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1. Introduction

Leavitt path algebras have a well-studied, extremely tight relationship with their
projective modules. On the other hand, very little is heretofore known about the
structure of the injective modules over LK(E). While the self-injective Leavitt path
algebras have been identified in [7], we know of no study of the structure of injective
modules over Leavitt path algebras (other than those arising as left ideals).

We initiate such a study in this article. For each closed path c in E we construct
the Prüfer module UE,c−1, recalling the classical construction of Prüfer abelian
groups. These modules UE,c−1 are Prüfer also in the sense of Ringel [13]; indeed,
they admit a surjective locally nilpotent endomorphism (see Remark 2.5). In our
main result (Theorem 6.4), we give necessary and sufficient conditions for the in-
jectivity of UE,c−1. In this case, UE,c−1 is precisely the injective hull of the Chen
simple module V[c∞]. Our construction is similar to that established by Matlis [10]
for modules over various commutative noetherian rings, but in a highly noncommu-
tative, non-noetherian setting.

Perhaps surprisingly, achieving Theorem 6.4 relies on a set of highly nontrivial
tools, including: some general results about uniserial modules over arbitrary asso-
ciative unital rings; an explicit description of a projective resolution for V[c∞]; a
Division Algorithm in LK(E) with respect to the element c− 1; the fact that every
Leavitt path algebra is Bézout (i.e., that every finitely generated one-sided ideal is
principal); and two types of Morita equivalences for Leavitt path algebras (one of
which relates each graph having a source cycle to a graph having a source loop, the
other of which eliminates source vertices).

The article is organized as follows. In Section 2 we construct what we call
“Prüfer-like modules” over arbitrary unital rings. In Section 3 we remind the reader
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of the construction of the Leavitt path algebra LK(E) for a directed graph E and
field K, and describe the Chen simple LK(E)-module V[p] corresponding to an
infinite path p arising from E. Specifically, if c is a closed path in E, we may build
the Chen simple module V[c∞]. Continuing our focus on closed paths c in E, in
Section 4 we describe a Division Algorithm for arbitrary elements of LK(E) by the
specific element c − 1. With the discussion from these three sections in hand, we
are then in position in Section 5 to construct the Prüfer-like LK(E)-module UE,c−1
corresponding to c − 1. This sets the stage for our aforementioned main result
(Theorem 6.4), which we present in Section 6. While one direction of the proof
of Theorem 6.4 is not difficult, establishing the converse is a much heavier lift; we
complete the proof in Sections 7 and 8. Along the way, we will establish in Section 8
that the endomorphism ring of UE,c−1 is isomorphic to the ring K[[c− 1]] of formal
power series in c− 1 with coefficients in K, exactly as the ring of p-adic integers is
isomorphic to the endomorphism ring of Z(p∞).

Unless otherwise stated, all modules are left modules. The symbol N denotes
the set {0, 1, 2, . . . }.

2. Prüfer-like modules

In this section we develop a general ring-theoretic framework for the well-known
Prüfer abelian groups Z(p∞). This framework will provide us with the appropriate
context in which to construct the LK(E)-modules UE,c−1.

Let R be an associative ring with 1 6= 0 and a ∈ R. For the remainder of the
section we assume that a is not a right zero divisor (i.e., that right multiplication
ρa : R→ R via r 7→ ra is a monomorphism of left R-modules), and that a is not left
invertible (i.e., that Ra 6= R). For each integer n ∈ N≥1 we define the left R-module

MR,n,a := R/Ran,

and we denote by ηn,a the canonical projection R → MR,n,a. By the standing
assumptions on a, each MR,n,a is a nonzero cyclic left R-module generated by
1 +Ran. Moreover, for each 1 ≤ i < ` we have the following monomorphism of left
R-modules

ψR,i,` : MR,i,a →MR,`,a, via 1 +Rai 7→ a`−i +Ra`.

The cokernel of ψR,i,` is equal to MR,`,a/R(a`−i +Ra`) = (R/Ra`)/(Ra`−i/Ra`) ∼=
MR,`−i,a.

The left R-modules MR,n,a can be recursively characterized in a categorical way.

Proposition 2.1. For each n ≥ 2 the following diagram of left R-modules is a
pushout.

R

ηn−1,a

��

ρa // R

ηn,a

��

MR,n−1,a
ψR,n−1,n

// MR,n,a.

Proof. Clearly we have ηn,a ◦ ρa = ψR,n−1,n ◦ ηn−1,a. Let f : R → X and g :
MR,n−1,a → X be two homomorphisms of left R-modules, with g ◦ ηn−1,a = f ◦ ρa.
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It is easy to check that setting h(1 + Ran) = f(1) defines a left R-homomorphism
h : MR,n,a → X such that h ◦ ηn,a = f and h ◦ ψR,n−1,n = g. �

For any 1 ≤ i < `, using the monomorphism ψR,i,` allows us to identify MR,i,a

with its image submodule inside MR,`,a.

Proposition 2.2. Suppose a ∈ R has these two properties:

(1) MR,1,a is a simple left R-module, and

(2) the equation aX = 1 +Rai has no solution in MR,i,a for each 1 ≤ i < n.

Then the left R-module MR,n,a is uniserial of length n. Specifically, MR,n,a has the
unique composition series

0 < ImψR,1,n < · · · < ImψR,n−1,n < MR,n,a ,

with all the composition factors isomorphic to MR,1,a.

Proof. By induction on n.
Let n = 1. By hypothesis, MR,1,a is simple and hence is uniserial of length 1, and
the only composition series is

0 < MR,1,a.

Now assume that n > 1. By induction, MR,1,a , . . . , MR,n−1,a are uniserial,

0 < ImψR,1,n−1 < · · · < ImψR,n−2,n−1 < MR,n−1,a

is the only composition series of MR,n−1,a, and all composition factors are isomor-
phic to MR,1,a. For clarity, in the sequel we denote by Hi the submodule ImψR,i,n
of MR,n,a for each 1 ≤ i < n. Since Hi

∼= ImψR,i,n−1 for each 1 ≤ i < n − 1 and
Hn−1 ∼= MR,n−1,a, then

0 < H1 < H2 < · · · < Hn−1

is the unique composition series of Hn−1, and all the composition factors are iso-
morphic to MR,1,a. To conclude the proof, we show that if 0 6= L is a submodule
of MR,n,a, then either L = MR,n,a, or otherwise L ≤ Hn−1, so that L = Hi for
a suitable 1 ≤ i ≤ n − 1. Assume on the contrary that both L 6= MR,n,a and
L 6≤ Hn−1. Since then Hn−1 � Hn−1 +L, and the quotient MR,n,a/Hn−1 ∼= MR,1,a

is simple, we have Hn−1 + L = MR,n,a and Hn−1 is not contained in L. Therefore

MR,n,a/(L∩Hn−1) = (Hn−1 +L)/(L∩Hn−1) = Hn−1/(L∩Hn−1)⊕L/(L∩Hn−1).

The left R-module L∩Hn−1 is properly contained in Hn−1 and hence equal to some
Hj for a suitable 0 ≤ j < n− 1. Then

MR,n−j,a ∼= MR,n,a/Hj = L/Hj ⊕Hn−1/Hj
∼= L/Hj ⊕MR,n−1−j,a.

Since the direct summands L/Hj and MR,n−1−j,a are not zero for each 0 ≤ j <
n− 1, then MR,n−j,a is not indecomposable and hence not uniserial. Therefore, by
the induction hypothesis, necessarily j = 0 and we get MR,n,a

∼= L ⊕ Hn−1 with
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L ∼= MR,1,a. Consider the diagram

0 // R

ηn−1,a

��

ρa // R
ϕ

uu

ηn,a

��

0 // MR,n−1,a
ψR,n−1,n

// MR,n,a
// L ∼= MR,1,a

// 0 ;

since the last row splits, there exists the dotted arrow ϕ such that ϕ ◦ ρa = ηn−1,a.
Therefore X = ϕ(1) is a solution of the equation aX = 1 + Ran−1 in MR,n−1,a, a
contradiction to the hypothesis. �

The maps ψR,i,j : MR,i,a → MR,j,a, 1 + Rai 7→ aj−i + Raj , 1 ≤ i ≤ j, define a
direct system of monomorphisms {MR,i,a, ψR,i,j}i≤j . (Here we define a0 = 1.)

Definition 2.3. The a-Prüfer module UR,a is the direct limit

UR,a = lim−→{MR,i,a, ψR,i,j}i≤j .
We denote by ψR,i : MR,i,a → UR,a, i ≥ 1, the induced monomorphisms.

Under the assumptions of Proposition 2.2 the, module UR,a is generated by the
elements αi := ψR,i(1 +Rai), i ≥ 1. Clearly, MR,i,a

∼= Rαi ≤ UR,a, and

aαi =

{
0 if i = 1,

αi−1 if i > 1.

Proposition 2.4. If MR,n,a is uniserial of length n for each n ≥ 1, then the module
UR,a is uniserial and artinian (and not noetherian).

Proof. We show that, if 0 < N ≤ UR,a, then either N = Rαj for a suitable j ∈ N≥1,
or N = UR,a. If N is finitely generated, since UR,a =

⋃
iRαi there exists a minimal

integer j ≥ 1 such that N ≤ Rαj < UR,a: in particular UR,a is not finitely generated
and hence not noetherian. Since, by Proposition 2.2, Rαj is uniserial and its non-
zero submodules are the Rα` for 1 ≤ ` ≤ j, we conclude N = Rαj .
If N is not finitely generated, write N = lim−→Nλ, where the Nλ are the finitely
generated submodules of N . For any λ, by the previous paragraph, there exists jλ
such that Nλ = Rαjλ . Since N 6= Nλ for any λ, the sequence (jλ)λ is unbounded,
so that N contains Rα` for every ` ∈ N, and so N = UR,a.
Hence {Rαi | i ∈ N≥1} is the lattice of the proper submodules of UR,a. It is totally
ordered and so UR,a is uniserial. Since any Rαi is of finite length, we conclude that
UR,a is artinian. �

Remark 2.5. Considering the direct limit of the sequences

0 // MR,i,a

ψR,i,`
// MR,`,a

// MR,`−i,a // 0 , ` ∈ N≥i
we get the short exact sequence

0 // MR,i,a

ψR,i
// UR,a

φR,i
// UR,a // 0.

Therefore all the proper quotients of UR,a are isomorphic to UR,a. Each φR,i is
a surjective, locally nilpotent endomorphism with kernel of finite length: therefore
UR,a is a Prüfer module also in the sense of Ringel [13].
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Example 2.6. If R = Z and a = p is a prime number, then MZ,i,p = Z/piZ, and
UZ,p is the standard Prüfer abelian group Z(p∞).

Let ε ∈ R be an idempotent such that R = RεR. Then [4, Section 22] the rings
R and S := εRε are Morita equivalent; the Morita equivalence is induced by the
functors:

HomR(Rε,−) : R-Mod −−→←−− S-Mod : Rε⊗S −.

It is well known (and easy to verify) that, for each left R-module M , the map
ϕ 7→ ϕ(ε) defines a natural isomorphism between the left S-modules HomR(Rε,M)
and εM .

Proposition 2.7. Let ε ∈ R with ε2 = ε and R = RεR. Set S = εRε. Assume
a ∈ R has these two properties:

(1) εa = aε, and
(2) a(1− ε) = u(1− ε) for some invertible central element u of R.

Then εa = εaε is neither a right zero divisor nor left invertible in S. Moreover, the
Morita equivalence between the rings R and S sends the direct system of monomor-
phisms {MR,i,a, ψR,i,j} to the direct system of monomorphisms {MS,i,εa, ψS,i,j},
and sends the Prüfer module UR,a to the Prüfer module US,εa.

Proof. By (1), εa = ε2a = εaε belongs to S. If εa were a right zero divisor in S
there would exist r ∈ R such that 0 = εaεrε = a

(
εrε
)
, contradicting the standing

assumption that a is not a right zero divisor in R. If εa were left invertible in S,
there would exist r1 ∈ R such that εr1εa = ε; then by (1) and (2)

1 = ε+ (1− ε) = εr1εa+u−1u(1− ε) = εr1εa+u−1a(1− ε) =
(
εr1ε+u−1(1− ε)

)
a,

contradicting the standing assumption that a is not left invertible in R.
By (1), San = Sεan = S(εa)n is a left S-ideal for each n ∈ N. We have the following
commutative diagram with exact rows

0 // Ranε = Rεan� _

��

// Rε� _

��

0 // Ran // R // MR,n,a
// 0.

Applying the functor HomR(Rε,−) we get the following commutative diagram of
left S-modules with exact rows and columns:

0 // εRanε = εRεan = San = S(εa)n� _

��

// S //� _

��

MS,n,εa

νn

��

// 0

0 // εRan

����

// εR

����

// εMR,n,a

����

// 0

0 // εRan(1− ε)
ξ

// εR(1− ε) // Q // 0



6 GENE ABRAMS, FRANCESCA MANTESE, AND ALBERTO TONOLO

where νn sends εrε+S(εa)n to εrε+Ran. By (2) Ran(1−ε) = Run(1−ε) = R(1−ε);
therefore the map ξ is surjective and hence Q = 0. Therefore νn is an isomorphism
and εrε+Ran = εr +Ran: indeed

εr − εrε = εr(1− ε) ∈ Run(1− ε) = Ran(1− ε) = R(1− ε)an ⊆ Ran.
We now show that for any i ≤ j the following diagram commutes:

MS,i,εa

ψS,i,j
//

∼= νi

��

MS,j,εa

∼= νj

��

εMR,i,a

HomR(Rε,ψR,i,j)
// εMR,j,a.

We have:

HomR(Rε, ψR,i,j)
(
νi(εrε+ S(εa)i)

)
= HomR(Rε, ψR,i,j)(εrε+Rai)

= εrεaj−i +Raj

= εrε(εa)j−i +Raj

= νj
(
εrε(εa)j−i + S(εa)j

)
= νj

(
ψS,i,j(εrε+ S(εa)i

)
.

Therefore the Morita equivalence between R and S sends the direct system of
monomorphisms {MR,i,a, ψR,i,j} to the direct system of monomorphisms {MS,i,εa, ψS,i,j}.
Since Morita equivalences commute with direct limits, we get also that the Prüfer
module UR,a is sent to the Prüfer module US,εa. �

3. Chen simple modules over Leavitt path algebras

In this section we give a (minimalist) review of the germane notation, first about
directed graphs, then about Leavitt path algebras, and finally about Chen simple
modules.

A (directed) graph E = (E0, E1, s, r) consists of a vertex set E0, an edge set
E1, and source and range functions s, r : E1 → E0. For v ∈ E0, the set of edges
{e ∈ E1 | s(e) = v} is denoted s−1(v). E is called finite in case both E0 and
E1 are finite sets. A path α in E is a sequence e1e2 · · · en of edges in E for which
r(ei) = s(ei+1) for all 1 ≤ i ≤ n− 1. We say that such α has length n, and we write
s(α) = s(e1) and r(α) = r(en). We view each vertex v ∈ E0 as a path of length 0,
and denote v = s(v) = r(v). We denote the set of paths in E by Path(E). We say
a vertex v connects to a vertex w in case v = w, or there exists a path α in E for
which s(α) = v and r(α) = w. A path γ = e1e2 · · · en (n ≥ 1) in E is closed in case
r(en) = s(e1).

Unfortunately, the phrase “simple closed path” has come to be defined as two
distinct concepts in the literature. We choose in the current article to follow what
now seems to be the more common usage. Specifically, for a closed path γ =
e1e2 · · · en, we call γ simple in case s(ei) 6= s(e1) for all 1 < i ≤ n, and we call γ
basic in case γ 6= δk for any closed path δ and positive integer k. (In our previous
article [2] we followed Chen’s usage of this phrase given in [8]; in those two places,
“simple closed path” means what we are now calling a “basic closed path”.)
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Some additional properties of closed paths will play a role in the sequel. If
γ = e1e2 · · · en is a closed path in E, then a path γ′ of the form eiei+1 · · · ene1 · · · ei−1
(for any 1 ≤ i ≤ n is called a cyclic shift of γ. The closed path γ = e1e2 · · · en in E
is called a cycle if s(ei) 6= s(ej) for each i 6= j; a loop if n = 1; a maximal cycle if γ
is a cycle, and there are no cycles in E other than cyclic shifts of γ which connect
to s(γ) = s(e1); and a source cycle (resp., source loop) if γ is a cycle (resp., loop),
and there are no edges e 6= ei in E such that r(e) = r(ei), for 1 ≤ i ≤ n. Less
formally, a source cycle is a cycle for which no vertices in the graph connect to the
cycle, other than those vertices which are already in the cycle.

For any field K and graph E the Leavitt path algebra LK(E) has been the focus
of sustained investigation since 2004. We give here a basic description of LK(E);
for additional information, see [1]. Let K be a field, and let E = (E0, E1, s, r) be
a directed graph with vertex set E0 and edge set E1. The Leavitt path K-algebra
LK(E) of E with coefficients in K is the K-algebra generated by a set {v | v ∈ E0},
together with a set of symbols {e, e∗ | e ∈ E1}, which satisfy the following relations:

(V) vu = δv,uv for all v, u ∈ E0,

(E1) s(e)e = er(e) = e for all e ∈ E1,

(E2) r(e)e∗ = e∗s(e) = e∗ for all e ∈ E1,

(CK1) e∗e′ = δe,e′r(e) for all e, e′ ∈ E1, and

(CK2) v =
∑
{e∈E1|s(e)=v} ee

∗ for every v ∈ E0 for which 0 < |s−1(v)| <∞.

It is easy to show that LK(E) is unital if and only if |E0| is finite; in this
case, 1LK(E) =

∑
v∈E0 v. Every element of LK(E) may be written as

∑n
i=1 kiαiβ

∗
i ,

where ki is a nonzero element of K, and each of the αi and βi are paths in E. If
α ∈ Path(E) then we may view α ∈ LK(E), and will often refer to such α as a
real path in LK(E); analogously, for β = e1e2 · · · en ∈ Path(E) we often refer to the
element β∗ = e∗n · · · e∗2e∗1 of LK(E) as a ghost path in LK(E).

We assume throughout the article that E is finite. In particular, we assume that
LK(E) is unital. The multiplicative identity of a ring R will be denoted by 1R, or
more simply by 1 if the context is clear.

The ideas presented in the following few paragraphs come from [8]; however,
some of the notation we use here differs from that used in [8], in order to make
our presentation more notationally consistent with the general body of literature
regarding Leavitt path algebras.

Let p be an infinite path in E; that is, p is a sequence e1e2e3 · · · , where ei ∈ E1

for all i ∈ N, and for which s(ei+1) = r(ei) for all i ∈ N. We emphasize that while
the phrase infinite path in E might seem to suggest otherwise, an infinite path in E
is not an element of Path(E), nor may it be interpreted as an element of the path
algebra KE nor of the Leavitt path algebra LK(E). (Such a path is sometimes
called a left-infinite path in the literature.) We denote the set of infinite paths in E
by E∞.

Let c be a closed path in E. Then the path ccc · · · is an infinite path in E,
which we denote by c∞; we call such a cyclic infinite path. For c a closed path in
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E let d be the basic closed path in E for which c = dn. Then c∞ = d∞ as elements
of E∞.

For p = e1e2e3 · · · ∈ E∞ we denote by τ>n(p) the infinite path en+1en+2 · · · . If p
and q are infinite paths in E, we say that p and q are tail equivalent (written p ∼ q)
in case there exist integers m,n for which τ>m(p) = τ>n(q); intuitively, p ∼ q in
case p and q eventually become the same infinite path. Clearly ∼ is an equivalence
relation on E∞, and we let [p] denote the ∼ equivalence class of the infinite path p.

The infinite path p is called rational in case p ∼ c∞ for some closed path c. By
a previous observation, we may assume without loss of generality that such c is a
basic closed path. In particular, for any closed path c we have that c∞ is rational.

Let M be a left LK(E)-module. For each m ∈ M we define the LK(E)-
homomorphism ρm : LK(E) → M , given by ρm(r) = rm. The restriction of
the right-multiplication map ρm may also be viewed as an LK(E)-homomorphism
from any left ideal I of LK(E) into M .

Following [8], for any infinite path p in E we construct a simple left LK(E)-
module V[p], as follows.

Definition 3.1. Let p be an infinite path in the graph E, and let K be any field.
Let V[p] denote the K-vector space having basis [p], that is, having basis consisting

of distinct elements of E∞ which are tail-equivalent to p. For any v ∈ E0, e ∈ E1,
and q = f1f2f3 · · · ∈ [p], define

v·q =

{
q if v=s(f1)

0 otherwise,
e·q =

{
eq if r(e)=s(f1)

0 otherwise,
and e∗·q =

{
τ>1(q) if e=f1

0 otherwise.

Then theK-linear extension to all of V[p] of this action endows V[p] with the structure
of a left LK(E)-module.

Theorem 3.2. ([8, Theorem 3.3]). Let E be any directed graph and K any field.
Let p ∈ E∞. Then the left LK(E)-module V[p] described in Definition 3.1 is simple.
Moreover, if p, q ∈ E∞, then V[p] ∼= V[q] as left LK(E)-modules if and only if p ∼ q,
which happens precisely when V[p] = V[q].

We will refer to a module of the form V[p] as presented in Theorem 3.2 as a Chen
simple module.

Because V[c∞] = V[(c2)∞] for any closed path c in E, when analyzing Chen simple
modules V[c∞] we can without loss of generality assume that c is a basic closed path.
Observe that if c = e1 · · · en and d are two basic closed paths, then [c∞] = [d∞] if
and only if d = eiei+1 · · · ene1 · · · ei−1 for a suitable 1 ≤ i ≤ n.

Example 3.3. Let E = R2 be the rose with two petals:

•e1 ::
e2dd

Then, for example, the infinite paths p = e1e
2
2e1e

2
2e1e

2
2 · · · and q = e1e2e1e2e1e2 · · ·

are rational paths which are not tail equivalent.

For the sake of completeness and reader convenience, we state and briefly sketch
proofs of the following two lemmas. These include, in the case of a finite graph,
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some slight generalization of the results obtained in [2, Lemma 2.5, Proposition 2.6,
Lemma 2.7, Theorem 2.8].

Lemma 3.4. Let E be a finite graph.

(1) Let c be a closed path in E, and r ∈ LK(E). Then r(c− 1) = 0 in LK(E) if
and only if r = 0.

(2) Let c be a basic closed path in E. Let α, β ∈ Path(E) for which 0 6= αc∞ =

βc∞ in V[c∞]. Suppose also that α 6= γcN and β 6= δcN
′

for any γ, δ ∈ Path(E) and
positive integers N,N ′. Then α = β.

(3) Let c be a basic closed path in E. Given edges f1, ..., f`, g1, ..., gm in E, if
0 6= f1 · · · f`c∞ = g1 · · · gmc∞ in V[c∞], then f1 · · · f` − g1 · · · gm ∈ LK(E)(c− 1).

Proof. (1) If r(c − 1) = 0, then r = rc and hence r = rcm for each m ≥ 0. Let

r =
∑t
i=1 kiαiβ

∗
i , with αi, βi real paths and ki ∈ K. Denoting by N the maximum

length of the βi’s, we have that r = rcN can be written as a K-linear combination∑t
i=1 kiγi of real paths γi’s. Then, by a degree argument, from r = rc we get r = 0.

(2) and (3) Write c = e1e2 · · · en. Assume

0 6= f1 · · · f`c∞ = g1 · · · gmc∞

for some edges f1, ..., f`, g1, ..., gm. If ` = m then fi = gi for each 1 ≤ i ≤ ` = m. If
m > `, then there exists j ∈ N and 1 ≤ k ≤ n such that

f1 · · · f`c∞ = f1 · · · f`cje1 · · · ekc∞ = g1 · · · gmc∞

with m = ` + j × n + k and 1 ≤ k ≤ n, j ≥ 0. Then by the first equality we get
c∞ = cje1 · · · ekc∞ and so c∞ = e1 · · · ekc∞; hence e1 · · · ek = c since c is basic.
Therefore k = n and g1 · · · gm = f1 · · · f`cj+1. This contradicts the hypotheses in
(2), so we have m = ` and fi = gi for all 1 ≤ i ≤ m in that case. Further, this
yields

g1 · · · gm−f1 · · · f` = f1 · · · f`(cj+1−1) = f1 · · · f`(cj+· · ·+c+1)(c−1) ∈ LK(E)(c−1),

which gives (3). �

Lemma 3.5. Let E be a finite graph, and c = e1 · · · en a basic closed path in E.
Denoting by ρc∞ : LK(E)→ V[c∞] the map r 7→ rc∞ and by ρc−1 : LK(E)→ LK(E)
the right multiplication by c − 1, we have the following short exact sequence of left
LK(E)-modules:

0 // LK(E)
ρc−1

// LK(E)
ρc∞ // V[c∞]

// 0.

Proof. The map ρc−1 is a monomorphism by Lemma 3.4(1), and ρc∞ is an epimor-
phism by construction. Clearly Im ρc−1 = LK(E)(c − 1) ⊆ Ker ρc∞ . Assume now

r =
∑t
i=1 kiαiβ

∗
i belongs to Ker ρc∞ , with αi, βi real paths and ki ∈ K. Our aim is

to prove that r = r+LK(E)(c−1) = 0 and hence r ∈ LK(E)(c−1). If αiβ
∗
i c
m = 0

for a suitable m ≥ 1, then αiβ
∗
i = −αiβ∗i (cm−1) = −αiβ∗i (1+· · ·+cm−1)(c−1) and
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hence αiβ∗i = 0. Therefore we can assume αiβ
∗
i c
m 6= 0 for all m ≥ 0 and 1 ≤ i ≤ t.

It follows that β∗i = e∗ji · · · e
∗
2e
∗
1(cmj )∗ for suitable 1 ≤ ji ≤ t and mj ≥ 0. Since

eji+1 · · · en − e∗ji · · · e
∗
2e
∗
1(cmj )∗ = e∗ji · · · e

∗
2e
∗
1(cmj )∗(cmj+1 − 1) =

= e∗ji · · · e
∗
2e
∗
1(cmj )∗(cmj + cmj−1 + · · ·+ 1)(c− 1) ∈ LK(E)(c− 1),

we have

r =

t∑
i=1

kiαie∗ji · · · e
∗
2e
∗
1(cmj )∗ =

t∑
i=1

kiαieji+1 · · · en =

=

s∑
i=1

hif1 · · · fji

where the hi’s belongs toK and the f1 · · · fji are distinct elements modulo LK(E)(c−
1). Therefore by Lemma 3.4(3) the f1 · · · fjic∞ expressions are distinct infinite
paths which are tail equivalent to c∞, and hence linearly independent. Since
0 = rc∞ =

∑s
i=1 hif1 · · · fjic∞, we get hi = 0 for 1 ≤ i ≤ s and hence

r =

s∑
i=1

hif1 · · · fji = 0,

as desired. �

The short exact sequence established in Lemma 3.5 provides a projective reso-
lution for the Chen simple module V[c∞]. In particular, we get

Corollary 3.6. Let c be a basic closed path in E. Then LK(E)/LK(E)(c − 1) is
isomorphic to the Chen simple LK(E)-module V[c∞].

4. A division algorithm in LK(E)

Let c be a basic closed path in E. In this section we show how any element of
LK(E) may be “divided by” c−1, in an analogous manner to the standard division
algorithm in Z.

Definition 4.1. Let E be any finite graph, and c any basic closed path in E of
length > 0 with v = s(c). We denote by Ac the set of all non-vertex real paths
α in E which are not divisible by c either on the left or on the right, but are non
trivially composable with c on the right. Formally:

Ac = {α∈Path(E) : |α|≥1;α 6=βc; and α 6=cγ for any real paths β, γ, and r(α)=v}.

For each i ∈ N≥1 we denote by ciAc the subset {ciα : α ∈ Ac} of elements of
LK(E). We understand ciAc = ∅ whenever Ac = ∅. We denote by G the K-vector
subspace of LK(E) generated by 1LK(E), the elements in Ac and the elements in

ciAc, i ∈ N≥1. That is,

G := K[1LK(E), Ac,
⋃

i∈N≥1

ciAc].
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Example 4.2. (1) Let E be the graph

• e // • cdd

Then Ac = {e} and cnAc = {0} for each n ≥ 1. Then G is the two
dimensional vector space generated by 1 and e.

(2) Let E = R1, the rose with one petal:

R1 : •c ::

Then Ac = ∅ (and so also cnAc = ∅ for each n ≥ 1). Then G is the one
dimensional vector space generated by 1.

(3) Let E = R2, the rose with two petals:

R2 : •c :: ddd

Then Ac = {dicjdk : i, k ∈ N≥1, j ∈ N} and cnAc = {cndicjdk : i, k ∈
N≥1, j ∈ N} for each n ≥ 1. Then G is a countable dimensional vector
space.

Remark 4.3. Clearly the non-zero elements in {1LK(E)} ∪Ac ∪
⋃
i∈N≥1

ciAc form

a K-basis for G. Therefore a generic element g in G is of the form

g = k1LK(E) + t1 + ct2 + c2t3 + · · ·+ cs−1ts

where k ∈ K and ti are K-linear combinations in LK(E) of elements in Ac. It is
convenient to refer to k1LK(E) as the scalar part of g: the latter commutes with any
element in LK(E).
If c is a source loop, then Ac = ∅ and ciAc = ∅ for all i ≥ 1: therefore G is the
one-dimensional K-vector subspace of LK(E) generated by 1LK(E).

If c = e1 · · · en is a source cycle, then Ac = {en, en−1en, ..., e2e3 · · · en} and ciAc =
{0} for each i ≥ 1. Therefore G is the K-vector subspace of LK(E) of dimension n
generated by 1LK(E), and the paths en, en−1en, ..., e2e3 · · · en.
In general G is a finite dimensional space if and only if Ac is finite and cAc is zero
or empty. This happens if and only if there are no cycles different from c connected
to s(c), i.e., when c is a maximal cycle.

Definition 4.4. Let c be a basic closed path in E. As above, we denote by
ρc∞ : LK(E) → V[c∞] the right multiplication by c∞ homomorphism. By Lemma
3.4(2), each infinite path p tail equivalent to c∞ uniquely determines an element of

{1LK(E)}∪Ac∪
(⋃

i∈N≥1
ciAc

)
, which we denote by σ(p). Specifically, σ(p) has the

property that
p = σ(p)c∞ = ρc∞(σ(p)).

Extending σ by linearity, the maps

σ : V[c∞] → G and ρc∞|G : G→ V[c∞]

are then easily seen to be inverse isomorphisms of K-vector spaces.

Lemma 4.5. Let c be a basic closed path in E. Then LK(E)(c− 1) ∩G = {0}.

Proof. If ` = `0(c − 1) ∈ LK(E)(c − 1) ∩ G, then ` = σ(ρc∞(`)) (by the previous
observation, as ` ∈ G), which in turn equals σ(ρc∞(`0(c− 1))) = σ(`0(c− 1)c∞) =
σ(`0(c∞ − c∞)) = σ(0) = 0. �
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Theorem 4.6 (Division Algorithm by c− 1). Let E be any finite graph and K any
field. Let c be a basic closed path in E. Then for any β ∈ LK(E) there exist unique
qβ ∈ LK(E) and rβ ∈ G such that

β = qβ(c− 1) + rβ .

Proof. Consider the element rβ := σ (ρc∞(β)); clearly rβ belongs to G ⊆ LK(E).
The difference β − rβ belongs to Ker ρc∞ , as

ρc∞(β − rβ) = βc∞ − rβc∞ = βc∞ − σ (ρc∞(β)) c∞ = βc∞ − βc∞ = 0.

Since Ker ρc∞ = LK(E)(c − 1) by Lemma 3.5, we have β − rβ = qβ(c − 1) for a
suitable qβ ∈ LK(E). Let us prove that qβ ∈ LK(E) and rβ ∈ G are uniquely
determined. Assume

β = q1(c− 1) + r1 = q2(c− 1) + r2;

then we have r1−r2 = (q2−q1)(c−1) ∈ LK(E)(c−1)∩G, which is 0 by Lemma 4.5.
Therefore r1 = r2 and ρc−1(q2 − q1) = (q2 − q1)(c− 1) = r1 − r2 = 0; since ρc−1 is
a monomorphism by Lemma 3.5, we have q1 = q2. �

Here are two specific applications of the Division Algorithm by c − 1, both of
which will be quite useful in the sequel.

Example 4.7. Since

cn = (1 + (c− 1))n =

n∑
j=0

(
n

j

)
(c− 1)j ,

by Theorem 4.6 we deduce qcn =
∑n
j=1

(
n
j

)
(c− 1)j , and rcn = 1.

Example 4.8. We will have need to multiply various elements of LK(E) on the
left by c−1. Let g = k1LK(E) + t1 +ct2 +c2t3 + · · ·+cs−1ts be an arbitrary element
of G. Then multiplying and collecting appropriate terms yields

(c− 1)g = k(c− 1)− t1 + c(t1 − t2) + c2(t2 − t3) + · · ·+ cs−1(ts−1 − ts) + csts.

So by the uniqueness part of the Division Algorithm, we get

q(c−1)g=k1LK(E), and r(c−1)g = −t1+c(t1−t2)+c2(t2−t3)+· · ·+cs−1(ts−1−ts)+csts.
Note in particular that the scalar part of r(c−1)g is 0.

Remark 4.9. If E = R1 is the rose with one petal c, then LK(E) ∼= K[x, x−1] via
c 7→ x. In such a case the above Division Algorithm with respect to c−1 corresponds
to the usual division by x− 1.

5. The Prüfer modules ULK(E),c−1

Let c be a basic closed path in E. By Lemmas 3.4(1) and 3.5, the element
c− 1 is neither a right zero divisor, nor left invertible. Therefore we can apply the
construction of the Prüfer module given in Section 2 for R = LK(E) and a = c− 1.
For efficiency, in the sequel we use the following notation.

ME,n,c−1 := MLK(E),n,c−1; ψE,i,j := ψLK(E),i,j ;

UE,c−1 := ULK(E),c−1; and ψE,i := ψLK(E),i.
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Most importantly for us, by Corollary 3.6 ME,1,c−1 = LK(E)/LK(E)(c − 1) is
simple, indeed, is isomorphic to the Chen simple module V[c∞].

For the sequel, it is useful to have a canonical representation of the elements of
the uniserial modules ME,n,c−1, n ≥ 1.

Proposition 5.1. Let c be a basic closed path in E, n ∈ N and x ∈ ME,n,c−1.
Then x can be written in a unique way as

x = g1 + g2(c− 1) + · · ·+ gn(c− 1)n−1 + LK(E)(c− 1)n

with the gi’s belonging to G. We call the displayed expression the G-representation
of x.

Proof. Assume x ∈ ME,n,c−1, and write x = y + LK(E)(c − 1)n with y ∈ LK(E).
Then invoking Theorem 4.6 n times we have y = q1(c−1)+g1, q1 = q2(c−1)+g2,...,
and qn−1 = qn(c− 1) + gn. Therefore

x = y + LK(E)(c− 1)n = g1 + g2(c− 1) + · · ·+ gn(c− 1)n−1 + LK(E)(c− 1)n,

where the elements gi, i = 1, ..., n, belong to G. Assume now x= g′1 + g′2(c − 1) +
· · · + g′n(c − 1)n−1 + LK(E)(c − 1)n, where g′i, i = 1, ..., n, belong to G. Then
(g1 − g′1) + (g2 − g′2)(c− 1) + · · ·+ (gn − g′n)(c− 1)n−1 belongs to LK(E)(c− 1)n.
Therefore g1 − g′1 belongs to LK(E)(c − 1) ∩ G = 0 (by Lemma 4.5), and hence
g1 = g′1. Since multiplication by c− 1 on the right is a monomorphism, we get that
(g2− g′2) + (g3− g′3)(c− 1) + · · ·+ (gn− g′n)(c− 1)n−2 belongs to LK(E)(c− 1)n−1;
therefore also g2−g′2 belongs to LK(E)(c−1)∩G = 0, and hence g2 = g′2. Repeating
the same argument we get gi = g′i for i = 1, ..., n. �

Example 5.2. If E = R1 and hence LK(E) ∼= K[x, x−1], then MR1,n,c−1
∼=

K[x, x−1]/〈(x− 1)n〉. For instance, the G representation of

x−4 + 2 + x+K[x, x−1](x− 1)3

can easily be shown to be

4− 3(x− 1) + 10(x− 1)2 +K[x, x−1](x− 1)3.

We are now in position to show that the modules ME,i,c−1, i ≥ 1, satisfy the
hypotheses of Propositions 2.2 and 2.4.

Proposition 5.3. For any basic closed path c in E, the equation

(c− 1)X = 1 + LK(E)(c− 1)n

has no solution in ME,n,c−1.

Proof. By Proposition 5.1, we have to verify that the following equation in the n
variables X1,..., Xn does not admit solutions in Gn (the direct product of n copies
of G):

(c− 1)(X1 +X2(c− 1) + · · ·+Xn(c− 1)n−1 +LK(E)(c− 1)n) = 1 +LK(E)(c− 1)n.

Assume on the contrary that Xi = gi (for i = 1, ..., n) is a solution. Let ki1LK(E)

be the scalar part of gi. Since (c− 1)gi = ki(c− 1) + g′i for a suitable g′i ∈ G whose
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scalar part is zero (see Lemma 4.8), we would have

1 + LK(E)(c− 1)n = (c− 1)(g1 + g2(c− 1) + · · ·+ gn(c− 1)n−1 + LK(E)(c− 1)n)

= g′1 + (g′2 + k1)(c− 1) + · · ·+ (g′n + kn−1)(c− 1)n−1 + LK(E)(c− 1)n.

By Proposition 5.1 the G-representation of each element of ME,n,c−1 is unique.
Therefore we would have that g′1 = 1LK(E) has nonzero scalar part, which yields a
contradiction. �

So Corollary 3.6 and Proposition 5.3 combine with Propositions 2.2 and 2.4 to
immediately yield the following key result.

Theorem 5.4. Let c be a basic closed path in E.

1) For each n ∈ N, the LK(E)-module ME,n,c−1 has a unique composition series,
with all composition factors isomorphic to V[c∞].

2) The Prüfer LK(E)-module UE,c−1 is uniserial and artinian (and not noether-
ian).

The left LK(E)-module UE,c−1 is generated by the elements

αi := ψE,i(1 + LK(E)(c− 1)i),

which satisfy

(c− 1)αi =

{
0 if i = 1,

αi−1 if i > 1.

Remark 5.5. By Proposition 5.3, the equation

(c− 1)X = 1 + LK(E)(c− 1)n

has no solution in ME,n,c−1. But identifying ME,n,c−1 with ψE,n,n+1(ME,n,c−1) in
ME,n+1,c−1, the same equation has the form

(c− 1)X = (c− 1) + LK(E)(c− 1)n+1,

which clearly admits the solution X = 1 + LK(E)(c − 1)n+1. This observation will
be crucial to study the injectivity of the Prüfer modules discussed in the following
section.

If c′ is a cyclic shift of the basic closed path c, then it is clear that V[c∞] = V[c′∞].
We conclude the section with a perhaps-not-surprising result which shows that the
cyclic shift of a basic closed path does not affect the isomorphism class of the
corresponding Prüfer module.

Proposition 5.6. Let c = e1e2 · · · en with n ≥ 2 be a basic closed path. Denote by ci
the basic closed path ei · · · ene1 · · · ei−1. Then the modules ME,m,c−1 and ME,m,c`−1
are isomorphic for all 1 ≤ ` ≤ n and m ∈ N≥1. In addition, the corresponding
Prüfer modules UE,c−1 and UE,c`−1 are isomorphic for all 1 ≤ ` ≤ n.

Proof. It is easy to verify that (c1 − 1)e1 · · · e`−1 = e1 · · · e`−1(c` − 1), and that
(c` − 1)e` · · · en = e` · · · en(c1 − 1). So the maps ϕ1,` : ME,m,c1−1 →ME,m,c`−1 and
ϕ`,1 : ME,m,c`−1 →ME,m,c1−1 given by

ϕ1,` : 1 + LK(E)(c1 − 1)m 7→ e1 · · · e`−1 + LK(E)(c` − 1)m, and
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ϕ`,1 : 1+LK(E)(c`−1)m 7→ (−1)m−1e` · · · en
m∑
i=1

(
m

i

)
(−1)m−ici−11 +LK(E)(c1−1)m

are well defined. Let us prove that they are inverse isomorphisms. Denote by r
both the cosets r + LK(E)(c1 − 1)m and r + LK(E)(c` − 1)m. Then

ϕ`,1 ◦ ϕ1,`(1) = ϕ`,1(e1 · · · e`−1)

= (−1)m−1c1

m∑
i=1

(
m

i

)
(−1)m−ici−11

= (−1)m−1
m∑
i=1

(
m

i

)
(−1)m−ici1

= (−1)m−1
(
(c1 − 1)m − (−1)m

)
= (−1)m−1(−(−1)m)

= 1.

Analogously

ϕ1,` ◦ ϕ`,1(1) = ϕ1,`

(
(−1)m−1e` · · · en

m∑
i=1

(
m

i

)
(−1)m−ici−11

)
= (−1)m−1e` · · · en

m∑
i=1

(
m

i

)
(−1)m−ici−11 e1 · · · e`−1

= (−1)m−1e` · · · ene1 · · · e`−1
m∑
i=1

(
m

i

)
(−1)m−ici−1`

= (−1)m−1
m∑
i=1

(
m

i

)
(−1)m−ici`

= (−1)m−1
(
(c` − 1)m − (−1)m

)
= (−1)m−1(−(−1)m)

= 1.

Again using the initial observation, it is straightforward to check the commutativity
of the appropriate diagrams, which gives the second statement. �

6. Conditions for injectivity of the Prüfer modules UE,c−1

Let E be any finite graph, and let c denote a basic closed path in E.

Of course the module UE,c−1 mimics in many ways the classical, well-studied
Prüfer groups from abelian group theory (see Example 2.6). It is well-known that
the Prüfer groups are divisible Z-modules, hence injective. With that observation
as motivation, we study in the sequel the question of whether the Prüfer modules
UE,c−1 for various basic closed paths c are injective LK(E)-modules. The discussion
will culminate in Theorem 6.4, characterizing the injectivity solely in terms of how
the basic closed path c sits in the graph E.
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Proposition 6.1. Let E be a finite graph, let c be a basic closed path in E based
at s(c) = v, and let UE,c−1 be the Prüfer module associated to c. Suppose that there
exists a cycle d 6= c which connects to v. Then UE,c−1 is not injective.

Proof. The set of those vertices of E which are connected to v contains the source
of d. Therefore by [2, Theorem 3.10], Ext1(V[d∞], V[c∞]) 6= 0. Utilizing Remark 2.5,
we get the exact sequence

0 // V[c∞]
∼=LK(E)α1

� � // UE,c−1 // // UE,c−1/LK(E)α1
∼= UE,c−1 // 0.

We have Hom(V[d∞], UE,c−1) = 0, because the only simple submodule of UE,c−1
is isomorphic to V[c∞] 6∼= V[d∞] (see Section 3). Consequently, the standard long

exact sequence for Ext1 gives that Ext1(V[d∞], UE,c−1) 6= 0, so that UE,c−1 is not
injective, as claimed. �

Example 6.2. (1) Let E = Rn be the graph with one vertex and n loops. If
n ≥ 2, then for any basic closed path c the Prüfer module UE,c−1 is not
injective. Indeed we can always find a loop different from c which connects
to s(c).

(2) If c is a basic closed path which is not a cycle, then the Prüfer module
UE,c−1 is not injective. Indeed there exists a cycle d such that c = αdβ
with α, β ∈ Path(E), and at least one of α, β is not a vertex. Clearly d is
connected to s(c).

By (2) of the previous example, it remains to study the injectivity of the Prüfer
modules associated to cycles. Suggested by notation used in [5], we give the follow-
ing.

Definition 6.3. Let E be a finite directed graph. A cycle c based at s(c) = v is
said to be maximal if there are no cycles in E other than cyclic shifts of c which
connect to v.

In particular any source cycle is maximal. We are now in position to state the
main result of the article, which characterizes when the Prüfer module UE,c−1 is
injective solely in terms of how the cycle c sits in the graph E.

Theorem 6.4. Let E be a finite graph and let c be a basic closed path in E. Let
UE,c−1 be the Prüfer module associated to c. Then UE,c−1 is injective if and only
if c is a maximal cycle.

In case UE,c−1 is injective, then

(1) UE,c−1 is the injective envelope of the Chen simple module V[c∞], and

(2) EndLK(E)(UE,c−1) is isomorphic to the ring K[[x]] of formal power series in
x.

The proof of one direction of Theorem 6.4 has already been established: if c
is not a maximal cycle then UE,c−1 is not injective by Proposition 6.1 (see also
Example 6.2(2)). Establishing the converse implication will be a more difficult
task, and will take up the remainder of this article. The strategy is to start by
reducing to the case when c is a source loop, and then subsequently prove the result
in this somewhat more manageable configuration.
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7. Reduction from the general case to the source loop case

We assume now that LK(E) is the Leavitt path algebra of a finite graph E
which contains a maximal cycle c based at v. Then, as noted in Remark 4.3, Ac is
a finite set. We show that we can reduce to the case where c is a source cycle (i.e.,
c is a cycle for which Ac = ∅).

Let z ∈ E0 be a source vertex which is the source of a path entering on the
cycle c; set ε := 1 − z. By [5, Lemma 4.3], the Leavitt path algebras LK(E) and
S = εLK(E)ε ∼= LK(E \ z) are Morita equivalent. Note that c is a cycle in the
graph E \ z. Since

(1) c− 1 is neither a right zero divisor nor left invertible in LK(E \ z),
(2) (c− 1)ε = ε(c− 1), and
(3) (c− 1)(1− ε) = −(1− ε),

we can apply Proposition 2.7 to yield that the Prüfer LK(E)-module UE,c−1 =
lim−→n

ME,n,c−1 corresponds under the equivalence to the Prüfer LK(E \ z)-module

UE\z,c−1 = lim−→n
ME\z,n,c−1. Moreover, the original Prüfer LK(E)-module UE,c−1

is the injective envelope of the Chen simple LK(E)-module V[c∞] if and only if
the Prüfer LK(E \ z)-module UE\z,c−1 is the injective envelope of the Chen simple
LK(E \ z)-module V[c∞].

Thus by means of a finite number of ”source eliminations” we then may reduce
E to a subgraph which contains c, and in which c is a source cycle, for which the
Prüfer modules correspond.

The second step is to show that we can indeed further reduce to the case in which
c is a source loop. Assume LK(E) is a Leavitt path algebra with a source cycle c
based on the vertex v. Assume c has length > 1 (i.e., that c is not a source loop). Let
v := v1, v2, ..., vn be the vertices of the cycle c and U = E0\{v2, ..., vn}. Consider the
idempotent ε :=

∑
u∈U u. As proved in [5, Lemma 4.4], LK(E)εLK(E) = LK(E)

and therefore LK(E) is Morita equivalent to S := εLK(E)ε. Since

(1) c− 1 is neither a right zero divisor nor left invertible,
(2) (c− 1)ε = ε(c− 1), and
(3) (c− 1)(1− ε) = −(1− ε),

by Proposition 2.7 the uniserial left LK(E)-module ME,n,c−1 corresponds in the
Morita equivalence to MS,n,ε(c−1).

Let F be the graph (F 0, F 1) defined by:

• F 0 = E0 \ {v2, ..., vn};
• s−1F (w) = s−1E (w) for each w 6= v;

• s−1F (v) = {d} ∪
n⋃
i=1

{fg : g ∈ s−1E (vi), r(g) /∈ {v1, ..., vn}} where d is a loop

with r(d) = v and the fg’s are new edges with r(fg) = r(g).

Then, as described in [5], the map θ : LK(F )→ LK(E) defined by

• θ(w) = w for each w ∈ F 0,
• θ(e) = e for all e with s(e) ∈ F 0 \ {v},
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• θ(fg) = e1 · · · ei−1g for each g ∈ s−1E (vi),
• θ(d) = e1 · · · en = c,

defines an isomorphism between LK(F ) and the corner S = εLK(E)ε.

We now show that the left LK(F )-modules MS,n,ε(c−1) and MF,n,(d−1) are iso-
morphic. Indeed, by Remark 4.3 and Proposition 5.1, any element x in ME,n,c−1
can be written in a unique way as

x = g1 + g2(c− 1) + · · ·+ gn(c− 1)n−1 + LK(E)(c− 1)n,

with gj = kj1LK(E) + tj,1 where ki ∈ K and tj,1 is a K-linear combination of the
paths e2 · · · en, ..., en−1en, en. Therefore, since εeiei+1 · · · en = 0 for each i > 1, the
elements of HomLK(E)(LK(E)ε,ME,n,c−1) = εME,n,c−1 ∼= MS,n,ε(c−1) are of the
type

k1ε+ k2ε(c− 1) + · · ·+ knε(c− 1)n−1 + εLK(E)(c− 1)n

with k1, ..., kn ∈ K. Since

k1ε+k2ε(c−1)+· · ·+knε(c−1)n = θ
(
k11LK(F )+k2(d−1LK(F ))+· · ·+kn(d−1LK(F ))

n
)
,

the LK(F )-module MS,n,ε(c−1) coincides with MF,n,d−1. Since Morita equivalence
respects direct limits, the Prüfer module UE,c−1 = lim−→n

ME,n,c−1 corresponds to

the Prüfer module UF,d−1 = lim−→n
MF,n,d−1. Moreover, the Prüfer LK(E)-module

UE,c−1 is the injective envelope of the Chen simple LK(E)-module V[c∞] if and only
if the Prüfer LK(F )-module UF,d−1 is the injective envelope of the Chen simple
LK(F )-module V[d∞].

Finally, since corresponding modules in a Morita equivalence have the same
endomorphism ring, summarizing the discussion of this section, we have obtained
the following.

Proposition 7.1. In order to establish Theorem 6.4, it suffices to prove that, when-
ever c is a source loop in E, then

(1) UE,c−1 is injective, and

(2) EndLK(E)(UE,c−1) ∼= K[[x]].

8. Establishing the main result: the case when c is a source loop

Having in the previous section reduced the verification of Theorem 6.4 to the
case where c is a source loop, our aim in this section is to establish precisely that.

So suppose E is a graph in which there is a source loop c based at the vertex
v = s(c). In this case the Chen simple module V[c∞] has K-dimension 1, i.e V[c∞] =
{kc∞ | k ∈ K}; moreover Ac = ∅, and hence G is the K-vector subspace of LK(E)
generated by 1LK(E) (recall Definition 4.1). By Proposition 5.1 every element of
ME,n,c−1 can be written in a unique way as

x = k1 + k2(c− 1) + · · ·+ kn(c− 1)n−1 + LK(E)(c− 1)n

with the ki’s belonging to K. Therefore the elements of UE,c−1 can be written in a
unique way as K-linear combinations of the αi = ψE,i

(
1 + LK(E)(c− 1)i

)
, i ≥ 1.
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Intuitively, the reason that reduction to the source loop case will provide a more
manageable situation than the general case is because the coefficients on each of
the (c− 1)i terms in the previous display come from K (since G = K in this case),
and as such these coefficients are central in LK(E).

Proposition 8.1. Let c be a source loop in E. Then

(1) LK(E)(c− 1)n is the two-sided ideal AnnLK(E)(ME,n,c−1).
(2) The left LK(E)-module ME,n,c−1 is also a right LK(E)-module, and

rm = mr ∀r ∈ LK(E),m ∈ME,n,c−1.

Thus the maps ψE,i,j : ME,i,c−1 → ME,j,c−1 are also right LK(E)-module
monomorphisms for any 1 ≤ i ≤ j.

(3) AnnLK(E)(UE,c−1) =
⋂
n≥1 LK(E)(c − 1)n. and it coincides with the two-

sided ideal 〈E0 \ {s(c)}〉;
(4) The left LK(E)-module UE,c−1 is also a right LK(E)-module and ψE,n :

ME,n,c−1 → UE,c−1 is a right LK(E)-module monomorphism. Moreover
rαi = αir for each r ∈ LK(E) and i ≥ 1.

(5) u ∈ UE,c−1 belongs to LK(E)αi if and only if (c− 1)iu = 0.

Proof. (1) If r ∈ AnnLK(E)(ME,n,c−1), then r(1 +LK(E)(c− 1)n) = 0 in ME,n,c−1
and hence r belongs to LK(E)(c − 1)n. Conversely, let r ∈ LK(E) and m ∈
ME,n,c−1. Since m = h1 + h2(c − 1) + · · · + hn(c − 1)n−1 + LK(E)(c − 1)n where
each hi ∈ K (using that c is a source loop; see the previous observation), we get

r(c− 1)nm = r(c− 1)n(h1 + h2(c− 1) + · · ·+ hn(c− 1)n−1 + LK(E)(c− 1)n)

= h1r(c− 1)n + h2r(c− 1)n+1 + · · ·+ hnr(c− 1)2n−1 + LK(E)(c− 1)n

= 0

in ME,n,c−1 = LK(E)/LK(E)(c − 1)n. (The point here is that each hi commutes
with expressions of the form r(c − 1)j because hi ∈ K.) Hence LK(E)(c − 1)n ≤
AnnLK(E)(ME,n,c−1).

(2) Since LK(E)(c− 1)n is a two-sided ideal by point (1), then ME,n,c−1 is also
a right LK(E)-module via the usual action. Let r ∈ LK(E) and m ∈ ME,n,c−1;
then

r = k1 + k2(c− 1) + · · ·+ kn(c− 1)n−1 + r′(c− 1)n and

m = h1 + · · ·+ hn(c− 1)n−1 + LK(E)(c− 1)n,

where h1, ..., hn, k1, ..., kn ∈ K and r′ ∈ LK(E). Since LK(E)(c − 1)n is a two-
sided ideal we get rm = mr. The right LK(E)-linearity of the maps ψE,i,j for each
1 ≤ i ≤ j follows easily.

(3) Since UE,c−1 =
⋃
n≥1 LK(E)αn and LK(E)αn ∼= ME,n,c−1, the first equality

follows from (1). For the second, we start by noting that E0 \{s(c)} is the set of the
vertices contained in AnnLK(E)(UE,c−1). Indeed, s(c) = 1 + (1 − s(c))(c − 1) does
not belong to LK(E)(c− 1), and hence neither to AnnLK(E)(UE,c−1). On the other
hand, any vertex w 6= s(c) belongs to

⋂
n≥1 LK(E)(c − 1)n, because the equality

w = −w(c− 1) can be iterated to produce the sequence

w = −w(c− 1) = w(c− 1)2 = · · · = (−1)nw(c− 1)n = · · · .
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In [12, Theorem 4], Rangaswamy proved that an arbitrary nonzero two sided ideal
I in LK(E) (for E a finite graph) is generated by the union of two sets:

(i) I ∩ E0 (i.e., the vertices in I), together with
(ii) a (possibly empty) set of mutually orthogonal elements of I of the form

u +
∑n
i=1 kig

i where u ∈ E0 \ I ∩ E0, k1, ..., kn belong to K with kn 6= 0,
and g is a cycle without exits in E0 \ I ∩ E0 based at the vertex u.

In our case we have

• AnnLK(E)(UE,c−1) ∩ E0 = E0 \ {s(c)}, and

• c is a cycle in E0 \ (I ∩ E0) = {s(c)}, and is the only cycle in the only
cycle based in s(c) (because c is a source loop), and c has no exits in {s(c)}
(because such an exit in {s(c)} would necessarily be a second loop at s(c),
contrary to c being a source loop).

Therefore AnnLK(E)(UE,c−1) is generated by E0 \ {s(c)} and possibly a single el-

ement of the form s(c) +
∑n
i=1 kic

i with kn 6= 0. Assume that s(c) +
∑n
i=1 kic

i ∈
AnnLK(E)(UE,c−1) where kn 6= 0. We have

s(c) = 1 + (−1)n−1(1− s(c))(c− 1)n

and, by applying Lemma 4.7 to each ci and then collecting like powers of c− 1, we
see
n∑
i=1

kic
i =

n∑
i=1

ki + (

n∑
i=1

(
i

1

)
ki)(c− 1) + · · ·+ (

n∑
i=j

(
i

j

)
ki)(c− 1)j + · · ·+ kn(c− 1)n.

Therefore, using the displayed equation (and separating out the leading 1 term),
we get that s(c) +

∑n
i=1 kic

i is equal to

1+

n∑
i=1

ki+

n∑
i=1

(
i

1

)
ki(c−1)+··+

n∑
i=j

(
i

j

)
ki(c−1)j+··+kn(c−1)n+(−1)n−1(1−s(c))(c−1)n.

Since
(
1− s(c)

)
(c− 1) = −

(
1− s(c)

)
, the final summand (−1)n−1(1− s(c))(c− 1)n

coincides with (−1)m+n−1(1 − s(c))(c − 1)m+n for each m ≥ 0, and so it be-
longs to AnnLK(E)(UE,c−1). Therefore, the element s(c) +

∑n
i=1 kic

i belongs to
AnnLK(E)(UE,c−1) if and only if

1 +

n∑
i=1

ki +

n∑
i=1

(
i

1

)
ki(c− 1) + · · ·+

n∑
i=j

(
i

j

)
ki(c− 1)j + · · ·+ kn(c− 1)n

belongs to AnnLK(E)(UE,c−1). In such a situation, the displayed element must
annihilate in particular the elements α1, ..., αn. By successively multiplying this
equation in turn by α1, α2, . . . , αn, and using the displayed observation made prior
to Remark 5.5, we get that

0 = 1 +

n∑
i=1

ki = · · · =
n∑
i=j

(
i

j

)
ki = · · · = kn,

which contradicts that kn 6= 0.
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(4) The first claim follows immediately by point (2). Moreover,

rαi = rψE,i(1 + LK(E)(c− 1)i) = ψE,i(r + LK(E)(c− 1)i)

= ψE,i(1 + LK(E)(c− 1)i)r = αir

for each r ∈ LK(E) and i ≥ 1.

(5) Any u ∈ UE,c−1 can be written as

u = k1α1 + · · ·+ knαn

for a suitable n ≥ 1. Since ME,j,c−1 ∼= LK(E)αj , we have

(c− 1)iu = 0 ∀i ≥ n

and, if i < n, then

(c− 1)iu = ki+1(c− 1)iαi+1 + · · ·+ kn(c− 1)iαn = ki+1α1 + · · ·+ knαn−i.

Therefore (c − 1)iu = 0 if and only if ki+1 = · · · = kn = 0 if and only if u ∈
LK(E)αi. �

Remark 8.2. We note that although each two-sided ideal LK(E)(c − 1)n is not
graded (because it contains neither c nor 1), the intersection J=

⋂
n∈N LK(E)(c−1)n

is graded (because it has been shown to be generated as a two-sided ideal by a set of
vertices).

Proposition 8.3. Let c be a source loop. For any j ∈ AnnLK(E)(UE,c−1) there
exists n ∈ N such that c∗nj = 0.

Proof. By Proposition 8.1(3), any nonzero j ∈ AnnLK(E)(UE,c−1) is a K-linear
combination of elements of the form αβ∗wγδ∗ 6= 0, with α, β, γ and δ real paths and
w 6= s(c) a vertex in E. Let us concentrate on one of these elements. If αβ∗w = w
then c∗αβ∗wγδ∗ = c∗wγδ∗ = 0. If αβ∗w = β∗w 6= w then s(β∗) = r(β) 6= s(c),
otherwise β would be a path which starts in w 6= s(c) and ends at s(c), contrary to
c being a source loop; then c∗αβ∗wγδ∗ = c∗β∗wγδ∗ = 0.

In all the other cases α = ctη1 · · · ηs with c 6= η1 ∈ E1, t ≥ 0 and s ≥ 1. Then

(ct+1)∗αβ∗wγδ∗ = (ct+1)∗ctη1 · · · ηsβ∗wγδ∗ = c∗η1 · · · ηsβ∗wγδ∗ = 0.

Since j is a finite sum of terms of the form αβ∗wγδ∗, we achieve the desired con-
clusion. �

Proposition 8.4. For any ` ∈ LK(E)\AnnLK(E)(UE,c−1) and for any u ∈ UE,c−1,
there exists X ∈ UE,c−1 such that `X = u. That is, u is divisible by any element in
LK(E) \AnnLK(E)(UE,c−1).

Proof. Let us consider u ∈ UE,c−1. Then, as observed at the beginning of this
section, we have

u = k1αn + k2αn−1 + · · ·+ knα1

where ki ∈ K. Since ` /∈ AnnLK(E)(UE,c−1), by Proposition 8.1 there exists m ∈ N
such that ` is not right-divisible by (c− 1)m. Therefore

` = h1 + h2(c− 1) + · · ·+ hm(c− 1)m−1 + qm(c− 1)m



22 GENE ABRAMS, FRANCESCA MANTESE, AND ALBERTO TONOLO

with hi ∈ K for i = 1, ...,m, qm ∈ LK(E) and

(h1, ..., hm) 6= (0, 0, ..., 0).

Let s be the minimum index such that hs+1 6= 0. It is not restrictive to assume
m ≥ n+ s: otherwise we apply the division algorithm to qm, qm+1, ... until we get

` = h1 + h2(c− 1) + · · ·+ hm(c− 1)m−1 + · · ·+ hn+s(c− 1)n+s−1 + qn+s(c− 1)n+s.

We claim that the equation `X = u has solutions in LK(E)αn+s, as follows. Set
X = X1αn+s + · · ·+Xn+s−1α2 +Xn+sα1. We solve

`
(
X1αn+s + · · ·+Xn+s−1α2 +Xn+sα1

)
= u,

that is(
h1+· · ·+hm(c−1)m−1+qm(c−1)m

)(
X1αn+s+· · ·+Xn+sα1

)
= k1αn+· · ·+knα1.

This yields the following equations in the field K:

h1X1 = 0, ...,

s∑
i=1

hiXs+1−i = 0,

s+1∑
i=1

hiXs+2−i = k1,

s+2∑
i=1

hiXs+3−i = k2, ...,

s+n∑
i=1

hiXs+n+1−i = kn.

Since 0 = h1 = · · · = hs we get

hs+1X1 = k1, hs+1X2 + hs+2X1 = k2, ...,

s+n∑
i=s+1

hiXs+n+1−i = kn

from which we obtain the values of X1, ..., Xn. The values of Xn+1, ..., Xn+s can
be chosen arbitrarily. �

Corollary 8.5. If 0 6= u ∈ UE,c−1 then (c∗)mu 6= 0 for all m ∈ N.

Proof. Since c /∈ LK(E)(c−1) ⊇ AnnLK(E)(UE,c−1), by Proposition 8.4 there exists
0 6= x ∈ UE,c−1 with cx = u. Since cs(c) = c we may assume that s(c)x = x. Then
0 6= x = s(c)x = c∗cx = c∗u. Repeating the same argument for 0 6= c∗u ∈ UE,c−1,
we get (c∗)2u 6= 0; iterating, we get the result. �

Proposition 8.6. Let c be a source loop in E. Let If be a finitely generated left ideal
of LK(E), and let ϕ : If → UE,c−1 be a LK(E)-homomorphism. Then there exists

ψ : LK(E)→ UE,c−1 such that ψ|If = ϕ. Consequently, Ext1(LK(E)/If , UE,c−1) =
0.

Proof. It has been established in [3] that LK(E) is a Bézout ring, i.e., that every
finitely generated left ideal of LK(E) is principal. So If = LK(E)` for some ` ∈ If .
Assume on one hand that ` ∈ AnnLK(E)(UE,c−1), and hence If ≤ AnnLK(E)(UE,c−1).
By Proposition 8.3, any element of AnnLK(E)(UE,c−1) is annihilated by a suitable
c∗n. Further, c∗nu 6= 0 for any 0 6= u ∈ UE,c−1 by Corollary 8.5. Thus in this case
we must have HomLK(E)(If , UE,c−1) = 0, so that ϕ = 0 and the conclusion follows
trivially.
Assume on the other hand that ` /∈ AnnLK(E)(UE,c−1). By Proposition 8.4, there
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exists x ∈ UE,c−1 for which `x = ϕ(`). Let ψ : LK(E) → UE,c−1 be the extension
of the map defined by setting ψ(1) = x. Then, for each i = ri` ∈ If , we have

ψ(i) = ψ(ri`) = ri`ψ(1) = ri`x = riϕ(`) = ϕ(ri`) = ϕ(i),

which establishes the desired conclusion in this case as well.
The final statement is then immediate. �

A submodule N of a module M is pure if for each finitely presented module F ,
the functor Hom(F,−) preserves exactness of the short exact sequence 0 → N →
M → M/N → 0. Modules that are injective with respect to pure embeddings are
called pure-injective.

By [11, Lemma 4.2.8], a module which is linearly compact over its endomor-
phisms ring is pure-injective. We will prove that UE,c−1 is artinian over the ring
End(UE,c−1) and therefore linearly compact.

Proposition 8.7. Let E be a finite graph, and c a source loop in E. Then the
endomorphism ring of the left LK(E)-module UE,c−1 is isomorphic to the ring of
formal power series K[[x]].

Proof. Let ϕ ∈ End(UE,c−1). Since

(c− 1)iϕ(αi) = ϕ
(
(c− 1)iαi

)
= ϕ(0) = 0,

by Proposition 8.1 ϕ(αi) belongs to LK(E)αi. Therefore

ϕ(αi) = h1,iαi + · · ·+ hi,iα1.

Since

h1,iαi + · · ·+ hi,iα1 = ϕ(αi) = ϕ((c− 1)αi+1) = (c− 1)ϕ(αi+1)

= (c− 1)(h1,i+1αi+1 + · · ·+ hi,i+1α2 + hi+1,i+1α1)

= h1,i+1αi + · · ·+ hi,i+1α1,

we get hj,i+1 = hj,i =: hj for each 1 ≤ j ≤ i. Denote by Hϕ(x) the formal power
series

∞∑
j=1

hjx
j−1.

It is easy to check that the map ϕ 7→ Hϕ(x) defines a ring monomorphism Φ between

End(UE,c−1) and K[[x]]. Given any formal power series H(x) =

∞∑
j=1

hjx
j−1, setting

ϕH(αi) = h1αi + · · ·+ hiα1

one defines an endomorphism of UE,c−1. Indeed

(c− 1)ϕH(αi+1) = (c− 1)(h1αi+1 + · · ·+ hiα2 + hi+1α1)

= h1αi + · · ·+ hiα1 + hi+10

= ϕH(αi) = ϕH((c− 1)αi+1). �
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Corollary 8.8. Any endomorphism of UE,c−1 is the right product by a formal power

series

∞∑
j=1

hj(c− 1)j−1 with coefficients hj ∈ K.

Proof. Following the notation of Proposition 8.7, the endomorphism ϕH associated
to the formal power series H =

∑∞
j=1 hjx

j−1 sends αi to

h1αi + · · ·+ hiα1 = (h1 + h2(c− 1) + · · ·+ hi(c− 1)i−1)αi

= αi(h1 + h2(c− 1) + · · ·+ hi(c− 1)i−1),

where the latter equality follows by point (4) of Proposition 8.1. Since αi(c− 1)j =
(c− 1)jαi = 0 for each j ≥ i, we can define

αi

∞∑
j=1

hj(c− 1)j−1 := αi(h1 + h2(c− 1) + · · ·+ hi(c− 1)i−1) = ϕH(αi). �

Proposition 8.9. Let E be a finite graph, and c a source loop in E. Then UE,c−1 is
pure-injective. Consequently, if (Nα, fα,β) is a direct system of left LK(E)-modules

and LK(E)-homomorphisms, then Ext1(lim−→Nα, UE,c−1) = lim←−Ext1(Nα, UE,c−1).

Proof. The left LK(E)-module UE,c−1 is the union of its submodules {LK(E)αi | i ≥
1}. Let T denote the endomorphism ring End(UE,c−1). By Corollary 8.8, LK(E)αi
is a right T -submodule of UE,c−1 for each i ≥ 1. We show that these are the unique
right T -submodules of UE,c−1.

If N is a finitely generated T -submodule of UE,c−1, let iN be the smallest natural
number i such that N ≤ LK(E)αi. If iN = 1, LK(E)αiN = LK(E)α1 is a one
dimensional K-vector space and hence a simple T -module. If iN ≥ 2, consider
n ∈ N \ LK(E)αiN−1. Then

n = k1αiN + · · ·+ kiNα1 = αiN (k1 + · · ·+ kiN (c− 1)iN−1)

with k1 6= 0. Again invoking Corollary 8.8, let
∑∞
j=1 hj(c− 1)j−1 be the inverse of

k1 + · · ·+ kiN (c− 1)iN−1 in K[[c− 1]], which exists as k1 6= 0. Then

n

∞∑
j=1

hj(c− 1)j−1 = αiN

and hence N = LK(E)αiN .

If on the other hand N is not finitely generated, write N = lim−→Nλ, where the
Nλ are the finitely generated right T -submodules of N . For any λ, by the previous
paragraph, there exists jλ such that Nλ = LK(E)αjλ . Since N 6= Nλ for any λ, the
sequence (jλ)λ is unbounded and so N = UE,c−1.

Thus, since {LK(E)αi : i ≥ 1} has been shown to be the lattice of the proper
right T -submodules of UE,c−1, we conclude that UE,c−1 is an artinian right T -
module and hence linearly compact. By [11, Lemma 4.2.8] we get that the left
LK(E)-module UE,c−1 is pure-injective. (The quoted result says: If a module is
linearly compact over its endomorphism ring, then it is algebraically compact and
hence pure-injective.) Therefore we may invoke [9, Lemma 3.3.4] to conclude that
the functor Ext1(−, UE,c−1) sends direct limits to inverse limits. �
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Proposition 8.10. Let E be a finite graph with source loop c. Then the Prüfer
module UE,c−1 is injective. Indeed, UE,c−1 is the injective envelope of LK(E)α1

∼=
V[c∞].

Proof. In order to check the injectivity of UE,c−1, we apply Baer’s Lemma. We
need only check that UE,c−1 is injective relative to any short exact sequence of
the form 0 → I → LK(E) → LK(E)/I → 0. This is equivalent to showing that
Ext1LK(E)(LK(E)/I, UE,c−1) = 0 for any left ideal I of LK(E). Write I = lim−→ Iλ,
where the Iλ are the finitely generated submodules of I. It is standard that
LK(E)/I = lim−→LK(E)/Iλ. So now applying the functor Ext1LK(E)(−, UE,c−1), we
get

Ext1LK(E)(LK(E)/I, UE,c−1) = Ext1LK(E)(lim−→LK(E)/Iλ, UE,c−1)

= lim←−Ext1(LK(E)/Iλ, UE,c−1) (by Proposition 8.9)

= 0 (by Proposition 8.6).

Since LK(E)α1 is an essential submodule of UE,c−1, the last statement follows. �

Proof of Theorem 6.4(1). This now follows immediately from Propositions 7.1,
8.7, and 8.10.
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