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In response to genotoxic stress, DNA damage checkpoints maintain the integrity of the genome by delaying cell cycle progression
to allow for DNA repair. Here we show that the degradation of the basic helix-loop-helix (bHLH) transcription factor DEC1, a
critical regulator of cell fate and circadian rhythms, controls the DNA damage response. During unperturbed cell cycles, DEC1 is
a highly unstable protein that is targeted for proteasome-dependent degradation by the SCF�TrCP ubiquitin ligase in cooperation
with CK1. Upon DNA damage, DEC1 is rapidly induced in an ATM/ATR-dependent manner. DEC1 induction results from pro-
tein stabilization via a mechanism that requires the USP17 ubiquitin protease. USP17 binds and deubiquitylates DEC1, mark-
edly extending its half-life. Subsequently, during checkpoint recovery, DEC1 proteolysis is reestablished through �TrCP-depen-
dent ubiquitylation. Expression of a degradation-resistant DEC1 mutant prevents checkpoint recovery by inhibiting the
downregulation of p53. These results indicate that the regulated degradation of DEC1 is a key factor controlling the DNA dam-
age response.

Cells respond to genotoxic stress by activating DNA damage
checkpoints, molecular networks that monitor the integrity of

the genome before cells commit to either duplicating their DNA in
S phase or separating their chromosomes in mitosis. Once DNA
damage is sensed, cells temporarily stop cycling, facilitating DNA
repair. If the degree of the DNA lesions exceeds the capacity of
repair processes, cells die by apoptosis or exit irreversibly the cell
division cycle and undergo senescence. The molecular mecha-
nisms controlling the DNA damage response are of considerable
interest not only because unrepaired DNA damage underlies the
development of cancer and checkpoints represent critical barriers
to tumor formation but also because DNA damage is employed
therapeutically to kill cancer cells.

Many studies have shown that upon DNA damage, two major
molecular cascades activated by the sensory ATM/ATR/DNA-
protein kinase (PK) kinases are responsible for the arrest in the G2

phase of the cell cycle (1–4). They converge to control the activity
of the cyclin B/Cdk1 complex, the main regulator of the G2/M
transition. The first cascade, which rapidly prevents mitotic entry,
involves the activation of the checkpoint kinases Chk1 and Chk2,
which, in turn, phosphorylate and inactivate (or target for protea-
some-dependent degradation) Cdc25 phosphatases, leading to
the inhibition of Cdk1. The second, slower cascade involves the
phosphorylation of p53, which impairs its interaction to the
MDM2 ubiquitin ligase, promoting both the accumulation and
activation of p53. Once induced, p53 target genes, such as the p21,
14-3-3, and GADD45 genes, contribute to blocking the activity of
cyclin B/CDK1 through multiple mechanisms.

Basic helix-loop-helix (bHLH) transcription factors are key
regulators of cell fate specification, apoptosis, cell proliferation,
and metabolism (5–7). DEC1 (differentiated embryo-chondro-
cyte expressed gene 1 protein), also known as BHLHE40 (basic
helix-loop-helix family, member e40), SHARP2 (enhancer of split
and hairy related protein 2), and STRA13 (stimulated with reti-
noic acid 13), binds to E boxes and functions as a transcriptional

repressor through histone deacetylase-dependent and -independent
mechanisms (8, 9). It was originally identified as a retinoic acid-in-
ducible protein that inhibits mesodermal differentiation and pro-
motes neuronal differentiation (10). Subsequently, DEC1 was shown
to have an important role in the regulation of mammalian circadian
rhythms by repressing CLOCK/BMAL-dependent transactivation of
gene expression (11–13). Interestingly, DEC1 expression is induced
by a variety of clock-resetting stimuli such as light (in the suprachias-
matic nucleus), feeding (in the liver), serum shock, forskolin, trans-
forming growth factor � (TGF-�), and phorbol 12-myristate 13-ac-
etate (PMA) (in cultured cells), suggesting that DEC1 plays a key role
in how the circadian clock senses the environment (13).

Besides confirming that DEC1 controls the circadian clock in
mammals (12), in vivo studies have demonstrated that DEC1 is
essential for T cell activation-induced cell death (AICD). Indeed,
DEC1 deficiency in mice results in defective clearance of activated
T and B cells, which accumulate progressively, causing lymphoid
organ hyperplasia and systemic autoimmune disease (14).

Depending on the cellular context and the specific stimuli,
DEC1 was also shown to mediate cell cycle arrest, senescence, and
apoptosis via p53-dependent and -independent mechanisms (8,
14–16).

In this study, we showed that DEC1 degradation plays a critical
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role in the DNA damage response. Genotoxic stress induces DEC1
stabilization via the USP17 ubiquitin protease. During recovery
from the DNA damage checkpoint, DEC1 is targeted for protea-
somal degradation by the SCF�TrCP ubiquitin ligase in coopera-
tion with CK1�. Importantly, inhibition of DEC1 degradation
slows down recovery from the G2 DNA damage checkpoint by
preventing p53 downregulation.

MATERIALS AND METHODS
Cell culture and drug treatment. U2OS, HEK293T, HEK293-GP2,
HCT116, HCT116 p53�/�, T98G, hTERT-RPE1, and hTERT-RPE1-
FUCCI cells were maintained in Dulbecco’s modified Eagle’s medium
(Invitrogen) containing 10% fetal calf serum, 100 U/ml of penicillin, and
100 U/ml streptomycin. The following drugs were used: etoposide (Sig-
ma-Aldrich; 20 �g/ml), doxorubicin (Sigma-Aldrich; 0.125 �M for spon-
taneous recovery and 1 mM for caffeine-induced recovery), MG132 (Pep-
tide Institute; 10 �M), tetrabromobenzotriazole (TBB; EMD Millipore,
75 �M), D4476 (Sigma-Aldrich; 50 �M), IC261 (Sigma-Aldrich; 50 �M),
cycloheximide (Sigma-Aldrich; 100 �g/ml), caffeine (Sigma-Aldrich; 5
�M), thymidine (Sigma-Aldrich; 2.5 �M), nocodazole (Sigma-Aldrich;
0.1 �g/ml), KU55933 (ATM inhibitor; EMD Millipore; 10 �M), and
ATR-45 (ATR inhibitor; Ohio State University; 2 �M).

Biochemical methods. Extract preparation, immunoprecipitation,
and immunoblotting were done as previously described (17, 18). Mouse
monoclonal antibodies were from Cell Signaling (phospho-p53 [Ser15]),
Invitrogen (Cul1), Sigma-Aldrich (FLAG), BD Transduction Laborato-
ries (p27), Santa Cruz Biotechnology (actin), and Covance (hemaggluti-
nin [HA]). Rabbit polyclonal antibodies were from Cell Signaling
(�TrCP1, CK1�, p53, MYC, phospho-Chk2 [Thr68]), Sigma-Aldrich
(FLAG and USP8), Novus Biologicals (DEC1 and USP17), Santa Cruz
Biotechnology (cyclin A), and EMD Millipore (phospho-histone H3
[Ser10]).

To generate the anti-DEC1 phosphospecific antibody (Ser243), rab-
bits were immunized with the SDTDTDpSGYGG phosphopeptide (where
pS stands for phospho-Ser243). The rabbit polyclonal antiserum was pu-
rified through a two-step purification process. First, the antiserum was
passed through a column containing the unphosphorylated peptide (SD
TDTDSGYGG) to remove antibodies that recognize the unphosphoryl-
ated peptide. The flowthrough was then purified against the phosphopep-
tide to isolate antibodies that recognize DEC1 phosphorylated on Ser243.
The final product was dialyzed with phosphate-buffered saline (PBS),
concentrated, and tested for phosphopeptide and phosphoprotein speci-
ficity.

Purification of DEC1 interactors. HEK293T cells were transfected
with pcDNA3-FLAG-HA-DEC1 and treated with 10 �M MG132 for 5 h.
Cells were harvested and subsequently lysed in lysis buffer (50 mM Tris-
HCl [pH 7.5], 150 mM NaCl, 1 mM EDTA, 0.5% NP-40, and protease and
phosphatase inhibitors). DEC1 was immunopurified with anti-FLAG
agarose resin (Sigma-Aldrich). After a washing, proteins were eluted by
competition with FLAG peptide (Sigma-Aldrich). The eluate was then
subject to a second immunopurification with anti-HA resin (12CA5
monoclonal antibody cross-linked to protein G-Sepharose; Invitrogen)
prior to elution in Laemmli sample buffer. The final eluate was separated
by SDS-PAGE, and proteins were visualized by Coomassie colloidal blue.
Bands were sliced out from the gels and subjected to in-gel digestion. Gel
pieces were then reduced, alkylated, and digested according to a published
protocol (19). For mass spectrometric analysis, peptides recovered from
in-gel digestion were separated with a C18 column and introduced by
nanoelectrospray into the LTQ Orbitrap XL (Thermo Fisher) with a con-
figuration described previously (20). Peak lists were generated from the
tandem mass spectrometry (MS/MS) spectra using MaxQuant build
1.0.13.13 (21) and then searched against the IPI Human database (version
3.37; 69,164 entries) using the Mascot search engine (Matrix Science).
Carbamidomethylation (�57 Da) was set as a fixed modification and
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FIG 1 DEC1 protein levels are upregulated in response to genotoxic stress. (A and B) U2OS cells were treated with doxorubin (A) or etoposide (B) for the
indicated times. Cells were collected and lysed. Whole-cell extracts were analyzed by immunoblotting with antibodies for the indicated proteins. Actin is shown
as a loading control. (C) U2OS cells were treated with etoposide in the presence or absence of KU55933 (ATM inhibitor) or ATR-45 (ATR inhibitor) for the
indicated times and then collected, lysed, and analyzed by immunoblotting. Dimethyl sulfoxide (DMSO) was used as a control. (D) HCT116 cells were treated
with etoposide in the presence or absence of caffeine for the indicated times and then collected, lysed, and analyzed by immunoblotting. (E) HCT116 p53�/� and
HCT116 p53�/� cells were treated with etoposide and collected at the indicated times. Cells were lysed and analyzed by immunoblotting (l.e., long exposure; s.e.,
short exposure). (F) U2OS cells were treated with the indicated compounds, alone or in combination, and collected at the indicated times. Whole-cell extracts
were analyzed by immunoblotting with the indicated antibodies. (G) U2OS cells were pulse treated with etoposide. After the pulse, the inhibitor of protein
synthesis cycloheximide (CHX) was added, and cells were collected at the indicated times. Whole-cell extracts were analyzed by immunoblotting with the
indicated antibodies. DEC1 protein levels are quantified in the graph. CTR, DMSO-treated control. (H) U2OS cells expressing HA-tagged DEC1 and MYC-
tagged ubiquitin were treated with etoposide. Whole-cell extracts were immunoprecipitated (IP) under denaturing conditions with an anti-HA resin. DEC1
immunoprecipitates were immunoblotted with an anti-MYC antibody to detect ubiquitylated DEC1. The bracket indicates a ladder of bands corresponding to
polyubiquitylated DEC1. Phospho-Chk2 (Thr68) and p53 are shown as markers of checkpoint activation.
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protein N-terminal acetylation and methionine oxidation as variable
modifications. To filter out false positives, all MS/MS spectra were
searched against a forward and a reverse (decoy) protein database. All
peptide-spectrum matches (PSMs) containing both forward and decoy
hits were then trained and validated with an algorithm named Percolator
(22), which uses semisupervised machine learning to discriminate be-
tween the correct and decoy matches. Finally, we accepted only PSMs
based on a high stringency filter with a q value of 0.01 or a 1% false
discovery rate (FDR). The 1% FDR filter is currently the standard for the
proteomics community.

Plasmids and shRNAs. Mammalian expression plasmids for CK1�,
His-USP17, MYC-USP17, USP8, and HA-USP36 were provided by H.
Clevers, J. Johnston, K. Baek, M. Donzelli, and M. Komada, respectively.
DEC1 cDNAs (wild type and mutants) were cloned in pcDNA3.1. For
retrovirus production, HA-tagged DEC1 and MYC-tagged USP17 cDNAs
(wild type and mutants) were subcloned into pBABE-PURO. DEC1 mu-
tants were generated using the QuikChange site-directed mutagenesis kit
(Stratagene). Small hairpin RNAs (shRNAs) targeting human CK1� were
provided by W. Wei (23). The shRNAs for USP17, CCAAGACGTTAAC
TTTACA (construct 1) and GCAGGAAGATGCCCATGAA (construct
2), were cloned in pSUPER. All constructs were sequenced.

Transient transfections and retrovirus- and lentivirus-mediated
transfer. HEK293T and U2OS cells were transfected using the polyethyl-
enimine (PEI) method. For retrovirus production, HEK293-GP2 cells

were cotransfected with pBABE-puro-HA DEC1 and packaging vectors,
and the virus-containing medium was collected after 48 h and supple-
mented with 8 �g/ml of Polybrene. For lentivirus production, HEK293T
cells were transfected with pLKO-CK1 and packaging vectors. Virus-con-
taining medium was collected 48 h after transfection and supplemented
with 8 �g/ml of Polybrene. Target cells were incubated with the virus for
6 h.

Gene silencing by small interfering RNA (siRNA). The sequence and
validation of oligonucleotides corresponding to �TrCP1 and �TrCP2
have been previously published (17, 24). Cells were transfected with the
oligonucleotides twice (24 and 48 h after plating) using Oligofectamine
(Invitrogen) according to the manufacturer’s recommendations. Forty-
eight hours after the last transfection, lysates were prepared and analyzed
by SDS-PAGE and immunoblotting.

In vitro ubiquitylation assay. DEC1 ubiquitylation was performed in
a volume of 10 �l containing SCF�TrCP-DEC1 immunocomplexes, 50
mM Tris (pH 7.6), 5 mM MgCl2, 0.6 mM dithiothreitol (DTT), 2 mM
ATP, 1.5 ng/�l of E1 (Boston Biochem), 10 ng/�l of Ubc3 (Boston
Biochem), 2.5 �g/�l of ubiquitin (Sigma-Aldrich), and 1 �M ubiquitin
aldehyde. The reaction mixtures were incubated at 30°C for 60 min and
analyzed by immunoblotting.

Live-cell microscopy. Time-lapse microscopy to analyze mitotic entry
was performed as described previously (25, 26).
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FIG 2 USP17 mediates the stabilization of DEC1 in response to DNA damage. (A) HEK293T cells were transfected with the indicated cDNAs. Cells were lysed
and whole-cell extracts were subjected to immunoprecipitation using anti-HA resin before immunoblotting with antibodies for the indicated proteins. (B and C)
Cells were transfected with the indicated constructs. After 48 h, cells were treated with cycloheximide (CHX) to block protein synthesis. Cells were collected at
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Statistical analysis. All data shown are from one representative exper-
iment of at least three performed. Statistical analysis was performed using
Student’s t test. Results with P values of �0.005 were considered to be
statistically significant.

RESULTS
DEC1 is induced by DNA damage in an ATM/ATR-dependent
manner. It has been shown that genotoxic stress triggers the in-
duction of DEC1 (15, 16, 27). We first confirmed these results by
showing that DEC1 is rapidly induced by doxorubicin and etopo-
side, two topoisomerase inhibitors that cause DNA double-strand
breaks (Fig. 1A and B). To extend our observations, we examined
the effect of pharmacological inhibition of ATM and ATR, main
effector kinases of the DNA damage response, on the induction of
DEC1 in response to genotoxic stress. Inhibition of either ATM or
ATR prevented the increase of DEC1 protein levels upon etopo-
side treatment (Fig. 1C). Similarly, treatment of cells with caffeine,
which blocks the activation of the ATM and ATR kinases, inhib-
ited the induction of DEC1 upon genotoxic stress (Fig. 1D). To
test whether the increase in DEC1 following a DNA damage insult
depends on p53, we compared the levels of DEC1 in etoposide-
treated HCT116 p53�/� cells with the ones in HCT116 p53�/�

cells (Fig. 1E). Although the levels of DEC1 are overall lower in the
absence of p53, DEC1 was induced with similar kinetics in
HCT116 p53�/� and HCT116 p53�/� cells (compare long and
short exposure times of DEC1 immunoblotting).

A number of factors suggest that the induction of DEC1 in
response to genotoxic stress is due to regulation of its turnover.
First, proteasome inhibition and DNA damage in U2OS cells
cause similar increases in DEC1 levels (Fig. 1F). Second, MG132
treatment of damaged cells does not cause a further increase of
DEC1 levels (Fig. 1F). Third, and more importantly, the half-life
of DEC1 is extended by etoposide treatment (Fig. 1G).

DEC1 stabilization in response to genotoxic stress might be
due to regulation of its ubiquitylation. To test this possibility, we
analyzed the ubiquitylation of DEC1 in U2OS cells treated with

etoposide. As shown in Fig. 1H, the activation of the DNA damage
response by etoposide treatment (monitored by the induction of
p53 and phospho-Chk2 [Thr68]) was associated with a decrease in
DEC1 ubiquitylation.

USP17 is required for the stabilization of DEC1 in response
to genotoxic stress. To identify DEC1-interacting proteins that
may play a role in the regulation of DEC1 ubiquitylation and
degradation, FLAG-HA-tagged DEC1 was expressed in HEK293T
cells, immunopurified, and analyzed by mass spectrometry. We
recovered peptides corresponding to the USP17 deubiquitylating
enzyme as well as the subunits of the SCF�TrCP ubiquitin ligase,
i.e., Skp1, Cul1, Rbx1, �TrCP1, and �TrCP2 (see Table S1 in the
supplemental material).

We first confirmed the binding between USP17 and DEC1
(Fig. 2A). Next, to test whether USP17 controls the stability of
DEC1, we expressed DEC1 along with USP17 in U2OS cells and
blocked protein synthesis by cycloheximide treatment. As shown
in Fig. 2B, expression of USP17 but not of a USP17 mutant in
which the catalytic cysteine has been replaced by serine (C89S)
markedly stabilized DEC1. Expression of other deubiquitylating
enzymes such as USP8 or USP36 had no effect on DEC1 turnover
(Fig. 2C). Moreover, wild-type USP17, but not the catalytically
inactive USP17 (C89S) mutant, reduced the amount of ubiquity-
lated DEC1 in cultured cells (Fig. 2D).

These results suggest that USP17 might be responsible for the
stabilization of DEC1 observed in response to genotoxic stress. To
test this hypothesis, we depleted USP17 using RNA interference
(RNAi) and examined the levels of DEC1 following DNA damage.
The knockdown of USP17 in etoposide-treated cells inhibited the
induction of DEC1 (Fig. 2E), which was rescued by proteasome
inhibition (Fig. 2F). Next, we tested whether the physical interac-
tion between DEC1 and USP17 is regulated by genotoxic stress.
Figure 2G shows that treatment of U2OS cells with etoposide
stimulates the association of USP17 with DEC1.
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antibodies specific for the indicated proteins. Actin is shown as a loading control. DEC1 expression is quantified in the graph.
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DEC1 is targeted for proteasome-dependent degradation by
SCF�TrCP. The identification of the SCF�TrCP subunits in the im-
munopurification of DEC1 (see Table S1 in the supplemental ma-
terial) prompted us to assess the involvement of SCF�TrCP in the
regulation of DEC1 proteolysis. To confirm the interaction of
DEC1 with �TrCP, we immunoprecipitated a panel of F box pro-
teins and tested their binding to endogenous DEC1. As shown in
Fig. 3A, only �TrCP1 and �TrCP2 were able to coimmunopre-
cipitate endogenous DEC1. Furthermore, mutation of Arg447, a
residue within the WD40 repeats of �TrCP2 required for interac-
tions with its substrates (28, 29), prevented the binding of DEC1
to �TrCP (Fig. 3B). To test whether DEC1 is a substrate of
SCF�TrCP, we reconstituted the ubiquitylation of DEC1 in vitro.
�TrCP1, but not an inactive �TrCP1(�F box) mutant, was able to
mediate DEC1 ubiquitylation in vitro (Fig. 3C). To examine
whether DEC1 stability is regulated by �TrCP, we reduced the
expression of both �TrCP1 and �TrCP2 using a previously vali-
dated siRNA (28). As shown in Fig. 3D, the knockdown of �TrCP
caused DEC1 stabilization in HEK293T cells. Together, these re-

sults indicate that DEC1 degradation is controlled by the SCF�TrCP

ubiquitin ligase.
CK1�-mediated phosphorylation of DEC1 is required for its

destruction. The binding of �TrCP to its substrates requires the
phosphorylation of serine residues within a degron sequence.
Some substrates of �TrCP have one or both serine residues re-
placed by either aspartic or glutamic acid (17, 30). DEC1 contains
three putative �TrCP-binding domains (Fig. 4A). To assess which
of these three domains mediates the binding of DEC1 to �TrCP,
we generated a number of DEC1 double mutants with changes of
serine, aspartic acid, or glutamic acid to alanine (all HA tagged)
and examined their ability to interact with endogenous �TrCP. As
shown in Fig. 4B, mutation of Ser243 and Glu248 to alanine pre-
vented the binding of DEC1 to �TrCP, whereas mutation of the
other two motifs had no effect on the DEC1-�TrCP interaction.
Accordingly, the DEC1(S243A/E248A) mutant is stable in cul-
tured HEK293T cells (Fig. 4C). The �TrCP-binding domain in
DEC1 is conserved in different species (Fig. 4D).

DEC1 Ser243 is part of a conserved phosphorylation consensus
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wild-type DEC1, or the indicated HA-tagged DEC1 mutants. Forty-eight hours after transfection, cells were harvested and lysed. Whole-cell extracts were
subjected to immunoprecipitation with anti-HA resin, followed by immunoblotting with antibodies specific for the indicated proteins. (C) HEK293T cells were
transfected with the indicated constructs. After 24 h, cells were treated with the inhibitor of protein synthesis cycloheximide and collected at the indicated times.
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site for casein kinase 1 (CK1). To test whether CK1 is involved in
the degradation of DEC1, we treated cells with CK1 pharmacolog-
ical inhibitors and analyzed the half-life of DEC1. Treatment of
U2OS cells with D4476 (a CK1 inhibitor) but not TBB (a CK2
inhibitor) caused DEC1 stabilization (Fig. 4E). Furthermore,
knockdown of CK1� by RNAi prevented DEC1 degradation in
U2OS cells (Fig. 4F).

Next, we generated a phospho-specific antibody that recog-
nizes DEC1 only when it is phosphorylated on Ser243 (Fig. 4D
and G). We employed this antibody to test whether CK1� phos-
phorylates DEC1 on Ser243. DEC1 was immunopurified from
HEK293T cells, dephosphorylated, and then subjected to phos-
phorylation in vitro in the presence of different purified kinases.

As a control, we used the DEC1(S243A/E248A) mutant. DEC1
phosphorylation on Ser243 was then assessed by immunoblotting
using the phosphospecific antibody that recognizes DEC1 only
when it is phosphorylated on Ser243. Figure 4H shows that DEC1
Ser243 is specifically phosphorylated by CK1�. Accordingly,
pharmacological inhibition of CK1 blocked Ser243 phosphoryla-
tion in cultured cells (Fig. 4I).

SCF�TrCP and CK1� trigger the degradation of DEC1 during
checkpoint recovery. Our data demonstrate that SCF�TrCP and
CK1� control the degradation of DEC1 and suggest that they may
be involved not only in the constitutive turnover of DEC1 but also
in its destruction during checkpoint recovery to counteract the
USP17-mediated and DNA damage-induced stabilization of
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FIG 5 DEC1 degradation is required for checkpoint recovery. (A) U2OS cells were transduced with retroviruses expressing HA-tagged wild-type DEC1 or
HA-tagged DEC1(S243A/E248A) or with an empty vector. Cells were then collected and analyzed by immunoblotting with an anti-DEC1 antibody. Staining of
the polyvinylidene difluoride (PVDF) membrane with Ponceau S shows equal loading. (B) U2OS cells, transduced with retroviruses expressing HA-tagged
wild-type DEC1 or HA-tagged DEC1(S243A/E248A), were treated according to the scheme shown. Cells were then collected and analyzed by immunoblotting
with antibodies for the indicated proteins. Actin is shown as a loading control. (C) U2OS cells were treated as for panel B, except that doxorubicin was used at a
lower dose (0.125 �M) and cells were left recovering spontaneously (without adding caffeine). Cells were then collected and analyzed by immunoblotting with
antibodies for the indicated proteins. Actin is shown as a loading control. (D) U2OS cells expressing HA-tagged wild-type DEC1 were first synchronized at the
G1/S transition by thymidine block and then washed extensively and incubated in fresh medium (indicated as time zero) to allow progression through S, G2, and
mitosis. (E) T98G cells (revertants from T98 glioblastoma cells that acquired the property of accumulating in G0/G1 in low serum) were synchronized in G0 by
serum deprivation (0) and released from the arrest by the addition of serum. AS, asynchronously growing cells. Cells were collected at the indicated time points
and lysed. Whole-cell extracts were analyzed by immunoblotting with antibodies specific for the indicated proteins. (F) hTERT-RPE1 cells expressing HA-tagged
wild-type DEC1, HA-tagged DEC1(S243A/E248A), or an empty vector were pulse treated (1 h) with 0.5 �M doxorubicin. Cells were monitored by time-lapse
microscopy and scored for mitotic entry. (G) Asynchronously growing hTERT-RPE1 cells expressing wild-type DEC1, DEC1(S243A/E248A), or an empty vector
were monitored by time-lapse microscopy and scored for mitotic entry. (H) Same as for panel F. Twenty-four hours after the pulse, cells were collected and
analyzed by immunoblotting with antibodies specific for the indicated proteins. The expression of p53 is quantified in the graph. (I and J) HCT116 p53�/� (I)
and HCT116 p53�/� (J) cells, expressing HA-tagged wild-type DEC1, HA-tagged DEC1(S243A/E248A), or an empty vector, were pulse treated (1 h) with 0.5 �M
doxorubicin. Cells were then monitored by time-lapse microscopy and scored for mitotic entry.
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DEC1. To test this possibility, we expressed physiological levels of
wild-type DEC1 and the DEC1(S243A/E248A) mutant, which is
unable to bind �TrCP in U2OS cells (Fig. 5A). Cells were then
synchronized in G2 and pulsed with doxorubicin to activate the G2

DNA damage checkpoint. To induce checkpoint recovery, cells
were then treated with caffeine, which inhibits the checkpoint
kinases ATM and ATR, turning off the checkpoint. As shown in
Fig. 5B, whereas wild-type DEC1 was rapidly degraded during
caffeine-induced checkpoint recovery, the DEC1(S243A/E248A)
mutant was stable. Similar results were obtained when cells were
allowed to recover spontaneously from the G2 DNA damage
checkpoint that was activated by a lower dose of doxorubicin (Fig.
5C). In contrast, the abundance of wild-type DEC1 did not change
when cells were released from the G1/S border without DNA dam-
age (Fig. 5D). In addition, no significant changes in the levels of
endogenous DEC1 were observed in cells synchronized in G0 by
serum deprivation and released in serum-containing medium to
allow synchronized progression through G1, S, G2, and mitosis
(Fig. 5E).

Regulated degradation of DEC1 controls the G2 DNA dam-
age checkpoint. To study the biological effect of CK1�- and
�TrCP-mediated degradation of DEC1 on checkpoint recovery,
we analyzed the mitotic entry of hTERT-immortalized retinal pig-
ment epithelial (RPE1) cells expressing either wild-type DEC1 or
the degradation-resistant DEC1(S243A/E248A) mutant after a
pulse of doxorubicin. As shown in Fig. 5F, hTERT-RPE1 cells
expressing DEC1(S243A/E248A) displayed defective checkpoint
recovery compared with control cells. Indeed, 60 h after the doxo-
rubicin pulse, approximately 50% of control cells had entered
mitosis, whereas only 20% of cells expressing the degradation-
resistant DEC1 mutant had reached mitosis at that time. Failure to
degrade DEC1 during unperturbed cell cycles had a minimal effect
on mitotic entry (Fig. 5G).

It has been shown that DEC1 regulates the expression of p53 by
directly interacting with p53, blocking its MDM2-mediated deg-
radation (16). To test whether the defective recovery of cells ex-
pressing the nondegradable DEC1 mutant was associated with
sustained levels of p53, we assessed the levels of p53 in cells ex-
pressing the degradation-resistant DEC1 mutant during check-
point recovery. As shown in Fig. 5H, 24 h after the DNA damage
pulse, cells expressing DEC1(S243A/E248A) displayed increased

levels of p53 compared with those of cells expressing wild-type
DEC1.

To demonstrate that the defective checkpoint recovery in cells
expressing the degradation-resistant DEC1 mutant was indeed
caused by the inability of these cells to downregulate p53, we an-
alyzed the effect of defective DEC1 degradation on checkpoint
recovery in p53-deficient HCT116 cells. Figure 5I and J show that
the recovery from the G2 DNA damage checkpoint is impaired by
the expression of DEC1(S243A/E248A) in HCT116 p53�/� cells
but not in HCT116 p53�/� cells.

Finally, we examined the role of the induction of DEC1 upon
DNA damage. To this end, we silenced the expression of DEC1 by
RNAi in hTERT-RPE1-FUCCI cells, which were then treated with
a pulse of doxorubicin. These cells, which express both a red (RFP)
and a green (GFP) fluorescent protein fused to the cell cycle reg-
ulators Cdt1 and geminin, respectively, allowed us to monitor the
progression through cell cycle phases in response to genotoxic
stress (31). Figure 6A to C indicate that the knockdown of DEC1
caused a defective G2 DNA damage checkpoint, as doxorubicin-
treated cells in which DEC1 was silenced have a shorter G2 phase
than do doxorubicin-treated control cells. In contrast, ectopic ex-
pression of USP17, which mediates the stabilization of DEC1 in
response to DNA damage, leads to a prolonged G2 checkpoint
following treatment with doxorubicin (Fig. 6D and E).

DISCUSSION

In the present work, we show that the rapid induction of DEC1 in
response to genotoxic stress is dependent on the USP17 deubiq-
uitylating enzyme and that the proteasomal degradation of DEC1,
mediated by SCF�TrCP and CK1�, is required for efficient recovery
from the G2 DNA damage checkpoint. In line with our findings, a
recently performed large-scale comparative phosphoproteomic
screen, aimed at analyzing changes in protein phosphorylation
during checkpoint recovery and identifying factors required for
this process, identified CK1� as a potential regulator of check-
point recovery (32). Indeed, CK1� was found to be differentially
phosphorylated during recovery from the G2 checkpoint caused
by DNA damage, and importantly, cells in which CK1� was de-
pleted by siRNA were unable to recover from the DNA damage-
induced G2 arrest (32).

A number of studies have uncovered a key function of
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FIG 6 Role of USP17-mediated induction of DEC1 in the G2 DNA damage checkpoint. (A) hTERT-RPE1-FUCCI cells were transfected with the indicated
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SCF�TrCP in driving cells into mitosis during recovery from DNA
replication and the DNA damage checkpoints. Indeed, during
checkpoint recovery, SCF�TrCP, in cooperation with Polo-like ki-
nase-1, contributes to turning Cdk1 activity on by targeting both
claspin and Wee1 for proteasomal degradation. Claspin is an
adaptor protein that in response to DNA replication and DNA
damage checkpoints promotes ATR-mediated phosphorylation
and activation of Chk1. Claspin degradation triggered by �TrCP
and Polo-like kinase-1 leads to Chk1 inactivation and subsequent
accumulation of Cdc25A and activation of Cdc25B and Cdc25C.
Wee1 is a direct inhibitor of Cdk1, and its destruction by �TrCP
and Polo-like kinase-1 removes the break on Cdk1 activity. These
degradation events, despite being crucial, are insufficient to ac-
count for the whole checkpoint recovery process. In fact, inacti-
vation of p53, a second important brake responsible for a sus-
tained cell cycle arrest upon genotoxic stress, is essential for
checkpoint recovery. Our study indicates that by targeting DEC1
for degradation during recovery from the G2 checkpoint,
SCF�TrCP is also responsible for the termination of the inhibitory
action of p53 on G2 progression and mitotic entry.

Interestingly, a genome-wide characterization of DEC1-regu-
lated genes in T lymphocytes has been recently reported (33).
Gene ontology analysis revealed that cell cycle genes, in particular
genes that control the G2/M transition, were highly enriched
(third highest category) among the DEC1-regulated genes, imply-
ing that in addition to its effect on p53 expression, DEC1-regu-
lated stability in response to DNA damage might modulate the
expression of a multitude of genes controlling cell cycle progres-
sion.

Finally, as DEC1 is a crucial regulator of circadian rhythms, our
findings suggest that acute induction of DEC1 in response to
genotoxic stress, carried out by the coordinated actions of USP17
and CK1�/SCF�TrCP, might enable a rapid resetting of the circa-
dian clock following DNA damage.

ACKNOWLEDGMENTS

We thank K. Baek and J. Johnston for reagents and the Hubrecht Imaging
Center (HIC) for contribution.

Work in D.G.’s laboratory was supported by the Royal Dutch Acad-
emy of Arts and Sciences (KNAW), the Dutch Cancer Society (KWF), the
Cancer Genomics Centre, and the European Union under Marie Curie
Actions (FP7). T.Y.L., S.M., and A.J.R.H. were supported by the Nether-
lands Proteomics Center (NPC).

We declare that we have no competing financial interests and no other
conflicts of interest.

J.K. contributed to the design, execution, and analysis of most exper-
iments and helped write the manuscript. D.G. contributed to the concept,
design, and analysis of the experiments, provided funding, and wrote the
manuscript. All other authors contributed to the execution and/or anal-
ysis of specific experiments.

REFERENCES
1. Medema RH, Macurek L. 2012. Checkpoint control and cancer. Onco-

gene 31:2601–2613. http://dx.doi.org/10.1038/onc.2011.451.
2. Jackson SP, Bartek J. 2009. The DNA-damage response in human biology

and disease. Nature 461:1071–1078. http://dx.doi.org/10.1038/nature08467.
3. Kastan MB, Bartek J. 2004. Cell-cycle checkpoints and cancer. Nature

432:316 –323. http://dx.doi.org/10.1038/nature03097.
4. Harper JW, Elledge SJ. 2007. The DNA damage response: ten years after.

Mol. Cell 28:739 –745. http://dx.doi.org/10.1016/j.molcel.2007.11.015.
5. Murre C, McCaw PS, Vaessin H, Caudy M, Jan LY, Jan YN, Cabrera

CV, Buskin JN, Hauschka SD, Lassar AB, Weintraub H, Baltimore D.
1989. Interactions between heterologous helix-loop-helix proteins gener-

ate complexes that bind specifically to a common DNA sequence. Cell
58:537–544. http://dx.doi.org/10.1016/0092-8674(89)90434-0.

6. Atchley WR, Fitch WM. 1997. A natural classification of the basic helix-
loop-helix class of transcription factors. Proc. Natl. Acad. Sci. U. S. A.
94:5172–5176. http://dx.doi.org/10.1073/pnas.94.10.5172.

7. Ledent V, Paquet O, Vervoort M. 2002. Phylogenetic analysis of the
human basic helix-loop-helix proteins. Genome Biol. 3:RESEARCH0030.
http://dx.doi.org/10.1186/gb-2002-3-6-research0030.

8. Sun H, Taneja R. 2000. Stra13 expression is associated with growth arrest
and represses transcription through histone deacetylase (HDAC)-
dependent and HDAC-independent mechanisms. Proc. Natl. Acad. Sci.
U. S. A. 97:4058 – 4063. http://dx.doi.org/10.1073/pnas.070526297.

9. St-Pierre B, Flock G, Zacksenhaus E, Egan SE. 2002. Stra13 homodimers
repress transcription through class B E-box elements. J. Biol. Chem. 277:
46544 – 46551. http://dx.doi.org/10.1074/jbc.M111652200.

10. Boudjelal M, Taneja R, Matsubara S, Bouillet P, Dolle P, Chambon P.
1997. Overexpression of Stra13, a novel retinoic acid-inducible gene of the
basic helix-loop-helix family, inhibits mesodermal and promotes neuro-
nal differentiation of P19 cells. Genes Dev. 11:2052–2065. http://dx.doi
.org/10.1101/gad.11.16.2052.

11. Honma S, Kawamoto T, Takagi Y, Fujimoto K, Sato F, Noshiro M,
Kato Y, Honma K. 2002. Dec1 and Dec2 are regulators of the mam-
malian molecular clock. Nature 419:841– 844. http://dx.doi.org/10
.1038/nature01123.

12. Nakashima A, Kawamoto T, Honda KK, Ueshima T, Noshiro M, Iwata
T, Fujimoto K, Kubo H, Honma S, Yorioka N, Kohno N, Kato Y. 2008.
DEC1 modulates the circadian phase of clock gene expression. Mol. Cell.
Biol. 28:4080 – 4092. http://dx.doi.org/10.1128/MCB.02168-07.

13. Kon N, Hirota T, Kawamoto T, Kato Y, Tsubota T, Fukada Y. 2008.
Activation of TGF-beta/activin signalling resets the circadian clock
through rapid induction of Dec1 transcripts. Nat. Cell Biol. 10:1463–1469.
http://dx.doi.org/10.1038/ncb1806.

14. Sun H, Lu B, Li RQ, Flavell RA, Taneja R. 2001. Defective T cell
activation and autoimmune disorder in Stra13-deficient mice. Nat. Im-
munol. 2:1040 –1047. http://dx.doi.org/10.1038/ni721.

15. Qian Y, Zhang J, Yan B, Chen X. 2008. DEC1, a basic helix-loop-helix
transcription factor and a novel target gene of the p53 family, mediates
p53-dependent premature senescence. J. Biol. Chem. 283:2896 –2905.
http://dx.doi.org/10.1074/jbc.M708624200.

16. Thin TH, Li L, Chung TK, Sun H, Taneja R. 2007. Stra13 is induced by
genotoxic stress and regulates ionizing-radiation-induced apoptosis.
EMBO Rep. 8:401– 407. http://dx.doi.org/10.1038/sj.embor.7400912.

17. Guardavaccaro D, Frescas D, Dorrello NV, Peschiaroli A, Multani AS,
Cardozo T, Lasorella A, Iavarone A, Chang S, Hernando E, Pagano M.
2008. Control of chromosome stability by the beta-TrCP-REST-Mad2
axis. Nature 452:365–369. http://dx.doi.org/10.1038/nature06641.

18. Ping Z, Lim R, Bashir T, Pagano M, Guardavaccaro D. 2012. APC/C
(Cdh1) controls the proteasome-mediated degradation of E2F3 during
cell cycle exit. Cell Cycle 11:1999 –2005. http://dx.doi.org/10.4161/cc
.20402.

19. Shevchenko A, Wilm M, Vorm O, Mann M. 1996. Mass spectrometric
sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem.
68:850 – 858. http://dx.doi.org/10.1021/ac950914h.

20. Raijmakers R, Berkers CR, de Jong A, Ovaa H, Heck AJ, Mohammed S.
2008. Automated online sequential isotope labeling for protein quantita-
tion applied to proteasome tissue-specific diversity. Mol. Cell. Proteomics
7:1755–1762. http://dx.doi.org/10.1074/mcp.M800093-MCP200.

21. Cox J, Mann M. 2008. MaxQuant enables high peptide identification
rates, individualized p.p.b.-range mass accuracies and proteome-wide
protein quantification. Nat. Biotechnol. 26:1367–1372. http://dx.doi.org
/10.1038/nbt.1511.

22. Käll L, Canterbury JD, Weston J, Noble WS, MacCoss MJ. 2007.
Semi-supervised learning for peptide identification from shotgun pro-
teomics datasets. Nat. Methods 4:923–925. http://dx.doi.org/10.1038
/nmeth1113.

23. Gao D, Inuzuka H, Tan MK, Fukushima H, Locasale JW, Liu P, Wan
L, Zhai B, Chin YR, Shaik S, Lyssiotis CA, Gygi SP, Toker A, Cantley
LC, Asara JM, Harper JW, Wei W. 2011. mTOR drives its own activation
via SCF(betaTrCP)-dependent degradation of the mTOR inhibitor DEP-
TOR. Mol. Cell 44:290 –303. http://dx.doi.org/10.1016/j.molcel.2011.08
.030.

24. D’Annibale S, Kim J, Magliozzi R, Low TY, Mohammed S, Heck AJ,
Guardavaccaro D. 2014. Proteasome-dependent degradation of tran-

Kim et al.

4184 mcb.asm.org Molecular and Cellular Biology

 on O
ctober 16, 2014 by U

niversiteitsbibliotheek U
trecht

http://m
cb.asm

.org/
D

ow
nloaded from

 

http://dx.doi.org/10.1038/onc.2011.451
http://dx.doi.org/10.1038/nature08467
http://dx.doi.org/10.1038/nature03097
http://dx.doi.org/10.1016/j.molcel.2007.11.015
http://dx.doi.org/10.1016/0092-8674(89)90434-0
http://dx.doi.org/10.1073/pnas.94.10.5172
http://dx.doi.org/10.1186/gb-2002-3-6-research0030
http://dx.doi.org/10.1073/pnas.070526297
http://dx.doi.org/10.1074/jbc.M111652200
http://dx.doi.org/10.1101/gad.11.16.2052
http://dx.doi.org/10.1101/gad.11.16.2052
http://dx.doi.org/10.1038/nature01123
http://dx.doi.org/10.1038/nature01123
http://dx.doi.org/10.1128/MCB.02168-07
http://dx.doi.org/10.1038/ncb1806
http://dx.doi.org/10.1038/ni721
http://dx.doi.org/10.1074/jbc.M708624200
http://dx.doi.org/10.1038/sj.embor.7400912
http://dx.doi.org/10.1038/nature06641
http://dx.doi.org/10.4161/cc.20402
http://dx.doi.org/10.4161/cc.20402
http://dx.doi.org/10.1021/ac950914h
http://dx.doi.org/10.1074/mcp.M800093-MCP200
http://dx.doi.org/10.1038/nbt.1511
http://dx.doi.org/10.1038/nbt.1511
http://dx.doi.org/10.1038/nmeth1113
http://dx.doi.org/10.1038/nmeth1113
http://dx.doi.org/10.1016/j.molcel.2011.08.030
http://dx.doi.org/10.1016/j.molcel.2011.08.030
http://mcb.asm.org
http://mcb.asm.org/


scription factor AP4 (TFAP4) controls mitotic division. J. Biol. Chem.
289:7730 –7737. http://dx.doi.org/10.1074/jbc.M114.549535.

25. Lindqvist A, de Bruijn M, Macurek L, Bras A, Mensinga A, Bruinsma
W, Voets O, Kranenburg O, Medema RH. 2009. Wip1 confers G2
checkpoint recovery competence by counteracting p53-dependent tran-
scriptional repression. EMBO J. 28:3196 –3206. http://dx.doi.org/10.1038
/emboj.2009.246.

26. Alvarez-Fernández M, Halim VA, Krenning L, Aprelia M, Mohammed
S, Heck AJ, Medema RH. 2010. Recovery from a DNA-damage-induced
G2 arrest requires Cdk-dependent activation of FoxM1. EMBO Rep. 11:
452– 458. http://dx.doi.org/10.1038/embor.2010.46.

27. Qian Y, Jung YS, Chen X. 2012. Differentiated embryo-chondrocyte
expressed gene 1 regulates p53-dependent cell survival versus cell death
through macrophage inhibitory cytokine-1. Proc. Natl. Acad. Sci. U. S. A.
109:11300 –11305. http://dx.doi.org/10.1073/pnas.1203185109.

28. Kruiswijk F, Yuniati L, Magliozzi R, Low TY, Lim R, Bolder R, Mo-
hammed S, Proud CG, Heck AJ, Pagano M, Guardavaccaro D. 2012.
Coupled activation and degradation of eEF2K regulates protein synthesis
in response to genotoxic stress. Sci. Signal. 5:ra40. http://dx.doi.org/10
.1126/scisignal.2002718.

29. Magliozzi R, Low TY, Weijts BG, Cheng T, Spanjaard E, Mohammed S,
van Veen A, Ovaa H, de Rooij J, Zwartkruis FJ, Bos JL, de Bruin A,
Heck AJ, Guardavaccaro D. 2013. Control of epithelial cell migration and

invasion by the IKKbeta- and CK1alpha-mediated degradation of
RAPGEF2. Dev. Cell 27:574 –585. http://dx.doi.org/10.1016/j.devcel.2013
.10.023.

30. Watanabe N, Arai H, Nishihara Y, Taniguchi M, Hunter T, Osada H.
2004. M-phase kinases induce phospho-dependent ubiquitination of so-
matic Wee1 by SCFbeta-TrCP. Proc. Natl. Acad. Sci. U. S. A. 101:4419 –
4424. http://dx.doi.org/10.1073/pnas.0307700101.

31. Sakaue-Sawano A, Kurokawa H, Morimura T, Hanyu A, Hama H,
Osawa H, Kashiwagi S, Fukami K, Miyata T, Miyoshi H, Imamura T,
Ogawa M, Masai H, Miyawaki A. 2008. Visualizing spatiotemporal
dynamics of multicellular cell-cycle progression. Cell 132:487– 498. http:
//dx.doi.org/10.1016/j.cell.2007.12.033.

32. Halim VA, Alvarez-Fernandez M, Xu YJ, Aprelia M, van den Toorn
HW, Heck AJ, Mohammed S, Medema RH. 2013. Comparative phos-
phoproteomic analysis of checkpoint recovery identifies new regulators of
the DNA damage response. Sci. Signal. 6:rs9. http://dx.doi.org/10.1126
/scisignal.2003664.

33. Martínez-Llordella M, Esensten JH, Bailey-Bucktrout SL, Lipsky RH,
Marini A, Chen J, Mughal M, Mattson MP, Taub DD, Bluestone JA.
2013. CD28-inducible transcription factor DEC1 is required for efficient
autoreactive CD4� T cell response. J. Exp. Med. 210:1603–1619. http://dx
.doi.org/10.1084/jem.20122387.

DEC1 Degradation Controls the DNA Damage Response

November 2014 Volume 34 Number 22 mcb.asm.org 4185

 on O
ctober 16, 2014 by U

niversiteitsbibliotheek U
trecht

http://m
cb.asm

.org/
D

ow
nloaded from

 

http://dx.doi.org/10.1074/jbc.M114.549535
http://dx.doi.org/10.1038/emboj.2009.246
http://dx.doi.org/10.1038/emboj.2009.246
http://dx.doi.org/10.1038/embor.2010.46
http://dx.doi.org/10.1073/pnas.1203185109
http://dx.doi.org/10.1126/scisignal.2002718
http://dx.doi.org/10.1126/scisignal.2002718
http://dx.doi.org/10.1016/j.devcel.2013.10.023
http://dx.doi.org/10.1016/j.devcel.2013.10.023
http://dx.doi.org/10.1073/pnas.0307700101
http://dx.doi.org/10.1016/j.cell.2007.12.033
http://dx.doi.org/10.1016/j.cell.2007.12.033
http://dx.doi.org/10.1126/scisignal.2003664
http://dx.doi.org/10.1126/scisignal.2003664
http://dx.doi.org/10.1084/jem.20122387
http://dx.doi.org/10.1084/jem.20122387
http://mcb.asm.org
http://mcb.asm.org/

	USP17- and SCFTrCP-Regulated Degradation of DEC1 Controls the DNA Damage Response
	MATERIALS AND METHODS
	Cell culture and drug treatment.
	Biochemical methods.
	Purification of DEC1 interactors.
	Plasmids and shRNAs.
	Transient transfections and retrovirus- and lentivirus-mediated transfer.
	Gene silencing by small interfering RNA (siRNA).
	In vitro ubiquitylation assay.
	Live-cell microscopy.
	Statistical analysis.

	RESULTS
	DEC1 is induced by DNA damage in an ATM/ATR-dependent manner.
	USP17 is required for the stabilization of DEC1 in response to genotoxic stress.
	DEC1 is targeted for proteasome-dependent degradation by SCFTrCP.
	CK1-mediated phosphorylation of DEC1 is required for its destruction.
	SCFTrCP and CK1 trigger the degradation of DEC1 during checkpoint recovery.
	Regulated degradation of DEC1 controls the G2 DNA damage checkpoint.

	DISCUSSION
	ACKNOWLEDGMENTS
	REFERENCES


