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ABSTRACT. Let Lk (E) denote the Leavitt path algebra associated to the finite
graph E and field K. For any closed path ¢ in E, we define and investigate
the uniserial, artinian, non-noetherian left L i (E)-module Ug .—1. The unique
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Keywords: Injective module; Leavitt path algebra; Chen simple module;
Priifer module.

2010 Mathematics Subject Classification: 16599

1. INTRODUCTION

Leavitt path algebras have a well-studied, extremely tight relationship with their
projective modules. On the other hand, very little is heretofore known about the
structure of the injective modules over Lx (E). While the self-injective Leavitt path
algebras have been identified in [7], we know of no study of the structure of injective
modules over Leavitt path algebras (other than those arising as left ideals).

We initiate such a study in this article. For each closed path c in F we construct
the Prifer module Ug 1, recalling the classical construction of Priifer abelian
groups. These modules Ug ._1 are Priifer also in the sense of Ringel [13]; indeed,
they admit a surjective locally nilpotent endomorphism (see Remark 2.5). In our
main result (Theorem 6.4), we give necessary and sufficient conditions for the in-
jectivity of Ug c—1. In this case, Ug,—1 is precisely the injective hull of the Chen
simple module V];~]. Our construction is similar to that established by Matlis [10]
for modules over various commutative noetherian rings, but in a highly noncommu-
tative, non-noetherian setting.

Perhaps surprisingly, achieving Theorem 6.4 relies on a set of highly nontrivial
tools, including: some general results about uniserial modules over arbitrary asso-
ciative unital rings; an explicit description of a projective resolution for Vi.<); a
Division Algorithm in L (E) with respect to the element ¢ — 1; the fact that every
Leavitt path algebra is Bézout (i.e., that every finitely generated one-sided ideal is
principal); and two types of Morita equivalences for Leavitt path algebras (one of
which relates each graph having a source cycle to a graph having a source loop, the
other of which eliminates source vertices).

The article is organized as follows. In Section 2 we construct what we call
“Priifer-like modules” over arbitrary unital rings. In Section 3 we remind the reader
1
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of the construction of the Leavitt path algebra Lk (F) for a directed graph E and
field K, and describe the Chen simple Lg(FE)-module Vi, corresponding to an
infinite path p arising from FE. Specifically, if ¢ is a closed path in E, we may build
the Chen simple module Vj.~j. Continuing our focus on closed paths ¢ in F, in
Section 4 we describe a Division Algorithm for arbitrary elements of Ly (E) by the
specific element ¢ — 1. With the discussion from these three sections in hand, we
are then in position in Section 5 to construct the Priifer-like L (E)-module Ug .—1
corresponding to ¢ — 1. This sets the stage for our aforementioned main result
(Theorem 6.4), which we present in Section 6. While one direction of the proof
of Theorem 6.4 is not difficult, establishing the converse is a much heavier lift; we
complete the proof in Sections 7 and 8. Along the way, we will establish in Section 8
that the endomorphism ring of Ug .1 is isomorphic to the ring K[[c — 1]] of formal
power series in ¢ — 1 with coefficients in K, exactly as the ring of p-adic integers is
isomorphic to the endomorphism ring of Z(p>).

Unless otherwise stated, all modules are left modules. The symbol N denotes
the set {0,1,2,...}.

2. PRUFER-LIKE MODULES

In this section we develop a general ring-theoretic framework for the well-known
Priifer abelian groups Z(p>°). This framework will provide us with the appropriate
context in which to construct the Ly (E)-modules Ug 1.

Let R be an associative ring with 1 # 0 and a € R. For the remainder of the
section we assume that a is not a right zero divisor (i.e., that right multiplication
Pa : R — R viar — ra is a monomorphism of left R-modules), and that a is not left
invertible (i.e., that Ra # R). For each integer n € N>, we define the left R-module

Manya = R/Ra",

and we denote by 7, , the canonical projection R — Mg, ,. By the standing
assumptions on a, each Mg, , is a nonzero cyclic left R-module generated by
14 Ra™. Moreover, for each 1 < ¢ < £ we have the following monomorphism of left
R-modules
wR,i,Z :MRpia— Mgy, via 1+ Ra' — o'~" + Ra.

The cokernel of 1g ; ¢ is equal to Mg 4./R(a*~" + Ra’) = (R/Ra’)/(Ra*~?/Ra’) =
MR —ia-

The left R-modules Mg, o can be recursively characterized in a categorical way.
Proposition 2.1. For each n > 2 the following diagram of left R-modules is a
pushout.

R—"™ R

nn—l,aJ/ lrln,a
d’R,nfl,n

MR,nfl,a E— MR7n,a~

Proof. Clearly we have 1,4 0 po = YRn—1m © Mn—1.4- Let f: R — X and g :
Mpg n—1,0 = X be two homomorphisms of left R-modules, with gon,—1,4 = f o pa.
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It is easy to check that setting h(1 + Ra™) = f(1) defines a left R-homomorphism
h:Mpgunq— X such that homn,,=fand hoYrn_1n =g O

For any 1 < ¢ < £, using the monomorphism g ; ¢ allows us to identify Mg ; o
with its image submodule inside Mg ¢ 4.

Proposition 2.2. Suppose a € R has these two properties:
(1) MRp1.q is a simple left R-module, and
(2) the equation aX =1+ Ra® has no solution in MRp,iq for each 1 < i < n.

Then the left R-module Mg ,, o is uniserial of length n. Specifically, M o has the
unique composition series

0< Ime,l,n <--- < Ime,n—l,n < MR,n,a )

with all the composition factors isomorphic to Mg 1,4

Proof. By induction on n.
Let n = 1. By hypothesis, Mg 1, is simple and hence is uniserial of length 1, and
the only composition series is

0< MR,l,a-

Now assume that n > 1. By induction, Mg 1,4 ,..., Mg n—1,, are uniserial,
0< Ime,l,n—l << Imd)R,n—Z,n—l < MR,n—l,a

is the only composition series of Mg ,_1,4, and all composition factors are isomor-
phic to Mg 1 4. For clarity, in the sequel we denote by H; the submodule Im ¢ g ; »
of MR p,q for each 1 <i < n. Since H; = Imyp; 1 foreach 1 <i <n —1 and
Hy 1= Mprn 1,4, then

O<Hi<Hy<---<H,_1

is the unique composition series of H,_1, and all the composition factors are iso-
morphic to Mg 1,4. To conclude the proof, we show that if 0 # L is a submodule
of Mpn,q, then either L = Mg, ,, or otherwise L < H,,_;, so that L = H; for
a suitable 1 < 4 < n — 1. Assume on the contrary that both L # Mg, , and
L £ H,_1. Since then H,,_1 < H,_1+ L, and the quotient Mg, o/H,—1 = Mp 1.4
is simple, we have H,,_1 + L = Mg, o and H,_ is not contained in L. Therefore

Mpno/(LNHy_1) = (Hy-1+L)/(LNHy—1) = Hyp1/(LNHy—1)®L/(LNH,_1).

The left R-module LN H,,_; is properly contained in H,_; and hence equal to some
Hj for a suitable 0 < j < n — 1. Then

Mpn—ja = Mpyo/Hj=L/Hj® Hy_1/H; = L/H; ® Mpn—1-j,a-

Since the direct summands L/H; and Mg ,—1—;, are not zero for each 0 < j <
n — 1, then Mg ;. is not indecomposable and hence not uniserial. Therefore, by
the induction hypothesis, necessarily 5 = 0 and we get Mg, , = L ® H,—1 with
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L = Mg ,,. Consider the diagram

Pa

0 R

nn,—l‘al lﬂn‘a
o

VYR,n—1,n

0—— Mrpn-1a——Mrpno——L=Mpr1,—0 ;

since the last row splits, there exists the dotted arrow ¢ such that ¢ o pg = 7,—1,4.
Therefore X = ¢(1) is a solution of the equation aX = 1+ Ra""! in Mg 1,4, a
contradiction to the hypothesis. |

The maps ¥r;; : MRrio — MR ja, 1+ Ra' — a7+ Ra’, 1 < i < j, define a
direct system of monomorphisms {Mpg ; o, Vr,i; }i<;. (Here we define a® = 1.)

Definition 2.3. The a-Priifer module Ug q is the direct limit

Ura = Wm{MRp.ia, VR,ij}ti<i-
We denote by ¥r; : Mgsi,q — Ur,a, @ > 1, the induced monomorphisms.

Under the assumptions of Proposition 2.2 the, module Ug , is generated by the
elements «; := g (1 + Ra'), i > 1. Clearly, Mg, = Ra; < Ug,q, and

0 ifi=1,
aty; = o
a1 ifi> 1.

Proposition 2.4. If Mg, o is uniserial of length n for each n > 1, then the module
URr,q is uniserial and artinian (and not noetherian).

Proof. We show that, if 0 < N < Ug 4, then either N = Ra; for a suitable j € N>q,
or N = Ug,. If N is finitely generated, since Ur , = |J; Ro; there exists a minimal
integer j > 1 such that N < Ra; < Ug 4 in particular Ug , is not finitely generated
and hence not noetherian. Since, by Proposition 2.2, Ro; is uniserial and its non-
zero submodules are the Ray for 1 < ¢ < j, we conclude N = Ra;.

If N is not finitely generated, write N = lignN \, wWhere the N, are the finitely
generated submodules of N. For any A, by the previous paragraph, there exists jx
such that Ny = Ra;,. Since N # Ny for any A, the sequence (j))x is unbounded,
so that IV contains Ray for every £ € N, and so N = Ug,.

Hence {Re; | i € N>1} is the lattice of the proper submodules of Uy ,. It is totally
ordered and so Ug q is uniserial. Since any Roy; is of finite length, we conclude that
Ug,q is artinian. O

Remark 2.5. Considering the direct limit of the sequences

VR,ie
0 MRiq Mpeo—Mpro—ijo—0, LNy

we get the short exact sequence

YR, PR,
0—— MR,i,a UR,a UR,a 0.

Therefore all the proper quotients of Ug, are isomorphic to Ugq. Fach ¢r; is
a surjective, locally nilpotent endomorphism with kernel of finite length: therefore
Ur,q is a Prifer module also in the sense of Ringel [13].
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Example 2.6. If R = Z and a = p is a prime number, then My, = Z/p'Z, and
Uz p is the standard Priifer abelian group Z(p>).

Let € € R be an idempotent such that R = ReR. Then [4, Section 22] the rings
R and S := ¢Re are Morita equivalent; the Morita equivalence is induced by the
functors:

Homp(Re,—) : R-Mod == S-Mod : Re ®g —.

It is well known (and easy to verify) that, for each left R-module M, the map
© — ¢(€) defines a natural isomorphism between the left S-modules Hom g (Re, M)
and e M.

Proposition 2.7. Let ¢ € R with €2 = ¢ and R = ReR. Set S = eRe. Assume
a € R has these two properties:

(1) ea = ae, and
(2) a(l —e) =u(l —¢) for some invertible central element u of R.

Then ea = eace is neither a right zero divisor nor left invertible in S. Moreover, the
Morita equivalence between the rings R and S sends the direct system of monomor-
phisms {Mpg i q, VR, ;} to the direct system of monomorphisms {Mg; ca,Vs,i,j}s
and sends the Priifer module Ug o to the Priifer module Ug 4.

Proof. By (1), ea = €%a = cae belongs to S. If ea were a right zero divisor in S
there would exist » € R such that 0 = caere = a(ars), contradicting the standing
assumption that a is not a right zero divisor in R. If ea were left invertible in S,
there would exist r; € R such that erjea = ¢; then by (1) and (2)

l=c+(1—¢)=ercat+utu(l—¢)=cerica+uta(l—¢) = (erie+u™'(1—¢))a,

contradicting the standing assumption that a is not left invertible in R.
By (1), Sa™ = Sea™ = S(ea)™ is a left S-ideal for each n € N. We have the following
commutative diagram with exact rows

0 —— Ra"e = Rea” —)T

0 Ra™ R Mp.p.o —0.

Applying the functor Hompg(Re, —) we get the following commutative diagram of
left S-modules with exact rows and columns:

0 —— eRa"e = eRea™ = Sa™ = S(ea)" \S{ Msnea ——0
0 eRa™ eR eMpp,qa——0

00— eRa"(1—e) — 3 cR(1—¢) ' Q 0




6 GENE ABRAMS, FRANCESCA MANTESE, AND ALBERTO TONOLO

where v, sends ere+S(ca)™ to ere+Ra™. By (2) Ra"(1—¢) = Ru™(1—¢) = R(1—¢);
therefore the map £ is surjective and hence @ = 0. Therefore v, is an isomorphism
and ere + Ra" = er + Ra™: indeed

er—ere=er(l—e) € Ru"(1—¢)=Ra"(1—¢)=R(1 —¢)a™ C Ra".
We now show that for any ¢ < j the following diagram commutes:

Vs,i,g
MS,i,Ea > MS,j,sa

’;’J(Vi ulu‘j
Homp (Re, ¥R, i,5)

Mg o —————> Mg ja.

We have:
Hompg(Re,¥r,; ;) (vi(ere + S(ea)’)) = Hompg(Re, Y, ;) (ere + Ra’)

=erea’ ' + Ra’

= ere(ea)’ ™" + Ra?

=vj(ere(ea)’™" + S(ea))

= v;j(vs,ij(ere + S(ea)?).
Therefore the Morita equivalence between R and S sends the direct system of
monomorphisms { Mg ; o, ¥R, ;} to the direct system of monomorphisms {Ms ; cq, ¥s,i,; }-

Since Morita equivalences commute with direct limits, we get also that the Priifer
module Ug , is sent to the Priifer module Ug cq. O

3. CHEN SIMPLE MODULES OVER LEAVITT PATH ALGEBRAS

In this section we give a (minimalist) review of the germane notation, first about
directed graphs, then about Leavitt path algebras, and finally about Chen simple
modules.

A (directed) graph E = (E°, E', s,r) consists of a vertex set E°, an edge set
E', and source and range functions s,r : E' — E°. For v € E°, the set of edges
{e € E' | s(e) = v} is denoted s~1(v). E is called finite in case both E° and
E' are finite sets. A path o in E is a sequence ejes - - - e, of edges in E for which
r(e;) = s(e;41) for all 1 < i < n—1. We say that such « has length n, and we write
s(a) = s(e1) and 7(a) = r(e,). We view each vertex v € E° as a path of length 0,
and denote v = s(v) = r(v). We denote the set of paths in E by Path(E). We say
a vertex v connects to a vertex w in case v = w, or there exists a path « in E for
which s(a) = v and r(a) = w. A path vy =ejes---e, (n>1) in E is closed in case
r(en) = s(e1).

Unfortunately, the phrase “simple closed path” has come to be defined as two
distinct concepts in the literature. We choose in the current article to follow what
now seems to be the more common usage. Specifically, for a closed path v =
eres ey, we call v simple in case s(e;) # s(ep) for all 1 < 4 < n, and we call v
basic in case v # 6 for any closed path § and positive integer k. (In our previous
article [2] we followed Chen’s usage of this phrase given in [8]; in those two places,
“simple closed path” means what we are now calling a “basic closed path”.)
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Some additional properties of closed paths will play a role in the sequel. If
v = ejeq - - ey is aclosed path in E, then a path 4/ of the form e;e;11---epeqr -+ €;-1
(for any 1 <i < mn is called a cyclic shift of v. The closed path v = ejeq---€, in F
is called a cycle if s(e;) # s(e;) for each i # j; a loop if n = 1; a mazimal cycle if
is a cycle, and there are no cycles in E other than cyclic shifts of v which connect
to s(v) = s(e1); and a source cycle (resp., source loop) if 7 is a cycle (resp., loop),
and there are no edges e # e; in E such that r(e) = r(e;), for 1 < i < n. Less
formally, a source cycle is a cycle for which no vertices in the graph connect to the
cycle, other than those vertices which are already in the cycle.

For any field K and graph E the Leavitt path algebra L (F) has been the focus
of sustained investigation since 2004. We give here a basic description of L (FE);
for additional information, see [1]. Let K be a field, and let E = (E°, E',s,7) be
a directed graph with vertex set E° and edge set E'. The Leavitt path K -algebra
Ly (E) of E with coefficients in K is the K-algebra generated by a set {v | v € E°},
together with a set of symbols {e, e* | e € E'}, which satisfy the following relations:

(V) wvu=d,,v for all v,u € EY,

(E1) s(e)e=-er(e) =e for all e € E*,

(E2) r(e)e* =e*s(e) =e* forall e € B!,

(CK1) e*e’ = e er(e) for all e, e’ € B, and

(CK2) v =73 1 cpi|s(e)m} €€ for every v € E° for which 0 < |s71(v)| < o0.

Q

It is easy to show that L (F) is unital if and only if |E°| is finite; in this
case, 17, (g) = Y cpo v- Every element of L (FE) may be written as > ki3],
where k; is a nonzero element of K, and each of the a; and B; are paths in E. If
«a € Path(E) then we may view o« € Lg(F), and will often refer to such « as a
real path in Ly (F); analogously, for § = ejes - - - e, € Path(FE) we often refer to the
element g* = e’ ---esef of L (FE) as a ghost path in L (E).

We assume throughout the article that E is finite. In particular, we assume that
Lk (F) is unital. The multiplicative identity of a ring R will be denoted by 1, or
more simply by 1 if the context is clear.

The ideas presented in the following few paragraphs come from [8]; however,
some of the notation we use here differs from that used in [8], in order to make
our presentation more notationally consistent with the general body of literature
regarding Leavitt path algebras.

Let p be an infinite path in E; that is, p is a sequence ejeqges - - -, where e; € E!
for all i € N, and for which s(e;11) = r(e;) for all i € N. We emphasize that while
the phrase infinite path in E might seem to suggest otherwise, an infinite path in £
is not an element of Path(E), nor may it be interpreted as an element of the path
algebra K'FE nor of the Leavitt path algebra Li(E). (Such a path is sometimes
called a left-infinite path in the literature.) We denote the set of infinite paths in E
by E°°.

Let ¢ be a closed path in E. Then the path ccc--- is an infinite path in F,
which we denote by ¢>°; we call such a cyclic infinite path. For ¢ a closed path in
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FE let d be the basic closed path in E for which ¢ = d"”. Then ¢>* = d*° as elements
of E*.

For p = ejeqes - - - € E* we denote by 7, (p) the infinite path e, 11€p42--. Ifp
and ¢ are infinite paths in E, we say that p and ¢ are tail equivalent (written p ~ q)
in case there exist integers m,n for which 7s,,(p) = 7>,(¢); intuitively, p ~ ¢ in
case p and ¢ eventually become the same infinite path. Clearly ~ is an equivalence
relation on E*°, and we let [p] denote the ~ equivalence class of the infinite path p.

The infinite path p is called rational in case p ~ ¢ for some closed path ¢. By
a previous observation, we may assume without loss of generality that such c is a
basic closed path. In particular, for any closed path ¢ we have that ¢> is rational.

Let M be a left Li(E)-module. For each m € M we define the Lk (E)-
homomorphism p,, : Lx(FE) — M, given by p,,(r) = rm. The restriction of
the right-multiplication map p,, may also be viewed as an L (F)-homomorphism
from any left ideal I of Li (F) into M.

Following [8], for any infinite path p in F we construct a simple left Ly (E)-
module V), as follows.

Definition 3.1. Let p be an infinite path in the graph F, and let K be any field.
Let V], denote the K-vector space having basis [p], that is, having basis consisting
of distinct elements of E> which are tail-equivalent to p. For any v € E° e € E,

and q = fifafs--- € [p], define
U-q:{q if v=s(f1) . :{eq if r(e)=s(f1) and e*-q:{T>1(q> ife=f,

0 otherwise, 0  otherwise, 0 otherwise.

Then the K-linear extension to all of V[, of this action endows V[, with the structure
of a left Lk (F)-module.

Theorem 3.2. ([8, Theorem 3.3]). Let E be any directed graph and K any field.
Let p € E*. Then the left Ly (E)-module Vi described in Definition 3.1 is simple.
Moreover, if p,q € E*, then Vi, = Vi as left Lk (E)-modules if and only if p ~ g,
which happens precisely when Vi, = V.

We will refer to a module of the form V[, as presented in Theorem 3.2 as a Chen
simple module.

Because V]c) = V|(c2)>] for any closed path ¢ in E, when analyzing Chen simple
modules V.~ we can without loss of generality assume that c is a basic closed path.
Observe that if ¢ = ey --- e, and d are two basic closed paths, then [¢*°] = [d*] if
and only if d = e;e;11---eneqr - -e;—1 for a suitable 1 <4 <n.

Example 3.3. Let E = Ry be the rose with two petals:
Then, for example, the infinite paths p = elegele%eleg -+ and ¢ = ejeseiezeieg - -

are rational paths which are not tail equivalent.

For the sake of completeness and reader convenience, we state and briefly sketch
proofs of the following two lemmas. These include, in the case of a finite graph,
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some slight generalization of the results obtained in [2, Lemma 2.5, Proposition 2.6,
Lemma 2.7, Theorem 2.8].

Lemma 3.4. Let E be a finite graph.

(1) Let ¢ be a closed path in E, and r € Lg(E). Then r(c—1) =0 in Lg(E) if
and only if r = 0.

(2) Let ¢ be a basic closed path in E. Let o, 8 € Path(E) for which 0 # ac™ =
Be> in Viee). Suppose also that o # vV and B # 6N’ for any 7,6 € Path(FE) and
positive integers N, N'. Then o = f3.

(3) Let ¢ be a basic closed path in E. Given edges f1,..., fe, g1, ., gm n E, if
07 fifoc™ = g1+ gmc™ in Vi), then fi--- fo— g1+ gm € Lr(E)(c—1).

Proof. (1) If r(c — 1) = 0, then r = rc and hence r = rc¢™ for each m > 0. Let
r= Z§=1 kia; 8], with «;, B; real paths and k; € K. Denoting by N the maximum
length of the f3;’s, we have that r = ¢V can be written as a K-linear combination
22:1 k;~y; of real paths 7;’s. Then, by a degree argument, from r = rc we get r = 0.

(2) and (3) Write ¢ = ejeq - - €,. Assume

0F# fi- fic™ = g1 gmc™

for some edges fi,..., fe, 91y, Gm- If £ =m then f; = g; foreach 1 <i <l =m. If
m > £, then there exists 7 € N and 1 < k < n such that

flmfgcoo:f1~~~fgcjel~~ekc°°:g1~~~gmc°°

withm =¢+4+jxn+kand 1 <k <mn,j>0. Then by the first equality we get
c>® = cdey---epc™® and s0 ¢ = ey ---e,c™; hence eg ---e, = ¢ since ¢ is basic.
Therefore k = n and g1 -+~ gy = f1--- fec? T, This contradicts the hypotheses in
(2), so we have m = £ and f; = g; for all 1 < 4 < m in that case. Further, this
yields

g1 gm=fi - fo = i Sl @F21) = fio fo(c et D) (1) € Lic(B)(e-1),
which gives (3). O
Lemma 3.5. Let E be a finite graph, and ¢ = ey --- e, a basic closed path in E.
Denoting by pess : L (E) — Vieeo) the map r +— rc> and by pe—1 : L (E) — L (E)

the right multiplication by ¢ — 1, we have the following short exact sequence of left
Lk (E)-modules:

0—— L (B) 25 Ly (B) 2=

‘/[Coo] O.

Proof. The map p.—; is a monomorphism by Lemma 3.4(1), and p.~ is an epimor-
phism by construction. Clearly Imp._1 = Lg(E)(c — 1) € Ker pe. Assume now
r= Z;Zl kia; 37 belongs to Ker peo, with «, 8; real paths and k; € K. Our aim is
to prove that 7 = r+ L (E)(c—1) =0 and hence r € Lg(E)(c—1). If a;8fc¢™ =0
for a suitable m > 1, then o;8f = —; 87 (¢™—1) = —; 35 (14 - +c™ 1) (c—1) and
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hence ;8 = 0. Therefore we can assume o;5;c™ # 0 for all m >0 and 1 < i < ¢.
It follows that 8 = ej, ---e3ej(c™ )" for suitable 1 < j; <t and m; > 0. Since

i1 en— € resei (M) = e, ceeber(c™) (emitt — 1) =
=€, efei (@) (€ T b (e~ 1) € Ly(B)(e - 1),

we have
t

t
T=Y kiaiel --esei(cma )T =Y kidheg 1 e, =
=1

=1

—Zh i T

where the h;’s belongs to K and the fi - - - f;, are distinct elements modulo L (E)(c—
1). Therefore by Lemma 3.4(3) the fi--- f;,c¢> expressions are distinct infinite
paths which are tail equivalent to ¢>°, and hence linearly independent. Since
0=rc>®=>"_1hifi- fj;c>, we get h; =0 for 1 <4 < s and hence

Z hifi- fi, =0,
as desired. O

The short exact sequence established in Lemma 3.5 provides a projective reso-
lution for the Chen simple module V.. In particular, we get

Corollary 3.6. Let ¢ be a basic closed path in E. Then Lk (E)/Lk(E)(c—1) is
isomorphic to the Chen simple Lk (E)-module Vo).

4. A DIVISION ALGORITHM IN Ly (FE)

Let ¢ be a basic closed path in E. In this section we show how any element of
Lk (E) may be “divided by” ¢—1, in an analogous manner to the standard division
algorithm in Z.

Definition 4.1. Let E be any finite graph, and ¢ any basic closed path in E of
length > 0 with v = s(¢). We denote by A. the set of all non-vertex real paths
« in F which are not divisible by c¢ either on the left or on the right, but are non
trivially composable with ¢ on the right. Formally:

A. = {a€Path(E) : |a|>1;a#fe; and a#cy for any real paths 8,+,and r(a)=v}.

For each i € N>; we denote by c'A. the subset {ca : a € A.} of elements of
L (FE). We understand ¢! A, = () whenever A. = (). We denote by G the K-vector
subspace of L (F) generated by 1, (g, the elements in A. and the elements in
c'A., i € N>y. That is,

G .= K[ILK(E)vACa CiAc].

iGNZl
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Example 4.2. (1) Let E be the graph

)
Then A. = {e} and c"A. = {0} for each n > 1. Then G is the two
dimensional vector space generated by 1 and e.

(2) Let E = Ry, the rose with one petal:

R1 : C L]
Then A. = 0 (and so also ¢"A. = () for each n > 1). Then G is the one
dimensional vector space generated by 1.

(3) Let E = Ry, the rose with two petals:
(Natte
Then A. = {d'dd* : i,k € N>1,j € N} and c"A. = {c"d'ddd* : i,k €
N>1,j € N} for each n > 1. Then G is a countable dimensional vector
space.

Remark 4.3. Clearly the non-zero elements in {11, (m)} U Ac UU,en.,

a K-basis for G. Therefore a generic element g in G is of the form
9=kl p) +ti+cta+cty+-+ M,

where k € K and t; are K-linear combinations in Li(E) of elements in A.. It is

convenient to refer to k1, () as the scalar part of g: the latter commutes with any

element in Li(E).

If ¢ is a source loop, then A, = 0 and ¢*A. = 0 for all i > 1: therefore G is the
one-dimensional K -vector subspace of Lx (E) generated by 11, (g)-

A, form

If c=ey---e, is a source cycle, then A. = {en,en_16n,...,e2e3 - €,} and c'A, =
{0} for each i > 1. Therefore G is the K -vector subspace of L (E) of dimension n
generated by 11, (g, and the paths e, en_1€n,...,€2€3 - €p.

In general G is a finite dimensional space if and only if A. is finite and cA. is zero
or empty. This happens if and only if there are no cycles different from ¢ connected
to s(c), i.e., when ¢ is a mazimal cycle.

Definition 4.4. Let ¢ be a basic closed path in E. As above, we denote by
pes + Li(E) — Ve the right multiplication by ¢> homomorphism. By Lemma
3.4(2), each infinite path p tail equivalent to ¢> uniquely determines an element of

{1 }UALU (UieN>1 ciAc>, which we denote by o(p). Specifically, o(p) has the
property that
p=0(p)c™ = pes<(a(p))-
Extending o by linearity, the maps
0: Ve > G and  peocig 1 G — Vieoo]
are then easily seen to be inverse isomorphisms of K-vector spaces.

Lemma 4.5. Let ¢ be a basic closed path in E. Then Lk (E)(c—1)NG = {0}.

Proof. If £ = £o(c — 1) € Lg(E)(c —1) NG, then £ = g(pc=(£)) (by the previous
observation, as £ € G), which in turn equals o(pee (bo(c — 1)) = o(bo(c — 1)c>®) =
o(ly(c>® —¢*)) =0o(0) = 0. O
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Theorem 4.6 (Division Algorithm by ¢—1). Let E be any finite graph and K any
field. Let ¢ be a basic closed path in E. Then for any § € Lk (E) there exist unique
qs € Lx(F) and rg € G such that

B=qplc—1)+rs.

Proof. Consider the element 15 := o (pee=(8)); clearly rg belongs to G C Lk (E).
The difference 5 — r3 belongs to Ker pce, as

e (B = 1g) = B — 1™ = B — 0 (pem (8)) ¢ = B — B = 0.
Since Ker pee = Lg(E)(c — 1) by Lemma 3.5, we have § —rg = gg(c — 1) for a
suitable g3 € Lk (FE). Let us prove that ¢z € Lx(F) and rg € G are uniquely
determined. Assume
B=q(c—1)+r1=galc—1)+ry;

then we have r1 —ry = (g2 —q1)(c—1) € L (F)(c—1)NG, which is 0 by Lemma 4.5.
Therefore r1 = 19 and pe—1(g2 — 1) = (@2 — q1)(c — 1) = r; — ro = 0; since p._1 is
a monomorphism by Lemma 3.5, we have ¢; = ¢o. |

Here are two specific applications of the Division Algorithm by ¢ — 1, both of
which will be quite useful in the sequel.

Example 4.7. Since

M =(1+(c—1)" = io <’;> (c— 1),

by Theorem 4.6 we deduce g.n = Z?zl (7;) (c—1)7, and ren = 1.

Example 4.8. We will have need to multiply various elements of Li(F) on the
left by c—1. Let g = klp, () +11+cta +c?t3+---+c* 1ty be an arbitrary element
of G. Then multiplying and collecting appropriate terms yields

(c—1)g=k(c—1) =ty +c(ty —ta) + (tg —t3) + -+ Hts_1 —t5) + ts.
So by the uniqueness part of the Division Algorithm, we get
Ue—1)g =kl (p), and r(o_1yy = —t1Fc(ti—to)+c* (ta—t3)+- - 4" (te1—t,)+cts.
Note in particular that the scalar part of r(._1), is 0.
Remark 4.9. If E = R; is the rose with one petal ¢, then Lk (E) = K|z, 271 via

c— x. In such a case the above Division Algorithm with respect to c—1 corresponds
to the usual division by x — 1.

5. THE PRUFER MODULES Up, (E),c—1

Let ¢ be a basic closed path in E. By Lemmas 3.4(1) and 3.5, the element
¢ — 1 is neither a right zero divisor, nor left invertible. Therefore we can apply the
construction of the Priifer module given in Section 2 for R = Lk (F) and a = ¢ — 1.
For efficiency, in the sequel we use the following notation.

MEgnec—1:=Mp(B)ne—1; VEij = VLi(E)ij

Ug.c-1 = ULk(B)c—1; and ¥g ;i =Y, (p)-
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Most importantly for us, by Corollary 3.6 Mg 1.-1 = Lx(E)/Lx(E)(c—1) is
simple, indeed, is isomorphic to the Chen simple module V[ .o;.

For the sequel, it is useful to have a canonical representation of the elements of
the uniserial modules Mg, c—1, n > 1.

Proposition 5.1. Let ¢ be a basic closed path in E, n € N and v € Mg ,c—1.
Then x can be written in a unique way as

r=g1+ga(c—1)++gn(c—1)"" 4+ Lg(E)(c—1)"

with the g;’s belonging to G. We call the displayed expression the G-representation
of x.

Proof. Assume x € Mg, 1, and write ¢ = y + Lg (E)(c — 1)" with y € L (E).
Then invoking Theorem 4.6 n times we have y = q1(c—1)+g1, 1 = g2(c—1)+ga,...,
and ¢,—1 = ¢n(c — 1) + g,. Therefore
w=y+Lg(E)c—1)"=g1+g(c—1)+ - +galc—1)""" + Lg(E)(c—1)",

where the elements g;, i = 1,...,n, belong to G. Assume now z=g¢; + gh(c — 1) +
oot gl = 1)t + Lg(E)(c — 1)", where g/, i = 1,...,n, belong to G. Then
(91— 00 + (95 — gh)(c — 1) + -+ (g — g, )(c — 1)1 belongs to Lic(E)(c — 1)".
Therefore g; — g} belongs to Lg(E)(c — 1) NG = 0 (by Lemma 4.5), and hence
g1 = g1 Since multiplication by ¢ — 1 on the right is a monomorphism, we get that
(92— 95) + (g3 — g4)(c — 1) + -+ (g — gl (e — 1)"2 belongs o Lic(E)(c— 1);
therefore also go — g4 belongs to Lx (E)(¢—1)NG = 0, and hence g2 = g5. Repeating
the same argument we get g; = ¢} for i = 1,...,n. a

Example 5.2. If E = Ry and hence Lk(E) = Klz,z7 'Y, then Mg, ne—1 =
Kz, 271 /{(x — 1)"). For instance, the G representation of

et 42424+ Kz, o (z —1)3
can easily be shown to be
4-3(x—1)+10(x — 1)* + K[z, z"'](x — 1)°.
We are now in position to show that the modules Mg ;.—1, ¢ > 1, satisfy the
hypotheses of Propositions 2.2 and 2.4.
Proposition 5.3. For any basic closed path c in E, the equation
(c—1DX=1+4+Lg(E)(c—1)"
has no solution in Mg, c—1.
Proof. By Proposition 5.1, we have to verify that the following equation in the n

variables X1,..., X,, does not admit solutions in G™ (the direct product of n copies
of G):

(c—1)(X1+Xo(c—1) 4+ Xple=1)" "+ Lg(E)(c—1)") = 14+ Lg(E)(c—1)".

Assume on the contrary that X; = g; (for i = 1,...,n) is a solution. Let kilp ()
be the scalar part of g;. Since (¢ —1)g; = k;(c — 1) + g} for a suitable g, € G whose
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scalar part is zero (see Lemma 4.8), we would have
1+ Lg(E)(e=1)" = (c=1)(g1 +g2(c = 1) + -+ gulc = )" + Lr(B)(c = 1)")
=g+ (g +ki)(c— 1)+ + (g + kn-1)(c = 1)" 7" + L (E)(c — 1)".

By Proposition 5.1 the G-representation of each element of Mg, .—1 is unique.
Therefore we would have that gy = 1., () has nonzero scalar part, which yields a
contradiction. O

So Corollary 3.6 and Proposition 5.3 combine with Propositions 2.2 and 2.4 to
immediately yield the following key result.

Theorem 5.4. Let ¢ be a basic closed path in E.

1) For eachn € N, the Lk (E)-module Mg, .—1 has a unique composition series,
with all composition factors isomorphic to Vice).

2) The Priifer Lx (E)-module Ug ._1 is uniserial and artinian (and not noether-
ian).

The left Lg(E)-module Ug .—1 is generated by the elements
a; = ¢p(1+ Lg(E)(c—1)"),

ifi=1
(c—l)ai:{o if ¢ )

i1 ifi>1.

which satisfy

Remark 5.5. By Proposition 5.3, the equation
(c—1)X=14Lg(E)(c—1)"

has no solution in Mg, .—1. But identifying Mg nc—1 With Yg nnt1(MEn,c—1) in
Mg nt1,c-1, the same equation has the form

(c—1)X = (c— 1)+ Lg(E)(c — 1)"*+,

which clearly admits the solution X = 1+ L (E)(c — 1)"*L. This observation will
be crucial to study the injectivity of the Prifer modules discussed in the following
section.

If ¢’ is a cyclic shift of the basic closed path c, then it is clear that Vieee] = Vjeroc).
We conclude the section with a perhaps-not-surprising result which shows that the
cyclic shift of a basic closed path does not affect the isomorphism class of the
corresponding Priifer module.

Proposition 5.6. Let c = ejeq - - - €, withn > 2 be a basic closed path. Denote by c;
the basic closed path e; - - -ene1 ---e;_1. Then the modules Mg m c—1 and Mg m,c,—1
are isomorphic for all 1 < ¢ < n and m € N>1. In addition, the corresponding
Priifer modules Ug c—1 and Ug ,—1 are isomorphic for all1 < { <n.

Proof. 1t is easy to verify that (¢c; — 1)e;---ep—1 = e1---ep—1(ce — 1), and that
(ce—1)eg---en =ep---en(c1 —1). So the maps ¢1.¢: MEm.c,—1 = Mg m.c,—1 and
©e1 MEm,co—1 = ME m,c,—1 given by

010: 14+ Lg(E)(e1— 1) —e1---ei—1+ Lg(E)(ce—1)™, and
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m
m
1 L (B) (=)™ = (=1)™ e en (i)(—nm AT Y L (B) (e —1)™
i=1
are well defined. Let us prove that they are inverse isomorphisms. Denote by 7
both the cosets r + L (E)(c; —1)™ and r + L (E)(ce — 1)™. Then

we10@1e(l) = pea(ere—1)

m

= m101§(> mzcil

||
3
M3
-
3
v
3
<§

Analogously

100 001(1) = pre((=1)™ e - ep Z <m> (—1m=ici™h)

=(=1)mte - ene eélé(?)( 1)ym—ici~1
— (~1)m i (7)vmic

Again using the initial observation, it is straightforward to check the commutativity
of the appropriate diagrams, which gives the second statement. O

6. CONDITIONS FOR INJECTIVITY OF THE PRUFER MODULES Ug .—1

Let E be any finite graph, and let ¢ denote a basic closed path in E.

Of course the module Ug _; mimics in many ways the classical, well-studied
Priifer groups from abelian group theory (see Example 2.6). It is well-known that
the Priifer groups are divisible Z-modules, hence injective. With that observation
as motivation, we study in the sequel the question of whether the Priifer modules
Ug,c—1 for various basic closed paths c are injective L (E)-modules. The discussion
will culminate in Theorem 6.4, characterizing the injectivity solely in terms of how
the basic closed path c sits in the graph FE.
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Proposition 6.1. Let E be a finite graph, let ¢ be a basic closed path in E based
at s(c) = v, and let Ug .1 be the Priifer module associated to c. Suppose that there
exists a cycle d # ¢ which connects to v. Then Ug ._1 is not injective.

Proof. The set of those vertices of E which are connected to v contains the source
of d. Therefore by [2, Theorem 3.10], Extl(V[doo], Viee)) # 0. Utilizing Remark 2.5,
we get the exact sequence

0—— ‘/[Coo] §LK(E)O¢1(—> UE7C,1 —_— UEycfl/LK(E)Oél = UE,Cfl —0.

We have Hom(Vjg1, Ug,c—1) = 0, because the only simple submodule of Ug .1
is isomorphic to Viee] # Vig] (see Section 3). Consequently, the standard long
exact sequence for Ext! gives that Eth(‘/[doo], Ug,c—1) # 0, so that Ug .—1 is not
injective, as claimed. O

Example 6.2. (1) Let E = R,, be the graph with one vertex and n loops. If
n > 2, then for any basic closed path ¢ the Priifer module Ug ._; is not
injective. Indeed we can always find a loop different from ¢ which connects
to s(c).

(2) If ¢ is a basic closed path which is not a cycle, then the Priifer module
Ug,—1 is not injective. Indeed there exists a cycle d such that ¢ = adp
with «, 8 € Path(FE), and at least one of «, 3 is not a vertex. Clearly d is
connected to s(c).

By (2) of the previous example, it remains to study the injectivity of the Priifer
modules associated to cycles. Suggested by notation used in [5], we give the follow-
ing.

Definition 6.3. Let F be a finite directed graph. A cycle ¢ based at s(c) = v is

said to be mazimal if there are no cycles in F other than cyclic shifts of ¢ which
connect to v.

In particular any source cycle is maximal. We are now in position to state the
main result of the article, which characterizes when the Priifer module Ug ._; is
injective solely in terms of how the cycle c sits in the graph F.

Theorem 6.4. Let E be a finite graph and let ¢ be a basic closed path in E. Let
Ug,c—1 be the Priifer module associated to c. Then Ug _1 is injective if and only
if ¢ is a mazimal cycle.

In case Ug —1 is injective, then
(1) Ug,c—1 is the injective envelope of the Chen simple module Vi, and
(2) Endy, . (g)(Ug,c—1) is isomorphic to the ring K[[x]] of formal power series in

The proof of one direction of Theorem 6.4 has already been established: if ¢
is not a maximal cycle then Ug .1 is not injective by Proposition 6.1 (see also
Example 6.2(2)). Establishing the converse implication will be a more difficult
task, and will take up the remainder of this article. The strategy is to start by
reducing to the case when c is a source loop, and then subsequently prove the result
in this somewhat more manageable configuration.
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7. REDUCTION FROM THE GENERAL CASE TO THE SOURCE LOOP CASE

We assume now that L (E) is the Leavitt path algebra of a finite graph E
which contains a maximal cycle ¢ based at v. Then, as noted in Remark 4.3, A, is
a finite set. We show that we can reduce to the case where ¢ is a source cycle (i.e.,
¢ is a cycle for which A, = 0).

Let z € E° be a source vertex which is the source of a path entering on the
cycle ¢; set € :== 1 — z. By [5, Lemma 4.3], the Leavitt path algebras L (E) and
S = eLlg(F)e 2 Lg(E \ z) are Morita equivalent. Note that ¢ is a cycle in the
graph F \ z. Since

(1) ¢—1 is neither a right zero divisor nor left invertible in Lx (F \ z),
(2) (¢c—1)e=c¢e(c—1), and
@) (=Dl -¢)=-1-9),

we can apply Proposition 2.7 to yield that the Priifer Ly (E)-module Ug .1 =
lim ~Mp,pn,c-1 corresponds under the equivalence to the Priifer L k (F '\ z)-module
Up\z,c—1 = h_n;n Mg\ 2 n,c—1- Moreover, the original Priifer L (£)-module Ug .1
is the injective envelope of the Chen simple Lx (E)-module Vi) if and only if
the Priifer L (E \ z)-module Ug\ ; 1 is the injective envelope of the Chen simple
Ly (E\ z)-module Voo

Thus by means of a finite number of ”source eliminations” we then may reduce
E to a subgraph which contains ¢, and in which ¢ is a source cycle, for which the
Priifer modules correspond.

The second step is to show that we can indeed further reduce to the case in which
¢ is a source loop. Assume Ly (FE) is a Leavitt path algebra with a source cycle ¢
based on the vertex v. Assume c has length > 1 (i.e., that ¢ is not a source loop). Let
v := v1, v, ..., U, be the vertices of the cycle cand U = EY\{vy, ..., v, }. Consider the
idempotent ¢ := ) . u. As proved in [5, Lemma 4.4, Ly (E)eLk(E) = Li(E)
and therefore Li (E) is Morita equivalent to S := eLg (F)e. Since

(1) ¢—1 is neither a right zero divisor nor left invertible,
(2) (c=1)e=¢e(c—1), and
@) =D —-¢g)=—-(1-e),
by Proposition 2.7 the uniserial left Lx(E)-module Mg, .—1 corresponds in the
Morita equivalence to Mg, c(c—1)-
Let F be the graph (F°, F') defined by:
o FO=E%\ {vg,....,0.};
e 53 (w) = 55" (w) for each w # v;
n
e s (v) = {d}u U{fg 19 € s (v),7(g9) & {v1,...,v,}} where d is a loop

i=1
with 7(d) = v and the f,’s are new edges with r(f;) = r(g).

Then, as described in [5], the map 6 : Lg(F) — Lk (F) defined by

e O(w) = w for each w € FY,
e 0(e) = e for all e with s(e) € FO\ {v},
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e O(f,) =e1---e;_1g for each g € s5'(v;),
e 0(d)=e1- e, =c,
defines an isomorphism between Lk (F') and the corner S = eLk (F)e.
We now show that the left L (F')-modules Mg ,, o(c—1) and Mg, 4—1) are iso-

morphic. Indeed, by Remark 4.3 and Proposition 5.1, any element = in Mg, c—1
can be written in a unique way as

x=g1+g(c—1)+ - +gulc— 1"+ Lg(E)(c—1)",
with g; = k;jlp,.(g) + ;1 where k; € K and t;; is a K-linear combination of the
paths ex---epn, ..., en_16n, €,. Therefore, since ee;e;41 -+ - e, = 0 for each 7 > 1, the
elements of Homy,, (g)(Lx(E)e, Mg p.c—1) = eMpnc-1 = Mgy c(c—1) are of the
type

ke +koe(c— 1)+ -+ kpe(c — )" '+ eLg (E)(c —1)"
with kq,...,k, € K. Since
kietkoe(c—1)4+ - +kne(c=1)" = O(k1 1y, () Tha(d—1L . (p)+ - Akn(d=1L(5)"),

the Ly (F)-module Mg, e(c—1) coincides with Mg, g1 Since Morita equivalence
respects direct limits, the Priifer module Ug .1 = hgnn Mg 5 c—1 corresponds to
the Priifer module Up4—1 = li . Mp 1 a—1. Moreover, the Priifer Ly (E)-module
Ug,c—1 is the injective envelope of the Chen simple L (£)-module Vi . if and only
if the Priifer L (F)-module Up4_; is the injective envelope of the Chen simple
L (F)-module Vigee;.

Finally, since corresponding modules in a Morita equivalence have the same
endomorphism ring, summarizing the discussion of this section, we have obtained
the following.

Proposition 7.1. In order to establish Theorem 6.4, it suffices to prove that, when-
ever ¢ is a source loop in E, then

(1) Ug,c—1 is injective, and

(2) Endp, () (Up.c-1) = K[z]].

8. ESTABLISHING THE MAIN RESULT: THE CASE WHEN ¢ IS A SOURCE LOOP

Having in the previous section reduced the verification of Theorem 6.4 to the
case where c is a source loop, our aim in this section is to establish precisely that.

So suppose E is a graph in which there is a source loop ¢ based at the vertex
v = 5(c). In this case the Chen simple module Vj.| has K-dimension 1, i.e Vjcoe) =
{kc™ | k € K}; moreover A, = (), and hence G is the K-vector subspace of Lk (E)
generated by 17, (g) (recall Definition 4.1). By Proposition 5.1 every element of
Mg n.c—1 can be written in a unique way as

r=k +kc—1)+ - +ky(c—1)""'+ Lg(E)(c—1)"

with the £;’s belonging to K. Therefore the elements of Ug .1 can be written in a
unique way as K-linear combinations of the a; = ¢ (1 + Lk (E)(c — 1)), i > 1.
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Intuitively, the reason that reduction to the source loop case will provide a more
manageable situation than the general case is because the coefficients on each of
the (¢ —1)! terms in the previous display come from K (since G = K in this case),
and as such these coefficients are central in Lg (FE).

Proposition 8.1. Let ¢ be a source loop in E. Then

(1) Lx(E)(c—1)" is the two-sided ideal Anng, gy (Mpn,c—1)-
(2) The left Lx(E)-module Mg,y c—1 is also a right L (E)-module, and
rm=mr Vré& Lg(E),mé&€ Mg
Thus the maps Vg ; : Mgic—1 — Mg jc—1 are also right Lk (E)-module
monomorphisms for any 1 < i < j.

(3) Annp,, (5)(Up,c-1) = y>1 Lx(E)(c — 1)". and it coincides with the two-
sided ideal (E°\ {s(c)});

(4) The left Lk (E)-module Ug .—1 is also a right Lk (E)-module and g, :
Mg nc—1 — Ugc—1 is a right Lg(E)-module monomorphism. Moreover
ro; = a;r for eachr € L (E) and i > 1.

(5) uw € Ug c—1 belongs to Lk (E)a; if and only if (¢ — 1)'u = 0.

Proof. (1) If r € Anny, (gy(MEn,c—1), then r(1 + Lg(E)(c—1)") =0in Mg, 1
and hence r belongs to Lix(E)(c — 1)". Conversely, let r € Lg(E) and m €
Mg n,e—1. Since m = hy + ha(c — 1) + -+« + hyp(c — 1)1 + L (E)(c — 1)™ where
each h; € K (using that c is a source loop; see the previous observation), we get
rlc—1)"m=r(c—1)"(hy +halc —1) 4+ + hy(c— )" + Lg(E)(c — 1)")
=hir(c— 1" +hor(c— )" 4o+ hpr(c— D"+ Lg(B)(c—1)"
=0
in Mg n,c—1 = Lg(E)/Lkx(E)(c—1)". (The point here is that each h; commutes
with expressions of the form r(c — 1)/ because h; € K.) Hence Lg(E)(c —1)" <
Anng, gy (MEn,c-1).

(2) Since L (E)(c—1)" is a two-sided ideal by point (1), then Mg, .1 is also
a right Lg (E)-module via the usual action. Let r € Lg(FE) and m € Mg 5 c—1;
then

r=k +hk(c—1) 4+ +k(c=D" 47 (c—1)" and
m=hi+-+hy(c— )"+ Lg(E)(c—1)",
where R, ..., hp, k1, ...k, € K and 7 € Lg(F). Since Lg(E)(c — 1)" is a two-
sided ideal we get rm = mr. The right L (E)-linearity of the maps ¢z ; ; for each
1 <4 < j follows easily.

(3) Since Ug,c—1 = Un21 Li(E)ay, and L (E)ay, = Mgy 1, the first equality
follows from (1). For the second, we start by noting that E°\ {s(c)} is the set of the
vertices contained in Annp,, (g)(Ug,c—1). Indeed, s(c) = 1+ (1 — s(c))(c — 1) does
not belong to L (£)(c— 1), and hence neither to Anny,, (5)(Ug,c—1). On the other
hand, any vertex w # s(c) belongs to 1,5, Lk (E)(c — 1)", because the equality
w = —w(c — 1) can be iterated to produce the sequence

w=—-wlc—1)=wlc—12==(=1)"wc—1)"=---.
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In [12, Theorem 4], Rangaswamy proved that an arbitrary nonzero two sided ideal
Iin Lg(F) (for E a finite graph) is generated by the union of two sets:

(i) INE° (ie., the vertices in I), together with

(ii) a (poss,1b1y empty) set of mutually orthogonal elements of I of the form
u + > kig' where u € E°\ INE°, kq,...,k, belong to K with k,, # 0,
and g is a cycle without exits in EY \ I N E? based at the vertex w.

In our case we have

e Amng, (g (Uge—1) NE® = E°\ {s(c)}, and

e cis acycle in E%\ (I N E% = {s(c)}, and is the only cycle in the only
cycle based in s(c) (because ¢ is a source loop), and ¢ has no exits in {s(c)}
(because such an exit in {s(c)} would necessarily be a second loop at s(c),
contrary to ¢ being a source loop).

Therefore Anny,, gy (Ug,c—1) is generated by E° \ {s(c)} and possibly a single el-

ement of the form s(c) + >, k;jc* with k,, # 0. Assume that s(c) + > 1, kic' €
Anny,, (5)(Ug,c—1) where k,, # 0. We have

s(c) =1+ (=1)""' (1 = s(c))(c —1)"

and, by applying Lemma 4.7 to each ¢! and then collecting like powers of ¢ — 1, we
see

n

Z’“:Z’”(Z (1)me=n+4 (3 () me -7+t ka1

i=j
Therefore, using the displayed equation (and separating out the leading 1 term),
we get that s(c) + D1, k;c’ is equal to

1+Zk +Z<) 1)+ +Z() ) etk (1) "4 (—1)" " (1=s(c)) (c—1)™.

Since (1 —s(c))(c —(1—5(c)), the final summand (—1)""*(1 = s(c))(c—1)"
coincides with (— )m”’ 11 - s(e))(e — 1)™*™ for each m > 0, and so it be-
longs to Anny, (g)(Up,c—1). Therefore, the element s(c) + .7, kic* belongs to
Anng,, (g)(Ug,c—1) if and only if

1+ik,+i(i>k, +Z<) (c—1) -+ kp(c—1)"

belongs to Anny,, (g)(Ug,c—1). In such a situation, the displayed element must
annihilate in particular the elements aq, ..., a,. By successively multiplying this
equation in turn by a1, as, ..., a,, and using the displayed observation made prior
to Remark 5.5, we get that

= i=j

which contradicts that k, # 0.
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(4) The first claim follows immediately by point (2). Moreover,
ro; = rpi(1+ L (E)(c = 1)) = ¥pi(r + L (E)(c — 1)°)
=¢pi(1+ Lg(E)(c—1))r = a;r
for each r € Li(E) and i > 1.
(5) Any u € Ug,—1 can be written as
u="kog+-+kpoy

for a suitable n > 1. Since Mg j.—1 = Lk (E)a;, we have

(c—=1)'u=0 Vi>n
and, if ¢ < n, then
(C — ].)ZU = ki+1(C — 1)iai+1 + -4 kn(C — 1)ian = ki+10[1 + -4 knan,i.

Therefore (¢ — 1)'u = 0 if and only if kjyy = --- = k, = 0 if and only if u €
LK(E)OQ'. O

Remark 8.2. We note that although each two-sided ideal L (E)(c — 1)™ is not
graded (because it contains neither c nor 1), the intersection J =, oy Lx (E)(c—1)"
is graded (because it has been shown to be generated as a two-sided ideal by a set of
vertices).

Proposition 8.3. Let ¢ be a source loop. For any j € Anng, (g)(Ug,c—1) there
ezists n € N such that ¢*™j = 0.

Proof. By Proposition 8.1(3), any nonzero j € Anng, (g)(Ug,-1) is a K-linear
combination of elements of the form af*w~d* # 0, with «, 3, «v and § real paths and
w # s(c) a vertex in E. Let us concentrate on one of these elements. If af*w = w
then c*af*wyd* = c*wyd* = 0. If af*w = f*w # w then s(8*) = r(B) # s(c),
otherwise 8 would be a path which starts in w # s(¢) and ends at s(c¢), contrary to
¢ being a source loop; then c*af*w~d* = ¢*f*w~d* = 0.
In all the other cases a = ctny -- -1, with c #m € E', t >0 and s > 1. Then
(ctH)*ozﬁ*wwS* _ (Ct+1)*6t7’]1 . nsﬁ*w’}/é* _ 0*771 . Usﬁ*wWS* _ O

Since j is a finite sum of terms of the form af*w~vyd*, we achieve the desired con-
clusion. 0

Proposition 8.4. For any { € Lx(E)\Anny, (g (Ug,c-1) and for anyu € Up .1,
there exists X € Ug c—1 such that (X =wu. That is, u is divisible by any element in
Lk (E)\ Ay, (5)(Ug,c-1)-

Proof. Let us consider u € Ug—1. Then, as observed at the beginning of this
section, we have

u=kio, +koapn_1+ -+ kpay
where k; € K. Since £ ¢ Annp,, (g)(Ug,c—1), by Proposition 8.1 there exists m € N
such that ¢ is not right-divisible by (¢ — 1)™. Therefore

(=hy+holc—1)+-Fhplc—1D" 4 gnlc—1)"
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with h; € K for i = 1,....m, g € Lig(FE) and
(h1y .oy him) # (0,0, ...,0).

Let s be the minimum index such that hsy; # 0. It is not restrictive to assume
m > n+ s: otherwise we apply the division algorithm to ¢, gm+1, ... until we get
L=hy+hy(c—=1) 4 Fhulc=1)" 4ot hprlc—1D)" " p g o(c—1)"Ts,
We claim that the equation ¢X = u has solutions in Ly (E)ay4s, as follows. Set
X =Xiapts+ -+ Xngs—100 + Xy sa1. We solve

((X10nts + 4 Xpjs—102 + Xpps01) = u,
that is
(Ri+- - +hp(c— D™ g (c— ™) (X10ngst- 4 Xpgsar) = kian+- - +kyo.
This yields the following equations in the field K:

s s+1
hi1X1 =0, .., Z hiXsi1-:=0, Z hiXsyo i = ki,

i=1 =1
s+2 s+n
E hiXsy3—i = ko, ... E hiXsynt1—i = kn.

i=1 i=1

Since 0 = hy = --- = hs we get
s+n
hsy1X1 = k1, hep1Xo +hoa Xy = ko, ..., Z hiXoiny1—i = kn
1=s+1
from which we obtain the values of X, ..., X,;. The values of X,, 11, ..., X1 can
be chosen arbitrarily. |

Corollary 8.5. If0# u € Ug,—1 then (¢*)™u # 0 for all m € N.

Proof. Since ¢ ¢ Lk (E)(c—1) D Anny, (g)(Ug,c—1), by Proposition 8.4 there exists
0# x € Ug,c—1 with cx = u. Since cs(c) = ¢ we may assume that s(c)x = x. Then
0 # = = s(c)xr = c*cx = c*u. Repeating the same argument for 0 # c*u € Ug ¢—1,
we get (c*)?u # 0; iterating, we get the result. O

Proposition 8.6. Let c be a source loop in E. Let Iy be a finitely generated left ideal
of Lk(E), and let ¢ : It — Ug c—1 be a Lx(E)-homomorphism. Then there exists
Y : L (E) — Ug, 1 such that |1, = ¢. Consequently, Ext' (L (E)/If,Ug.c1) =
0.

Proof. Tt has been established in [3] that Lk (F) is a Bézout ring, i.e., that every
finitely generated left ideal of L (F) is principal. So Iy = L (E){ for some £ € I.
Assume on one hand that £ € Anny,, (g)(Up,c—1), and hence Iy < Anny,, (g (Ug,c—1).
By Proposition 8.3, any element of Anny,, (g)(Ug,.—1) is annihilated by a suitable
¢*". Further, ¢*"u # 0 for any 0 # u € Ug,—1 by Corollary 8.5. Thus in this case
we must have Homy, (g)(If,Ug,c—1) = 0, so that ¢ = 0 and the conclusion follows
trivially.

Assume on the other hand that £ ¢ Anny, () (Ug,c—1). By Proposition 8.4, there
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exists * € Ug,—1 for which fz = p(¢). Let ¢ : Lx(E) — Ug,—1 be the extension
of the map defined by setting ¢(1) = . Then, for each ¢ = r;¢ € Iy, we have

Y(i) = Y(ril) = rilp(1) = rilx = rip(l) = @(ril) = (i),

which establishes the desired conclusion in this case as well.
The final statement is then immediate. O

A submodule N of a module M is pure if for each finitely presented module F,
the functor Hom(F, —) preserves exactness of the short exact sequence 0 - N —
M — M/N — 0. Modules that are injective with respect to pure embeddings are
called pure-injective.

By [11, Lemma 4.2.8], a module which is linearly compact over its endomor-
phisms ring is pure-injective. We will prove that Ug ._: is artinian over the ring
End(Ug,c—1) and therefore linearly compact.

Proposition 8.7. Let E be a finite graph, and ¢ a source loop in E. Then the
endomorphism ring of the left Li (E)-module Ug .1 is isomorphic to the ring of
formal power series K|[x]].

Proof. Let ¢ € End(Ug,—1). Since
(e = 1)'p(ai) = p((c — D)'ay) = ¢(0) =0,
by Proposition 8.1 ¢(a;) belongs to Lk (E)a;. Therefore
o(a;) = hy oy + -+ hy 0.
Since
hiiqi + -+ + hiiar = p(ai) = p((c = Daip1) = (¢ — Dp(ais)

=(c—1)(h1iv10t41 + -+ hiiy100 + hiy1i1100)
=hiip105 + -+ hyipa,

we get hji1 = hj; =: hj for each 1 < j < i. Denote by H,(z) the formal power

series
o
J—1
g hjx? ™.
j=1

It is easy to check that the map ¢ — H, () defines a ring monomorphism ® between

End(Ug,—1) and K[[z]]. Given any formal power series H(x) = i hjz? ™!, setting
Jj=1
() =hiai + -+ hjan
one defines an endomorphism of Ug ._;1. Indeed
(c—=Der(ai1) = (c = )(hiaipr + -+ + hijag + hiyi1aq)
= hia; + -+ hjoq + hi110
er(ei) = eu((c—1)aipr). 0



24 GENE ABRAMS, FRANCESCA MANTESE, AND ALBERTO TONOLO

Corollary 8.8. Any endomorphism of Ug «—1 is the right product by a formal power
series Z hj(c— 1)1 with coefficients h; € K.
j=1

Proof. Following the notation of Proposition 8.7, the endomorphism ¢y associated
to the formal power series H = 372, hjz?~" sends a; to

hic; + -+ hjoy = (hy +ho(c— 1)+ + hi(c — 1)y
= ai(hl + hg(c - 1) 4t hi(c _ 1)1’—1)7

where the latter equality follows by point (4) of Proposition 8.1. Since a;(c—1)7 =
(c—1)a; = 0 for each j > i, we can define

a; Y hile=17" i=ai(hy + halc—1) + -+ hi(c—= 1)) =pp(a;). O
J=1

Proposition 8.9. Let E be a finite graph, and ¢ a source loop in E. Then Ug 1 is
pure-injective. Consequently, if (Nu, fa,p) is a direct system of left Lk (E)-modules
and Ly (E)-homomorphisms, then Extl(lii)n NoyUgc—1) = @Extl(Na, Ug,c—1).

Proof. The left L (E)-module Ug .—1 is the union of its submodules { L (E)o; | ¢ >
1}. Let T denote the endomorphism ring End(Ug .—1). By Corollary 8.8, L (E)ay
is a right T-submodule of Ug .1 for each 7 > 1. We show that these are the unique
right T-submodules of Ug .

If N is a finitely generated T-submodule of Ug ._1, let ix be the smallest natural
number ¢ such that N < Lg(E)a;. If iy = 1, Lg(E)a;y, = Lix(E)a; is a one
dimensional K-vector space and hence a simple T-module. If ixy > 2, consider
neN \ LK(E)aiN—L Then

n = k‘lal—N =+ +k7;NOél = aiN(kl =+ +k77;N(Cf ].)Z‘Nil)
with k7 # 0. Again invoking Corollary 8.8, let 2;11 hj(c—1)7~! be the inverse of
ki+ - +kiy(c—1)™"1in K[[c — 1]], which exists as k; # 0. Then

nZhj(cf 177 =ay,
j=1

and hence N = Lg (E)a, -

If on the other hand N is not finitely generated, write N = ligN \, Where the
N, are the finitely generated right T-submodules of N. For any A, by the previous
paragraph, there exists jy such that Ny = Lg (E)a;,. Since N # N, for any A, the
sequence (jx) is unbounded and so N = Ug 1.

Thus, since {Lx (F)a; : @ > 1} has been shown to be the lattice of the proper
right T-submodules of Ug.—1, we conclude that Ug .1 is an artinian right 7-
module and hence linearly compact. By [11, Lemma 4.2.8] we get that the left
Lk (E)-module Ug .1 is pure-injective. (The quoted result says: If a module is
linearly compact over its endomorphism ring, then it is algebraically compact and
hence pure-injective.) Therefore we may invoke [9, Lemma 3.3.4] to conclude that
the functor Extl(—, Ug c—1) sends direct limits to inverse limits. O
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Proposition 8.10. Let E be a finite graph with source loop c¢. Then the Prifer

module Ug .—1 is injective. Indeed, Ug .1 1is the injective envelope of Ly (E)aq =
Vie=)-

Proof. In order to check the injectivity of Ug .1, we apply Baer’s Lemma. We
need only check that Ug .—; is injective relative to any short exact sequence of
the form 0 - I — Lg(E) — Lg(E)/I — 0. This is equivalent to showing that
ExtiK(E)(LK(E)/I, Ug,c—1) = 0 for any left ideal I of Li(E). Write I = lim 1,
where the I, are the finitely generated submodules of I. It is standard that
Lg(E)/I = li_n;LK(E)/I)\. So now applying the functor ExtlLK(E)(ﬁUE,C,l), we
get

Exty, () (Lr(E)/1,Ug,c—1) = Exty, () (lim L (E)/Ix, Ug,c—1)
= lim Ext' (Lg (E)/Ir,Up,c—1)  (by Proposition 8.9)
=0 (by Proposition 8.6).

Since Li (E)a; is an essential submodule of Ug ._1, the last statement follows. O

Proof of Theorem 6.4(1). This now follows immediately from Propositions 7.1,
8.7, and 8.10.

ACKNOWLEDGEMENTS

The first author is partially supported by a Simons Foundation Collaboration
Grants for Mathematicians Award #208941. The second and third authors are sup-
ported by Progetto di Eccellenza Fondazione Cariparo “Algebraic structures and
their applications: Abelian and derived categories, algebraic entropy and represen-
tation of algebras”. Part of this work was carried out during a visit by the second
and third authors to the University of Colorado Colorado Springs, and during a
visit by the first author to the Universita degli Studi di Padova. The authors are
grateful for the support of these institutions.

REFERENCES

[1] G. Abrams, P. Ara, M. Siles Molina. Leavitt path algebras. Lecture Notes in Mathematics
vol. 2191. Springer Verlag, London, 2017. ISBN-13: 978-1-4471-7344-1.

[2] G. Abrams, F. Mantese, A. Tonolo, Extensions of simple modules over Leavitt path algebras,
Journal of Algebra 431 (2015), pp. 78 — 106.

[3] G. Abrams, F. Mantese, A. Tonolo, Leavitt path algebras are Bézout. To appear, Israel J.
Math. arXiv: 1605.08317v1

[4] F. Anderson and K. Fuller. Rings and categories of modules. Second edition. Graduate Texts
in Mathematics, 13. Springer-Verlag, New York, 1992. ISBN: 0-387-97845-3.

[5] P. Ara and K. Rangaswamy, Finitely presented simple modules over Leavitt path algebras,
Journal of Algebra 417 (2014), pp. 333 — 352.

[6] P. Ara, M. A. Moreno, E. Pardo, Non-stable K -theory for Graph Algbras, Algebr. Represent.
Theor. 10 (2007), pp. 157 — 178.

[7] G. Aranda Pino, K. Rangaswamy, M. Siles Molina, Weakly regular and self-injective Leavitt
path algebras over arbitrary graphs, Algebr. Represent. Theory 14 (2011), no. 4, pp. 751 —
777.

[8] X. W. Chen, Irreducible representations of Leavitt path algebras, Forum Math. 27(1) (2015),
pp. 549-574.



26 GENE ABRAMS, FRANCESCA MANTESE, AND ALBERTO TONOLO

[9] R. Gébel and J. Trlifaj, Approximations and Endomorphism Algebras of Modules. Expositions

in Mathematics vol. 41. de Gruyter, Berlin, 2006. ISBN-13: 978-3-11-011079-1.

[10] E. Matlis, Injective modules over Noetherian rings, Pac. J. Math. 8(3) (1958), pp. 511-528.

[11] M. Prest, Purity, Spectra, and Localisation. Encyclopedia of Mathematics vol. 121, Cambridge
University Press, New York, 2009. ISBN-13: 976-0-521-87308-6.

[12] K. Rangaswamy, On generators of two-sided ideals of Leavitt path algebras of arbitrary graphs,
Communications in Algebra 42(7) (2014), pp. 2859 — 2868.

[13] C.M. Ringel, The ladder construction of Prifer modules, Rev. Un. Mat. Argentina 48(2)
(2007), pp 47-65.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF COLORADO, 1420 AUSTIN BLUFFS PARKWAY,
COLORADO SPRINGS, CO 80918 U.S.A.

E-mail address: abrams@math.uccs.edu

DIPARTIMENTO DI INFORMATICA, UNIVERSITA DEGLI STUDI DI VERONA, STRADA LE GRAZIE 15,
37134 VERONA, ITALY

E-mail address: francesca.mantese@univr.it

DIPARTIMENTO DI MATEMATICA TULLIO LEVI-CIVITA, UNIVERSITA DEGLI STUDI DI PADOVA,
VIA TRIESTE 63, 35121, PADOVA, ITALY

E-mail address: tonolo@math.unipd.it



