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INFINITE HORIZON STOCHASTIC OPTIMAL CONTROL

PROBLEMS WITH RUNNING MAXIMUM COST

AXEL KRÖNER, ATHENA PICARELLI, AND HASNAA ZIDANI

Abstract. An infinite horizon stochastic optimal control problem with
running maximum cost is considered. The value function is character-
ized as the viscosity solution of a second-order Hamilton-Jacobi-Bellman
(HJB) equation with mixed boundary condition. A general numerical
scheme is proposed and convergence is established under the assump-
tions of consistency, monotonicity and stability of the scheme. These
properties are verified for a specific semi-Lagrangian scheme.

1. Introduction

In this paper we consider infinite horizon stochastic optimal control prob-
lems with cost in a maximum form of the following type:

(1.1)


inf
u∈U

E
[

max
s∈[0,∞)

e−λsg(Xu
x (s))

]
, subject to

dXu
x (s) = b(Xu

x (s), u(s))ds+ σ(Xu
x (s), u(s))dB(s), s ∈ [0,∞),

Xu
x (0) = x ∈ Rd

with p-dimensional Brownian motion B(·). The control u belongs to a set
U of progressively measurable processes with values in a given compact set
U ⊂ Rm. The functions g : Rd → R, b : Rd×U → Rd and σ : Rd×U → Rd×p,
and the discount factor λ > 0 are supposed to be known. Control problems
of this type can be used for the characterization of viable and invariant sets
and arise in the study of some path-dependent options in finance (lookback,
Russian options). The study of this problem is also motivated by some
engineering applications, see for instance [29, 3].

In the deteministic case, problems with supremum costs and finite time
horizon have been extensively studied in the literature, we refer for instance
to [8, 9, 2, 10] where the value function is characterized as unique solution
of a Hamilton-Jacobi-Bellman (HJB) equation with an obstacle. The value
function is also analysed within the viability framework in [34, 35], and
linearization techniques for such problems are presented in [23].

The case of deterministic control problems with supremum costs and in-
finite horizon has been also considered in [8, 20, 21]. Note that in this
case it is shown that the value function satisfies a stationary HJB equation
with an obstacle. However, unlike the finite horizon case, the HJB equation
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may have several viscosity solutions. The only characterization of the value
function is obtained by the optimality principles derived from the dynamic
programming principle (DPP). In [1, 21], a control problem without dis-
count factor is considered and the value function of such a problem is shown
to be the limit of value functions associated to some control problems with
maximum running cost in finite horizon.

In the stochastic setting with finite time horizon, the characterization of
the value function is studied in [4, 5, 7, 8, 11]. We refer also to [26] where
some special cases of control problems with running costs are solved by
using the DPP. We point out that the stochastic framework presents specific
difficulties coming from the non commutativity between the expectation and
the maximum operator. In [4, 5, 7, 8] the characterization of the value
function is obtained by considering an Lp approximation technique where
the maximum cost is approximated by a sequence of Lp costs using the fact
that for any a, b ≥ 0

max(a, b) ' (ap + bp)
1
p (for p→∞).

Note that this technique can be used only when the cost function g is po-
sitive. In [11], the DPP and the HJB equation are derived directly for the
maximum running cost problem without using the Lp approximation. In
addition, a numerical scheme based on a Semi-Lagrangian (SL) approach is
analysed for the computation of the value function.

In the present work, we consider the case of stochastic control problem
with supremum running cost in infinite horizon. The cost function involves
also a discount factor λ that is positive. We are interested in the character-
ization of the value function and its numerical approximation. By using the
same viscosity arguments as in [11], we show that the value function satisfies
a HJB equation with a boundary condition involving an oblique derivative.
Unlike the finite time horizon case (see [4, 7, 11]), this HJB equation fails
to be a good characterization of the value function as it may admit several
trivial solutions.

To garantee the uniqueness, we complete the HJB system by a Dirich-
let boundary condition. While the oblique derivative boundary condition
is understood in the viscosity sense [28], the Dirichlet condition is consid-
ered pointwise. A similar idea has been also used in [25], however in that
paper, the uniqueness result is proved by using some arguments of non-
smooth analysis that are valid only under some strong stability assumptions
on the differential process. Here, we use only PDE arguments and prove the
uniqueness result without assuming additional assumptions on the state.

The second part of the paper is devoted to the numerical approximation.
Thereby we follow some ideas developed in [11] for the corresponding finite
horizon problem. The extension is not straightforward since we are now
dealing with a stationary equation with mixed boundary conditions.
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First, by using the framework of Barles-Souganidis [6], we obtain a conver-
gence result for a general class of numerical schemes satisfying some adequate
monotonicity, stability and consistency properties. Then, we introduce a SL
scheme and prove its convergence. Recall that SL schemes have been intro-
duced in [16] for first order Hamilton-Jacobi equations and then extended
to the second order case in [15, 18, 19, 32, 33]. For time-dependent equa-
tions with an oblique boundary condition (that appears in the case of finite
horizon control problems), the SL method has been investigated in [11].

For the stationary equations as considered in the present work, the SL
schemes are formulated as fixed-point problems. Let us point out that the
presence of mixed boundary conditions arises some new difficulties in the
analysis of this fixed point problem. To deal with these difficulties, the
numerical scheme we propose couples the classical SL scheme with additional
projection steps on the boundary taking into account the overstepping of the
domain which is typical in such a wide stencil scheme. We prove that our
scheme is stable, consistent and monotone. We analyse also the fixed-point
operator in an adequate space where the fixed-point algorithm converges.

The paper is organized as follows: Section 2 introduces the problem and
the main assumptions. Sections 3 and 4 are devoted to the characteriza-
tion of the value function by the appropriate HJB equation: the DPP is
established, the HJB equation is derived and uniqueness proven by a strong
comparison principle. In Section 5 the numerical approximation is discussed
and a general convergence result is provided. The SL scheme is presented
in Section 5.2 and its convergence properties are investigated. A numerical
test in two dimensions is presented in Section 6.

2. Formulation of the problem

Let (Ω,F ,P) be a probability space, {Ft, t ≥ 0 } a filtration on F and B(·)
a {Ft}t≥0-Brownian motion in Rp, p ≥ 1. Let U be a set of progressively
measurable processes with values in a compact set U ⊂ Rm (with m ≥ 1).
For every control input u ∈ U , and every x ∈ Rd, we consider the stochastic
differential equation:

(2.1)

{
dXu

x (s) = b(Xu
x (s), u(s))ds+ σ(Xu

x (s), u(s))dB(s), s ∈ [0,∞),

Xu
x (0) = x.

Throughout the paper we make the following assumptions on the coefficients
in (2.1):

(H1) b : Rd × U → Rd and σ : Rd × U → Rd×p are continuous functions.
There exists C0 ≥ 0 such that for any x, y ∈ Rd and u ∈ U , we have:

|b(x, u)− b(y, u)|+ |σ(x, u)− σ(y, u)| ≤ C0|x− y|.

Proposition 2.1. Let assumption (H1) hold. Then, for any x ∈ Rd and
u ∈ U there exists a unique strong solution Xu

x (·) of (2.1). Moreover, there
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exists C ≥ 0 such that

E
[

max
θ∈[0,T ]

|Xu
x (θ)−Xu

x′(θ)|
]
≤ CeCT |x− x′|(2.2)

for any u ∈ U , T > 0 and x, x′ ∈ Rd.

The proof of the above result can be found in [37, p. 42, Thm. 6.3] and
[36, p.14]. Now, consider a cost function g satisfying the following condition:

(H2) g : Rd → R is Lipschitz continuous and bounded, i.e., there exist
Mg, Lg ≥ 0 such that

|g(x)− g(y)| ≤ Lg|x− y|, |g(x)| ≤Mg, ∀x, y ∈ Rd.
For given discount factor λ > 0 and initial position x ∈ Rd the infinite
horizon optimal control problem reads as

inf
u∈U

J(x, u) := E
[

max
s∈[0,∞)

e−λsg(Xu
x (s))

]
.(2.3)

We will denote by v : Rd → R the associated value function, i.e.

v(x) := inf
u∈U

J(x, u).(2.4)

3. Dynamic Programming Principle

In the next sections, we aim to find a characterization of the value func-
tion v as solution of a PDE. The presence of the maximum operator inside
the expectation makes the cost J in (2.3) non-Markovian and it is well-
known that this prevents to establish a DPP, which is the first fundamental
result towards the HJB characterisation. A classical strategy to overcome
this difficulty consists in adding an auxiliary variable y that, roughly speak-
ing, gets rid of the non-Markovian component of the cost. Let us define the
auxiliary value function ϑ : Rd ×R→ R

ϑ(x, y) := inf
u∈U

E
[

max
s∈[0,∞)

e−λsg(Xu
x (s)) ∨ y

]
,

which satisfies, for any x ∈ Rd,
ϑ(x, g(x)) = v(x),

where v is defined as in (2.4). Consequently, if the value function ϑ of the
auxiliary problem is known, one can immediately recover the original value
function v. Therefore, we consider only ϑ in the sequel of the paper.

We start by proving a continuity result for the auxiliary value function.

Proposition 3.1. Let assumptions (H1)-(H2) be satisfied. Then the value
function ϑ is uniformly continuous in Rd ×R. Moreover,

ϑ(x,Mg) = Mg and |ϑ(x, y)| ≤Mg

for any (x, y) ∈ Rd ×R with |y| ≤Mg.
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Proof. The last statement follows directly by the definition of ϑ and the
bound on g given by assumption (H2).
By the very definition of ϑ we have that for any (x, y), (ξ, η) ∈ Rd ×R

|ϑ(x, y)− ϑ(ξ, η)|

≤ sup
u∈U

E
[∣∣∣ max

s∈[0,∞)
e−λsg(Xu

x (s)) ∨ y − max
s∈[0,∞)

e−λsg(Xu
ξ (s)) ∨ η

∣∣∣]
≤ sup

u∈U
E
[

max
s∈[0,∞)

∣∣∣e−λsg(Xu
x (s))− e−λsg(Xu

ξ (s))
∣∣∣ ∨ ∣∣∣y − η∣∣∣]

≤ sup
u∈U

E
[

max
s∈[0,∞)

∣∣∣e−λsg(Xu
x (s))− e−λsg(Xu

ξ (s))
∣∣∣]+

∣∣∣y − η∣∣∣
For any T > 0 we have that (recalling that g is bounded)

E
[

max
s∈[0,∞)

e−λs
∣∣∣g(Xu

x (s))− g(Xu
ξ (s))

∣∣∣]
≤ E

[
max
s∈[0,T ]

e−λs
∣∣∣g(Xu

x (s))− g(Xu
ξ (s))

∣∣∣+ max
s∈[T,∞)

e−λs
∣∣∣g(Xu

x (s))− g(Xu
ξ (s))

∣∣∣]
≤ E

[
max
s∈[0,T ]

e−λs
∣∣∣g(Xu

x (s))− g(Xu
ξ (s))

∣∣∣]+ E
[

max
s∈[T,∞)

2Mge
−λs
]

= E
[

max
s∈[0,T ]

e−λs
∣∣∣g(Xu

x (s))− g(Xu
ξ (s))

∣∣∣]+ 2Mge
−λT .

For the first term we have the classical estimates (see Theorem 2.1)

E
[

max
s∈[0,T ]

e−λs
∣∣∣g(Xu

x (s))− g(Xu
ξ (s))

∣∣∣] ≤ LgCeCT |x− ξ|.
So putting everything together we get that for every T

|ϑ(x, y)− ϑ(ξ, η)| ≤ LgCeCT |x− ξ|+ 2Mge
−λT + |y − η|.

Now, for any ε > 0 we can fix T ≡ T (ε) such that 2Mge
−λT < ε/3. It

follows that we can choose a δ = δ(ε, T (ε)) such that if |(x, y) − (ξ, η)| ≤ δ
then

|ϑ(x, y)− ϑ(ξ, η)| < ε.

�

Remark 3.2. In many cases, under assumptions (H1)-(H2), the value func-
tion is expected to be Hölder continuous. This holds true in the case of finite
horizon problems for both integral and maximum running costs (see [37,
Proposition 3.1] and [11, Proposition 2.2], respectively). In infinite time
horizon, such a property can be recovered only for a discount factor suffi-
ciently big ensuring a dissipative property of the process e−λtXu

x (t) (see for
instance [31, Theorem 3.4] for the case of integral running cost). However,
the proof of Proposition 3.1 shows that ϑ is Lipschitz continuous with respect
to the auxiliary variable y. This will turn out to be a fundamental property to
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be preserved when defining a numerical scheme in order to get convergence
(see assumption (H3.a) in Section 5).

Thanks to the presence of the auxiliary variable y we are able to state the
DPP for ϑ. Let us define for t ≥ 0

Y u
x,y(t) := max

s∈[0,t]
e−λsg(Xu

x (s)) ∨ y.

Following the arguments in [14] and thanks to the uniform continuity of
ϑ one has:

Theorem 3.3 (DPP). Let assumptions (H1)-(H2) be satisfied. For (x, y) ∈
Rd ×R and any finite stopping time θ ≥ 0 there holds

ϑ(x, y) = inf
u∈U

E
[
e−λθϑ(Xu

x (θ), eλθY u
x,y(θ))

]
.

Proof. The proof of the DPP is based on the fact that for every u ∈ U , we
have:

max
s∈[0,∞)

e−λsg(Xu
x (s)) ∨ y = max

s∈[θ,∞)
e−λsg(Xu

x (s))
∨

max
s∈[0,θ]

e−λsg(Xu
x (s)) ∨ y︸ ︷︷ ︸

=:Yx,y(θ)

= e−λθ max
s∈[0,∞)

e−λsg(Xu
Xu
x (θ)(s))

∨
Yx,y(θ)

= e−λθ
(

max
s∈[0,∞)

e−λsg(Xu
Xu
x (θ)(s))

∨
eλθYx,y(θ)

)
.

By the tower property of the expectation, we conclude the proof. We refer
to [14] and [36] for more detailed arguments. �

4. The Hamilton-Jacobi-Bellman equation

The value function ϑ can be characterized in terms of a solution of a
second-order HJB equation.

Theorem 4.1 (Second-order HJB equation). Under assumptions (H1)-
(H2), the value function ϑ is a continuous viscosity solution of

(4.1)
λϑ+H(x, y,Dxϑ, ∂yϑ,D

2
xϑ) = 0 for x ∈ Rd, y > g(x),

−∂yϑ = 0 for x ∈ Rd, y = g(x)

with λ > 0 and Hamiltonian H : Rd ×R×Rd ×R×Rd×d → R defined by

H(x, y, p, q, P ) = sup
u∈U

(
−b(x, u) · p− 1

2
Tr[(σσT )(x, u)P ]

)
− λyq.(4.2)

We recall the notion of viscosity solution for second-order HJB equation.

Definition 4.2. [17, Definition 7.4] Let O be a locally compact set in Rd+1.
A USC function ϑ (resp. LSC function ϑ) on O is a viscosity sub-solution
(resp. super-solution) of (4.1), if for every function ϕ ∈ C2(O) at every
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maximum (resp. minimum) point x of ϑ − ϕ (resp. ϑ − ϕ) the following
inequalities hold{

λϕ+H(x, y,Dxϕ, ∂yϕ,D
2
xϕ) ≤ 0 in O,

min(λϕ+H(x, y,Dxϕ, ∂yϕ,D
2
xϕ),−∂yϕ) ≤ 0 on ∂O,(

resp. {
λϕ+H(x, y,Dxϕ, ∂yϕ,D

2
xϕ) ≥ 0 in O,

max(λϕ+H(x, y,Dxϕ, ∂yϕ,D
2
xϕ),−∂yϕ) ≥ 0 on ∂O.

)
A continuous function ϑ is called a viscosity solution of (4.1) if it is both a
sub- and super-solution.

Proof of Theorem 4.1. Let

O := { (x, y) ∈ Rd+1 : y ≥ g(x) } .

We first check that ϑ is a viscosity sub-solution. Let ϕ ∈ C2(O) such that
ϑ − ϕ attains a maximum at point (x̄, ȳ) ∈ O. Without loss of generality
we can assume that (x̄, ȳ) is a strict local maximum point (let us say in a
ball of radius r > 0 centered in (x̄, ȳ)) and ϑ(x̄, ȳ) = ϕ(x̄, ȳ). Thanks to
Theorem 3.3, for any u ∈ U and for any sufficiently small stopping time
θ = θu, we have:

ϕ(x̄, ȳ) = ϑ(x̄, ȳ) ≤ E
[
e−λθϑ

(
Xu
x̄ (θ), eλθY u

x̄,ȳ(θ)
)]

≤ E
[
e−λθϕ

(
Xu
x̄ (θ), eλθY u

x̄,ȳ(θ)
)]
.(4.3)

Two cases will be considered depending on if the point (x̄, ȳ) belongs to the
boundary of O or not.

— Case 1: g(x̄) < ȳ. Consider a constant control u(s) ≡ u ∈ U . From
the continuity of g and the a.s. continuity of the sample paths it follows
that for a.e. ω ∈ Ω there exists s̄(ω) > 0 such that g(Xu

x̄ (s))e−λs < ȳ if
s ∈ [0, s̄(ω)). Given h > 0, let θ̄ be the following stopping time:

(4.4)
θ̄ := inf

{
s > 0: (Xu

x̄ (s), eλsY ux̄,ȳ(s)) /∈ B((x̄, ȳ), r)
}
∧ h

∧ inf
{
s > 0: e−λsg(Xu

x̄ (s)) ≥ ȳ
}

(where B((x̄, ȳ), r) denotes the ball of radius r > 0 centered at (x̄, ȳ) and
a ∧ b = min(a, b)). One can easily observe that a.s. θ̄ > 0 and Y u

x̄,ȳ(θ̄) = ȳ,
then by (4.3)

ϕ(x̄, ȳ) ≤ E
[
e−λθ̄ϕ

(
Xu
x̄ (θ̄), eλθ̄ȳ

)]
∀u ∈ U.
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By applying Ito’s formula [37, Theorem 5.5], and thanks to the smoothness
of ϕ, we get:

0≥E
[ ∫ θ̄

0

−d
(
e−λsϕ(Xu

x̄ (s), eλsȳ)
)]

= E
[ ∫ θ̄

0

{
λϕ(Xu

x̄ (s), eλsȳ)− b(Xu
x̄ (s), u)Dxϕ(Xu

x̄ (s), eλsȳ)

− 1

2
Tr[σσT (Xu

x̄ (s), u)D2
xϕ(Xu

x̄ (s), eλsȳ)]− λȳeλs∂yϕ(Xu
x̄ (s), eλsȳ)

}
e−λsds

]
.

Observing that the stopping times

inf
{
s > 0: (Xu

x̄ (s), eλsY u
x̄,ȳ(s)) /∈ Br(x̄, ȳ)

}
and inf

{
s > 0: e−λsg(Xu

x̄ (s)) ≥ ȳ
}

are a.s. strictly greater than 0, for a.e. fixed ω one obtains θ̄ = h for a
sufficiently small h in (4.4). Dividing by h > 0, one gets

E
[

1

h

∫ θ̄

0

{
λϕ(Xu

x̄ (s), eλsȳ)− b(Xu
x̄ (s), u)Dxϕ(Xu

x̄ (s), eλsȳ)

− 1

2
Tr[σσT (Xu

x̄ (s), u)D2
xϕ(Xu

x̄ (s), eλsȳ)]− λȳeλs∂yϕ(Xu
x̄ (s), eλsȳ)

}
e−λsds

]
≤ 0.

By the dominate convergence theorem, taking the limit for h going to 0
inside the expectation and applying the mean value theorem, it follows

λϕ(x̄, ȳ)− b(x̄, u)Dxϕ(x̄, ȳ)− 1

2
Tr[σσT (x̄, u)D2

xϕ(x̄, ȳ)]− λȳ∂yϕ(x̄, ȳ) ≤ 0.

Finally, thanks to the arbitrariness of u ∈ U :

λϕ(x̄, ȳ)+ sup
u∈U

(
−b(x̄, u)Dxϕ(x̄, ȳ)− 1

2
Tr[σσT (x̄, u)D2

xϕ(x̄, ȳ)]
)
−λȳ∂yϕ(x̄, ȳ) ≤ 0.

— Case 2: g(x̄) = ȳ. Let us assume that −∂yϕ(x̄, ȳ) > 0, otherwise the
conclusion is straightforward.

As in the previous case, we consider a constant control u(s) ≡ u ∈ U .
Thanks to the continuity of the sample paths and the smoothness of ϕ, for
a.e. ω there is a time s̄(ω) > 0 and η > 0 such that:

ϕ(Xu
x̄ (s), eλsy) ≤ ϕ(Xu

x̄ (s), eλsȳ) ∀s ∈ [0, s̄], y ∈ [ȳ, ȳ + η).

Let θ̄ be the stopping time given by:

θ̄ := inf
{
s > 0: (Xu

x̄ (s), eλsY ux̄,ȳ(s)) /∈ B((x̄, ȳ), r)
}
∧ inf {s > 0: ∂yϕ(Xu

x̄ (s), ȳ) ≥ 0}

∧ inf
{
s > 0: e−λsg(Xu

x̄ (s)) /∈ [ȳ, ȳ + η)
}
∧ h.

By (4.3) we have ϕ(x̄, ȳ) ≤ E
[
e−λθ̄ϕ

(
Xu
x̄ (θ̄), eλθ̄ȳ

)]
, which implies (as in

Case 1):

λϕ(x̄, ȳ)+ sup
u∈U

{
−b(x̄, u)Dxϕ(x̄, ȳ)− 1

2
Tr[σσT (x̄, u)D2

xϕ(x̄, ȳ)]
}
−λȳ∂yϕ(x̄, ȳ) ≤ 0.
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In conclusion at (x̄, ȳ) ∈ ∂O we have

min
(
λϕ+H(x̄, ȳ, Dxϕ, ∂yϕ,D

2
xϕ),−∂yϕ

)
≤ 0,

and ϑ is a viscosity sub-solution of equation (4.1).

It remains to prove that ϑ is a viscosity super-solution of (4.1). Let
ϕ ∈ C2(O) be such that ϑ − ϕ attains a minimum at point (x̄, ȳ) ∈ O.
Without loss of generality we can always assume that (x̄, ȳ) is a strict local
minimum point in a ball B((x̄, ȳ), r) and ϑ(x̄, ȳ) = ϕ(x̄, ȳ). We consider
again the two cases:
— Case 1: g(x̄) < ȳ. We assume by contradiction that

λϕ+H(x̄, ȳ, Dxϕ, ∂yϕ,D
2
xϕ) < 0.

By using continuity arguments we can also state that

(4.5) λϕ+H(·, ·, Dxϕ, ∂yϕ,D
2
xϕ) ≤ 0

in a neighborhood B((x̄, ȳ), r1) of (x̄, ȳ) for some r1 > 0. Moreover, thanks
to the continuity of g, if ȳ−g(x̄) =: ρ > 0 we can find r2(ρ) > 0 and T (ρ) > 0
such that

max
t∈[0,T ],
x∈B(x̄,r2)

e−λtg(x)− g(x̄) ≤ ρ

2

and we have

max
t∈[0,T ],
x∈B(x̄,r2)

e−λtg(x) ∨ ȳ = ȳ.

For any u ∈ U we define the stopping time θu as the first exit time of the pro-
cess (Xu

x̄ (s), eλsY u
x̄,ȳ(s)) from the ball B((x̄, ȳ), R) for R := min(r, r1, r2) > 0,

i.e.

θu := inf
{
s > 0: (Xu

x̄ (s), eλsY u
x̄,ȳ(s)) /∈ B((x̄, ȳ), R)

}
∧ T.

Applying Ito’s formula and taking the expectation we get

ϕ(x̄, ȳ)− E
[
e−λθ

u
ϕ(Xu

x̄ (θu), eλθ
u
Y u
x̄,ȳ(θ

u))

]
= ϕ(x̄, ȳ)− E

[
e−λθ

u
ϕ(Xu

x̄ (θu), eλθ
u
ȳ)

]
= E

[ ∫ θu

0

{
λϕ(Xu

x̄ (s), eλsȳ)− b(Xu
x̄ (s), u)Dxϕ(Xu

x̄ (s), eλsȳ)

− 1

2
Tr[σσT (Xu

x̄ (s), u)D2
xϕ(Xu

x̄ (s), eλsȳ)]− λȳeλs∂yϕ(Xu
x̄ (s), eλsȳ)

}
e−λsds

]
≤ 0,

that leads to

ϑ(x̄, ȳ) = ϕ(x̄, ȳ) ≤ E
[
e−λθ

u
ϕ(Xu

x̄ (θu), eλθ
u
Y u
x̄,ȳ(θ

u))

]
.(4.6)
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The continuity of the sample paths implies that{
either θu = T or
(Xu

x̄ (θu), eλθ
u
Y u
x̄,ȳ(θ

u)) ∈ ∂B((x̄, ȳ), R) a.s. .

Since (x̄, ȳ) is a strict minimum point we have

min
{

(ϑ−ϕ) : (x, y) ∈ ∂B((x̄, ȳ), R)
⋃ (

B((x̄, ȳ), R)∩ y = eλT ȳ
)}

=: η > 0,

and hence

ϑ(x̄, ȳ) ≤ ϕ(Xu
x̄ (θu), eλθ

u
Y u
x̄,ȳ(θ

u)) ≤ ϑ(Xu
x̄ (θu), eλθ

u
Y u
x̄,ȳ(θ

u))− η.

Substituting in (4.6), for any u ∈ U one has

ϑ(x̄, ȳ) ≤ E
[
e−λθ

u
ϑ(Xu

x̄ (θu), eλθ
u
Y u
x̄,ȳ(θ

u))

]
− ηe−λT .

Since η and T do not depend on u, a minimisation over u contradicts the
DPP.
— Case 2: g(x̄) = ȳ. Assume by contradiction that

−∂yϕ(x̄, ȳ) < 0 and λϕ+H(x̄, ȳ, Dxϕ, ∂yϕ,D
2
xϕ) < 0.

We can again define r1 > 0 such that (4.5) is satisfied in B((x̄, ȳ), r1).
Moreover there exists r̃2 > 0 such that

ϕ(ξ, ζ) ≤ ϕ(ξ, ζ ′)

for any (ξ, ζ), (ξ, ζ ′) ∈ B((x̄, ȳ), r̃2) such that ζ ≤ ζ ′. For any u ∈ U we define
the stopping time θu as the first exit time of the process (Xu

x̄ (s), eλsY u
x̄,ȳ(s))

and (Xu
x̄ (s), eλsȳ) from the ball B((x̄, ȳ), R̃) for R̃ := min(r, r1, r̃2) > 0. As

for Case 1, we can still say that a.s.

ϑ(Xu
x̄ (θu), Y u

x̄,ȳ(θ
u)) ≥ ϕ(Xu

x̄ (θu), Y u
x̄,ȳ(θ

u)) + η′.

for some η′ > 0 not depending on u. Therefore, observing that

eλsY u
x̄,ȳ(s) ≥ eλsȳ

for any s ≥ 0 and using Ito’s formula, we get

ϑ(x̄, ȳ) = ϕ(x̄, ȳ) ≤ E
[
ϕ(Xu

x̄ (θu), eλθ
u
ȳ)
]
≤ E

[
ϕ(Xu

x̄ (θu), eλθ
u
Y u
x̄,ȳ(θ

u))
]

≤ E
[
ϑ(Xu

x̄ (θu), eλθ
u
Y u
x̄,ȳ(θ

u)
]
− η′,

which yields again to a contradiction of the DPP. �

Remark 4.3. Unlike the case of finite time horizon (see [4, 11]), the HJB
equation (4.1) obtained by the DPP does not admit a unique solution. In-
deed, one can observe that the function identically equal to zero is always a
solution of (4.1). To overcome this problem we will restrict our domain to

D := {(x, y) ∈ Rd+1 : y > g(x) , y ∈ (−Mg,Mg)}.
and add a Dirichlet boundary condition for y = Mg.
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Let

Γ1 := { (x, y) ∈ D : y = Mg } ; Γ2 := { (x, y) ∈ D : y = g(x) } .(4.7)

Then the value function ϑ is a viscosity solution of the following problem

λϑ+H(x, y,Dxϑ, ∂yϑ,D
2
xϑ) = 0 in D,(4.8a)

−∂yϑ = 0 on Γ2(4.8b)

and satisfies additional

ϑ = Mg on Γ1(4.8c)

in a strong sense. We point out that in our case the strong constant Dirich-
let boundary condition on Γ1 is compatible with the homogeneus derivative
condition on Γ2. This prevents possible problems related with mixed bound-
ary conditions at the junctions where different components of the boundary
cross.
Now, we can establish the following comparison result:

Theorem 4.4. Let assumptions (H1)-(H2) be satisfied and let ϑ ∈ USC(D),
ϑ ∈ LSC(D) respectively a bounded sub- and super-solution to equation (4.8)
in D such that

ϑ ≤Mg and ϑ ≥Mg on Γ1.

Then ϑ ≤ ϑ in D.

The proof can be obtained by a modification of the arguments in [22,
Theorem 2.1] which shows how to deal with the derivative conditions; see
also [24]. We report here the main steps.

Proof. We set

b̃(x, y, u) :=

(
b(x, u)
λy

)
∈ Rd+1 and σ̃(x, y, u) :=

(
σ(x, u)
0 . . . 0

)
∈ R(d+1)×p.

Further, let x denote the variable in the augmented state space RM with
M := d+ 1, i.e. x ≡ (x, y) ∈ RM and xM = y. Then the Hamiltonian H in
(4.2) is given by

H(x, p, P ) := sup
u∈U

(
− b̃(x, u) · p− 1

2
Tr[σ̃σ̃T (x, u)P ]

)
.

Thanks to the Lipschitz continuity of the function g that defines the
boundary Γ2, we can observe that there exists µ > 0 such that for any
z ∈ Γ2 we have

(4.9)
⋃

0≤ξ≤µ
B(z − ξ, ξµ) ⊂ DC ,

where DC denotes the complementary of the set D; this corresponds to [22,
condition (2.9)]. Let us define for positive α and β the functions

ϑ α,β(x) := ϑ(x)− α(Mg − xM )− β, ϑ α,β(x) := ϑ(x) + α(Mg − xM ) + β.
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Thanks to the non-negativity of (Mg − xM ) for y ∈ D we have

ϑ α,β ≤ ϑ and ϑ α,β ≥ ϑ on D

and in particular

ϑ α,β ≤Mg and ϑ α,β ≥Mg on Γ1.

With an abuse of notation, we denote by Dϑ,Dϑ,D2ϑ,D2ϑ the correspond-
ing elements of the semijets of ϑ and ϑ, see [17, Section 2]. We have

λϑ α,β +H(x,Dϑ α,β, D
2ϑ α,β)− λϑ−H(x,Dϑ,D2ϑ) ≤ −λβ + λαMg

and

λϑ α,β +H(x,Dϑ α,β, D
2ϑ α,β)− λϑ−H(x,Dϑ,D2ϑ) ≥ λβ−λαMg.

Moreover, we have

−∂xMϑ α,β= −∂xMϑ− α, −∂xMϑ α,β= −∂xMϑ+ α

Therefore for any β > 0 and α = α(β) > 0 small enough, ϑ α,β (resp. ϑ α,β)
is a sub-solution (resp. super-solution) to (4.8) with the following modified
boundary condition on Γ2:

(4.10) −∂xMϑ+ α ≤ 0 (resp. − ∂xMϑ− α ≥ 0) .

In the sequel we prove a comparison principle between the sub-solution ϑ α,β

and super-solution ϑ α,β of the modified problem. The comparison result

between ϑ and ϑ follows from taking the limit of α, β → 0. In order to
simplify the notation we denote the sub- and super-solution of the modified
problem also by ϑ and ϑ.

Let

Φγ(x) := ϑ(x)− ϑ(x)− 2γ log(1 + |(x1 . . . xM−1)|2).

In order to simplify the notation, from now on we will denote |x|M−1 =
|(x1 . . . xM−1)|. Thanks to the boundedness and the upper semicontinuity of

ϑ− ϑ, the function Φγ admits a maximum point x̂γ = x̂ in D.
Let us assume that there exists a sequence {γk}k≥0 such that γk → 0 and

the points x̂γk approach the boundary Γ1. In this case for any x ∈ D we
have

(4.11)
ϑ(x)− ϑ(x) = lim supk→∞ϑ(x)− ϑ(x)− 2γk log(1 + |x|2

M−1
)

≤ lim supk→∞ϑ(x̂)− ϑ(x̂) ≤ 0.

the last inequality follows by the fact that any convergent subsequence of
points {x̂γk} converges to a point of Γ1 where one has ϑ−ϑ ≤ 0 by assump-
tion. We obtain the same result if Φγk(x̂) ≤ 0 for all k.
Therefore, in the sequel, we assume that there exists a γ̄ small enough such
that d(x̂, Γ1) = ρ > 0 and ϑ(x̂)− ϑ(x̂) ≥ Φγ(x̂) > ρ for any γ ≤ γ̄ and some
ρ > 0 (with d(·, Γ1) we have denoted the Euclidean distance function to Γ1).
Moreover, by classical doubling variable techniques it is standard to obtain a
contradiction if x̂ belongs to the interior of D (see for instance [27, Theorem
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7.3]). Such techniques have to be modified if x̂ belongs to Γ2. Thanks to the
property (4.9) of the domain, the existence of a family of C2 test functions
{wε}ε>0 can be proven as in [22, Theorem 4.1]. Among the other properties,
{wε} : RM ×RM → R satisfies:

wε(x, x) ≤ ε(4.12)

wε(x, y) ≥ C |x− y|
2

ε
(4.13)

− ∂x
M
wε(x, y) ≥ −C |x− y|

2

ε
if x ∈ Γ2 ∩B(x̂, η), y ∈ B(x̂, η)(4.14)

− ∂y
M
wε(x, y) ≥ 0 if y ∈ Γ2 ∩B(x̂, η), x ∈ B(x̂, η)(4.15)

for ε > 0 and some η > 0 small enough.
Applying the doubling variables procedure we define

Φε(x, y) := ϑ(x)− ϑ(y)− γ log(1 + |x|2
M−1

)− γ log(1 + |y|2
M−1

)− wε(x, y)− |x− x̂|4.

and we denote by (xε, yε) its maximum point. Thanks to properties (4.12)
and (4.13), we have for ε→ 0 that

(4.16) xε, yε → x̂ and
|xε − yε|2

ε
→ 0.

Thus for ε small enough we can assume that xε, yε /∈ Γ1, however since the
case x̂ ∈ Γ2 is taken into account, the sequence (xε, yε) may consider points
on Γ2. Taking ε small enough we can also say that xε, yε ∈ B(x̂, η) and then
we can make use of properties (4.14) and (4.15).
If xε ∈ Γ2, using (4.16), we have that for ε small enough

− ∂x
M

(
wε(xε, yε) + γ log(1 + |xε|2M−1

) + |xε − x̂|4
)

≥ −C |xε − yε|
2

ε
− 4|xε − x̂|3 > −α.

Similarly if yε ∈ Γ2 one has

−∂y
M

(
− wε(xε, yε)− γ log(1 + |yε|2M−1

)
)
≤ 0 < α

for ε small enough.
This means that, considering wε(·, yε) + γ log(1 + | · |2

M−1
) + | · −x̂|4 and

−wε(xε, ·)− γ log(1 + | · |2
M−1

) as test functions for ϑ and ϑ respectively, for
sufficiently small values of ε the derivative boundary conditions in xε and
yε can be neglected and one can only consider in Γ2 ∪D

λϑ+H(xε, Dϑ,D
2ϑ) ≤ 0 and λϑ+H(yε, Dϑ,D

2ϑ) ≥ 0

in the viscosity sense. Thanks to the properties of H and wε, this leads to
a contradiction using the arguments in [22, 27]. �

Corollary 4.5. The value function ϑ is the unique bounded continuous vis-
cosity solution to equation (4.8) in D.
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Starting by its HJB characterization in D, ϑ can be extended in a unique
way to the full space Rd ×R by

(4.17)
ϑ(x, y) = y for any y ≥Mg

ϑ(x, y) = ϑ(x, g(x)) for any y ≤ g(x).

However, we can observe that, in order to characterize the original value
function v, the way we extend ϑ for y > Mg does not matter and only the
values of ϑ for y = g(x) ≤Mg are relevant.

5. Numerical approximation

In this section, convergence is proven for a general class of numerical
schemes. Then, we show that a fully-discrete semi-Lagrangian method ap-
plied to the problem under consideration belongs to this class.
Let BC denote the space of bounded and continuous functions in Rd+1

equipped with the L∞-norm. Further, we introduce the discretization pa-
rameters

∆x = (∆x1, . . . ,∆xd) ∈ (R>0)d, ∆y > 0, ρ = (∆x,∆y)

and denote the corresponding mesh by

Gρ := { (xi, yj) = (i∆x, j∆y), (i, j) ∈ Zd ×Z } ,

where i∆x = (i1∆x1, . . . , iN∆xN ), i ∈ Zd. We set

jx := min { j ∈ Z | j∆y ≥ g(x) } ,(5.1)

jM := min { j ∈ Z | j∆y ≥Mg }(5.2)

and introduce a projection operator

(5.3) ΠG
ρ
(φ)(xi, yj) :=


yj if j ≥ jM
φ(xi, yj) if jM > j ≥ jxi
φ(xi, yjxi ) if j < jxi

for functions φ ∈ BC. We aim to define a general approximation of the
value function ϑ. We start considering a general scheme

Sρ(xi, yj , φi,j , φ) = 0

that approximates the equation

λφ+H(x, y,Dxφ, ∂yφ,D
2
xφ) = 0

at node (xi, yj), with H defined by (4.2). Here φi,j = φ(xi, yj) and φ denote
the values of φ at nodes different from (xi, yj). Sρ may represent a finite
difference operator (see [13, 12, 30]), or a semi-Lagrangian (SL) scheme
([32, 15, 19]). The main idea of the numerical method described here is to
mix the use of a standard scheme for (4.8a), together with a projection step
on ∂D in order to get the desired boundary conditions. Let us point out that
a similar method was introduced for treating oblique derivative boundary
conditions, i.e. the condition we have in Γ2, in [5] for the case g(x) ≡ |x|
and in [11] for a general Lipschitz continuous function g. In addition, here
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the numerical solution has also to satisfy the Dirichlet condition on Γ1.
We define V on Gρ such that

(5.4)


Vi,j = yj if yj ≥Mg,

Sρ(xi, yj , Vij , Π
Gρ(V )) = 0 if g(xi) ≤ yj < Mg,

Vi,j = Vi,jxi if yj < g(xi)

and we denote by V ρ its continuous extension by bilinear interpolation. We
assume the grid Gρ aligned with the domain [−Mg,Mg], so that we have
V ρ = Mg on Γ1.

5.1. General convergence result. In order to prove the convergence of
V ρ to the unique viscosity solution ϑ of (4.8) we will make use of the ar-
guments introduced by Barles and Souganidis in [6]. These make use of
the properties of stability, consistency and monotonicity of the scheme. We
assume that the scheme defined by (5.4) satisfies the following assumptions:

(H3.a) Stability: for any ρ the scheme (5.4) admits a solution V ρ ∈ BC(D).
Moreover, there exist M,L ≥ 0 such that

V ρ(x, y) ≤M and |V ρ(x, y)− V ρ(x, y′)| ≤ L|y − y′|

for any (x, y), (x, y′) ∈ D and ρ > 0.

(H3.b) Consistency: the scheme Sρ is consistent with respect to (4.1) in D,
i.e. for all (x, y) ∈ D and every φ ∈ C2(D) there holds

lim
ρ→0,

D3(ξ,γ)→(x,y),
ζ→0

Sρ(ξ, γ, φ(ξ, γ) + ζ, φ+ ζ) = λφ+H(x,Dxφ,D
2
xφ).

(H3.c) Monotonicity: for every ρ, r ∈ R, (x, y) ∈ D, Sρ(x, y, r, φ) depends
only on the values of φ in a neighborhood Bη(ρ)(x, y) of (x, y) with

η(ρ) ≥ 0 such that η(ρ)→ 0 for ρ→ 0. For all function φ1, φ2 : Rd×
R→ R with φ1 ≥ φ2 on Bρ(x, y), there holds

Sρ(x, y, r, φ1) ≤ Sρ(t, x, y, r, φ2).(5.5)

Remark 5.1. Stability, consistency and monotonicity are the classical re-
quirements to prove convergence of numerical schemes in the framework of
viscosity solutions. However, in our case some slight modifications with
respect to the original assumptions considerend in [6] are necessary. In par-
ticular, the additional regularity assumption with respect to the variable y
turns out to be fundamental to deal with Dirichlet boundary conditions, while
the reason for our formulation of the monotonicity condition is the fact that
the numerical scheme Sρ defined on D may use some values of the function
V ρ outside the domain D.

Theorem 5.2. Let assumptions (H1)-(H2) be satisfied and let the scheme
(5.4) satisfy assumption (H3). Then for ρ→ 0 the solution V ρ converges to
the unique viscosity solution to (4.1).
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Proof. Let us define for (x, y) ∈ D

V (x, y) := lim sup
D3(ξ,γ)→(x,y)

ρ→0

V ρ(ξ, γ),

V (x, y) := lim inf
D3(ξ,γ)→(x,y)

ρ→0

V ρ(ξ, γ)

Observe that the semi-limits are well-defined thanks to the boundedness of
V ρ uniformly with respect to ρ. We start by proving that V is a viscosity
sub-solution to equation (4.1).
Thanks to the Lipschitz continuity of V ρ with respect to y (uniform with
respect to ρ) and the fact that, by definition, V ρ(x, y) = Mg on Γ1 one has

for any (ξ, γ) ∈ D

|V ρ(ξ, γ)−Mg| = |V ρ(ξ, γ)− V ρ(ξ,Mg)| ≤ L|γ −Mg|,

so that

lim
D3(ξ,γ)→(x,y)

ρ→0

V ρ(ξ, γ) = Mg.

Hence, V = Mg on Γ1 and the Dirichlet condition is satisfied.

Let ϕ ∈ C2(D) and let (x̄, ȳ) be a local maximum point for V − ϕ on D.
Without loss of generality we can assume that (x̄, ȳ) is a strict local maxi-
mum in Br(x̄, ȳ)∩D for a certain r > 0 and ϕ ≥ 2 supρ ‖W ρ‖∞ outside the
ball Br(x̄, ȳ). We claim that{

λu+H(x̄, ȳ, Dxϕ, ∂yϕ,D
2
x)ϕ ≤ 0 if (x̄, ȳ) ∈ D,

min(λu+H(x̄, ȳ, Dxϕ, ∂yϕ,D
2
xϕ),−∂yϕ) ≤ 0 if (x̄, ȳ) ∈ Γ2.

We follow the argument in Barles and Souganidis [6]. There exists a sequence
ρk, (xk, yk) such that ρk → 0, (xk, yk)→ (x̄, ȳ) for k →∞, and

(V ρk − ϕ)(xk, yk) = max
D

(V ρk − ϕ) = δk → 0, as k →∞(5.6)

and

V ρk(xk, yk)→ V (x̄, ȳ), as k →∞.
–Case 1: (x̄, ȳ) ∈ D. For k large enough (xk, yk) ∈ D. Since g is
continuous, for ρk small enough we can assume that y > g(x) for any
(x, y) ∈ Bη(ρk)(xk, yk) (where Bη(ρk)(xk, yk) is the neighborhood that ap-
pears in assumption (H3.c)). Consequently, for k big enough

ΠGρk (V ρk) = V ρk and V ρk < ϕ+ δk

in Bη(ρk)(xk, yk). By the monotonicity of the scheme (assumption (H3.c))
we further deduce

0 = Sρk(xk, yk, V
ρk(xk, yk), Π

Gρk (V ρk))

≥ Sρk(xk, yk, ϕ(xk, yk) + δk, ϕ+ δk))
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and by the consistency assumption (H3.b) we obtain that as k →∞

λϕ+H(x̄, ȳ, Dxϕ, ∂yϕ,D
2
xϕ) ≤ 0.

– Case 2: (x̄, ȳ) ∈ Γ2. If −∂yϕ(x̄, ȳ) ≤ 0 the sub-solution property on Γ2 is
automatically satisfied. Let us assume that −∂yϕ(x̄, ȳ) > 0.
We point out that if ȳ = g(x̄), (xk, yk) can also be on Γ2 and the scheme
may involve values Vm,n on some point (xm, yn) which is not in D.
If −∂yϕ(x̄, ȳ) > 0, there exists a neighbourhood V of (x̄, ȳ) where ∂yϕ is well
defined and −∂yϕ > 0. Therefore,

y ≤ y′ ⇒ ϕ(x, y) ≥ ϕ(x, y′) ∀(x, y), (x, y′) ∈ V.(5.7)

and, taking k large enough, Bη(ρk)(xk, yk) ⊂ V. Let (x, y) ∈ Bη(ρk)(xk, yk).
If y ≥ g(x), we have

ΠGρ(V ρk(x, y)) = V ρk(x, y) ≤ ϕ(x, y) + δk.

If y < g(x), ΠGρ(V ρk(x, y)) = V ρk(x, yjx) and we have

(5.8)

ΠGρ(V ρk(x, y)) = V ρk(x, yjx)

≤ ϕ(x, yjx) + δk using (5.6)

≤ ϕ(x, y) + δk using (5.7)

For the last inequality one also need to observe that if (x, y) ∈ V and
y < g(x), thanks to the continuity of g one can choose k big enough so
that also (x, yjx) ∈ V.
Consequently, we have ΠGρ(V ρk) ≤ ϕ+δk on Bη(ρk)(xk, yk). Thus by mono-
tonicity we have

0 = Sρk(xk, yk, V
ρk(xk, yk), Π

Gρ(V ρk))

≥ Sρk(xk, yk, ϕ(xk, yk) + δk, ϕ+ δk))

and using consistency when k →∞ we have

λϕ+H(x̄, ȳ, Dxϕ, ∂yϕ,D
2
xϕ) ≤ 0.(5.9)

This proves that V is a viscosity subsolution to (4.1). Analogously one can
show that V is a viscosity sub-solution. Applying the comparison principle
(Theorem 4.4), it follows that V ≥ V on D. Since V ≤ V is always true
by definition, it is possible to conclude that V = V on D, which proves the
assertion. �

5.2. Semi-Lagrangian scheme. In this section we introduce a semi-Lagran-
gian scheme and verify that it satisfies assumptions (H3).
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5.2.1. Semi-discretization. To simplify the presentation, we consider first a
semi-discrete version of the scheme. Let h > 0 be the time discretization
parameter of the dynamics. We define the mapping T0 : BC → BC with

T0(φ)(x, y) :=

min
u∈U

{
(1− λh)

2p

2p∑
k=1

φ

(
x+ hb(x, u) +

√
hp(−1)kσb k+1

2
c(x, u),

y

1− λh

)}
where b·c denotes the integer part. Furthermore, let X(Mg) be the subset
of BC given by

X(Mg) :=

{
φ ∈ BC ∩ Lipy

φ(x, y) = y for all (x, y) ∈ Rd ×R
with Mg ≤ y ≤ 2Mg(1− λh)

}
,

where Lipy denotes the set of functions that are Lipschitz continuous with
respect to y. We introduce the operator T0 : X(Mg)→ X(Mg) defined by

(5.10) T0(φ)(x, y) := T0(Π(φ))(x, y)

where Π is the the continuous version of the projection ΠG
ρ
, i.e. :

Π(φ)(x, y) :=

 y ∧ 2Mg if y ≥Mg,
φ(x, y) if g(x) ≤ y < Mg,
φ(x, g(x)) if y ≤ g(x).

Remark 5.3. Compared with (5.3) here we have modified the value of the
operator Π for y ≥Mg in order to guarantee the boundedness of the opera-
tor T . It is possible to verify that this does not affect the proof of the main
convergence result which only concerns neighborhoords of points in D.

Observe that for functions φ in X(Mg) the operator Π simplies to

(5.11) Π(φ)(x, y) = φ(x, g(x) ∨ (y ∧ 2Mg)).

Lemma 5.4. The operator T0 is well-defined.

Proof. For every φ ∈ X(Mg) the image T0(φ) is bounded and continuous.
For L ≥ 0 let Lipy(L) ⊂ Lipy be the subset of functions with Lipschitz
constant L. Then we have for φ ∈ Lipy(L)

|T0(φ)(x, y)− T0(φ)(x, y′)|

≤ max
u∈U

(1− λh)

2p

2p∑
k=1

∣∣∣Π(φ)
(
Xu,k,p
x (h), Y u

y (h)
)
−Π(φ)

(
Xu,k,p
x (h), Y u

y′(h)
)∣∣∣

where we use the notation

Xu,k,p
x (h) := x+ hb(x, u) +

√
hp(−1)kσb k+1

2
c(x, u),

Y u
y (h) :=

y

1− λh
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for any (x, y) ∈ Rd+1 and u ∈ U . From (5.11) we obtain

|Π(φ)(x, y)−Π(φ)(x, y′)| = |φ(x, y ∨ (g(x) ∧ 2Mg))− φ(x, g(x) ∨ (y′ ∧ 2Mg))|
≤ L|(y ∨ (g(x) ∧ 2Mg))− (y′ ∨ (g(x) ∧ 2Mg))|
≤ L|y − y′|;

here we used the classical inequalitites

(5.12)
|a ∨ b− c ∨ d| ≤ |a− c| ∨ |b− d|,
|a ∧ b− c ∧ d| ≤ |a− c| ∨ |b− d|.

Therefore, we have

|T0(φ)(x, y)− T0(φ)(x, y′)| ≤ max
u∈U

(1− λh)

2p

2p∑
k=1

L
∣∣Y u
y (h)− Y u

y′(h)
∣∣

≤ max
u∈U

(1− λh)

2p

2p∑
k=1

L
|y − y′|

(1− λh)

which implies T0(φ) ∈ Lipy(L).
Moreover, for y ≥Mg one has y/(1− λh) > Mg and then

T0(φ)(x, y) = min
u∈U

{
(1− λh)

2p

2p∑
k=1

(
y

1− λh

)
∧ 2Mg

}
= y ∧ 2Mg(1− λh)

which proves that T0(φ) ∈ X(Mg). �

Next we verify the properties of stability, consistency and monotonicity
(in the sense of assumption (H3)) for the scheme

(5.13) Sh(x, y, φ(x, y), φ) :=
1

h

(
φ(x, y)−T0(φ)(x, y)

)
for φ ∈ X(Mg).

The fact of dealing with an infinite horizon problem and therefore with a
stationary PDE requires the use of a fixed point argument in order to prove
the existence of a solution for (5.13). We point out that, due to the presence
of the projection operator, X(Mg) is the suitable space to guarantee the
continuity of T (φ).

Lemma 5.5 (Stability). For 0 ≤ λh < 1 there exists a fixed point of the
equation

(5.14) Sh(x, y, φ(x, y), Π(φ)) =
1

h

(
φ(x, y)− T0(φ)(x, y)

)
in X(Mg) and the scheme Sh is stable in the sense of assumption (H3.a).

Proof. T0 is a contraction on X(Mg), since

‖T0(v)− T0(w)‖∞ ≤
(1− λh)

2p

2p∑
k=1

‖(Πv)− (Πw)‖∞ ≤ (1− λh) ‖v − w‖∞ .
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Furthermore, since (X(Mg), ‖ · ‖∞) is a closed subset of (BC, ‖ · ‖∞), it is a
complete metric space. Thus we obtain existence by the Banach-Cacioppoli
fixed point theorem. Stability in the sense of assumption (H3.a) follows
from the fact that the bound and Lipschitz constant of the fixed point do
not depend on h. �

The lemma implies in particular, that for any (x, y) ∈ D there exists a
solution in X(Mg) of the scheme

Sh(x, y, φ(x, y), Π(φ)) = 0,

which we denote by V h in the sequel. Observe that V h automatically satisfies
the boundary condition V h(x,Mg) = Mg.

Lemma 5.6 (Consistency). For any smooth and bounded function φ, there
exists some C > 0 such that∣∣∣∣1h(φ(x, y)−T0(φ)(x, y))−

(
λφ+H(x, y,Dxφ, ∂yφ,D

2
xφ)
)∣∣∣∣ ≤ Ch.

Proof. The assertion follows straightforward by a Taylor expansion. For
simplicity we show the results in the one dimensional case. Observing that

1

1− λh
= 1 + λh+O(h2),

we have

φ(x, y)−T0(φ)(x, y)

= φ(x, y)− (1− λh)

2
min
u∈U

{
φ

(
x+ hb(x, u) +

√
hσ(x, u),

y

1− λh

)
+ φ

(
x+ hb(x, u)−

√
hσ(x, u),

y

1− λh

)}
= λhφ(x, y)− (1− λh)

2
min
u∈U

{
φx(x, y)(hb(x, u) +

√
hσ(x, u)) + φy(x, y)(λhy)

+
1

2
φxx(x, y)(hb(x, u) +

√
hσ(x, u))2 + φxy(x, y)(hb(x, u) +

√
hσ(x, u))(λhy)

+
1

6
φxxx(x, y)(hb(x, u) +

√
hσ(x, u))3

+ φx(x, y)(hb(x, u)−
√
hσ(x, u)) + φy(x, y)(λhy)

+
1

2
φxx(x, y)(hb(x, u)−

√
hσ(x, u))2 + φxy(x, y)(hb(x, u)−

√
hσ(x, u))(λhy)

+
1

6
φxxx(x, y)(hb(x, u)−

√
hσ(x, u))3

}
+O(h2)

= λhφ(x, y)−min
u∈U

{
hb(x, u)φx(x, y) + hλyφy(x, y) +

1

2
hσ2(x, u)φxx(x, y)

}
+O(h2).

�

Lemma 5.7 (Monotonicity). For any h > 0 with 0 ≤ λh < 1 the scheme is
monotone in the sense of assumption (H3.c).
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Proof. For (x, y) ∈ D the definition of the operator T involves only values
at points (x+hb(x, u) +

√
hp(−1)kσb k+1

2
c(x, u), y/(1−λh)) which remain in

a neighborhood Bη(h) of (x, y), with η(h) = O(
√
h). Moreover, by definition

we have

Sh(x, y, φ(x, y), φ) =
1

h

(
φ(x, y)−T0(φ)(x, y)

)
and the assertion follows immediately, since for φ1 ≤ φ2 we have

T0(φ1)(x, y) ≤ T0(φ2)(x, y).

�

Having verified the assumptions (H3), we can apply Theorem 5.2 and
state a convergence result for the semi-discrete scheme.

Theorem 5.8. Let assumptions (H1)-(H2) be satisfied. Then for h→ 0 the
solution V h of the scheme (5.14) converges uniformly to ϑ in D.

5.2.2. Full-discretization. Now, we consider the scheme on the discretized
space. This requires to introduce an interpolation step in order to define
the value of the solution at points(

xi + hb(xi, u) +
√
hp(−1)kσb k+1

2
c(xi, u),

yj
1− λh

)
that may not belong to the grid Gρ (ρ ≡ (∆x,∆y)). We denote by [ · ] the
monotone, P1 interpolation operator, satisfying the following properties:

(5.15)

(i) [φ](xi, yj) = φ(xi, yj), ∀(xi, yj) ∈ Gρ;
(ii) |[φ](x, y)− φ(x, y)| ≤ L|(∆x,∆y)|, ∀φ ∈ Lip(L);
(iii) |[φ](x, y)− φ(x, y)| ≤ C(|∆x|2 +∆y2)

∥∥D2φ
∥∥
∞ ∀φ ∈ C2;

(iv) φ1 ≤ φ2 ⇒ [φ1] ≤ [φ2].

The fully discrete operator is then defined by

T (φ)(xi, yj) :=

min
u∈U

{
(1− λh)

2p

2p∑
k=1

[φ]

(
xi + hb(xi, u) +

√
hp(−1)kσb k+1

2
c(xi, u),

yj
1− λh

)}
and the fully discrete scheme reads:

(5.16) Sρ(xi, yj , φ(xi, yj), Π
Gρφ) :=

1

h

(
φ(xi, yj)−T (ΠG

ρ
φ)(xi, yj)

)
where

ΠG
ρ
(φ)(xi, yj) :=

 yj ∧ 2Mg if yj ≥Mg,
φ(xi, yj) if g(xi) ≤ yj < Mg,
φ(xi, g(xi)) if yj ≤ g(xi).

We associate to each grid function Sρ(·, ·, φ(·, ·), ΠGρφ) the continuous func-
tion obtained by bilinear interpolation in the grid points and denote it by
the same expression.
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Theorem 5.9. Let 0 ≤ λh < 1 and let the following condition be satisfied

|∆x|2 +∆y2

h
→ 0 as ρ, h→ 0.

Then scheme (5.16) is stable in the subspace of piecewise linear functions in
X(Mg), consistent and monotone in the sense of definition (H3).

Proof. Stability follows by similar arguments as in the semi-discrete case.
Indeed, observing that the bilinear interpolation preserves the Lipschitz
constant, the fix point theorem still holds if we consider piecewise bilin-
ear functions in X(Mg). Consistency can follow by (5.15)(iii). Indeed,
when interpolation is taken into account, in the estimates obtained proving
Lemma 5.6 one gets the extra term

|∆x|2 +∆y2

h
‖φxx‖

which goes to zero guaranteeing the consistency property. Monotonicity is
ensured by the use of a linear interpolation. �

Corollary 5.10. Let 0 ≤ λh < 1 and let the following condition be satisfied

|∆x|2 +∆y2

h
→ 0 as ρ, h→ 0.

Then, as ρ, h → 0 the solution V h,ρ of the fully discrete scheme (5.16)
converges in D to the unique viscosity of equation (4.8).

Proof. The proof follows from Theorem 5.9 and Theorem 5.2. �

6. A numerical test

In this section we present a numerical result where the controlled system
Xu
x (·) in R2 satisfies the following stochastic differential equation:

(6.1)

 dX(s) =

(
X2(s)
u(s)

)
ds+ σ(X(s)) dBs, s ≥ 0,

X(0) = x

where B· is a two-dimensional Brownian motion (p = 2), U = [−1, 1] ⊂ R
and the function σ : R2 → R2×2 is defined, for every x ≡ (x1, x2)T ∈ R2,
by:

σ(x) =
1

2
max(1−

√
(x1 + 0.5)2 + (x2 − 0.5)2, 0)×

(
1 0
0 1

)
.

This setting satisfies assumption (H1). We consider the cost function g :
R2 → R with:

g(x) :=
1

2
d(x,K) ∀x ∈ R2,
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where d(x,K) stands for the Euclidean distance between x ∈ R2 and the
set K := [−1, 1]2. The auxiliary value function that will be approximated is
given by:

ϑ(x, y) = inf
u∈U

E
[

max
s∈[0,+∞)

e−λsd(Xu
x (s),K) ∨ y

]
,

with λ = 2.
In this test, the computational domain for (x1, x2, y) is

Υ := [−2, 2]× [−2, 2]× [−1, 1].

Observe that, given the boundedness of Υ , the function g satisfies assump-
tion (H2).

The numerical scheme implemented is the SL scheme introduced in Sec-
tion 5.2. We denote by Nx1 , Nx2 and Ny the number of mesh steps for the
space variables x1, x2 and y on the domain Υ , i.e. ∆x1 = 4/Nx1 , ∆x2 =
4/Nx2 and ∆y = 2/Ny. According to Section 5.2, we also use the notation
h for the time step in the SL scheme.

The control values u are in [−1, 1] and since the dynamics depends linearly
on the control, we consider in the numerical simulations only five control
values (Nu = 5) u ∈ {−1;−0.5; 0; 0.5; 1} (actually, we have also verified that
three control values u ∈ {−1; 0; 1} give analogous results).

Since the exact value function is not known, we solve first the HJB equa-
tion on a refined grid where Nx1 = Nx2 = 640 and Ny = 160 and with
h = 0.015. We denote by V ref the approximated solution obtained on this
grid that we will consider as a reference solution. To check the stability
and numerical convergence of the SL scheme, we consider different grids Gρ
(ρ ≡ (∆x1, ∆x2, ∆y)) and time steps h, and compute the numerical solu-
tions V h,ρ. In Table 1, we report the numerical error ‖V ref − V h,ρ‖ for
different grids and norms. In this table, the first two columns indicates the
grid size (i.e. Nx1 ×Nx2 ×Ny) and the SL time step h, respectively. In the
other three columns, we report the computed error in L1, L2 and L∞-norm
and the associated order of convergence.

Table 1. Convergence table.

Grid h L1-error order L2-error order L∞-error order

402 × 10 0.24 1.89E-01 - 2.37E-01 - 1.14E+00 -
802 × 20 0.12 9.71E-02 0.96 1.34E-01 0.83 7.28E-01 0.64
1602 × 40 0.06 4.17E-02 1.22 6.35E-02 1.07 4.04E-01 0.85
3202 × 80 0.03 1.41E-02 1.57 2.26E-02 1.49 1.73E-01 1.23

From this table, one can notice that the SL scheme is stable in L∞-norm.
This confirms the theoretical results of the previous sections (compare these
results with Lemma 5.6 and Theorem 5.9 which give for |∆x|, ∆y ∼ h order
one of consistency). Moreover, we observe that the numerical convergence is
also valid in L1 and L2 norms. The observed asymptotic rate of convergence,
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for this example, seems to tend towards an order greater than one (however,
this observation might be due to the fact that we are comparing with a
numerical reference solution and not with the exact solution itself).

Figure 1 shows the approximation of ϑ(x1, x2, 0) = v(x1, x2) (where v is
defined as in (2.4)) obtained on different grids. More precisely, figure 1-(a)
corresponds to an approximation of ϑ(·, 0) on a grid of 20 × 20 × 5 points
and with h = 0.48. In figure 1-(b) the approximation of ϑ(·, 0) is computed
on a grid of 40× 40× 10 points and with h = 0.24. And finally, we display
in figure 1-(c) an approximation of ϑ(·, 0) on a grid of 80 × 80 × 20 points
and with h = 0.12. From these plots, we notice again that the numerical
scheme is stable.

(a) (b)

(c)

Figure 1. Approximation of ϑ(·, ·, 0) on three different grids.

7. Conclusions

In this paper we have studied infinite horizon stochastic optimal control
problems with cost in maximum form. By the introduction of an auxiliary
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Markovian problem and dynamic programming arguments we have charac-
terized the associated value function by means of a HJB equation with mixed
Dirichlet-derivative boundary conditions. We have proposed a general nu-
merical scheme which incorporates the treatment of the boundary condi-
tion and proved its convergence to the unique viscosity solution of the HJB
equation under the assumptions of monotonicity, consistency and stability.
Furthermore, we have shown that a particular semi-Lagrangian scheme sat-
isfies such assumptions and therefore can be used to approximate the value
function of the original problem.
Further directions of work might involve the application of our scheme to
the computation of viable and invariant sets (see [11, Section 2.3]) as well
as the theoretical proof of the associated rate of convergence.
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