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Summary 

 
È noto che alcuni polimorfismi del sistema HLA giocano un ruolo cruciale 

nell’eziopatogenesi e nella prognosi di numerose malattie infettive, fra le quali 

l’AIDS (Sindrome da Immunodeficienza Acquisita).  

Recenti studi hanno evidenziato una forte correlazione fra i livelli di espressione 

di HLA-C e il controllo della replicazione del virus dell’immunodeficienza umana 

(HIV-1). Alti livelli di espressione sono stati correlati con un miglior controllo 

dell’infezione, mentre bassi livelli sono stati associati con una progressione più 

rapida della malattia. Inoltre, è noto che la molecola HLA-C, presente 

sull’envelope di HIV-1, in associazione con la glicoproteina Env, è in grado di 

aumentarne l’infettività. Il ruolo protettivo di alti livelli di espressione di HLA-C 

sembra essere in contraddizione con il ruolo dell’ HLA-C stesso nell’aumentare 

l’infettività virale quando incorporato nel virione. Ciò potrebbe essere dovuto alla 

presenza di diverse conformazioni dell’ HLA-C. È infatti noto che diverse varianti 

alleliche dell’HLA-C presentano una diversa stabilità di legame con la β2 

microglobulina (β2m) e il peptide. In particolare, l’HLA-C può presentarsi 

associato alla β2m e al peptide, costituendo un complesso che svolge un ruolo 

chiave nell’attivazione del sistema immunitario, oppure come free chain, 

dissociato dal complesso. I primi risultati di questo lavoro hanno dimostrato che la 

proteina Env di HIV-1 è in grado di associarsi all’HLA-C quando presente nella 

conformazione di free chain. L’ipotesi testata nello studio prevede l’esistenza di 

un’associazione fra la suscettibilità all’infezione da HIV-1 e le diverse varianti 

alleliche di HLA-C che possono essere preferibilmente presenti o come complesso 

trimerico o come free chain. Individui con varianti di HLA-C aventi una forte 

stabilità come trimero completo mostrerebbero una maggiore immunità contro 

HIV-1 e una ridotta infettività virale, mentre soggetti con varianti dell’HLA-C che 

facilmente si dissociano dalla β2m e dal peptide mostrerebbero una ridotta risposta 

immunitaria nei confronti di HIV-1 e la produzione di virioni maggiormente 

infettivi. Nel suo complesso, questo studio fornisce nuove informazioni che 

potrebbero rivelarsi utili per la progettazione di nuove strategie vaccinali e 

approcci terapeutici contro HIV-1. 
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Abstract 

 
Introduction 

 

HLA-C plays a crucial role in the progression of HIV-1 infection. Host genetic 

HLA-C variants, appear to be associated with a different ability to control HIV-1 

infection. A higher HLA-C expression is associated with a better activation of 

cytotoxic T lymphocytes (CTLs) and of Killer Immunoglobulin like receptors 

(KIR) on NK-cells, which lead to a better HIV-1 infection control. Vice-versa, a 

lower HLA-C expression leads to a rapid progression toward AIDS. In addition, 

different HLA-C alleles present different binding stabilities to β2microglobulin 

(β2m)/peptide. Noteworthy, some HLA-C highly expressed/protective alleles are 

also stably bound to β2m/peptide, while some low expressed/non-protective 

variants present an unstable bond to β2m/peptide. Finally virions lacking HLA-C 

have reduced infectivity and increased susceptibility to neutralizing antibodies.  

 

 

Experiments 

 

In the present work, it was first characterized the association between HLA-C and 

HIV-1 Env. We investigated if HIV-1 infection involves HLA-C free chains or 

the heterotrimeric complex, and to this purpose the A3.01 cell line and its 

HIV-1-infected counterpart ACH-2, as well as PM1 cells, were used as in vitro 

infection model. HEK-293T β2m negative cells, generated using CRISPR/Cas9 

system, were used to produce HIV-1 pseudoviruses and to test their infectivity. 

Then, the proportion between HLA-C associated to β2m and HLA-C presents as 

free chains on the cell surface was characterized on PBMC from healthy donors, 

bearing both Stable or Unstable HLA-C alleles. In addition, PBMC were tested 

for their ability to support HIV-1 infection in vitro. 
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Results 

 

HIV-1 infection induces the appearance of HLA-C free chains on the surface of 

infected cells, which may be responsible for the increased HIV-1 infectivity. 

HIV-1 Env-pseudotyped viruses produced in the absence of β2m, thus lacking 

HLA-C on their envelope, were less infectious than those produced in the 

presence of β2m.  

By analysing PBMC from healthy donors, differences in HLA-C heterotrimers 

stability and HLA-C expression levels were found. Finally, it  was reported that 

R5 HIV-1 virions produced by PBMC having Unstable HLA-C alleles were more 

infectious than those produced by PBMC having the Stable variants.   

 

 

Conclusions 

 

The outcome of HIV-1 infection might depend both on the HLA-C surface 

expression levels and on HLA-C/β2m/peptide binding stability.  

According to this model, PBMC carrying low expressed/Unstable HLA-C alleles 

have a high proportion of HLA-C free chains on their surface that raises viral 

infectivity and, at the same time, a low proportion of HLA-C heterotrimeric 

complexes which leads  to a  poor control of HIV-1 infection, and thus to a rapid 

progression toward AIDS. 
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HIV-1 Introduction 

 

Infection disease and its determinants 

 

During an infection many aspects are important to determine the disease severity, 

duration and the final outcome. The intrinsic pathogenic power of the 

microorganism, as well as its infecting load, plays a key role. Furthermore, the 

ability of the host to counteract the infection is crucial. This is dependent on the 

status of his host immune system. Many genetic polymorphisms are involved in 

different infectious diseases (Chapman and Hill 2012). Many of these have a key 

role both in the replicative cycle of the organism, and in the host immune 

response. Some individuals, based on their genetic variants, are able to better 

control a specific infection, than others. Thus, different subjects show different 

outcomes of the same infection. 

Specifically, the Major Histocompatibility Class I molecules (MHC-I) influence 

several chronic inflammatory and autoimmune conditions, such as type I diabetes, 

multiple sclerosis and Crohn's disease. In addition, MHC variants confer 

susceptibility to many infectious diseases, including malaria and AIDS (Traherne 

2008). 

 

 
Mechanisms used by viruses to escape antigen presentation  

 

The host immune responses evolved to fight viral infections, and in parallel 

viruses co-evolved in order to escape the reaction of the immune system. During 

this ongoing evolution, viruses developed several mechanisms to entry and to 

replicate in the infected host cells, despite the host immune system activation 

(Lucas, Karrer et al. 2001). Different viral proteins can directly affect the 

expression of MHC-I on the infected cells, hampering the host immune response. 

Furthermore, viral proteins can mediate the internalization or degradation of 

MHC-I molecules, making the infected cells resistant to cytolysis mediated by 

Cytotoxic T Lymphocytes (CTLs). Infected cells are still susceptible to lysis 
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mediated by Natural Killer (NK) cells. Another strategy implemented by viruses, 

to evade the host immune system, is to hamper the antigenic peptides expression 

on the cell surface, impairing the activation of the immune system. Viruses can 

block proteolysis processes or viral antigens transport, by interfering with the 

activity of the proteasome or of other peptidases, involved in the generation of 

antigenic peptides, leading to the generation of epitopes unable to bind the carrier 

Transporter associated with Antigen Processing (TAP). Thus, their translocation 

into the Endoplasmic Reticulum (ER) is blocked and the antigenic peptide can not 

associate to MHC-I molecules and be presented on the membrane of infected cell 

(Verweij 2015). An additional mechanism exploited by different viruses to affect 

the antigenic peptides generation process, is the down-regulation of TAP itself, 

which leads to the reduction of the formation of MHC-I/peptide complexes that 

activate the CTL response (Hansen and Bouvier 2009) (Figure 1). 
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Figure 1. Viral inhibition of the MHC class I antigen presentation pathway. Viruses 
have developed proteins that inhibit the MHC class I pathway at different steps. US2 and 
US11 (Human cytomegalovirus, HCMV, proteins) translocate the MHC class I heavy 
chain into the cytosol where it is degraded by the proteasome. ICP47 (herpes simplex 
virus, HSV, protein) and US6 (Human cytomegalovirus, HCMV, protein) inhibit peptide 
translocation by TAP. E19 (Adenovirus E3 protein) inhibits MHC class I association with 
TAP, E19 also inhibits MHC class I trafficking by retrieving MHC class I molecules from 
the cis-Golgi. Similarly, US3 and US10 (Human cytomegalovirus, HCMV, proteins) inhibit 
the ER export of class I molecules. U21 (human herpes virus 7 protein) drives MHC class 
I molecules to the lysosome. Nef (HIV protein) down-regulates MHC class I surface 
expression. K3 and K5 (Kaposi's sarcoma-associated herpesvirus, KSHV, proteins) 
down-regulate MHC class I molecules leading to their degradation (Hewitt 2003). 
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The Acquired Immune Deficiency Syndrome 

 

The Acquired Immune Deficiency Syndrome (AIDS) is a pathological condition 

caused by the Human Immunodeficiency Virus (HIV) infection. AIDS is 

characterized by a progressive impairment of the host immune system, as a 

consequence of the continue depletion of circulating CD4
+
 T-cells. Because of the 

declining immune response, several opportunistic infections and/or cancers affect 

the patients, leading to death (Gallo and Montagnier 2003). 

 

 

HIV origin and classification 

 

AIDS had a zoonotic origin, since HIV evolved from Simian Immunodeficiency 

Virus (SIV) from Chimpanzee. HIV has been classified into two different species, 

named HIV-1 and HIV-2. The origin of these viruses was investigated through 

molecular phylogenetic studies, revealing that HIV-1 evolved from a strain of 

Simian Immunodeficiency Virus (SIVcpz) within a particular subspecies of the 

Chimpanzee (Pan troglodytes) (Gao, Bailes et al. 1999), while HIV-2 originated 

from SIVsm, which infects Sooty mangabeys (Cercocebus atys) (Hirsch, 

Edmondson et al. 1989). The SIVcpz appears to be the co-infection result of the 

same animal with lentivirus of the red capped mangabey (SIVrcm) and a virus of 

the greater spot-nosed monkey (SIVgsn) lineage (Heeney, Dalgleish et al. 2006). 

HIV-1 sequence analyses dated the HIV origin most probably in 1908 (Worobey, 

Gemmel et al. 2008) (Figure 2). 
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Figure 2. Image represents three possible alternative ways of cross-species 
transmissions giving rise to SIVcpz. A) Recombination requires co-infection of a single 
Pan troglodyte with one or more SIVs. B) The SIVcpz recombinant develops and is 
maintained in an unknown primate host. C) Transfer through an intermediate host (yet to 
be identified) that is the actual reservoir of introduction of SIVcpz into communities of P. 
troglodytes (Heeney, Dalgleish et al. 2006). 

 

Retrospectively traces of HIV-1 came from a 1959 blood sample and a 1960 

tissue sample collected in the Democratic Republic of Congo (Zhu, Korber et al. 

1998, Kalish, Robbins et al. 2004, Worobey, Gemmel et al. 2008). Subsequent to 

HIV-1 discovery, it was classified in four different groups: M (main) responsible 

of most AIDS cases in the world, O (outlier), N (non-M, non-O) and P defined as 

rare group (Plantier, Djemai et al. 2009). Moreover, the M group has evolved into 

different clades or subtypes (A to K) (Osmanov, Pattou et al. 2002). Recent 

subtypes present different genomic segments, derived from recombination of 

more than one subtype (Smith, Richman et al. 2005). Different circulating 

recombinant forms (CRFs) and unique recombinant forms (URFs) do exist, due to 

the co-infection with different HIV-1 isolates in some patients (Tebit and Arts 

2011).  

HIV-1 is highly heterogeneous within infected individuals due to high viral load, 

rapid turnover rate and an error-prone reverse transcriptase enzyme which lacks 

proofreading activity. High variability is also due to recombination, that moves 

mutations between viral genomes which can lead to major antigenic shifts or 

changes in virulence (Tebit and Arts 2011).  
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HIV-1 discovery 

 

At the beginning of the 80s, in California and New York a weird increase of rare 

diseases and malignancies was reported in young, homosexual men (1981). All of 

them, presented a dramatically decrease of circulating CD4
+
 T-cells, responsible 

of the immunological deficit. They were also affected by Pneumocystis carinii 

infection, Kaposi’s sarcoma and persistent lymphadenopathy (Fauci, Schnittman 

et al. 1991). The researchers defined this condition ‘Acquired Immunodeficiency 

Syndrome’ (AIDS) and they found its etiology in a retrovirus (Gallo 2002, 

Montagnier 2002). 

In that period, two retroviruses, HTLV-I and HTLV-II, characterized by 

preferential tropism for T-cells, were known.  In the laboratory National Cancer 

Institute in Bethesda, directed by Robert Gallo, blood samples from AIDS 

affected patients resulted negative for cross-reactivity with HTLV proteins 

(Broder and Gallo 1984). Consequently, the new type of virus was called 

HTLV-III, to be distinguished from the other two types  (Beilke 2012). 

Meanwhile, at the Pasteur Institute in Paris, Luc Montagnier and coworkers, 

identified in cell cultures, derived from a patient with serious immunodeficiency 

and lymphadenopathy, a new virus they named Lymphadenopathy-Associated 

Virus (LAV) (Barre-Sinoussi, Chermann et al. 1983). In the same year Gallo and 

his coworkers finalized the isolation and culture of viral isolates in CD4
+
 T-cells.  

These research groups were the first that provided a detailed description of the 

newly discovered retrovirus, identified as the etiologic agent of AIDS. In 1986, 

due to the discovery of another retrovirus, called HIV-2, the form previously 

isolated was called HIV-1 (Clavel, Guyader et al. 1986). The identification of the 

etiological agents of AIDS, led to rapid advances toward the full characterization 

of HIV-1. Soon after, the first anti-HIV-1 agent, azidothymidine (AZT), was used 

to treat AIDS patients (Mitsuya and Broder 1989). Francoise Barré-Sinoussi and 

Luc Montagnier, were awarded, in 2008, with the Nobel Prize in Medicine and 

Physiology for HIV-1 discovery (Abbadessa, Accolla et al. 2009). 
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HIV-1 epidemiology 

 

Nowadays, HIV-1 continues to represent a global health problem. From its 

discovery, it has caused an estimated 39 million deaths worldwide spreading by 

sexual, parenteral, and perinatal routes. As reported by the World Health 

Organization (WHO) about 37.0 million people were living with HIV in 2016, of 

which about 2 million were children (Figure 3). 

 

 

Figure 3. Table shows the people living with HIV, people newly infected with HIV-1 
and AIDS death in 2016. (Source: http://www.who.int/hiv/data/en/). 

 

 

HIV-1 structure 

 

The HIV-1 virion is a spherical retrovirus with a diameter of ~100–150 nm. Each 

viral particle is composed by an external envelope associated to the matrix 

surrounding the capsid, which encloses the viral genome and other enzymes 

(Frankel and Young 1998) (Figure 4). 

The envelope is a phospholipid bilayer derived from the infected cell membrane. 

The intermediate layer, anchored to the inner side of the envelope, is called matrix 

and it is formed by the viral protein p17. The inner layer, named capsid, is a 

conical shape core, and it is made by the p24 viral protein assembled in about 250 

http://www.who.int/hiv/data/en/
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hexameric subunits. It contains the viral genome, bound to the nucleocapsid 

protein (p7) and other viral proteins necessary for viral replication, such as the 

Reverse Transcriptase (RT), the Protease (PR) and the Integrase (IN). 

 

 

Figure 4. HIV-1 virion structure. 

Schematic representation of the mature HIV virion. The representation is not to scale 
(Steckbeck, Kuhlmann et al. 2013). 

 

 

HIV-1 genome 

 

The HIV-1 genome, is about 9 Kb long. Its structure follows the typical pattern of 

the Retroviridae family: it contains three genes called Gag, Pol and Env from 5’ 

to 3’ end. These sequences are flanked by two Long Terminal Repeat (LTR) 

regions (Frankel and Young 1998). The Gag and Env genes encode for proteins 

necessary to the structure of the virions, while the Pol gene codes for the viral 

enzymes (Frankel and Young 1998). Furthermore, the HIV-1 genome encodes for 

other six proteins: Rev, Tat, Vif, Vpr, Vpu, Nef (Malim and Emerman 2008). 

Specifically, Rev and Tat are regulatory proteins, while Vif, Vpr, Vpu and Nef are 

involved in the viral infection in vivo (Figure 5).  

Below are reported in detail the transcript products and their functions. 

o Gag (group specific antigen) is a polyprotein (p55), which is processed to 

form different proteins: the matrix (p17 or MA), the capsid (p24 or CA), 

the nucleocapsid (p7 or NC) and the p6 (Ganser-Pornillos, Yeager et al. 

2008). MA is located in the N-terminal component of the Gag polyprotein 

and it is important to target Gag and Gag-Pol precursor polyproteins to the 
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plasma membrane before viral assembly. The second component of the 

Gag polyprotein is CA, and it forms the core of the viral particles. NC is 

the third component of the Gag polyprotein and coats the genomic viral 

RNA inside the virion core. p6 encompasses the C-terminal 51 amino 

acids of Gag and it is crucial for Vpr incorporation during viral assembly 

(Frankel and Young 1998). 

o Pol (polymerase) is synthesized as a unique Gag-Pol protein of 160 KDa, 

which is then processed to obtain three different proteins: the Protease, the 

Reverse Transcriptase and the Integrase (Frankel and Young 1998). PR 

cleaves at many sites to produce the final MA, CA, NC, and p6 proteins 

from Gag and PR, RT, and IN proteins from Pol. The RT catalyzes both 

DNA-dependent and RNA-dependent DNA polymerization reactions and 

has an RNase H domain which cleaves the RNA portion of RNA-DNA 

hybrids generated during the reaction. IN, after reverse transcription, 

catalyzes a series of reactions to integrate the viral genome into the host 

chromosome (Frankel and Young 1998). 

o Env (envelope) is produced as the gp160 precursor, then processed to 

obtain gp120 and gp41 (Pantophlet and Burton 2006). The gp120 protein, 

exposed on the viral surface, is important for virus attachment to the host 

cell; while gp41 is a trans-membrane protein that plays a key role in entry 

(Chojnacki, Staudt et al. 2012). The gp120 and the gp41 glycoproteins 

form a trimeric complex by non-covalent interaction (Frankel and Young 

1998). 

o Rev (regulator of the expression of the virion) is important for the 

expression of other structural proteins. It recognizes the Rev Responsive 

Elements (RRE) and binds the unspliced viral mRNAs coding for 

structural proteins, helping the mRNA export from the nucleus (Strebel 

2003). In the absence of Rev, the transcripts are spliced, leading to the 

production of small regulatory proteins. 

o Tat (trans-activator of transcription) is a regulatory protein. It binds to an 

RNA hairpin, known as TAR (trans-activating response element), located 

at the 5’ end of the nascent viral transcripts and enhances the processivity 
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of transcribing polymerases. Tat increases production of HIV mRNAs 

~100-fold and thus is essential for viral replication (Frankel and Young 

1998). Tat controls the elongation, the transport in the cytoplasm and the 

translation of the viral RNA (Strebel 2003, Nilson and Price 2011).  

o Vif (viral infectivity factor) is a protein important for the viral replication. 

Vif promotes the ubiquitination and degradation of the host restriction 

factor APOBEC3G, avoiding the introduction of mutations into the viral 

genome (Madani and Kabat 1998) (Malim and Emerman 2008). 

Therefore, Vif deficient viruses are able to infect the target cell, but they 

are not able to replicate (Strebel 2003). 

o Vpr (viral protein r) is a small basic protein (14 kDa). Despite its small 

size, it has been shown to have different functions in the course of the viral 

infection (Guenzel, Herate et al. 2014) by interfering with the 

anti-retroviral defences of the host cells (Zhao, Kang et al. 2014). 

Vpr facilitates HIV-1 replication in infected cells (Goh, Rogel et al. 1998), 

induces the blockade of the cell cycle at G2 phase and affects the accuracy 

of the reverse-transcription process (Poon and Chen 2003). It has been 

proposed a Vpr role in the transport of the viral pre-integration complex 

(PIC) to the nucleus (Le Rouzic and Benichou 2005) but additional 

evidences suggest that Vpr does not play a crucial role in the nuclear 

transport of HIV-1 PIC. Indeed, it has been reported that HIV-1 bearing 

either precise mutations or deletion of entire Vpr has only reduced but not 

entirely abolished its replication in primary macrophages (Jayappa, Ao et 

al. 2012). 

o Vpu (viral protein u) mediates the degradation of CD4 molecules which 

would trap the Env protein in the Endoplasmic Reticulum (ER) (Bour and 

Strebel 2003). Vpu is important for the virus “budding” process, since 

mutations in Vpu are related with persistence of viral particles at the host 

cell surface. Membrane molecules such as tetherin (CD317) can bind 

Vpu-deficient HIV-1 virions and prevent viral release (Malim and 

Emerman 2008). Recently, has been reported that Vpu downregulates the 
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HLA-C surface expression upon HIV-1 infection (Apps, Del Prete et al. 

2016). 

o Nef (negative factor) is an N-terminally myristoylated protein, which 

promotes the endocytosis and the lysosomal degradation of CD4 (Frankel 

and Young 1998, Geyer, Fackler et al. 2001) and down-regulates the 

expression of MHC-I molecules, preventing the lysis of infected cells by 

the cytotoxic T-lymphocytes (Doms and Trono 2000, Malim and 

Emerman 2008). Nef enhances viral infectivity and replication in PBMC 

(Feinberg), alters the T-cell activation state and the macrophage signal 

transduction pathways  (Swingler, Mann et al. 1999), inhibits the 

immunoglobulin class switching  (Qiao, He et al. 2006) and associates 

with several components of the endocytic pathways (Chaudhuri, 

Lindwasser et al. 2007). Two independent studies reported that Nef is able 

to promote HIV-1 infection by preventing SERINC3 and SERINC5 

incorporation into virions (Rosa, Chande et al. 2015, Usami, Wu et al. 

2015). 

 

 
 

Figure 5. HIV-1 genome structure. 

Arrows indicate cleaved protein products. Dashed lines represent RNA splicing (Nkeze, Li 
et al. 2015). 
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HIV-1 infection cycle 

 

The HIV-1 infection cycle, which occurs after the recognition of the receptor and 

co-receptors on the cell surface, leads to the generation of new viral particles from 

the infected cell. The entire HIV-1 cycle could be summarized in three 

consecutive stages (Figure 6). 

 

1. Entry 

The HIV-1 entry in the host cell is mediated by the interaction between the HIV-1 

gp120 glycoprotein and the CD4 receptor expressed on the host cells (Dalgleish, 

Beverley et al. 1984). CD4 is expressed on different cells, such as T-lymphocytes, 

macrophages, Dendritic Cell (DC), monocytes and microglial cells. After the 

interaction between gp120 and CD4 a structural change in the gp120 occurred, 

leading to the exposition of the co-receptor binding site (Sierra, Kupfer et al. 

2005). The principal co-receptors, exploited by HIV-1, are the seven trans-

membrane CC chemokine Receptor type 5 (CCR5) (Deng, Liu et al. 1996) and the 

CXC chemokine Receptor type 4 (CXCR4) (Feng, Broder et al. 1996). The 

recognition of one of these co-receptors induces the insertion of the gp41 

N-terminal hydrophobic fusion-peptide region into the target cell membrane, 

leading to the fusion and entry of the viral particle (Doms and Trono 2000). The 

usage of these two distinct co-receptors, defines the HIV-1 tropism. HIV-1 

isolates which mainly replicate in primary T-cells (T-tropic) use the CXCR4 

co-receptor, while HIV-1 isolates which mainly infect macrophages (M-tropic) 

exploit the CCR5 co-receptor (Berger, Murphy et al. 1999). In the natural course 

of HIV-1 infection, R5-tropic variant appear first, while X4-tropic variants 

emerge later, when virus is already adapted to the host (Mariani, Vicenzi et al. 

2011). New infections are generally established by HIV-1 variants that use CD4 

and CCR5 as a co-receptor (Schuitemaker, Koot et al. 1992). Even when both R5 

and X4 tropic variants are present in an infected subject, generally only the 

R5-tropic variants are transmitted to the recipient (Zhu, Mo et al. 1993, van't 

Wout, Kootstra et al. 1994). X4-tropic variants, which emerge later, are associated 



HIV-1 Introduction 

 

21 

 

with an accelerated CD4
+
 T-cells decline and a more rapid disease progression 

(Bozzette, McCutchan et al. 1993, Koot, Keet et al. 1993). 

Furthermore, HIV-1 isolates that already expose the conserved region required for 

the co-receptor binding, do exist. These variants, do not require CD4 receptor 

expression to infect the target cells, and for this reason, they are called CD4-

independent. Due to the exposure of the hidden conserved region, necessary to the 

binding with the co-receptors, these variants are more susceptible to 

neutralization. For this reason, it could be possible to suppose that CD4 

recognition represents a mechanism evolved subsequently, to escape the host 

immune system (Iyengar and Schwartz 2012). The HIV-1 Env high variability, 

and the virus ability to conceal the conserved regions, represent the major obstacle 

for the vaccine development against HIV-1. 

 

2. Post entry  

After the HIV-1 fusion event the Reverse Transcriptase enzyme catalyses the 

reverse transcription of the genomic viral ssRNA into double stranded DNA 

(provirus). 

Since RT is a key enzyme for viral replication, it was identified as a promising 

target molecule for drug treatment.  

Due to the lack of proofreading activity, RT introduces in each new synthetized 

DNA molecule, an average of five mutations, determining the production of novel 

variants and contributing to the evolution of virus (Smyth, Gargon et al. 2012). 

These mutations can confer an advantage or a disadvantage to the virus, leading to 

the formation of replication-incompetent viral species, as well as drug resistant 

viral variants, which represent an important obstacle during the long-term therapy 

(Domingo, Estrada et al. 2012). In addition, viral replication is quick and an 

average of 10
9
 new viral particles are produced every day. Thus, in every infected 

subject, several closely-related virus variants do exist, that could confer drug and 

immune resistance.  

After retro transcription, the proviral dsDNA is incorporated into the 

Pre-Integration Complex (PIC) with other HIV-1 proteins and transported to the 

nucleus where it is integrated into the host genome (Schroder, Shinn et al. 2002). 
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Once integrated, the virus can follow two different fates depending on the 

availability of host cell transcription factors (Williams and Greene 2007). The 

virus can replicate or establish a latent infection. When the virus infects a resting 

cell, as T-lymphocytes developing in memory cells, a latent infection occurs, 

generating an important long-lived reservoir for HIV-1. These immunological 

sanctuaries represent an important obstacle for complete viral eradication (Dahl, 

Josefsson et al. 2010). Vice-versa when the virus infects a cell in active 

proliferation it can replicate. 

 

3. Replication and maturation 

After integration, the proviral DNA is transcribed by the host RNA polymerase, 

strongly enhanced by Tat, starting from the promoter sequences, located in the 

LTR regions (Frankel and Young 1998). 

At the beginning of the infection, small regulatory proteins, such as Tat, Rev and 

Nef, are translated after a complete splicing of the viral RNA. Instead, during the 

late phases of the HIV-1 replication cycle, viral genes are transcribed and viral 

RNAs are exported from the nucleus to the cytoplasm, where single spliced 

proteins are synthesized (Env, Vif, Vpr, and Vpu). At the same time, unspliced 

variants such as Gag and Gag-Pol are produced (Purcell and Martin 1993). Both 

Gag and Gag-Pol polyproteins mediate the viral assembly at the plasma 

membrane (Ganser-Pornillos, Yeager et al. 2008). Furthermore, Gag promotes 

Gag-Gag interaction, the encapsidation of two copies of the viral RNA genome 

per virion and the association with Env (Freed 1998). 

Nef and Vpu play a key role in the Env recruitment into the nascent virions (Freed 

1998). Immediately after the budding Gag and Pol proteins are obtained by the 

cleavage of viral protease permitting to the virion to became completely 

infectious. During this essential maturation process a structural reorganization of 

the viral proteins occurs, converting the capsid morphology from a spherical 

shape to a conical core (Sakuragi 2011).  
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Figure 6. HIV replication cycle. 

Infectious steps: binding, fusion, reverse transcription, integration, transcription, 
translation, assembly, budding, release and maturation. In addition, ART targeting 
mechanisms are indicated (Volberding and Deeks 2010). 

 

 

HIV-1 transmission 

 

HIV-1 could be transmitted either through vertical and horizontal transmission. 

HIV-1 can be directly transmitted from one infected person to another through 

body fluids containing HIV-1 virions and HIV-1 infected cells, such as, semen, 

vaginal secretions, blood or breast milk. Thus, the main ways of HIV-1 horizontal 

transmission are represented by sexual contacts or the sharing of needles to inject 

drugs with an HIV-1-infected person. Furthermore, the risk of HIV-1 transmission 

correlates to viremia level: it is as high as the risk of transmission, hence an 

undetectable viral RNA is most likely associated with a low risk of transmission 

(Brenner, Roger et al. 2007). Fortunately, new therapies can control the viral load 

and keep it at low, undetectable levels reducing the risk of transmission and 

limiting the HIV-1 spread.  
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Vertical transmission may occur from an HIV-1 infected mother to the newborn, 

especially when the mother is not receiving the therapy before, at birth, or during 

breastfeeding (Gouws and Cuchi 2012). 

 

 

Natural course of HIV-1 infection 

 

The natural course of HIV-1 infection is characterized by three phases: the acute 

phase, the chronic phase, and the AIDS (Figure 7). 

o The initial acute phase (the firsts weeks after infection) is characterized by 

viral replication, that leads to high levels of viremia and a low number of 

circulating CD4
+
 T-cells, which are infected and killed by the virus 

(Guadalupe, Reay et al. 2003). During this phase HIV-1 can spread 

undisturbed from the mucosal barriers to lymph nodes, generating 

permanent reservoirs (Chun, Engel et al. 1998). Furthermore, the virus 

spreads directly from one infected cells to an uninfected one through the 

formation of virological synapses (Jolly, Kashefi et al. 2004, Sattentau 

2008). 

The acute phase is not characterized by specific symptoms and it can be 

easily confused with a common flu. Consequently, newly infected subjects 

remain unaware of their highly viremic status, representing a risk for 

HIV-1 transmission to other people (Brenner, Roger et al. 2007). 

o After the reaction of the immune system the viral load reaches a stable 

level, called ‘viral load set point’, the chronic phase starts. This phase lasts 

differently in different patients (Mellors, Rinaldo et al. 1996). Generally, a 

higher viral set point is associated with a fast progression towards AIDS, 

vice-versa a lower viral set point leads to a slow progression toward AIDS. 

It has been reported that a subject affected by HIV-1 may carry about 

30000 RNA copies/ml of blood (Mellors, Rinaldo et al. 1996).  

o The AIDS phase, the symptomatic one, is characterized by a strong 

increase of the viral load as well as by a corresponding decrease of CD4
+
 

T-cells (below 200 cells/ml). This phase is characterized by a deep 
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immunodeficiency, resulting in a higher susceptibility to opportunistic 

infections, mainly caused by Human Herpes Virus 8 (HHV-8), 

Cytomegalovirus (CMV), Human Papilloma Virus (HPV), Pneumocystis 

carinii, Mycobacterium tuberculosis, Candida albicans. HHV-8 is 

responsible of a Kaposi’s Sarcoma, CMV generally causes retinitis, an eye 

infection that can lead to blindness, while HPV is associated with a higher 

risk to develop cervical or anal cancer. Pneumocystis carinii pneumonia 

(PCP) is a life-threatening lung infection that usually affect people with 

weakened immune system. More than three-quarters of people affected by 

AIDS will develop PCP if they do not receive treatment to prevent it. In 

addition, the parasite is able to infect the ears, eyes, skin, liver and other 

organs (Source: Office of Communications National Institute of Allergy 

and Infectious Diseases National Institutes of Health Bethesda, Maryland 

20892). 

Moreover, a biologic synergy between HIV and tuberculosis (TB) does 

exist. HIV-induced immunosuppression increases susceptibility to active 

TB infection, and at the same time active TB infection increases HIV 

progression and risk of death. Mycobacterium tuberculosis most often 

causes a chronic pneumonia, characterized by cavities similar to abscesses. 

This microorganism can affect other organs, establishing latent infection. 

Reactivation in these organs can lead to local disease (e.g., in the lymph 

nodes, meninges, bone, pericardium, peritoneum or intestine, and 

urogenital tract) (Source: https://aidsetc.org/guide/mycobacterium-

tuberculosis). 
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Figure 7. Natural course of HIV-1 infection. 

Scheme of the phases of the natural course of HIV-1 infection: acute phase, chronic 
phase and AIDS phase. Viral load and CD4

+
 cells count are reported in red and blue 

respectively (O'Brien and Hendrickson 2013). 

 

 

Host response against HIV-1 

 

The human immune system is divided into two categories: innate and adaptive. 

The innate immune responses are the first non-specific line of defense against 

invading pathogens. Adaptive immunity refers to antigen-specific immune 

response, which occurs after the innate response.  

 

1. Innate immunity 

The first defence that the host uses to counteract the HIV-1 infection is mediated 

by the innate immunity, a non-specific system that recognizes particular non-self 

antigens (called PAMPs, Pathogen-associated molecular patterns) shared by 

exogenous organisms, such as carbohydrate, proteins or lipid structures. 

During an HIV-1 infection the most important PAMP is the RNA viral genome 

that activates the Toll-Like Receptor (TLR) 7 and 8. Activation of these receptors 

leads to a stimulation of plasmacytoid Dendritic Cell (pDC) and consequently to 

the release of type 1 interferons (IFN-α/IFN-β) and other pro-inflammatory 

cytokines able to trigger the immune response (Chang and Altfeld 2010). 
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Different polymorphisms in TLRs associated with different HIV-1 disease 

outcomes do exist (Oh, Jessen et al. 2008).  

Another system employed by the host during the first line defence against HIV-1 

infection is represented by restriction factors. These are anti-viral proteins 

encoded by the host cell that counteract or 'restrict' viral replication. Some of them 

are APOBEC3G, TRIM5α  and SAMHD1. APOBEC3G is a cytidine deaminase 

and it is responsible for C-to-U hypermutation in viral genomes (Browne, Allers 

et al. 2009), TRIM5α is able to recognize the HIV-1-CA leading to the 

multimerization of TRIM5α, premature uncoating of the virion core, and 

activation of TRIM5 E3 ubiquitin ligase activity (Luban 2012). SAMDH1 is a 

deoxynucleotide‐triphosphate (dNTP) hydrolase, which restricts HIV‐1 RT 

reducing levels of dNTPs (Mlcochova, Sutherland et al. 2017). At the same time, 

another borderline, component of innate immunity involved in the early control of 

HIV-1 is represented by the Natural Killer cells (NK). NK cells have attributes of 

both innate and adaptive immunity. They have germline-encoded receptors like a 

component of innate immunity and rearranged receptors as adaptive immunity 

(Vivier, Raulet et al. 2011). 

NK cells were originally described as cytolytic effector lymphocytes, which can 

directly induce the death of virus-infected or tumour cells in the absence of 

specific immunization. NK cells activation is mediated by the lack of MHC-I 

molecules, exposed on the cell surfaces, a situation that can occur when cells are 

infected or are becoming tumoral (Vivier, Tomasello et al. 2008). 

HIV-1 developed a sophisticated escape mechanism to avoid the killing of 

infected cells both from the NK cells and from the CTLs. HIV-1 Nef 

down-regulates the dominant T-cell receptor ligands HLA-A and B but maintains 

a spare amount of HLA-C, which can bind the inhibitory Killer Immunoglobulin 

like receptors (KIR) on the NK cells (Cohen, Gandhi et al. 1999, Schaefer, 

Wonderlich et al. 2008, Carrington and Alter 2012). 
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2. Adaptive immunity 

The activation of the innate immunity leads to the activation of the adaptive 

immunity, which acts through two different mechanisms: humoral and cellular.  

The most important humoral response to HIV-1 infection, is against the viral 

gp120 and gp41 glycoproteins. Since conserved epitopes are hidden, antibodies 

against gp120 and gp41 target a region with high variability and thus they are 

often unable to control the infection. In addition, glycosylation and highly 

variable loops in conserved epitopes (Wei, Decker et al. 2003, Pantophlet and 

Burton 2006) make these antibodies ineffective and lead to the selection of HIV-1 

escape mutants. On the contrary, antibodies against the Env conserved regions, 

like the receptor and co-receptor binding sites (e.g. b12 and 2G12 antibodies) and 

the gp41 membrane proximal external region (e.g. 2F5 and 4E10 antibodies) are 

rarely found in HIV-1 positive patients. These antibodies usually appear in the 

late stage of AIDS. They have a wide potent neutralizing activity and are able to 

block multiple HIV-1 strains (Shattock and Moore 2003). Strangely, controllers 

patients have low levels of these antibodies (Pereyra, Addo et al. 2008, Lambotte, 

Ferrari et al. 2009). Thus, it seems that humoral response could play only a 

marginal role in the control of HIV-1 infection (Sierra, Kupfer et al. 2005). 

However, HIV-1 specific mucosal IgA have been found in many exposed 

uninfected individuals, correlating with possible immune protection (Devito, 

Broliden et al. 2000, Miyazawa, Lopalco et al. 2009). In general, anti HIV-1 

antibodies can act through different mechanisms such as complement mediated 

lysis, phagocytosis or Antibody Dependent Cellular Cytotoxicity (ADCC).  

Differently from the humoral response, the cell-mediated immunity plays an 

important role in HIV-1 infection control. CD8
+
 T-cells (Cytotoxic T 

Lymphocytes, CTLs) are an important cell type, involved in eliminating HIV-1 

infected cells. They are activated through their T Cell Receptor (TCR) by viral 

peptides presented by MHC-I molecules at the cell surface. They can directly 

induce the lysis of the infected cells by the release of perforin and proteases. 

CTLs can also act indirectly through the production of cytokines, chemokines or 

other anti-HIV-1 factors that inhibit viral replication (Levy 2011). The importance 

of CTLs in controlling HIV-1 infection is demonstrated by the observation that 
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HIV-1 infected monkeys, artificially lacking CTLs, present a rapid increase of 

viremia (Schmitz, Kuroda et al. 1999). The CTL response is highly specific, thus 

HIV-1 variants carrying mutation in the viral proteins within CTL epitopes are 

quickly selected during the acute phase of the infection (Price, Goulder et al. 

1997). It has been proposed that the quality of the CTL response, rather than the 

quantity, is important in the control of viremia (Bangham 2009). Many studies 

demonstrated that individuals who control HIV-1 infection possess T-cells able to 

trigger a multifunctional response, not only through a cytolitic mechanism, but 

also through the production of cytokines and chemokines (Walker and McMichael 

2012). 

In addition, HIV-1-specific CD4
+
 T-cell response is triggered during the acute 

infection, but it appears to be reduced or lost in most patients, during the course of 

the infection. This effect could be due to dysregulated activation, proliferation 

failure, HIV-1 induced T-cells anergy, antigen-induced cell death, direct infection 

or apoptosis (Cantin, Fortin et al. 1997, Esser, Bess et al. 2001). For instance, 

HIV-1 Tat down-regulates MHC-II expression and therefore may lead to viral 

induced anergy by impairing antigen recognition (Kanazawa, Okamoto et al. 

2000). However, an inverse correlation between HIV-1 specific CD4
+
 T-cells 

response and plasma viral load has been described, suggesting that CD4
+ 

mediated 

immune response has a protective role (Connick, Marr et al. 1996). 

 

 

Cell host membrane proteins incorporation in HIV-1 virion 

 

HIV-1 incorporates different host proteins while budding out from infected cells 

(Tremblay, Fortin et al. 1998). Cellular proteins found in purified HIV-1, HIV-2 

and SIV virions include β2m, HLA-DR, MHC-I and actin (Arthur, Bess et al. 

1992). Details of HIV-1 specific incorporation of host cellular proteins are not 

well established. Some proteins are simply passively incorporated into the nascent 

virion due to their contiguity to budding sites (Tremblay, Fortin et al. 1998, Ott 

2008), while other proteins are selectively incorporated by direct association with 

viral proteins. A specific incorporation happens, for example, for the adhesion 
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molecule ICAM-1 (Beauséjour and Tremblay 2004) or other cytoskeleton-

anchored proteins (Ott, Coren et al. 1996, Tremblay, Fortin et al. 1998). 

The selective acquisition of host proteins by HIV-1 strongly contributes to viral 

pathogenesis. Other surface proteins like MHC-I and MHC-II (Cantin, Fortin et 

al. 1997, Esser, Bess et al. 2001), CD80, CD86 (Giguere and Tremblay 2004), 

Galectin (Ouellet, Mercier et al. 2005) are incorporated into the nascent HIV-1 

virion, to promote its infectivity by favouring the virus attachment to target cells. 

It has been shown that MHC-I and MHC-II stimulating T-cells trough the TCR 

without the appropriate second co-stimulatory signal might result in cell anergy 

and apoptosis. This effect could explain the CD8
+
 and CD4

+
 T-cells impairment 

observed in HIV-1 infected patients (Esser, Bess et al. 2001, Cantin, Methot et al. 

2005).  

 

 

Host genotype and HIV-1 susceptibility 

 

Different individuals show different susceptibilities to HIV-1 infection. Genetic 

and viral factors, as well as immune responses, are associated with differences in 

disease progression. The host genetic variation explains about 20% of 

interpersonal susceptibility to HIV-1 infection (Fellay, Ge et al. 2009). As 

previously mentioned, the viral set point is related to the progression towards 

AIDS symptomatic phase (Fellay, Ge et al. 2009). A higher viral load is followed 

by a rapid progression of the disease, vice-versa a lower viral load is associated 

with a slow progression towards AIDS (Lyles, Munoz et al. 2000, Langford, 

Ananworanich et al. 2007). According to this feature four different classes of 

subjects can be defined: 

o Rapid Progressors (RP), infected individuals that develop AIDS within 

few years from HIV infection (generally presenting more than 100000 

copies of HIV-RNA/ml of blood); 

o Long Term Non Progressors (LTNP), infected individuals that are able to 

control the virus for many years (generally having <5000 HIV-RNA 

copies/ml); 
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o Elite Controllers (EC), infected individuals characterized by undetectable 

levels of viremia (<50 copies/ml in the absence of therapy); 

o Exposed uninfected (EU), not infected individuals although they were 

exposed to the virus. 

Among the host genetic variants which affect the HIV-1 infection outcome, a 

deletion in the CCR5 gene (named CCR532) is the most important. In the 

mid-1990s, it was found that the CCR5Δ32 allele leads ‘to nearly complete 

resistance to HIV-1 infection’ (Stephens, Reich et al. 1998). This genetic mutation 

shows geographical traits: it is apparently absent among East Asians, Africans and 

Amerindians, while it is found in up to 14%, in specific northern populations of 

Eurasia (Novembre, Galvani et al. 2005). It was speculated that this CCR532 

variant could have conferred resistance to Yersinia pestis, explaining its 

prevalence in North Eurasia populations. Since the mechanism of Yersinia-

induced macrophage apoptosis involved CCR5 receptor, the CCR532 mutation 

would be an attractive candidate for a strong selective pressure 600-700 years ago. 

Other possibilities are Salmonella, Shigella, Mycobacterium tuberculosis, and 

Smallpox virus which similarly target macrophages (Stephens, Reich et al. 1998).  

The CCR532 variant confers resistance against HIV-1 since the truncated 

protein is not expressed on the cell membrane preventing the viral entry into the 

host cell (Martinson, Crain et al. 2003). This mutation, due to the redundancy of 

the chemotactic system, does not compromise the physiological functionality of 

the immune system. 

Moreover, other important genetic variants related to HIV-1 infection control are 

located in the MHC-I genes (Carrington and O'Brien 2003, Fellay, Ge et al. 2009, 

Leslie, Matthews et al. 2010, Pereyra, Jia et al. 2010). It has been demonstrated 

that a greater selective pressure is set to the virus from the HLA-B locus, 

characterized by the highest number of polymorphisms. For instance, the 

HLA-B*35 allele is related with a rapid progression towards AIDS; on the 

contrary, the presence of HLA-B*27 or B*57 alleles is associated with a slow 

progression to the disease (Carrington and O'Brien 2003). A cohort study 

conducted in Sub Saharan Africa reported that the association of B*57:03 with a 

lower viral load occurs in concomitance with HLA-C*18, but it is completely lost 
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in its absence. Furthermore, HLA-B*58:01 allele too has been associated with a 

lower viral load in the presence of C*03, rather than C*07 (Lazaryan, 

Lobashevsky et al. 2006, Zipeto and Beretta 2012). These findings suggest that 

the additive effect of different HLA alleles plays a key role in AIDS progression 

(Leslie, Matthews et al. 2010). 

 

 

HIV-1 treatment 

 

Nowadays, HIV-1 infected people have an almost normal life expectancy thanks 

to the availability of a wide variety of drugs (Figure 8). The most important 

classes of drugs for HIV-1 treatment are reported below (Orsega). 

Nucleoside or nucleotide reverse transcriptase inhibitors (NRTIs): they are 

nucleoside or nucleotide analogues, able to block the nascent retro transcribed 

DNA filament.  

Protease inhibitors (PIs): their mechanism role is based on interference with the 

protease activity necessary for the viral maturation.  

Non-nucleoside reverse transcriptase inhibitors (NNRTIs): they bind 

non-competitively to the RT enzyme, blocking its catalytic site.  

Entry inhibitors: they interfere with the binding of HIV-1 to its 

receptor/co-receptor or prevent its fusion with the host cell membrane.  

Integrase inhibitors: they act blocking the integration of HIV-1 DNA into the host 

cell genome.  

The most important advance in the field of HIV-1 therapy is represented by the 

introduction of the Highly Active Anti-Retroviral Therapy (HAART), in 1996 

(Cooper and Merigan 1996). HAART permits to maintain low viral load in HIV-1 

positive patients, resulting in two effects: 1) it prevents AIDS-related infections 

and patients’ death and 2) it decreases the risk of HIV-1 transmission. The 

HAART therapy is a combination of more than three drugs belonging to different 

antiretroviral classes. This permits a reduction of the insurgence of drug 

resistances in the treated patients. Different factors must be considered in the 

choice of combination drugs, as viral load, CD4
+
 T-cells count, age, gender, 
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HIV-1 drug resistance, co-infections and concomitant other medical treatments. 

To achieve a high compliance some medicines are available combined together in 

one pill.   

 

 
Figure 8. Antiretroviral drug class intervention points. 
The five classes of HAART drugs are shown below: nucleoside/nucleotide Reverse 
Transcriptase inhibitors (NRTIs), Non-nucleoside Reverse Transcriptase Inhibitors 
(NNRTIs), Protease inhibitors, Fusion/Entry inhibitors, Integrase inhibitors (Smith, de 
Boer et al. 2012). 

 

HAART introduction has improved the length and the life quality of HIV-1 

infected individuals, reducing viral transmission in Europe, North America and 

other Western countries. While, at the beginning of the 2000’s in African 

Countries a health response to the HIV-1 epidemic did not yet exist, today, the 

response toward HIV-1 emergency is bringing treatment and delivering 

life-saving services to remote African communities (Source: Global AIDS 

Response Progress Reporting UNAIDS/UNICEF/WHO and UNAIDS/WHO 

estimates) (Figure 9). 
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Figure 9. Progress in the global HIV-1 response in African Regions in the years 
2010-2015. 

Source: Global AIDS Response Progress Reporting UNAIDS/UNICEF/WHO and 
UNAIDS/WHO estimates. 

 

Since HAART introduction, many new drugs have been developed in response to 

problems of toxicity, tolerability and resistance, and great improvements have 

been achieved in accessibility of HIV drugs in resource-poor global regions 

(Looney, Ma et al. 2015). But unfortunately, the incidence of drug resistance 

viruses is increasing, and significant problems caused by long-term toxicity of 

drug treatments are reported among treated people (Reust 2011). As a 

consequence, the HIV-1 eradication remains a difficult aim to be achieved, 

making necessary the discovery of new effective drugs. Furthermore, important 

efforts have been made to reduce the risk of vertical and horizontal transmissions 

encouraging preventive measures through education and public information. One 

way to reduce transmission is to recommend application of topical microbicide 

formulations and condom use. Male circumcision could be an additional efficient 

strategy to reduce the risk of sexual transmission of HIV-1 (Shattock and Moore 

2003).  

While antiretroviral drugs are able to control AIDS pathogenesis and to prevent 

HIV-1 spread, the development of a vaccine against HIV-1 would represent an 

important goal toward the eradication of the infection. Although there are no 

effective cures at present, the efforts to develop virus eradication strategies are not 

extinguished yet, encouraged by the “Berlin patient”. Berlin patient is Timothy 

Ray Brown, which was diagnosed with HIV in 1995 and began antiretroviral 

therapy. In 2006, he was diagnosed with acute myeloid leukemia (AML) and in 

2008, as AML cure he received a bone marrow transplantation from a donor with 

an homozygous CCR5∆32 mutation, which confers resistance to HIV-1 infection 

(Hutter, Nowak et al. 2009). Since that moment he has maintained low levels of 
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HIV and has remained off HAART therapy. It is now known that the CCR5∆32 

variant represents an HIV-1 resistance factor, since it avoids the HIV entry 

(Allers, Hutter et al. 2011). This case demonstrates the critical role that CCR5 

plays in maintaining HIV-1 infection (Hutter, Nowak et al. 2009). Thus, different 

strategies targeting CCR5 have been employed to counteract HIV-1 infection 

progression (Figure 10). Maraviroc, a CCR5 antagonist was approved as anti 

HIV-1 drug by FDA in 2007 (Woollard and Kanmogne 2015). 

 

 

Figure 10.  Current approaches to extracellular CCR5 blocking. 
The HIV-1/CCR5 binding can be blocked using: CCR5 inhibitors which alter the receptor 
conformation, antibodies against CCR5 domains recognized by HIV-1, chemokines which 
bind CCR5 hiding the receptor to HIV-1 (Lopalco 2010). 

 

 

HIV vaccine: state of art 

 

Despite the great efforts to develop an effective HIV vaccine, the quest for a safe 

and successful HIV vaccine seems to be remarkably long and difficult.  

Efficient vaccines normally stimulate protective immunity similar to that which 

occurs during a natural infection (Cohen and Dolin 2013). The mechanism 

whereby an HIV vaccine confer protection remains uncertain, and an effective 

vaccine may require stimulation of an immune response that is considerably 

different from that observed during natural infection (Johnston and Fauci 2011). 
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The extreme HIV diversity is another challenge to vaccine design, particularly the 

diversity of HIV-1 is surprising (Hemelaar 2012). An immunogen derived from a 

particular clade may thus be ineffective against other clades, making the 

development of a global HIV vaccine extremely difficult. 

Before the development of protein subunit vaccines, both attenuated and 

inactivated vaccines had been tested, without success, in nonhuman primates 

(NHPs) (Girard, Osmanov et al. 2011). Protein subunit vaccines for HIV are 

centred on the HIV envelope. The mature envelope is made by a trimer, composed 

of three gp120/gp41 complexes. Both recombinant gp120 (rgp120) and gp160 

(rgp160) monomers were identified as potential immunogens in early HIV 

vaccine strategies (Dolin, Graham et al. 1991, Keefer, Graham et al. 1994). An 

rgp120 immunogen derived from MN HIV-1 strain showed protection against 

heterologous strains in chimpanzees (Berman, Murthy et al. 1996), and it proved 

safe and immunogenic in humans (Migasena, Suntharasamai et al. 2000). This 

immunogen is the basis for the VAX004 and VAX003 trials. These trials 

demonstrated that rgp120 monomers stimulated partial neutralizing antibody 

responses and failed to confer protection against HIV infection in high-risk 

populations (Figure 11) (Flynn, Forthal et al. 2005, Pitisuttithum, Gilbert et al. 

2006).  

 

 

Figure 11. Survival curves of HIV-1 infected patients enrolled in VAX004 and 
VAX003 trials. Kaplan–Meier curves from VAX004 (A) and VAX003 (B) displaying time 

to HIV-1 infection. Adapted from (Flynn, Forthal et al. 2005, Pitisuttithum, Gilbert et al. 
2006). 

 

A B
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A recent major advance in the development of an effective vaccine against HIV-1 

has been the detection of highly potent broadly neutralizing antibodies (bnAbs). It 

was reported that roughly 20% of infected individuals presented bNAbs, able to 

neutralize a wide range of HIV-1 viral isolates, after 2-3 years of infection. 

However, unlike typical viral infection, these bNAbs are not able to control the 

viral replication due to the emergence of escape variants (Sather, Armann et al. 

2009, Gray, Madiga et al. 2011). Most bNAbs belong to the following groups on 

the bases of the epitopes that they recognize: CD4 binding site, V1/V2 variable 

loops, exposed glycans, and proximal external region membrane (Figure 12). 

 

Figure 12. Schematic drawing of HIV-1 Env trimer with highlighted epitopes for 
broadly neutralizing antibodies. The known four general specificity for broadly 

neutralizing antibodies detected are the membrane proximal external region (MPER), the 
CD4 binding site, the V1/V2 variable loops and certain exposed glycans. Red: MPER of 
gp41, Blue: gp120 core, dark blue: V1/V2 loops, magenta: V3 loop, green: gp41, light 
gray: viral membrane bilayer (Shin 2016). 

 

The bNAbs efficacy in preventing infection is not yet proven in humans, but 

nonhuman primate studies with passive transfer of bNAbs showed promising 

results (Barouch, Whitney et al. 2013, Shingai, Nishimura et al. 2013). Human in 

vivo study has shown decreased levels of circulating virus after treatment of 

bNAbs (Caskey, Klein et al. 2015).  

The development of HIV Env neutralizing antibodies is mostly hampered by: 1) 

the remarkable antigenic diversity of HIV-1 Env, 2) the hidden epitope by the 

quaternary structure and glycosylation, 3) antibodies must undergo extensive 

somatic hypermutation to gain the ability to recognize the native trimer (Klein, 
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Mouquet et al. 2013, Mascola and Haynes 2013). To solve these problems, the 

envelop trimer has been stabilized in a soluble form and used as immunogen 

(Chen, Kovacs et al. 2015, Dosenovic, von Boehmer et al. 2015, Jardine, Ota et al. 

2015), but the development of a pure stable envelope immunogen capable to 

mimic the functional envelope spike remains a big challenge (Shin 2016). 

Another vaccine approach exploits the engagement of the naïve B cell repertoire. 

This approach permits the identification of the drivers that are responsible for the 

sequential stimulation of HIV-1 reactive B cell lineage to harvest the bNAbs and 

use the information to create templates for designing immunogens (Shin 2016). 

Disappointing results in stimulating B cells, made HIV researchers to turn from B 

cell targeted vaccines intended to induce neutralizing antibodies, to T cell targeted 

approach. Anyway, the CTL vaccine purpose is to decrease the viral set point and 

delay disease progression, somewhat than to prevent initial infection (Fauci and 

Marston 2015). 

Although our comprehension of viral immunology and immune correlate of 

protection has improved remarkably during the years, the quest to develop an 

effective HIV vaccine is long and winding (Shin 2016). Future progresses will 

depend on an iterative relationship between findings from preclinical studies and 

from appropriately designed, efficiently conducted clinical trials (Cohen and 

Dolin 2013). 

 

 

MHC I: HLA-A, HLA-B and HLA-C 

 

The MHC Class I genes are found in all vertebrates, although they present a high 

variability. In humans, the MHC region is located on chromosome 6. It consists of 

19 gene loci: three classical (called HLA-A, HLA-B and HLA-C), three 

non-classical (known as HLA-E, HLA-F and HLA-G) and 12 referred as non-

coding genes or pseudo-genes. The MHC-I proteins are expressed on all the cell 

membranes.  

The classical MHC-I genes differ from the non-classical ones since they are 

highly polymorphic. Among all, HLA-B is the most polymorphic locus in the 
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human genome, followed by HLA-A and HLA-C (Davidson, Kress et al. 1985). 

The MHC-I complexes are heterodimers composed of a membrane-bound heavy 

chain (encoded by the HLA-A, HLA-B or HLA-C gene), not covalently 

associated to an invariant light chain, called 2m. MHC-I complexes bind short 

peptides (8-11 aminoacids), derived from the degradation of intracellular proteins 

and present these antigens to CD8
+
 T-cells. CD8

+
 T-cells are able to kill the cells 

displaying pathogen antigens on their MHC-I molecules ensuring the elimination 

of infected cells from the organism (Groothuis and Neefjes 2005). In addition 

MHC-I molecules control NK cells responses via interaction with their Killer 

KIR, leading to inhibition or activation of their cytolytic function. HLA-C 

presents antigen to CTLs less efficiently than HLA-A and HLA-B do (Falk and 

Schendel 1997), but it is an extremely good ligand for inhibitory KIR receptors, 

protecting target cells from NK cells mediated lysis (Colonna, Borsellino et al. 

1993). 

 

 

HLA-C expression level 

 

It is known that HLA-C on the cell surface is expressed at lower level than 

HLA-A and HLA-B. Several mechanisms are involved in the regulation of 

HLA-C cell surface expression:  

1) the HLA-C molecules have a poor assembling efficiency with the light chain, 

β2m, which determines an intracellular accumulation as free chains in the ER, 

followed by their degradation (Sibilio, Martayan et al. 2008) and more 

importantly, HLA-C show a more selective peptide-binding characterized by a 

low affinity constant compared to HLA-A and HLA-B (Neisig, Melief et al. 

1998). 2) HLA-C has a di-hydrophobic motif (L336-I337) in the cytoplasmic tail 

that causes a more rapid internalization than HLA-A and HLA-B (Schaefer, 

Wonderlich et al. 2008, Kulpa and Collins 2011). 3) A subset of HLA-C allotypes 

presents in the 3’UTR of its mRNA a target sequence for a microRNA (called 

Hsa-miR-148a) able to interfere at post-transcriptional level with HLA-C gene 

expression (Kulkarni, Savan et al. 2011) (Figure 13). 
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Figure 13. Regulation of HLA-C surface expression. 
The HLA-C surface expression depends on different variants present in 5’ and 3’ UTR, 
variation in the antigen-binding cleft, and possibly other yet unidentified factors (Kaur, 
Gras et al. 2017). 

 

 

HLA-C role in HIV-1 infection 

 

A genome wide association study (GWAS) identified a Single Nucleotide 

Polymorphism (SNP) located 35 kb upstream of the HLA-C coding sequence 

(rs9264942), associated with different HLA-C expression levels, as a major 

genetic determinant for HIV-1 host control (Fellay, Shianna et al. 2007). 

Subsequently, the causal variant responsible for these associations was identified 

in another SNP (rs67384697) that maps in the 3’ UTR mRNA of HLA-C alleles, 

which affects the binding of the microRNA Hsa-miR-148a (Kulkarni, Savan et al. 

2011). This SNP was shown to partially influence cell surface expression of 

HLA-C with poor expressing alleles, such as HLA-C*01, C*03, C*04 and C*07, 

that maintain an intact miR148a binding site (263G) and high expressing alleles, 

such as HLA-C*02, C*05, C*06, C*08, C*12, C*15, C*16, in which the site is 
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deleted (263del), thus escaping the regulation by interference played by that 

microRNA (Kulkarni, Savan et al. 2011). Among all the subset of HLA-C alleles 

that are inhibited by miR-148a, differential expression levels of miR-148a itself 

(SNP rs735316) contribute to variable levels of HLA-C expression. This 

contribution is relevant among subjects who have at least one copy of HLA-C 

allele inhibited by miR-148a, while there is no detectable effect among subjects 

carrying two escape HLA-C variants (Kulkarni, Savan et al. 2011). Vince et al. 

recently characterized a new SNP, rs2395471, located in the HLA-C promoter 

region, associated with variable HLA-C expression levels both in European and 

African Americans (Kulkarni, Savan et al. 2011, Vince, Li et al. 2016). 

An HLA-C increased expression was associated with delayed progression toward 

AIDS in both European Americans and Africans, regardless of their different 

HLA-C frequencies and linkage relationships with HLA-B and HLA-A (Kulkarni, 

Savan et al. 2011).  

Adding complexity to this matter, other studies failed to confirm the association 

between HLA-C expression and these genetic markers (Corrah, Goonetilleke et al. 

2011, Gentle, Paximadis et al. 2013, Bettens, Buhler et al. 2016) and a study 

conducted on a specific population in Nairobi (Sampathkumar, Peters et al. 2014) 

reported that the same HLA-C allotype, C*07, could be associated either with a 

slow rate of seroconversion (C*07:01) and with an increased rate of 

seroconversion (C*07:02). Furthermore, it has been reported that highly expressed 

HLA-C alleles are associated to an increased risk of Chron’s Disease, while the 

low expressed ones are associated to a lower risk of Chron’s Disease (Kulkarni, 

Qi et al. 2013) (Figure 14). It has been hypothesized that higher HLA-C 

expression levels might induce HIV-1-specific responses through either binding to 

KIRs on NK cells and increasing antigen presentation to CTLs (Apps, Qi et al. 

2013) or a combination of these mechanisms, explaining the slower progression 

toward AIDS (Malnati, Ugolotti et al. 2017). At the same time the higher HLA-C 

expression could, through molecular mimicry, activate autoreactive T cells and 

acting as superantigens that stimulate a large number of T cells causing an 

increased risk of Chron’s disease (Moller 1998).  
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Figure 14. Double steps regulation of HLA-C expression. 
Expression levels of HLA-C escape alleles which have a disrupted miR-148a binding site 
(x) are not influenced by the MIR148A genotype (A or B). HLA-C expression levels of 
alleles which have an intact miR-148a binding site are inhibited by miR-148a in a 

dose-dependent manner (C and D) (Kulkarni, Qi et al. 2013). 

 

 

Env/HLA-C 

 

It has been shown that during the budding process from the cell membrane, 

MHC-I and MHC-II molecules are incorporated into the nascent HIV-1 virions 

together with other cellular proteins, with a higher number of MHC molecules 

than Env trimers (Zhu, Udaka et al. 2006, Lakhashe, Tripathy et al. 2008). It has 

been reported that this proteins incorporation is not dependent on the relative 

proteins amount on the infected cell surface, since some highly expressed proteins 

such as CD45, CD4, CCR3, CCR5 or CXCR4 are not incorporated into the 

nascent virions (Esser, Bess et al. 2001). MHC-I free chains are able to 

cis-associate with themselves as well as with a wide membrane receptors variety, 

such as CD3, CD8αβ, CD25 and IL-15Rα (Tremblay, Fortin et al. 1998, Esser, 

Bess et al. 2001, Arosa, Santos et al. 2007, Ott 2008). HLA-C has a specific 

aptitude to associate with viral proteins, in particular with HIV-1 Env, since its 

weak bound with the β2m compared to the one of HLA-A and HLA-B, and it can 
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easily accumulate as HLA-C free chains on the cell surface.  

MHC-I negative cell lines are non-permissive for the HIV-1 primary isolates 

replication (Cosma, Blanc et al. 1999), but HLA-C transfection in these cells 

recovers HIV-1 replication competence. HLA-C might be involved in inducing 

changes in viral envelope protein conformation, and in enhancing presentation of 

epitopes normally exposed upon CD4 binding (Cosma, Blanc et al. 1999). 

Moreover, HLA-C incorporation in virions has been shown to reduce 

susceptibility to neutralizing antibodies thus promoting the progression of the 

disease (Cosma, Blanc et al. 1999). A specific, non-covalent association between 

HLA-C free chains and gp120, within CD4-CCR5-gp120/gp41 fusion complexes, 

forming on cells during the process of cell-to-cell fusion induced by HIV-1 was 

documented (Matucci, Rossolillo et al. 2008). In the same study it was reported 

that fusion efficiency is reduced in HLA-C negative cells and that viruses 

produced in HLA-C silenced cells present a significantly lower infectivity than 

those produced in HLA-C expressing cells (Matucci, Rossolillo et al. 2008). 

Further studies demonstrated that HLA-C is selectively incorporated into the 

HIV-1 virions, associating with the viral glycoprotein Env and modulating viral 

infectivity (Baroni, Matucci et al. 2010, Zipeto and Beretta 2012). 

The protective role of high levels of HLA-C expression in HIV-1 infection is in 

apparent contrast with results that suggest a role for the Env/HLA-C association in 

increasing viral infectivity. This apparent contradiction may be due to the 

presence of different HLA-C conformations and their relative amounts. HLA-C, 

in fact, could be associated either with the β2m (its physiological partner) or with 

HIV-1 Env (Matucci, Rossolillo et al. 2008, Sibilio, Martayan et al. 2008). 
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HLA-C/β2m/peptide binding stability 

 

Sibilio et al. showed that differences in binding stability to β2m do exist between 

different HLA-C alleles (Sibilio, Martayan et al. 2008). Some of them are 

preferentially present as free chains due to their low binding stability to β2m, 

while other are preferentially present as full complex, consisting of the heavy 

HLA-C chain bound to β2m/peptide. Interestingly, some HLA-C alleles with a 

lower binding stability to β2m are also those described as low expressing alleles 

(Kulkarni, Savan et al. 2011) (C*01, C*03, C*04, C*07) while some alleles with a 

higher binding stability are also those described as high expressing alleles (C*02, 

C*05, C*06, C*08). 

In a recent study, Kaur and colleagues (Kaur, Gras et al. 2017) reported that 

differences in HLA-C sequences in exons 2-3 (which encode the α1/α2 domains) 

drive differential expression of HLA-C allomorphs at the cell surface by 

influencing the structure of the peptide-binding cleft and the diversity of peptides 

bound by the HLA-C molecules. Specifically, they demonstrated that the 

peptide-binding cleft of HLA-C*05 is more permissive and is filled with large 

aromatic residues, which is not the case for HLA-C*07. Instead of forming a 

groove as in HLA-C*07, the peptide-binding cleft of HLA-C*05 forms a flatter 

‘peptide-landing platform’, that allows binding of a larger range of peptides, 

which can stabilize the HLA-C molecule, in turn affecting its expression levels on 

the cell surface.  



CRISPR/Cas9 Introduction 

 

45 

 

CRISPR/Cas9 Introduction 

 

In the present study I investigated the HLA-C role in HIV-1 infection. It is known 

that the β2m protein, is required for the HLA molecules translocation to the 

membrane cells, where HLA-C interacts with HIV-1 Env modulating viral 

infectivity (Zipeto and Beretta 2012). Thus, I used the CRISPR/Cas9 technique to 

inactivate the β2m gene in HEK-293T, HeLa-Lai (expressing HIV-1 Env), and 

parental HeLa cells. Since the CRISPR/Cas9 technique is relatively recent, a short 

introduction on this system will help to better understand how it works.  

  

 

Genome editing and CRISPR/Cas system 

 

Genome editing permits to selectively modify DNA sequences in the cell genome. 

The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 

system exploits the cellular repair mechanisms, activated by the presence of a 

Double Strand Break (DSB) introduced in the cell genome by the Cas9 

endonuclease. DSBs could be repaired by one of at least two different pathways: 

non-homologous end-joining (NHEJ) and homology-directed repair (HDR) 

(Figure 15). NHEJ leads to the introduction of insertion/deletion mutations 

(indels), which thus disrupt the correct translational reading frame (Bibikova, 

Carroll et al. 2001). Instead, HDR-mediated repair can be exploited to insert 

specific desired sequences through recombination of the target locus with 

exogenously supplied DNA (Sander and Joung 2014).  
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Figure 15. Scheme of Cas9/gRNA genome editing. Cas9 cuts both strands of the 
target DNA thanks to the gRNA. The DSB could be repaired via the error-prone NHEJ 
pathway, or via the HDR pathway (Ding, Li et al. 2016). 

 

 

CRISPR/Cas9 system 

 

The most used Cas9 endonuclease in genome editing is the Streptococcus 

pyogenes (SpCas9) derived one. A human codon-optimized Cas9 protein bearing 

the SV40 nuclear localization signal at C-terminal was developed to make it 

suitable for genome engineering in eukaryotic cells (Shen, Brown et al. 2017). To 

guide the Cas9 endonuclease to a specific DNA target it is exploited an RNA 

guide, called sgRNA (Mali, Yang et al. 2013). For the Cas9 specific-cleavage, in 

addition to the sgRNA/target DNA complementarity, it is required the presence of 

a Protospacer Adjacent Motif (PAM), a 3 bp sequence flanking the 3’ end of the 

DNA target site (Jinek, Chylinski et al. 2012) (Figure 16). 

 

Figure 16. Cas9/DNA complex.  

In green the Cas9 endonuclease, in purple the sgRNA, in red the PAM sequence (Wu, 
Kriz et al. 2014). 
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Aim of the thesis 

 

The effective role of the HLA-C/HIV-1 Env interaction is still not fully clear. The 

aim of this thesis was to characterize the association between HLA-C and HIV-1 

Env through flow cytometry experiments and co-immunoprecipitation assays to 

clarify its implication in HIV-1 infection. In addition, using the CRISPR/Cas9 

technique, I developed β2m negative cell lines, to investigate the role of HLA-C in 

modulating HIV-1 infectivity.  

Some studies reported that the HLA-C presence on HIV-1 virions enhances their 

infectivity (Matucci, Rossolillo et al. 2008, Baroni, Matucci et al. 2010), 

suggesting a role for the HIV-1 Env/HLA-C association in increasing HIV-1 

infectivity. 

On the contrary, other studies reported an HLA-C protective role in HIV-1 

infection when it is expressed at high levels on the cell surface (Kulkarni, Savan 

et al. 2011, Apps, Qi et al. 2013). 

This apparent contradiction may be due to the presence of different HLA-C 

conformations, free chains or HLA-C/β2m/peptide immunocompetent trimers 

(Sibilio, Martayan et al. 2008, Serena, Parolini et al. 2017). Thus, differences 

among HLA-C allotypes in modulating HIV-1 infectivity could rely on the 

intrinsic different stability as heterotrimeric complexes.  

To understand the basis of these observations, I deeply investigated HLA-C 

surface reactivity by comparing two different antibodies, DT9 and L31, specific 

for HLA-C/β2m/peptide heterotrimers and HLA-C free chains respectively.  

Secondary was tested on a limited panel of isolates if HLA-C stability could affect 

the HIV-1 infectivity. 
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Results 

 

HIV-1 infection induces HLA-C free chains surface expression in infected 

cells 

 

To test the effects of HIV-1 infection on HLA-C surface expression, two cell lines 

were employed: A3.01 and ACH-2. A3.01 is a T-lymphocytic cell line and 

ACH-2 represents the HIV-1 chronically infected counterpart (Clouse, Powell et 

al. 1989). TNF-α stimulation is associated with the induction of nuclear factors 

binding to the NF-kB site in the HIV-1 LTR region, leading to viral reactivation 

(Duh, Maury et al. 1989). Both A3.01 and ACH-2 cells were stimulated with 

TNF-α for 24 hours and analysed by flow cytometry for gp120 HIV-1 Env 

glycoprotein (using 2G12 antibody) and the HLA-C expression. HLA-C 

expression was assessed using two different antibodies: the DT9 antibody which 

recognizes the heterotrimeric complexes HLA-C/β2m/peptide (Braud, Allan et al. 

1998) and the L31 monoclonal antibody, specific for HLA-C free chains (Setini, 

Beretta et al. 1996). As expected, following TNF-α stimulation, an increase of 

2G12 reactivity was observed in ACH-2 cells, confirming the viral reactivation. 

Upon TNF-α stimulation, an increase of HLA-C/β2m/peptide (DT9 reactivity) was 

detected in both cell lines (A3.01 and ACH-2). The upregulation of HLA-C 

heterotrimeric complexes is due to the TNF-α activity in modulating MHC-I 

expression (Hallermalm, Seki et al. 2001). Interestingly, upregulation of HLA-C 

free chains (L31 reactivity) was observed only in the ACH-2 cells (Figure 17). As 

reported in Figure 17, L31 reactivity in ACH-2 cells, was significantly different 

between unstimulated and TNF-α stimulated cells (two-way ANOVA, p = 0.002), 

as well as towards the TNF-α stimulated A3.01 cells (two-way ANOVA, p = 

0.01).  
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Figure 17. Flow cytometry analysis of HLA-C and Env surface expressions in A3.01 
and ACH-2 cells. 
A.  Dashed line: secondary antibody control; thin line: unstimulated cells; thick line: 24 
hours TNF-α stimulated cells. 2G12, DT9 and L31 antibodies recognize: HIV-1 Env, 

HLA-C heterotrimeric complexes and HLA-C free chains respectively. Upon TNF-α 

stimulation, ACH-2 cells express HIV-1 Env (2G12); HLA-C heterotrimers (DT9) are 
upregulated in both cell lines; HLA-C free chains (L31) are upregulated in ACH-2 cells 
only. 
B. Empty black dot ○: Unstimulated A3.01 cells; Full black dot ●: TNF-α stimulated A3.01 

cells; Empty red triangle △: Unstimulated ACH-2 cells; Full red triangle ▲: TNF-α 

stimulated ACH-2 cells. Experiment was repeated 6 times, median fluorescence intensity 
(MFI) of L31 antibody are displayed. HLA-C free chains surface expression is significantly 
different between TNF-α stimulated ACH-2 cells (chronically infected by HIV-1) and A3.01 
cells (uninfected parental cell line) (p = 0.01), and between TNF-α stimulated and 
unstimulated ACH-2 cells (p = 0.002). p values refer to two-way ANOVA analyses. 
Adapted from: (Serena, Parolini et al. 2017). 

 

A time course analysis of HIV-1 Env, MHC-I and β2m expressions in A3.01 and 

ACH-2 cells was performed. Both cell types were analysed by flow cytometry 

comparing the antibody fluorescence with and without TNF-α stimulation after 

24, 48 and 72 hours from stimulation. The membrane expression of HLA-C free 

chains (L31 reactivity) correlated with HIV-1 Env expression (2G12 reactivity), 

and both decrease at later times. On the contrary, the total HLA-C expression 

(detected with the DT9 antibody and with the L31 antibody after acid wash 

treatment), the MHC-I (detected with the W6/32 antibody) and the β2m (detected 

with NAMB-1 antibody) expressions showed no differences (Figure 18). 
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Figure 18. Time course analysis of HIV-1 Env, MHC-I and β2m surface expressions, 
in TNF-α stimulated and unstimulated A3.01 and ACH-2 cells. 
Cells were surface labelled at different times, 24, 48 and 72 hours (X-axis). Red line: 
ACH-2 cells; black line: A3.01 cells. Fluorescence fold change calculated as the ratio 
between RFI of TNF-α stimulated and unstimulated cells are reported on Y-axis. Of note, 
the correlation between the expression of Env and HLA-C free chains: the HLA-C free 
chains surface expression appears to be dependent on the presence of HIV-1 Env. No 
differences in the expression of total HLA-C free chains after acid wash (L31 AW panel), 
HLA-C trimeric complex (DT9 panel), MHC-I (W6/32 panel) or β2m (NAMB-1 panel) are 
observed. Adapted from: (Serena, Parolini et al. 2017). 

 

The correlation, between HIV-1 infection and HLA-C free chains surface 

expression was further confirmed in an additional cellular model. PM1 cells, a 

human T-lymphocytic cell line chronically infected with HIV-1 IIIB, was used 

(Figure 19A). The flow cytometry analyses of HIV-1 Env (2G12) and MHC-I 

molecules (W6/32) showed a constitutive basal viral production (without TNF-α 

stimulation) higher than the one observed in ACH-2 cells. As previously observed 

in ACH-2 cells, after 48 hours of TNF-α stimulation in PM1-IIIB cells, an 

increase of HLA-C free chains at the cell surface (L31 reactivity) was observed. 

This increase was hardly detected in the uninfected counterpart PM1 cells. It 

could be speculated that HIV-1 infection promotes the formation of HLA-C free 

chains at the membrane of infected cells. Noteworthy in PM1-IIIB cells, the 

TNF-α stimulation counteracted the HIV-1 induced MHC-I downregulation. 
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Having established the correlation between HLA-C free chains appearance and 

HIV-1 infection in both used cellular models, we further investigated which 

component of HIV-1 was involved in this phenomenon, starting from the HIV-1 

Env protein. Thus, HEK-293T cells were transfected with a plasmid encoding 

HIV-1 QHO-Env and a plasmid encoding an Env defective full-length HIV-1 

genome named pSG3
Δenv

 (Figure 19B). An increase of L31 reactivity was detected 

only after QHO-Env transfection. After acid wash treatment, no differences in 

L31 reactivity were detected. Probably HIV-1 Env protein induces a switch from 

HLA-C heterotrimeric complex to HLA-C free chain.  

 

 

HLA-C free chains surface appearance is not due to any HIV-1 proteins  

 

To explore if any other HIV-1 proteins were responsible for the appearance of 

HLA-C free chains on the cell surface, plasmids encoding different HIV-1 

proteins were transfected in β2m knockout HEK-293T cells, generated using the 

CRISPR/Cas9 system. Different viral proteins were tested: Gag, Env, Vpu, Vif, 

Nef, Tat. In addition, the Env defective full-length HIV-1 genome (pSG3
Δenv

) 

plasmid was used. After transfection, HEK-293T cells were treated with the acid 

wash to displace the β2m and then analysed by flow cytometry using the L31 

antibody, to exclude that the potential intracellular association between 

HLA-C/viral protein might mask the L31 epitope (Setini, Beretta et al. 1996). 

Only the transfection with the control β2m expressing vector restored the HLA-C 

surface expression, while no HLA-C expression was detected on the cell 

membrane after transfection with the other plasmids, expressing HIV-1 proteins 

(Figure 20).   
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Figure 19. HIV-1 Env expression and HLA-C free chains surface expression. 
A. Shaded curve: Secondary antibody control; blue line: Unstimulated cells; red line: 

Cells stimulated for 48 hours with TNF-α. PM1 cells infected with HIV-1 IIIB showed a 
downregulation of MHC-I molecules (W6/32) and a slight HLA-C free chains increase 
(L31).  
Upon TNF- α stimulation, and thus the viral reactivation, the MHC-I surface expression 
was restored.  
B. Grey line: Secondary antibody control; black line: HEK-293T transfected with pcDNA3; 

blue line: HEK-293T transfected with pSG3
Δenv

; red line: HEK-293T transfected with 

HIV-1 QHO-Env plasmid. In HEK-293T transfected with HIV-1 Env was observed an 

increase of HLA-C free chains (L31) at the cell membrane compared to the HEK-293T 
transfected with pcDNA3 (mock) or pSG3

Δenv
 plasmids. After acid wash (L31 AW) the 

total HLA-C molecules were comparable (Serena, Parolini et al. 2017). 
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Figure 20. L31 reactivity of β2m negative HEK-293T cells transfected with different 
HIV-1 proteins. 
Shaded grey curve: Secondary antibody control; red line: L31 reactivity. After transfection 
with different viral proteins, cells were surface labelled using L31 antibody, after acid 
wash. HEK-293T cells transfected with the β2m encoding plasmid were used as control. 
Cytometry analyses indicate that only β2m transfection is able to restore HLA-C surface 
expression (Serena, Parolini et al. 2017). 

 

β2m knockout variants of both HeLa and HeLa-Lai cells were prepared using the 

CRISPR/Cas9 system. The HLA-C free chains surface expression was tested by 

flow cytometry in both parental and β2m negative cells, after acid wash. Both β2m 

negative cell lines were negative for the HLA-C surface expression, suggesting 

that HIV-1 Env in HeLa-Lai cells couldn’t restore the HLA-C surface expression 

and that β2m is strictly required for the MHC-I assembly and transport to the cell 

membrane (Figure 21) (Serena, Parolini et al. 2017). 
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Figure 21. Flow cytometry analyses of HLA-C free chains at the cell membrane in 

2m positive and negative HeLa and HeLa-Lai cells. 

A. Histogram graph represents the L31 MFI of HeLa and HeLa-Lai 2m negative (red) 
and positive (black) cells. Experiment was repeat for 4 times. Standard errors are 
reported. 

B. Shaded grey curve: Secondary antibody control; red line: L31 surface reactivity of 2m 

negative cells; black line: L31 surface reactivity of 2m positive cells. Only the parental 
cells showed HLA-C surface expression. Adapted from: (Serena, Parolini et al. 2017). 

 

 

HIV-1 Env/HLA-C association 

 

To study the association between Env and HLA-C at the cell surface, HIV-1 Env 

expressing HeLa-Lai cells were used to co-purify HLA-C with Env. Thus, 

HeLa-Lai cells were treated with the cell membrane insoluble, thiol-cleavable 

DTSSP reagent (Lomant and Fairbanks 1976) to crosslink protein complexes on 

the cell surface. Proteins lysates were then purified on a Galanthus nivalis lectin 

column that binds D-mannose groups bound to the HIV-1 Env protein. After 
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column wash, several elution fractions were collected at increasing concentrations 

of methyl α-D-mannopyranoside. Purified complexes heavier than 100 KDa were 

reduced and analysed by western blot (Figure 22A). As negative control, identical 

amounts of proteins from control HeLa cells were analysed following the same 

protocol. To exclude any excessive cross-linking of membrane proteins due to 

DTSSP treatment, Flotillin-1 (a membrane protein) expression was tested as 

control: no specific co-purification in the presence of HIV-1 Env was observed, 

and no differences in its purification were revealed between HeLa and HeLa-Lai 

cells. In HeLa lysates, HLA-C molecules were eluted in the first fractions due to 

the low content of mannoses (Ryan and Cobb 2012), whereas HLA-C molecules 

produced in HeLa-Lai cells were co-purified, in parallel with Env, in high 

amounts and in all the eluted fractions. Furthermore, co-immunoprecipitation of 

complexes from the cell surface of both Hela and HeLa-Lai cells with the anti Env 

(2G12) antibody confirmed the HIV-1Env/HLA-C association (Figure 22B). 

Analysis of the HLA-C heterotrimeric complexes (DT9 antibody) did not result in 

HIV-1 Env co-immunoprecipitation, excluding a role of HLA-C heterotrimers in 

the association with HIV-1 Env protein. These results suggest that HIV-1 Env 

associates with HLA-C in its free chains conformation at the cell membrane. 
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Figure 22. HIV-1 Env and HLA-C are associated at the cell surface. 
A. GN lectin columns of protein extracts from HeLa and HeLa-Lai cells, after surface 
treatment with the cross linker DTSSP. Protein expressions of Env, HLA-C and flottilin-1 
was tested by western blot on purified complexes heavier than 100 KDa. As expected, 
Env purification is present in HeLa-Lai cells but not in HeLa cells. HLA-C molecules, 
containing few mannoses, are eluted in the first fractions from HeLa cells, while they are 
co-purified in higher amounts from HeLa-Lai cells, in the presence of HIV-1 Env. No 
differences in flottilin-1 purification were detected. 
B. Membrane complexes from HeLa and HeLa-Lai cells were immunoprecipitated using 

different antibodies: 2G12 (anti HIV-1 Env), DT9 (anti HLA-C heterotrimeric complexes) 

and α-2m (anti 2m) antibodies. Western blot analyses of immunoprecipitated samples 

show that HLA-C is associated either with 2m or with HIV-1 Env. α/β tubulin expression 
was detected as a control (Serena, Parolini et al. 2017). 
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β2m role in modulating HIV-1 infectivity 

 

Previous studies showed that HIV-1 Env specifically associates with HLA-C, 

improving the ability of HIV-1 virions to infect host cells (Cosma, Blanc et al. 

1999, Matucci, Rossolillo et al. 2008, Baroni, Matucci et al. 2010). To investigate 

the role of β2m in virion infectivity, Env-pseudotyped viruses (QHO and pRHPA) 

HIV-1 isolates were produced in HEK-293T positive and negative β2m cells. An 

infectivity assay was performed using TZM-bl cells. The TZM-bl cell line is 

stably transfected with a plasmid encoding for the luciferase regulated by the 

HIV-1 Tat promoter. Exploiting this cellular system is possible to quantify the 

viral infectivity measuring the luciferase expression signal. For the experiment, 

equivalent amounts of pseudoviruses, determined by titration of p24, were used. 

The viral infectivity of pseudoviruses produced in HEK-293T β2m positive cells 

was significantly higher than the one of pseudoviruses produced in HEK-293T 

β2m negative cells (Figure 23, two-way ANOVA, p < 0.0001). By analysing the 

interpolating curve, best fitting the obtained Relative Luminescence Units (RLU) 

values, an infectivity increase 3 fold higher for pseudovirueses produced by β2m 

positive cells compared to the infectivity of pseudoviruses produced in β2m 

negative cells was observed. No difference was observed when the protein G of 

the unrelated pseudovirus Vesicular Stomatitis Virus (VSV) was used. These data 

suggest that the β2m can increase HIV-1 infectivity ensuring the HLA-C transport 

at the cell membrane, where it associates with Env. 
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Figure 23. Infectivity assay on TZM-bl cells of HIV-1 psuedoviruses produced in 
β2m positive/negative HEK-293T. 

Pseudoviruses produced in HEK-293T β2m positive cells (black line) show a significantly 
higher infectivity than those produced in HEK-293T β2m negative cells (red line). This 
observation is true for two HIV-1 Env pseudotyped viruses, called QHO and pRHPA  and 
not for the unrelated pseudotyped virus VSV-G. Infectivity is expressed as Relative 
Luminescence Units (RLU). The technical quadruplicates are reported and the error bars 
represent standard deviations. p values refer to two-way ANOVA analyses, comparing 
β2m positive and negative pseudoviruses. Adapted from: (Serena, Parolini et al. 2017). 

 

 

PBMC donor population analysis 

 

PBMC were collected from healthy bone marrow donors afferent to the Italian 

Bone Marrow Donor Register (IBMDR) and followed by the Service of 

Transfusional Medicine (AOUI) in Verona. They were typed for HLA-A, -B 

and -C by the high resolution molecular biology methods (Reverse PCR-SSO and 

Luminex Technology). The ethic Committee in Verona, approved this study on 14 

October 2015 (ProgCE678CESC). All the samples were collected after written 

informed consent was obtained from the donors. 

Since different HLA-C allotypes might present different binding stability to 

β2m/peptide and may display different expression levels, subjects with one 

Unstable and one Stable HLA-C allele were excluded because they probably show 

intermediate phenotypes. To emphasises differences between the two groups, we 

selected donors having both HLA-C alleles belonging either to the Unstable or to 

the Stable group. In addition, donors harboring cross-reactive HLA-B alleles 

(B*13:01, *35:01, *40:06 and *73:01 for the DT9 antibody and B*07, *08, *22, 

*35, *46, *51, *54 and *56 for the L31 antibody) were not included. Thus, only 

about 10% of potential donors was suitable for this study (Table 1). 
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Donor Sex Age HLA-A HLA-B HLA-C Group 

1 M 19 *02:01, *30:01 *40:01, *58:01 *03:02, *03:04 U 

2 M 37 *11, *68 *37, *44 *06, *16 S 

3 M 31 *02, *29 *18, *58 *07, *07 U 

4 M 35 *02, *33 *14, *44 *05, *08 S 

5 M 29 *02, *24 *44, *58 *07, *07 U 

6 F 20 *02:01, *03:01 *27:05, *44:02 *02:02, *05:01 S 

7 M 36 *02, *26 *15, *55 *03, *03 U 

8 M 18 *11:01, *29:02 *39:01, *44:03 *12:03, *16:01 S 

9 F 21 *25:01, *68:02 *39:01, *45:01 *12:03, *16:01 S 

10 F 26 *02, *02 *15, *15 *04, *04 U 

11 M 41 *24:02, *25:01 *18:01, *44:03 *12:03, *16:01 S 

12 M 24 *02, *02 *44, *49 *05, *15 S 

13 M 27 *02:01, *24:02 *38:01, *44:02 *05:01, *12:03 S 

14 M 25 *02:01, *11:01 *38:01, *44:03 *12:03, *16:01 S 

15 M 47 *02:01, *02:01 *44:05, *44:05 *02:02, *02:02 S 

16 M 27 *02:01, *26:01 *15:01, *49:01 *04:01, *07:01 U 

17 M 25 *23, *32 *15, *44 *01, *04 U 

18 M 25 *02:01, *03:01 *15:01, *18:01 *03:03, *07:01 U 

19 F 33 *26, *03 *13, *44 *05, *06 S 

20 M 29 *11:01, *30:04 *44:02, *50:01 *06:02, *16:04 S 

21 F 22 *02, *33 *14, *39 *08, *12 S 

22 M 42 *03, *24 *39, *44 *04, *04 U 

23 M 38 *02:01, *26:01 *18:01, *38:01 *12:03, *12:03 S 

24 F 23 *11, *23 *18, *44 *04, *07 U 

25 M 38 *26, *26 *37, *37 *06, *06 S 

26 M 31 *01:01, *26:01 *38:01, *57:01 *06:02, *12:03 S 

27 F 30 *02:01, *03:01 *13:02, *50:01 *06:02, *06:02 S 

28 M 42 *02:01, *30:02 *18:01, *49:01 *05:01, *06:02 S 

29 M 47 *31:01, *03 *18:01, *40:01 *03:04, *07:01 U 

30 M 30 *30:02, *68:01 *18:01, *44:02 *02:02, *05:01 S 

31 M 19 *01:01, *32:01 *14:01, *57:01 *06:02, *08:02 S 

32 M 27 *02:01, *26:01 *18:01, *58:01 *07:01, *07:01  U 

33 M 32 *33:01, *34:02 *14:02, *14:02 *08:02, *08:02 S 

34 M 26 *03:01, *29:02 *39:06, *58:01 *07:01, *07:02 U 

35 F 24 *01:01, *01:01 *37:01, *57:01 *06:02, *06:02 S 

36 M 27 *01:01, *32:01 *41:02, *49:01 *07:01, *07:03 U 

37 F 33 *01:01, *24:03 *18:01, *18:01 *07:01, *07:01  U 

38 M 22 *02:01, *03:01 *38:01, *44:02 *05:01, *12:03 S 

39 M 32 *01:01, *26:01 *37:01, *38:01 *06:02, *12:03 S 

40 M 43 *11:01, *25:01 *18:01, *52:01 *12:02, *12:03 S 

41 F 27 *25:01, *33:01 *14:02, *44:02 *05:01, *08:02 S 

42 F 27 *03:01, *25:01 *13:02, *18:01 *06:02, *12:03  S 

43 M 35 *02:01, *02:01 *18:01, *44:02 *07:01, *07:04 U 

44 M 33 *03:01, *11:01 *14:01, *18:01 *05:01, *08:02 S 

45 F 53 *24:02, *32:01 *37, *44 *01:02, *04:10 U 

46 F 54 *11:01, *23:01 *44:02, *38:02 *04:01, *07:02 U 

47 M 53 N.A. *49, *58 *07, *07 U 

48 M 40 N.A. *15, *49 *07, *07 U 

49 M 50 *02:01, *29:01 *18, *44 *08:09, *16:01 S 

50 M 39 *24:02, *30:11 *13:02, *37:01 *06, *06 S 

51 M 43 N.A. *37, *44 *06, *16 S 

52 M 57 N.A. *38, *52 *12, *12 S 

53 M 45 *01:01, *02:05 *15:03, *49:01 *06, *12 S 

N.A.:  not available 

Table 1. Summary of study population.  
The table reports the Sex (M, male; F, female), MHC-I typing (HLA-A, -B, -C) and HLA-C 
stability group (S, Stable; U, Unstable). Adapted from: (Parolini, Biswas et al. 2017). 
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The two donor groups analysed in this study were homogeneous and did not show 

any difference neither for gender, (χ
2 

= 0.950), nor for age (p = 0.6919) (Figure 

24).  

 

 

 Unstable Stable 
Age (years) 33.9  2.41 32.76  1.69 

Gender male % 75.00 75.76 

 
Figure 24. Study population. 
The dot graph represents the age distributions of the two analysed populations (red: 
Unstable group, blue: Stable group). The bars represent the median and quartiles for 
each group. No significant difference was detected (t-test). 
The table summarizes the age and the sex distributions in the two analysed populations.  
 

 
Comparing the frequencies of HLA-C alleles of IBMDR donors with the 

frequencies of HLA-C alleles reported in Northern Italy (Guerini, Fusco et al. 

2008), some differences were observed. Specifically an increase of HLA-C*05, 

C*06 and C*08 and a decrease of HLA-C*04 frequencies were observed. By 

comparing the frequencies of HLA-C alleles of the selected donors population 

with the frequencies of HLA-C alleles of the IBMDR donors we observed an 

increase of HLA-C*05, C*08 and C*12 frequencies and a decrease of HLA-C*04 

and C*15 frequencies in the selected population (Figure 25). These differences are 

likely due to the exclusion from the present study of donors with cross-reactive 

HLA-B alleles which are in linkage disequilibrium with specific HLA-C alleles, 
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since haplotypes tend to be inherited in block. In fact, some common allotypes in 

the Italian population are reported to be B*35:01-C*04:01 and B*51:01-C*15:02 

(Allele Frequency Net Database AFND; http://www.allelefrequencies.net) 

(Gonzalez-Galarza, Takeshita et al. 2015). 

 

 
Figure 25. HLA-C frequencies of selected donors and IBMDR afferent donors.  

Histograms represent the HLA-C frequencies distribution in IBMDR afferent donor (white 
bars) and selected donors (black bars). The stars indicate the significant differences 
between the two distributions, due to the stringent selection operated (Fisher’s exact 
test). 

 

 

Different HLA-C conformational expression on PBMC surface 

 

Preliminary experiments revealed the absence of differences in HLA-C surface 

stability between lymphocytes and whole PBMC population. An illustrative 

comparison between PBMC and lymphocytes of donors harboring Unstable 

(Figure 26A) and Stable (Figure 26B) HLA-C alleles is reported. Thus, all the 

following analyses were performed on PBMC. 

The HLA-C surface expression on selected donors PBMC was assessed using 

different antibodies. Flow cytometry analysis performed using the DT9 antibody 

(which recognizes the heterotrimeric complex HLA-C/β2m/peptide) revealed no 

significant difference between the two groups (Figure 27A, Wilcoxon test, p = 0. 

6712). 
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When the analysis was conducted after acid wash treatment (which detaches β2m 

from HLA-C) a significantly lower DT9 reactivity was observed in the Unstable 

group compared to the Stable one (Figure 27B, Wilcoxon test, p = 0.0147), 

underlining the presence of a small pool of stable HLA-C trimers on PBMC 

harboring Unstable HLA-C variants. As expected, the DT9 fluorescence 

expressed as Relative Median Intensity (RMFI) after acid wash was lower than 

the RMFI of the constitutive DT9 (Figure 27A and 27B), reflecting the disruption 

of the majority of HLA-C heterotrimeric complexes. 

 

 
Figure 26. Gating strategies and illustrative histograms for the flow cytometry 
experiments. DT9 mAb recognizes heterotrimers; L31 mAb recognizes HLA-C free 

chains; Acid Wash, enables the β2m/peptide removal from HLA-C heterotrimers. A donor 
harboring both Unstable (A) and a donor with both Stable (B) HLA-C alleles are showed. 
Fold changes were calculated for mAb L31, as the ratio between RMFI after and prior to 
acid wash, and for mAb DT9, as the ratio between RMFI prior to and after acid wash. 
RMFI was calculated as reported in Materials and Methods section. MFIcontrol (secondary 
antibody control) was 0.19 or 0.26 for Unstable PBMC, 0.15 or 0.20 for Unstable 
lymphocytes, 0.17 or 0.15 for Stable PBMC and 0.12 or 0.10 for Stable lymphocytes, 
respectively without or with previous acid wash. Fold change analyses conducted on 
PBMC and on lymphocytes of the same donor show similar results for both antibodies, as 
showed in the tables (Parolini, Biswas et al. 2017). 
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Figure 27. Flow cytometry analysis of DT9 reactivity before and after acid wash. 

Flow cytometry analyses of HLA-C/β2m/peptide trimeric complexes detected using the 
DT9 antibody, on PBMC surface, before (A, Unstable n=18, Stable n=32) and after (B, 
Unstable n=13, Stable n=27) acid wash. The bars represent the median and quartiles of 
each group. No significant differences between the two analysed populations were 
observed (Wilcoxon-Mann-Whitney test). Adapted from: (Parolini, Biswas et al. 2017). 
 

 

Surface staining with the L31 mAb displayed similar levels of HLA-C free chains 

between the two analysed groups (Figure 28A, Wilcoxon test, p = 0.9415). Only a 

slight difference was detected when the L31 analysis was performed after acid 

wash, which permits the quantification of a larger fraction of HLA-C free chains 

expressed on the PBMC surface of the Stable group (Figure 28B, Wilcoxon test, p 

= 0.0563). As expected, the L31 RMFI values prior to acid wash were lower than 

the RMFI of the L31 RMFI after acid wash, as visible by the different scale 

(Figure 28A and 28B). 
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Figure 28. Flow cytometry analysis of L31 reactivity before and after acid wash. 
Flow cytometry analysis of HLA-C free chains performed using the L31 antibody, on 
PBMC surface, before (A, Unstable n=20, Stable n=33) and after (B, Unstable n=20, 
Stable n=33) acid wash treatment. The bars represent the median and quartiles of each 
group. No significant differences between the two analysed populations were observed 
(Wilcoxon-Mann-Whitney test). Adapted from: (Parolini, Biswas et al. 2017). 

 

 

Fluorescence fold change in PBMC 

 

The HLA-C/β2m/peptide binding stability was evaluated by calculating the 

fluorescence fold change as the ratio between L31 RMFI after and prior to the 

acid wash treatment, to determine the amount of HLA-C free chains molecules 

originally present on PBMC surface and released after the β2m stripping. If the 

fraction of HLA-C in its free chains conformation is higher compared to HLA-C 

heterotrimers, this ratio will be slightly influenced by the acid wash and the L31 

fluorescence fold change will be moderately low. Vice-versa, if HLA-C molecules 

are mostly present as heterotrimeric complex, the acid wash treatment will have a 

greater effect in switching the HLA-C conformation and thus the L31 fold change 

ratio will be higher. The working hypothesis is that HLA-C allotypes classified as 

Unstable are less stably associated to β2m/peptide and consequently present a 

higher proportion of free chains than Stable allotypes. Therefore, a lower and 

higher fluorescence fold change increase is expected for the Unstable and Stable 

HLA-C allotypes, respectively. 
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Indeed, flow cytometry analyses showed that PBMC from donors belonging to the 

Stable group have a significant higher fluorescence fold change compared to those 

belonging to the Unstable group (Figure 29A, Wilcoxon test, p = 0.0063). We did 

not note the prevalence of some specific HLA-C allotypes in those subjects 

having the highest fluorescence fold change value, excluding any involvement of 

specific HLA-C variants. On the contrary, the DT9 RMFI fold change was 

comparable between the two analysed groups (Figure 29B, Wilcoxon test, p = 

0.1794). 

 
 

Figure 29. L31 and DT9 fluorescence fold change. 
A. L31 fluorescence fold change, calculated as the ratio between L31 RMFI after and 

before acid wash. This value is statistically significant higher for the Stable group, 
compared to the Unstable one (Wilcoxon-Mann-Whitney test). Unstable n=13, Stable 
n=27. 
B. DT9 fluorescence fold change, calculated as the ratio between DT9 RMFI before and 

after acid wash. This value is not statistically significant different in the two groups. The 
bars represent the median and quartiles of each group. Unstable n=13, Stable n=27. 
Adapted from: (Parolini, Biswas et al. 2017). 

 

 

HLA-C and β2m total expression in PBMC 

 

To test the total HLA-C and β2m expression levels, western blot analyses were 

performed on PBMC lysates. No significant difference in the expression levels of 

β2m was detected (Figure 30A, Wilcoxon test, p = 0.2109). Vice-versa, a 

significantly higher total expression of HLA-C (Figure 30B, Wilcoxon test, p = 
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0.0312) was observed in the Stable group. The significantly higher total HLA-C 

expression observed in the Stable group, could be due to the higher expression 

levels of some HLA-C variants (i.e., *02, *06, *15), associated with SNP 

rs67384697 (Kulkarni, Savan et al. 2011) and SNP rs2395471 (Vince, Li et al. 

2016), grouped as Stable, and the lower expression of other variants (i.e. *03, 

*07) classified in the Unstable group. 

 

 
 

Figure 30. HLA-C and β2m total expressions in PBMC. 
A. Total HLA-C expression assessed by western blotting using L31 antibody. The Stable 
group present a significant higher HLA-C expression than the Unstable one (Wilcoxon-
Mann-Whitney test). The bars represent the median and quartiles of each group. 
Unstable n=16, Stable n=28. 
B. Total β2m expression assessed by western blotting. No difference was observed 
between the two groups (Wilcoxon-Mann-Whitney test). The bars represent the median 
and quartiles of each group. Unstable n=14, Stable n=27. 
C. Representative images of western blot experiments used to quantify HLA-C (left) and 

β2m (right) expression levels. CHO and HEK-293T cell lysates are negative and positive 
controls for HLA-C quantification, and HEK-293T β2m negative and HEK-293T cell 
lysates for β2m quantification, respectively. For the quantification method refer to the 
Material and Methods section. The HLA-C allotypes are indicated for the reported PBMC 
samples. Adapted from: (Parolini, Biswas et al. 2017). 
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HLA-C allotypes modulate HIV-1 infectivity 

 

Infection assay of PBMC is dependent on several different elements (such as, 

number of CD4
+
 and CD8

+
 T lymphocytes, expression level of HIV-1 

co-receptors, PHA activation, cell growth, cell viability), thus a standardized 

system to compare the HLA-C alleles influence on HIV-1 infectivity was set up. 

PBMC from a donor belonging to the Unstable group and a donor belonging to 

the Stable one, were randomly coupled and tested the same day, in the same 

experimental set. PBMC were infected with two HIV-1 strains, a prototype of an 

R5-tropic variant and a prototype of an X4-tropic one. After p24 titration, the 

same amount of virus produced was used to infect TZM-bl target cells (Platt, 

Wehrly et al. 1998). PBMC from 16 donors (8 with Unstable and 8 with Stable 

HLA-C alleles) were infected with HIV-1 BaL (R5-tropic strain) and IIIB 

(X4-tropic strain). A significant lower infectivity (Figure 31A, three-way 

ANOVA, p < 0.0001) was observed in TZM-bl cells infected with the R5-tropic 

BaL HIV-1 isolate propagated in PBMC with Stable compared to PBMC with 

Unstable HLA-C alleles. On the contrary, no significant difference was observed 

using the X4-tropic HIV-1 IIIB isolate (Figure 31B, three-way ANOVA, p = 

0.5557).   
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Figure 31. HIV-1 infectivity of virions produced by PBMC. Graphs represent HIV-1 
infectivity of different randomly coupled subjects harboring Stable (blue) and Unstable 
(red) HLA-C alleles. Y-axis refers to OD/min values, which reflect the X-Gal staining 
signals. The p value for the global analysis (pHLA) is determined by three-way ANOVA and 
is referred to differences between Stable and Unstable HLA-C alleles. 
A. Infection conducted with the BaL HIV-1 isolate.  
B. Infection conducted with the IIIB HIV-1 isolate. 

 

To simplify the analysis, for each experimental set, the first viral concentration 

not showing an evident cytopathic effect on cell viability was used. Data were 

analysed by two-way ANOVA, untangling the effect of the variability between 

experimental sets and the effect of HLA-C stability on viral infectivity. A 
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significant lower infectivity with the R5-tropic BaL HIV-1 isolate was observed 

for the Stable group compared to the Unstable one (Figure 32A, left panel, p(HLA) 

< 0.0001). No significant difference was observed with the X4-tropic IIIB HIV-1 

isolate (Figure 32B, left panel, p(HLA) = 0.6785). As expected, significant 

differences, due to the experimental set, were observed in both cases (p(EXP ) < 

0.0001 and p(EXP) = 0.0003 for BaL and IIIB, respectively).  

The two groups were finally analysed by comparing the distributions of the mean 

infectivity for each PBMC sample. The Wilcoxon test showed a significant 

difference between the two groups for BaL (Figure 32A, right panel, p = 0.0357), 

but not for IIIB infectivity (Figure 32B, right panel, p = 0.5995).  

 

 
Figure 32. HIV-1 infectivity in donors PBMC. 
Histogram charts represent means and standard deviations of HIV-1 infectivity of the 
different randomly coupled donors harboring both Stable (blue) and Unstable (red) HLA-C 
alleles. X-axis, experimental set; Y-axis, virions infectivity expressed as RLU. Statistical 
differences were evaluated by two-way ANOVA: p(HLA) refers to virions infectivity due to 
the HLA-C group (Stable/Unstable), while p(EXP) refers to the expected experimental set 
variability.  
Dot charts represent the distributions of the mean infectivity of each subject (Unstable 
HLA-C variants, red dots; Stable HLA-C variants, blue dots). Horizontal bars indicate 
median and quartiles; data were statistically analysed by Wilcoxon-Mann-Whitney test.   
A. Infection conducted with the R5 BaL HIV-1 strain. 
B. Infection conducted with the X4 IIIB HIV-1 strain. Adapted from: (Parolini, Biswas et al. 

2017). 
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Fluorescence fold change analysis and HIV-1 infectivity in a controlled 

cellular model 

 

The differences observed in PBMC were further confirmed on 721.221-CD4 cells. 

These cells, bearing a deletion of the MHC-I locus, were transfected in parallel 

with HLA-C*07 or HLA-C*06 expressing plasmids, respectively an Unstable and 

a Stable HLA-C allele. Flow cytometry analyses of 4 independent transfection 

experiments showed a significantly higher L31 fluorescence fold change for the 

HLA-C*06 expressing cells compared to the HLA-C*07 ones, after β2m removal 

from the cell surface (Figure 33A, two-way ANOVA, p = 0.0297). This result 

confirms the observation previously made on PBMC. The experiment was 

performed on a controlled cellular model, thus excluding any other variable due to 

the immune system or individual differences between PBMC donors, further 

supporting the working hypothesis. 

Finally, infectivity of HIV-1 virions produced by 721.221-CD4 cells transfected 

either with HLA-C*07 or HLA-C*06 was evaluated. Because of 721.221-CD4 

cells express only the CXCR4 HIV-1 co-receptors, they were used to assess the 

IIIB HIV-1 infectivity in the presence of the HLA-C*07 (Unstable) or -C*06 

(Stable) allele. The supernatants were quantified for their p24 content and then the 

same virus amounts were used to infect TZM-bl cells. Infectivity of virions 

produced by 721.221-CD4-C*06 cells was significantly lower than that of virions 

produced by 721.221-CD4-C*07 cells (Figure 33B, two-way ANOVA, p = 

0.0001).  

This experiment confirms, in a cellular model, that HIV-1 has a lower infectivity 

when produced in the presence of Stable HLA-C alleles. 
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Figure 33. HLA-C allotypes stability and their effect on HIV-1 infectivity. 
A. Fluorescence fold change analyses in 721.221-CD4 cells. L31 RMFI fluorescence fold 
change in HLA-C*07 (Unstable, red dots) and HLA-C*06 (Stable, blue dots) expressing 
721.221-CD4 cells. The graph displays the flow cytometry results of 4 independent 
transfections. The same transfection experiment is connected by the dotted line. 
Two-way ANOVA was applied for the statistical analysis. 
B. Infectivity of HIV-1 IIIB virions produced by 221-CD4-C*06 (Stable variant) and 

221-CD4-C*07 (Unstable variant) cells. Four different p24 concentrations were used to 

infect TZM-bl target cells in triplicate cultures (standard deviations are reported). X axis: 
p24 pg/well; Y-axis: virions infectivity expressed as OD/min. Red: virions produced in 
721.221-CD4-C*07 cells; blue: virions produced in 721.221-CD4-C*06 cells. Adapted 
from: (Parolini, Biswas et al. 2017). 

 

 

HLA-C alleles differences in binding stability and expression levels 

 

It could be speculated that the outcome of HIV-1 infection might depend not only 

on the amount of HLA-C expressed on the cell surface, but also on its stability as 

trimeric complex. According to this model, subjects with low expressed HLA-C 

alleles and unstable binding to β2m/peptide present less immunocompetent 

HLA-C heterotrimeric complexes, and more HLA-C free chains available for the 

interaction with HIV-1 Env. They might thus have a worse immunologic control 

of HIV-1 infection, as well as an intrinsically lower ability to counteract viral 

replication. On the contrary, individuals with highly expressed HLA-C alleles and 

stable binding stability of HLA-C/β2m/peptide present a higher proportion of 

HLA-C immunocompetent heterotrimeric complexes and less HLA-C free chains. 



Results 

 

72 

 

Therefore, these subjects are expected to have a better immunologic control of 

HIV-1 infection and produce a less infectious virus (Figure 34). 

 

 
Figure 34. Expression and stability of HLA-C alleles on the cell membrane. DT9 

mAb (light blue) recognizes HLA-C/2m/peptide complexes, while L31 mAb (red) 
recognizes HLA-C free chains. PBMC of subjects harboring Stable HLA-C alleles express 
proportionally more heterotrimers and less free chains on the cell membrane (left), while 
PBMC of subjects with Unstable HLA-C alleles express proportionally less heterotrimers 
and more HLA-C free chains. 

 

 

Role of exogenous β2m on HIV-1 infectivity 

 

 

To test if HIV-1 Env originates HLA-C free chains because the virus needs the 

β2m to modulate its infectivity, different concentrations of soluble β2m, during the 

TZM-bl infectivity assay were tested. 

Exogenous soluble β2m did not influence the HIV-1 QHO-Env pseudotyped 

virions infectivity, at the two used dilutions (Figure 35A, QHO 1:250, p = 0.2119; 

QHO 1:500, p = 0.0534). This result suggests that soluble β2m is not able to 

interfere with the infectivity of HIV-1 virions lacking the β2m on their surface. 

Probably β2m lacking virions could not take it from the medium.  

Finally, the effect of β2m on HIV-1 infectivity was assessed testing if the presence 

of an anti β2m antibody during virions production affects infectivity, hampering or 

favoring the β2m release from virions. HIV-1 Env pseudotyped viruses were 
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produced in the presence of the  anti-β2m antibody (BBM1) and in the presence of 

an unrelated antibody. Virions produced in the absence of any antibodies were 

used as control (Figure 35B). No significant differences were observed, neither 

with the BBM1 antibody (p = 0.5952) nor with the unrelated anti PTPRG 

antibody (p = 0.9606). This result suggests that the HIV-1 virions exploit the 

HLA-C free chains to increase their infectivity, and not the β2m.  

 

 
Figure 35. Infectivity assay on TZM-bl cells of HIV-1 pseudoviruses. 
A. HIV-1 pseudoviruses negative for β2m were used to infect TZM-bl target cells in the 
presence of different β2m concentrations. Two dilutions of pseudoviruses produced in 
HEK-293T β2m negative cells (solid line 1:250, dashed line 1:500) were used to infect 
TZM-bl target cells in the presence of different concentrations of β2m (from 0 µg/ml to 3 
µg/ml). Y-axis: infectivity expressed as Relative Luminescence Units (RLU). X-axis: β2m 
concentrations. The experiment was performed in triplicate, the error bars represent 
standard deviations. Two-way ANOVA was used to ascertain statistical significant 
differences. 
B. HIV-1 Pseudoviruses expressing β2m were produced in the presence of the BBM1, 
anti β2m, antibody (solid red line). As controls pseudoviruses were produced in the 
absence of any antibody (dashed black line) and in the presence of an unrelated 
antibody, PTPRG (solid black line). Y-axis: infectivity, expressed as Relative 
Luminescence Units (RLU). X-axis: viral dilutions. The experiment was performed in 
triplicate, the error bars represent standard deviations. Three-way ANOVA was used to 
ascertain statistical significant differences.  
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Time course analysis of HLA-C/ β2m/peptide dissociation rate  

 

To test the strength of the HLA-C/β2m/peptide stability, A3.01 cells were treated 

with acid wash for different times and then surface labelled with the L31 mAb. 

After cytofluorimetric analyses, L31 fluorescence fold changes were calculated. 

The maximum β2m detachment occurred after 2 minutes of acid wash (Figure 36). 

At later times a remarkable L31 reactivity decrease was observed, probably due to 

HLA-C free chains disruption. Further experiments will be performed focusing in 

the range 0-2 minutes of acid wash treatment. 

 

 
Figure 36. HLA-C/β2m/peptide binding stability in A3.01 cells. A3.01 cells treated with 
acid wash for different times were surface stained with the L31 antibody and analysed at 
cytofluorimeter. Graph represents the L31 fluorescence fold changes at different times.



Discussion 

 

75 

 

Discussion 

 

It is known that HIV-1 virions incorporate several host cell proteins during the 

budding process, among which HLA-C (Esser, Bess et al. 2001). Several studies 

reported the interaction between HIV-1 Env and HLA-C and it is known that 

HLA-C expression levels contribute to the control of HIV-1 infection. High 

HLA-C expression levels have been associated with a better lymphocyte 

activation and a slow progression towards AIDS (Apps, Qi et al. 2013), while low 

HLA-C expression levels have been related to a rapid progression to the disease. 

HLA-C molecules have been found associated with Env on the viral envelope and 

in the absence of HLA-C both fusion efficiency and viral infectivity are reduced 

(Cosma, Blanc et al. 1999, Matucci, Rossolillo et al. 2008, Baroni, Matucci et al. 

2010). In this work, a significant up regulation of surface-HLA-C free chains (L31 

antibody reactivity) (Setini, Beretta et al. 1996) was observed in HIV-1 infected 

TNF alfa stimulated cells (ACH-2 cells). The same HLA-C free chains surface 

increase was not detected in the corresponding stimulated uninfected parental cell 

line (A3.01 cells). Noteworthy, no difference in HLA-C heterotrimers surface 

expression (DT9 antibody reactivity) (Braud, Allan et al. 1998) between the 

HIV-1 infected and uninfected cells was observed, suggesting that HIV-1 

reactivation selectively induces HLA-C free chains appearance at the cell 

membrane. Moreover, a time course experiment revealed that the HLA-C free 

chains expression at the cell surface correlated with the expression of HIV-1 Env: 

they both decrease upon 48 and 72 hours of TNF-α stimulation. Interestingly, no 

differences in the cell membrane expression of total HLA-C molecules, HLA-C 

heterotrimers, MHC-I or β2m were observed at any time, suggesting that HIV-1 

selectively raises the amount of surface expressed HLA-C free chains. The same 

phenomenon was observed in another cellular model (PM1 cells), where HIV-1 

reactivation induced by TNF-α stimulation correlated with the increase of HLA-C 

free chains at the cell surface. Moreover, HEK-293T cells transfected with a 

HIV-1 Env (QHO isolate) expressing plasmid presented a higher HLA-C free 

chains surface expression than HEK-293T cells transfected with the
 
Env defective 
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full length HIV-1 genome plasmid (pSG3
Δenv

), indicating that the presence of the 

Env protein could induce the appearance of HLA-C free chains at the cell 

membrane.  

HIV-1 infection does not directly induce the HLA-C increase, neither at the 

expression level nor by modulating its membrane translocation. Thus, it is likely 

that the presence of HIV-1 Env facilitates the dissociation of β2m from HLA-C, 

generating HLA-C free chains. β2m plays a crucial role in the HLA-C 

translocation at the cell surface. None of the HIV-1 tested proteins are able to 

restore the HLA-C surface expression in the absence of β2m. HLA-C needs the 

β2m light chain to reach the plasma membrane, and once there, HLA-C could 

dissociate from β2m in the presence of HIV-1 Env protein. Experiment conducted 

using the BiFC technique (Serena, Parolini et al. 2017), revealed a very close 

association between Env and HLA-C free chains at the cell membrane. The HIV-1 

Env/HLA-C free chain association was confirmed both by proteins purification on 

GN lectin column and by co-immunoprecipitation of membrane protein 

complexes, on HeLa-Lai cells.  

HLA-C molecules are characterized by an inefficient assembly with the peptide, 

which in turn leads to the accumulation in the endoplasmic reticulum of both 

β2m-associated and β2m-free folding intermediates (Sibilio, Martayan et al. 2008). 

This could explain why HLA-C expression level is lower compared to those of 

HLA-A and -B. It is known that MHC-I free chains, due to their long half-life, can 

cis-associate both with themselves and with other membrane receptors, such as 

CD3, CD8αβ, CD25, Ly49A and IL-15Rα (Tremblay, Fortin et al. 1998, Esser, 

Bess et al. 2001, Arosa, Santos et al. 2007, Ott 2008). Thus, it is likely that 

HLA-C free chains might be able to associate with Env. Since β2m is essential for 

the proper assembly of MHC-I molecules and their translocation to the cell 

membrane, the role of β2m in HIV-1 infectivity was explored. In particular, an 

infectivity assay on TZM-bl target cells was performed, revealing that the 

infectivity of HIV-1 pseudoviruses produced in β2m negative HEK-293T cells 

was roughly 3 times lower than the infectivity of pseudoviruses produced in the 

β2m positive HEK-293T cells. A similar 3-fold reduction in HIV-1 infectivity was 

also observed by Cosma et al. in the absence of HLA-C (Cosma, Blanc et al. 
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1999). This data is supported by previous experiments showing that silencing of 

HLA-C expression negatively affects HIV-1 infectivity (Matucci, Rossolillo et al. 

2008). This result further confirms the HLA-C involvement in modulating HIV-1 

infectivity (Matucci, Rossolillo et al. 2008).  

However, since 2m knockout in HEK-293T cells also suppresses the expression 

of other classical and non-classical HLA-Class I molecules, the observed 

reduction in viral infectivity could not be exclusively due to the absence of 

HLA-C on the cell surface. In addition, virions lacking β2m on their surface did 

not recover their infectivity in the presence of soluble exogenous β2m, suggesting 

that HIV-1 Env does not require β2m to modulate viral infectivity.  

HIV-1 Env binds the HLA-C in its free chains conformation and the release of 

β2m might be a side effect. It is not yet clear if HIV-1 Env is able to actively 

induce the HLA-C heterotrimer dissociation displacing the β2m, or if β2m 

spontaneously dissociate from the heterotrimer generating HLA-C free chains 

available for the interaction with HIV-1 Env. Overall, the reported results, 

together with other previously published data (Cosma, Blanc et al. 1999, Matucci, 

Rossolillo et al. 2008, Baroni, Matucci et al. 2010), demonstrate that HLA-C 

interacts with HIV-1 Env and in particular that the increased infectivity conferred 

to the virus by HLA-C is due to HLA-C free chains. HLA-C may increase HIV-1 

infectivity in different ways: HLA-C could assist the virion assembly, or it could 

stabilize the Env proteins through a cis-interaction, reducing the shedding of viral 

glycoproteins from the cell surface and/or from the viral particle. Moreover, it is 

known that HLA-C reduces HIV-1 virions susceptibility to neutralizing antibodies 

(Cosma, Blanc et al. 1999).  

Once discovered that HLA-C free chains are crucial in influencing HIV-1 

infectivity, it was investigated on PBMC from healthy donors if different HLA-C 

variants present different binding stability to β2m/peptide and whether the relative 

proportions of HLA-C free chains and HLA-C heterotrimeric complexes could be 

involved in modulating HIV-1 infectivity. In order to address this aspect, it was 

necessary to set a boundary between the groups. As in many biological 

phenomena, there is no “black” and “white”, but different degrees of stability may 

be expected.  Thus, different HLA-C alleles were classified in two different 
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groups (Stable/Unstable), depending on the bond stability between HLA-C and 

β2m/peptide according to Sibilio et al (Sibilio, Martayan et al. 2008). The working 

hypothesis predicts a lower proportion of HLA-C free chains on PBMC isolated 

from donors with Stable HLA-C alleles compared to PBMC obtained from 

individuals with Unstable HLA-C variants.  

In the present work HLA-C expression on PBMC surface was evaluated using two 

different antibodies specific for the HLA-C β2m-free and β2m-associated (both 

constitutive and after β2m/peptide removal) to avoid the underestimation of the 

real amounts of HLA-C molecules exposed on the cell surface (Serena, Parolini et 

al. 2017), as reported in previous studies (Corrah, Goonetilleke et al. 2011, Apps, 

Qi et al. 2013) evaluating only the HLA-C heterotrimeric complexes expression. 

The strength of this study, although performed on a small population, derives 

from the stringent selection carried out, which includes only donors having both 

HLA-C alleles belonging to the Unstable or Stable group and excludes any 

HLA-B allotypes cross-reactive with the L31 and DT9 used mAbs. At the same 

time, the selection exemplifies an extreme situation to validate the testing 

hypothesis. Certainly, in a general population, a continuous range of susceptibility 

degrees to HIV-1 infection is expected.  

Both HLA-C heterotrimeric complexes (DT9 reactivity) and HLA-C free chains 

(L31 reactivity) showed comparable levels in the Stable and Unstable considered 

group, indicating that the total amount of HLA-C expressed at the cell surface, 

although highly variable, is comparable in the two groups. Differences previously 

reported (Apps, Qi et al. 2013) were not observed. This is probably due to the 

necessary exclusion of subjects carrying L31 and DT9 cross-reactive HLA-B 

alleles. Moreover, the different classification between Unstable and Stable 

HLA-C alleles, could explain why differences previously reported by others were 

not observed. The same cytofluorimetric analyses was carried out upon acid wash 

treatment. It is, however, worth pointing out that after acid wash the DT9 and L31 

reactivities have undergone significant decrease and increase, respectively. 

Noteworthy, after acid wash treatment, a slightly higher L31 and DT9 reactivities 

were observed in the presence of Stable HLA-C alleles, suggesting that, although 

the global amount of HLA-C present at the steady state on the cell surface was 
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similar in the two groups, differences do exist in the proportion of the HLA-C 

heterotrimeric complexes and HLA-C free chains.  

Moreover, the relative amount of HLA-C β2m-free and β2m-associated was 

evaluated by calculating the L31 fluorescence fold change, which reflects the 

HLA-C/β2m/peptide binding stability. Hence, this value was significantly higher 

in the presence of HLA-C Stable compared to Unstable variants. The same result 

was confirmed in the 721.221-CD4 cellular model, where HLA-C*06 or 

HLA-C*07 substitute the deletion of the MHC-I locus. HLA-C*07 (an Unstable 

HLA-C allele) expressing cells presented a lower L31 fold change compared to 

HLA-C*06 (a Stable HLA-C allele) expressing ones. This observation supports 

previous data, and in addition excludes any other genetic or immunological 

factors, which may interfere in the experiments performed on PBMC. No 

significant differences were observed in the DT9 fluorescence fold change 

The significant difference in the L31 fluorescence fold change confirms the 

working hypothesis: which is that Stable and Unstable allotypes present a stronger 

and a weaker stability as trimeric complexes, respectively. Hence, it is possible to 

define as “Unstable” the HLA-C variants *01, *03, *04, *07 and possibly *14, 

and “Stable” the HLA-C variants *02, *05, *06, *08, *12, *15 and *16. Thus, the 

HLA-C expression level on the cell surface is the result of the combination of two 

distinct important phenomena: the level of the HLA-C expression and the 

peptide-affinity and stability of the HLA-C/β2m/peptide heterotrimeric complexes. 

Adding complexity, the expression level depends both on HLA-C mRNA 

regulation mediated by miRNA 148a (Thomas, Apps et al. 2009, Apps, Qi et al. 

2013) and by the SNP rs2395471 in the HLA-C promoter region (Vince, Li et al. 

2016).   

It is important to underline that for some HLA-C variants an overlapping between 

expression level and heterotrimeric stability does exist. Some low expressed 

HLA-C variants (Apps, Qi et al. 2013, Vince, Li et al. 2016) such as HLA-C*03 

and *07, also have the highest dissociation rate according to Sibilio et al. (Sibilio, 

Martayan et al. 2008), while some Stable HLA-C variants such as C*02, *06, *12 

and *16 are also expressed at high levels. As a consequence, the total HLA-C 
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amount evaluated by western blot, was significantly higher in the Stable group 

compared to the Unstable one. 

On the contrary, this correspondence is not true for HLA-C*01 and *04 alleles, 

which was defined as highly expressed by Vince et al. (Vince, Li et al. 2016), but 

was reported to have a lower binding stability to β2m/peptide according to Sibilio 

et al. (Sibilio, Martayan et al. 2008). No HLA-C mRNA expression for these 

alleles was reported by Vince et al., while other groups (Corrah, Goonetilleke et 

al. 2011, Gentle, Paximadis et al. 2013, Bettens, Buhler et al. 2016) did not show 

any particular increase in their mRNA expression level. Moreover, HLA-C*01 

and *04 were reported to have a high surface reactivity to mAb DT9 (Apps, Qi et 

al. 2013), but since they also present a weak bond to β2m/peptide, it could be 

possible that the DT9 staining underestimates the real amounts of HLA-C 

molecules expressed on the cell surface, making the HLA-C surface expression 

the result of many variables and factors. Thus, the expression of HLA-C 

heterotrimeric complexes on the cell surface depends on the synergy of several 

factors such as mRNA levels, post-translational regulation, transport and stability 

of HLA-C alleles. 

Once ascertain that HLA-C could be present in two different conformations on the 

cell surface, it was tested if the proportion of HLA-C heterotrimers and HLA-C 

free chains might be important in modulating HIV-1 infection. Results obtained 

from this work showed that HIV-1 is able to specifically increase the amount of 

HLA-C free chains in chronically or acutely infected cell lines (Serena, Parolini et 

al. 2017). Thus, was tested if the infectivity of HIV-1 virions is affected by 

HLA-C stability. Indeed, the infectivity of HIV-1 BaL R5-tropic virions produced 

in PBMC of donors having Stable HLA-C alleles was significantly lower than the 

infectivity of virions produced by PBMC of individuals bearing Unstable HLA-C 

alleles. According to this finding, virions budding from PBMC carrying Stable 

HLA-C alleles could be less infectious because a lower proportion of HLA-C free 

chains would be available to interact with HIV-1 Env (Serena, Parolini et al. 

2017), reflecting a reduced infectivity as well as a higher susceptibility to 

neutralizing antibodies (Cosma, Blanc et al. 1999). On the contrary, HIV-1 IIIB 

X4-tropic virions appeared to be less dependent on the presence of different 
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HLA-C alleles, but HIV-1 IIIB virions produced by 721.221-CD4-C*06 were less 

infectious than those propagated in 721.221-CD4-C*07 cells.  

This experiment performed on the same cellular background is noteworthy and 

confirms the working hypothesis on HIV-1 infectivity and HLA-C stability. The 

fact that HIV-1 IIIB virions produced by PBMC with Unstable HLA-C alleles 

were not significantly more infectious than those produced by PBMC with Stable 

alleles may depend on several variables that occur in PBMC among donors.  

Moreover, the R5-tropic variants, which presented a lower infectivity in the 

presence of Stable HLA-C alleles, are also those that predominate in the first 

asymptomatic period of infection (Grivel, Shattock et al. 2011), that is precisely 

the phase for which was reported a correlation between HLA-C alleles and 

differences of viral load (Fellay, Ge et al. 2009). 

In a previous study (Matucci, Rossolillo et al. 2008) it was reported that the 

infectivity of the CXCR4-tropic isolates, J500 and NDK, was not influenced by 

HLA-C absence, indicating a reduced effect of HLA-C on these X4-tropic 

isolates. It could be possible that the effect of Unstable HLA-C variants on the 

X4-tropic isolates infectivity could be overshadowed by other factors in the 

PBMC model, while it is apparent in the 721.221-CD4 cellular model, in which 

the only difference is due to the expression of the Stable (C*06) or Unstable 

(C*07) HLA-C variant. 

The relationship between HIV-1 and HLA-C is a complex interaction, since 

HIV-1 needs the expression of HLA-C on the cell surface to increase its 

infectivity (Matucci, Rossolillo et al. 2008, Baroni, Matucci et al. 2010, Zipeto 

and Beretta 2012), but at the same time, HLA-C can stimulate an appropriate CTL 

immune response against the virus and thus induce a better infection control 

(Ward, Bonaparte et al. 2004, Apps, Qi et al. 2013). The demonstration, in vitro, 

that HLA-C variants can differently affect HIV-1 infectivity indicates that the 

availability of HLA-C free chains is important in modulating viral infectivity 

without any influence by the host immune system. Indeed, the interaction and 

combination between different stability as surface trimers, different HLA-C 

expression levels and of many other host genetic variants can influence the viral 

set point and the outcome of the infection. 
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This study, highlighting an important role for different HLA-C conformations in 

modulating HIV-1 infectivity, explains the apparent contradiction resulted by the 

previous observations suggesting a controversial role of HLA-C in HIV-1 

infection. Indeed, both a protective role of HLA-C against HIV-1 infection, and a 

role for HLA-C virions incorporation in increasing viral infectivity, were reported. 

It is possible that the alternative conformations of HLA-C, resulted from the 

different stability as heterotrimers, could directly affect the balance between 

protection and susceptibility outcome. It is likely that individuals with Unstable 

HLA-C allotypes (C*01, *03, *04, *07, *14) are characterized by a larger pool of 

HLA-C free chains on the cell surface, which in turn can bind HIV-1 Env and 

increase viral infectivity. On the contrary, subjects with Stable HLA-C allotypes 

(C*02, *05, *06, *08, *12, *15, *16) are characterized by a higher proportion of 

HLA-C heterotrimers on the cell surface, which can properly stimulate cellular 

immunity, and at the same time can present fewer HLA-C free chains available 

for the interaction with HIV-1 Env.  

Of course, variants of other HLA molecules play a crucial role in HIV-infection, 

but since HLA-A and –B are known to strongly bind β2m/peptide, most likely 

they may influence HIV-1 infection outcome by improving the immune response 

rather than through a direct association with HIV-1 Env. Anyway, HLA-B*46, for 

instance, which has been reported to be related with increased susceptibility to 

HIV-1 infection (Triantafilou, Triantafilou et al. 1999) displays a less stable bond 

with β2m/peptide according to Sibilio et al. (Sibilio, Martayan et al. 2008). In the 

present study, subjects having HLA-B*46 were excluded due to the cross-

reactivity with the L31 mAb. 

In conclusion, the results of the present study indicate that the stability of HLA-C 

complexes and HLA-C expression levels are important in modulating HIV-1 

infectivity. The combination of these two both equally important phenomena, can 

help in the prediction of the infection and disease progression.  

Moreover, expression levels alone do not explain why HIV-1 exploits HLA-C on 

the cell surface to be more infectious (Cosma, Blanc et al. 1999, Matucci, 

Rossolillo et al. 2008, Baroni, Matucci et al. 2010, Serena, Parolini et al. 2017) 

and do not explain why in HIV-1 positive patients higher β2m serum and 
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cerebrospinal fluid concentrations were observed (Folks, Benn et al. 1985, 

Schwartz, Alizon et al. 1994, Platt, Wehrly et al. 1998, Bremnaes 2009). 

According to these novel findings subjects with Unstable HLA-C variants may 

lose β2m, determining its accumulation.  

HLA-C variants which can more easily dissociate from β2m/peptide, will probably 

show a higher proportion of free chains available for the HIV-1 Env interaction 

and, at the same time, they probably present a relevant release of β2m, which in 

turn contributes to inflammatory states. It could be interesting to investigate if 

HIV-1 Env protein helps the spontaneous decay of HLA-C heterotrimeric 

complexes, as previously reported for CMV (Grundy, McKeating et al. 1987), 

originating more HLA-C free chains available for the interaction with Env. 

Indeed, studies published in the early years of HIV-1 pandemic, described that 

patients with HIV-1 dementia had a higher concentration of β2m in cerebrospinal 

fluid (McArthur, Nance-Sproson et al. 1992), that AIDS-Related-Complex (ADC) 

patients had higher levels of β2m in serum (Lacey, Forbes et al. 1987) and that 

these levels raise during HIV-1 infection progression (Sonnerborg, von Stedingk 

et al. 1989, Hofmann, Wang et al. 1990). The results of the present study start to 

shed some light on these never entirely clarified observations: subjects with 

Unstable HLA-C alleles might lose β2m more easily, leading to its accumulation 

in the cerebrospinal fluid and in serum. The exact role of β2m in 

neurodegeneration is not yet well well-defined, but it is known that β2m can form 

fibrils (Yamaguchi, Hasegawa et al. 2001, Yamamoto, Hasegawa et al. 2005) and 

become neurotoxic (Giorgetti, Raimondi et al. 2009, Smith, He et al. 2015). 

Furthermore, β2m has been detected not only on HIV-1 virions (Capobianchi, Fais 

et al. 1994), but also on HTLV-I (Timar, Nagy et al. 1987), echo viruses (Ward, 

Bonaparte et al. 2004) and coxsackievirus (Triantafilou, Triantafilou et al. 2000) 

viral particles. The presence of β2m on these viruses confers protection from 

neutralizing antibodies, and modulates their infectivity. Noteworthy, β2m bound to 

HIV-1 virions is recognized by a specific antibody, which is able to neutralize 

different HIV-1 isolates but does not bind to β2m expressed on the cell surface; 

hence, this epitope, called R7V, is exposed only when β2m is bound to HIV-1 

particles (Bremnaes 2009). A natural continuum of the present work is the study 
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aimed to evaluate the frequencies of Stable/Unstable HLA-C alleles in patients 

affected by Alzheimer’s Disease or AIDS Dementia Complex. A higher 

prevalence of Unstable HLA-C alleles in patients population compared to a 

control population would be expected, since these Unstable alleles more easily 

lose the β2m, leading to the development of neurodegenerative processes. 

As future perspectives, it could be of interest to test a wider panel of HIV-1 

isolates, to validate the results obtained with BaL and IIIB on PBMC. The limited 

availability of sample material from PBMC donors restricted the experiments that 

could be performed. Moreover, future studies could be aimed to investigate 

whether HIV-1 infection affects levels and distribution of HLA-C 

heterotrimers/free chains in PBMC, and in CD4
+
 HIV-1 infected T cells, in 

relation to SNP rs2395471 and rs67384697.  

Besides it could be of interest to deeply investigate the dissociation rate of the 

HLA-C/β2m /peptide complex in the presence of different HLA-C variants. For 

instance homozygous donors for HLA-C alleles could be analysed by time course 

analysis for their PBMC heterotrimeric complexes stability upon increasing time 

of acid wash treatment. Preliminary unpublished experiments conducted on A3.01 

cells (expressing *03 and *07 unstable HLA-C alleles) revealed, that the 

maximum dissociation occurs after 2 minutes of acid treatment, and that longer 

treatment completely destroy the entire complex, breaking down L31 mAb 

reactivity. 

This study, investigated the complicated relationship between HLA-C and HIV-1, 

focusing on the different HLA-C conformations and their ability to modulate viral 

infectivity interacting with HIV-1 Env protein. The understanding of this 

interaction can assist in the design of new therapeutic strategies, such as 

therapeutic monoclonal antibodies and derivatives, binding the regions of 

interaction between HIV-1 Env and HLA-C, aimed at controlling HIV-1 infection, 

as well as to understand the role of HLA-C and β2m in neuro-inflammatory 

diseases. 
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Materials and Methods 

 
Buffer and solutions 

 

Laemmli buffer    50 mM Tris (Sigma-Aldrich) - HCl pH=6.8 

               6% v/v glycerol  (Euroclone) 

               3% v/v β-mercaptoethanol  (Sigma-Aldrich) 

               1% w/v SDS  (Sigma-Aldrich) 

0.001% w/v bromophenol blue (Sigma-

Aldrich) 

 

Non-denaturing lysis buffer            150 mM NaCl (Sigma-Aldrich) 

                        1% v/v Triton X-100 (Sigma-Aldrich) 

                                              Protease inhibitor cocktail tablets (Roche) 

 

RIPA buffer                                      50 mM Tris (Sigma-Aldrich) - HCl pH=7.4 

                        150 mM NaCl (Sigma-Aldrich) 

                        2 mM EDTA (Sigma-Aldrich) 

                         1 mM PMSF (Thermo Fisher Scientific) 

                                              1% v/v Triton X-100 (Sigma-Aldrich) 

1% v/v Sodium deoxy cholate (Sigma-

Aldrich) 

               Protease inhibitors cocktail tablets (Roche) 
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Lysis Buffer for G-lectin column     2.5 mM HEPES 

                        145 mM NaCl 

                                1% Triton 

                                                          0.1 mM PMSF 

 

Dialysis buffer             2.5 mM HEPES 

                                                          145 mM NaCl pH 7.4 

                     0.1% Triton 

 

Running buffer             25 mM Tris (Sigma-Aldrich) 

                        192 mM Glycin (Euroclone) 

                    0.1 % w/v SDS (Sigma-Aldrich) 

 

Running gel (8% - 10% - 15%)        8% -10% - 15% v/v acrylamide (Euroclone) 

                       375 mM Tris (Sigma-Aldrich) - pH 8.8 

               0.1% w/v SDS (Sigma-Aldrich) 

               0.1% w/v APS (Sigma-Aldrich) 

               0.06 v/v Temed (Thermo Fisher Scientific) 

 

Stacking gel (5%)    125 mM Tris (Sigma-Aldrich) - pH= 6.8 

                                                            0.1% w/v SDS (Sigma-Aldrich) 

                    0.1% w/v APS (Sigma-Aldrich) 
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              0.1% v/v Temed (Thermo Fisher Scientific) 

 

TBS-T               150 mM NaCl (Sigma-Aldrich) 

                       20 mM Tris (Sigma-Aldrich) 

                           0.05% v/v Tween-20 (Sigma-Aldrich) 

 

Transfer buffer pH=7.6                     25mM Tris (Sigma-Aldrich) 

                          192 mM Glycin (Euroclone) 

                    0.1 % w/v SDS (Sigma-Aldrich) 

                20% v/v methanol (Sigma-Aldrich) 

 

Acid Wash/Strip solution (pH=2.5)  RPMI-1640 medium (Euroclone) 

                drops of HCl 37% (to adjust pH) 

 

RBCLB Lysis Buffer             0.15 M NH4Cl, 

                        10 mM KHCO3 

                         0.1 mM EDTA  
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Cell lines 

 

Human embryonic kidney (HEK-293T), HeLa and Chinese hamster ovary (CHO) 

cells were obtained from the American Type Culture Collection (ATCC).  

HeLa-Lai cells were kindly donated by Dr. Uriel Hazan, Institut Cochin, Paris, 

France. These cells were obtained by transfection of a HIV-1 provirus in which 

gag and pol genes were deleted, while nef was replaced by the dhfr drug 

resistance (Schwartz, Alizon et al. 1994).  

TZM-bl cells were provided by the EU Programme EVA Centre for AIDS 

Reagents, NIBSC (ARP5011) (Platt, Wehrly et al. 1998). A3.01 is a CD4
+
 

T-lymphoma cell line, from which is derived the ACH-2 cell line by HIV-1 IIIB 

latent infection (Folks, Benn et al. 1985). The viral reactivation in ACH-2 cells 

could be obtained by TNF-α stimulation (Poli, Kinter et al. 1990, Biswas, Smith et 

al. 1995). 

PM1 (from Dr. P. Lusso, AIDS Research and Reference Program, Division of 

AIDS, NIAID, NIH, USA) is a cellular line derived from the human T 

lymphocytic HUT 78 cell line. PM1-IIIB are the HIV-1 IIIB chronically-infected 

counterpart.  

721.221-CD4 cells, provided by Prof. A. Siccardi (DIBIT-HSR, Milano, Italy) 

derive from B-lymphoblastoid cells not expressing HLA-A, HLA-B, or HLA-C 

due to the disruption of the HLA genetic locus (Shimizu, Geraghty et al. 1988).  

HeLa, HeLa-Lai, HEK-293T, TZM-bl and CHO cell lines were cultured in 

Dulbecco’s modified Eagle’s medium (DMEM), high glucose (Euroclone), while 

A3.01, ACH-2, PM1 and 721.221-CD4 cell lines were cultured in Roswell Park 

Memorial Institute (RPMI) 1640 medium (Euroclone) (Li, Gao et al. 2005). Both 

the media were supplemented with 10% Fetal Bovine Serum (FBS), 2mM 

L-Glutamine (Lonza), 100 U Penicillin/ml and 100 U Streptomycin/ml (Lonza). 

All cell lines were grown at 37°C in a humidified atmosphere with 5% CO2 and 

were routinely tested for the absence of mycoplasma contaminations. 
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Vectors 

 

Plasmids encoding for HIV-1 Env, R5 strain pRHPA (ARP2061, Dr. B. H. Hahn 

and Dr. J. F. Salazar-Gonzalez) (Li, Gao et al. 2005) and R5 strain QHO 

(ARP2043, Dr. D. Montefiori and Dr. F. Gao) (Li, Gao et al. 2005) were provided 

by the EU Programme EVA Centre for AIDS Reagents, NIBSC (Courtesy of NIH 

AIDS Research and Reference Reagent Programme), as well as the pCV1 

plasmid, encoding for HIV-1 Tat (ARP2004, Dr. F. Wong-Staal) (Arya, Guo et al. 

1985). The pSG3
Δenv

 backbone plasmid (catalogue number 11051, Dr. J. C. 

Kappes and Dr. X. Wu) (Wei, Decker et al. 2002), the plasmids encoding HIV-1 

Vif (pcDNA-HVif, catalogue number 10077, Dr. S. Bour and Dr. K. Strebel) 

(Nguyen, llano et al. 2004) and the HIV-1 Gag (catalogue number 11468, Dr. M. 

D. Resh and G. Pavlakis) (Schwartz, Alizon et al. 1994) were obtained from the 

NIH AIDS Research and Reference Reagent Program. Plasmids encoding Nef and 

Vpu were kindly donated by Dr. M. Pizzato (CIBIO, Trento, Italy) (Pizzato, 

Helander et al. 2007). Finally, the plasmids expressing VSV-G protein 

(pCMV-VSV-G) and the human β2m-microglobulin (pBJ1-human β2m) were 

purchased from Addgene, as well as the pSpCas9(BB)-2A-Puro (PX459) V2.0 

vector. The plasmid pCR-Blunt II-TOPO encoding the β2m gRNA (crB2M_13) 

was provided by Dr. C.A. Cowan (Harvard University, MA USA) (Mandal, 

Ferreira et al. 2014). 

 

 

Antibodies 

 

The W6/32 antibody (Parham, Barnstable et al. 1979) and the ascitic fluid 

NAMB-1 anti-β2m (Pellegrino, Ng et al. 1982) were kind gifts from Dr. P. 

Giacomini (Regina Elena Hospital, Rome, Italy). 

Both the phycoerythrin-conjugated goat anti-mouse and the Alexa Fluor 488 

conjugated goat anti-human were purchased from Southern Biotech. 

The Alexa Fluor 488-conjugated goat anti-mouse was purchased from Cell 

Signalling.  

The allophycocyanin-conjugated goat anti-mouse was purchased from BioLegend. 
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All the previous antibodies were used in flow cytometry. 

The anti-flotillin-1 was kindly donated by Prof. S. Mariotto. 

The anti-β2m polyclonal rabbit Ab was provided by Abcam. 

The anti α/β tubulin rabbit Ab was purchased from Cell signaling.  

The anti-mouse IgG HRP Conjugated was purchased from Promega. 

The anti-rabbit IgG (Goat) HRP labeled was purchased from Perkin Elmer. 

All the previous antibodies were used in western blotting.  

The human 2G12 antibody (EVA3064, Dr. D Katinger), was provided by the EU 

Programme EVA Centre for AIDS Reagents, NIBSC. 

The mAb DT9, specific for the HLA-C/β2m/peptide heterotrimeric complex 

(Braud, Allan et al. 1998) was kindly donated by Angharad Fenton-May and 

Persephone Borrow (Nuffield Dept. of Clinical Medicine, University of Oxford, 

UK). 

The mAb L31 (specific for the α1-domain of HLA-C heavy chain, not bound to 

β2m) (Setini, Beretta et al. 1996) was kindly provided by Dr. P. Giacomini 

(Regina Elena Hospital, Rome, Italy). 

The previous antibodies were used both in flow cytometry and western blotting. 

The anti-β2m BBM1 antibody was purchased from Abcam, and the anti-PTPRG 

antibody was kindly donated by Dr. C. Sorio (University of Verona). The last two 

antibodies were used in the production of Env-pseudotyped viruses. 

 

 

Transfections  

 

HEK-293T, HeLa and HeLa-Lai cells were transfected with the TransIT-LT1 

transfection reagent (Mirus Bio), following manufacturer’s instructions. 

721.221-CD4 cells were transfected by nucleofection with the VCA-1003 kit 

(Lonza), using the X-001 program, according to Lonza Nucleofector’s instruction. 

The transfection efficiency for each cell line was evaluated using the pmaxGFP 

plasmid (3486 bp) provided by Lonza Nucleofector Kit V, and by analysing the 

GFP expression by cytofluorimetric analysis.  
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Development of 2m knockout cell lines using CRISPR/Cas9 system 

 

2x10
5
 HEK-293T, HeLa, and HeLa-Lai cells were co-transfected with 250 ng of 

pCR-Blunt II-TOPO β2m gRNA (Mandal, Ferreira et al. 2014) and 750 ng of 

pSpCas9 vectors. Antibiotic selection was carried out with 0.5 µg/ml of 

puromycin for 3 days. After puromycin selection CRISPR/Cas9-treated cells were 

expanded and tested for the 2m expression by flow cytometry, using the ascitic 

fluid NAMB antibody diluted 1:200 in 5% w/v BSA in PBS. The Alexa Fluor 488 

conjugated goat anti-human, diluted 1:200 in 5% w/v BSA in PBS was used as 

secondary antibody. 2m negative cells were then sorted using the FACSAria II 

cell sorter (BD Biosciences, San Josè, CA) provided by the Flow Cytometry and 

Cell Sorting Platform, Center of Applied Research on Cancer–Network 

(ARC-Net), University of Verona, directed by Dr. Maria Teresa Scupoli (LURM, 

University of Verona), with the collaboration of Dr. Chiara Cavallini (LURM, 

University of Verona). A second cell sorting with the W6/32 and APC-conjugated 

goat anti-mouse antibodies both diluted 1:200 in 5% w/v BSA in PBS was carried 

out, to achieve a pure 2m negative population.   

 

 

A3.01, ACH-2, PM1, HEK-293T and HeLa cells cytofluorimetric analyses  

 

HIV-1 infected cells were handled in the biosafety level 3 (BSL 3) Human 

Virology Laboratory, directed by Dr. Mauro Malnati, at San Raffaele Hospital, in 

the Division of Immunology, Transplantation and Infectious Diseases (Milan, 

Italy), with the collaboration of Dr. Francesca Sironi and Dr. Priscilla Biswas. 

A3.01, ACH-2 and PM1 cells were cultured either in the absence or in the 

presence of TNF-α (10 ng/ml) for the different indicated times. Cells were 

incubated for 30 minutes at 4°C with 2.5 µg/ml of DT9, 1 µg/ml of L31 and 

W6/32, 5 µg/ml of 2G12 and 1:200 dilution of ascitic fluid for NAMB-1. After 

PBS washes, all the cells were stained with the secondary antibodies: the 

phycoerythrin-conjugated anti-mouse and the Alexa Fluor 488 conjugated goat 

anti-human, diluted 1:200 in 5% w/v BSA in PBS. Cells were fixed with 1% 
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formaldehyde prior to acquisition with a Gallios flow cytometer (Beckman 

Coulter). Data were collected and analysed using the FlowJo software (TreeStar, 

San Carlos, CA). β2m negative HEK-293T cells (transfected with the different 

HIV-1 plasmids), as well as parental and β2m negative HeLa and HeLa-Lai cells, 

were stained with 1 µg/ml of L31 antibody for 30 minutes at 4°C and then were 

stained with the secondary antibody: Alexa Fluor 488-conjugated goat anti-

mouse, diluted 1:200 in 5% w/v BSA in PBS. Data were acquired with a 

FACSCanto flow cytometer (BD Bioscience) and analysed using the FlowJo 

software (TreeStar, San Carlos, CA). For HLA-C free chains analysis (L31 acid 

wash), cells were treated with RPMI-1640, 20% FBS, pH 2.5 for 3 minutes in ice 

to remove the β2m from the heterotrimeric complex before the analysis. 

 

 

G-lectin column purification 

 

Both HeLa and HeLa-Lai cells were surface-fixed with 1 mM DTSSP 

(ThermoScientific) according to manufacturer’s instructions. Cells were washed 

with PBS and re-suspended in lysis buffer. Nuclei were pelleted by centrifugation 

at 1000 xg for 3 minutes and the supernatants were passed over a snowdrop 

G-lectin column (Galanthus nivalis lectin, Sigma), after equilibration with dialysis 

buffer. Protein samples were collected in five elution fractions containing 

increasing concentrations (250 mM, 400 mM, 550 mM, 700 mM and 1 M, one 

column volume) of methyl α-D-mannopyranoside (Sigma). Each eluted fraction 

was concentrated using a 100 KDa Amicon Ultra Centrifugal Filter (Millipore). 

Proteins quantification was performed at spectrophotometer (Eppendorf) using 

Coomassie Plus Bradford Protein Assay Reagent (ThermoScientific). 25 μg of 

lysate, and not bound and 1/4 of the total volume of concentrated fractions were 

incubated for 10 minutes at 98°C in the presence of 3% β-Mercaptoethanol, to 

disrupt the DTSSP thiol links. All protein samples were separated by SDS-PAGE 

and analysed by western blot. 
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Co-immunoprecipitation assay 

 

HeLa and HeLa-Lai cells were labelled at the cell surface with 2G12, DT9, or anti 

β2m (Abcam) antibodies, for 45 minutes at 4°C. After PBS wash, cells were 

re-suspended in 0.5% NP-40 non-denaturing lysis buffer. Cellular nuclei were 

removed by centrifugation at 1000 xg for 3 minutes. Cell surface labelled proteins 

complexes were incubated at 4°C with Dynabeads
®

 protein G (Life Technologies) 

for 45 minutes. Beads were washed and re-suspended in elution buffer containing 

2% SDS and 40 mM DL-Dithiothreitol (DTT). After denaturation by boiling at 

98°C for 10 minutes, proteins were separated by SDS-PAGE and analysed by 

western blot. 

 

 

HeLa and HeLa-Lai western blotting analysis  

 

For the detection of HLA-C, flotillin-1 and α/β-tubulin, proteins were separated 

on a 10% acrylamide gel. For the detection of HIV-1 Env, proteins were separated 

on a 8% acrylamide gel. After the SDS-PAGE, proteins were transferred on a 

PVDF membrane.  Immunoblot analyses were performed using the 2G12 for 

HIV-1 Env detection and the mAb L31 for HLA-C detection (both diluted 1:200 

in 5% milk TBS-Tween 0.05%). The anti-flotillin-1 and the anti-α/β-tubulin 

(diluted 1:500 and 1:2000, respectively, in 5% milk TBS-Tween 0.05%) 

antibodies were used as controls. Then, cell membranes were incubated with the 

appropriate secondary antibodies: the HRP-conjugated anti-mouse or the 

anti-rabbit antibodies (both diluted 1:2000 in 5% milk TBS-Tween 0.05%). 

Finally, the signal was developed using the ECL Advance
TM

 Western Blotting 

Detection Kit (Amersham), through the AutoChemi System UVP (BioImaging 

System). 
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Production of Env-pseudotyped viruses and TZM-bl assay 

 

Pseudoviruses expressing the rev/env sequences of two different HIV-1 subtype-B 

strains (QHO and pRHPA) were produced (Li, Gao et al. 2005). 1x10
6
 HEK-293T 

β2m positive and negative cells were transfected with 1.5 μg of the Env plasmid 

DNA and 3 μg of the pSG3
Δenv

 backbone plasmid. 48 hours later, the medium was 

collected, cellular debris were eliminated by centrifugation and FBS was added to 

reach 20% final concentration. Pseudoviruses were titrated using the p24 ELISA 

kit (Aalto Bio Reagents Ltd, Dublin, Ireland) and the same amount of virus was 

used to infect 1x10
4
 TZM-bl target cells in the presence of 15 μg/ml 

DEAE-dextran (Li, Gao et al. 2005). After 48 hours from infection luminescence 

was measured using the Victor
TM

 3 luminometer (Perkin Elmer) and infectivity 

was expressed as RLU. The experiment was performed in quadruplicate. VSV-G 

plasmid was used as a control.  

 

 

Selection of PBMC donors 

 

The healthy blood donors involved in the study were registered at the IBMDR, 

afferent to UOC Transfusional Medicine, AOUI Verona, directed by Dr. Giorgio 

Gandini. All the donors were typed for HLA-A, HLA-B and HLA-C, by 

medium-high resolution molecular biology techniques. The donors recruitment 

and typing were planned by Dr. Valentina Muraro under the supervision of Dr. 

Elisabetta Guizzardi (UOC Transfusional Medicine, AOUI Verona, Italy).  

Donors were selected to harbor both HLA-C alleles belonged to the Stable 

(HLA-C*02:02, C*05:01, *C05:15, C*06:02, C*08:02, C*12:03, C*15, C*16:01, 

C*16:04) or Unstable (HLA-C*01, C*03:02, C*03:04, C*03:03, C*04:01, 

C*07:01, C*07:04) group. Since the two mAbs used, DT9 and L31, recognize 

some HLA-B alleles (Giacomini, Beretta et al. 1997, Sibilio, Martayan et al. 2008, 

Thomas, Apps et al. 2009, Kaur, Gras et al. 2017), subjects expressing DT9 

(B*13:01, *35:01, *40:06 and *73:01) and L31 (B*07, *08, *22, *35, *46, *51, 

*54 and *56) cross-reactive HLA-B allotypes were excluded. According to these 

criteria, approximately only about 10% of analysed donors were suitable for the 
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study. This study was approved by ethic Committee of the University of Verona 

on 14/10/2015 (ProgCE678CESC), and all the samples were collected after 

written informed consent was obtained. 

 

 

MHC class I typing 

 

Blood donors samples were collected in vacutainer tubes with EDTA as 

anticoagulant. Samples were centrifuged at 450 xg for 10 minutes RT, to obtain 

three fractions: plasma (upper layer), Buffy-Coat (middle-ring enriched of 

leucocytes and platelets) and erythrocytes (lower layer). Buffy-Coats were 

processed to extract the genomic DNA using the EZ1 Advanced XL, (Qiagen) and 

the obtained DNA was quantified using Spectrophotometer (Eppendorf). The 

amplification was performed by REVERSE PCR-SSO, Luminex technology, 

using specific primers for the second and the third exons of HLA-A, HLA-B or 

HLA-C. Protocol was provided by Lagitre. The data analysis was performed using 

HLA FUSION Software (One Lambda). 

 

 

PBMC purification 

 

PBMC from suitable donors, were isolated from Buffy-Coat using Ficoll-Paque 

PLUS (GE-Healthcare). Briefly, concentrated blood was diluted in PBS and 

stratified on ficoll. After centrifugation at 400 xg for 30 minutes, w/o 

break/acceleration, PBMC were collected from the ring at the interface between 

plasma and ficoll layer. After PBS wash, PBMC were treated with Red Blood Cell 

Lysis Buffer (RBCLB), and then incubated at 37°C for 4 minutes. After PBS 

wash, PBMC were counted and stored as aliquots in liquid nitrogen and 

subsequently used for flow cytometric and western blotting analyses, within two 

weeks, to ensure the reproducibility of the data.  Before using, the cells viability 

commonly exceeded 90% in each sample, as assessed by Tripan Blue dye 

exclusion. When enough PBMC were available, they were additionally used to 

test the HIV-1 infectivity. 
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PBMC cytofluorimetric analyses 

 

PBMC were surface-labelled with either 1 g/ml L31 or 2.5 g/l DT9 mAb for 

40 minutes at 4°C, with or without previous acid wash treatment. In order to reach 

the highest detachment of β2m and the need to maintain cell integrity and 

viability, a classical acid wash treatment was used: RPMI-1640, 20% FBS, pH 2.5 

for 3 minutes in ice (Luckey, Marto et al. 2001, Lorente, Garcia et al. 2011). After 

primary antibody incubation, cells were washed with PBS and surface-stained 

with APC conjugated goat anti-mouse antibody, diluted 1:200 in 5% w/v BSA in 

PBS. Thus, cells were washed and re-suspended in PBS and analysed with a 

FACSCanto flow cytometer, provided by Dr. Maria Teresa Scupoli, Head of the 

Flow Cytometry and Cell Sorting Platform, Center of Applied Research on 

Cancer-Network (ARC-Net), University of Verona (Verona, Italy). Dead cells and 

cellular debris were excluded based upon forward scatter (FSC) and side scatter 

(SSC) measurements, which confirmed a cell viability > 90% in each sample. 

Data were collected using the FACSDiva
TM

 software (BD Biosciences) and 

analyses were performed using the Kaluza software (Beckman Coulter). The 

results of L31 and DT9 mAbs were expressed as Relative Median Fluorescence 

Intensity (RMFI) calculated as reported below, using the MFI (Median 

Fluorescence Intensity) values: 

 

𝑅𝑀𝐹𝐼 =
𝑀𝐹𝐼 𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑀𝐹𝐼 𝑐𝑜𝑛𝑡𝑟𝑜𝑙

𝑀𝐹𝐼 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
 

 

The fold change was calculated as ratio between RMFI after and prior to acid 

wash for the L31 mAb, and prior to and after acid wash for the DT9 mAb. 
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PBMC western blotting analyses 

 

PBMC proteins were extracted using the RIPA Buffer and were quantified at 

spectrophotometer (Eppendorf) using Coomassie Plus Bradford Protein Assay 

Reagent (ThermoScientific). To evaluate the expression of HLA-C 6 g of PBMC 

proteins were treated with 3% β-mercaptoethanol and separated by SDS-PAGE on 

a 10% acrylamide gel. After proteins transfer on a PVDF membrane, western blot 

analyses were performed using L31 and anti α/β tubulin antibodies, diluted 

respectively 1:400 and 1:2000 in 5% milk TBS-Tween 0.05%. Anti-mouse IgG 

HRP (Promega) or anti-rabbit Ig goat conjugated HRP (Perkin Elmer) were used 

as secondary antibodies, both diluted 1:2000 in 5% milk TBS-Tween 0.05%. 6 g 

of HEK-293T and CHO protein extracts were loaded in each gel. The first was 

used as internal standard and the second one as negative control. To evaluate the 

expression of β2m were used 4 g of PBMC protein extracts. Prior to the 

separation by SDS-PAGE on a 15% acrylamide gel, proteins were treated with 

3% β-mercaptoethanol. After the transfer on PVDF membrane, western blot 

analyses were performed using anti β2m and anti α/β tubulin antibodies, diluted 

respectively 1:400 and 1:2000 in 5% milk TBS-Tween 0.05%. Anti-rabbit Ig goat 

conjugated HRP (Perkin Elmer) was used as secondary antibody. 12 g of 

HEK-293T β2m positive and negative proteins extracts were loaded in each gel. 

The first was used as internal standard and the second one as negative control. 

The signal was developed using the ECL Advance
TM

 Western Blotting Detection 

Kit (Amersham), through the AutoChemi System UVP (BioImaging System). The 

amount of HLA-C and β2m were quantified through densitometric analysis using 

ImageJ Software. The values of each sample were normalized on their α/β tubulin 

values, and on the value of HEK-293T proteins. The ratio between HLA-C 

intensity and  tubulin intensity both for the internal control (HEK-293T cells) and 

for each sample was calculated as: 

 

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 (𝐻𝐿𝐴– 𝐶) 293𝑇 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 (𝐻𝐿𝐴– 𝐶) 293𝑇

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 (𝑡𝑢𝑏𝑢𝑙𝑖𝑛) 293𝑇
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𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 (𝐻𝐿𝐴– 𝐶) 𝑠𝑎𝑚𝑝𝑙𝑒 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 (𝐻𝐿𝐴– 𝐶) 𝑠𝑎𝑚𝑝𝑙𝑒

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 (𝑡𝑢𝑏𝑢𝑙𝑖𝑛) 𝑠𝑎𝑚𝑝𝑙𝑒
 

 

The ratio between these two values was used to establish the HLA-C expression 

level of each sample. 

 

𝐻𝐿𝐴– 𝐶 𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑎𝑙𝑢𝑒 =
𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 (𝐻𝐿𝐴– 𝐶) 𝑠𝑎𝑚𝑝𝑙𝑒 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 (𝐻𝐿𝐴– 𝐶) 293𝑇 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑
 

 

The same formula was applied for the β2m quantification. 

 

 

Infection of PBMC and TZM-bl cells 

 

PBMC infections were carried out in the BSL 3 Human Virology Laboratory 

directed by Mauro Malnati (San Raffaele Hospital, Division of Immunology, 

Transplantation and Infectious Diseases, Milan, Italy) with the collaboration of 

Dr. Priscilla Biswas and Dr. Francesca Sironi. Viability of all thawed cells was 

checked by trypan blue dye exclusion and was routinely about 95-98%. PBMC 

were activated with phytoemagglutinin (PHA) (5 µg/ml) for 48 hours. Cells were 

infected with titred preparations of HIV-1 BaL (R5 or CCR5-user) and IIIB (X4 

or CXCR4-user) (MOI range: 0.5-3) and incubated at 37°C. Excess virus was 

washed away and PBMC were plated at 10
5
/well and maintained in complete 

RPMI medium plus IL-2 (Proleukin, Novartis) at 200 U/ml. PBMC culture 

supernatants were harvested at day 8-12 post-infection and frozen at -20°C until 

the p24 quantification. Supernatants from HIV-infected PBMC were normalized 

for p24 content, and different input concentrations were used to infect TZM-bl 

target cells. Cultures were performed in triplicate and infection was assessed after 

two days of culture.  
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HLA-C*06 and -C*07 expressing 721.221-CD4 cells preparation 

 

HLA-C*06 and HLA-C*07 sequences were obtained by retro-transcription of 

RNA extracted from HLA-C homozygous cell lines, MGAR and LBF, 

respectively (kindly provided by Patrizio Giacomini, Regina Elena Hospital, 

Rome, Italy). After cloning into pcDNA 6.2 vector, sequences were transfected 

into 721.221-CD4 cells. 

 

 

HLA-C*06 and -C*07 expressing 721.221-CD4 cells cytofluorimetric analyses 

 

721.221-CD4 cells were transfected either with the HLA-C*06 or the HLA-C*07 

encoding plasmid. Before cytofluorimetric analysis cells were treated with acid 

wash. Thus, cells were re-suspended in culture medium, and then washed with 

PBS. Cells were stained for 40 minutes at 4°C with 1 g/ml L31 antibody. After 

washing with PBS, cells were labelled with APC conjugated goat anti-mouse 

antibody, diluted 1:200 in 5% w/v BSA in PBS, for 30 minutes at 4°C. After PBS 

wash, cells were analysed with FACSCantoTM flow cytometer and data were 

collected using the FACSDivaTM software (BD Biosciences). The fluorescence 

fold change ratio was calculated as the ratio between RMFI after and prior to acid 

wash. 

 

 

Infection of 721.221-CD4 and TZM-bl cells 

 

721.221-CD4 infection was performed in the BSL 3 Human Virology Laboratory 

(San Raffaele Hospital, Division of Immunology, Transplantation and Infectious 

Diseases, Milan, Italy). 

Both 721.221-CD4-C*06 and 721.221-CD4-C*07 were incubated overnight with 

titred preparations of the X4-tropic HIV-1 IIIB isolate (MOI range: 0.5-3) at 

37°C. 721.221-CD4 culture supernatants were harvested at day 3 post-infection 

and frozen at -20°C until the p24 quantification. Four different input of p24 
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concentrations were used to infect target TZM-bl cells. Triplicate cultures were 

set up and the experiment was repeated twice. 

 

 

Viral replication assay 

 

The HIV-1 p24 Gag protein was measured by a twin-site sandwich enzyme-linked 

immunosorbent assay (ELISA) (Aalto Bio Reagents Ltd, Dublin, Ireland), based 

on a previously published method (Moore, McKeating et al. 1990). Briefly, p24 

antigen was captured from a detergent lysate of virions present in culture 

supernatants by a sheep polyclonal antibody adsorbed to a solid phase (3 hours 

incubation at room temperature). Bound p24 was detected with a mouse alkaline 

phosphatase-conjugated anti-p24 mAb (1 hour incubation) and a luminescent 

detection system. The luminescence was measured by the Mithras LB 940 

luminometer (Berthold Technologies, Bad Wildbad, Germany) yielding Relative 

Luminescence Units (RLU). Using an internal p24 standard curve, the RLU were 

converted to ng/ml values. TZM-bl cells were lysed with 0.5% NP-40 (15 minutes 

at 37°C), then 50 µl of lysate was transferred to a 96 well-flat bottom plate 

followed by addition of the -Gal substrate chlorophenol 

red--D-galactopyranoside (CPRG) (Roche Applied Sciences) at 5 mg/ml. The 

absorbency was read at 570 nm with an ELISA microplate reader (Biorad 680) 

and values expressed as OD/min.  

 

 

Time course analysis of HLA-C/2m/peptide dissociation rate 

 

A3.01 cells were treated for different times with acid wash (RPMI-1640, 20% 

FBS, pH 2.5). After 1, 2, 3 and 4 minutes of treatment on ice, cells were rinsed in 

culture medium, and then washed with PBS. Cells were stained with 1 µg/ml of 

mAb L31 incubating for 40 minutes at 4°C. After PBS wash, cells were stained 

with the secondary antibody: the APC-conjugated anti-mouse, diluted 1:200 in 

5% w/v BSA in PBS.  Data were acquired using the FACSCantoTM flow 
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cytometer and analysed using Kaluza software (Beckman Coulter). The 

fluorescence fold change ratio was calculated as the ratio between RMFI after and 

prior to acid wash. 

 

 

Production of Env-pseudotyped viruses and TZM-bl assay in the presence of 

β2m  

 

1x10
6
 HEK-293T cells were transfected with 1.5 μg of the Env plasmid DNA and 

3 μg of the pSG3
Δenv

 backbone plasmid. 48 hours after the transfection, the 

medium was collected, cellular debris were eliminated by centrifugation and FBS 

was added to reach 20% final concentration. Two different viral dilutions (1:250 

and 1:500) were used to infect 1x10
4
 TZM-bl target cells in the presence of 15 

μg/ml DEAE-dextran (Li, Gao et al. 2005) and 3-fold dilutions of soluble β2m 

(from 3 to 0.01 μg/ml). After 48 hours from infection, luminescence was 

measured using the Victor
TM

 3 luminometer (Perkin Elmer) and infectivity was 

expressed as RLU. The experiment was performed in quadruplicate.  

 

 

Infectivity assay of Env-pseudotyped viruses produced in the presence of 

different antibodies 

 

1x10
6
 HEK-293T cells were transfected with 1.5 μg of the Env plasmid DNA and 

3 μg of the pSG3
Δenv

 backbone plasmid. After 6 hours from the transfection an 

anti β2m (BBM1) or an unrelated anti PTPRG (PTPRG) antibody was added. Both 

antibodies were used concentrated 3 μg/ml.   

48 hours after the transfection, the medium was collected, cellular debris were 

eliminated by centrifugation and FBS was added to reach 20% final concentration. 

5-fold viral dilutions were used to infect 1x10
4
 TZM-bl target cells in the presence 

of 15 μg/ml DEAE-dextran (Li, Gao et al. 2005). After 48 hours from infection 

luminescence was measured using the Victor
TM

 3 luminometer (Perkin Elmer) and 

infectivity was expressed as RLU. The experiment was performed in 

quadruplicate.  
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Statistical analyses 

 

Statistical analyses were performed with the collaboration of Prof.ssa Lucia 

Cazzoletti (Department of Diagnostics and Public Health, University of Verona, 

Verona). Data were represented by percentages for categorical variables, and as 

means or median values for continuous variables, when appropriate. Two-way 

ANOVA was used to compare differences between 2m positive and negative 

Env-pseudotyped virions, with the viral infectivity as dependent variable, the 2m 

presence and the viral concentration as independent variables. Comparison of 

variables between subjects harboring HLA-C alleles belonging to the 

Stable/Unstable group was performed by χ
2
 test for categorical variables and the 

t-test or the Wilcoxon test for continuous variables. Three-way ANOVA and 

Two-way ANOVA were used to ascertain significances between Stable and 

Unstable HLA-C alleles in determining viral infectivity. Experimental set and 

viral dilutions and experimental set only were respectively used as factor of 

variability. Two-way ANOVA was used to compare differences between 

HLA-C*07 and HLA-C*06 expressing cells in the controlled cellular model, with 

the fluorescence fold change ratio as dependent variable, the HLA-C allele and the 

experiment replicas as independent variables. Two-way ANOVA was also used to 

evaluate the difference in HIV-1 IIIB infectivity in 721.221-CD4 cells, with the 

viral infectivity as dependent variable, the HLA-C allele and the viral 

concentration as independent variables. Two-way ANOVA was used to compare 

the differences between HIV-1 QHO Env-pseudotyped viruses infectivity in the 

presence of different concentrations of exogenous β2m. Three-way ANOVA was 

used to evaluate differences in pseudoviruses infectivity produced in the presence 

of different antibodies. The conventional 5% level of statistical significance was 

used. Data were analysed using StataMP 14.0 (Stata Corp., College Station, TX, 

USA). 
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Introduction 

HIV-1 Nef interacts with several cellular proteins, among which the human peroxisomal 

thioesterase 8 (ACOT8). This interaction appears to influence the CD4 down-regulation and might 

modulate lipid composition of membrane proteins during HIV-1 infection.  

The Nef regions involved in the association with ACOT8 have been experimentally characterized. 

The lack of structural information for ACOT8 limits the full comprehension of the biological role 

of the Nef/ACOT8 association relevant to HIV-1 infection. 

Results 

In this work we modelled, through in silico predictions, the ACOT8 structure. A high charge 

complementarity was observed between Nef and ACOT8 surfaces. This allowed the identification 

of the ACOT8 aminoacids most likely involved in the interaction with Nef. They map in the Arg
45

-

Phe
55 

and Arg
86

-Pro
93

 ACOT8 regions. Their role has been validated by in vitro assays through the 

development of ACOT8 deletion mutants.  

Immunofluorescence and co-immunoprecipitation analyses showed that the ACOT8 K91S 

mutation is sufficient to abrogate the interaction with Nef. In addition, the ACOT8 Arg
45

-Phe
55

 

region, as well as the Arg
86

-Pro
93

 region, are involved in Nef binding. 

Conclusions 

Our data demonstrate that the ACOT8 Lys
91

 plays a key role in the interaction with Nef. The 

observation that both ACOT8 Arg
45

-Phe
55

 and Arg
86

-Pro
93

 regions are determinant for Nef 

association suggests that the interaction involves a wider region on ACOT8 surface. These 

findings improve the comprehension of the association between HIV-1 Nef and ACOT8 and will 

help elucidating the biological meaning of their interaction. 
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Introduction 

The CRISPR/Cas9 system is a new, promising technique that allows editing of DNA sequences in 

the cell genome. The Cas9 endonuclease is guided to specific target locations within complex 

genomes by a short RNA search string (gRNA) (Patrick D. Hsu et al, Cell, 157, 1262, 2014). In 

this work I used the CRISPR/Cas9 system to originate different β2-microglobulin (β2m) knock out 

cell lines to elucidate the role of β2m and HLA-C in HIV-1 infection. 

Methods 

Hek-293T, HeLa and HeLa-Lai cells were cotransfected with a plasmid for the β2m gRNA (Pankaj 

K. Mandal et al, Cell Press, 15, 643, 2014) and the PX459 V2.0 plasmid (Addgene) to obtain β2m 

knock out cell lines. Following puromycin selection and expansion, cells were negatively sorted in 

two rounds, first with the anti-β2m antibody NAMB-1 and then with the anti-MHC-I antibody 

W6/32. The absence of β2m expression in sorted cells was confirmed by immunofluorescence and 

Western blot. Different HIV-1 pseudoviruses were produced following Montefiori’s Protocol 

(Ming Li et al, J  Virol, 79, 10108, 2005).  

Results 

Pseudoviruses produced in Hek-293T β2m negative cells show a significant lower infectivity than 

the corresponding pseudoviruses produced in β2m expressing cells. HIV-1 pseudoviruses used 

were QHO and pRHPA, while VSV-G pseudovirus was used as negative control.  

Flow cytometry on β2m-negative HeLa and HeLa-Lai cells show the absence of HLA-C 

expression on the cell membrane, indicating that the presence of HIV-1 Env (in HeLa-Lai cells) 

does not have any effect on the HLA-C translocation pathway, which strictly requires β2m as a 

chaperon.  

Conclusions 

The CRISPR/Cas9 system is a powerful tool for specific genome editing to originate knock-out 

mutants in different cell lines. 

Obtained results demonstrate that 1) the absence of β2m causes the absence of HLA-C on HIV-1 

virions; β2m and HLA-C defective virions are significantly less infectious (about 5 times); 2) 

HIV-1 Env can’t restore HLA-C expression on the cell surface in the absence of β2m. Most likely, 

HLA-C can bind HIV-1 Env only when it is detached from β2m on the cell surface.  

These findings improve the comprehension of the role of HLA-C in modulating HIV-1 infectivity. 
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The CRISPR/Cas9 system is a new, promising technique that allows editing of DNA sequences in 

the cell genome. 

We used CRISPR/Cas9 to produce β2microglobulin (β2m) and human thioesterase 8 (ACOT8) 

knock-out cell lines to study their role in HIV-1 infection. HLA-C is translocated at the cell 

surface only when complexed with β2m, where it interacts with HIV-1 Env resulting in increased 

viral infectivity (Zipeto & Beretta, Retrovirology 2012). ACOT8 is a human thioesterase 

interacting with HIV-1 Nef increasing Nef stability (Serena et al, Scientific Reports 2016).  

The loss of β2m expression in 293T, HeLa-Lai (expressing HIV-1 Env) and parental HeLa cells 

was assessed by western blot and flow cytometry and β2m negative cells were sorted. 

Cytofluorimetric analysis indicated that, in the absence of β2m, HLA-C expression on the cell 

membrane was abrogated, both in HeLa and in HeLa-Lai cells. The presence of HIV-1 Env did not 

restore HLA-C on the cell surface. This finding suggests that HLA-C needs 2m to be expressed 

on the cell membrane, where the Env/HLA-C interaction occurs. In addition, we observed that 

HIV-1 viruses produced in 293T 2m negative cells were three fold less infectious than those 

produced in parental cells, suggesting that the presence of HLA-C on the cell surface is required 

for the association with Env, which results in an increased virus infectivity.  

The loss of ACOT8 expression in 293T and in TZM-bl cells was assessed by western blot. Cells 

were clonally expanded and ACOT8 knock out was further confirmed.  

The role of Nef/ACOT8 association will be explored comparing the infectivity of HIV-1 viruses 

produced in the presence or in the absence of ACOT8 (293T), as well as comparing the infection 

of HIV-1 viruses in ACOT8 positive or negative host cells (TZM-bl).  
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Introduzione: I livelli di espressione cellulare degli alleli HL A -C sono correlati al controllo 

dell’infezione da HIV-1; molecole HLA-C codificate da alleli considerati protettivi (HLA-C*02, 

C*05, C*06, C*08, C*12, C*15, C*16), potrebbero controllare meglio l’infezione. Al contrario, 

molecole HLA-C codificate da alleli considerati non protettivi (HLA-C*01, C*03, C*04, C*07, 

C*14), potrebbero favorire la rapida progressione verso l’AIDS. La principale caratteristica delle 

molecole HLA-C risiede nella loro scarsa efficienza di assemblaggio, che risulta in un accumulo 

come Free Chains. Dati preliminari suggeriscono che la presenza di molecole HLA-C Free Chains 

possa contribuire a modulare l’infettività dei vironi di HIV-1, in seguito ad associazione con la 

proteina Env dell'envelope virale. Il ruolo protettivo che deriva da un elevato livello di espressione 

di HLA-C contrasta con l’aumentata infettività di HIV-1 quando HLA-C viene incorporata nel 

virione. Questa contraddizione potrebbe essere il risultato della presenza di diverse conformazioni 

di HLA-C; la molecola, infatti, potrebbe associarsi in maniera mutualmente esclusiva o con la β2m 

oppure con la proteina Env di HIV-1.  

Pazienti e metodi: Sono stati esaminati i risultati della genotipizzazione di donatori periodici di 

sangue iscritti al Registro IBMDR nel triennio 2013-2015 presso l'UOC di Medicina Trasfusionale 

dell'AOUI Verona. I donatori sono stati selezionati al fine di escludere alleli HLA-B* reattivi con 

gli anticorpi utilizzati e di includere soggetti con entrambi i loci HLA-C* appartenenti al gruppo di 

alleli definiti protettivi o non protettivi. Scopo del lavoro è stato analizzare il rapporto esistente fra 

molecole HLA-C associate alla β2m e molecole HLA-C Free Chains su PBMC dei donatori. A tal 

fine è stata verificata l'espressione in membrana del complesso completo formato da HLA-

C/β2m/peptide e di HLA-C come Free Chain. È stata, inoltre, esaminata la quantità totale di 

molecole HLA-C prodotte dai vari soggetti e, per verificare la stabilità di legame tra HLA-C e 

β2m, è stato analizzato il Fold change di fluorescenza. Infine, per investigare l'infettività di HIV-1 

in presenza di differenti alleli HLA-C sono stati condotti esperimenti di infezione di PBMC in 

vitro.  

Conclusioni: Soggetti con alleli HLA-C non protettivi/instabili sono caratterizzati dalla presenza 

di maggiori quantità di HLA-C Free Chains, necessarie al virus per essere più infettivo. Al 

contrario, soggetti con alleli HLA-C protettivi/stabili presentano un maggior numero di complessi 

completi in membrana in grado di stimolare l’immunità cellulare e, quindi, controllare meglio 

l’infezione da HIV-1. Questi risultati forniscono un’ulteriore evidenza riguardo al ruolo di diverse 

varianti genetiche implicate nel controllo dell’infezione da HIV-1. La caratterizzazione delle 

varianti alleliche HLA-C potrebbe contribuire al miglioramento delle terapie antivirali, tenendo 

conto della variabilità genetica individuale.  
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Different HLA-C expression levels lead to different HIV-1 infection outcomes: a higher 

expression leads to an effective infection control. But the absence of HLA-C on the envelope 

causes a decrease in the infectivity. HLA-C alleles show different binding stability to β2m: the 

highly expressed are more stably bound to β2m than the lowly expressed. Since HIV-1 interacts 

with HLA-C  free chains we resolved this contradiction focusing on the HLA-C/β2m binding 

stability. Thus we divided HLA-C alleles in 2 groups: High/Stable, Low/Unstable. We analyzed 

the stability by calculating  the ratio between the reactivity to specific antibodies of HLA-C bound 

or not to β2m on PBMC. This ratio was analyzed with the L31 antibody, specific for HLA-C free 

chains, before and after an acid wash, to detach the β2m from HLA-C. Its value is higher in 

High/Stable group, confirming that these alleles  bind tightly to β2m. Finally HIV-1 produced in 

Low/Unstable PBMC is more infectious. We propose that the HLA-C expression level and its β2m 

binding stability play a role in the HIV-1 outcome. High/Stable alleles are associated with  better 

immune control and lower HIV-1 infectivity, while Low/Unstable ones with worse immune 

control and higher infectivity. 
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Introduction: 

Different HLA-C expression levels lead to different HIV-1 infection outcomes: a higher 

expression leads to a better antigen presentation to CTLs and thus to an effective HIV-1 infection 

control. But HIV-1 needs the presence HLA-C on the viral envelope to increase its infectivity. 

Furthermore, HLA-C alleles show different binding stability to β2m: the highly expressed ones are 

more stably bound to  β2m than the lowly expressed ones.  

Experiments and results: 

HIV-1 reactivation increases the amount of HLA-C free chains not bound to β2m in PM1 (a HIV-1 

III-B chronically infected human     T-lymphocytic cell line) and in ACH2 cells (A3.01 cells 

harboring HIV-1 genome). We transfected 293T cells with an HIV-1 Env plasmid and an Env 

defective full length HIV-1 genome plasmid, pSG3Δenv. An HLA-C free chains increase was 

observed after Env transfection, whereas no differences in the total amount of HLA-C on the cells 

surface were observed . This suggest that Env induces a conformational switch in HLA-C. We 

found that HIV-1 viruses generated in 293T β2m negative cells, obtained using CRISPR/Cas9 

system, are less infectious than those produced in the presence of β2m. Since the protective role of 

highly expressed alleles appears to be in contrast with these data suggesting an Env/HLA-C role in 

increasing HIV-1 infectivity, we analysed HLA-C stability. We divided HLA-C alleles in 2 

groups: High/Stable and Low/Unstable. We analysed this stability by calculating the ratio 

(fluorescence fold change) between the L31 (a mAb recognizing HLA-C free chains) reactivity 

before and after acid wash on PBMC donors to remove β2m. A higher fold change was observed 

when analyzing high/stable HLA-C alleles, confirming that these alleles bind more tightly to β2m. 

We finally showed that HIV-1 virions produced in PBMC with Low/Unstable alleles are more 

infectious. 

Conclusions: 

We propose that HLA-C expression level and its β2m binding stability play a key role in HIV-1 

infection control. High/Stable alleles are associated with better immune control and lower viral 

infectivity, while Low/Unstable ones with worse immune control and higher infectivity.  
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CRISPR/Cas9 is a prokaryotic molecular immunity system that exploits short RNAs to degrade 

complementary DNA sequences of invading bacteriophages (Church, 2013). This system has been 

deeply characterized and engineered to be exploited for genome editing in eukaryotic cells. 

CRISPR/Cas9 introduces specific double strand breaks in DNA molecules, activating two possible 

cellular repair responses. In the absence of a donor template, Non-Homologous End Joining repair 

is activated, leading to insertion/deletion mutations that inactivate the target gene. In the presence 

of a homologous donor template, the damage is repaired triggering the Homologous 

Recombination pathway that inserts the donor sequence in the target locus (Hsu, 2014). The 

CRISPR/Cas9 system has been applied, among others, to study and counteract viral infections. 

CRISPR/Cas9 was exploited by Van Diemen (2016) to target the EBNA1 gene, reducing EBV 

latency. Similar results were obtained on HBV (Ramanan, 2015) and on HSV-1, by targeting the 

immediate-early genes, abrogating HSV-1 infectivity (Roehm, 2015). To avoid concerns 

associated with the use of porcine organs for transplantations, Yang (2015) used CRISPR/Cas9 to 

remove endogenous retroviruses from porcine cells. CRISPR/Cas9 was used to inactivate HPV-

16/18, responsible of cervical carcinoma, by targeting the E6 and E7 genes (Kennedy, 2014; Zhen, 

2014). The E7 gene was inactivated in HPV-6/11, the main causes of genital warts, within 

transformed keratinocytes (Liu, 2016).Several efforts were employed to contrast HIV-1 infection. 

Since the TAR sequence is conserved among different virus subtypes, it was chosen as a target for 

CRISPR/Cas9 (Liao, 2014; Kaminiski, 2016). Zhang (2015) targeted the RNA polymerase 

promoter within the 5’ LTR region, while Zhu (2015) inactivated the HIV-1 regulatory Rev gene. 

Noteworthy, to avoid the generation of HIV-1 escape mutants (Liang, 2016), a different strategy, 

targeting the CCR5 co-receptor, was employed (Kang, 2015). Our research group is studying the 

interactions between HIV-1 and cell host proteins. To define the role of MHC-I molecules in 

modulating HIV-1 infectivity, we developed 2microglobulin knock out cell lines. HIV-1 virions 

produced in 2microglobulin negatives cells were found to be less infectious (Serena, 2017). In 

addition, we showed that the HIV-1 Nef protein is stabilized by the human peroxisomal 

thioesterase 8 (ACOT8). To investigate the role of this interaction we developed ACOT8 negative 

cells to be used either for virus production and for viral infection. CRISPR/Cas9 is thus a powerful 

system to study the interactions between viruses and host, as well as a promising therapeutic tool 

to fight viral infections. 
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The CRISPR/Cas9 system has many applications in virology: it has been used to achieve 

viral DNA inactivation from latently infected cells, allowing viral eradication, or to 

inactivate specific proteins involved in virus-host cell interaction. Herein we applied the 

CRISPR/Cas9 technique to generate knock-out cell lines useful for the study of cellular 

determinants critical for HIV-1 infection. As a preliminary screening, the editing efficiency 

was evaluated by T7 endonuclease I assay, and then confirmed by western blot and flow 

cytometry analyses.  We targeted β2microglobulin (β2m), human thioesterase 8 (ACOT8) and 

histone deacetylase 6 (HDAC6) genes. β2microglobulin is required for the membrane 

translocation of HLA molecules where HLA-C interacts with HIV-1 Env and modulates viral 

infectivity (Zipeto & Beretta, Retrovirology 2012). We edited β2m in 293T, HeLa-Lai 

(expressing HIV-1 Env), TZM-bl (CD4 and CCR5 expressing HeLa, highly sensitive to 

HIV-1 infection) and parental HeLa cells. We showed in 293T cells that HIV-1 proteins 

transfection did not translocate HLA-C at the cell surface in absence of β2m. We obtained 

similar result in β2m negative HeLa-Lai cells, showing that HIV-1 Env interacts with HLA-C 

at the plasma membrane after its surface translocation. Besides, we demonstrated that HIV-1 

pseudoviruses produced in 2m negative 293T cells were significantly less infectious than 

those produced in parental ones (Serena et al., Scientific Reports, 2017). ACOT8 thioesterase 

interacts with HIV-1 Nef protein preventing its degradation (Serena et al, Scientific Reports 

2016). To better understand the role of ACOT8 in HIV-1 infectivity, we developed ACOT8 

knock out 293T and TZM-bl cell lines. We observed in TZM-bl cells, susceptible to HIV-1 

infection, that ACOT8 absence did not affect the infectivity. The role of ACOT8 in 

pseudoviruses production is being tested using 293T edited cells. HDAC6 is an important 

regulator of membrane dynamics involved in HIV-1 infection (Valenzuela-Fernandez et al, 

Molecular biology of the cell, 2005). We inactivated the HDAC6 gene in 293T cells. These 

cells will be used to test the HIV-1 infectivity and syncytia formation. In conclusion, the 

CRISPR/Cas9 system represents a new, powerful tool in basic and applied research in 

virology. 
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A CRISPR/CAS9 BASED APPROACH TO STUDY THE IMPLICATION OF 

HTLV REGULATORY PROTEINS IN THE NF-κB MODULATION 
Stefania Fochi, Simona Mutascio, Francesca Parolini, Donato Zipeto, Maria Grazia Romanelli 

Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona 

 

Human T-cell leukemia virus type 1 (HTLV-1) infects approximately 20 million people worldwide 

and 5% of them may develop adult T-cell leukemia (ATL), a fatal T-cell malignancy with no 

effective treatment currently available. The homologous HTLV-2 does not cause ATL, but is 

associated with milder neurologic disorders. Both viruses encode a potent viral oncoprotein, 

termed Tax, which deregulates several cellular pathways, including NF-κB. In addition to Tax, the 

HTLV-1 proviral genome encodes from the antisense strand, a basic leucin zipper factor, HBZ, 

which plays an essential role in the oncogenic process leading to ATL. Comparative studies of the 

functional activity of Tax-1 and HBZ, and the HTLV-2 homologous, Tax-2 and APH-2 (HTLV-2 

antisense protein), may provide clues to explain the dissimilar pathobiology of HTLVs. Herein, we 

compared the effect of the viral regulatory proteins HBZ and APH-2 on Tax-modulated NF-κB 

cell signaling. Our data demonstrated that APH-2 suppressed, more efficiently than HBZ, the Tax-

dependent NF-ĸB activation. By confocal microscopy, we observed that, differently from HBZ, 

the APH-2 protein is recruited into cytoplasmic structures where co-localized with Tax. The co-

expression of APH-2 and Tax impaired the degradation of the NF-ĸB inhibitor IκB-α, restraining 

the transcriptional factor p65 into the cytoplasm. APH-2, but not HBZ, was present in complex 

containing the TRAF3 protein, an upstream inhibitor of the alternative NF-κB pathway. Applying 

the CRISPR/Cas9 technique, we generated TRAF3 knock-out cell lines. Several TRAF3
-/-

 clones 

were selected and NF-κB promoter activity was analyzed by luciferase assays. The results showed 

that, in absence of induction, the NF-κB promoter is slightly activated, in the TRAF3
-/-

 cell line 

compared to the parental cell line. The absence of TRAF3 adaptor factor did not inhibit the Tax-

mediated NF-κB activation. Ongoing studies using TRAF3
-/-

 clones will allow to clarify the effect 

of the HTLV antisense protein on the alternative NF-κB pathway activation. 
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Incidence of MM has increased considerably in consequence of lifestyle and environmental 

changes. The mortality rate for MM is very high as it is highly invasive and also genetically 

resistant to chemotherapeutic treatments. It has been reported that mutation rate and gene 

modulation in melanoma are higher than in other solid malignancies. In addition, transcription 

factors by acting on gene expression can affect cellular process. In particular a higher expression 

of RUNX2 in melanoma than in normal melanocytes have been shown. RUNX2 is overexpressed 

in several tumor tissues, including pancreatic cancer , breast cancer, ovarian epithelial cancer, 

prostate cancer , lung cancer and osteosarcoma. As no direct RUNX2 inhibitor is available and 

experiments performed with RNA interference were scarcely reproducible we applied Crisp/cas 9 

technology to knockout the RUNT domain of RUNX2 in melanoma cell line. Crisp/Cas 9 

tecnology was able to delete, partially, the RUNT domain. The deleted clone showed a reduced 

proliferation, reduced EMT features, reduced migration ability, suggesting the involvement of 

RUNT in different pathway of MM. In addition, the deleted clone showed a reduction of genes 

involved in migration ability and an increased expression of SSBP1 gene suggesting RUNT as 

oncotarget in MM. 
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Incidence of melanoma has increased considerably in Western population in consequence of 

lifestyle and environmental changes. The mortality rate is very high as it is highly invasive and 

also genetically resistant to chemotherapeutic treatments. It has been reported that mutation rate 

and gene modulation in melanoma are higher than in other solid malignancies. In addition, 

transcription factors by acting on gene expression can affect cellular process. In particular, a 

higher expression of RUNX2 in melanoma than in normal melanocytes have been shown. RUNX2 

is the master gene of the osteogenic commitment of MSC, and it is overexpressed in several tumor 

tissues, including pancreatic cancer, breast cancer, ovarian epithelial cancer, prostate cancer, lung 

cancer and osteosarcoma. As no direct RUNX2 inhibitor is available and experiments performed 

with RNA interference were scarcely reproducible, we applied CRISPR/Cas9 technology, that 

avoid several of the pitfalls associated with interfering RNA, to knockout the RUNT domain of 

RUNX2 in melanoma cell line. CRISPR/Cas9 technology could delete, partially, the RUNT 

domain. The deleted clone showed a reduced proliferation, epithelial-mesenchymal transition 

features and migration ability, suggesting the involvement of RUNT in different pathways of 

melanoma. In addition, the deleted clone showed a reduction of genes involved in migration ability 

and an increased expression of SSBP1 gene proposing RUNT as an oncotarget in melanoma. In 

addition, the deleted clone showed a reduction of genes involved in migration ability and an 

increased expression of SSBP1 gene proposing RUNT as an oncotarget in melanoma. 
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CRISPR/CAS9 TO STUDY VIRUS-HOST INTERACTIONS 
Parolini F., Mutascio S., Serena M., Fochi S., Romanelli M. G., Zipeto D. 

Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy 

 
The new CRISPR/Cas9 technique enables the editing of specific DNA sequences of any given 

genome. It has found many applications in virology, allowing, among others, the viral DNA 

excision from latently infected cells and the generation of useful knock out cell lines. Using the 

CRISPR/Cas9 system we originated β2microglobulin (β2m), human thioesterase 8 (ACOT8) and 

histone deacetylase 6 (HDAC6) negative cells, to study their role in HIV-1 infection. We 

evaluated the editing efficiency by the T7 endonuclease I assay, western blot and flow cytometry 

analyses. The β2m is crucial for the HLA molecules membrane translocation. HLA-C interacts 

with HIV-1 Env on the cell membrane increasing viral infectivity (Zipeto & Beretta, Retrovirology 

2012). We targeted the β2m gene in 293T, HeLa-Lai (expressing HIV-1 Env), TZM-bl (HeLa cells 

susceptible to HIV-1 infection) and parental HeLa cells. We showed in 293T cells that β2m 

absence abrogates HLA-C surface expression, even in the presence of HIV-1 proteins expression. 

We confirmed the observation in β2m negative HeLa-Lai cells. Moreover, by comparing HIV-1 

infectivity in 2m positive/negative TZM-bl cells, we observed that virions produced in 2m 

negative 293T cells are significantly less infectious than those produced in parental cells.  

We reported that ACOT8 interacts with HIV-1 Nef preventing its degradation (Serena et al, 

Scientific Reports 2016). We observed in TZM-bl cells that ACOT8 absence did not affect HIV-1 

infectivity. The ACOT8 role in HIV-1 production and infectivity is being tested using 293T 

ACOT8 negative cells.  

HDAC6 is an important regulator of membrane dynamics involved in HIV-1 infection. We 

inactivated the HDAC6 gene in 293T cells to evaluate its influence on HIV-1 infectivity and 

syncytia formation and analyses are in progress. 

In conclusion, the CRISPR/Cas9 genome edited cell lines are powerful tools to study the 

molecular interaction required for HIV efficient infection.  
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HOST-VIRUS INTERACTIONS: HTLV ANTISENSE REGULATORY PROTEINS PLAY 

A ROLE IN THE DYSREGULATION OF NF-ΚB PATHWAY 

Stefania Fochi, S. Mutascio, F. Parolini, D. Zipeto, M.G. Romanelli  

Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 

Verona, Italy  

 
Human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia 

(ATL), an aggressive form of T-cell malignancy with no cure. The HTLV-1 oncoprotein Tax plays 

a key role in CD4+ T-cell transformation, mainly through constitutive activation of both the 

canonical and the alternative NF-κB pathways. The HTLV-1 basic zipper protein (HBZ), encoded 

by the antisense viral genome strand, plays an essential role in the oncogenic process in concert 

with Tax, mediating T-cell proliferation. Unlike HTLV-1, the genetically related retrovirus HTLV-

2 is not associated with ATL diseases. Functional comparisons between HTLV-1 regulatory 

proteins, Tax-1 and HBZ, and the HTLV-2 homologs, Tax-2 and APH-2, may highlight different 

mechanisms of their oncogenic potential.  The aim of this study is to investigate how the 

antisense proteins HBZ and APH-2 impaired the NF-κB pathway activation. We found that both 

HBZ and APH-2 antagonized the NF-κB promoter activity mediated by Tax, but not in the same 

extent. Analyzing the intracellular distribution of the antisense proteins, we found that APH-2 is 

retained in cytoplasm complexes, whereas HBZ is mainly distributed into the nucleus. We 

observed that in presence of APH-2 and Tax-2, the degradation of the IκB-α inhibitor was reduced. 

Moreover, we found that unlike HBZ, APH-2 formed complexes with an upstream inhibitor of the 

alternative NF-κB pathway, the TNF receptor-associated factor 3, TRAF3. We generated a TRAF3 

knock-out cell line applying the CRISPR/Cas9-mediated genome editing. By luciferase assays, we 

showed that TRAF3 is not required for Tax mediated NF-κB promoter activation. Analyses are in 

progress to test the inhibitory effect of the antisense HBZ and APH-2 proteins on NF-κB promoter 

activity in absence of TRAF3. The results of this study may contribute to clarify the effect of the 

alternative NF-κB viral deregulation pathway in the expression of proinflammatory genes.  
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Background: HLA-C expression levels lead to different HIV-1 infection out- comes. A higher 

expression is associated with a better activation of cytotoxic T lymphocytes (CTLs) and thus a 

better HIV-1 infection control. Vice versa, a lower HLA-C expression leads to a rapid progression 

toward AIDS. Thus, HLA-C highly and lowly expressed alleles are defined as protective and non-

protective, respectively. Furthermore, different HLA-C alleles have different binding stabilities to 

β2microglobulin (β2m). Interestingly, HLA-C protective alleles are also those that bind β2m more 

efficiently, while the non-protective variants present more free chains (not bound to β2m) on the 

cell surface. It is also known that virions lacking HLA-C have reduced infectivity and increased 

susceptibility to neutralizing anti- bodies.  

Methods: The A3.01 cell line and its HIV-1-infected counterpart ACH-2 were used as an in vitro 

infection model. 293T β2m negative cells, generated using CRISPR/ Cas9 system, were utilized to 

produce HIV-1 pseudoviruses. PBMC from healthy blood donors, harboring both protective or 

non-protective alleles, were exploited to characterize the proportion between HLA-C associated to 

β2m and HLA-C presents as free chains on the cell surface. In addition, PBMC from the same 

donors were tested for their ability to support HIV-1 infection in vitro. 

Results: HLA-C free chains, specifically more represented on the surface of infected cells, are 

responsible for the increase of virions’ infectivity. We observed that HIV-1 Env-pseudotyped 

viruses produced in β2m negative cells, thus lacking HLA-C on their envelope, are less infectious 

than those produced in the presence of β2m. In PBMC we found that protective HLA-C variants 

are more stably bound to β2m than non-protective ones and that HIV-1, in vitro, infects more 

efficiently PBMC harboring non-protective, weakly bound to β2m, HLA-C alleles. 

Conclusions: We propose that the outcome of HIV-1 infection might be driven both by the HLA-

C surface expression levels and by the HLA-C/β2m binding stability. According to this model, the 

expression of non-protective HLA-C alleles, which bind weakly β2m, leads to a reduction of 

immunocompetent complexes expressed on the cell surface and to an increase of HLA-C free 

chains that raises viral infectivity, both leading to a rapid progression toward AIDS.
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