
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=ubes20

Journal of Business & Economic Statistics

ISSN: 0735-0015 (Print) 1537-2707 (Online) Journal homepage: http://www.tandfonline.com/loi/ubes20

Robust Inference for Inverse Stochastic
Dominance

Francesco Andreoli

To cite this article: Francesco Andreoli (2018) Robust Inference for Inverse
Stochastic Dominance, Journal of Business & Economic Statistics, 36:1, 146-159, DOI:
10.1080/07350015.2015.1137758

To link to this article:  https://doi.org/10.1080/07350015.2015.1137758

View supplementary material 

Accepted author version posted online: 13
Jan 2016.
Published online: 27 Apr 2017.

Submit your article to this journal 

Article views: 129

View related articles 

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=ubes20
http://www.tandfonline.com/loi/ubes20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/07350015.2015.1137758
https://doi.org/10.1080/07350015.2015.1137758
http://www.tandfonline.com/doi/suppl/10.1080/07350015.2015.1137758
http://www.tandfonline.com/doi/suppl/10.1080/07350015.2015.1137758
http://www.tandfonline.com/action/authorSubmission?journalCode=ubes20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=ubes20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/07350015.2015.1137758
http://www.tandfonline.com/doi/mlt/10.1080/07350015.2015.1137758
http://crossmark.crossref.org/dialog/?doi=10.1080/07350015.2015.1137758&domain=pdf&date_stamp=2016-01-13
http://crossmark.crossref.org/dialog/?doi=10.1080/07350015.2015.1137758&domain=pdf&date_stamp=2016-01-13


Supplementary materials for this article are available online. Please go to http://tandfonline.com/r/JBES

Robust Inference for Inverse Stochastic
Dominance
Francesco ANDREOLI

Living Conditions Department, Luxembourg Institute of Socio-Economic Research (LISER), L-4366
Esch-sur-Alzette/Belval Campus, Luxembourg (francesco.andreoli@liser.lu)

The notion of inverse stochastic dominance is gaining increasing support in risk, inequality, and welfare
analysis as a relevant criterion for ranking distributions, which is alternative to the standard stochastic
dominance approach. Its implementation rests on comparisons of two distributions’ quantile functions, or
of their multiple partial integrals, at fixed population proportions. This article develops a novel statistical
inference model for inverse stochastic dominance that is based on the influence function approach. The
proposed method allows model-free evaluations that are limitedly affected by contamination in the data.
Asymptotic normality of the estimators allows to derive tests for the restrictions implied by various forms
of inverse stochastic dominance. Monte Carlo experiments and an application promote the qualities of the
influence function estimator when compared with alternative dominance criteria.

KEY WORDS: Income distribution; Influence function; Inequality; Lorenz curve; Nonparametric
methods; Welfare.

1. INTRODUCTION

One objective of social welfare analysis is to define and im-
plement criteria to rank distributions representing, for instance,
risky prospects or realizations of income, consumption, and
wealth. The major challenge is to define dominance criteria that
are robust to the choice of the evaluation method adopted to
assess and compare the degree of risk or inequality implied by
the distributions. Motivated by welfare concerns, the literature
has brought about the notion of standard stochastic dominance,
which has become a workhorse in empirical distribution analy-
sis as statistical inference techniques have been made increas-
ingly available (Bishop, Chakraborti, and Thistle 1989; Ander-
son 1996; Davidson and Duclos 2000; Barrett and Donald 2003;
Linton, Maasoumi, and Whang 2005).

The notion of inverse stochastic dominance (ISD) introduced
by Muliere and Scarsini (1989) identifies criteria for ranking
distributions that are distinct from standard stochastic domi-
nance. The ISD is linked to the rank-dependent (nonexpected)
utility approach pioneered by Yaari (1987), which resolves im-
portant paradoxes in decision theory (Quiggin 1993), and has
natural applications in finance (Wang and Young 1998), as well
as in inequality (Yaari 1988; Zoli 2002) and welfare analy-
sis (Sen 1974; Aaberge 2009; Aaberge, Havnes, and Mogstad
2013). Connections with ISD are also found in program evalua-
tion studies based on quantile regression methods (Firpo, Fortin,
and Lemieux 2009; Andreoli, Havnes, and Lefranc 2014).

The most demanding notion of ISD, denoted ISD at order one
or rank dominance (Saposnik 1981), holds whenever the Pen’s
Parade chart (i.e., the quantile function graph) of the dominant
distribution lies nowhere below, and at least some point above,
the corresponding chart of the dominated distribution. Weaker
criteria of ISD involve comparisons of multiple partial integrals
of the distributions’ quantile functions at every abscissa corre-
sponding to a population proportion. For instance, ISD at order
two is implemented by comparing the integrals of the quan-
tile functions, taken over the space of population proportions.

These give the generalized Lorenz curves of the distributions
(Gastwirth 1971), with all the welfare implications that gener-
alized Lorenz dominance bears (Kolm 1969; Atkinson 1970;
Shorrocks 1983). Further integrations yield conditions for even
weaker forms of ISD, which guarantee robust, yet more con-
clusive, welfare rankings of the distributions. Despite economic
and statistical advantages of ISD over standard stochastic dom-
inance, there is limited scope for ISD in empirical analysis, as a
consistent statistical framework for testing ISD is still missing.

This article develops a statistical inference model for testing
ISD at higher orders. The methodology consists in calculating
the ordinates of the recursive integrals of the generalized Lorenz
curves for the full set of abscissae implied by the empirical
distribution functions, and then using these estimates to com-
pute tractable formulations of the covariances between ordinates
of these curves. The implementation of this approach is based
on the linear decomposition of the ISD estimators into their in-
fluence functions, measuring the extent to which the estimator
is influenced by an infinitesimal amount of contamination in
the data (Cowell and Victoria-Feser 2002; Barrett and Donald
2009). This is done by (i) linearly decomposing the sample esti-
mator of the multiple partial integrals of the generalized Lorenz
curves evaluated at various population proportions into the cor-
responding influence functions; (ii) retrieving an empirically
tractable estimator of these influence functions; (iii) obtaining
analytical expressions of the underlying asymptotic covariances,
which depend on the estimated influence functions. Standard
algebra shows that asymptotic normality is granted at

√
n con-

vergence rate. Thus, Wald-type joint test statistics can be used
to test the hypothesis of equality, ISD, and lack of dominance
at any order.

There are proposals of estimators for ISD at order one and
two that are model-free (Beach and Davidson 1983; Bishop,
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Chakraborti, and Thistle 1989) and/or robust to the complex
design of the sample (Kovacevic and Binder 1997; Zheng 1999;
Zheng 2002). Aaberge (2006) proposed related estimators in
a model-dependent context. The influence function approach
yields, instead, model-free estimators for ISD at any order. For
instance, the covariance estimators for quantile and generalized
Lorenz curves proposed by Beach and Davidson (1983) are
shown to coincide with the influence function estimators for ISD
at order one and two, respectively, if simple random sampling
is assumed.

The ISD criteria at order one and two yield equivalent wel-
fare implications as first-degree and second-degree stochastic
dominance. The inference strategies proposed in the literature
for these forms of standard stochastic dominance rest, never-
theless, on comparisons at fixed population proportions (Beach,
Davidson, and Slotsve 1994; Abadie 2002; Barrett, Donald, and
Bhattacharya 2014), as required by ISD implementation.

To rank distributions when their generalized Lorenz curves
cross it is wise to choose criteria that are finer than generalized
Lorenz dominance, but still consistent with it, that is, that are
implied by ISD at order two. Extending comparisons to ISD at
order three and above is an interesting possibility, since the or-
der of ISD identifies restrictions on the class of rank-dependent
evaluation functions upon which welfare dominance is eval-
uated (Maccheroni, Muliere, and Zoli 2005). Refinements of
standard stochastic dominance (Fishburn 1976; Fishburn and
Vickson 1978; Le Breton and Peluso 2009) yield welfare impli-
cations that are distinct, although equally valid from a normative
standpoint, from those of ISD.

Empirical analysis seems, nonetheless, to advocate for the use
of the ISD criterion. In fact, when two generalized Lorenz curves
cross, the empirical practice is to give priority to welfare consid-
erations implied by one or few inequality indicators, rather than
resorting to finer dominance criteria. Almost ubiquitously, the
focus is on the Gini inequality coefficient and/or on its single-
parameter S-Gini extensions (Weymark 1981; Donaldson and
Weymark 1983), which are strictly connected to the generalized
Lorenz curve (Yitzhaki 1982) and for which asymptotic results
are available (Barrett and Pendakur 1995; Barrett and Donald
2009). The ranking of distributions based upon the Gini index,
however, is not necessarily consistent with standard stochas-
tic dominance at orders higher than the second (Newbery 1970;
Dardanoni and Lambert 1988). Rather, if the generalized Lorenz
curve of the distribution with higher Gini coefficient intersects
the generalized Lorenz curve of another distribution from above,
it is always the case that the former inverse stochastic dominates
at order three the latter (Zoli 1999).

Additional motivations supporting the ISD model are illus-
trated in the rest of the article, which is organized as follows.
The normative background of ISD is examined in Section 2.
The asymptotic results for the influence function approach for
ISD are developed in Section 3, where it is also shown that, un-
der reasonable assumptions, the influence functions estimates
are bounded. The proposed estimator is therefore robust, in the
sense that its value cannot drastically change with an infinitesi-
mal amount of contamination in the data (Cowell and Victoria-
Feser 2002). Extensions to the complex survey design setting
are discussed in Section 3.4. Section 4 develops joint tests for
various forms of ISD. The properties of these tests are investi-

gated in the context of a Monte Carlo study (Section 5), based
on parametric models for distributions of disposable income and
durable consumption in the U.S., and in an empirical evaluation
of equality of opportunity in France (Section 6), where higher
order ISD relations are tested to uncover patterns of unfair ad-
vantage in labor market outcomes of workers with heterogenous
backgrounds of origin. In both assessments, the influence func-
tion estimator’s performances are compared with the bootstrap
estimator for ISD and with standard stochastic dominance tests
(Davidson and Duclos 2000; Barrett and Donald 2003). The
simulation study, in particular, supports the use of the influence
function estimator for ISD as the most powerful testing criterion
when the sample size is not too small, and especially when data
are contaminated. Section 7 concludes.

2. ROBUST WELFARE ANALYSIS AND ISD

Let Y be a random variable with cumulative distribution
function (c.d.f.) F and inverse (quantile) distribution function
F−1(p) = inf{y ∈ R+ : F (y) ≥ p}, for p ∈ [0, 1]. The distri-
bution F represents, for instance, the distribution of income in
the population. Following Gastwirth (1971), the integral func-
tion GLF (p) = ∫ p

0 F−1(t) dt defines the generalized Lorenz
curve (GL) of F. Denote �F

2 (p) = GLF (p), the recursive in-
tegrals of this function in the space of population proportions
p ∈ [0, 1] give �F

k (p) = ∫ p

0 �F
k−1(t) dt , for any k ≥ 2. Integra-

tion by part reveals that �F
k is a linear transformation of the

distribution’s quantiles:

�F
k (p) = 1

(k − 2)!

∫ p

0
(p − t)k−2F−1(t)dt. (1)

The relations between the quantile function (k = 1) and its re-
cursive integrals at orders k = 2 and k = 3 are represented in
Figure 1. At order one, the so-called Pen’s Parade “of dwarfs and
giants incomes” of F gives the level of income attained by the
poorest p100% of the population. At order two, the generalized
Lorenz curve coordinates correspond to the expected income
attained by the poorest p100%. At order three, the integral of

Figure 1. The quantile function curve and the generalized Lorenz
curve, along with its integrals. Gray dots on the curve in panel (b)
correspond to the value of the integrals of the curves in panel (a),
computed at different population shares p1, p2, and p3.
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the generalized Lorenz curve trades-off expectation of income
attained by the poorest p100% with income inequality. As the
order of integration grows, more weight is given to inequality
among the poor.

Muliere and Scarsini (1989) defined a situation where the
graph of �F

k lies nowhere below the graph of �G
k , that is,

�F
k (p) ≥ �G

k (p), ∀p ∈ [0, 1], as F inverse stochastic domi-
nates G at some order k, denoted F �ISDk G. The ISD1 criterion
stands for rank dominance (Saposnik 1981), while ISD2 denotes
generalized Lorenz dominance (Shorrocks 1983). Although ISD
at orders one and two provide equivalent normative implications
as standard first- and second-degree stochastic dominance, the
two criteria do not coincide at higher orders of dominance.

The ISD relation induces a partial order of distributions pa-
rameterized by k, which has a normative appeal for social wel-
fare analysis. It is in fact related to the Yaari’s (1987) rank-
dependent representation of social evaluation functions (SEF).
Any SEF W in the broadest class of rank-dependent SEF, de-
noted R, can be written as a weighted average of realizations:

W (F ) =
∫ 1

0
w(p)F−1(p)dp,

where the weighting (distortion) function w(p) is such that
w(p) ≥ 0, ∀p ∈ [0, 1], and w̃(p) = ∫ p

0 w(t)dt ∈ [0, 1] with
w̃(1) = 1. When w(p) = 1 for all p, the SEF is simply the
expectation of F. Otherwise, w(p) provides a distortion of the
probability p of observing an income lower than F−1(p), thus
incorporating value judgements about the role of low and high
income realizations on overall welfare. Restrictions on these
evaluations have been introduced in the form of assumptions
on the alternate sign of high-order derivatives of w̃(p) (Mac-
cheroni, Muliere, and Zoli 2005; Aaberge 2009). The order of
these derivatives, denoted by an integer k ≥ 2, defines subsets
of R. So, if Rk gathers all SEF in R where k assumptions have
been made on the sign of the derivatives of the weighting func-
tion up to order k, and Rl is instead obtained by making l > k

assumptions on the first l derivatives of the weighting function,
then Rl ⊂ Rk ⊂ R.

Muliere and Scarsini (1989) provided the normative foun-
dation for ISD, by showing that F �ISDk G if and only if
W (F ) ≥ W (G) for all W ∈ Rk . Since ISDk refines ISD2, ISDk
is always consistent with generalized Lorenz dominance and
F �ISDk G implies F �ISDl G, for all l > k, but not the reverse.
As a consequence, when GL curves cross and second-degree
stochastic dominance is rejected, refinements are still possible
by studying ISD3, which gathers agreement about the preferred
distribution among all SEF in R3.

The ISD3 criterion is also coherent with the empirical prac-
tice, which, in the presence of intersecting GL curves, seems to
focus on ordering distributions through the Gini inequality co-
efficient. The Gini coefficient is a member of a particular family
of SEF in Rk , the Generalized Single Parameter S-Gini SEF
(Donaldson and Weymark 1983). Denote Wk(p, F ) as one of
these SEF, measuring social welfare for the poorest p100% of
the population in F, such that

Wk(p, F ) := k

∫ p

0
(p − t)k−1F−1(t)dt. (2)

The SEF related to the Gini coefficient is simply W2(1, F ) (Yaari
1988). Hence, on the one hand, F �ISD3 G implies that the Gini
coefficient of F is smaller than that of G (when both distribu-
tions have the same mean income), while, on the other hand,
Gini coefficients computed at every proportion p of the poor-
est population in both distributions can be used to establish
F �ISD3 G (Zoli 1999). Using the fact that Wk−1(p, F ) in (2)
is proportional to (1) by a factor 1/(k − 1)!, it is possible to
show that the relation between inequality measurement and ISD
extends to any order k ≥ 3.

Remark 1. F �ISDk G if and only if Wk−1(p, F ) ≥
Wk−1(p,G), ∀p ∈ [0, 1].

This result reveals a clear parallel between the way in which
comparisons of ISD and of standard stochastic dominance at
orders three and above are implemented, although the two
concepts remain distinct beyond order two. In fact, standard
stochastic dominance is implemented by checking that, at every
poverty line, the dominant distribution displays less poverty (as
measured by the Foster, Greer, and Thorbecke (1984) poverty
index) than the dominated one. Davidson and Duclos (2000)
exploited poverty gaps from predetermined income thresholds
to produce tests of stochastic dominance. In this vein, I propose
tests for ISDk making use of estimates of �F

k and �G
k , for any

pair of distributions F and G, at selected populations propor-
tions. Since the asymptotic results for the proposed estimator
crucially depend upon its influence functions decomposition, I
call it the influence function (IF) estimator for ISDk.

3. ESTIMATORS FOR ISDK AND LIMITING
DISTRIBUTIONS

3.1 The Influence Function IF Estimator

The derivation of the IF estimator relies on a key result in
distributional theory. Denote T (Ĥ ) a scalar valued functional
of some empirical process Ĥ that is defined on [0, 1]. Using
Hadamard differentiability of the linear functional T , it can be
shown that

√
n
(
T (Ĥ ) − T (H )

) = 1√
n

n∑
i=1

T ′
H

(
φi(., Ĥ )

)+ o(1), (3)

where the iid random variables φi(., Ĥ ) are referred to as the
influence functions of Ĥ , and give the effect of an observation
i on the estimator Ĥ of the underlying process H. The value of
the influence function at p ∈ [0, 1] is φi(p, Ĥ ) (for references,
see Barrett and Donald 2009).

Consider a sequence of realizations y1, . . . , yi, . . . , yn of n-
independent random variables identically distributed as F. De-
note the inverse of F as F−1 and its generalized Lorenz curve as
GLF . Their empirical counterparts are denoted as F̂ , F̂−1, and
ĜL

F
, respectively. The empirical counterpart of �F

k in (1) is
denoted as �̂F

k . To avoid cumbersome notation, the explicit ref-
erence to F in the superscript is dropped, unless disambiguation
is needed.
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The estimator �̂k is tied to ĜL by the following integral
function:

�̂k(p) = 1

(k − 3)!

∫ p

0
(p − t)k−3ĜL(t)dt. (4)

Since the generalized Lorenz curve is a continuous linear map
defined on the space of population shares, it can always be de-
composed into its influence functions as in (3). This follows
by the fact that ĜL is a linear transformation of the quantile
function, so the process

√
n
(
ĜL(p) − GL(p)

)
consists in a lin-

ear transformation of the Bahadur’s (1966) representation of
quantiles. By setting �̂k(p) = T (Ĥ ) where Ĥ = ĜL, also the
process

√
n
(
�̂k(p) − �k(p)

)
can be represented as a sum of iid

variables plus a residual term that vanishes asymptotically:

√
n
(
�̂k(p) − �k(p)

) = 1

(k − 3)!

∫ p

0
(p − t)k−3√n

(ĜL(t) − GL(t))dt

= 1

(k − 3)!

∫ p

0
(p − t)k−3

(
1√
n

n∑
i=1

φi(t, ĜL)

)
dt + o(1)

= 1√
n

n∑
i=1

1

(k − 3)!

∫ 1

0
(p − t)k−3φi(t, ĜL)dt + o(1) (5)

= 1√
n

n∑
i=1

φi(p, �̂k) + o(1). (6)

The n iid random variables φi(p, �̂k) are the influence func-
tions of �̂k(p). Their formula is implicitly given by (5). The
influence function measures the impact that a given observation
i would have on the estimator if the realized income of i were
drawn from the true population distribution F with probability
1 − ε and with probability ε from a distribution C(i)(y), assign-
ing a unit point mass to income yi (Cowell and Victoria-Feser
2002). The hypothetical contaminated distribution is denoted as
F (i)

ε (y) = (1 − ε)F (y) + ε C(i)(y), where C(i)(y) := 1(y ≥ yi)
and 1(.) is the indicator function. The parameter ε captures the
importance of the contamination. For an infinitesimal amount
of contamination, define

φi(p, �̂k) = d

d ε
�̂

F (i)
ε

k (p)
∣∣∣
ε→0

.

An estimator for a stochastic order is robust, that is, its value
cannot drastically change with an infinitesimal amount of con-
tamination in the data, if its influence function is bounded.
Cowell and Victoria-Feser (1996) had shown that poverty in-
dicators, upon which standard stochastic dominance relations
are constructed, are generally robust, while inequality indica-
tors (comprising the Gini index) are generally not. I show that
under similar conditions, the ISDk estimator �̂k(p) is robust.

Lemma 1. If the domain of F is bounded from below then
φi(p, �̂k) is bounded.

The condition is always satisfied in cases where, for instance,
ISD is evaluated over income, wealth, or consumption distri-
butions admitting nonnegative realizations. Analytical results
reported in the supplemental Appendix show that the bias due
to the contamination vanishes as k grows large, implying that

the asymptotic covariances of the influence functions estimates
are also bounded and measured with limited bias in the presence
of contaminated data.

The next proposition establishes the asymptotic distributional
behavior of the IF estimator for ISDk.

Proposition 1. Suppose that the estimator �̂k(p) for k =
3, 4, . . . is obtained from a sample of size n drawn from F,
which is strictly monotonic and defined over a support that is
bounded from below. Then

√
n
(
�̂k(p) − �k(p)

)
converges in

distribution to a normal distribution with mean zero and covari-
ance kernel given by

σk(p, p′) = E
[
φi(p, �̂k)φi(p

′, �̂k)
]
. (7)

Proof. Given that �̂k is a linear functional transformation
of the quantile functions of F, the representation of quantiles
by Bahadur (1966) directly implies that

√
n
(
�̂k(p) − �k(p)

)
converges asymptotically to a sum of iid random variables
with zero expectations, for any p ∈ [0, 1]. Hence, the cen-
tral limit theorem applies. If F is bounded from below,
the influence functions of �̂k(p) are also bounded, and the
process displays finite asymptotic covariance kernels. Notic-
ing that the influence functions are iid random variables, it
follows that E[φi(p, �̂k)φi ′(p′, �̂k)] = 0 for any i 	= i ′ and
E[φi(p, �̂k)φi(p′, �̂k)] = E[φi ′(p, �̂k)φi ′(p′, �̂k)] for all i, i ′.
There are n of these equalities, implying that the covariance
kernel can be written as

E

[
1√
n

n∑
i=1

φi(p, �̂k)
1√
n

n∑
i=1

φi(p
′, �̂k)

]
= E

[
φi(p, �̂k)φi(p

′, �̂k)
]
. (8)

�
It is common practice in empirical analysis to estimate a set

of ordinates of the process �̂k(p), corresponding to a set of
prechosen m abscissae indexed by {pj |j = 1, . . . , m} with 0 <

p1 < · · · < pm ≤ 1. The implied ordinates can be collected in
an m × 1 vector denoted �̂k = (�̂k(p1), . . . , �̂k(pm))� ∈ R

m
+,

with �k being the corresponding vector in the population. The
IF decomposition in (5), as well as its robustness properties,
extend to vector notation:

√
n
(
�̂k − �k

) = 1√
n

n∑
i=1

φi + o(1), (9)

where φi = (φi(p1, �̂k), . . . , φi(pm, �̂k))� and the term o(1)
should be understood in the proper dimensionality. It follows
from Proposition 1 that the vector

√
n(�̂k − �k) is asymptoti-

cally m-variate normal with covariance �k = E
[
φi · φ�

i

]
. The

element of �k corresponding to abscissae (pj , pj ′ ) is equal to
σk(pj , pj ′ ) in (7). A direct consequence is that, for any k ≥ 3,
�̂k is asymptotically distributed as N (�k, �k/n).

3.2 Sample Implementation of the IF Estimator

Consider a sample of size n where realizations are de-
noted y1, . . . , yn. To save notation, the subscript i denotes
both an observation and the position it occupies in the rank-
ing of realizations arranged by increasing magnitude, so that
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y0 ≤ y1 ≤ · · · ≤ yi ≤ · · · ≤ yn with y0 an inferior bound. The
weights, often representing the inverse probability of selection
from the population, are denoted �i ≥ 0 and are indexed accord-
ing to the sample units: �1, . . . ,�n. Results are first derived
within the simple random sampling structure and then extended
to complex survey design.

The empirical c.d.f. F̂ estimated at any point y is a step
function with increments π̂i = �i/

∑
i �i associated with each

observation. Its ordinates are denoted by

p̂i =
i∑

j=1

π̂j .

If in the sample there are no ties, that is, yi < yi+1 for all i’s, then
F̂ (y) = p̂i for any y ∈ [yi, yi+1). If there are τ ties in the sam-
ple among yi = yi+1 = · · · = yi+τ , then F̂ (y) = p̂i+τ whenever
yi−1 < y = yi = yi+1 = · · · = yi+τ . With this representation, it
is possible to associate quantiles to observed incomes. The em-
pirical quantile function F̂−1(p) at population proportion p is

F̂−1(p) =
n∑

i=1

yi1
(
p̂i−1 < p ≤ p̂i

)
, (10)

where F̂ (y0) = p0 = 0. Thus, for p ∈ (p̂i−1, p̂i] the quantile
function takes value yi and it is well defined even in the case
of ties in the sample. Using the fact that

∫ 1
0 = ∑n

i=1

∫ pi

pi−1
with

p0 = 0, the sample estimator of the GL curve for p ∈ [p̂j−1, p̂j )
can be defined as follows:

ĜL(p) :=
∫ p

0
F̂−1(t)dt =

n∑
i=1

∫ p̂i

p̂i−1

F̂−1(t)dt1
(
p̂i ≤ p

)
+yj (p − p̂j−1)

=
n∑

i=1

yi

∫ p̂i

p̂i−1

dt1
(
p̂i ≤ p

)+ yj (p − p̂j−1)

≈
n∑

i=1

yi π̂i 1
(
p̂i ≤ p

)
. (11)

In a similar way, it is possible to define a consistent estimator
of the integrals of the GL curve in (1). The estimator is denoted
as �̂k(p). For p ∈ [p̂j−1, p̂j ), it corresponds to

�̂k(p) := (k − 1)

(k − 1)!

{
n∑

i=1

∫ p̂i

p̂i−1

(p − t)k−2F̂−1(t)dt1
(
p̂i ≤ p

)
+ yj

∫ p

p̂j−1

(p − t)k−2dt

}

= 1

(k − 1)!

{
n∑

i=1

yi

∫ p̂i

p̂i−1

(k − 1)(p − t)k−2dt1
(
p̂i ≤ p

)
+ yj

∫ p

p̂j−1

(k − 1)(p − t)k−2dt

}

≈ 1

(k − 1)!

n∑
i=1

yi

{
(p − p̂i−1)k−1

− (p − p̂i)
k−1
}

1
(
p̂i ≤ p

)
. (12)

The approximations in (11) and (12) are asymptotically valid,
since the correction terms vanish as the sample size grows.
Furthermore, notice that the estimator is linear in incomes, and
therefore the presence of ties in the sample does not give rise to
computational issues.

The consistent estimator of the asymptotic variance-
covariances of �̂k , �k/n = 1

n
E[φi · φ�

i ], can be obtained by
replacing the expectation for its sample counterpart as follows:

�̂k = 1∑
i �i

n∑
i=1

�i φi · φ�
i . (13)

At abscissae (pj , pj ′ ), the estimator writes:

σ̂k(pj , pj ′ ) = 1∑
i �i

n∑
i=1

�i φi(pj , �̂k)φi(pj ′ , �̂k).

To compute the empirical covariances, it is necessary to es-
timate the influence functions φi(pj , �̂k) at every abscissa pj .
The consistent estimators of the influence functions can be ob-
tained by plugging the influence function estimator of the gen-
eralized Lorenz curve ĜL(p), denoted as φ̂i(p, ĜL), into the
definition of �̂k(p) in (5). Using the influence function algebra,
one can show that

φ̂i(p, ĜL) = (
pF̂−1(p) − ĜL(p)

)− 1
(
yi ≤ F̂−1(p)

)
× (

F̂−1(p) − yi

)
, (14)

as in Cowell and Victoria-Feser (2002) and Barrett and Donald
(2009). Equation (14) defines a model-free estimator of the in-
fluence function, meaning that its values can be computed from
a sufficiently large sample of observations and no parametric
assumptions on the underlying distribution functions have to be
made. Plugging (14) into (5) gives the empirical counterpart of
the influence function of �̂k , which can be further decomposed
into three elements as φ̂i(p, �̂k) = ∑3

h=1 Ih, where

I1 = 1

(k − 3)!

∫ 1

0
(p − t)k−3 t F̂−1(t)1(t ≤ p)dt,

I2 = − 1

(k − 3)!

∫ 1

0
(p − t)k−3 ĜL(t)1(t ≤ p)dt,

I3 = − 1

(k − 3)!

∫ 1

0
(p − t)k−3 1

(
yi ≤ F̂−1(t)

)
× (

F̂−1(t) − yi

)
1(t ≤ p)dt.

The empirical estimator of Ih with h = 1, 2, 3 can be derived
using similar approximations as in (11) and (12). These esti-
mators are asymptotically unbiased and, using integrations by
parts, can be written as weighted averages across sample units:

Î1 ≈ 1

(k − 1)!

n∑
j=1

yj

{
(k − 1)	k−2

(
p̂j

)+ 	k−1

(
1
)}

1
(
p̂j ≤ p

)
,

Î2 ≈− 1

(k−1)!

n∑
j=1

{
(k − 1)	k−2

(
ĜL(p̂j )

)+ yj	k−1

(
1
)}

1
(
p̂j ≤ p

)
,

Î3 ≈ − (k − 1)

(k − 1)!

n∑
j=1

(yj − yi)1(yi ≤ yj )
{
	k−2

(
1
)}

1
(
p̂j ≤ p

)
,
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where

	κ

(
g(p̂j )

)
:= (

p − p̂j−1
)κ · g(p̂j−1) − (

p − p̂j

)κ · g(p̂j )

with κ a positive integer, and g can be either the estimator
of the GL curve (by setting g(p̂j ) := ĜL(p̂j ), which yields
	κ (ĜL(p̂j ))), the estimator of the c.d.f. at income yj (by setting
g(p̂j ) := p̂j , which yields 	κ (p̂j )), or a constant (by setting
g(p̂j ) := 1, which yields 	κ (1)).

Replacing the estimator in (11) into Îh leads to the asymptot-
ically consistent estimator of φ̂i(p, �̂k). These estimators must
be separately computed for all observations of the sample and
for all quantiles implied by the chosen grid. The estimator of
the asymptotic covariance �̂k is the weighted sample covariance
between the influence function estimates.

3.3 The IF Estimator for ISD1 and ISD2

Under simple random sampling, the validity of Proposition 1
extends to the IF estimators for rank dominance (ISD1) and for
generalized Lorenz dominance (ISD2). Hence, the quantiles and
generalized Lorenz curves estimators are asymptotically normal
with covariance kernels σ1(p, p′) = E

[
φi(p, F̂−1)φi(p′, F̂−1)

]
and σ2(p, p′) = E

[
φi(p, ĜL)φi(p′, ĜL)

]
, respectively. In this

case, the influence function of a quantile of F is

φ̂i(p, F̂−1) = (
p − 1(F̂−1(p) ≥ yi)

)
/f̂ (F̂−1(p)),

while the influence function of the generalized Lorenz curve is
given in (14). This representation turns out to be related to well-
known estimators for rank and generalized Lorenz dominance.

Remark 2. Suppose that for a set of population abscissae
{pj |j = 1, . . . m}, the distribution function F is continuous and
derivable in pj with density function f (F−1(pj )) > 0 for ev-
ery j. Then, for pj ≥ pj ′ , σ1(pj , pj ′ ) and σ2(pj , pj ′ ) coincide
with the covariance estimators in Beach and Davidson (1983),
Lemma 1 and Theorem 1, respectively.

Aside from particular situations spotted in Cowell and
Victoria-Feser (2002), which are unlikely to occur in empiri-
cal welfare analysis, when the domain of F is bounded from
below and from above the influence functions of F̂−1 and of ĜL
are bounded, meaning that the estimators proposed by Beach
and Davidson (1983) are robust to contamination. This makes
the IF estimator the most natural candidate for extending the
robust, model-free estimator for generalized Lorenz dominance
to higher-order ISD assessments.

3.4 Implementation With Complex Sampling Design

In empirical analysis, the simple random sampling assump-
tion is highly unrealistic. Most economic data display a strat-
ified, clustered, or multistage design. Assumptions about the
sampling method may lead to different estimation procedures
for the IF estimator. This is shown, for instance, in Zheng (2002)
where consistent estimators for the covariance between ordi-
nates of the Lorenz curve are derived under nonsimple ran-
dom sampling design. I derive here the consistent estimator for
the asymptotic covariance in Proposition 1 under the stratified
single-stage sample design, a case also discussed in the empiri-
cal exercise.

To extract a stratified single-stage sample, a population is
first divided into strata s = 1, . . . , S, and then a set of clusters
is selected in a simple random manner from each stratum s.
There are Ns clusters in stratum s of the population, from which
ns clusters are randomly selected. In a survey design context,
each cluster j = 1, . . . , ns represents a primary sampling unit
(PSU) that has a population of size Nsj , with N = ∑

s

∑
j Nsj

the total population. Only nsj observations are drawn from each
PSU. An observation is denoted with i = 1, . . . , nsj , and has a
survey weight of �sji . In the presence of nonsimple sampling
design, the random vector �̂k − �k is equivalent in distribution
to the random vector:

S∑
s=1

ns∑
j=1

θsj

nsj∑
i=1

�sji

Nsj

φsj i ,

where θsj = Nsj/N and φsj i is the influence function of the vec-
tor �̂k for an observation i in cluster j of stratum s, obtained from
the overall distribution. If the PSU are drawn independently both
within and across strata, then �̂k preserves its m-variate asymp-
totic normality, and its asymptotic covariance can be computed
from the IF covariances (see Proposition 1).

To estimate the asymptotic covariance, denote the sample esti-
mator of Nsj as N̂sj = ∑nsj

i=1 �sji and that of the overall popula-
tion as N̂ = ∑S

s=1

∑ns

j=1 N̂sj . The asymptotic covariance matrix
estimator with nonsimple random sample design of the data is
the covariance of the influence function realizations across PSU,
multiplied by a correction term, which depends upon the strata
and cluster dimensions:

�̂k =
S∑

s=1

(
Ns

ns

− 1

)
ns

ns − 1

ns∑
j=1

θ̂2
sj

[(
φ̂sj − φ̂s

) · (φ̂sj − φ̂s

)�]
,

where θ̂sj = N̂sj /N̂ and φ̂sj is the weighted average of the in-
fluence function for each PSU (s) while φ̂s is the sample mean
of the influence functions in stratum s, that is,

φ̂sj =
nsj∑
i=1

�sji

N̂sj

φ̂sj i ; φ̂s = 1

ns

ns∑
j=1

φ̂sj .

To obtain asymptotic consistency, the sampling design requires
both Ns and ns to be large. Estimation under more complex
(multi-stage) sample design are covered in Zheng (2002) and
Deville (1999). The extension of the results presented above in
that setting is rather direct.

3.5 Alternative Estimators

Alternatively to the IF estimator, I present the bootstrap esti-
mator for ISDk. It consists in bootstrapping a sufficiently large
number of times the empirical counterpart of �k from the origi-
nal sample. The bootstrap covariance of these parameters is the
covariance of the bootstrapped estimates. Let Y be the original
sample of size n drawn from the distribution F. Bootstrap com-
putations are conditional on Y . Let a random sample of size n∗

drawn with replacement from Y be denoted as Yb = {yb
i }n

∗
i=1,

with empirical distribution F̂b. It is often the case that n∗ = n.
For every sub-sample Yb, calculate the estimator �̂

Fb

k (pj ) for a
finite set of m abscissae. By repeatedly drawing random samples
from Y , say B times, and calculating for each of the sub-samples
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the values taken by �̂
Fb

k (pj ) at each abscissa, one obtains a
B × m matrix of data. The m × m empirical covariance matrix
computed from these data gives the bootstrap estimator �BS

k /n,
where

σ̂ BS
k (pj , pj ′ )

n
:= 1

B − 1

( B∑
b=1

�̂
Fb

k (pj )�̂Fb

k (pj ′)

−B �̂k(pj ) �̂k(pj ′)

)
. (15)

The application of the bootstrap estimator only requires the
calculation of a vector of m ordinates of �̂

Fb

k at every resampling
stage, although in general it does not offer a refinement of the
asymptotic approximation illustrated in Proposition 1.

Other estimators, connected to the IF approach, have been
proposed in the literature. For instance, Aaberge (2006) dis-
cussed an estimator for the covariances between the partial
integrals of the generalized Lorenz curve taken at different
population proportions, and have proposed tests for comparing
quantiles of the distributions and implied Gini indices. Aaberge,
Havnes, and Mogstad (2013) studied the asymptotic properties
of a Kolmogorov–Smirnov test for upward stochastic domi-
nance criteria, which is obtained by representing the quantile
function as a Gaussian continuous process. The implementation
of these test statistics, however, relies on appropriate estimates
of the population density functions. Reliable nonparametric es-
timators are difficult to obtain when the sample size is relatively
small, and additional assumptions over the domain of realiza-
tions (such as boundedness) have to be imposed.

4. NULL HYPOTHESIS AND TEST STATISTICS
FOR ISDK

For two distributions F and G, the null hypothesis of equality
in distributions, that is, F �ISDk G and G �ISDk F , is equiva-
lent to test �G

k (p) = �F
k (p) at every p. The null hypothesis of

ISDk, that is, F �ISDk G, can be tested against an unrestricted
one, comprising the nondominance case. The alternative case,
placing nondominance at the null, is of interest when the re-
searcher is confident in claiming ISD only when there is strong
evidence in its favor. In all these cases, the hypotheses are not
formulated on k directly, but rather they postulate that an ISD
relation at order k holds between the two distributions.

Following Anderson (1996), Dardanoni and Forcina (1998,
1999), and Davidson and Duclos (2000), I define tests for ISDk
based on a finite number of m abscissae. As a consequence,
every null hypothesis can be formulated through joint hypothesis
on a vector of parameters �F

k − �G
k . Let �k be the 2m × 1

vector obtained by staking the vectors �F
k and �G

k . Its sample
counterpart is denoted as �̂k and is estimated from samples of
size nF and nG, respectively, where n = nF + nG indicates the
pooled sample size. The relative size of the samples is denoted by
rF = nF /n and rG = nG/n. Let R = (Im,−Im) be the m × 2m

differences matrix, with Im indicating the m × m identity matrix.
Define the parametric vector of differences, δk ∈ R

m, as δk =
R�k .

Under the assumption that F and G are generated by inde-
pendent processes, the asymptotic normality of the IF estima-

tor allows to establish that
√

n δ̂k = √
n R �̂k is asymptotically

distributed as N (√
n R �k, �

)
for k ≥ 1, where δ̂k denotes the

sample counterpart of δk , and

� = R diag

(
�F

k

rF
,
�G

k

rG

)
R�.

An asymptotically valid estimator of �, denoted as �̂, is ob-
tained by plugging the empirical counterpart of the influence
function estimator in Proposition 1 in place of �F

k and of �G
k .

The null hypotheses are formulated as m linear constraints
on δk . The null hypothesis of equality can be confronted with
an unrestricted alternative, indicating the case in which some
equalities at given population proportions only occur as a result
of intersections.

Hk
0 : δk = 0; Hk

1 : δk 	= 0.

Under the asymptotic normality of δ̂k , the null hypothesis can

be assessed by a Wald-type test statistic T k
1 := n δ̂

�
k �̂

−1
δ̂k ,

which is χ2
m distributed. The decision rule can be formulated in

terms of p-values as “Reject Hk
0 if p̂k < α.”

The null hypothesis of dominance consists in comparing δk

nonnegative with the unrestricted alternative, that is,

Hk
0 : δk ∈ R

m
+; Hk

1 : δk ∈ R
m.

Under the null Hk
0 , consider the following test statistic:

T k
2 = min

δk∈R
m+

{
n (̂δk − δk)� �̂

−1
(̂δk − δk)

}
.

Under the asymptotic normality of δ̂k , Kodde and Palm (1986)
showed that T k

2 is asymptotically distributed as a mixture of χ2

distributions:

T k
2 ∼ χ2 :=

m∑
j=0

w
(
m,m − j, �̂

)
Pr
(
χ2

j ≥ c
)
,

where w(m,m − j, �̂) denotes the probability that m − j ele-
ments of δk are strictly positive. To estimate w

(
m,m − j, �̂

)
,

I draw 10, 000 m-variate normal vectors with mean zero and
covariance matrix �̂. Then, I compute the proportion of vectors
with m − j positive elements. Kodde and Palm (1986) provided
a tabulation of the lower (lbα) and upper (ubα) bounds of the
rejection region for the null Hk

0 at standard confidence levels
α. The decision rule becomes “Reject (accept) Hk

0 if T k
2 > ubα

(T k
2 < lbα).” In all cases in-between, the usual decision rule

based on the p-value applies. To test the reverse dominance
order, that is, G �ISDk F , it is sufficient to replace −̂δk and
−δk in the calculation of T k

2 . Tests for F �ISDk G against re-
stricted alternatives can be derived from Dardanoni and Forcina
(1999), where the asymptotic distributions of tests for equality
and strong dominance are compounded.

Finally, the null hypothesis of nondominance encompasses
cases in which either G �ISDk F , or the graphs of �̂F

k (p) and
�̂G

k (p) intersect. Opposing this hypothesis to an alternative of
strong ISDk implies that the researcher is willing to conclude
for ISD only if there is a strong evidence in its support, which
is a defendable perspective in evaluation studies:

Hk
0 : δk 	∈ R

m
+; Hk

1 : δk ∈ R
m
+.
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Following Dardanoni and Forcina (1999), the test statistic un-
der Hk

0 correspond to a collection of standard-normal distributed

statistics Zpj
= √

n(�̂F
k (pj ) − �̂G

k (pj ))/
√

�̂jj , j = 1, . . . , m,

where �̂jj is the estimator of � at abscissae (pj , pj ). A test
statistic can be derived in more compact notation as

T k
3 = min

p∈{pj |j=1,...,m}
{
Zp

} ∼ N (0, 1).

Rejection of the null is based on a unilateral test with critical
values taken from the standard normal tabulation. Equivalently,
Hk

0 is rejected only if the graph of the lower bound of the
confidence interval of δ̂k lies entirely above the horizontal axis.

As pointed out by Davidson and Duclos (2000) in the context
of standard stochastic dominance analysis, assessing dominance
at a finite number of thresholds might rise the problem of test
inconsistency. This is true for standard stochastic dominance,
where dominance is inferred on the basis of income thresholds
potentially gathering no observational mass in the close neigh-
borhood. Even contamination at the bottom tail of a distribution
might lead to crossings that extend over a number of income
thresholds. The tests for ISDk, instead, allow to perform com-
parisons at fixed population proportions. In this way, sample
coverage is always granted. When the grid is very fine (a pa-
rameter that is controlled by the researcher), the ISDk test is
likely to measure differences in transformations of realized in-
come at a continuum of population shares in the sample. This is
close to the logic underpinning a Kolmogorov–Smirnov statistic
for quantiles transformations. Barrett and Donald (2003) stud-
ied a consistent test for standard stochastic dominance based on
the same principle, but evaluating transformations of the c.d.f.
at every income level on a bounded realizations support. Their
result relies on the fact that the asymptotic distribution for this
test statistic involves a Brownian Bridge process. Using the Ba-
hadur (1966) representation of quantiles, similar methods can be
developed in the context of ISD analysis. For instance, Barrett,
Donald, and Bhattacharya (2014) had developed consistent tests
for assessing Lorenz dominance at every population proportion.
The Monte Carlo study hereafter provides intuitions on the ef-
fect of increasing the quantity of population shares where ISD
is tested. It also builds comparisons with standard stochastic
dominance tests.

5. MONTE CARLO RESULTS

The size and power properties of the estimators discussed so
far are assessed through a series of Monte Carlo experiments.
Each experiment involves tests for ISD at order one, two, and
three, the relevant case where standard stochastic dominance
analysis and ISD analysis differ. The Monte Carlo experiment
provides intuitions on the behavior of the different estimators
when the sample size is relatively small, and allows to draw con-
clusions about the effect of increasing the sample size and of
manipulating the number of threshold at which dominance is as-
sessed. The study is based on reliable models of real income and
durable consumption distributions in the United States, already
validated in the literature.

Various estimators have been used to test the null hypothesis
that a distribution F dominates another distribution G at some

order k, versus an unrestricted alternative. The Monte Carlo ex-
periment consists in simulating 1000 independent sample draws
from parametric models of F and G. The design of each para-
metric model is inspired by Barrett and Donald (2009), whereby
each simulated draw i of a random variable Yi at a given sim-
ulation stage is generated by a lognormal distribution, that is,
Yi = exp(σZi + μ), where Zi is a realization of an N (0, 1) ran-
dom variable and (σ,μ) are the dispersion and location param-
eters. Each experiment involves the simulation of three samples
of size 100, 500, and 1500, respectively. For each experiment,
the null hypothesis is tested for k ∈ {1, 2, 3} (both in strict dom-
inance and equality forms) using different estimators for the
asymptotic covariances, while setting the number of abscissae
to m ∈ {5, 10, 20}. These abscissae correspond to increments
in population proportions of, respectively, 20%, 10%, and 5%.
The parameters μ and σ are chosen so that a specific dominance
relation holds in the population. For each simulated sample, a
series of indicators informing about acceptance or rejection of a
given null hypothesis are recorded and then results are reported
as averages of these indicators across all Monte Carlo iterations.

Three cases are investigated here. In the first case, I evaluate
the size and power of the ISD3 test based on the IF estima-
tor, and I compare it to the behavior of the bootstrap estimator.
The first objective is to check the size of the tests by recording
the proportion of simulated draws where the null is rejected
by the data at a nominal size of 5%, knowing that the null is
true and cannot be rejected when tested on the population (us-
ing one million observations). I consider F �ISD3 G to be the
null hypothesis. Following Barrett and Donald (2009), I assume
that each income draw from F is representative of the gross
individual-equivalent income in the United States from March
1998 CPS data, where μF = 9.85 and σF = 0.6. I consider in-
stead that the data drawn from G are generated using μG = 9.85
and σG = 0.7. The difference between F and G approximates
the change of gross individual-equivalent income over the 1980s
and 1990s. Graphical analysis shows that the generalized Lorenz
curves of F crosses that of G from above (hence F �ISD2 G does
not hold). Potentially, F is the distribution yielding higher social
welfare for all SEF sufficiently averse to inequality.

The second objective of the Monte Carlo study is to check the
power of the ISD tests. This is done by recording the propor-
tion of simulated draws in which the null is rejected, knowing
that the alternative is true. In this case, I consider two lognor-
mal distributions F ′ and G′ such that F ′ �ISDk G′ for some
k > 3 but not F ′ �ISD3 G′. Again, the parameterization is as in
Barrett and Donald (2009) and gives the most likely guess for the
distribution of per-capita nondurable expenditures in the United
States over the 1990s. Hence, μF ′ = 6.37 and σF ′ = 0.48 while
μG′ = 6.4 and σG′ = 0.55. In this case, the generalized Lorenz
curves of F ′ and G′ cross once but ISD3 does not hold in the
population.

Detailed results about the size (case 1) and power (case 2)
of the ISD tests based on different estimators are reported in
Table 1. For relatively small samples, the IF estimator for ISD
is shown to have the correct size and power in the baseline case.
The size of the tests based on the ISD3-IF estimator are gener-
ally smaller than 0.10 when inference is made on five abscissae,
while there is no clear pattern of variation with respect to the
size of the samples. The size of the dominance test increases
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Table 1. Monte Carlo rejection rates for ISD, nominal size 0.05 (baseline)

n = 100 n = 500 n = 1500

ISD1 ISD2 ISD3-IF ISD3-BS ISD1 ISD2 ISD3-IF ISD3-BS ISD1 ISD2 ISD3-IF ISD3-BS

Case 1—Size comparisons for the true null H0: F �ISD3 G

5 0.056 0.062 0.051 0.083 0.157 0.170 0.104 0.147 0.474 0.460 0.077 0.102
10 0.044 0.118 0.240 0.181 0.157 0.240 0.236 0.250 0.531 0.597 0.188 0.198
20 0.022 0.258 0.403 0.281 0.091 0.276 0.296 0.310 0.451 0.648 0.223 0.231

Case 2—Power comparisons for the true null H0: F ′ �ISDk G′ for k > 3
5 0.099 0.107 0.115 0.129 0.346 0.330 0.289 0.327 0.773 0.731 0.414 0.444
10 0.103 0.192 0.366 0.244 0.332 0.416 0.502 0.535 0.810 0.872 0.706 0.716
20 0.048 0.366 0.527 0.321 0.235 0.470 0.621 0.597 0.759 0.886 0.745 0.747

NOTE: The Monte Carlo experiments are based on simulations from the lognormal distribution. The specification for each experiment is as follows: case 1—ln YF = N (9.85, 0.6) versus
ln YG = N (9.85, 0.7); case 2—ln YF ′ = N (6.37, 0.48) versus ln YG′ = N (6.4, 0.55). Each experiment involves 1000 Monte Carlo iterations. For the BS estimator, 200 repetitions are
used.

slightly with the number of abscissae. This is not surprising,
given that the test becomes more demanding in terms of com-
parisons while the number of observations is held fixed, leading
to higher likelihood of rejection of the true null hypothesis of
ISD3. When the number of abscissae is set to 20, there is ev-
idence of the negative association between size of the sample
and size of the test, which evolves from 0.403 when the sample
size is small (100 observations) to 0.223 when the sample size is
larger (1500 observations). The discriminatory power of the test
(case 2) is small when the number of abscissae is set to 5, but
it grows rapidly to acceptable levels (in general larger than 0.7)
when the sample size is of 1500 observations. The inference for
ISD3 based on the bootstrap estimator (ISD3-BS) yields very
similar results as for the IF estimator. In small samples, the
bootstrap estimator shows, nevertheless, somehow larger size
and smaller power compared to the IF estimator.

In the second case, I evaluate the size and power of the ISD3
estimators in the presence of data contamination. Results pre-
sented in the supplemental Appendix reveal similar patterns as
in the baseline scenario, thus showing that the IF estimator is
substantially robust to artificial contamination of the data.

In the third and final case, I contrast the size and power of
the IF estimator reported in Table 1 with tests for second- and
third-degree stochastic dominance. For these cases, the focus
is on the tests by Davidson and Duclos (2000) (denoted as
DD), implementing comparisons of distributions at 5, 10, and
20 evenly spaced income thresholds, and on the consistent test
by Barrett and Donald (2003) (denoted as BD). The BD test
is a Kolmogorov–Smirnov statistic of the difference between
recursive partial integrals of the c.d.f. taken over a fine grid of the
income realizations domain. When evaluated in the population,
both tests suggest that F third-degree (but not second-degree)
stochastic dominates G, while F ′ does not stochastic dominate
G′ neither at second- nor at third-degree. Both tests reject the
null of equality at conventional levels of significance.

Table 2 reports the Monte Carlo study results for the DD and
the BD tests. The analysis of third-degree stochastic dominance
(SD3 in the table) reveals that the size of the SD3-DD estimator
is generally larger than the nominal 5%, and that the power is
acceptable only when the number of income thresholds is set to
20. The SD3-BD test has the correct size but very low power,
generally smaller than 0.32. A comparative analysis reveals that

the IF estimator for ISD3 outperforms the SD3-DD estimator
when the sample size is large. Both estimators lead to tests that
have larger size than the SD3-BD test, but also substantially
larger power. In the supplemental Appendix, I document that
these patterns persist even in case of contamination, and that
the IF estimator outperforms the DD estimator in the ability of
distinguishing a genuine cross in the curves used to assess ISD3
or SD3 (which implies that the underlying distributions can
be ranked at some higher order) from a situations where they
are statistically indistinguishable. This is an important issue
in evaluation studies, where the impossibility of rejecting the
equality null hypothesis might prevent the evaluator from further
investigating higher order welfare effects.

Tables 1 and 2 are also useful to assess the power of tests
taking generalized Lorenz dominance as the null. In this case,
the tests for ISD2 and for SD2 have equivalent normative impli-
cations but rely on substantially different implementation meth-
ods. The former is implemented by checking generalized Lorenz
dominance at fixed population ranks, the latter at fixed incomes.
Confronting power levels in Table 1, case 1, with the respective
records in Table 2, it emerges that the DD estimator is somehow
more powerful than the Beach and Davidson (1983) estimator
for ISD2, which in turn dominates the BD method when the
number of population proportions’ abscissae is above 5. This
pattern is substantially preserved when contamination is artifi-
cially introduced. Again, I find that in samples of size 500 or
less, the ISD2 test is substantially more discriminatory in re-
jecting the false null of statistical equality of generalize Lorenz
curves than the alternative SD2 estimators, although this differ-
ence vanishes in samples of larger size.

6. ILLUSTRATION: EQUALITY OF OPPORTUNITY
IN FRANCE

This section provides an illustrative application of ISD to
check for robustness of equality of opportunity (EOP hereafter)
assessments. The EOP principle for income acquisition posits
that differences in the background of origin across individu-
als should not predict their labor market income prospects, a
monetary measure of the individuals’ opportunity set.

To formalize this notion, consider the situation where, from an
ethical standpoint, the population can be divided into two groups
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Table 2. Monte Carlo rejection rates for standard stochastic dominance, nominal size 0.05 (baseline)

n = 100 n = 500 n = 1500

SD2-DD SD3-DD SD2-BD SD3-BD SD2-DD SD3-DD SD2-BD SD3-BD SD2-DD SD3-DD SD2-BD SD3-BD

Case 1—Size comparisons for the true null H0: F �SD3 G

5 0.078 0.085 0.109 0.054 0.130 0.129 0.204 0.059 0.262 0.089 0.374 0.058
10 0.120 0.241 0.109 0.054 0.279 0.358 0.204 0.059 0.659 0.328 0.374 0.058
20 0.567 0.527 0.109 0.054 0.473 0.414 0.204 0.059 0.755 0.348 0.374 0.058

Case 2—Power comparisons for the true null H0 : F ′ �SDk G′ for k > 3
5 0.097 0.096 0.155 0.095 0.205 0.164 0.418 0.193 0.420 0.273 0.775 0.322
10 0.535 0.530 0.155 0.095 0.507 0.528 0.418 0.193 0.820 0.666 0.775 0.322
20 0.741 0.653 0.155 0.095 0.874 0.677 0.418 0.193 0.969 0.746 0.775 0.322

NOTE: The Monte Carlo experiments are based on simulations from the lognormal distribution. The specification for each experiment is as follows: cases 1—ln YF = N (9.85, 0.6)
versus ln YG = N (9.85, 0.7); cases 2—ln YF ′ = N (6.37, 0.48) versus ln YG′ = N (6.4, 0.55). Each experiment involves 1000 Monte Carlo iterations. BD p-values are obtained via 250
simulations of uncorrelated normal vectors evaluated at 50 equally spaced income thresholds. The symbol �SD stands for stochastic dominates.

gathering individuals with either background a or b. These are
addressed to as individual circumstances c ∈ {a, b}. The income
yi of individual i is, then, the result of the interplay between her
circumstances and other components. Building on this setting,
Roemer (1998) clarified that under reasonable assumptions the
empirical labor income distribution F̂c conditional on the cir-
cumstances c serves as a valid proxy of the opportunities faced
in the labor market by individuals belonging to this group. In
this context, Lefranc, Pistolesi, and Trannoy (2009) proposed
welfare-based criteria to assess when EOP is satisfied on the
data. In their view, EOP prevails if there is no agreement among
inequality averse social evaluation functions in preferring a so-
ciety where incomes are distributed according to Fa rather than
Fb (the distributions in the respective sub-populations) or vice-
versa. That is, Fc �ISD2 Fc′ for c 	= c′, implying that the eco-
nomic advantage enjoyed by people with circumstances c over
c′ cannot be easily established. When EOP prevails, the cases
Fc �ISD3 Fc′ and, more generally, Fc �ISDk Fc′ with k arbitrary
large are equivalent. However, there is larger agreement on the
existence of an unjust advantage of c over c′ whenever ISD3
holds rather than when ISDk for k > 3 holds. Hence, if EOP
is not rejected by the data, ISD3 becomes a natural test for the
robustness of the EOP statement coming from the violation of
ISD2.

Practically, a test for EOP robustness requires (i) to partition
the sample into groups defined by circumstances a and b, (ii) to
estimate the groups’ specific conditional distributions F̂a and F̂b

and (iii) to check the minimal order k at which it is not possible
to reject Fa �ISDk Fb or Fb �ISDk Fa or both. The focus of this
section will be limited to ISD3 comparisons.

I make use of the French LFS—Labor Force Survey data
(Enquête Emploi) provided by INSEE to estimate the labor in-
come prospects of French workers made conditional on their
background of origin. The circumstance a gathers all French
workers whose parents are either non-French or were occupied
as manual workers or farmers. The circumstance b is instead
associated with the middle class parental background, gather-
ing artisans, small entrepreneurs, and nonmanual workers. The
residual class, gathering individuals whose father was employed
as a white collar, manager, or professional is not considered
in this study for expositional sake. The analysis by Lefranc,
Pistolesi, and Trannoy (2009), based on the same data, shows

that the opportunity profile associated with this class always
dominates at ISD2 the profiles of the other classes.

To estimate the opportunity profiles of the two groups, I make
use of monthly labor income realizations observed for relatively
homogenous cohorts of individuals born between 1958 and 1962
whose fathers’ characteristics are observed. The investigation is
restricted to French LFS waves 2004, 2006, 2008, and 2010.
Picking up information every 2 years allows to deal with the
panel rotation mechanism of the French LFS, that after 2003 is
of 1 year and a half (i.e., one-sixth of the sample is replaced
every trimester). The pooled estimating sample consists of 2326
French workers (1810 observations are associated with circum-
stance a and 516 to circumstance b).

Figure 2 reports the Pen’s Parades and the generalized Lorenz
curves of the two circumstances’ income distributions, after that
the data have been depurated of years of survey fixed effects.
The two income profiles cannot be ranked according to ISD1
or ISD2 since their respective quantile functions and general-
ized Lorenz curves cross at least once. It seems clear, however,
that the poorest workers in group a enjoy a higher advantage
than the poorest workers in group b, while the order swaps as
soon as the income deciles grow. Although group a is a priori
expected to be the most disadvantaged one, due to the parental
background characteristics it represents, it turns out that it is
ranked as the advantaged one by all social evaluation functions
that give enough weight to the poorest realizations. This sug-
gests that the correct dominance relations to be verified on the
data are Fa �ISDk Fb for k = 1, 2, 3. The statistical behavior
of various estimators is studied.

The French LFS data are areolar: they are not drawn directly
from a selection of households or individuals, but from a selec-
tion of geographical areas made up of 20 adjacent households
on average. Then, information on earnings for workers aged
15 to 65 within each area is collected in the survey. The clus-
tered sampling scheme of the French LFS is then taken into
account when computing the covariance structure of the influ-
ence functions estimator for income deciles (10 abscissae). Fig-
ure 3 reports the gaps ĜL

Fa − ĜL
Fb and �̂

Fa

3 − �̂
Fb

3 for the two
distributions under scrutiny, along with the estimates standard
errors. Considering the GL dominance case (panel (a) of the
figure), the confidence interval calculated for at least one pop-
ulation proportion falls completely below the horizontal axis,



156 Journal of Business & Economic Statistics, January 2018

Figure 2. ISD1 and ISD2 relations between circumstance a and circumstance b.

Figure 3. Gaps among GL and �3 curves, with 95% CI based on the IF estimator.

clearly indicating that the null hypothesis of a crossing cannot
be rejected. A similar conclusion cannot be drawn immediately
from the comparisons reported in panel (b) of the same figure,
since the presence of intersections may simply be a symptom of
a weak form of dominance.

Table 3 reports income quantiles, generalized Lorenz curves
coordinates, �3 coordinates for selected deciles of F̂a and F̂b.
The survey design of French LFS is taken into consideration
when computing the GL curves standard errors, as well as for
the IF and the bootstrap estimator for ISD3. The table shows
that, independently of the evaluation method used to infer ISD3,
pairwise comparisons of estimated coefficients at fixed deciles
lead to inconclusive results: in many cases the differences in
Pen’s Parades, in generalized Lorenz curves and in integrals of

the generalized Lorenz curves at a given decile are not statisti-
cally different from zero, or their signs do not concord across
deciles. Joint tests for the equality and dominance null hypothe-
ses are therefore preferred.

The Wald-type test statistics and their simulated p-values
(T 3

1 for the equality in distributions null hypothesis and T 3
2

for the ISD3 null hypothesis) are reported in Table 4. The joint
tests show that rank and generalized Lorenz equality/dominance
null hypotheses are rejected at 1% confidence level. Thus, EOP
between types a and b cannot be rejected by the data, since
there is no unambiguous advantage of one type compared to the
other. To evaluate the robustness of this finding, I investigate
ISD comparisons at order three. The IF estimator, leading to
the preferred inference strategy, shows that ISD3 and equality
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Table 3. Statistics and standard errors for F̂a �ISDk F̂b

Wage, Wage,
circumstance a circumstance b

(1) (2)
Difference

Coeff. (SE) Coeff. (SE) (1)–(2)

ISD at order 1 (Rank dominance)
10% 446.3 (22.65) 378.8 (52.33) 67.44
30% 1327.3 (17.32) 1327.3 (52.84) 0.00
50% 1593.9 (16.62) 1666.5 (48.76) −72.63
70% 1950.4 (23.73) 2253.0 (67.33) −302.66

∗

90% 2700.0 (53.08) 3319.7 (150.47) −619.74
∗

ISD at order 2 (Generalized Lorenz dominance)
10% 31.5 (1.22) 28.0 (1.75) 3.41
30% 230.1 (8.66) 196.5 (16.91) 33.62
50% 522.0 (10.85) 500.1 (22.47) 21.86
70% 871.9 (13.54) 893.6 (31.48) −21.71
90% 1321.1 (17.52) 1430.8 (42.92) −109.71

∗

ISD at order 3 (IF estimator)
10% 1.3 (0.22) 1.2 (0.41) 0.17
30% 24.1 (1.05) 19.6 (2.43) 4.49
50% 98.4 (2.24) 88.0 (5.57) 10.38
70% 236.4 (3.88) 224.9 (10.06) 11.57
90% 453.2 (6.18) 453.2 (16.46) −0.01

ISD at order 3 (Bootstrap estimator)
10% 1.3 (0.05) 1.2 (0.09) 0.17
30% 24.1 (1.08) 19.6 (1.66) 4.49

∗

50% 98.4 (2.91) 88.0 (5.34) 10.38
70% 236.4 (5.17) 224.9 (10.20) 11.57
90% 453.2 (8.04) 453.2 (16.63) −0.01

Mean 1727.0 (31.72) 1984.9 (70.05) −257.86
∗

Sample size: 1810 516 –

NOTE: French LFS data, waves 2004, 2006, 2008, and 2010. The IF and bootstrap estima-
tors are based on estimates by deciles. Standard errors reported in parenthesis account for
the clustering structure of the sample. The bootstrap estimator is based on 200 repetitions.
∗ denotes significantly different from zero at 5% on the basis of a two-tailed test.

null hypotheses are rejected by the data at any conventional
level of significance. According to the IF method, the equality
of opportunity evaluation is robust, since it is not possible, at
order three, to determine the advantaged group. Interestingly,
the bootstrap estimator (which is computationally less intensive
to obtain) leads to similar conclusions as the IF estimator.

Table 4 also displays the evaluations of third-degree stan-
dard stochastic dominance, an alternative criterion for assessing
the robustness of the EOP evaluation. Wald-type tests based on
Davidson and Duclos (2000) estimators under the equality and
dominance null hypotheses have been obtained by partition-
ing the income domain at 10 evenly spaced income thresholds,
where poverty levels are evaluated. As shown in the table, the
test rejects both dominance and equality at high significance.
This is coherent with the predictions from ISD3 tests, implying
that testing on a small number of income abscissae still allows
to capture the patterns of the gaps in the GL curves represented
in Figure 3(a). The consistent test for standard stochastic dom-
inance at order three by Barrett and Donald (2003) leads to
similar conclusions. The test is operationalized by partitioning
the income domain on a fine grid (100 thresholds) and comput-
ing simulated p-values of the Kolmogorov–Smirnov test for the

Table 4. Wald tests and p-values for various dominance relations of
Fa over Fb

Equality Dominance
(1) (2)

Test Test
Null hypothesis statistic p-value statistic p-value

Rank dominance 55.13 0.000 41.35 0.000
Generalized Lorenz dominance 57.84 0.000 57.05 0.000
ISD at order 3:

- IF estimator 235.55 0.000 90.91 0.000
- Bootstrap estimator 54.30 0.000 158.20 0.000

Standard stochastic dominance
at order 3, various tests:

- Davidson and Duclos (2000) 50.16 0.000 683.43 0.000
- Barrett and Donald (2003) . . . 0.000

NOTE: French LFS data, waves 2004, 2006, 2008, and 2010. Wald-type tests for equality
and dominance based on distributions deciles (for rank dominance, generalized Lorenz
dominance, and ISD3) and on 10 evenly spaced income thresholds (for Davidson and
Duclos (2000) tests of standard stochastic dominance). The null hypothesis of dominance
cannot be rejected (is rejected) at the significance level α if the Wald test is smaller (larger)
than the corresponding lower bound lbα (upper bound ubα). For α = 10%, 5%, 1%, the
corresponding lower bounds are lbα = 1.642, 2.706, 5.412 and the corresponding upper
bounds are ubα = 14.067, 16.274, 20.972 (see Kodde and Palm 1986). In the remaining
cases, decisions are based on p-values. Reported p-values of the Barrett and Donald (2009)

test for the random variable S
Fa ,Fb
3 are simulated.

dominance null hypothesis. Also this criterion allows to reject
third-degree stochastic dominance.

The empirical application highlights two facts. The first fact
is that the ISD3 test based on the IF estimator produces evalua-
tions that are perfectly aligned with the prediction of Davidson
and Duclos (2000) tests. This coherency signals that both dom-
inance criteria are able to detect that the negative gaps between
the GL curves of F̂a and F̂b overcompensate the positive gaps
(indicating dominance) at the bottom. The second fact is that
the ISD3 test based on predictions at population deciles be-
haves comparatively as good as the consistent test for stochastic
dominance in showing that EOP assessments are robust.

7. CONCLUDING REMARKS

Inverse stochastic dominance is a convenient tool for as-
sessing when there is consensus, in a well-defined class of
social evaluation functions, in ranking an income distribu-
tion as socially preferred to another. Applications in income
(re)distribution analysis, policy evaluation, and risk assessment
have clarified the importance of this tool. This article provides
estimators that can be used to produce inference for inverse
stochastic dominance comparisons, and shows how the restric-
tions implied by various forms of inverse stochastic dominance
can be tested on the data.

The preferred estimator for inverse stochastic dominance is
grounded on the influence functions decomposition of the re-
cursive integrals of the generalized Lorenz curve. This method-
ology gives, as a special case, the estimators for rank and gen-
eralized Lorenz dominance developed by Beach and Davidson
(1983) and provides their natural extension to less demanding
comparisons of distributions at fixed population proportions.
Monte Carlo experiments show that the influence function es-
timator outperforms the alternative bootstrap estimator both in
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term of size and power, provided that the relevant estimators are
computed for a sufficiently fine grid of abscissae corresponding
to population proportions. Furthermore, the size and power of
inverse stochastic dominance comparisons based on the influ-
ence function estimator are virtually unaffected by the presence
of contamination in the data. This is an important feature for
empirical income distribution analysis. Experiments involving
standard stochastic dominance tests also seem to favor the adop-
tion of the influence function estimator, although these criteria
are not comparable from a normative standpoint.

One important caveat to these simulation results is that they
are all based on comparisons of pairs of distributions that
are generated by independent processes. This is empirically
unattractive when, for instance, actual and counterfactual dis-
tributions from a policy experiment have to be compared, or
when observations are serially correlated. Linton, Maasoumi,
and Whang (2005) proposed estimates of Kolmogorov–Smirnov
tests’ critical values in the context of non-iid samples of cor-
related prospects. Interesting avenues for future research are to
use the influence function methodology for testing ISD over
the whole set of population proportions implied by the data, as
well as to expand these results to the case where the estimating
samples are correlated.

SUPPLEMENTARY MATERIALS

Proofs, simulation results, and Stata routines: A supple-
mental Appendix collects the proofs of Lemma 1 and Remark
2 and a detailed account of the Monte Carlo experiment re-
sults. Stata routines “ISDtest” and “SDtest,” reporting code to
perform ISD tests and selected standard stochastic dominance
tests, along with Monte Carlo simulation routines and French
LFS analysis records, are made available. (Zipped archive file)
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