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Abstract Modern software is no more developed in a single program-
ming language. Instead, programmers tend to exploit cross-language in-
teroperability mechanisms to combine code stemming from different lan-
guages, and thus yielding fully-fledged multi-language programs. Whilst
this approach enables developers to benefit from the strengths of each
single-language, on the other hand it complicates the semantics of such
programs. Indeed, the resulting multi-language does not meet any of
the semantics of the combined languages. In this paper, we broaden the
boundary functions-based approach à la Matthews and Findler to pro-
pose an algebraic framework that provides a constructive mathematical
notion of multi-language able to determine its semantics. The aim of this
work is to overcome the lack of a formal method (resp., model) to design
(resp., represent) a multi-language, regardless of the inherent nature of
the underlying languages. We show that our construction ensures the
uniqueness of the semantic function (i.e., the multi-language semantics
induced by the combined languages) by proving the initiality of the term
model (i.e., the abstract syntax of the multi-language) in its category.

Keywords: multi-language design · program semantics · interoperabil-
ity.

1 Introduction

Two elementary arguments lie at the heart of the multi-language paradigm: the
large availability of existing programming languages, along with a very high num-
ber of already written libraries, and software that, in general, needs to interoper-
ate. Although there is consensus in claiming that there is no best programming
language regardless of the context [4,8], it is equally true that many of them are
conceived and designed in order to excel for specific tasks. Such examples are R
for statistical and graphical computation, Perl for data wrangling, Assembly and
C for low-level memory management, etc. “Interoperability between languages has
been a problem since the second programming language was invented” [8], so it is
hardly surprising that developers have focused on the design of cross-language
interoperability mechanisms, enabling programmers to combine code written in
different languages. In this sense, we speak of multi-languages.

The field of cross-language interoperability has been driven more by practi-
cal concerns than by theoretical questions. The current scenario sees several en-
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gines and frameworks [47,28,44,13,29] (among others) to mix programming lan-
guages but only [30] discusses the semantic issues related to the multi-language
design from a theoretical perspective. Moreover, the existing interoperability
mechanisms differ considerably not only from the viewpoint of the combined
languages, but also in terms of the approach used to provide the interopera-
tion. For instance, Nashorn [47] is a JavaScript interpreter written in Java to
allow embedding JavaScript in Java applications. Such engineering design works
in a similar fashion of embedded interpreters [41,40].1 On the contrary, Java
Native Interface (JNI) framework [29] enables the interoperation of Java with
native code written in C, C++, or Assembly through external procedure calls
between languages, mirroring the widespread mechanism of foreign function in-
terfaces (FFI) [14], whereas theoretical papers follow the more elegant approach
of boundary functions (or, for short, boundaries) in the style of Matthews and
Findler’s multi-language semantics [30]. Simply put, boundaries act as a gate be-
tween single-languages. When a value needs to flow on the other language, they
perform a conversion so that it complies to the other language specifications.

The major issue concerning this new paradigm is that multi-language pro-
grams do not obey any of the semantics of the combined languages. As a con-
sequence, any method of formal reasoning (such as static program analysis or
verification) is neutralized by the absence of a semantics specification. In this
paper, we propose an algebraic framework based on the mechanism of boundary
functions [30] that unambiguously yields the syntax and the semantics of the
multi-language regardless the combined languages.

The Lack of a Multi-Language Framework. The notion of multi-language is em-
ployed naively in several works in literature [37,2,49,14,21,36,35,30] to indicate
the embedding of two programming languages into a new one, with its own
syntax and semantics.

The most recurring way to design a multi-language is to exploit a mechanism
(like embedded interpreters, FFI, or boundary functions) able to regulate both
control flow and value conversion between the underlying languages [30], thus
adequate to provide cross-language interoperability [8]. The full construction is
usually carried out manually by language designers, which define the multi-
language by reusing the formal specifications of the single-languages [36,37,2,30]
and by applying the selected mechanism for achieving the interoperation. In-
evitably, therefore, all these resulting multi-languages notably differ one from
another.

These different ways to achieve a cross-language interoperation are all at-
tributable to the lack of a formal description of multi-language that does not
provide neither a method for language designers to conceive new multi-languages
nor any guarantee on the correctness of such constructions.

The Proposed Framework: Roadmap and Contributions. Matthews and Find-
ler [30] propose boundary functions as a way to regulate the flow of values be-
1 Other popular engines that obey the embedded interpreters paradigm are
Jython [28], JScript [44], and Rhino [13].



On the Multi-Language Construction 3

tween languages. They show their approach on different variants of the same
multi-language obtained by mixing ML [33] and Scheme [9], representing two
“syntactically sugared” versions of the simply-typed and untyped lambda cal-
culi, respectively.

Rather than showing the embedding of two fixed languages, we extend their
approach to the much broader class of order-sorted algebras [19] with the aim
of providing a framework that works regardless of the inherent nature of the
combined languages. There are a number of reasons to choose order-sorted alge-
bras as the underlying framework for generalizing the multi-language construc-
tion. From the first formulation of initial algebra semantics [17], the algebraic
approach to program semantics [16] has become a cornerstone in the theory
of programming languages [27]. Order-sorted algebras provide a mathematical
tool for representing formal systems as algebraic structures through a system-
atic use of the notion of sort and subsort to model different forms of polymor-
phism [19,18], a key aspect when dealing with multi-languages sharing operators
among the single-languages. They were initially proposed to ensure a rigorous
model-theoretic semantics for error handling, multiple inheritance, retracts, se-
lectors for multiple constructors, polymorphism, and overloading. In the years,
several uses [25,52,3,11,38,39,24,6] and different variants [51,45,43,38] have been
proposed for order-sorted algebras, making them a solid starting point for the
development of a new framework. In particular, results on rewriting logic [32]
extend easily to the order-sorted case [31], thus facilitating a future extension
of this paper towards the operational semantics world. Improvements of the
order-sorted algebra framework have also been proposed to model languages to-
gether with their type systems [10] and to extend order-sorted specification with
high-order functions [38] (see [48] and [18] for detailed surveys).

In this paper, we propose three different multi-language constructions ac-
cording to the semantic properties of boundary functions. The first one models
a general notion of multi-language that do not require any constraints on bound-
aries (Sect. 3). We argue that when such generality is superfluous, we can achieve
a neater approach where boundary functions do not need to be annotated with
sorts. Indeed, we show that when the cross-language conversion of a term does
not depend on the sort at which the term is considered (i.e., when boundaries
are subsort polymorphic) the framework is powerful enough to apply the correct
conversion (Sect. 4.1). This last construction is an improvement of the original
notion of boundaries in [30]. From a practical point of view, it allows program-
mers to avoid to explicitly deal with sorts when writing code, a non-trivial task
that could introduce type cast bugs in real world languages. Finally, we provide
a very specific notion of multi-language where no extra operator is added to the
syntax (Sect. 4.2). This approach is particularly useful to extend a language in a
modular fashion and ensuring the backward compatibility with “old” programs.
For each one of these variants we prove an initiality theorem, which in turn en-
sures the uniqueness of the multi-language semantics and thereby legitimating
the proposed framework. Moreover, we show that the framework guarantees a
fundamental closure property on the construction: The resulting multi-language
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admits an order-sorted representation, i.e., it falls within the same formal model
of the combined languages. Finally, we model the multi-language designed in [30]
in order to show an instantiation of the framework (Sect. 6).

2 Background

All the algebraic background of the paper is firstly stated in [17,15,19]. We briefly
introduce here the main definitions and results, and we illustrate them on a sim-
ple running example.

Given a set of sorts S, an S-sorted set A is a family of sets indexed by S, i.e.,
A = {As | s ∈ S }. Similarly, an S-sorted function f : A→ B is a family of func-
tions f = { fs : As → Bs | s ∈ S }. We stick to the convention of using s and w
as metavariables for sorts in S and S∗, respectively, and we use the blackboard
bold typeface to indicate a specific sort in S. In addition, if A is an S-sorted set
and w = s1 . . . sn ∈ S+, we denote by Aw the cartesian product As1 ×· · ·×Asn .
Likewise, if f is an S-sorted function and ai ∈ Asi for i = 1, . . . , n, then the
function fw : Aw → Bw is such that fw(a1, . . . , an) = (fs1(a1), . . . , fsn(an)).
Given P ⊆ S, the restriction of an S-sorted function f to P is denoted by
f
∣∣
P

and it is the P -sorted function f
∣∣
P

= { fs | s ∈ P }. Finally, if g : A → B
is a function, we still use the symbol g to denote the direct image map of g
(also called the additive lift of g), i.e., the function g : ℘(A)→ ℘(B) such that
g(X) = { g(a) ∈ B | a ∈ X }. Analogously, if ≤ is a binary relation on a set A
(with elements a ∈ A), we use the same relation symbol to denote its pointwise
extension, i.e., we write a1 . . . an ≤ a′1 . . . a′n for a1 ≤ a′1, . . . , an ≤ a′n.

The basic notions underpinning the order-sorted algebra framework are the def-
initions of signature, that models symbols forming terms of the language, and
algebra, that provides an algebraic meaning to symbols.

Definition 1 (Order-Sorted Signature). An order-sorted signature is a triple
〈S,≤, Σ〉, where S is a set of sorts, ≤ is a binary relation on S, and Σ is an
S∗ × S-sorted set Σ = {Σw,s | w ∈ S∗ ∧ s ∈ S }, satisfying the following condi-
tions:

(1os) 〈S,≤〉 is a poset; and
(2os) σ ∈ Σw1,s1 ∩Σw2,s2 and w1 ≤ w2 imply s1 ≤ s2.

If σ ∈ Σw,s (or, σ : w → s and σ : s when w = ε, as shorthands), we call σ an
operator (symbol) or function symbol, w the arity, s the sort, and (w, s) the rank
of σ; if w = ε, we say that σ is a constant (symbol). We name ≤ the subsort
relation and Σ a signature when 〈S,≤〉 is clear from the context. We abuse
notation and write σ ∈ Σ when σ ∈

⋃
w,sΣw,s.

Definition 2 (Order-Sorted Algebra). An order-sorted 〈S,≤, Σ〉-algebra A
over an order-sorted signature 〈S,≤, Σ〉 is an S-sorted set A of interpretation
domains (or, carrier sets or semantic domains) A = {As | s ∈ S }, together with
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interpretation functions JσKw,sA : Aw → As (or, if w = ε, JσKε,sA ∈ As)2 for each
σ ∈ Σw,s, such that:

(1oa) s ≤ s′ implies As ⊆ As′ ; and
(2oa) σ ∈ Σw1,s1 ∩ Σw2,s2 and w1 ≤ w2 imply that JσKw1,s1

A (a) = JσKw2,s2
A (a) for

each a ∈ Aw1
.

An important property of signatures, related to polymorphism, is regularity. Its
relevance lies in the possibility of linking each term to a unique least sort (see
Proposition 2.10 in [19]).

Definition 3 (Regularity of an Order-Sorted Signature). An order-sorted
signature 〈S,≤, Σ〉 is regular if for each σ ∈ Σw̃,s̃ and for each lower bound
w0 ≤ w̃ the set { (w, s) | σ ∈ Σw,s ∧ w0 ≤ w } has minimum. This minimum is
called least rank of σ with respect to w0.

The freely generated algebra TΣ over a given signature S = 〈S,≤, Σ〉 provides
the notion of term with respect to S.

Definition 4 (Order-Sorted Term Algebra). Let 〈S,≤, Σ〉 be an order-
sorted signature. The order-sorted term 〈S,≤, Σ〉-algebra TΣ is an order-sorted
algebra such that:

– The S-sorted set TΣ = {TΣ,s | s ∈ S } is inductively defined as the least
family satisfying:

(1ot) Σε,s ⊆ TΣ,s;
(2ot) s ≤ s′ implies TΣ,s ⊆ TΣ,s′ ; and
(3ot) σ ∈ Σw,s, w = s1 . . . sn ∈ S+, and ti ∈ TΣ,si for i = 1, . . . , n imply

σ(t1 . . . tn) ∈ TΣ,s.
– For each σ ∈ Σw,s the interpretation function JσKw,sTΣ : TΣ,w → TΣ,s is defined

as
(4ot) JσKε,sTΣ = σ if σ ∈ Σε,s; and
(5ot) JσKw,sTΣ (t1, . . . , tn) = σ(t1 . . . tn) if σ ∈ Σw,s, w = s1 . . . sn ∈ S+, and

ti ∈ TΣ,si for i = 1, . . . , n.

Homomorphisms between algebras capture the compositionality nature of seman-
tics: The meaning of a term is determined by the meanings of its constituents.
They are defined as order-sorted functions that preserve the interpretation of
operators.

Definition 5 (Order-Sorted Homomorphism). Let A and B be 〈S,≤, Σ〉-
algebras. An order-sorted 〈S,≤, Σ〉-homomorphism from A to B, denoted by h :
A → B, is an S-sorted function h : A→ B = {hs : As → Bs | s ∈ S } such that:

(1oh) hs(JσKw,sA (a)) = JσKw,sB (hw(a)) for each σ ∈ Σw,s and a ∈ Aw; and
(2oh) s ≤ s′ implies hs(a) = hs′(a) for each a ∈ As.

2 To be pedantic, we should introduce the one-point domain Aε = { • } and then define
JσKε,sA (•) ∈ As.
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e ::= n | e + e where n ∈ N

(a) The BNF grammar of L1.

s ::= - | a | s + s where a ∈ A

(b) The BNF grammar of L2.

Figure 1: The BNF grammars of the running example languages.

{
JnK = n

Je + e′K = JeK + Je′K

(a) The formal semantics of L1.



J-K = ε

JaK = a

Js + -K = J- + sK = JsK
Js + - + s′K = Js + s′K
Ja0 + . . . + anK = a0 . . . an n > 0

(b) The formal semantics of L2.

Figure 2: The two formal semantics of the running example languages.

The class of all the order-sorted 〈S,≤, Σ〉-algebras and the class of all order-
sorted 〈S,≤, Σ〉-homomorphisms form a category denote by OSAlg(S,≤, Σ).
Furthermore, the homomorphism definition determines the property of the term
algebra TΣ of being an initial object in its category whenever the signature is
regular. Since initiality is preserved by isomorphisms, it allows to identify TΣ
with the abstract syntax of the language. If TΣ is initial, the homomorphism
leaving TΣ and going to an algebra A is called the semantic function (with
respect to A).

Example. Let L1 and L2 be two formal languages (see Fig. 1). The former is a
language to construct simple mathematical expressions: n ∈ N is the metavariable for
natural numbers, while e inductively generates all the possible additions (Fig. 1a). The
latter is a language to build strings over a finite alphabet of symbols A = { a, b, . . . , z }:
a ∈ A is the metavariable for atoms (or, characters), whereas s concatenates them
into strings (Fig. 1b). A term in L1 and L2 denotes an element in the sets N and A∗,
accordingly to equations in Fig. 2a and 2b, respectively.

The syntax of the language L1 can be modeled by an order-sorted signature S1 =
〈S1,≤1, Σ1〉 defined as follows: S1 = { e,n }, a set with sorts e (stands for expressions)
and n (stands for natural numbers); ≤1 is the reflexive relation on S1 plus n ≤1 e
(natural numbers are expressions); and the operators in Σ1 are 0, 1, 2, . . . : n and + :
e e→ e. Similarly, the signature S2 = 〈S2,≤2, Σ2〉 models the syntax of the language
L2: the set S2 = { s, a } carries the sort for strings s and the sort for atomic symbols
(or, characters) a; the subsort relation ≤2 is the reflexive relation on S2 plus a ≤2 s
(characters are one-symbol strings); and the operator symbols in Σ2 are a, . . . , z : a,
- : s, and + : s s→ s. Semantics of L1 and L2 can be embodied by algebras A1 and A2

over the signatures S1 and S2, respectively. We set the interpretation domains of A1

to A1
n = A1

e = N and those of A2 to A2
a = A ⊆ A∗ = A2

s . Moreover, we define the
interpretation functions as follows (the juxtaposition of two or more strings denotes
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their concatenation, and we use â as metavariable ranging over A∗):

{
JnKε,nA1

= n

J+Ke e,e
A1

(n1, n2) = n1 + n2


J-Kε,sA2

= ε

JaKε,aA2
= a

J+Ks s,s
A2

(â1, â2) = â1â2

Since S1 and S2 are regular, then A1 and A2 induce the semantic functions h1 : TΣ1 →
A1 and h2 : TΣ2 → A2, providing semantics to the languages.

3 Combining Order-Sorted Theories

The first step towards a multi-language specification is the choice of which terms
of one language can be employed in the others [36,30,35]. For instance, a multi-
language requirement could demand to use ML expressions in place of Scheme
expressions and, possibly, but not necessarily, vice versa (such a multi-language is
designed in [30]). A multi-language signature is an amenable formalism to specify
the compatibility relation between syntactic categories across two languages.

Definition 6 (Multi-Language Signature). A multi-language signature is a
triple 〈S1,S2,≤〉, where S1 = 〈S1,≤1, Σ1〉 and S2 = 〈S2,≤2, Σ2〉 are order-
sorted signatures, and ≤ is a binary relation on S = S1 ∪ S2, such that satisfies
the following condition:

(1s) s, s′ ∈ Si implies s ≤ s′ if and only if s ≤i s′, for i = 1, 2.

To make the notation lighter, we introduce the following binary relations on S:
sns′ if s ≤ s′ but neither s ≤1 s

′ nor s ≤2 s
′, and s 4 s′ if s ≤ s′ but not sns′.

In the following, we always assume that the sets of sorts S1 and S2 of the order-
sorted signatures S1 and S2 are disjoint.3 Condition (1s) requires the multi-
language subsort relation ≤ to preserve the original subsort relations ≤1 and ≤2

(i.e., ≤ ∩ Si × Si = ≤i). The join relation n provides a compatibility relation
between sorts4 in S1 and S2. More precisely, Si 3 sn s′ ∈ Sj suggests that we
want to use terms in TΣi,s in place of terms in TΣj ,s′ , whereas the intra-language
subsort relation 4 shifts the standard notion of subsort from the order-sorted to
the multi-language world. In a nutshell, the relation ≤ = 4 ∪ n can only join
(through n) the underlying languages without introducing distortions (indeed,
4 = ≤1 ∪ ≤2).

The role of an algebra is to provide an interpretation domain for each sort,
as well as the meaning of every operator symbol in a given signature. When
moving towards the multi-language context, the join relation n may add subsort
3 This hypothesis is non-restrictive: We can always perform a renaming of the sorts.
4 Sorts may be understood as syntactic categories, in the sense of formal grammars.
Given a context-free grammar G, it is possible to define a many-sorted signature ΣG
where non-terminals become sorts and such that each term t in the term algebra
TΣG is isomorphic to the parse tree of t with respect to G (see [15] for details).
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constraints between sorts belonging to different signatures. Consequently, if sns′,
a multi-language algebra has to specify how values of sort s may be interpreted
as values of sort s′. These specifications are called boundary functions [30] and
provide an algebraic meaning to the subsort constraints added by n. Henceforth,
we define S = S1 ∪ S2, Σ = Σ1 ∪Σ2, and, given (w, s) ∈ S∗i × Si, we denote by
Σi
w,s the (w, s)-sorted component in Σi.

Definition 7 (Multi-Language Algebra). Let 〈S1,S2,≤〉 be a multi-lan-
guage signature. A multi-language 〈S1,S2,≤〉-algebra A is an S-sorted set A of
interpretation domains (or, carrier sets or semantic domains) A = {As | s ∈ S },
together with interpretation functions JσKw,sA : Aw → As for each σ ∈ Σw,s, and
with a n-sorted set α of boundary functions α = {αs,s′ : As → As′ | sn s′ },
such that the following constraint holds:

(1a) the projected algebra Ai, where i = 1, 2, specified by the carrier set Ai =
{Ais = As | s ∈ Si } and interpretation functions JσKw,sAi = JσKw,sA for each
σ ∈ Σi

w,s, must be an order-sorted Si-algebra.

IfM is an algebra, we adopt the convention of denoting by M (standard math
font) its carrier set and by µ (Greek math font) its boundary functions whenever
possible. Condition (1a) is the semantic counterpart of condition (1s): It requires
the multi-language to carry (i.e., preserve) the underlying languages order-sorted
algebras, whereas the the boundary functions model how values can flow between
languages.

Given two multi-language 〈S1,S2,≤〉-algebras A and B we can define mor-
phisms between them that preserve the sorted structure of the underlying pro-
jected algebras.

Definition 8 (Multi-Language Homomorphism). Let A and B be multi-
language 〈S1,S2,≤〉-algebras with sets of boundary functions α and β, respec-
tively. A multi-language 〈S1,S2,≤〉-homomorphism h : A → B is an S-sorted
function h : A→ B such that:

(1h) the restriction h
∣∣
Si

is an order-sorted Si-homomorphism h
∣∣
Si
: Ai → Bi, for

i = 1, 2; and
(2h) sn s′ implies hs′ ◦ αs,s′ = βs,s′ ◦ hs.

Conditions (1h) and (2h) are easily intelligible when the domain algebra is the
abstract syntax of the language [15]: Simply put, both conditions require the
semantics of a term to be a function of the meaning of its subterms, in the sense
of [15,46]. In particular, the second condition demands that boundary functions
act as operators.5

The identity homomorphism on a multi-language algebra A is denoted by
idA and it is the set-theoretic identity on the carrier set A of the algebra A.
The composition of two homomorphisms f : A → B and g : B → C is defined as
5 This is essential in order to generalize the concept of syntactical boundary functions
of [30] to semantic-only functions in Sect. 4.2.
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the sorted function composition g ◦ f : A → C, thus idA ◦f = f = f ◦ idB and
associativity follows easily by the definition of ◦.

Proposition 1. Multi-language homomorphisms are closed under composition.

Hence, as in the many-sorted and order-sorted case [15,19], we have immediately
the category of all the multi-language algebras over a multi-language signature:

Theorem 1. Let 〈S1,S2,≤〉 be a multi-language signature. The class of all
〈S1,S2,≤〉-algebras and the class of all 〈S1,S2,≤〉-homomorphisms form a cat-
egory denoted by Alg(S1,S2,≤).

3.1 The Initial Term Model

In this section, we introduce the concepts of (multi-language) term and (multi-
language) semantics in order to show how a multi-language algebra yields a
unique interpretation for any regular (see Def. 11) multi-language specification.

Multi-language terms should comprise all of the underlying languages terms,
plus those obtained by the merging of the two languages according to the join
relation n. In particular, we aim for a construction where subterms of sort s′
may have been replaced by terms of sort s, whenever sn s′ (we recall that s and
s′ are two syntactic categories of different languages due to Def. 6). Nonetheless,
we must be careful not to add ambiguities during this process: A term t may
belong to both S1 and S2 term algebras but with different meanings JtKA1 and
JtKA2

(assuming that A1 and A2 are algebras over S1 and S2, respectively).
When t is included in the multi-language, we lose the information to determine
which one of the two interpretations choose, thus making the (multi-language)
semantics of t ambiguous. The same problem arises whenever an operator σ
belongs to both languages with different interpretation functions. The simplest
solution to avoid such issues is to add syntactical notations to make explicit the
context of the language in which we are operating.

Definition 9 (Associated Signature). The associated signature to the multi-
language signature 〈S1,S2,≤〉 is the ordered triple 〈S,4, Π〉, where S = S1∪S2,
4 = ≤1 ∪ ≤2, and

Π = {σ1 : w → s | σ : w → s ∈ Σ1 }
∪ {σ2 : w → s | σ : w → s ∈ Σ2 }
∪ { ↪→s,s′ : s→ s′ | sn s′ }

It is trivial to prove that an associated signature is indeed an order-sorted sig-
nature, thus admitting a term algebra TΠ . All the symbols forming terms in
TΠ carry the source language information as a subscript, and all the new op-
erators ↪→s,s′ specify when a term of sort s is used in place of a term of sort
s′. Although TΠ seems a suitable definition for multi-language terms, it is not
a multi-language algebra according to Def. 7. However, we can exploit the con-
struction of TΠ in order to provide a fully-fledged multi-language algebra able
to generate multi-language terms.
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Definition 10 (Multi-Language Term Algebra). The multi-language term
algebra T over a multi-language signature 〈S1,S2,≤〉 with boundary functions
τ is defined as follows:

(1t) s ∈ S implies Ts = TΠ,s;
(2t) σ ∈ Σi

w,s implies JσKw,sT = JσiK
w,s
TΠ for i = 1, 2; and

(3t) sn s′ implies τs,s′ = J↪→s,s′K
s,s′

TΠ .

Proving that T satisfies Def. 7 is easy and omitted. T and TΠ share the same
carrier sets (condition (1t)), and each single-language operator σ ∈ Σi

w,s is in-
terpreted as its annotated version σi in TΠ (condition (2t)). Furthermore, the
multi-language operators ↪→s,s′ no longer belong to the signature (they do not
belong neither to S1 nor to S2) but their semantics is inherited by the boundary
functions τ (condition (3t)), while their syntactic values are still in the carrier
sets of the algebra (this construction is highly technical and very similar to the
freely generated Σ(X)-algebra over a set of variables X, see [15]).

Note that this is exactly the formalization of the ad hoc multi-language spec-
ifications in [37,2,36,30]: [37,2,36] exploit distinct colors to disambiguate the
source language of the operators, whereas [30] use different font styles for dif-
ferent languages. Moreover, boundary functions in [30] conceptually match the
introduced operators ↪→s,s′ .

The last step in order to finalize the framework is to provide semantics for each
term in T . As with the order-sorted case, we need a notion of regularity for
proving the initiality of the term algebra in its category, which in turn ensures
a single eligible (initial algebra) semantics.

Definition 11 (Regularity). A multi-language signature 〈S1,S2,≤〉 is regu-
lar if its associated signature 〈S,4, Π〉 is regular.

Proposition 2. The associated signature 〈S,4, Π〉 of a multi-language signa-
ture 〈S1,S2,≤〉 is regular if and only if S1 and S2 are regular.

The last proposition enables to avoid checking the multi-language regularity
whenever the regularity of the order-sorted signatures is known.

Theorem 2 (Initiality of T ). The multi-language term algebra T over a
regular multi-language signature 〈S1,S2,≤〉 is initial in the category Alg(S1,
S2,≤).

Initiality of T is essential to assign a unique mathematical meaning to each
term, as in the order-sorted case: Given a multi-language algebra A, there is
only one way of interpreting each term t ∈ T in A (satisfying the homomorphism
conditions).

Definition 12 ((Multi-Language) Semantics). Let A be a multi-language
algebra over a regular multi-language signature 〈S1,S2,≤〉. The (multi-lan-
guage) semantics of a (multi-language) term t ∈ T induced by A is defined
as

JtKA = hls(t)(t)
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The last equation is well-defined since h is the unique multi-language homomor-
phism h : T → A and for each t ∈ T there exists a least sort ls(t) ∈ S such that
t ∈ TΠ,ls(t) (see Prop. 2.10 in [19]).

Example. Suppose we are interested in a multi-language over the signatures S1 and
S2 specified in the example given in the background section such that satisfies the
following properties:

– Terms denoting natural numbers can be used in place of characters a ∈ A according
to the function chr : N → A that maps the natural number n to the character
symbol a(n mod |A|) (we are assuming a total lexicographical order a(0), a(1), . . . ,
a(|A|−1) on A);

– Terms denoting strings can be used in place of natural numbers n ∈ N according to
the function ord: A→ N, which is the inverse of chr restricted the initial segment
on natural numbers N<|A|.

In order to achieve such a multi-language specification, we can simply provide a join
relation n on S and a boundary function αs,s′ for each extra-language subsort relation
s n s′ introduced by n. We define the join relation and the boundary functions as
follows:

e n a ∧ n n a −→ αe,a(n) = αn,a(n) = chr(n)

s n n ∧ a n n −→


αa,n(a) = ord(a)

αs,n(a0 . . . an) =

n∑
k=0

αa,n(ak) · 10k

The multi-language 〈S1,S2,≤〉-algebra A can now be obtained by joining the pro-
jected algebras A1 and A2 with the set of boundary functions α. The term algebra T
over 〈S1,S2,≤〉 provides all the multi-language terms, and Thm. 2 ensures a unique
denotation of each t ∈ T in A. For instance, the term

t = ↪→s,n(+2(f2,

t2︷ ︸︸ ︷
+2(o2, ↪→e,a(

t4︷ ︸︸ ︷
+1(101, 51))︸ ︷︷ ︸
t3

))

︸ ︷︷ ︸
t1

) (1)

is syntactically equivalent to the following but with a less pedantic notation, where
language subscripts are replaced by colors (red for one, and blue for two) and prefix
notation is replaced by infix notation

↪→s,n(f + o + ↪→e,a(10 + 5))

and it denotes the natural numbers 765:

Jt4KA = hls(t4)(t4) = he(t4) = J+Ke e,e
A (J10KA, J5KA) = J+Ke e,e

A (10, 5) = 15

Jt3KA = hls(t3)(t3) = ha(t3) = J↪→e,aKe,a
A (Jt4KA) = J↪→e,aKe,a

A (15) = o

Jt2KA = hls(t2)(t2) = hs(t2) = J+Ks s,s
A (JoKA, Jt3KA) = J+Ks s,s

A (o, o) = oo

Jt1KA = hls(t1)(t1) = hs(t1) = J+Ks s,s
A (JfKA, Jt2KA) = J+Ks s,s

A (f, oo) = foo

JtKA = hls(t)(t) = hn(t) = J↪→s,nKs,n
A (Jt1KA) = J↪→s,nKs,n

A (foo) = 765

(see the proof of Prop. 2.10 in [19] to check how to compute the least sort of a term).
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4 Refining the Construction

The construction in Sect. 3 does not set any constraint on boundary functions,
thus giving a great deal of flexibility to language designers. For instance, they
can provide boundary functions that act differently with respect to the intra-
language subsort relation 4: According to the previous example, it would have
been possible to define αn,a 6= αe,a to employ different value conversion specifica-
tions for terms in Tn, based on whether they are used as natural numbers (n) or
as expressions (e). However, when this amount of flexibility is not needed, we can
refine the previous construction by reducing the amount of syntax introduced
by the associated signature. In this section we examine

– the case where boundary functions satisfy the monotonicity conditions of
order-sorted algebra operators (Sect. 4.1); and

– the case where boundary functions commutes with the semantics of operator
symbols (Sect. 4.2).

In both cases, we prove that the introduced refinements do not affect the initiality
of the term algebra, thereby providing unambiguous semantics to the multi-
language.

4.1 Subsort Polymorphic Boundary Functions

In Sect. 3, the join relation constraints sn s′ are turned in syntactical operators
↪→s,s′ in the associated signature 〈S,4, Π〉. We now show how to handle all
the syntactical overhead introduced by n with a single polymorphic operator
↪→ whenever the boundary functions satisfy the monotonicity conditions of the
order-sorted algebras [19]. Such conditions require a subsort relation s1 ≤ s2
between the sorts of a polymorphic operator σ ∈ Σw1,s1 ∩Σw2,s2 , assuming that
w1 ≤ w2. In our case, σ =↪→, and thus we extend Def. 6 with the following ad
hoc constraint (2s∗):

Definition 6∗ (SPMulti-Language Signature). A subsort polymorphic (SP)
multi-language signature is a multi-language signature 〈S1,S2,≤〉 such that

(2s∗) s1 n s′1, s2 n s′2, and s1 4 s2 imply s′1 4 s′2.

Furthermore, order-sorted algebras demand consistency of the interpretation
functions of a subsort polymorphic operator on the smaller domain, which results
in the following condition (2a∗) on boundary functions (that extends Def. 7):

Definition 7∗ (SPMulti-Language Algebra). Let 〈S1,S2,≤〉 be a SP multi-
language signature. A subsort polymorphic (SP) multi-language 〈S1,S2,≤〉-
algebra is a multi-language 〈S1,S2,≤〉-algebra A such that

(2a∗) s1ns′1, s2ns′2, and s1 4 s2 imply that αs1,s′1(a) = αs2,s′2(a) for each a ∈ As1 .
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The notion of homomorphism in this new context does not change (an homo-
morphism between two SP algebras is still an S-sorted function decomposable in
two order-sorted homomorphisms that commutes with boundaries), whereas the
associated signature to an SP multi-language signature merely differs from Def. 9
for having a unique polymorphic operator ↪→ instead of a family of parametrized
symbols { ↪→s,s′ : s→ s′ | sn s′ }.

Definition 9∗ (SP Associated Signature). The subsort polymorphic (SP)
associated signature to the SP multi-language signature 〈S1,S2,≤〉 is the or-
dered triple 〈S,4, Π〉, where S = S1 ∪ S2, 4 = ≤1 ∪ ≤2, and

Π = {σ1 : w → s | σ : w → s ∈ Σ1 }
∪ {σ2 : w → s | σ : w → s ∈ Σ2 }
∪ { ↪→ : s→ s′ | sn s′ }

Since the associated signature is the basis for the term algebra, we need to modify
the condition (3t) in Def. 9:

Definition 10∗ (SP Multi-Language Term Algebra). The subsort poly-
morphic (SP) multi-language term algebra T over a SP multi-language signature
〈S1,S2,≤〉 with boundary functions τ is defined as follows:

(1t) s ∈ S implies Ts = TΠ,s;
(2t) σ ∈ Σi

w,s implies JσKw,sT = JσiK
w,s
TΠ for i = 1, 2; and

(3t∗) sn s′ implies τs,s′ = J↪→Ks,s
′

TΠ .

Signature regularity is still defined as in Def. 11 and Prop. 2 still holds for the
extended version developed in this section. As a result, the SP multi-language
term 〈S1,S2,≤〉-algebra T is still initial in the category Alg∗(S1,S2,≤) of SP
multi-language algebras over the SP multi-language signature 〈S1,S2,≤〉.

Theorem 3. Let 〈S1,S2,≤〉 be a SP multi-language signature. The class of all
SP 〈S1,S2,≤〉-algebras and the class of all 〈S1,S2,≤〉-homomorphisms form a
category denoted by Alg∗(S1,S2,≤).

Theorem 4 (Initiality of T ). The SP multi-language term algebra T over a
regular SP multi-language signature 〈S1,S2,≤〉 is initial in the category Alg∗(
S1,S2,≤).

The semantics of a term t induced by a SP multi-language algebra A is defined
in the same way of Def. 12, thanks to the initiality result: JtKA = hls(t)(t). The
main advantage of dealing with SP multi-language terms is that the framework
is able to determine the correct interpretation function of the operator ↪→, mak-
ing the subscript notation developed in the previous section superfluous. This
also means that programmers are exempted from explicitly annotating multi-
language programs with sorts, a non-trivial task in the general case that could
introduce type cast bugs.
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Example. The boundary functions of the previous example are subsort polymorphic:
αa,n(a) = ord(a) = αs,n(a) for each character a ∈ A, and αn,a = αe,a by definition.
Thus, the equivalent of the term t (see Eq. 1) in the SP term algebra is

ṫ = ↪→(+2(f2, +2(o2, ↪→(+1(101, 51))))) (2)

or, according to the previous notation,

↪→(f + o + ↪→(10 + 5))

and denoting the same natural number 765.

4.2 Semantic-Only Boundary Functions

In the previous section, we have shown how to handle the flow of values across
different languages with a single polymorphic operator. Now, we present a new
multi-language construction where neither extra operators are added to the asso-
ciated signature, nor single-language operators have to be annotated with sub-
scripts indicating their original language. Thus, the resulting multi-language
syntax comprises only symbols in Σ1 ∪Σ2. Such a construction is achieved by:

– Imposing commutativity conditions on algebras, making homomorphisms
transparently inherit the semantics of boundary functions. The framework
is therefore able to apply the correct value conversion function whenever is
necessary, without the need for an explicit syntactical operator ↪→.

– Requiring a new form of cross-language polymorphism able to cope with
shared operators among languages. The initiality of term algebras is pre-
served by modifying the notion of signature in a way that every operator
admits a least sort.

The variant of the framework presented in this section is particularly useful
when designing the extension of a language in a modular fashion. For instance,
if the signature S1 models the syntax of a simple functional language (for an
example, see [15, p. 77]) without an explicit encoding for string values, and S2

is a language for manipulating strings (similar to the language L2 of the running
example of this paper), we can exploit the construction presented below in order
to embed S2 into S1.

Signature. The main issue that can arise at this stage of multi-language signa-
ture is the presence of shared operators in Σ1 and Σ2. Contrary to the previous
cases where such ambiguity is solved by adding subscripts in the associated sig-
nature, the trade off here is requiring ad hoc or subsort polymorphism across
signatures.

Definition 6? (SOMulti-Language Signature). A semantic-only (SO) multi-
language signature is a multi-language signature 〈S1,S2,≤〉 such that

(2s?) 〈S,≤〉 is a poset; and
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(3s?) σ ∈ Σi
w1,s1 ∩Σ

j
w2,s2 and w1 n w2 imply s1 n s2 with i, j = 1, 2 and i 6= j.

Condition (2s?) forces the subsort relation to be directed, avoiding symmetric-
ity of syntactic categories (this is typical when modeling language extensions),
while condition (3s?) shifts the monotonicity condition of order-sorted signature
to syntactically equal operators in Σ1 ∩Σ2.

The associated signature is defined without adding extra symbols in the signa-
ture, i.e., Π = Σ1 ∪Σ2, and deliberately confounding the relations n and 4 in
≤:

Definition 9? (SO Associated Signature). The SO associated signature to
the SO multi-language signature 〈S1,S2,≤〉 is the ordered triple 〈S,≤, Π〉, where
S = S1 ∪ S2, ≤ = 4 ∪n, and Π = Σ1 ∪Σ2.

The embedding of n in ≤ (i.e., n ⊆ ≤) in the associated signature enables the
order-sorted term algebra construction to automatically build multi-language
terms, without the need for an explicit operator ↪→ that acts as a bridge between
syntactic categories. It is easy to see that the term algebra over the associated
signature is precisely the symbols-free version of multi-language described at the
beginning.

Unfortunately, multi-language regularity does not follow anymore from single-
languages regularity and vice versa (see Figs. 3 and 4)6. More formally, Prop. 2
does not hold in this new context:

– Suppose S1 = { w̃, s̃ }, S2 = {w0,w, s }, ≤1 and ≤2 to be the reflexive re-
lations on S1 and S2, respectively, plus w0 ≤2 w, and σ ∈ Σ1

w̃,̃s ∩ Σ2
w,s.

If the join relation n is defined as w0 n w̃ and s n s̃, the resulting as-
sociated signature is no longer regular, although S1 and S2 are regular
(Fig. 3a). In Fig. 3b, it is easy to see that σ ∈ Σw̃,s̃ and w0 ≤ w, but the set
{ (w, s) | σ ∈ Σw,s ∧ w0 ≤ w } = { (w̃, s̃), (w, s) } does not have a least element
w.r.t. w0.

– On the other hand, let S1 = { w̃,w0,w1, s̃ }, S2 = {w2, s2 }, ≤1 and ≤2

be the reflexive relations on S1 and S2, respectively, plus w0 ≤1 w̃ and
w0 ≤1 w1, and σ ∈ Σ1

w̃,̃s ∩ Σ1
w1 ,̃s ∩ Σ

2
w2,s2 . If the join relation n is defined

as w2 n w̃, w2 n w1, w0 n w2, and s2 n s̃, the resulting associated signa-
ture is regular (Fig. 4a), although S1 is not: given σ ∈ Σw̃,̃s and w0 ≤ w̃,
the set { (w, s) | σ ∈ Σw,s ∧ w0 ≤ w } = { (w̃, s̃), (w1, s̃), (w2, s2) } has least el-
ement (w2, s2) w.r.t. w0 (Fig. 4b).

A positive result can be obtained by recalling that regularity is easier to check
when 〈S,≤〉 satisfies the descending chain condition (DCC):
6 An (horizontal) arrow from an arity symbol w to a sort s labelled with an operator
symbol σ is an alternative shorthand for σ : w → s. A (vertical) single line between
two sorts s below s′ labelled with a binary relation ≤ means that s ≤ s′ (if the
binary relation is the join relation n the line is doubled). A dotted rectangle around
operators is a graphical representation of the set of ranks (w, s) that must have a
minimum element (red arrows) in order for the signature to be regular.
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w̃ s̃ w s

w0

≤2

σ σ

〈S1,≤1〉 〈S2,≤2〉

σ ∈ Σ1
w̃,̃s σ ∈ Σ2

w,s

(a) The Hasse-like diagrams of regular
signatures S1 (left) and S2 (right).

w̃ s̃ w s

w0

≤2n

σ σ

〈S,≤〉
∀x ∈ S . σ /∈ Σw0,x

(b) The Hasse-like diagram of the
non-regular multi-language signature
〈S1,S2,≤〉.

Figure 3: A non-regular multi-language signature comprising two regular order-
sorted signatures.

w̃ s̃ w1 s̃

w0

w2 s2

≤1 ≤1

σ σ σ

〈S1,≤1〉 〈S2,≤2〉

σ /∈ Σw0 ,̃s

σ ∈ Σ2
w2,s2

(a) The Hasse-like diagrams of signatures S1

(non-regular, left) and S2 (regular, right).

w̃ s̃ w1 s̃

w2 s2

w0

n nn n

n

σ σ

σ

〈S,≤〉

σ ∈ Σ2
w2,s2

(b) The Hasse-like diagram of
the regular multi-language sig-
nature 〈S1,S2,≤〉.

Figure 4: A regular multi-language signature comprising a non-regular order-
sorted signature.

Lemma 1 (Regularity over DCC poset [19]). An order-sorted signature Σ
over a DCC poset 〈S,≤〉 is regular if and only if whenever σ ∈ Σw1,s1 ∩ Σw2,s2

and there is some w0 ≤ w1, w2, then there is some w ≤ w1, w2 such that σ ∈ Σw,s
and w0 ≤ w.

At this point, we can relate the DCC of the poset 〈S,≤〉 in the associated signa-
ture of 〈S1,S2,≤〉 to the DCC of 〈S1,≤1〉 and 〈S2,≤2〉:

Proposition 3. Let 〈S,≤, Σ〉 be the associated signature of 〈S1,S2,≤〉. Then,
〈S,≤〉 is DCC if and only if 〈S1,≤1〉 and 〈S2,≤2〉 are DCC.

As a result, whenever we know that 〈S1,≤1〉 and 〈S2,≤2〉 are DCC, we can
check the regularity of 〈S1,S2,≤〉 by employing the Lemma 1 without checking
whether 〈S,≤〉 is DCC.

Algebra. In this multi-language construction, the boundary functions behaviour
is no more bounded to syntactical operators as in the previous sections, but it
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is inherited by homomorphisms. A necessary condition to accomplish this aim
is the commutativity of interpretation functions with boundary functions:

Definition 7? (SO Multi-Language Algebra). Let 〈S1,S2,≤〉 be an SO
multi-language signature. A semantic-only (SO) multi-language 〈S1,S2,≤〉-al-
gebra is an SP multi-language 〈S1,S2,≤〉-algebra A such that

(3a?) σ ∈ Σw1,s1 ∩ Σw2,s2 and w1 n w2 imply that αs1,s2(JσKw1,s1
A (a)) = JσKw2,s2

A (
αw1,w2(a)) for each a ∈ Aw1 .

Note that σ ∈ Σw1,s1 ∩Σw2,s2 and w1nw2 imply s1ns2 by condition (3s?). The
notion of homomorphism remains unchanged from Def. 8 (to understand how
the homomorphisms inherit the boundary functions behaviour, see the proof of
Thm. 6).

The term algebra is defined similarly to Def. 10, except for boundary functions:

Definition 10? (SO Multi-Language Term Algebra). The semantic-only
(SO) multi-language term algebra T over an SO multi-language signature 〈S1,
S2,≤〉 with boundary functions τ is defined as follows:

(1t?) s ∈ S implies Ts = TΠ,s;
(2t?) σ ∈ Σw,s implies JσKw,sT = JσKw,sTΠ ; and
(3t?) sn s′ implies τs,s′ = idTs .

Since the subsort relation ≤ includes the join relation n, s n s′ implies TΠ,s =
Ts ⊆ Ts′ = TΠ,s′ . Thus, the boundary function τs,s′ can be defined as the
identity on the smaller domain (note that it trivially satisfies the commutativity
condition (3a?)).

Proposition 4. Let 〈S1,S2,≤〉 be an SO multi-language signature. Then, the
SO multi-language term 〈S1,S2,≤〉-algebra is a proper SO multi-language alge-
bra.

Theorem 5. Let 〈S1,S2,≤〉 be a SO multi-language signature. The class of all
SO 〈S1,S2,≤〉-algebras and the class of all 〈S1,S2,≤〉-homomorphisms form a
category denoted by Alg?(S1,S2,≤).

We can now prove the initiality of T in its category.

Theorem 6 (Initiality of T ). Let 〈S1,S2,≤〉 be a regular multi-language sig-
nature. Then, the term algebra T is an initial object in the category Alg(S1,S2,
≤).

Thanks to the initiality of the term algebra, the definition of term semantics is
the same of Def. 12.
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Example. LetA1 andA2 be two order-sorted algebras over the signaturesS1 andS2,
respectively, as formalized in the example in Sect. 3. Suppose we are interested in a new
multi-language A over S1 and S2 such that any string expressions t of sort s in S2 can
denote the natural number length(JtKA2) when embedded in S1 terms. For instance,
we require that J10 + 5KA = J10 + 5KA1 = 15 and Jf + oKA = Jf + oKA2 = fo, but
J(f + o) + (10 + 5)KA = Jfo + 15KL = 17 (parentheses in the last term have only
been used to disambiguate the parsing result).

Since the requirements demand to use string expressions in place of natural num-
bers, the join relation n shall define s n n and ensure transitivity, hence s n e, a n n,
and a n e.

The signatures S1 and S2 are trivially regular. However, by merging S1 and S2,
we are causing subsort polymorphism on the symbol +, which is used as sum operator in
A1 and as concatenation operator in A2, and therefore we have to check the regularity:
Let w1 = e e, w2 = s s, s1 = e, and s2 = s. Given + ∈ Σw1,s1 ∩ Σw2,s2 and the lower
bound w0 = a a ≤ w1, w2, then there exists w = s s such that w ≤ w1, w2 and + ∈ Σw,s,
where s = s ≤ s1, s2 (we have employed Lemma 1 thanks to Prop. 3). Analogously,
when w0 = w1, w2 the relative least rank is (s s, s).

The multi-language 〈S1,S2,≤〉-algebra A is now defined by joining the projected
algebras A1 and A2 and by defining boundary functions as,s′ for each sn s′ such that
convert strings in naturals (their length) when strings are used in place of naturals:

aa,n(a) = aa,e(a) = 1 as,n(â) = as,e(â) = length(â)

The above definition of boundary functions satisfy both conditions (2a∗) and (3a?).
The initiality theorem yields the semantic homomorphism from T to A. For in-

stance, suppose we want to compute the semantics of the term

t = +(+(f, o)︸ ︷︷ ︸
t1

,

t2︷ ︸︸ ︷
+(10, 5))

The least sorts of t, t1, and t2 are e, s, and e, respectively. The operator + belongs
to both Σe e,e and Σs s,s, and its least rank w.r.t. the lower bound ls(t1) ls(t2) = s e is
(e e, e). By Def. 12 we have

JtKA = he(t) = J+Ke e,e
A (he(t1), he(t2))

At this point, since ls(t1) = s and ls(f) = ls(o) = a, then the least rank of the root
symbol + of t1 w.r.t. the lower bound ls(f) ls(o) = a a is (s s, s), thus

he(t1) = as,e(hs(t1)) = as,e(J+Ks s,s
A (hs(f), hs(o))) = as,e(J+Ks s,s

A (f, o)) = as,e(fo) = 2

Similarly, ls(t2) = e and ls(10) = ls(5) = n. Then, the least rank of the root symbol +
of t2 w.r.t. the lower bound (n,n) is (e e, e) and therefore we have

he(t2) = J+Ke e,e
A (hn(10), hn(5)) = J+Ke e,e

A (10, 5) = 15

Finally,
JtKA = he(t) = J+Ke e,e

A (he(t1), he(t2)) = J+Ke e,e
A (2, 15) = 17

as desired.
We can observe that without any syntactical operator the framework is still able

to apply the correct boundary functions to move values across languages.
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5 Reduction to Order-Sorted Algbera

The constructions in the previous sections beg the question whether a multi-
language algebra admits an equivalent order-sorted representation. Conceptually,
it would mean that being a multi-language is essentially a matter of perspective:
By forgetting how the multi-language has been constructed, what is left is simply
an ordinary language. Mathematically speaking, it requires us to exhibit a re-
duction functor F from the multi-language category to an order-sorted one, such
that there is an isomorphism φ between the carrier sets of the multi-language
term 〈S1,S2,≤〉-algebra T and F (T ), and such that JtKA = Jφ(t)KF (A) for each
t ∈ T and for each multi-language 〈S1,S2,≤〉-algebra A.

In the following, we denote the reduction functor by F , F ∗, and F ? accord-
ingly whether its domain is the category Alg(S1,S2,≤), Alg∗(S1,S2,≤), and
Alg?(S1,S2,≤), respectively.

In the case of Alg(S1,S2,≤) and Alg∗(S1,S2,≤) categories, the construction
of F and F ∗ is very simple, and we illustrate it only for the plain multi-language
algebras of Sect. 3: Let A be a multi-language 〈S1,S2,≤〉-algebra. Then, we
define the order-sorted 〈S,4, Π〉-algebra AΠ (called the associated order-sorted
algebra of A) by setting

(1π) AΠ,s = As for each s ∈ S;
(2π) JσiK

w,s
AΠ = JσKw,sA for each σ ∈ Σi

w,s and i = 1, 2; and
(3π) J↪→s,s′K

s,s′

AΠ = αs,s′ for each sn s′.

If A and B are multi-language 〈S1,S2,≤〉-algebras, and h is a multi-language
〈S1,S2,≤〉-homomorphism from A to B, the functor F maps A and B to their
associated order-sorted algebras AΠ and BΠ and the homomorphism h to itself.
Since AΠ = A, the isomorphism φ is the identity function.

Theorem 7. F : Alg(S1,S2,≤) → OSAlg(S1,S2,≤) is a functor for every
multi-language signature 〈S1,S2,≤〉. Moreover, JtKA = JtKF (A) for each t ∈ T
and for each multi-language 〈S1,S2,≤〉-algebra A.
If A is an SP multi-language 〈S1,S2,≤〉-algebra, the construction of the re-
duction functor F ∗ is similar to the definition of F . The only difference is the
equation in the condition (3π) that turns into

(3π∗) J↪→Ks,s
′

AΠ = αs,s′ for each sn s′.

Finally, the definition of F ? starting from the category Alg?(S1,S2,≤) of SO
multi-language algebras is slightly different. We define F ? as a map from the
multi-language categoryAlg?(S1,S2,≤) to the order-sorted categoryOSAlg(S,
4, Σ). We denote the reduction of a multi-language algebra A and a homomor-
phism h : A → B as F (A) = A� and F (h) = h� : A� → B�. The order-sorted al-
gebra A� has the same carrier sets of the multi-language algebra A, i.e., A� = A,
and interpretation functions JσKw,sA�

= JσKw,sA . Furthermore, we define h� = h.
Intuitively, the algebra A� is formally defined simply by forgetting about the
boundary functions, while the homomorphism h� : A� → B� inherits their se-
mantics from h. Again, the isomorphism φ is the identity.
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Theorem 8. F ? : Alg?(S1,S2,≤) → OSAlg(S,4, Σ) is a functor for every
SO multi-language signature 〈S1,S2,≤〉. Moreover, JtKA = JtKF?(A) for each
t ∈ T and for each SO multi-language 〈S1,S2,≤〉-algebra A.

Unfortunately, even though T is an initial algebra in its category, F ?(T ) = T� is
not: Given two multi-language algebrasA andA′ that differ only in the boundary
functions (we denote by α and α′ the families of boundary functions of A and
A′, respectively) they both get mapped by F ? to the same order-sorted algebra
A�. Thus, if h : T → A and h′ : T → A′ are the unique homomorphisms going
from T to A and A′, the functor F maps them to two different order-sorted
homomorphisms h� : T� → A� and h′� : T� → A� both leaving T� and going to
A�, hence losing the uniqueness property. However, this does not pose a problem
once fixed a family of boundary functions:

Theorem 9. Let T be the multi-language term 〈S1,S2,≤〉-algebra and A be
an order-sorted 〈S,4, Σ〉-algebra. Given a family of boundary functions α =
{αs,s′ | sn s′ } such that satisfies condition (3a?), there exists a unique order-
sorted 〈S,4, Σ〉-homomorphism hα : T� → A commuting with α, i.e., if s n s′,
then hαs′(t) = αs,s′(h

α
s (t)) for each t ∈ Ts.

The reduction theorems presented in this section have a strong consequence:
all the already known results for the order-sorted algebras can be lifted to the
multi-language world.

6 An Example of Multi-Language Construction

The first theoretical paper addressing the problem of multi-language construc-
tion is [30]. The authors study the so-called natural embedding (a more realistic
improvement of the lump embedding [30,7,40,34]), in which Scheme terms can
be converted to equivalent ML terms, and vice versa.7 The novelty in their ap-
proach is how they succeed to define boundaries in order to translate values from
Scheme to ML. Indeed, the latter does not admit an equivalent representation
for each Scheme function. Their solution is to “represent a Scheme procedure
in ML at type τ1 → τ2 by a new procedure that takes an argument of type τ1,
converts it to a Scheme equivalent, runs the original Scheme procedure on that
value, and then converts the result back to ML at type τ2”.

Our goal here is not to discuss a fully explained presentation of ML and
Scheme languages in the form of order-sorted algebras, but rather to show how
we can model the natural embedding construction in our framework. Doing so,
we provide a sketchy formalization of Scheme and ML syntax and semantics,
and we redirect the reader to [30] for all the languages details.

To provide the semantics of Scheme, we follow the same approach of Goguen

7 To be specific, the authors combine “an extended model of the untyped call-by-value
lambda calculus, which is used as a stand-in for Scheme, and an extended model of
the simply-typed lambda calculus, which is used as a stand-in for ML”.
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et al. [15] where the denotational semantics of the simple applicative language
(SAL) introduced by Reynolds [42] is given by means of an algebra, exploiting
the initiality theorem. Such a language is a “syntactically sugared” version of
the untyped lambda calculus with the fixpoint operator, which in turn is very
similar to Scheme.

Let X = { x1, x2, . . . } be a set of variables and N� be the naturals lattice
with > and ⊥ adjoined. From [46], there exists a complete lattice V such that
satisfies the isomorphism φ : V ∼= N� + V �→ V , where + is the disjoint union
with minimum and maximum elements identified, and V �→ V is the complete
lattice of Scott-continuous functions from V to V . Given ξ ∈ {N�, V �→ V }, we
define the injections jξ : ξ → N�+V �→ V and iξ = φ−1 ◦ jξ, and the projection
πξ : V → ξ such that πξ(v) = (φ(v) ∈ ξ ? φ(v) : ⊥ ). The set of all Scheme
environments is the lattice of all total functions P = X → V with componentwise
ordering ρ v ρ′ if and only if ρ(x) v ρ′(x) in V for all x ∈ X. Furthermore, we
define auxiliary functions (see [15] for a more detailed explanation) in order to
provide the semantics of the language (in the following, x ∈ X and n ∈ N�):

– getx : P→ V , getx(ρ) = ρ(x) (evaluation function);
– valn : P→ V , valn(ρ) = n (n-constant function);
– putx : P × V → P, putx(ρ, v) = ρ[v/x], where ρ[v/x](x′) = (x = x′ ? v :
ρ(x′) ) (environment updating);

– app : V 2 → V , app(v1, v2) = (πV �→V (v1))(v2) (function application);
– nat?: V → V , nat?(v) = ( v ∈ N� ? val0 : val1 ) (natural predicate);
– proc?: V → V , proc?(v) = ( v ∈ V �→ V ? val0 : val1 ) (function predicate);
– given êi : P → V for 1 ≤ i ≤ k, then ⦉ê1, . . . , êk⦊ : P → V k is defined by

⦉ê1, . . . , êk⦊(ρ) = (ê1(ρ), . . . , êk(ρ)) (target-tupling); and
– given D, D′ and D′′, then abs : ((D ×D′) �→ D′′) → (D �→ (D′ �→ D′′))

is defined by ((abs(f))(x))(y) = f(x, y) (abstraction); and
– choice : V 3 → V (conditional function), add : V 2 → V (addition), and sub :
V 2 → V (subtraction)

choice(v1, v2, v3) =


> if v1 = >
v2 if v1 = 0

v3 if v1 6= 0

⊥ otherwise

add(v1, v2) =


> if v1, v2 = >
v1 + v2 if v1, v2 ∈ N

⊥ otherwise

The definition of sub is analogous to the function add , with the only dif-
ference that, in the second case, sub(v1, v2) = v1 −N v2, where v1 −N v2 =
max { v1 − v2, 0 } for each v1, v2 ∈ N.

The semantics of the language is obtained by defining an algebra H over a
signature H,8 then the initiality yields the unique homomorphism from the term
algebra. A Scheme term denotes a continuous function in the semantic domain
8 We do not define H explicitly since it can be inferred by the algebra equations below.
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He = P �→ V . The interpretation functions of the operators are defined by the
following equations:

JxKε,eH = getx JλxKe,e
H (ê) = iV �→V ◦ absP,V,V (ê ◦ putx)

J‚Ke e,e
H (ê1, ê2) = app ◦ ⦉ê1, ê2⦊ Jproc?Ke,e

H (ê) = proc? ◦ ê
JnKε,eH = valn Jif0Ke e e,e

H (ê1, ê2, ê3) = choice ◦ ⦉ê1, ê2, ê3⦊
J+Ke e,e
H (ê1, ê2) = add ◦ ⦉ê1, ê2⦊ Jnat?Ke,e

H (ê) = nat? ◦ ê
J-Ke e,e
H (ê1, ê2) = sub ◦ ⦉ê1, ê2⦊

For the sake of simplicity, we made a minor change to the language presented
in [30]. They have an extra operator wrong to print an error message in case of
an illegal operation, due to the lack of a type system. For instance, the sum of
two functions produces the error wrong "non-number". To avoid to add cases
almost everywhere in the definition of the interpretation functions, we let ill-
typed terms to denote the value ⊥ without an explicit encoding of the error
message. Furthermore, we denote by ‚ the function application.

The ML-like language defined in [30] is an extended version of the simply-typed
lambda calculus. As before, we provide its semantics by defining an algebraM
over an order-sorted signature M = 〈S2,≤2, Σ2〉.

Let I (should read ‘iota’) be a set of base types and K a I-sorted set of
base values K = {Kι | ι ∈ I }. We inductively define the set of simple types
T: If ι is a base type, then it is a simple type; If τ, τ ′ are simple types, then
(τ) → (τ ′) is a simple type (henceforth we omit the parentheses). We abuse
notation and extend K to the T-sorted set of simple values K = {Kτ | τ ∈ T }
where Kτ→τ ′ = Kτ → Kτ ′ .

The set of all ML enviornments is defined as the set of all total functions
∆ = Y → K, where Y = { y1, y2, . . . } is a set of variables disjoint from X
(this assumption comes from [30]) and K =

⋃
τ∈TKτ . We instantiate I = {n }

and Kn = N. The poset 〈S2,≤2〉 carries all the simple types (i.e., T ⊆ S2) and
the sort t; ≤2 is the reflexive relation on S2 plus τ ≤2 t for each τ ∈ T. An
ML term of type τ denotes a total function in Mτ = ∆ → Kτ , and we define
Mt = ∆→ K. Due to the Turing-incompleteness of such a language, we do not
need all the mathematical machinery of [15,46] to formalize its semantics.

JyKε,tM = δ 7→ δ(y) Jλyτ Kτ
′,τ→τ ′
M (t̂) = δ 7→ kτ 7→ t̂(δ[kτ/y])

JnKε,nM = δ 7→ n J‚Kτ→τ
′ τ,τ ′

M (t̂1, t̂2) = δ 7→ (t̂1(δ))(t̂2(δ))

J+Kn n,n
M (n̂1, n̂2) = δ 7→ n̂1(δ) + n̂2(δ) J-Kn n,n

M (n̂1, n̂2) = δ 7→ n̂1(δ)−N n̂2(δ)

Jif0Kn τ τ,τ
M (n̂, t̂1, t̂2) = δ 7→

( n̂(δ) = 0 ? t̂1(δ) : t̂2(δ) )

Until now, we have just formalized the single-languages. The multi-language A
that combines Scheme and ML is obtained by requiring e n τ and τ n e in or-
der to use ML terms in place of Scheme terms and vice versa. However, in the
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simplest version of the natural embedding, “the system has stuck states, since
a boundary might receive a value of an inappropriate shape” [30]. They restore
the type-soundness by first employing dynamic checks, and then by decoupling
error-handling from the value conversion through the use of higher-order con-
tracts [12]. We limit ourselves here to describe the first version; the subsequent
refinements can be embodied by further complicating the semantics of the bound-
ary functions (we do not have forced any constraints on them).

Since we need a value representing the notion of stuck state in ML, we have
to extend the algebraM. This is particularly easy by exploiting the underlying
framework: We make M⊥ into an order-sorted M-algebra by defining M⊥τ =
∆⊥ → K⊥τ , where ∆⊥ = Y → K⊥, K⊥ =

⋃
τ∈TK

⊥
τ , and K⊥τ = Kτ ∪{⊥}, and

the T-sorted injection φ from Mτ to M⊥τ such that ϕ(t̂) = t̂. Now,M⊥ becomes
an algebra by letting ϕ to be an order-sorted M-homomorphism (this in turn
forces J−Kw,sM⊥ = J−Kw,sM ) and letting the interpretation functions to denote the
value ⊥ in the remaining non-yet defined cases (namely, they compute the value
⊥ whenever one of their arguments is ⊥).

The boundary function αe,τ (ê) moves the Scheme value ê : P �→ V in Mτ :

αe,τ (ê) =

{
αN�

e,τ (ê) if ê = valn for some n ∈ N�

αV �→Ve,τ (ê) otherwise

where αN�
e,τ (valn) = ( τ = n ∧ n ∈ N ? δ 7→ n : ⊥ ) and

αV �→Ve,τ (ê) =



δ 7→ k′τ 7→ Jλyτ
′
Kτ
′′,τ ′→τ ′′
M⊥ (αe,τ ′′(ê

′ ◦ putx(⊥, ατ ′,e(kτ ′))))
if τ = τ ′ → τ ′′ and ê = iV �→V ◦ absP,V,V (ê′ ◦ putx)

for some x ∈ X and ê′ ∈ V �→ V

⊥
otherwise

Vice versa, ατ,e(t̂) moves values from ML to Scheme. Its definition is analo-
gous to the previous case: αn,e(n̂) = valn where n̂ = δ 7→ n, and

ατ→τ ′,e = ρ 7→ v 7→ JλxKe,e
H (ατ ′,e(t̂(⊥[αe,τ (v)/y])))

These definitions adhere the conversion approach of the natural embedding
in [30]: If ê is the value denoted by a natural number in Scheme, then it is
converted — aside from cases deriving from ill-typed terms — by αN�

e,n to the
corresponding constant function denoting the same natural value in ML. Oth-
erwise, if ê is the value denoted by a Scheme function, then it is mapped by
αV �→Ve,τ→τ ′ to the ML function with variable x at type τ → τ ′ such that converts
its argument of type τ to the Scheme equivalent by its conversion through ατ,e
to x. Then it runs the original procedure ê on it and convert back the result by
αe,τ ′ .

Since the given boundary functions are subsort polymorphic, we can improve
the construction and handle all the value conversions with a single polymorphic
operator as explained in Sect. 4.1.
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7 Concluding Remarks

In this paper, we have addressed the problem of providing a formal semantics to
the combination of programming languages, the so-called multi-languages. We
have introduced a new algebraic framework for modeling this new paradigm,
and we have constructively shown how to attain a multi-language specification
by only stipulate (1) how the syntactic categories of the single-languages have to
be combined and (2) how the values may flow from one language to the other.
We have proved the suitability of the framework to unambiguously yield the
algebraic semantics of each multi-language term, while simultaneously preserving
the single-languages semantics. We have also proved that combining languages
is a close operation, i.e., that every multi-language admits an equivalent order-
sorted representation. In particular, we have focused our study on the semantic
properties of boundary functions in order to provide three different notions of
multi-language designed to suit both general and specific cases.

To the best of our knowledge, this is the first attempt to provide a formal
semantics of a multi-language independently from the combined languages.

Related Works. Cross-language interoperability is a well-researched area both
from theoretical and practical points of view. The most related work to our ap-
proach is undoubtedly [30], which provides operational semantics to a combined
language obtained by embedding a Scheme-like language into an ML-like lan-
guage. Such an outcome is achieved by introducing boundaries, syntactic con-
structs that model the flow of values from one language to the other. Ours
boundary functions draw heavily from their work. Nonetheless, we shift them to
a semantic level, in order to several variants of multi-language constructions.

[40,7,21,53,36] take a similar line and combine typed and untyped languages
(Lua and ML [40], Java and PLT Scheme [21], or Assembly and a typed func-
tional language [36]), focusing on typing issues and values exchanging techniques.
Instead of focusing on a particular problem, we adopt a rather general framework
to model languages. This choice abstracts away many low-level details, allowing
us to reason on semantic concerns in more general terms, without having to fix
any particular pair of languages.

A lot of work has been done on multi-language runtime mechanisms: [20] pro-
vides a type system for a fragment of Microsoft Intermediate Language (IL) used
by the .NET framework, that allows programmers to write components in sev-
eral languages (C#, Visual Basic, VBScript, . . . ) which are then translated to IL.
[22] proposes a virtual machine that can execute the composition of dynamically
typed programming languages (Ruby and JavaScript) and statically typed one
(C). [5,4] describes a multi-language runtime mechanism achieved by combining
single-language interpreters of (different versions of) Python and Prolog.

Future Works. From our perspective, the research presented in this paper opens
up on three directions. Firstly, future works should aim to provide an operational
semantics to the formalization of multi-languages. Rewriting logic seems the
most reasonable approach to unifying the denotational world, presented in this
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paper, to the operational one [31]. This line of research is particularly useful in
order to move towards an implementation of an automatic tool able to combine
languages such that the resulting multi-language guarantees the results proved
in the paper.

Secondly, future research applies to use the multi-language model in order to
study the problem of analyzing multi-language programs. In particular, we aim
at investigating how it is possible to obtain analyses of multi-language programs
by merging already existing analyses of the single combined languages.

Finally, further studies should investigate the problem of compiling multi-
languages. Current compilers are closed tools, non-parametric on language con-
structs (for instance, we cannot compile a single if-then-else term of a stan-
dard language like C or Java unless it is plugged into a valid program). Several
works on typing [20,1,26], compiling [2,37], and running [50,23] multi-language
programs already exist, but without providing a formal notion of multi-language.
It would be beneficial to study how their approaches can be applied to the formal
framework developed in this paper.
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