epoxidation index obtained in in 

presence of VDE inhibitor DTT is also 

reported  

After 4 hours of reaction, pigments were extracted from thylakoids and analysed by 

HPLC demonstrating for both spinach and C. vulgaris a clear in vitro de-epoxidation of 

violaxanthin with zeaxanthin accumulation and a specific inhibitory activity of DTT. 

Differently, in the case of C. reinhardtii no violaxanthin de-epoxidation was observed in 

these conditions, in agreement with previous observation in this species (Li et al., 2016). 

Sequences analysis and protein activity of VDE in C. vulgaris 

C. vulgaris 211/11P strain genomic and transcriptomic data were used to mine a possible 

VDE gene. From blast2go functional annotation of the genome data gene g7391 was 

annotated as VDE gene. This gene g7391 resulted overexpressed in high light and also 

the protein accumulation is increased in this condition (Supplementary data, Figure S1). 

Protein sequence encoded by C. vulgaris g7391 was thus analysed with InterPro scan 

(https://www.ebi.ac.uk/interpro/search/sequence-search), which attributed a VDE 

lipocalin domain. Multiple alignment, with different VDE sequences was thus performed 

to study its conservation among evolution. The multiple alignment obtained (Figure 2) 

show high similarity of C. vulgaris VDE with the other VDE sequences analysed, in 

particular for the catalytic domains. Differently, the CVDE protein of C. reinhardtii is 

divergent from other VDE sequences (Supplementary data, Figure 2) as previously 

reported (Li et al., 2016). In the case of C. vulgaris VDE its N- terminal domain is 

cysteine enriched with 10 Cys residues which represent 12,9% of this domain, a 

conserved feature compared to VDE sequence from all the organisms analysed. The 
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multiple alignment also reveals the conservation in C. vulgaris of the key residues for 

catalytic activity (Asp177 and Tyr198) previously reported in the case of higher plants 

(Saga et al., 2010). Residues important for the structural organization, Asp114, His121, 

Arg138 and Tyr214 are conserved in all the VDE sequences reported in Figure 2, while 

some variations can be observed in the case of residues involved pH dependent 

activation of the enzyme with only Asp 114 being conserved also in all the sequences 

analysed, except for P. tricornutum. In particular, Asp96 and Asp98 are conserved only 

in higher plants, while Asp206 is conserved only in land plants: in the case His168 this 

residue is conserved in higher plats, mosses and diatoms but not in the green algae C. 

vulgaris and C. variabilis, where it is substituted with a lysine (Figure 2). These results 

open the question about a possible pH independent activation of suggest a possible 

different pH dependency of C. vulgaris VDE enzyme compared to VDE enzymes from 

higher plants.  
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Figure 2 Multiple alignment of VDE enzyme sequences. The domains organization is divided in three main 

parts. The first part is the cysteine rich region, the violet part is the lipocalin domain and the last part the 

glutamic rich region. In the lipocalin domain are evidenced the residues important for the catalytic activity 

(orange), for the structure organization (green) and for pH sensitivity (purple). At: Arabidopsis thaliana; Nt: 
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Nicotiana tabacum; Zm: Zea mays; Os: Oryza sativa; Pp: Physcomitrella patens; Ng: Nannochlopsis 

gaditana; Pt: Phaeodactylum tricornutum; Cvu: Chlorella vulgaris; Cva: Chlorella variabilis. 

On the base of C. vulgaris homology with A. thaliana VDE, a model structure for the 

putative catalytic domain of C. vulgaris VDE was built (Figure 3). The structure of 

lipocalin catalytic domain of A. thaliana VDE has been indeed previously reported 

(Arnoux et al., 2009). The model structure obtained for C. vulgaris was almost 

overlapping with A. thaliana VDE catalytic domain, showing the typical lipocalin fold 

with an eight-stranded antiparallel β-barrel. 

 

 

 

Figure 3 Chlorella vulgaris VDE 3D model 

structure. Homology model of the VDE lipocalin 

domain was obtained by ITASSER tool upon 

alignment with the deposited structure of A. thaliana 

VDE catalytic domain. A. thaliana VDE catalytic 

domain structure is reported in cyan, while the model 

structure for C. vulgaris VDE is reported in green. 

 

cDNA of C. vulgaris putative VDE gene was cloned in expression vector and 

overexpressed in E. coli  as previously reported (Saga et al., 2010). Recombinant VDE 

was then purified from the soluble fraction of lysate bacterial cells though affinity 

column (Supplementary data, Figure S2). Purified recombinant VDE protein was then 

used for evaluating its catalytic activity in presence of violaxanthin setting the reaction 

conditions at pH 5.1 in presence of ascorbate. Recombinant VDE protein form A. 

thaliana was also tested as positive control (Saga et al., 2010). Figure 4 reports changes 

in absorption spectrum due to violaxanthin de-epoxidation during C. vulgaris VDE in 

vitro assay: this is consistent with violaxanthin de-epoxidation catalysed by C. vulgaris 

VDE since zeaxanthin is indeed red-shifted compared to violaxanthin. Zeaxanthin 

accumulation was then confirmed by HPLC analysis (Figure 4B). Similar results were 

obtained in presence of A. thaliana VDE. 
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Figure 4 In vitro violaxanthin de-

epoxidation assasy. VDE activity of 

recombinant C. vulgaris was evaluated in 

vitro measuring changes in carotenoid 

absorption spectrum due to violaxanthin 

conversion to zeaxanthin (A). 

Chromatogram related to HPLC pigment 

analysis before and after VDE in vitro 

assay (B). A. thaliana VDE (A.t.  VDE) 

was also tested as positive control.  

 

Phylogenetic distribution of VDE 

To investigate the distribution of VDE among different photosynthetic organism, a 

phylogenetic tree of putative VDE enzymes was then assembled. Protein sequences with 

VDE lipocalin domain identified by InterPro Scan was used to assemble a phylogenetic 

tree with C. vulgaris VDE. As reported in Figure 5 VDE enzymes from eudicots and 

monocots clustered together, followed by a cluster with mosses, liverworts and club-

mosses. In the case of Chlorophyta a separate cluster could be drawn, with VDE 

enzymes being identified in some green algae, among which the VDE enzyme found in 

C. vulgaris, clustering close to VDE enzyme found in Chlorella variabilis, 

Auxenochlorella prototechoides, Monoraphydium neglectum and Lobopshera incisa, 

among others. Interestingly, no VDE enzymes could be found in green algae as 

Chlorella sorokiniana, Chromochlorosis zofingensis, Vovox carterii or C. reinhardtii 

indicating a divergency of VDE during evolution even among Chlorophyta. 

Interestingly, a separate group of VDE-like protein cold be found grouping sequences 

from organisms which plastids originated by a secondary symbiosis as diatoms, brown 
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algae, Eustigmatophyceae as Nannochloropsis sp. and photosynthetic Alveolata as 

Chromera velia. A separate and more divergent group be found including lipocalin from 

higher plants, with no VDE function reported and a more divergent group including 

different organisms from diatoms, to Eustigmatophyceae and Alveolata. Interestingly, in 

the latter group enzymes with de-epoxidation activity as diadinoxanthin exposidase 

could be found, which have a different catalytic activity compared to VDE (Lavaud et 

al., 2012).  

 

Figure 5 Phylogenetic tree of VDE-like proteins. Phylogenetic tree was obtained by multiple alignment of 

protein sequences carrying a VDE lipocalin domain identified by InterPro (IPR010788). The units of branch 

length are residues substitution per site divided by the length of the sequence. Subtree reported in the inset 

refers to the Chlorophyte group. 

Kinetics of zeaxanthin accumulation and relaxation 

To properly investigate the role in vivo of zeaxanthin in C. vulgaris the kinetics of 

xanthophyll cycle activation and relaxation was investigated. C. vulgaris cells, grown in 

low and high light, were thus exposed in presence or absence of the VDE inhibitor DTT 

to 2000 μmol photons m−2 s−1 for 5’ or 20’ followed by 5’ or 20’ of dark recovery. 
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Figure 6 HPLC analysis from cells acclimated in low light and high light in presence or not of DTT (1mM). A) 

De-epoxidation index of cells treated for 5’ with 2000 μmol photons m−2 s−1 followed with 20’ of dark recovery. 

B) De-epoxidation index of cells treated for 20’ with 2000 μmol photons m−2 s−1 followed with 20’ of dark 

recovery. Standard deviations are reported as error bars (n=3).  

As reported in the Figure 6 zeaxanthin accumulation and the de-epoxidation index 

increased upon light exposure, and then decreased only partially during the dark 

recovery. DTT treatments reduce the zeaxanthin accumulation, confirming its inhibitory 

effect on zeaxanthin synthesis even in whole cells. 

Role of xanthophyll cycle in NPQ induction in C. vulgaris 

In order to elucidate the possible role of xanthophyll cycle in NPQ induction in C. 

vulgaris, cells were grown in low light 50 μmol photons m−2 s−1 or high light 450μmol 

photons m−2 s−1 condition for 7 days. NPQ induction curves were then measured at 

different actinic lights (from 200 μmol photons m−2 s−1 to 2500 μmol photons m−2 s−1) 

(Figure 7). 
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Figure 7 NPQ kinetics and their correlation with zeaxanthin accumulation. Panel A/B: NPQ traces measured 

were collected on cell grown in low light (A) or high light (B) by using an actinic light of 200, 400, 800, 1200, 

1800, 2000 and 2500 μmol photons m−2 s−1. Panel C/D/E: correlation of de-epoxidation index with NPQ 

measured at the end of the actinic light exposure (C), qE measured as the NPQ component decaying in one 

minute in the dark (D), and qI(qZ) measured the residual NPQ component after 10 minutes of dark relaxation 

(E). Standard deviations are reported as error bars (n=3). 

In the case of cells grown in low light, NPQ traces measured with actinic lights up to 

1200 μmol photons m−2 s-1 were characterized by a transient peak followed by a decay 

even if the actinic light was still turned on. Similar kinetics were observed in the case of 

cells grown in HL even if treated with 2500μmol photons m−2 s−1 as actinic light. Only in 

the case of cells grown in low light, when the actinic light intensities were increased to 

1800-2500μmol photons m−2 s−1, a continuous rise of NPQ was observed (Figure 7A). 

The decrease of NPQ values even during treatment with actinic light was likely related 

to the activation of the Calvin-Benson cycle which are activated by the reduced 

thioredoxin in a minute scale chain (Michelet et al., 2013) leading to NADPH 

consumption and regeneration of NADP+, the final electron acceptor in the light phase of 

photosynthesis. High levels of NADP+ relax the photosynthetic apparatus decreasing the 

NPQ induction. Cells grown in high light were thus more adapted in managing high light 

intensities compared to cells grown in low light. Xanthophyll cycle activation during the 
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NPQ measurement was then investigated by pigment analysis of C. vulgaris cells before 

(T0) or after the light treatment at the different light intensities. As shown in 

Supplementary data, Figure S3 increasing the light intensities caused higher levels of 

zeaxanthin accumulation. as previously reported in higher plants (Rees et al., 1989) 

(Eskling et al., 1997). When cells were treated with relatively low actinic light cells 

grown in low light were characterized by a higher de-epoxidation index compared to the 

cells grown in high light, while no major differences were noticeable at high actinic 

lights. The possible relation between NPQ induction ad zeaxanthin accumulation was 

thus investigated plotting the NPQ values measured at the end of the actinic light 

treatment and its components qE and qI (or qZ) as a function of the de-epoxidation index 

measured. As reported in Figure 6 an exponential correlation was found between NPQ, 

qE or qI with de-epoxidation index. These results demonstrate that zeaxanthin 

accumulation is not the only actor responsible for NPQ induction in C. vulgaris, but 

especially at higher light intensities some other components determine the extent of 

NPQ, qE or qI observed. The higher NPQ, qE and qI (qZ) values observed in low light 

cells observed at similar de-epoxidation further indicates the additional role of other 

factors in NPQ induction apart from xanthophyll cycle activation. The specific role of 

zeaxanthin in NPQ induction was thus studied by measuring NPQ upon a double cycle 

of illumination interrupted by 5 minutes of dark: in this way zeaxanthin accumulation is 

induced in the first cycle and its potential role in NPQ can be highlighted in the second 

cycle due to the long timing required for zeaxanthin epoxidation (Figure 8). This 

experiment was performed in both low light and high light grown cells in presence or 

absence of DTT. As reported in Figure 7 in both low light and high light grown cells the 

presence of DTT caused a partial decrease of NPQ during both the first and second cycle 

of actinic light illumination, thus suggesting a partial zeaxanthin dependency for NPQ 

induction. 
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Figure 7 Effect of DTT on NPQ kinetics. In the graphics A) and B) double cycle of NPQ induction of cells 

acclimated in low and high light are reported. For these measurements were used an actinic light of 2000μmol 

photons m−2 s−1 and a saturating light of 4000μmol photons m−2 s−1. Standard deviations are reported as error 

bars (n=3) 

Consistently, during the second illumination cycle the NPQ measured was higher 

compared to the NPQ measured in the first cycle and the inhibitory effect given by the 

presence of DTT was even stronger compared to the first cycle, with a significant 

reduction in the level of NPQ in both low and high light acclimated cells. Interestingly 

both in low light and high light grown cells the presence of DTT caused a decrease of qE 

and qI (or qZ) components of NPQ, suggesting a partial role of zeaxanthin in both fast 

and long relaxing components of NPQ. Zeaxanthin accumulation upon high light 

exposure and requires minutes, while its kinetic of zeaxanthin epoxidation are much 

longer (Figure 5). According to this finding, the initial NPQ induction in the first 1-2 

minutes of illumination in the first cycle was essentially independent from zeaxanthin 

accumulation, while the second phase of NPQ and the second cycle was more affected 

by DTT addition. When the same experiment was performed in the case of C. reinhardtii 

any evident effect of DTT was measured (Supplemental data Figure S4). 

Discussion 

In this work the identification of a plant-like VDE enzyme is reported in C vulgaris, and 

the relationship of its activity with between the photoprotective mechanism NPQ is 

presented. C. vulgaris is one of the leading microalgae at industrial level due to the high 

growth rate and resistance to biotic and abiotic stresses (Liang et al., 2009). 
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Photoprotective mechanisms as NPQ have been reported as key targets for 

biotechnological manipulation of photosynthetic organisms assuring on one side enough 

photoprotection and on the other higher photosynthetic efficiency (Berteotti et al., 2016; 

Kromdijk et al., 2016). Zeaxanthin has been associated with different photoprotective 

functions, from singlet and triplet chlorophyll excited quenching to ROS scavenging in 

both higher plants and green algae (Havaux and Niyogi, 1999; Baroli et al., 2000; 

Dall’Osto et al., 2012). However, the identification of CVDE, the gene product 

responsible for violaxanthin de-epoxidation in C. reinhardtii, revealed a divergency in 

the evolution in the green lineage of the enzyme carrying the VDE catalytic activity, 

being this enzyme not homologous to the VDE of A. thaliana, but more similar to a 

lycopene cyclase (Li et al., 2016). Moreover, CVDE is in the stromal side of thylakoid 

membranes and it is not activated by lumen acidification. In this work a violaxanthin de-

epoxidase catalytic activity inducible at low pH was found in C. vulgaris, which lead by 

C. vulgaris genome mining to identify a conserved plant-like VDE enzyme in this 

member of the Chlorophyta group. Phylogenetic distribution of VDE sequences reveals 

indeed that VDE sequences are widely distributed in higher and lower plants, while in 

unicellular algae, only in some green algae a plant-like VDE sequences could be found. 

C. vulgaris VDE was revealed having a high level of identity compared to A. thaliana 

VDE with the conservation of all the key residues involved in protein structure and 

catalytic activity (Figure 2). Only in the case of residues involved to protein activation 

by protonation a partial conservation was found in C. vulgaris VDE compared to VDE 

from higher plants. It is interesting to note that plant-like VDE enzyme could be found in 

other green algae as Chlorella variabilis but not in other green algae as C. sorokiniana 

or C. zofingesis. In the latter in particular a CVDE-like enzyme was rather identified 

(Roth et al., 2017). The divergency between CVDE and VDE despite a similar catalytic 

activity demonstrate the plasticity of the carotenoid biosynthetic pathway and divergent 

evolution of the key enzyme involved likely driven by their specific functions and 

interaction with the environment. In higher plants the photoprotective NPQ mechanism 

depends on the interaction of an LHC-like protein called PSBS with other LHC proteins 

(Li et al., 2002). Xanthophyll cycle activation has an important, though not crucial, role 

in higher plants in the induction of NPQ as observed in npq1 and npq2 mutants in A. 

thaliana, lacking VDE and zeaxanthin epoxidase (ZE) respectively, which show reduced 

NPQ phenotypes compared to WT but not zeroed (Havaux and Niyogi, 1999). 
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Differently, in the case of Physcomitrella patens VDE activity has been reported to be 

essential for NPQ induction (Pinnola et al., 2013). In microalgae, the role of zeaxanthin 

in the NPQ process is still unclear and highly species-specific (Quaas et al., 2015). In C. 

reinhardtii, mutants that are unable to accumulate zeaxanthin show an induction of NPQ 

similar to the WT (Niyogi et al., 1997), thus demonstrating zeaxanthin does not have a 

specific role in NPQ in that organism (Supplemental data, Figure S4). In Phaeodactylum 

triconornutum strains with a reduces level of diatoxanthin reflects lower induction od 

NPQ (Lavaud et al., 2012). The role of zeaxanthin was also studied in the stramenophile 

Phaeomonas sp. where NPQ level is correlated with its accumulation and is already 

active at dark (Berne et al., 2018). In this work an exponential correlation between the 

induction of NPQ and zeaxanthin accumulation was found in C. vulgaris: this result 

demonstrates that additional components are contributing to NPQ induction, especially 

at higher actinic lights. Pigment binding proteins involved in quenching as PSBS, 

LHCSR or other LHCII protein present indeed protonatable sites (Walters et al., 1996; 

Li et al., 2004; Liguori et al., 2013; Ballottari et al., 2016) that could be responsible for 

the modulation of the extent of NPQ at different actinic light independently from the 

contribution of zeaxanthin. By the way, the presence of DTT reduces the ability of cells 

to accumulate zeaxanthin and reduces the level of induced NPQ, demonstrating a partial 

role of zeaxanthin in NPQ induction in C. vulgaris. Moreover, when two cycles of 

illumination and dark recovery was applied to C. vulgaris, the induction of NPQ was 

observed to be greater in the second cycle, where zeaxanthin was accumulated during a 

first cycle of illumination. The whole of these findings thus demonstrates the partial role 

of zeaxanthin in inducing NPQ as in the cases of higher plants (Supplemental data, 

Figure S5). However, it is not possible to fully determine whether zeaxanthin is essential 

or not for the NPQ process, as even in the presence of DTT, zeaxanthin synthesis is only 

partially inhibited. It is interesting to note that the similar relationship between NPQ and 

zeaxanthin and the similar characteristics of the VDE enzyme in higher plants and C. 

vulgaris may be correlated with the capacity of this algae to form biofilms on land 

surface. In the case of C. reinhardtii, showing an almost zeaxanthin independent NPQ 

and a CVDE enzyme for xanthophyll cycle induction, this species cold be found mainly 

in planktonic form, with a relatively limited risk of sudden changes in irradiance. 

Differently C. vulgaris, where a plant-like VDE and plant-like correlation of NPQ and 

xanthophyll cycle has been found, is mainly present in biofilms which increases the risk 
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of being exposed to rapid light changes, as in the case of lower or higher plants (Quaas 

et al., 2015). In these conditions the cells of C. vulgaris are exposed to environmental 

changes in a manner like the higher plants. It is therefore possible to speculate that C. 

vulgaris has evolved photoprotective mechanisms that have proved to be successful in 

the case of higher plants in which zeaxanthin has a central role. 
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Supplementary data 

Table S1 Primers used for Vde transcript amplification from cDNA and vde gene and transcript 

sequences.  

Forward sequence (5' -3')  Reverse sequence (5'-3') 

ATATAAAGCTTATGGCAGCTGCAGCACGC ATATACTCGAGATCCATGGGCATGATGACTG 

 

VDE sequences VDE transcript and protein sequences. Signal peptide is underlined. 

>g7391.t1_protein 

MQASRCTAAAVPAAPATNLPRCRRRVVRAAAARRPAASQQQRDADRQQEAQQPQQLGLTPLQKVA

TGAAGLLASAVLLTAPGSALAADTAAVGTCLLQNCQAALAQCLTDVTCAENLVCLQLCNGRPDETE

CQIKCGDKYSDKAVETFTACAVSEKKCVPQRIDEDAYPVPPDSALDNSFDLSNFQGRWYITAGLNPLF

DTFDCQEHFFASPEPNKVFAKINWRIPMSDALTGDQDFIERSVMQKFVQEDPAKQPSVLVNKDNEFLN

YQDTWYVLAFKPDNYVFIYYRGQNDAWLGYGGATVYTRTSTLPREDIPELKAAAERAGLDWSKFTI

TNNSCPPHPPKAALPEKLRVAAVRRTAQAEYELENDLRSFGRGFTVLEKDLSNKLRRTENTIVEDIKA

VGQVEKKLEQTAGKAEKLIEKEVEEVEAAAARMIRRFEAEAKMGPWINWIPKSWRPVIMPMD 

>g7391.t1_transcript 

ATGCAGGCCTCGAGGTGCACCGCAGCAGCCGTGCCAGCAGCCCCCGCCACAAACCTCCCGAGGT

GCCGCCGGCGTGTGGTGCGGGCAGCTGCAGCACGCCGCCCAGCCGCGTCTCAACAACAGCGCGA

TGCAGATAGGCAGCAGGAGGCACAACAGCCGCAGCAGCTGGGCCTGACCCCACTGCAGAAGGTG

GCAACTGGTGCGGCAGGCCTGCTAGCCTCTGCGGTCCTCCTCACGGCGCCTGGCTCAGCATTGGC

GGCAGACACTGCGGCTGTGGGCACGTGCCTGCTGCAAAACTGTCAAGCTGCGCTGGCCCAGTGCC

TCACAGACGTCACCTGCGCGGAGAACCTGGTGTGCCTGCAGCTGTGCAACGGCCGCCCAGACGA

GACTGAGTGCCAGATCAAGTGTGGTGACAAGTATTCCGACAAGGCGGTGGAGACGTTCACTGCCT

GCGCAGTCAGCGAGAAGAAGTGTGTCCCGCAGCGAATTGACGAGGATGCCTACCCCGTGCCACC

AGACAGTGCACTTGACAACAGCTTCGATTTGTCGAACTTCCAGGGCCGCTGGTACATCACTGCTG

GGCTAAACCCACTGTTCGACACATTCGACTGCCAGGAGCATTTCTTTGCCAGCCCGGAACCAAAC

AAGGTGTTTGCCAAGATCAACTGGCGGATTCCCATGTCAGACGCTCTGACTGGGGATCAGGACTT

CATTGAGCGGTCTGTGATGCAGAAGTTTGTGCAGGAGGACCCTGCCAAGCAGCCTTCTGTCCTAG

TGAACAAGGACAACGAATTTTTGAACTACCAAGACACTTGGTATGTGCTAGCTTTCAAGCCTGAC

AACTACGTCTTCATCTACTATCGAGGCCAGAATGATGCGTGGCTGGGCTACGGCGGCGCTACTGT

TTACACACGCACCTCGACCCTGCCTCGTGAGGACATTCCGGAGCTTAAGGCTGCAGCAGAGCGTG

CGGGACTGGACTGGTCCAAGTTCACCATCACCAACAACAGCTGCCCACCTCACCCGCCCAAGGCA

GCCCTGCCCGAGAAGCTGCGGGTGGCTGCGGTGCGCCGTACTGCCCAGGCTGAATATGAGCTTGA

GAACGATCTGCGCTCCTTTGGCCGAGGCTTCACCGTGCTAGAGAAGGATCTGTCAAATAAGCTGC

GCCGCACTGAGAACACGATTGTGGAGGACATCAAGGCTGTGGGGCAGGTCGAAAAGAAGCTGGA

GCAGACGGCGGGCAAGGCAGAGAAGCTCATTGAGAAGGAGGTAGAAGAGGTGGAGGCAGCTGC

GGCCCGCATGATTCGGCGCTTTGAGGCAGAGGCAAAGATGGGACCCTGGATCAACTGGATTCCC

AAGAGCTGGCGGCCAGTCATCATGCCCATGGATTGA 
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Figure S1. Determination of VDE protein accumulation in low light and high light grown cells. 

The amount of VDE was evaluated by immunoblotting reactions. Protein level was normalized to chlorophylls 

and PSAa amount Panel A-B: Amount of VDE expressed as ratio between µg of Chls or PSAa amount. Panel 

C: immunoblotting reactions with the indication of the µg of chlorophylls (Chls) loaded in each lane.  

 

 

Figure S2. Phylogenetic tree obtained with the protein sequences aligned in Figure.2.  

The units of branch length are residues substitution per site divided by the length of the sequence. 
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Figure S3. HPLC analysis of cells grown in low and high light adapted at dark for 30 minutes 

(T0) or treated for 6 minutes with actinic lights (200, 400, 800, 1200, 1800, 2000 and 2500 μmol 

photons m−2 s−1). A) Chl a/b ratio and B) Chl/Car ratio C) the de-epoxidation index and D) Zea/Car ratio. 

The increase in Chl a/b and Chl/Car ratios in high light grown cells is consistent with the high light 

acclimation response observed in higher plants. 
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Figure S4. Effect of DTT on NPQ kinetics of Chlamydomonas reinhardtii.  

In the graphics A) and B) double cycle of NPQ induction of C. reinhardtii cells acclimated to high light are 

reported. High light acclimated cells were used for this experiment since in C. reinhardtii high light 

acclimation is required for NPQ induction. An actinic light of 2000μmol photons m−2 s−1 and a saturating light 

of 4000μmol photons m−2 s−1 was applied for this measurement. Standard deviations are reported as error bars 

(n=3) 

 

Figure S5. NPQ kinetics of Arabidopsis thaliana in presence or absence of zeaxanthin. 

NPQ induction of A. thlaliana WT, npq1 and WT in presence of DTT are reported.  npq1 is mutant on vde gene 

in A. thaliana. An actinic light of 1200μmol photons m−2 s−1 and a saturating light of 4000μmol photons m−2 s−1 

was applied for this measurement. Standard deviations are reported as error bars (n=3). 
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Section C 

Photosynthetic response to nitrogen starvation and 

high light in Haematococcus pluvialis5 

In the green alga Haematococcus pluvialis astaxanthin biosynthesis is induced by high 

irradiances and/or nitrogen starvation. The aim of this work was to investigate their 

influence on the photosynthetic properties of H. pluvialis cultures. The results reported 

here demonstrate that nitrogen starvation inhibits chlorophyll biosynthesis and favors 

chlorophyll b degradation, chlororespiration and cyclic electron transport, while cells 

grown in high light are characterized by a higher destabilization of PSII. The 

combination of high light and nitrogen deprivation induced the highest astaxanthin 

production and also the fastest photoprotective response which cooperatively prevented 

Photosystem II from the damage observed in high light stress and nitrogen supplemented 

medium. In these conditions inhibition of astaxanthin accumulation leads to a reduced 

cell size but does not induce a higher photosensitivity of photosynthetic machinery. 

 

 

 

 

In this work I’ve performed the experiments regarding the photosynthetic 

characterization. 

 

 

 

 

Abbreviations: PSI, Photosystem I; PSII, Photosystem II; PTOX, Plastid Terminal Oxidase; ROS, Reactive 

Oxygen Species; DPA, diphenylamine; DMSO, dimethyl sulphoxide; DCMU, 3-(3,4-dichlorophenyl)-1,1-

dimethylurea; PG, n-propyl gallate; Chl a, b, chlorophyll a, b; NPQ, non-photochemical quenching; PQ, 

Plastoquinone, pmf, proton motive force.  

 

5This section is based on the published article: Scibilla L, Girolomoni L, Berteotti S, Alboresi A, 

Ballottari M; Photosynthetic response to nitrogen starvation and high light in Haematococcus 

pluvialis, Algal Research, Volume 12, November 2015, Pages 170–181. 



 

198 

 

Introduction 

The freshwater green microalga Haematococcus pluvialis is well known for its ability to 

synthetize and store a large amount of the carotenoid astaxanthin under stress conditions 

(Boussiba, 2000; Aflalo et al., 2007; Lemoine and Schoefs, 2010). Astaxanthin is a high 

value carotenoid used in aquaculture and poultry farming as pigmentation agent (Lorenz 

and Cysewski, 2000; Higuera-Ciapara et al., 2006). Furthermore, due to its strong 

antioxidant properties, natural astaxanthin is used in nutraceutical and pharmaceutical 

application to prevent free-radical associated diseases (Guerin et al., 2003; Yuan et al., 

2011; Ambati et al., 2014). In the last decade H. pluvialis has become the main 

commercial source of natural astaxanthin, and much research has been done to determine 

best conditions for growth and carotenoid accumulation (Aflalo et al., 2007; Li et al., 

2011; Zhang et al., 2014; Wan et al., 2014a,b). Astaxanthin biosynthesis occurs at the 

level of the endoplasmic reticulum using a precursor produced in the chloroplast then 

exported to the cytosol (Collins et al., 2011; Chen et al., 2015). Astaxanthin production 

in H. pluvialis is also accompanied by esterification of this molecule with fatty acids 

(Chen et al., 2015). It has been demonstrated that H. pluvialis synthetizes and 

accumulates astaxanthin when exposed to various environmental stresses, such as high 

light (Kobayashi et al., 1992), nutrient deprivation (Kobayashi et al., 1992; Boussiba et 

al., 1999; Aflalo et al., 2007), high salinity (Harker and Young, 1995) or high 

temperature (Tjahjono et al., 1994; Giannelli et al., 2015), and that astaxanthin 

biosynthesis has multiple roles protecting cells against oxidative stress (Li et al., 2008) 

even though the photoprotective role of this carotenoid in H. pluvialis is still under 

debate (Fan et al., 1998; Wang et al., 2003). While H. pluvialis carotenogenesis has been 

widely investigated (Boussiba, 2000; Li et al., 2010; Gao et al., 2013; Recht et al., 2014; 

Chen et al., 2015; Choi et al., 2015) less research has been conducted on the 

photosynthetic processes occurring in this species, and apparently conflicting results are 

present in literature: some authors reported an increase of photosynthetic activity during 

astaxanthin accumulation while others reported a decline (Zlotnik (Shmerler) et al., 

1993; Tan et al., 1995; Qiu and Li, 2006; Wang et al., 2014; Gu et al., 2014) or no 

significant variations (Gu et al., 2013). These contrasting results mainly derive from the 

misleading direct relationship between the photosynthetic data obtained and astaxanthin 

accumulation, without considering the type of stress at which cells were exposed. The 



 

199 

 

condition for astaxanthin production as high light stress (Boussiba et al., 1999; Wang et 

al., 2003, 2014; Qiu and Li, 2006; Gu et al., 2014) nitrogen starvation (Zlotnik 

(Shmerler) et al., 1993), culture aging (Chen et al., 2012; Gu et al., 2013), high light 

combined with nitrogen (Hagen et al., 2000; Recht et al., 2014) or phosphorus (Tan et 

al., 1995) starvation indeed have strong and different impacts on photosynthesis: 

interpreting photosynthetic results as a direct consequence of the kind of stress used, and 

considering astaxanthin accumulation only as an additional effect caused by stressing 

could clarify contrasting results present in literature. 

Light energy conversion into biomass occurs in the chloroplast of eukaryotic 

photosynthetic organisms, where pigment binding protein complexes called 

Photosystems I and II (PSI and PSII) absorb light and use the excitation energy to 

transfer electrons from water to NADP+ forming NADPH: this process is coupled with 

proton translocation into the lumen, forming a proton transmembrane gradient which is 

used to produce ATP by ATP synthase. ATP and NADPH are then used to fix inorganic 

CO2. PSI and PSII activities are strongly influenced by the light intensity available and 

by the metabolic state of the cell, since the formation and consumption of ATP and 

NADPH is linked with light energy conversion and cell metabolic demands. In addition, 

the chloroplastic light dependent electron transport chain can be perturbed by reducing 

power exchange with the mitochondria or by the onset of alternative electron flow 

pathways within the chloroplast such as cyclic electron transport or chlororespiration 

(Xue et al., 1996; Cardol et al., 2009). In particular during cyclic electron transport 

across PSI electrons transported by PSI are recycled in order to pump protons in the 

lumen to sustain ATP production, while during chlororespiration plastoquinones pool is 

oxidized by a Plastid Terminal Oxidase (PTOX) enzyme (Arnon et al., 1981; Bennoun, 

1982; Garab et al., 1989). PTOX activity has been previously reported to prevent 

electron transport chain saturation (Niyogi, 2000), but at same time its activity has been 

reported to be crucial for carotenogenesis, being involved with redox reaction of 

phytoene desaturase and/or ζ-carotene desaturase (Shahbazi et al., 2007; Li et al., 2010). 

The presence of two genes PTOX1 and PTOX2 coding for a plastid terminal oxidase 

have been reported in the genome of H. pluvialis (Li et al., 2008) and the dependence of 

carotenogenesis on PTOX activity has been proposed (Li et al., 2008, 2010; Wang et al., 

2009). Investigation of PTOX activity modulating photosynthetic performance is thus 

essential in order to elucidate H. pluvialis photosynthetic response to different stress 
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condition. In this work astaxanthin accumulation was induced in H. pluvialis cells, using 

nitrogen starvation and high light as single or combined stressors in order to elucidate 

the stress specific photosynthetic responses. In addition, the astaxanthin specific role(s) 

during stress exposure was investigated by the addition of diphenylamine, an astaxanthin 

synthesis inhibitor (Harker and Young, 1995). 

 

Materials and methods 

Strain and culture conditions 

Haematococcus pluvialis strain K-0084 was obtained from Scandinavian Culture 

Collection of Algae & Protozoa. Stock cultures were maintained at 10 µmol photons m-2 

s-1 on agarized BG-11 medium (Rippka et al., 1979) with 1 g L-1 of Na-acetate at 22 °C. 

Liquid cultures were grown photoautotrophically at 40 µmol photons m-2 s-1 on BG-11 

medium at 22 °C in homemade 50 mL photobioreactors. Culture mixing was provided 

by bubbling filtered (0,2 µm) air. Different stressing conditions were applied to cell 

cultures in their exponential phase (approximately 5×105 cells ml-1). Cells were 

harvested by centrifugation, washed twice with sterile water and suspended in BG-11 

medium either supplemented or not by nitrogen at a cell density of 1·105 cells ml-1. The 

cultures were exposed for 10 days to a 16:8 hours light:dark cycle at 40 (control light) 

and 400 (high light) µmol photons m-2 s-1, in order to obtain four different conditions of 

cultivation: control light with nitrogen (CL), control light without nitrogen (CL-N), high 

light with nitrogen (HL) and high light without nitrogen (HL-N). 17.65 mM of sodium 

nitrate was used as nitrogen source. When specified, astaxanthin synthesis inhibitor 

diphenylamine (DPA) was added at the final concentration of 120 µM (Harker and 

Young, 1995). Each experiment was repeated at least in two independent treatments with 

three biological replicates for each sample. 

 

Cell concentration and pigment analysis  

Cell concentrations (cells mL-1) were determined using a Neubauer improved counting 

chamber under a light microscope. For pigment extraction, 750 µL of culture were 

centrifuged and cell pellets were treated by dimethyl sulphoxide (DMSO) preheated at 

70 °C for 10 min (Zhekisheva et al., 2002). The extraction was repeated until the pellet 

was colorless. DMSO extracts were diluted in acetone and water, in order to obtain a 
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final mixture of acetone:water:DMSO 80:15:5 v/v. Chlorophyll and carotenoid content 

was determined by HPLC analysis (Ferrante et al., 2012). 

 

PSII quantum yield and Non-Photochemical Quenching 

For each sample 200 µL of culture were transferred in a 96 well culture plate and cells 

were dark-adapted for at least 30 minutes at room temperature. Chlorophyll a 

fluorescence was measured by imaging with a closed fluorometer, FluorCam FC 800MF 

(Photon Systems Instruments, Czech Republic) with a saturating red light at 4500 µmol 

photons m-2 s-1 and an actinic red light at 550 µmol photons m-2 s-1. Actinic light was 

applied for 10 minutes, followed by 10 minutes of dark recovery. PSII quantum yield 

(Fv/Fm) and Non-Photochemical Quenching (NPQ) were calculated, respectively, as 

(Fm-F0)/F0 and (Fm-Fm’)/Fm’ (Bilger and Björkman, 1990).  

Photosynthetic O2 evolution and consumption  

O2 consumption and evolution were measured respectively in dark and at different red 

actinic light intensities (25, 70, 140, 286, 560, 1200 µmol photons m-2 s-1) in a Clark-

type oxygen electrode (Hansatech) on whole cells at 25 °C under vigorous stirring. Cells 

were concentrated with a low-speed centrifugation (1000 rpm for one minute) at 5·105 

cell·ml-1 and resuspended in fresh medium. For cyclic electron transport activation 

analysis a group of samples, was treated by 2 mM n-propyl gallate (PG) by adding it 

before O2 evolution measurements to inhibit PTOX enzymatic activity (Josse et al., 

2000). 

 

PSII antenna size 

PSII functional antenna size was estimated following the kinetics of PSII fluorescence 

emission of cells treated with 10 µM 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) 

considering that PSII antenna size is inversely proportional to the time required for 

reaching 2⁄3 of the maximum fluorescence emission (de Bianchi et al., 2008). 

 

SDS-PAGE analysis and immunoblot 

Total protein extracts were obtained as described in (Steinbrenner and Sandmann, 2006). 

Total protein concentration was measured by bicinchoninic acid (BCA) assay. SDS-
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PAGE and immunoblots against LHCII were performed as previously reported (Bonente 

et al., 2012).  

 

P700 activity 

PSI reaction center activity was monitored as transient decrease of 705 nm absorption as 

previously described using a JTS 10-LED pump-probe spectrometer (Bio-Logic SAS, 

Claix, France) (Bonente et al., 2012). 

 

Electrochromic shift 

The extent of the light-driven proton fluxes across thylakoid membranes was determined 

by measurements of the electrochromic shift (ECS) at a wavelength of 520 nm as 

previously described (Bailleul et al., 2010). In particular samples were measured using a 

JTS 10-LED pump-probe spectrometer (Bio-Logic SAS, Claix, France) in the presence 

of 15% Ficoll, in order to prevent cell sedimentation during the measurement. The 

sample was adapted to a light intensity of 35 µmol photons m-2 s-1 for 8 min before the 

measurement. After the adaptation, the sample was measured at a light intensity of 940 

µmol photons m-2 s-1 for 20 s, followed by a 60 s dark adaptation.  

 

Fluorescence curve for PTOX effect analysis 

PTOX activity was monitored following the kinetic of fluorescence emission of cells 

either in the presence or absence of 2 mM n-propylgallate during the exposure to the 

following protocol of illumination: 1 min of dark, 5 min of actinic light, 5 min of dark 

and 1 min of far red light. Actinic light was set at the same intensity used for cell growth 

(Joet et al., 2002). 

 

Results 

Effects of high irradiance and nitrogen starvation on growth  

To assess the effects of high light and nitrogen starvation on Haematococcus pluvialis 

growth, cells at early exponential phase were exposed to two different light intensities: 

40 µmol photons m-1 s-1 either with nitrogen (CL) or in nitrogen deficiency (CL-N), or to 

a light intensity of 400 µmol photons m-1 s-1 again with nitrogen (HL) or in nitrogen 

deficiency (HL-N). Preliminary experiments demonstrated that the latter was the 
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condition with the highest astaxanthin accumulation in agreement with previous results 

(Aflalo et al., 2007), therefore an additional condition was investigated adding 

diphenylamine (DPA), an inhibitor of astaxanthin biosynthesis, to HL-N cells (HL-

N+DPA). Five different cultivation conditions were thus investigated: CL, CL-N, HL, 

HL-N, HL-N+DPA. Cell concentration was monitored for 10 days as reported in Figure 

1A. 

 

Figure 1. Growth curve and cell diameter of Haematococcus pluvialis exposed to different light intensities and 

nitrogen content. (A) Growth curves of H. pluvialis exposed to control light (40 µmol photons m-1 s-1) with (CL, 

green) and without (CL-N, brown) nitrogen and high light (400 µmol photons m-1 s-1) with (HL, orange) and 

without nitrogen in presence (HL-N+DPA, purple) or absence (HL-N, red) of diphenylamine. (B) Variation of 

cell diameter during growth. Reported data are the average of six biological replicates, standard deviations 

are indicated. 

In CL, cell concentration continuously increased and achieved the maximum cell density 

(5.58·105 cells·ml-1) eight days after the inoculum while in HL cell density started to 

increase only after three days of adaptation to the new stress conditions of excessive 

irradiation. In HL and CL, the highest cell concentration was achieved after eight days of 

cultivation, with HL cells being more concentrated than CL cells. As expected, in 

nitrogen deficiency (CL-N, HL-N and HL-N+DPA) cell division was blocked likely due 

to inhibition of cell replication by the lack of nutrients: this is a common feature already 

observed in several algae species (Borowitzka et al., 1991; Berges et al., 1996; Hockin 

et al., 2012; Cakmak et al., 2012; Dong et al., 2013). Cell diameter variations upon 

exposure to the different growth conditions are reported in Figure 1B. As previously 

reported (Kakizono et al., 1992; Kobayashi et al., 2001; Wang et al., 2004) cell diameter 

strongly increased from 12 µm to almost 20 µm in samples exposed to nitrogen 
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deprivation, while smaller cell diameter (14 µm) was observed in CL cells at the end of 

the experiment. Differently in the first three days a decrease of cell diameter to 10 µm 

was evident in HL-N+DPA (Figure 1; Supplementary data, Figure S1). 

Effects of high irradiance and nitrogen starvation on chlorophyll content 

Chlorophyll content on a volumetric (µg chl ml-1) or cellular base (pg chl cell-1) and Chl 

a/b ratio were analyzed daily to verify high light and nitrogen starvation effects on 

chlorophyll synthesis and modulation. CL and HL growth conditions were the only cases 

in which chlorophyll content increased on a volumetric base (Figure 2).  

 

Figure 2. Changes in chlorophyll content during exposure at different stress conditions. (A) Volumetric 

chlorophyll content expressed as µg chl per ml of culture. (B) Cellular chlorophyll content expressed as pg chl 

per cell. (C) Chlorophyll a/b ratio. Green squares: cells in control light (40 µmol photons m-1 s-1) with 

nitrogen, CL; brown circles: cells in control light without nitrogen, CL-N; orange triangles: cells grown in 

high light (400 µmol photons m-1 s-1 ) with nitrogen, HL; red triangles: cells grown in high light without 

nitrogen, HL-N; purple triangles: cells grown in high light without nitrogen in presence of diphenylamine; HL-

N+DPA. Reported data are the average of six biological replicates, standard deviations are indicated. 

In CL, chlorophyll content per cell increased from 37.60 to 78.06 pg chl·cell-1 (Figure 

2A) while Chl a/b ratio remained stable at ~2.15 (Figure 2C). Conversely in HL both 

chlorophyll content per cell and Chl a/b ratio transiently increased in the first three days 

of stress exposure, returning then to values similar to the starting ones (29.14 pg chl·cell-

1 and 2.4 respectively). Interestingly after two days of exposure to HL, a transient 

increase of chlorophyll content per cell was observed, likely due to a dephasing of cell 

duplication and chlorophyll biosynthesis. As expected only in presence of nitrogen there 

was a net chlorophyll synthesis (Figure 2B): when nitrate was not added to the cultures, 
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the volumetric chlorophyll content remained stable in CL-N and decreased in HL-N 

from 37.60 to 5.06 pg chl·cell-1. In both cases increased Chl a/b ratio could be observed, 

more evident in HL-N (from 2.15 to 3.70 in HL-N and 2.16 to 2.99 in CL-N): in these 

conditions increase Chl a/b ratio was due to a preferential degradation of chlorophyll b 

during stress exposure, even if chlorophyll a was also degraded. The presence of DPA 

did not significantly change either the chlorophyll per cell content or the Chl a/b ratios 

compared to HL-N cells (Figure 2). 

 

Effects of high irradiance and nitrogen starvation on carotenoid content 

Daily content changes on the carotenoids content throughout cultivation period are 

reported in Figure 3.  

Figure 3. Changes in carotenoid contents during stress exposure. Carotenoids were extracted with DMSO, 

and the extraction was repeated until obtain a colorless pellet. Carotenoids content was analyzed by HPLC, 

and expressed on per chlorophyll basis. (A) Violaxanthin (B) Anteraxanthin (C) Zeaxanthin (D) Neoxanthin 

(E) Lutein (F) β-carotene. Green squares: cells in control light (40 µmol photons m-1 s-1) with nitrogen, CL; 

brown circles: cells in control light without nitrogen, CL-N; orange triangles: cells grown in high light (400 
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µmol photons m-1 s-1) with nitrogen, HL; red triangles: cells grown in high light without nitrogen, HL-N; 

purple triangles: cells grown in high light without nitrogen in presence of diphenylamine; HL-N+DPA. 

Reported data are the average of six biological replicates, standard deviations are indicated. 

In control light the content of major carotenoids remains stable for all the time points of 

the kinetic. During the first 3 days in HL and HL-N, a rapid accumulation of de-

epoxidized xanthophylls as anteraxanthin and zeaxanthin was observed due to the 

activation of the xanthophyll cycle. In HL and HL-N xanthophyll cycle activation 

followed a biphasic kinetic, with a later additional increase of de-epoxidated carotenoids 

upon acclimation. Interestingly while zeaxanthin resulted to be the main de-epoxidated 

carotenoid in HL-N cells, HL conditions lead to preferential anteraxanthin accumulation. 

Similarly to zeaxanthin, also lutein, neoxanthin and β-carotene content increased in HL-

N condition suggesting a general accumulation of carotenoid in response to excess light. 

As shown in Figure 4, in all stress conditions (CL-N, HL, HL-N) astaxanthin 

accumulation was induced and the most effective condition for astaxanthin production 

was HL-N with 306.63 µg·ml-1, compared to 200.53 µg·ml-1 in HL and 97.08 µg·ml-1 in 

CL-N. 

 

Figure 4. Kinetics of astaxanthin accumulation during stress exposure. Astaxanthin was extracted with DMSO, 

and the extraction was repeated until obtain a colorless pellet. Content was analyzed By HPLC. (A) Cellular 

astaxanthin content, as pg of astaxanthin per cell. (B Volumetric astaxanthin content, as mg of astaxanthin per 

ml of culture). Green squares: cells in control light (40 µmol photons m-1 s-1) with nitrogen, CL; brown circles: 

cells in control light without nitrogen, CL-N; orange triangles: cells grown in high light (400 µmol photons m-1 

s-1) with nitrogen, HL; red triangles: cells grown in high light without nitrogen, HL-N; purple triangles: cells 

grown in high light without nitrogen in presence of diphenylamine; HL-N+DPA. Reported data are the 

average of six biological replicates, standard deviations are indicated. 
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As previously reported (Harker and Young, 1995) addition of DPA to HL-N cells 

resulted into a significant inhibition of astaxanthin of about ten times compared to HL-

N. At the same time in HL-N+DPA the strong accumulation of other carotenoids as β-

carotene, lutein and zeaxanthin was observed indicating that DPA treatment affected 

specifically astaxanthin biosynthesis. 

 

Effects of high irradiance and nitrogen starvation on PSII quantum yield, Non 

Photochemical Quenching and PSII photosensitivity 

PSII quantum yield (Fv/Fm) and non-photochemical quenching (NPQ) were analyzed in 

the different growth conditions to evaluate changes in the performance of the 

photosynthetic apparatus (Figure 5A).  

 

Figure 5. Variation of photosynthetic efficiency and non photochemical quenching during stress exposure. (A) 

Photosynthetic efficiency measured as PSII quantum yield (Fv/Fm) in dark-adapted cells. (B) Non 

Photochemical Quenching (NPQ) kinetics measured on cells grown for 4 days at the different stressing 

conditions. (C, D) NPQ maximum value measured at the different days of growth. Green squares: cells in 

control light (40 µmol photons m-1 s-1) with nitrogen, CL; brown circles: cells in control light without nitrogen, 

CL-N; orange triangles: cells grown in high light (400 µmol photons m-1 s-1) with nitrogen, HL; red triangles: 

cells grown in high light without nitrogen, HL-N; purple triangles: cells grown in high light without nitrogen 
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in presence of diphenylamine; HL-N+DPA. Reported data are the average of six biological replicates, 

standard deviations are indicated. 

Fv/Fm generally decreased from the initial value of 0.8 to 0.66 with two exceptions: CL-

N cells, where the Fv/Fm remained above 0.72, and HL cells in which Fv/Fm decreased 

to 0.42. No significant differences were evident comparing HL-N and HL-N+DPA cells. 

NPQ induced in the different growth conditions is reported in Figure 5B-D. In all the 

different growth conditions H. pluvialis showed a significant light dependent NPQ 

induction (Figure 5B). NPQ maximum values were quite stable at around 1.5 in CL 

cells, while upon stress exposure more variable maximum NPQ values were measured 

(Figure 5C-D). In HL NPQ in the first days drops from 1.5 to 1 and then rises in one day 

until 2 remaining quite stable until day 10 when it drops again to ~1. In CL-N and HL-N 

cells NPQ immediately increases reaching after four days the maximum value of ~2.4 

followed by a decrease to 1.2 and 0.7 respectively.  These results indicate that in HL the 

photosynthetic apparatus is strongly perturbed and three days are necessary in order to 

properly activate the photoprotective NPQ response, while depletion of nitrogen in HL-

N and CL-N accelerate the activation of photoprotective mechanism in the first days of 

stress exposure. Interestingly HL-N+DPA cells showed decreased of NPQ to 0.5 which 

remained quite stable until the end of the experiment. This result suggests that the 

accumulation of carotenoid in the chloroplast in HL-N+DPA cells (Figure 4) reduces the 

capacity of NPQ induction. The effect of adaptation to the different growth conditions 

on the photostability of PSII was then investigating exposing the cells at the sixth day of 

growth to strong white light (2000 µmol photons m-2s-1) following the decay of Fv/Fm 

(Figure 6). As reported in Figure 6A, cells grown in CL were the most susceptible to 

PSII damage and loss of Fv/Fm, followed by HL cells. Cells grown in nitrogen 

starvation were instead the conditions with the lower photosensitivity, with the best 

photoprotection appearing in HL-N and HL-N+DPA. In order to evaluate if these 

different photoprotective behavior was influenced by astaxanthin or carotenoid direct 

absorption of the blue region of the white light spectrum used for, we repeated the 

experiments using a red light (1000 µmol photons m-2s-1). The results reported in Figure 

6B demonstrate that the lower photosensitivity of HL-N and HL-N+DPA is maintained, 

while little differences are noticeable among CL, HL and CL-N. This result 
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demonstrates that overall carotenoid accumulation rather than specific astaxanthin 

biosynthesis is necessary to increase PSII photoprotection. 

 

Figure 6. Photosystem II photoinhibition. Photosystem II photoinhibition was measured following the decrease 

of Fv/Fm upon exposure to white light (2000 µmol m-2s-1, A) or red light (1000 µmol m-2s-1, B). Green squares: 

cells in control light (40 µmol photons m-1 s-1) with nitrogen, CL; brown circles: cells in control light without 

nitrogen, CL-N; orange triangles: cells grown in high light (400 µmol photons m-1 s-1 ) with nitrogen, HL; red 

triangles: cells grown in high light without nitrogen, HL-N; purple triangles: cells grown in high light without 

nitrogen in presence of diphenylamine; HL-N+DPA. Reported data are the average of six biological 

replicates, error bars are indicated. 

Effects of high irradiance and nitrogen starvation on PSII functional antenna 

size  

PSII functional antenna size was measured after eight days of cultivation in order to 

establish the influence of growth conditions on PSII-LHCII supercomplexes assembly 

and light harvesting efficiency. PSII functional antenna size were determined by 

measuring the kinetics of fluorescence emission of PSII in dark-adapted cells treated 

with DCMU (Figure 7): in limiting light conditions the rate of fluorescence induction is 

inversely proportional to the functional antenna size of PSII. Figure 7 shows the kinetics 

of fluorescence emission (A) and the estimated PSII functional antenna size (B). In HL 

without nitrogen the antenna size of PSII was reduced by half compared to the other 

conditions, in agreement with the increase of Chl a/b ratio observed in these conditions. 

This effect was not influenced by DPA addition suggesting that astaxanthin synthesis is 

not directly responsible of the reduction in PSII functional antenna size observed in HL-

N. 
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Figure 7. PSII functional antenna size and LHCII immunoblot. (A) Fluorescence emission kinetics of 

photosystem II of cell dark-adapted and treated with DCMU are shown. Green squares: cells in control light 

(40 µmol photons m-1 s-1) with nitrogen, CL; brown circles: cells in control light without nitrogen, CL-N; 

orange triangles: cells grown in high light (400 µmol photons m-1 s-1) with nitrogen, HL; red triangles: cells 

grown in high light without nitrogen, HL-N; purple triangles: cells grown in high light without nitrogen in 

presence of diphenylamine; HL-N+DPA. (B) The estimated PSII antenna size is reported as the reciprocal 

number of the time required for reaching 2⁄3 of the fluorescence maximum emission. (C) Immunoblots on total 

protein extracts with specific antibodies for LHCII. Different samples were loaded on SDS-PAGE gel on the 

base of chlorophyll content or protein content, as indicated. Reported data are the average of six biological 

replicates, standard deviations are indicated. 

Effects of high irradiance and nitrogen starvation on oxygen consumption and 

evolution 

O2 consumption and evolution at increasing light intensities were measured in order to 

assess how photo-oxidative stress affects the photosynthetic activity of H. pluvialis cells. 

O2 measurements were performed after eight days of cultivation in stressing conditions, 

when astaxanthin synthesis was already induced in HL-N, HL and CL-N. In order to 

prevent sunscreen effect by astaxanthin reducing the actual irradiance of the cells, red 

light (λ>600 nm) was used to measure the light-driven O2 production in the different 

growth conditions. As reported in Figure 8A, photosynthetic oxygen production was 

reduced on a cell basis in CL-N and HL-N compared to CL and HL respectively, with 

the highest production rate in CL. However on a chlorophyll basis, nitrogen starvation 

(CL-N and HL-N) promotes an increase of oxygen production rate compared to 

condition in which nitrogen was supplemented: in particular Pmax appeared higher in HL-
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N and CL-N compared to HL and CL (Figure 8B). Interestingly the block of astaxanthin 

synthesis by DPA addition resulted in a slight increase of Pmax compared to HL-N on a 

chlorophyll basis. Dark respiration rate (Figure 8C) was higher in all stress condition 

(HL, HL-N, CL-N and HL-N+DPA) compared to CL.  

 
 

 

 

Figure 8. Oxygen evolution and consumption. O2 production and consumption were evaluated in cells adapted 

for 8 days at different stress conditions. (A,B) Light dependent oxygen evolution, on a cell basis (A) or on 

chlorophyll basis (B) evaluated using red filtered light to avoid astaxanthin sunscreen effects. Green squares: 

cells in control light (40 µmol photons m-1 s-1) with nitrogen, CL; brown circles: cells in control light without 

nitrogen, CL-N; orange triangles: cells grown in high light (400 µmol photons m-1 s-1) with nitrogen, HL; red 

triangles: cells grown in high light without nitrogen, HL-N; purple triangles: cells grown in high light without 

nitrogen in presence of diphenylamine; HL-N+DPA. (C) Respiration rate, on cell basis, analyzed in dark 

adapted cells. Reported data are the average of six biological replicates, standard deviations are indicated. 

Cyclic electron transport activation in stressing conditions 

Cyclic electron transport around Photosystem I is an alternative electron transport 

pathway that has been reported to be induced in different photosynthetic organisms in 

order to balance ATP and NADPH production, or when linear electron transport from 

PSII is somehow impaired (Rumeau et al., 2007; Alric, 2010). In order to evaluate the 

influence of the stressing conditions herein investigated on cyclic electron transport, the 
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kinetics of PSI reduction in the dark were investigated in DCMU treated cells after 

illumination with an actinic light of 940 µmol photons m-2s-1. In case of cyclic electron 

transport activation, it has been reported that the first phase of Photosystem I re-

reduction in the dark occurs faster. As reported in Figure 9 the kinetics of re-reduction in 

the dark of PSI after illumination are clearly faster in nitrogen starvation, especially in 

the case of HL-N and HL-N+DPA. These results suggest that H. pluvialis in nitrogen 

starvation activates cyclic electron transport to a higher extent compared to CL and HL 

conditions. 

 

Figure 9. P700 reduction kinetics in the dark. Dark adapted cells were treated with DCMU and exposed to 

actinic light (940 µmol photons m-2s-1) for 30 seconds: P700 re-reduction in the dark was followed measuring 

the difference absorption at 700 nm in the ms time-range. Green squares: cells in control light (40 µmol 

photons m-1 s-1) with nitrogen, CL; brown circles: cells in control light without nitrogen, CL-N; orange 

triangles: cells grown in high light (400 µmol photons m-1 s-1) with nitrogen, HL; red triangles: cells grown 

in high light without nitrogen, HL-N; purple triangles: cells grown in high light without nitrogen in presence 

of diphenylamine; HL-N+DPA. Experimental values were fitted with exponential decay curves (straight lines). 

Reported data are the average of six biological replicates, standard deviations are indicated. 

PTOX activity in stressed cells 

Astaxanthin synthesis has been associated to activation of plastidial oxidase PTOX (Li et 

al., 2008, 2010; Wang et al., 2009). PTOX activation is correlated to chlororespiration 

induction which oxidizes PQ pool and can be measured following the PSII fluorescence 

kinetics in the seconds range. In order to evaluate the activation of PTOX and 

chlororespiration in the different growth conditions PSII fluorescence kinetics were 

measured in presence or absence of the PTOX inhibitor n-propylgallate (PG). Treated 

and untreated cells were exposed to the following illumination steps: 1 min of dark, 5 
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min of actinic light at the same irradiance used for cultivation, 5 min of dark and 1 min 

of far red light. As shown in Figure 10 inhibition of PTOX activity leads to an increase 

in fluorescence during light treatment in CL+PG and even higher in CL-N+PG 

compared to CL and CL-N respectively, indicating that plastoquinone pools in presence 

of PG was in average more reduced.  

 

Figure 10. Evaluation of PTOX activity effects in stressed cells. (A-E) Kinetics of fluorescence emission of 

cells adapted for 8 days at different stress condition in presence or not of the potx inhibitor n-propylgallate 

(PG), during the following protocol of illumination: 1min dark, 5 min red filtered actinic light at the 

cultivation intensity (A-B 40 µmol photons m-2 s-1; C-E 400 µmol photons m-2 s-1), 5 min dark and 1 min far red 

light. (F) PTOX inhibition influence on proton motive force. Proton motive force (pmf) was determined by 

electrochromic shift measurement at 520nm. Data reported were calculated as (pmf-pmfPGAL)/pmf * 100, where 

pmf is the total pmf while pmfPGAL is the pmf measured upon addition of propyl gallate to inhibit PTOX. 

Reported data are the average of six biological replicates, standard deviations are indicated. 

When light was switched off the transient fluorescence rise in the dark was observed in 

both CL and CL-N when treated with PG: this dark transient florescence rise has been 

previously reported when PTOX activity was low or absent (Joet et al., 2002). Moreover 
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the fluorescence signal remained higher in CL-N in the second dark period, indicating 

again a more reduced state when PTOX was inhibited. Upon far red illumination, CL, 

CL+PG and CL-N+PG fluorescence signal was significantly reduced, indicating a full 

oxidation of the plastoquinone pool, while in CL-N the far red illumination has almost 

no effect, likely due to the PTOX activity in plastoquinones oxidation. These results 

demonstrate that plastoquinones in CL-N are mainly oxidized by PTOX, which is more 

active compared to CL, in agreement with the activation of astaxanthin biosynthesis in 

this condition. In HL, the inhibition of PTOX activity doesn’t produce a significant 

effect, while in HL-N, PG addition leads to an increase in fluorescence during dark 

period, indicating an important effects of PTOX on relaxing PQ redirecting electrons to 

carotenogenesis. The inhibition of astaxanthin synthesis with DPA results in a lower 

increase of fluorescence in the dark, indicating a lower activity of PTOX compared to 

HL-N. In order to confirm these results, the influence of PTOX activity on lumen 

acidification in vivo was investigated by measuring the light dependent electrochromic 

shift (ECS) of carotenoid absorption. This method has been reported to be reliable in 

order to monitor the proton motive force (pmf) induced by light absorption, following 

the changes in carotenoid absorption induced by thylakoid membrane polarization 

(Bailleul et al., 2010). In this experiment ECS was measured in cells treated with an 

actinic light of 940 µmol m-2s-1 in presence or absence of PGAL in order to inhibit 

PTOX activity. PTOX dependent plastoquinones oxidation indeed is expected to 

increase pmf, increasing proton transport in the lumen. As reported in Figure 10F the 

addition of PGAL induced a decrease of pmf observed in absence of PGAL in all the 

samples analyzed, but with a minor effect in HL cells. This result is consistent with a 

reduced activation of PTOX in HL compared to other conditions. 

Discussion 

In this study, the effects of nitrogen starvation and high light stress on the photosynthetic 

properties of Haematococcus pluvialis cells were analyzed. The results reported here 

demonstrate that nitrogen starvation promotes astaxanthin biosynthesis and 

accumulation in H. pluvialis cells exposed to nitrogen starvation both under medium or 

high irradiance (CL-N and HL-N) (Figure 4) in agreement with previous results (Zlotnik 

(Shmerler) et al., 1993; Boussiba et al., 1999; Hagen et al., 2000). Nitrogen starvation 

has been already reported to be a strong stressing condition in microalgae impairing both 
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chlorophyll and protein biosynthesis: algal cells grown in the absence of nitrogen 

generally redirect their metabolism accumulating lipids and carotenoids favoring 

respiration over photosynthesis (Berges et al., 1996; Cakmak et al., 2012; Schmollinger 

et al., 2014). In the case of H. pluvialis it has been recently reported that the combination 

of nitrogen starvation and high light leads to starch degradation, accumulation of 

monomeric or oligomeric carbohydrates and fatty acids, and increased activity of the 

tricarboxylic acid cycle (Boussiba and Vonshak, 1991; Recht et al., 2014). Our results 

show that nitrogen starvation in H. pluvialis inhibits cell division (Figure 1), as 

previously reported for other microalgal species (Cakmak et al., 2012; Zhu et al., 2014) 

and somehow change the composition of photosynthetic membranes continuously 

increasing the Chl a/b ratio in both CL-N and HL-N (Figure 2). This is the result of a 

combined inhibition of chlorophyll biosynthesis due to nitrogen deprivation and 

preferential degradation of chlorophyll b, suggesting that antenna proteins of PSII are 

more destabilized in nitrogen starvation. This is confirmed especially in HL-N, where 

LHCII accumulation and the PSII functional antenna size are dramatically reduced 

compared to HL, while in CL-N the reduction is less evident compared to CL (Figure 7). 

Dark respiration was clearly increased in nitrogen starvation, confirming a redirection of 

metabolism favoring mitochondrial respiration: photosynthetic oxygen production was 

indeed reduced on a cell basis, as a consequence of reduction of chlorophyll amount per 

cell content in HL-N and CL-N compared to HL and CL respectively. However, in 

nitrogen starvation H. pluvialis cells remain photosynthetically active as evidenced by 

the high PSII quantum yield (Fv/Fm higher than 0.65) observed even after 10 days of 

stress, and by the increase of maximal oxygen production rate calculated on a 

chlorophyll basis (Figure 5A; Figure 8B). The latter result is in contrast with what has 

been observed, in a similar stress condition, by Zlotnik (Shmerler) et al. (1993), who 

reported a reduction of maximal photosynthetic rate. These conflicting results are related 

to the use of red actinic light in the experiment reported at Figure 8 while  in Zlotnik 

(Shmerler) et al. (1993) a white light was used for oxygen evolution measurement, 

which is partially absorbed by astaxanthin accumulated in the cells, thus reducing the 

light energy available for photochemistry. In fact the use of red light during oxygen 

evolution measurement prevents the light screening function of astaxanthin accumulated 

in starved nitrogen cultures (Wang et al., 2003). The results reported here show an 

increased Pmax in nitrogen starvation compared to cells grown in the presence of a 
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nitrogen source (Figure 8B). This increase in Pmax could be related to the reduced 

chlorophyll per cell content observed in CL-N and HL-N compared to CL and HL: 

insertion mutants obtained in Chlamydomonas reinhardtii and Chlorella sorokiniana 

with a reduced Chl/cell ratio indeed have been reported to increase their Pmax compared 

to the respective WT strains (Formighieri et al., 2013; Cazzaniga et al., 2014). Non 

photochemical quenching is also affected by nitrogen starvation; in particular NPQ is 

significantly higher in CL-N and HL-N at the beginning of the stress treatment, when the 

accumulation of astaxanthin becomes relevant, even if at the end of treatment the NPQ 

level is similar.  

High light treatment by itself is reported in the literature as one of the most effective 

stressor inducing astaxanthin accumulation in Haematococcus pluvialis cells (Wang et 

al., 2003; Qiu and Li, 2006; Li et al., 2010). Indeed as reported in Figure 4 cells grown 

in HL and HL-N accumulated much more astaxanthin compared to cells grown in other 

growth conditions on a volume basis, with the highest astaxanthin production in HL-N. 

The high volumetric production of astaxanthin however is mainly dependent on the 

higher cell density in HL compared to HL-N and CL-N: on a cell basis indeed HL-N is 

the condition with the highest astaxanthin production followed by CL-N. Xanthophyll 

cycle is also rapidly activated when H. pluvialis cells were exposed to high light (HL 

and HL-N) as indicated by the increase of anteraxanthin and zeaxanthin in the first two 

days of stress exposure (Figure 3B,C) as generally reported for microalgae (Torzillo et 

al., 2005; Qiu and Li, 2006; Bonente et al., 2012; La Rocca et al., 2014) and for H. 

pluvialis specifically (Gu et al., 2014). Anyway, differently form the work of Gu and 

coworkers, we exposed cells to high light for more than 48 hours, observing a peculiar 

biphasic modulation of the xanthophyll cycle in HL and HL-N, with a later further 

increase of de-epoxidated carotenoid after the rapid activation in the first two days. 

Zeaxanthin accumulation is a strong photoprotective mechanism in photosynthetic 

organisms (Havaux and Niyogi, 1999; Dall’Osto et al., 2012; Pinnola et al., 2013) and 

its rapid accumulation in HL and HL-N suggests that this carotenoid has a 

photoprotective role also in H. pluvialis. Interestingly anteraxanthin and zeaxanthin are 

respectively the main de-epoxidated xanthophyll in HL and HL-N respectively, 

suggesting that only in HL-N the activation of photoprotective mechanisms is complete. 

It should also be considered that zeaxanthin is one of the precursors of astaxanthin 

biosynthesis, linking its accumulation in HL-N with astaxanthin accumulation. Cells 
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exposed at 400 µmol photons m-1 s-1 (HL) need three days of adaptation before re-

starting cellular division. In these three days NPQ dramatically declines and Chl a/b ratio 

transiently increases, while in the following days cells seem to be adapted: NPQ and Chl 

a/b ratio return to ~2 and ~2.65. The transient increase in Chl a/b ratio indicated that 

chlorophyll b binding antenna proteins are an early target of photoinhibition in HL, 

while photosystem core complexes are more stable or somehow regenerated through D1 

protein repair cycle. PSII antenna proteins are also the most likely site of NPQ in H. 

pluvialis, as recently demonstrated for Chlamydomonas reinhardtii in the case of 

LHCSR3 and LHCBM1 subunits (Elrad, 2002; Peers et al., 2009; Bonente et al., 2011). 

Wang and coworkers reported that upon exposure to high irradiances D1 protein repair 

cycle is rapidly induced until the amount of astaxanthin accumulated is sufficient to 

shield the light directed to photosystems (Wang et al., 2003). Moreover a rapid 

degradation of PSII core subunits has been recently reported upon exposure to HL stress 

of motile cells, but not in the case of palmella cells (Wang et al., 2014). The data 

reported in Figure 3 and Figure 5 are in accordance with these results, indeed the PSII 

quantum yield declines in HL of 20% in the first two days, while in the case of HL-N, 

where astaxanthin is more rapidly accumulated, Fv/Fm remains stable. Moreover HL-N 

cell showed a constant increase of Chl a/b ratio and the rapid increase in NPQ induction. 

The higher destabilization of PSII in HL compared to HL-N, which was expected to be 

as the most stressing growth condition, is confirmed by the higher O2 evolution curve in 

HL-N compared to HL on a chlorophyll basis reported at Figure 8. These results suggest 

that nitrogen starvation boosts the stress response in H. pluvialis, inducing the cells to 

quickly counteract the photo-oxidative stress induced by the exposure to high irradiance. 

In our experiment high light combined with nitrogen starvation (HL-N) is the most 

effective condition to induce astaxanthin production in H. pluvialis cells, in accordance 

with previous report (Aflalo et al., 2007). Volumetric and cellular astaxanthin content 

increase similarly and continuously throughout stress exposure, achieving respectively 

306 mg ml-1 and 1665 pg cell-1. The accumulation of astaxanthin is very fast and after 

only one day of stress exposure a content of 94.46 pg cell-1 was achieved. It is worth 

noting that HL-N is the only growth condition in which a significant reduction of PSII 

functional antenna size and LHCII content per chlorophyll was observed. PSII antenna 

size reduction, the rapid NPQ increase in the first days of stress, and the faster and 

higher astaxanthin accumulation observed in HL-N produce a more photoprotected state, 
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reducing the amount of light absorbed by photosystems and preventing photosynthetic 

efficiency decrease. It’s known that DPA inhibits astaxanthin synthesis, blocking the 

oxidation of the β-ionone ring made by β-carotene oxygenase, and promoting β-carotene 

accumulation in the cytoplasm (Harker and Young, 1995; Fan et al., 1995; Schoefs et 

al., 2001; Grünewald and Hagen, 2001). Treatment of H. pluvialis cells with DPA 

during stress exposure can help to elucidate the physiological effects related with 

astaxanthin accumulation. As expected, the inhibition of astaxanthin biosynthesis in HL-

N, the most effective condition to induce astaxanthin accumulation, promotes an 

increase of its biosynthetic intermediates as β-carotene and enhances the accumulation of 

lutein, zeaxanthin, anteraxanthin and violaxanthin, redirecting β-carotene towards 

hydroxylation pathway. The inhibition of astaxanthin biosynthesis however did not 

significantly change the photostability of PSII in H. pluvialis: the results reported in 

Figure 6 indeed demonstrate that HL-N and HL-N+DPA (with or without astaxanthin 

accumulation respectively) were similarly photoinhibited upon exposure to strong white 

or red light. In both cases the accumulation of carotenoids (astaxanthin or other 

carotenes and xanthophylls) indeed confer an increased resistance to white light 

exposure in cells with higher carotenoid content per chlorophylls (HL-N≈HL-

N+DPA>CL-N>HL>CL), likely due to carotenoid absorption of the bluest wavelengths 

of the stressing light, even if a specific role for astaxanthin was not evident. The screen 

effect of carotenoids was not the only photoprotective mechanisms induced in HL-N and 

HL-N+DPA cells, since the exposure to red light, which cannot be absorbed by 

carotenoids, still produced a more pronounced photoinhibition in CL, CL-N and HL 

cells compared to HL-N and HL-N+DPA. Carotenoid increased in the chloroplast upon 

DPA treatment produces as a side effect a decrease of NPQ during the experiment: 

accumulation of carotenoids in the chloroplast likely switches the chloroplastic 

photoprotective mechanisms from chlorophyll singlets excited state quenching (NPQ) to 

chlorophyll triplets excited states quenching or ROS scavenging, being both mechanisms 

strongly influenced by carotenoid quantity and quality (Ballottari et al., 2013). The 

increased carotenoid content in HL-N and HL-N+DPA is likely the reason for their 

enhanced photostability (Figure 6), together with the modification of photosynthetic 

apparatus discussed above. The reduction of cell diameter in HL-N+DPA cells (Figure 

1) clearly indicate that the impairment of astaxanthin biosynthesis affect cell growth and 

biomass accumulation, even if the photoprotective function of astaxanthin is directed to 
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the photosynthetic apparatus (Figure 6). The localization of astaxanthin outside the 

chloroplast clearly suggests that the photoprotective role of this carotenoid is mainly 

directed to the nucleus to prevent DNA modification by UV exposure or excessive ROS 

formation in the cytoplasm. Additional future experiments are required in order to fully 

prove our hypothesis, as the evaluation of DNA modifications induced upon UV 

exposure and/or the measurement of oxidation level of cytoplasmic proteins vs. 

chloroplastic proteins in HL-N vs. HL-N+DPA cells. By the way our results are 

consistent with the observations of Fan and coworkers which suggested that astaxanthin 

accumulation is a consequence of activation of photoprotection process rather than being 

the main photoprotective actor (Fan et al., 1998).  

Astaxanthin biosynthesis has been previously reported to be modulated by PTOX 

activity (Li et al., 2008, 2010; Wang et al., 2009), the results reported here are partially 

in agreement with this finding, observing that a strong induction of PTOX activity is 

evident in nitrogen starvation (CL-N and HL-N). The most surprising result obtained is 

the apparent lack of effects on PQ reduction state upon PTOX inactivation in cells 

grown in HL (Figure 10), where astaxanthin biosynthesis is fully induced (Figure 4). The 

apparently low chlororespiration activity in HL is confirmed by the similar proton 

motive force observed in HL in presence or absence of PGAL, inhibiting PTOX (Figure 

10). This result is on the same line with the transcriptional analysis conducted by Li and 

coworkers (Li et al., 2010) on H. pluvialis cells grown at high irradiances, where the 

overexpression of ptox2 gene was observed only transiently upon exposure to high light: 

likely, acclimation to HL activate other adaptive mechanisms that balance the excitation 

pressure on Photosystems, reducing the need for chlororespiration, as for example an 

increase electron demand from PSI. In particular it has been reported by Gu and 

coworker that HL exposure in H. pluvialis did not significantly reduce the electron 

transport rate (ETR) from PSII to PSI and an increase of PSI/PSII ratio was observed 

(Wang et al., 2014); similarly in C. reinhardtii it has been reported that HL acclimation 

induced an increased PSI/PSII ratio and an increased linear electron transport. 

Differently, in HL-N we observed a clear induction of cyclic electron transport across 

PSI. A similar effect was also evident in CL-N, even if to less extent. The activation of 

chlororespiration in nitrogen starvation reduces the electrons availability for PSI, thus 

inducing the activation of alternative electron transport pathway. Even if an active 

PTOX cannot be fully excluded in HL, it is possible to claim that PTOX activity is 
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strongly required upon nitrogen starvation, where cell division and chloroplast 

metabolism are partially blocked and NADPH demand is reduced, likely leading to a 

more difficult oxidation of the plastoquinones pool. In this context a strong PTOX 

activity and cyclic electron transport activation provide the channels through which both 

fueling the carotenoid biosynthetic enzymes astaxanthin production and oxidizing the 

PQ pool alleviating the excitation pressure on PSII.  

In conclusion, the results reported in this work demonstrate that the photosynthetic 

properties of H. pluvialis are differentially modulated in response to nitrogen starvation 

and high light. In particular nitrogen starvation inhibits chlorophyll biosynthesis, 

promotes chlorophyll b degradation, PTOX activity, cyclic electron transport and favors 

respiration over photosynthesis, while high light mainly activates xanthophyll cycle and 

carotenogenesis. The combined exposure of H. pluvialis to high light and nitrogen 

starvation strongly induce a more rapid acclimation of photosynthetic apparatus to stress 

with a significant reduction of functional PSII antenna size and increase astaxanthin 

production, improving the resistance of cells to photo-oxidation. From an applicative 

point of view, a correct balance between biomass accumulation and proper exposure to 

high light and nitrogen starvation seems to be essential for efficient astaxanthin 

production in H. pluvialis.  
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Supplementary data 

Figure S1: Cells of H. pluvialis in different growth conditions. 

Transmission light microscopy images of H. pluvialis cells grown for 8 days under different conditions. 

Growth conditions analyzed: control light (40 µmol photons m-1 s-1) with (CL) and without (CL-N) nitrogen 

and high light (400 µmol photons m-1 s-1) with (HL) and without nitrogen in presence (HL-N+DPA) or absence 

(HL-N) of diphenylamine. 
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Figure S2: HPLC analysis of pigment extracts from H. pluvialis cells 

Pigments were extracted from H. pluvialis cells as described in Materials and Methods Section (paragraph 

2.2) and analyzed by HPLC. HPLC results are reported for cells grown in the different growth conditions for 

eight days as 2D-maps with elution time and wavelength of absorption on X e Y axes respectively. Growth 

conditions analyzed are: control light (40 µmol photons m-1 s-1) with (CL) and without (CL-N) nitrogen and 

high light (400 µmol photons m-1 s-1) with (HL) and without nitrogen in presence (HL-N+DPA) or absence 

(HL-N) of diphenylamine. For each condition the chromatogram obtained by measuring the absorption at 440 

nm is reported with the indication of the corresponding molecule: N, neoxanthin; V, violaxanthin; L, lutein; A, 

anteraxanthin; Z, zeaxanthin; Chl a, chlorophyll a; Chl b, chlorophyll b; β-Car, β-carotene; As, Astaxanthin. 

The different elution time of astaxanthin is due to esterification with different fatty acids: “free” astaxanthin 

can be found only as the peak in the chromatogram between the violaxanthin and the lutein peaks (Holtin et 

al., 2009). 
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Section D 

Functional analysis of photosynthetic pigment 

binding complexes in the green alga Haematococcus 

pluvialis reveals distribution of astaxanthin in 

Photosystems6 

Astaxanthin is a ketocarotenoid, with strong anti-oxidant capacity produced in high 

levels in Haematococcus pluvialis upon stress condition. In this work, we investigate the 

biochemical and spectroscopic properties of the H. pluvialis pigment binding complexes 

responsible for light harvesting and energy conversion. Our findings demonstrate that 

the main features of chlorophyll and carotenoid binding complexes previously reported 

for higher plants or Chlamydomonas reinhardtii are preserved under control conditions. 

Transition to astaxanthin rich cysts however leads to destabilization of the Photosystems 

but, also, partially substituting β-carotene in both Photosystem I and II. However, 

astaxanthin binding to Photosystems does not improve their photoprotection, but rather 

reduces the efficiency of excitation energy transfer to the reaction centers.  

 

 

 

In this work I helped in the experiments design, paper writing and antenna size sample 

production and analysis. 

 

 

Abbreviations: Car, Carotenoid; PSI/II, Photosystem I/II; Chl Chlorophyll; RC Reaction Center; LHC, Light 

Harvesting Complex; DCMU, (3-(3,4-dichlorophenyl)-1,1-dimethylurea); DBMIB, (2,5-dibromo-3-methyl-6-

isopropylbenzoquinone); ROS, Reactive Oxygen Species; 1O2, singlet oxygen;  

 

6This section is based on the published article: Mascia F, Girolomoni L, Alcocer MJP, Bargigia I, 

Perozeni P, Cazzaniga S, Cerullo G, D’Andrea C, Ballottari M; Functional analysis of 

photosynthetic pigment binding complexes in the green alga Haematococcus pluvialis reveals 

distribution of astaxanthin in Photosystems, Scientific Reports, Volume 7, Issue 1, 1 November 

2017, Pages 16319. 
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Introduction 

Haematococcus pluvialis is a photosynthetic fresh-water microalga which accumulates a 

high level of the ketocarotenoid astaxanthin (up to 5% DW) (Boussiba and Vonshak, 

1991; Lemoine and Schoefs, 2010; Ambati et al., 2014; Shah et al., 2016). Astaxanthin 

is mainly used as coloring agent in aquaculture but it has been also reported to be a 

strong antioxidant, preventing production of reactive oxygen species (ROS) and lipid 

peroxidation in solution and in several biologic systems (Terao, 1989; Kurashige et al., 

1990; Guerin et al., 2003; Stahl and Sies, 2005; Daubrawa et al., 2005). Numerous 

studies have shown that astaxanthin has health-promoting effects in the prevention and 

treatment of various diseases such as cancers, chronic inflammations, metabolic 

syndrome, cardiovascular and gastrointestinal diseases, as well as enhancing the immune 

system and protecting the skin from radiation injury (Yuan et al., 2011). Astaxanthin 

cannot be manufactured in animals and therefore must be consumed in the diet. This 

carotenoid (Car) is thus of great interest for several industrial sectors and has a high 

market potential. Many studies have addressed the role of astaxanthin in H. pluvialis and 

the phenotypical characterization of this alga (Boussiba and Vonshak, 1991; Kobayashi 

et al., 2001; Wang et al., 2004; Lemoine and Schoefs, 2010; Gao et al., 2012a,b; Scibilia 

et al., 2015; Shah et al., 2016; Li et al., 2017). The lifecycle of H. pluvialis includes four 

phases and astaxanthin is accumulated only in the aplanospores phase, which is induced 

under stress conditions such as high light intensity, nutrient starvation, high salinity or 

low/high temperatures (Boussiba and Vonshak, 1991; Wang et al., 2009; Scibilia et al., 

2015; Hong et al., 2015). Astaxanthin production from H. pluvialis mass cultivation is 

commonly carried out in a two-stage batch culture; biomass production occurs in the 

first stage (green stage), while in the second stage (red stage) the cultures are stressed to 

induce astaxanthin accumulation (Aflalo et al., 2007). Astaxanthin is accumulated 

mainly at the level of the endoplasmatic reticulum in the form of mono- and di-esters by 

using β-carotene as precursor (Grunewald et al., 2000, 2001). While several reports 

focused on astaxanthin production and its application for humans as a nutraceutic, details 

regarding the role of this Car in H. pluvialis cells are still not complete (Boussiba and 

Vonshak, 1991; Fan et al., 1998; Kobayashi et al., 2001; Wang et al., 2004; Ambati et 

al., 2014; Wan et al., 2014; Su et al., 2014; Scibilia et al., 2015). The astaxanthin 

biosynthetic pathway depends on carbon fixation by the photosynthetic process in the 
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chloroplasts. During transition to astaxanthin rich cysts, Car biosynthesis is triggered and 

the plastids are degraded (Collins et al., 2011). Photosynthetic processes are functionally 

divided in two phases; the light phase and dark phase. The light phase takes place in the 

thylakoid membranes, with light energy being harvested and converted into chemical 

energy in the form of NADPH and ATP. The subsequent dark phase is where NADPH 

and ATP are used in the stroma by Calvin-Benson cycle for enzymatic CO2 fixation and 

reduction to carbohydrates. PSII and PSI are responsible for energy conversion, 

cytochrome b6/f contributes to electron transport and proton translocation in the lumen, 

and ATPase catalyzes ATP synthesis using the energy derived from the transmembrane 

proton gradient. PSI and PSII are pigment binding proteins composed of a core complex 

and antenna proteins called Light Harvesting Complexes (LHC) (Ben-Shem et al., 2003; 

Caffarri et al., 2009; van Amerongen and Croce, 2013; Drop et al., 2014). The core 

complex binds chlorophyll (Chl) a and β-carotene, whilst the antenna proteins bind Chl 

a, Chl b, and xanthophylls (Ben-Shem et al., 2003; Wei et al., 2016). Pigments bound by 

the photosystems absorb photons and transfer excitation energy to the reaction centers. 

In particular PSI was observed to trap excitation energy at the reaction center (RC) faster 

than PSII (Croce and Van Amerongen, 2013). Higher plants and unicellular microalgae 

show some differences in both PSII and PSI supramolecular organization, with different 

stoichiometries of LHC proteins per PSI(II) core complexes. Four LHC subunits, called 

Lhca1-4, were found bound to PSI core complex of A. thaliana, while 7 to 9 different 

Lhca complexes were identified in the PSI-LHCI complexes from the green alga 

Chlamydomonas reinhardtii. In the case of PSII, the number of LHC complexes bound, 

called Lhcb, is more variable and depends on growth conditions (Stauber et al., 2009; 

Caffarri et al., 2009; Drop et al., 2014; Wei et al., 2016; Mazor et al., 2017). Very little 

information is available regarding the photosynthetic complexes of the green alga H. 

pluvialis and how they are modulated during cyst formation and astaxanthin 

accumulation. Moreover, it is still under debate if astaxanthin accumulation has some 

photoprotective function at the level of the chloroplast (Fan et al., 1998; Gu et al., 2013, 

2014; Scibilia et al., 2015). The aim of this work is to characterize the photosynthetic 

complexes in H. pluvialis and the possible role of astaxanthin in the photosynthetic 

apparatus during acclimation to high light and transition to the red stage. 
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Materials and methods 

Strain and culture conditions  

Haematococcus pluvialis strain K-0084 was obtained from Scandinavian Culture 

Collection of Algae & Protozoa. Liquid cultures were grown photoautotrophically at 40 

µmol photons m-2s-1 on BG-11 medium at 22 °C in flasks (Scibilia et al., 2015). Culture 

mixing was provided by bubbling filtered (0,2 µm) air. High light treatment at 400 µmol 

photons m-2s-1 was applied to cell cultures in their exponential phase (approximately 

5×105 cells ml-1). Each experiment was repeated in at least five independent experiments 

with three biological replicates for each sample. 

Cell concentration and pigment analysis 

Cell concentrations (cells mL-1) were determined manually using a Neubauer counting 

chamber as described in Scibilia et al. (2015). Pigment analysis were performed by 

reverse phase HPLC as described in Lagarde et al. (2000). In particular, pigment extracts 

in acetone 80% were analyzed by Thermo-Fisher HPLC system equipped with a C18 

column using a 15-min gradient of ethyl acetate (0 to 100%) in acetonitrile-water-

triethylamine (9:1:0.01, vol/vol/vol) at a flow rate of 1.5 ml/min. Only in the case of 

whole cells pigmentation extraction was performed in DMSO as described in Scibilia et 

al. (2015). Pigment detection was done by a Thermo-Fisher 350-750nm diode array 

detector.  

 

Thylakoid membranes and pigment binding complexes isolation 

Thylakoid membranes were isolated from H. pluvialis cells as described in Cazzaniga et 

al. (2014), with some modifications. H. pluvialis cells, were harvested by 

centrifugation (1500 g, 3 min) and resuspended in B1 buffer (50 mM tricine pH 

7.9, 0.35 M sorbitol, 10 mM NaCl, 5 mM MgCl2, 0.5% dried powdered milk, 1 

mM aminocaproic acid, 0.2 mM aminobenzamidine, and 0.2 mM phenylmethylsulfonyl 

fluoride) at a final concentration of 106 cells/ml and then passed through a prechilled 

(4°C) Cell-disrupter (Constant Systems, Northants, UK) at 2.5 kbar. The resulting 

homogenate was subsequently centrifuged at 1500 g for 3 min at 4°C, to remove intact 

cells. The supernatant was collected and centrifuged at 12000 g for 15 minutes at 4°C. 

The resulting thylakoid membrane pellet was resuspended in B2 buffer (20 mM tricina 
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pH 7.9, 50% glycerol, 10 mM NaCl, 5 mM MgCl2, 1 mM aminocaproic acid, 0.2 mM 

aminobenzamidine, and 0.2 mM phenylmethylsulfonyl fluoride) and immediately used 

for analysis, or stored at -80°C, after freezing it in liquid nitrogen. Isolated thylakoids 

were cleaned by ultracentrifugation in a sucrose step gradient formed by 1.9 M, 1.3 M 

and 1.14 M sucrose, 25 mM Hepes pH 7.0 and 10 mM EDTA. Clean thylakoid 

membranes were recovered from the 1.3 M layer, diluted to reduced sucrose 

concentration and precipitated by centrifugation. Isolated thylakoids were then 

solubilized at a concentration of 1 mg/ml of Chls (200 µg of Chls in total), with β-DM 

1% and loaded onto a sucrose gradient (0.1-1 M) in presence of 0.06% β-DM and 10 

mM Hepes pH 7.5. Protein fractions were isolated upon ultracentrifugation, collected 

from sucrose gradient and then cleaned by anion exchange chromatography as described 

in Ballottari et al. (2009). Anion exchange chromatography was performed on 

TOYOPEARL DEAE-650S resin (Sigma-Aldritch) equilibrated with 0.06% β-DM and 

10 mM Hepes pH 7.5: protein elution was achieved using an elution buffer composed by 

0.5M NaCl, 0.06% β-DM and 10 mM Hepes pH 7.5. 

 

Absorption and fluorescence spectroscopy 

Absorption spectra were measured by DW2000 Aminco spectrophotometer as described 

in Cinque et al. (2000). 77K steady state emission spectra were recorded using a 

Fluoromax3 equipped with an optical fiber (Horiba Jobin Yvon) as described in Grewe 

et al. (2014). Emission spectra were performed by exciting the sample at 440 nm with an 

excitation bandwidth of 5 nm and recording emission in the 650-800-nm range (emission 

bandwidth of 1 nm). Excitation spectra at 77K were performed upon excitation in the 

400-550 nm range (excitation bandwidth of 2 nm) measuring the fluorescence emitted at 

680 or 715 nm (emission bandwidth of 3 nm) as described in the text. 

SDS-PAGE analysis 

Denaturing SDS-PAGE was performed with Tris-Tricine buffer systems (Schagger and 

von Jagow, 1987). 

PSI functional antenna size 

Relative PSI antenna size was estimated from kinetics of P700 oxidation in limiting 

orange light (12 μE m-2 s-1) in whole cells treated with DCMU (3-(3,4-dichlorophenyl)-
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1,1-dimethylurea), DBMIB (2,5-dibromo-3-methyl-6-isopropylbenzoquinone), ascorbate 

and methyl-viologen, as described in Bonente et al. (2012).  

Time resolved fluorescence measurements 

Time-resolved fluorescence measurements were performed using a femtosecond laser 

excitation at 440 nm and a streak camera detection system, as reported in Ballottari et al. 

(2014). Briefly, an unamplifed Ti:sapphire laser (Coherent Chameleon Ultra II) 

operating at 80 MHz was tuned to provide pulses with central wavelengths of 880 nm, 

energies of 30 nJ, and temporal and spectral bandwidths of 140 fs and 5 nm, 

respectively. A β-barium borate crystal provided type I phase-matched second harmonic 

generation, leading to pulses with central wavelengths of 440 nm. These were focused 

onto the sample, maintaining a low fluence (<30 mJ/cm2, 100 mm spot diameter) in 

order to avoid saturation and degradation effects in the sample. The samples were kept at 

a constant temperature of 11°C by a temperature controlled cuvette cooled by a peltier 

system. The resulting collected emission was analyzed by a spectrograph (Princeton 

Instruments Acton SP2300) coupled to a streak camera (Hamamatsu C5680) equipped 

with a synchroscan voltage sweep module. In this way, measurements of 

photoluminescence intensity as a function of both wavelength and time were obtained 

with spectral and temporal resolutions of ~1 nm and ~3 ps respectively. Temporal 

broadening of the pump pulses caused by dispersive elements was confirmed to be well 

below the response time of the detection system. 

Global analysis 

Streak camera fluorescence decay maps were globally fitted with exponential functions 

as previously reported (Van Stokkum et al., 2004; Ballottari et al., 2014). Briefly, the 

experimental datasets were fitted using a multi-exponential function as described by 

equation (1) 

𝐼(𝜆, 𝑡) = ∑ 𝐴𝑖(𝜆)𝑛
𝑖=1  𝑒−𝑡 𝜏𝑖⁄      (1) 

with 𝐼(𝜆, 𝑡) the wavelength- and time-resolved fluorescence intensity, and 𝐴𝑖 the 

amplitude of the exponential decay 𝑒−𝑡 𝜏𝑖⁄ . Whilst the amplitudes were treated as 

wavelength dependent (𝐴𝑖 = 𝐴𝑖(𝜆)), the exponential decay constants were assumed to 

be wavelength independent 𝜏𝑖 ≠  𝜏𝑖(𝜆). The resulting wavelength dependent amplitudes, 

𝐴𝑖(𝜆), are referred to as Decay Associated Spectra (DAS), with each DAS being 
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associated with a particular exponential decay constant, 𝜏𝑖. It is important to note that 

DAS are simply parameterisations of a time-resolved fluorescence dataset in a multi-

exponential temporal basis, and so most often cannot be assigned a physical origin. 

Average fluorescence lifetimes were calculated as described by equation (2): 

𝜏𝐴𝑉 = ∑ 𝐴𝑖𝜏𝑖
𝑛
𝑖=1 ∑ 𝐴𝑖       

𝑛
𝑖=1⁄  (2) 

where 𝐴𝑖 is the spectrally integrated amplitude over the spectral range 650-780 nm. 

Singlet oxygen production 

Singlet oxygen production was measured in vivo by following the 532 nm fluorescence 

emission of a singlet oxygen sensor green probe (Flors et al., 2006). In particular, 

samples were diluted to in order to reach the same maximum at 0.15 OD in the Qy 

region and Singlet Oxygen Sensor Green was added to a final concentration of 5 μM. 

Samples were then illuminated with red light (2000 μE m-2 s-1 in the case of isolated 

complexes, 6000 μE m-2 s-1 in the case of thylakoids) and a regular time intervals, 

fluorescence at 532 nm was registered. Data were analyzed as increase in percentage of 

fluorescence, compared to time 0. Experimental data were then fitted with exponential 

functions.  

Results 

Astaxanthin accumulation in H. pluvialis 

Haematococcus pluvialis cells were grown in BG11 medium at 50 µE for 7 days 

(hereafter, referred as G/Green), at 400 µE for 3 days (hereafter, referred as O/Orange) 

and at 400 µE for 6 days (hereafter, referred as R/Red). As reported in Figure 1, a clear 

change in the culture color appeared under the three different growth conditions, from 

green, to brownish, to red for G, O and R conditions respectively.  



 

232 

 

 

Figure 1: Cell cultivation, membranes and pigment binding complexes isolation. (A) H. pluvialis cultures 

grown under 3 different stress conditions. Green: 50 µmol m-2s-1 for 7 days; Orange: 400 µmol m-2s-1 for 3 

days; Red: 400 µmol m-2s-1 for 6 days. (B) Microscope observation of cells grown as in Panel A. (C) Isolation 

of plastid membranes from G, O and R cells. Purified membranes are indicated by the arrow. (D): Sucrose 

gradient ultracentrifugation separation of pigment binding complexes from plastid membranes solubilized in 

β-DM 1%.  

H. pluvialis cells grown were then observed in bright-field microscopy (Figure 1B). 

Cells grown in the G condition were round green cells with a distinct cell wall layer; in 

the O condition, cells became reddish, likely due to astaxanthin accumulation, but green 

chloroplasts were still visible; some cells in O and all cells R were characterized by a 

complete transition into a red stage, with strong astaxanthin accumulation. In this 

condition, partial cell degradation was also evident. Pigment composition was 

investigated by HPLC and reported in Figure 2.  
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Figure 2. Pigment analysis on H. pluvialis whole cells and isolated membranes. Pigment extracts were analyzed by HPLC. 

Pigment data were normalized to 100 chlorophylls. Chl: chlorophyll; Car: carotenoid; Neo: neoxanthin; Viola: violaxanthin; 

Lute: Lutein; Antera: anteraxanthin; Cantha: canthaxanthin; Zea: zeaxanthin; B-Car: β-carotene; Asta: astaxanthin; Asta 

ester: esterified forms of astaxanthin. Standard deviation (s.d.) are reported (n=3). 

A strong reduction of chlorophyll to carotenoid (Chl/Car) ratio was observed in O and R 

cells with the higher Car accumulation in R cells. Astaxanthin esters were the 

predominant Car species found in O and R cells, while no traces of astaxanthin were 

found in G cells. Traces of canthaxanthin, a precursor of astaxanthin, were also found in 

O and R cells. Incidentally finding of Chls, β-carotene and xanthophylls in O and R cells 

suggested the residual presence of photosynthetic complexes, responsible for the 

photosynthetic activity previously reported for H. pluvialis during transition to the red 

stage (Scibilia et al., 2015). Lutein and neoxanthin were more abundant on a Chl basis in 

O and R conditions, while beta-carotene was reduced in R cells. Since lutein and 

neoxanthin are bound only to LHC complexes, while beta-carotene is essentially bound 

only to PSI or PSII core subunits, the increased neoxanthin or lutein to beta carotene 

ratios imply a partial degradation of core subunits during high light exposure.  

Isolation and characterization of pigment binding complexes of H. pluvialis in 

different growth conditions 

Thylakoid membranes of G, O and R cells were isolated by mechanical cell disruption 

followed by selective centrifugations with a final purification step by ultracentrifugation 
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in a sucrose step gradient. As reported in Figure 1C, membranes at similar sucrose 

densities were recovered from both G, O and R samples. Pigment composition of the 

purified membranes was then investigated by HPLC and reported in Figure 2. In O and 

R samples, the Chl/Car ratio was significantly reduced in purified thylakoid membranes 

as compared to whole cells. The observed reduction is mainly related to a strong 

decrease of astaxanthin, either in free or esterified forms, as compared to pigment 

extracts from whole cells. A reduction of β-carotene, anteraxanthin, zeaxanthin, 

canthaxanthin and lutein was also observed in O and R membranes as compared to 

whole cells, even if it was less pronounced when compared to astaxanthin. Since it has 

been reported that astaxanthin is accumulated only outside the plastids in H. pluvialis 

(Grunewald et al., 2000, 2001; Collins et al., 2011), the results obtained could be due to 

a co-purification of thylakoid membranes and astaxanthin rich oil droplets of similar 

densities. Since the presence of astaxanthin in thylakoid membranes has been reported 

for transgenic plants accumulating this Car (Zhong et al., 2011; Roding et al., 2015; 

Fujii et al., 2016), the possible presence of astaxanthin molecules bound to pigment 

binding complexes was investigated using treated membranes. Purified membranes were 

solubilized and the Chl binding complexes were isolated by ultracentrifugation in a 

sucrose gradient (Grewe et al., 2014). This ultracentrifugation step allowed a separation 

of the different photosynthetic complexes, based on their molecular density. Five bands 

(B1, B2, B3, B4, B5) were observed in every condition (G, O, R) (Figure 1D). B1-5 

fractions were recovered and their absorption spectra investigated. The B1 band was 

composed of free pigments, as indicated by the Chl Qy absorption peak below 670 nm 

(Supplemental data, Figure S1). Absorption spectra of B2 and B3 fractions (Figure 3A-

B) were similar in G, O and R conditions, resembling the features of LHC antenna 

proteins with two peaks in the Qy region attributable to Chl a (672 nm) and b (650 nm).  
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Figure 3. Absorption spectra of pigment binding complexes isolated from H. pluvialis. Absorption spectra of 

B2, B3, B4 and B5 fraction (Figure 1D) were normalized to the maximum absorption peak in the 600 nm and 

700 nm region.  

Based on their molecular density, B2 and B3 were composed of monomeric and trimeric 

LHC proteins respectively. B4 spectra showed an almost complete absence of the 470 

nm and 650 nm peaks (Figure 3C), which are both related to Chl b. This indicates a high 

Chl a/b ratio, and hints at the presence of PSII-core in this fraction. Comparing O B4 

with G B4, it is possible to notice a decreased absorbance at ~ 470 nm coupled with an 

increased absorbance at ~ 530 nm, which suggests the presence of astaxanthin. B5 

spectra (Figure 3D) reveal the predominance of Chl a with a maximum absorbance in the 

Qy region at 679 nm, although Chl b contributions at 650 and 470 nm were still present 

in a lower amount. B5 was thus likely composed of the PSI-LHCI supercomplex. PSII-

core (B4) and PSI (B5) fractions from R were not harvested since the bands in sucrose 

gradient were fuzzier and not well defined, suggesting partial degradation of these 

complexes in these conditions. The protein composition of B2-B5 from G and O samples 

was subsequently investigated by SDS-PAGE (Figure 4).  
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Figure 4. SDS-PAGE of H. pluvialis purified membranes and isolated pigment binding complexes. (A) Isolated 

B2-5 fractions from Green cells (Figure 1) samples; (B) Isolated B2-5 fraction from Orange cells. SDS-PAGE 

gels were Coomassie stained. Lanes loaded in separate gels are divided by white spaces. Mw: molecular 

weight marker; G: proteins from “Green” cells grown at 50 μE; O: proteins from “Orange” cells grown at 

400 μE for 3 days. 

B2 and B3 were characterized by four bands migrating at around 30 kDa, as expected for 

LHC antenna proteins. Interestingly, the two bands at lower molecular weight (MW) 

were more abundant in B2 than in B3 for both G and O samples, suggesting the 

preferential monomeric state of some specific LHC proteins as in the case of CP26 and 

CP29 in C. reinhardtii (Tokutsu et al., 2009; Drop et al., 2014). In B4 fractions, PSII-

core proteins such as CP43, CP47, D1, D2 and PsbO subunits were identified on the 

basis of their apparent MW (Caffarri et al., 2009). In B5 fractions (PSI-LHCI), high MW 

bands (60-70 KDa) could be attributed to PsaA and PsaB, together with bands at low 

MW (<30KDa) attributable to LHCI antenna proteins and other PSI core subunits. The 

pigment binding properties of the different isolated fractions were then analyzed by 

HPLC (Table 1).  
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Table 1. Pigment analysis of isolated photosynthetic complexes. Pigment extracts were analyzed by HPLC. 

Pigment data from B2 and B3 fractions were normalized to 14 chlorophylls; pigments from B4 fractions were 

normalized to 72 chlorophylls; pigments from B5 fractions were normalized to 170 chlorophylls. Chl: 

chlorophyll; Car: carotenoid; Neo: neoxanthin; Viola: violaxanthin; Antera: anteraxanthin; Lute: Lutein; Zea: 

zeaxanthin; β-Car: β-carotene; Asta: astaxanthin; Asta ester: esterified forms of astaxanthin. Standard 

deviations are below 8% for each value reported in the table (n=3). 

Pigment results from B2 and B3 fractions were normalized to 14 Chls, as previously 

reported for LHCII subunits from higher plants (Liu et al., 2004). Chl a/Chl b ratios 

were similar in B2 and B3 fractions from G, O or R samples, while Chl/Car ratios were 

increased in O and R as compared to G. This was mainly due to a strong reduction in 

violaxanthin content which is likely related to reduced stability of the V1 site in the 

presence of zeaxanthin, as previously reported for LHC proteins isolated from higher 

plants (Caffarri et al., 2001; Johnson et al., 2007). Traces of zeaxanthin were indeed 

detected in B2 and B3 from O and R cells. Zeaxanthin accumulation at the V1 sites of 

the LHC protein is likely due to xanthophyll cycle activation during high light stress or 

zeaxanthin accumulation in O and R membranes as a precursor to astaxanthin (Caffarri 

et al., 2001; Grunewald et al., 2001; Wehner et al., 2004; Ballottari et al., 2014). The 

reduced stability of the V1 site in B2 and B3 complexes from O and R cells could also 

be the reason for the reduced content of lutein in these fractions as compared to B2 and 

B3 fractions from G samples. Since more than 2 luteins were found in B2 and B3 

fractions, the extra lutein is likely bound to the peripheral site V1 (Fiore et al., 2012), 

which however is partially empty in O and R samples. Astaxanthin was almost 

completely absent in LHC proteins, even if traces of this ketocarotenoid were present 

only in O/R B2 and B3 fractions. The possible affinity of LHCII complexes for 
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astaxanthin has indeed been previously investigated by in vitro  reconstitution (Phillip et 

al., 2002). B4 fractions were characterized by a high Chl a/b ratio (>20), as expected for 

PSII-core. Traces of Chl b, neoxanthin and violaxanthin were also detected, and are 

likely to arise from the residual presence of antenna proteins. The most evident 

difference between G and O of B4 fractions is a decrease in β-carotene which is partially 

replaced in O by astaxanthin. In particular ≈ 2.5 molecules of astaxanthin were bound by 

PSII-core in O, mainly in its esterified form. It is worth noting that violaxanthin and 

lutein were also found in decreased quantities in O B4 as compared to G B4. These 

xanthophylls are likely related to residual LHC proteins bound to B4, and it is not 

possible exclude a possible substitution of these pigment with astaxanthin in O B4. PSI-

LHCI fractions (B5 fraction) were characterized by a Chl a/b ratio of ≈7, an intermediate 

value between the Chl a/b ratio previously measured in the case of PSI-LHCI isolated 

from higher plants (Croce and Van Amerongen, 2013) and C. reinhardtii (Le Quiniou et 

al., 2015b). The lower Chl a/b ratio observed in C. reinhardtii is due to an increased 

content of Lhca proteins, with 7-9 Lhca subunits bound per reaction center as compared 

to the 4 Lhca subunits found in the case of A. thaliana (Ballottari et al.; Ben-Shem et al., 

2003; Stauber et al., 2009; Le Quiniou et al., 2015b). In order to estimate the Lhca 

content associated to the PSI reaction center in H. pluvialis, we assumed 3.4 Cars per 

Lhca subunit as previously reported in the case of A. thaliana and C. reinhardtii (Le 

Quiniou et al., 2015b) and 100 Chl a molecules per PSI core complex  (Jordan et al., 

2001; Qin et al., 2015; Mazor et al., 2015, 2017). From the Chl a/b and Chl/Car ratios of 

the B5 fractions, we estimated 5 Lhca proteins per P700, with 14 Chls and 3.4 Cars 

bound by each subunit and 170 Chls bound by the PSI-LHCI complex. An intermediate 

value of Lhca content per PSI-LHCI complex in H. pluvialis as compared to higher 

plants and C. reinhardtii was then confirmed by PSI-LHCI functional antenna size 

measurement on whole cells (Supplemental data, Figure S2). Comparing B5 from G and 

O samples, a ~21% decrease in β-carotene content was evident, with a loss of ~2.9 

molecules per P700. Conversely, ~2.8 astaxanthin molecules were found bound to each 

O B5 complex, suggesting a possible substitution of β-carotene with astaxanthin. A 28% 

decrease in violaxanthin was also observed in  O B5 as compared to G B5, coupled with 

a rise in zeaxanthin, lutein and neoxanthin. A general re-organization of Car binding 

sites was thus evident in O samples even if the same total amount of Car was found in G 

or O B5 complexes. The markedly increased carotenogenesis observed in O cells leading 
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to high accumulation of lutein, zeaxanthin and astaxanthin in thylakoid membranes is 

likely to be the reason for the different pigment binding properties of B4 and B5 

complexes. 

Excitation energy transfer in astaxanthin binding complexes 

The functional properties of astaxanthin bound to photosynthetic complexes were 

initially investigated by fluorescence measurements at 77K, where emission is mainly 

attributed to the lowest Chl excited states. When exciting Chl a at 440 nm, B2 and B3 

fractions from G cells showed similar emission peaks at 680 nm and similar excitation 

spectra characterized by a high Chl b contribution (Figure 5).  

 

Figure 5. 77K Fluorescence emission and excitation spectra of isolated pigment binding complexes. Panel 

A/B:77K fluorescence emission spectra of B2-3 (A) and B4-5 (B) fractions, upon excitation at 440 nm. (C/D) 

77K fluoresce excitation spectra of B2-3 (C) and B4-5 (D) fractions. Emission wavelengths were set at 680 nm 

for B2 and B3, 687 for B4 and 715 for B5 fractions.  

The traces of astaxanthin found in LHC proteins (Table 1) do not influence the 

fluorescence properties of these fractions. PSII-core fractions (B4) from both G and O 
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samples were characterized by an emission spectrum peaking at 686 nm and an 

excitation spectrum almost absent of Chl b contribution, as expected for a PSII-core. 

Even in this case, astaxanthin binding to PSII core did not influence the fluorescence 

properties of the complex. PSI-LHCI complex (B5) isolated from G cells presented two 

separated peaks; a major peak at 715 nm related to emission from the low energy Chls 

bound to the complex, and a minor peak at 680 nm associated to partially dissociated 

antenna proteins. In PSI-LHCI from O cells, the 680 nm emission peak was more 

dominant than the 715 nm peak, suggesting a higher proportion of detached LHCI 

subunits. The excitation spectra of the 715 nm emission peaks associated to the intact 

PSI-LHCI complex were similar for both G and O samples. Astaxanthin binding to the 

different complexes does not alter the energy of the emitting state, but could be involved 

in a partial disconnection of LHC proteins from PSI core complex. Excitation energy 

transfer dynamics were subsequently investigated by time resolved fluorescence 

spectroscopy with a streak camera based set up. Streak camera detection allows 

simultaneous acquisition of fluorescence decays at different wavelengths. The resulting 

datasets were analyzed by global analysis, resulting in decay associated spectra (DAS) 

for each sample – wavelength dependent amplitudes for each time-constant in a multi-

exponential decay (Van Stokkum et al., 2004). DAS identified in each sample were 

normalized to the total DAS amplitude of that sample. As reported in Figure 6, two 

components were sufficient to fit B2 and B3 decays, with a shorter redder component at 

~ 200 ps (DAS1B2/3) and a longer bluer component at ~4 ns (DAS2B2/3). DAS1B2/3 and 

DAS2B2/3 could be assigned to two different LHC protein conformations with different 

non photochemical quenching properties, as previously reported (Moya et al., 2001).  
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Figure 6. Decay Associated Spectra (DAS) resulting from Global Analysis of fluorescence decay maps of 

isolated pigment binding complexes. 2D Streak camera maps were fitted with a multi-exponential decay 

function with a Global Analysis approach. The resulting wavelength dependent amplitudes, 𝐴𝑖(𝜆), are referred 

to as Decay Associated Spectra (DAS), with each DAS being associated with a particular exponential decay 

constant, 𝜏𝑖. Decay Associated Spectra (DAS) of each sample are reported with associated decay constants 

indicated in the legend. Average fluorescence lifetimes for each sample is reported in brackets and calculated 

as ΣAiτi/ΣAi. Two exponential decay components were required to adequately fit the decay maps recorded for 

B2 and B3, whilst four were required for B4 and B5. 
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DAS1 was higher in B2 than in B3 fractions and stronger in O than in G samples, 

indicating stronger quenching properties in B2 and in O samples. Accordingly, average 

fluorescence decay times (τAV) were shorter in B2 than in B3 fractions and in O than in 

G samples (Figure 6). The results obtained in the case of B2 and B3 are consistent with 

fluorescence decay kinetics of LHC monomers and LHCII trimers respectively (Moya et 

al., 2001; Xu et al., 2015). The reduced τAV observed in the case of O fractions is 

unlikely to be related to the traces of astaxanthin or zeaxanthin bound to the complexes, 

but rather to varying protein compositions of these fractions induced by the different 

growth conditions and accumulation of protein subunits with stronger quenching 

properties (Moya et al., 2001). In the case of B4 fractions, four DAS were identified. 

Differences were found mainly in the first two fast decaying DAS1B4 and DAS2B4, with 

decay constants of 8/22 ps, and 62/161 ps for Green/Orange B4 respectively. DAS1B4 

and DAS2B4 amplitudes were similar in G samples, while in O samples DAS2B4 had an 

increased weight as compared to DAS1B4. DAS3B4 and DAS4B4 on the other hand 

exhibited similar time constants (300 ps and 4.4 ns respectively) in both G and O 

samples, with DAS4B4 being more represented in O samples. DAS1-4B4 identified for B4 

are consistent with components previously reported for PSII core complexes, even if it is 

difficult to associate components unambiguously to Chl or protein moieties (Caffarri et 

al., 2011). Only the weak 4.4 ns component (DAS4B4), most clearly visible in the O 

sample, can be safely associated to partially detached antenna proteins or free Chls found 

in B4. A 77 ps τAV was calculated for B4 isolated from G cells, consistent with previous 

reports for PSII core (van Amerongen and Croce, 2013). The longer τAV determined in 

the case of B4 isolated from O cells (136 ps) suggests that excitation energy transfer to 

the PSII reaction center is partially disturbed in this complex. Four DAS components 

were also identified for the PSI-LHCI complexes (B5). In particular a short (5 ps) 

component, DAS1B5, with positive/negative amplitude was found in both G and O PSI-

LHCI complexes and are attributed to energy equilibration within the complex (Wientjes 

et al., 2011). The 13 ps DAS2B5 found in B5 from G samples has been usually associated 

to emission from PSI-core. In the case of B5 from O cells, DAS2B5 is characterized by 

time constant of 27 ps which is longer than that in G samples and thus indicates an 

alteration of excitation energy transfer to the reaction center. DAS3B5 found in the B5 

fraction from G cells has a time constant of 70 ps and a spectrum which is more enriched 

in forms emitting above 700 nm. This component is related to energy transfer from 
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peripheral LHCI complexes. In PSI-LHCI from O cells, the time constant associated 

with DAS3B5 is increased to 125 ps whilst the DAS amplitude is reduced. This indicated 

some alterations in energy transfer from antenna complexes to the PSI reaction center. 

Finally, a small 4 ns component (DAS4B5) was identified in both B5 fractions from G 

and O cells, and was attributed to detached antenna proteins as previously observed in 

PSI-LHCI preparations (Wientjes et al., 2011; Croce and Van Amerongen, 2013; 

Jennings et al., 2013; Ballottari et al., 2014; Le Quiniou et al., 2015b). This ns 

component was almost 50% stronger in PSI-LHCI from O cells. Astaxanthin binding 

PSI-LHCI complexes from O cells were thus characterized by reduced excitation energy 

transfer to the reaction center from both the Chl moieties bound to the core complex and 

to the peripheral antenna proteins. They also contain a higher amount of partially 

disconnected LHCI proteins emitting in the ns time range, in agreement with the low 

temperature emission florescence spectra reported in Figure 5. In the case of PSI-LHCI, 

the photochemical efficiency (ϕPSI) of the complex can be estimated from the τAV (35 

and 40 ps respectively for G and O samples), which in turn can be interpreted as the time 

required to transfer energy to the reaction center of the complex. ϕPSI calculated from 

PSI-LHCI τAV and disregarding the ns component (as previously reported in Wientjes et 

al. (2011)) were in both cases higher than 98%. Inclusion of the ns component reduced 

the excitation energy transfer efficiency to 92% and 95% for the O and G samples 

respectively. Astaxanthin binding PSI-LHCI is thus characterized by a partial 

disconnection of LHCI proteins, whilst maintaining more than 90% of excitation energy 

transfer efficiency, as previously observed for PSI-LHCI complexes (Croce and Van 

Amerongen, 2013; Le Quiniou et al., 2015b,a).  

Photoprotective functions of astaxanthin in the plastids 

The photoprotective role of astaxanthin bound to Chl binding subunits was evaluated by 

measuring 1O2 production under high irradiance (2000 µmol m-2s-1) of red light (>600 

nm) and application of a fluorescent probe (Singlet Oxygen Sensor Green, SOSG) whose 

fluorescence increases upon 1O2 production (Flors et al., 2006). The use of red light, 

which is absorbed only by Chls, enables selective investigation of the photoprotective 

role of astaxanthin without regard to its absorption properties (Dall’Osto et al., 2012; 

Ballottari et al., 2013). As reported in Figure 7, after 30 minutes of illumination no 
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significant differences were observed among G and O B2, B3 and B4 fractions (Figure 

7A-C).  

 

Figure 7: Singlet oxygen production in isolated complexes upon red light treatment. Singlet oxygen production 

was indirectly determined following the increase of fluorescence of Singlet Oxygen Sensor Green (SOSG), a 

fluorescent probe increasing its fluorescence in presence of singlet oxygen. Isolated complexes were 

illuminated with red light at 2000 µmol m-2s-1. All data were normalized to chlorophyll content and to the 

SOSG fluorescence of the green samples after 40’ of illumination. Standard deviations are indicated in each 

panel (n=3).  

In the case of PSI-LHCI complexes, O B5 showed a higher 1O2 production than G B5 

(Figure 7D). This can be explained by the presence of some antenna proteins in O B5 

which transfer excitation energy less efficiently to the PSI reaction center, in agreement 

with 77K steady state and time resolved fluorescence results: these antenna proteins are 

more prone to produce ROS upon high light illumination. In every case tested, no 

significant improvements in photoprotection were attributable to astaxanthin binding. 

Since most of the astaxanthin was found not bound to Photosystems, the same SOSG 

analysis was performed on isolated membranes illuminated with red light at 6000 µmol 

m-2s-1 for 40 minutes (Figure 8A).  
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Figure 8. Singlet oxygen production and chlorophyll photo-bleaching in isolated membranes. (A) Singlet 

oxygen production indirectly determined following the increase of fluorescence of Singlet Oxygen Sensor 

Green (SOSG), a fluorescent probe increasing its fluorescence in presence of singlet oxygen. Isolated 

membranes were illuminated with red light at 6000 µmol m-2s-1. All data were normalized to chlorophyll 

content and to the SOSG fluorescence of green membranes after 30’ of illumination. (B) Chlorophylls photo-

bleaching induced in isolated membranes upon illumination with white light at 6000 µmol m-2s-1. Standard 

deviations are indicated in both panels (n=3). 

Despite the huge amount of astaxanthin in O and R membranes, 1O2 production 

comparable with G thylakoids was found after normalization to Chl content, suggesting 

a minor role of astaxanthin as scavenger of 1O2. Moreover, astaxanthin in plastids could 

act as a light filter: in order to investigate this point, Chl bleaching was measured in 

these membranes upon white light treatment at 6000 µmol m-2s-1. As reported in Figure 

8B, Chl absorption in G thylakoids was reduced by 60% after 80 minutes due to Chl 

degradation, while the O and R Chl bleaching kinetics were much slower, especially in 

the case of R samples. Astaxanthin thus improves photoprotection in thylakoid 

membranes only through its absorption properties, acting as a light filter. 

Discussion 

In this work, we presented the biochemical and spectroscopic properties of 

photosynthetic complexes responsible for light harvesting and energy conversion in H. 

pluvialis. In the case of cells grown in control conditions (G), monomeric and trimeric 

LHC proteins isolated from H. pluvialis present features consistent with previous report 

for LHC proteins purified from A. thaliana or C. reinhardtii. Interestingly, monomeric 
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LHC proteins from H. pluvialis were characterized by a shorter fluorescence lifetime as 

compared to LHCII trimers. This finding is likely related to a somewhat different protein 

composition of B2 fractions as compared to B3 (Figure 4), with B2 containing some 

LHC proteins more abundant in monomeric form, such as the minor monomeric LHC 

subunits identified in A. thaliana (Lhcb4-6 subunits) and C. reinhardtii (CP26 and 

CP29) (Moya et al., 2001; van Amerongen and Croce, 2013). PSII core complexes were 

also isolated and analyzed, demonstrating conservation of pigment binding properties 

and similar biochemical and spectroscopic properties as compared to PSII cores purified 

from cyanobacteria or higher plants. The evolution of the photosynthetic process 

therefore mainly addressed the peripheral light harvesting complexes rather than core 

complexes (Croce and Van Amerongen, 2013; van Amerongen and Croce, 2013). In the 

case of PSI-LHCI, 77K fluorescence demonstrates that H. pluvialis lacks Lhca proteins 

with so called “red-forms” which emit above 730 nm and are found in higher plants but 

not in green algae (Croce and Van Amerongen, 2013; Le Quiniou et al., 2015b). It is 

postulated that the absence of far red light in water did not lead microalgae to evolve 

LHC proteins which absorb above 700 nm. Chl a/b and Chl/Car ratios measured in the 

case of B5 fractions suggest the presence of 5 Lhca proteins per reaction center, however 

additional biochemical and structural work is required to support this hypothesis. 

Nevertheless, the PSI functional antenna size measured following P700 oxidation 

kinetics indicated an intermediate value between A. thaliana (4 Lhca per P700) (Ben-

Shem et al., 2003) and C. reinhardtii (7/9 Lhca per P700) (Stauber et al., 2009; Le 

Quiniou et al., 2015b) (Supplemental data, Figure S2). H. pluvialis PSI-LHCI was 

characterized by a very short τAV (<40ps), indicating a ϕPSI higher than 98% and 

consistent with similar analysis performed on PSI-LHCI complexes purified from other 

organisms (Wientjes et al., 2011; Le Quiniou et al., 2015b). The photosynthetic 

machinery is reorganized when H. pluvialis cells are stressed and astaxanthin is 

accumulated. Oxidative stress and ROS accumulation are indeed the triggers for 

activation of the astaxanthin biosynthetic pathway, with β-carotene over-production in 

the chloroplast followed by export to the cytosol and conversion to astaxanthin. In 

particular, while the different enzymes involved in β-carotene accumulation are localized 

in the plastids, the key enzyme β-carotene oxygenase (CRTO), which produces 

astaxanthin from β-carotene or zeaxanthin, was found both in the plastid and in lipid 

vesicles in the cytosol, despite its activity only having been previously reported in the 
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cytosol compartment (Grunewald et al., 2001). Our findings of traces of astaxanthin in 

the plastids suggests that a low activity of CRTO was present also in these organelles. 

The photosynthetic machinery continues to work even in cysts (Scibilia et al., 2015), but 

the chloroplasts reduce their volume and the thylakoid membranes become degraded 

(Collins et al., 2011; Wayama et al., 2013). In this work, we demonstrated that 

acclimation to high light induced a destabilization of the PSI-LHCI supercomplex and 

PSII core, especially after six days of high irradiance (Figure 1). Rapid turnover of PSII 

core subunits is likely to be the reason for the rapid destabilization observed for the PSII 

core. In addition, isolated PSII cores from O cells were characterized by a slower 

excitation energy transfer to the reaction center. In the PSII core complex, β-carotene 

molecules are in close contact with Chls and are required for effective quenching of 

3Chl* and scavenging of 1O2 produced during charge recombination. Therefore, 

depletion of β-carotene produces a strong photooxidation in both PSII and PSI core 

complexes (Cazzaniga et al., 2012). In the case of PSI-LHCI, high light acclimation 

caused a destabilization of the interaction between peripheral antenna complexes and 

PSI core, as demonstrated by both 77K steady state and time resolved fluorescence. 

Moreover, the reduced energy connection between antenna proteins and PSI reaction 

center decreased the photochemical quenching of the LHCI proteins, exposing them to a 

higher risk of photooxidation, as measured using SOSG (Figure 7). The molecular 

mechanism by which PSII core and PSI-LHCI are destabilized cannot be easily 

identified and additional work is required to elucidate this point. The loss and partial 

substitution of β-carotene with astaxanthin in PSII core and PSI-LHCI could however be 

involved in the destabilization of Photosystems. Astaxanthin binding to Photosystems I 

been reported for Chlrophyceae species such as Eremosphaera viridis (Vechtel et al., 

1992), however no information was available for the main species used in astaxanthin 

production, H. pluvialis. H. pluvialis astaxanthin binding complexes were not more 

photoprotected as compared to the control samples and their excitation energy transfer 

dynamics were even slower when compared to the same complexes isolated in the 

absence of astaxanthin. It is thus difficult to claim that astaxanthin binding to PSI or PSII 

has a photoprotective role. However, considering the higher level of 1O2 produced in 

astaxanthin binding PSI-LHCI and the similar 1O2 production observed in isolated 

membranes, it cannot be excluded that astaxanthin found free in the thylakoid 

membranes could have a role as scavenger of 1O2 produced by Photosystems. Rather, 
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considering the important role of β-carotene for the assembly and function of PSI and 

PSII (Telfer, 2005; Mazor et al., 2017), its substitution by astaxanthin could be the key 

to core complex destabilization. Indeed, astaxanthin was found in PSI and PSII cores 

even in its esterified form. Interactions between the fatty acids esterified to astaxanthin 

and the protein subunits of photosystems could impact the interactions at the base of the 

PSI and PSII assemblies. These results are indeed consistent with the observation of 

reduced photochemical efficiency in higher plants engineered to accumulate astaxanthin 

(Hasunuma et al., 2008; Roding et al., 2015; Fujii et al., 2016). Considering the ratio 

between astaxanthin and Chls in whole cells and in isolated fractions, less than 1% of the 

total astaxanthin accumulated in H. pluvialis was found bound to PSI or PSII, while 

almost all astaxanthin is accumulated in the cytoplasm. Astaxanthin rich oil droplets 

accumulated in the cytoplasm could have a specific role as antioxidants to protect the 

nucleus. Moreover, the astaxanthin oil droplets act as a light filter, reducing the 

excitation pressure on photosynthetic subunits and their risk of photodamage (Figure 8B) 

(Scibilia et al., 2015). The presence of astaxanthin in H. pluvialis, even in photosynthetic 

pigment binding complexes, raises the question whether these astaxanthin molecules are 

synthetized in the plastid or, perhaps more likely, in the cytoplasm and then imported 

back to the plastid.  
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Supplementary data 

Figure S1. Absorption spectra of B1 fraction isolated from H. pluvialis.  

Absorption spectra of B1, fractions (Figure 1D) were normalized to the maximum absorption peak in the 600 

nm and 700 nm region.  
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Figure S2. Functional antenna size of Photosystem I in H. pluvialis compared to Arabidopsis 

thaliana and Chlamydomonas reinhardtii.  

(A) P700 oxidation kinetics measured on whole cells in presence of DCMU and DBMIB, in order to block 

linear and cyclic electron transfer, and ascorbate and methyl viologen as electron donor and acceptor. 

Measurements were performed at 12 µmol m-2s-1. Traces representative of 5 independent biological replicates 

are reported. (B)Functional antenna size of PSI-LHCI calculated as 1/τ2/3, where τ2/3 is the time required to 

reach 2/3 of the maximum P700 oxidation. A.t.: Arabidopsis thaliana; C.r.: Chlamydomonas reinhardtii. H.p. 

G/O: H. pluvialis in Green/Orange stage as in Figure 1 main text. Standard deviations are indicated (n=5). 
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5.Conclusion 

The aim of this thesis was to gain a deeper understanding of the Non-Photochemical 

Quenching regulation in microalgae. In the first part of this project, major attention was 

focused on the model organism C. reinhardtii, due to the large knowledge presents in 

literature about its genetics and physiology. In C. reinhardtii, NPQ is mainly activated 

by two pigments binding proteins called LHCSR3 and LHCSR1 induced after high light 

treatment. NPQ can be calculated from quenching of chlorophyll fluorescence, based on 

room temperature measurements which monitor changes of PSII fluorescence. In this 

condition, PSI is characterized by a low fluorescence quantum yield preventing analysis 

in presence of strong fluorescence emission by PSII, explaining why few information 

about PSI quenching are present in literature. Therefore, NPQ regulation at the level of 

PSI was studied at 77K, where fluorescence quantum yield is high for both PSI and PSII 

allowing for proper quantification of both emissions. The role of LHCSRs subunit in 

quenching of PSI and PSII was investigated in WT and mutant cells (npq4, npq4 lhcsr1, 

C-lhcsr3-4/24, stt7, npq1 and stt7 npq4) in quenched and unquenched states. The results 

presented in this work demonstrate a LHCSR-dependent quenching on PSII and on 

LHCII bound to PSII-complex, but also on LHC bound to PSI-complex. The LHCSRs 

quenching activity can occurs at PSII supercomplexes, at LHC complexes bound to PSI 

or to LHCII “mobile” fraction loosely connected to the Photosystems. Moreover, the 

PSII and PSI quenching differ in the activation time, where PSII quenches rapidly, while 

PSI shows a slower activation rate probably due to the time needed to LHCII protein 

detachment from PSI (Chapter I, section A).  

It is important to notice that LHCII proteins, in this contest, could act as interactor with 

LHCSRs subunits or have a role as quenchers themselves. Their involvement in NPQ 

regulation was already established in the case of LHCBM1, where knock out mutant 

showed an impaired NPQ phenotype. In this thesis LHCBM4/6/8 were functionally 

characterized by analysing their biochemical and spectroscopic features in vitro and by 

studying their function in vivo using a reverse genetic approach (Chapter I, section B). In 

vitro analysis of re-folded LHCBM4 and LHCBM6 show a low fluorescence yield, 

which is modulated by the activity of the concurrent heat dissipation channel, meaning 

that LHCBM4 and LHCBM6 are characterized by high quenching activity. Phenotypical 

characterization of silenced strains on Lhcbm4/6/8 genes confirmed those findings 
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showing a reduce NPQ amplitude in the mutant strains compared to the WT. All these 

data confirm their function not only in photon capture, but also in photoprotective 

mechanisms within a pool of LHCII proteins free or very loosely connected to the PSII 

supercomplex.  

In the second part of this thesis the attention was focused on C. vulgaris and H. pluvialis, 

microalgae species use for industrial application, in which a deeper understanding of the 

regulative mechanisms, could be essential in developing new technology for improve 

their productivity. For this purpose, the development of new genetics tool based on the 

identification of potential targets for a biotechnological manipulation is of a strong 

interest. For this reason, in the Chapter II section A the C. vulgaris genome was 

presented. The combination of several techniques allows the assembly of ~40Mb 

genome, composed by 14 pseudo-molecules with a GC content comparable to C. 

variabilis or C. reinhardtii. The genome assembly data combined with the functional 

annotation evidenced a horizontal transfer from chloroplast to the mitochondria typical 

of higher plants but not present in C. reinhardtii. Differently from C. reinhardtii, psbs 

and lhcsr, the main genes related proteins involved in photoprotection in higher plants 

and microalgae respectively, were found to be expressed in both low and high light. 

Furthermore, the VDE (violaxanthin de-epoxidase) enzyme, which de-epoxidase 

violaxanthin into zeaxanthin, was found to be overexpressed in high light, reveling a 

divergency in the evolution in the green lineage of the enzyme carrying the VDE 

catalytic activity. In the Chapter II section B, the VDE of C. vulgaris was functionally 

characterized in vitro and in vivo in order to assess its function in C. vulgaris. Multiple 

alignment of C. vulgaris VDE sequences from several organisms showed a high identity 

compared to A. thaliana with the conservation of all the key residues involved in protein 

structure stability and catalytic activity. In vitro expression of the VDE enzyme and 

enzymatic assay demonstrate its ability in converting violaxanthin into zeaxanthin. In 

vivo measurements show an exponential correlation between the NPQ induction and the 

zeaxanthin accumulation, activity that is reduced in presence of DTT demonstrating a 

partial role of zeaxanthin in NPQ induction in C. vulgaris.  

In the section C and D of the Chapter II we focused our attention on the photosynthetic 

regulation in stress condition of H. pluvialis. In the section C of Chapter II two different 

stresses were applied: high light and nitrogen starvation. Phenotypic analysis of stressed 

cell revel that nitrogen starvation inhibits chlorophyll biosynthesis, induces chlorophyll b 
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degradation with a consequent PSII antenna proteins destabilization. In this condition 

PTOX activity and the cyclic electron transport are also inhibited with the 

simultaneously increase of dark respiration activity again photosynthesis, while high 

light induces the xanthophyll cycle activation and carotenogenesis. The combination of 

high light and nitrogen starvation induce the acclimation of photosynthetic apparatus 

increasing the resistance to the photo-oxidative stress with astaxanthin accumulation and 

PSII antenna size reduction. In the section D of the Chapter II more attention was 

focused on the effect of stressing conditions on isolated complexes from H. pluvialis. 

Complexes isolated from cells grown in control condition show features reliable with 

proteins purified from higher plants or C. reinhardtii. In this Chapter was demonstrated 

that the acclimation to high light, in H. pluvialis, induces a destabilization of the PSI-

LHCI supercomplex and PSII core probably due to the rapid PSII core turnover and 

partially substitution of astaxanthin to β-carotene bind to the Photosystems. The β-

carotene absence causes a destabilization of the interaction between antenna protein 

complexes and PSI core. But only 1% of the total astaxanthin produced in H. pluvialis is 

bound to PSI or PSII, while almost all astaxanthin is accumulated in the cytoplasm 

having a specific role as antioxidant to protect the nucleus and filtering light with the 

consequent reduction of excitation pressure on the photosynthetic subunits.  

 

 

 

 

 

 

 



 

256 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

257 

 

Abbreviations 

Ax  Antheraxanthin 

APX Ascorbate peroxide 

ATP 

ATPase 

Adenosine triphosphate 

Atp synthase 

β-Car β -Carotene 

Car 

CEF 

Carotenoids 

Cyclic electron flow 

Chl  Chlorophyll   

CP24 Chlorophyll binding protein of 24 kda 

CP26 Chlorophyll binding protein of 26 kda 

CP29 Chlorophyll binding protein of 29 kda 

Cyt b6f Cytochrome b6f complex 

DTT DL-dithiothreitol 

F0 

FLV 

Minimal fluorescence of dark-adapted leaves 

Flavodiiron 

Fm Maximum fluorescence of dark-adapted leaves 

Fm’ Maximum fluorescence light adapted leaves 

Fv Variable florescence (Fm-F0) of dark-adapted leaves 

LEF Linear electron flow 

LHC Light harvesting complex 

LHCI Photosystem I light harvesting complex 

LHCII  Photosystem II light harvesting complex 

Lut 

MDA 

Lutein 

Monodehydroascorbate 

NADP+ Nicotinamide adenine dinucleotide phosphate oxidized 

NADPH2 

NDH 

Nicotinamide adenine dinucleotide phosphate reduced 

NAD(P)H dehydrogenase 

Neo Neoxanthin 

NPQ Non photochemical quenching 

OEC Oxygen evolving complex 

P680 Photosystem II reaction center 

P700 

PAR 

Photosystem I reaction center 

Photosynthetically Active Radiation 

PC 

PTOX 

Plastocyanin 

Plastoquinone terminal oxidase 
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PSI Photosystem I 

PSII Photosystem II 

Qa plastoquinone A 

Qb plastoquinone B 

Qy region spectrum region between 630-675nm 

ROS 

SOD 

reactive oxygen species 

SupeOxide Dismutase 

Soret region spectrum region between 450-475nm 

Vx 

VDE 

Violaxanthin 

Violaxanthin De-Epoxidase 

WT Wild-type strain 

Zx zeaxanthin 

 


