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Abstract: Positron emission tomography (PET) radioligands targeting the human translocator
membrane protein (TSPO) are broadly used for the investigations of neuroinflammatory conditions
associated with neurological disorders. Structural information on the mammalian protein
homodimers—the suggested functional state of the protein—is limited to a solid-state nuclear
magnetic resonance (NMR) study and to a model based on the previously-deposited solution NMR
structure of the monomeric mouse protein. Computational studies performed here suggest that
the NMR-solved structure in the presence of detergents is not prone to dimer formation and is
furthermore unstable in its native membrane environment. We, therefore, propose a new model
of the functionally-relevant dimeric form of the mouse protein, based on a prokaryotic homologue.
The model, fully consistent with solid-state NMR data, is very different from the previous predictions.
Hence, it provides, for the first time, structural insights into this pharmaceutically-important target
which are fully consistent with experimental data.
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1. Introduction

The human translocator membrane protein (TSPO) [1–3] is a key biomarker for the
diagnostics of inflammatory conditions in the brain [4]. Expression of human TSPO in the outer
membrane of the mitochondria is indeed strongly up-regulated in areas of brain injury and
in neuroinflammatory conditions, including those associated with Alzheimer’s and Parkinson’s
disease [5]. Increased expression levels of human TSPO can be monitored by positron emission
tomography (PET). PET uses radiolabeled human TSPO ligands to sensitively recognize lesions and
active disease processes of the brain [6–8]. In addition, selective human TSPO ligands are expected to
be therapeutic agents with a wide spectrum of action against psychiatric disorders and limited side
effects [9,10]. Several specific diagnostic ligands show potent activity (Ki: 0.18–11 nM) for both rat
and human TSPOs [11]. More recently, other studies have investigated the use of low-affinity TSPO
binders to treat traumatic brain injury and brain inflammation [12–15]. These works have pointed
out that also low-affinity binders of TSPO can be effectively employed to control apoptosis, to reduce
neuronal degeneration and promote neurosteroidogenesis.

However, the mode of action of these ligands is still unclear due to the controversial structural
information on TSPO. The protein topology consists of five transmembrane helices (TM-I to TM-V)
connected by two loops (LP-I and LP-III) at the cytosol interface and two loops (LP-II and LP-IV) placed
in the intermembrane space (Figure 1). Mammalian TSPOs can assemble in multimeric complexes (up
to six units) in vivo [16,17], but the dimeric form is likely to be already functional [2,18]. Unfortunately,
no oligomeric mammalian experimental structure is available.
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Figure 1. Topology of mTSPO for the models here considered. Specific regions and motifs discussed in
the text are highlighted for mTSPO_NMR_monomer (A) and mTSPO_Rs_monomer (B). The topology
is generated using the Protter web application [19].

Current information on the structural determinants and the subunit-subunit assembly
of mammalian TSPOs is derived from solid-state NMR investigations on the mouse protein
(mTSPO) [20]. This is expected to be similar to the human TSPO, because of the high mutual
sequence identity (81%, as obtained from the analysis of the sequence identity performed
with BLAST [21,22]). mTSPO’s monomer-monomer interface involves residues from the TM-III
helix [20] (Figure 1 and Table 1). These include: (i) the G83XXXG87 (X = any residue) motif
present across different protein classes’ interfaces, [23–27]; and (ii) the W95XPXF98 motif [28],
occurring across eukaryotic and prokaryotic TSPOs. In the same study, the authors also
presented a prediction of the functionally relevant dimer structure, based on a previously
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published solution NMR structure of monomeric mTSPO [29] in complex with its high
affinity ligand 1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide (PK11195)
(Kd = 2.1–28 nM, see Figure S1) [7,30,31] (mTSPO_NMR_monomer in this study, PDBiD: 2MGY).
Unfortunately, this model [20] shows some inconsistencies. These are likely to be caused, at least in part,
by intrinsic limitations of the solution NMR structural template [29]. Indeed, the protein’s conformation
may be affected by the use of ionic detergents (decylphosphocholine micelles) during the purification
and the NMR measurements [28,32]. This concern is corroborated by binding assays of PK11195 in
ionic detergents [30,32]: the affinity is abolished by purifying the protein in a sodium dodecyl sulfate
detergent, and it is restored up to about 1.5 nM after the removal of SDS and reconstruction into
liposomes [30]. Hence, the proposed solution NMR monomer structure may be in a conformational
state different from the one in the mitochondrial membrane [28].

Table 1. Residues of the mTSPO/PK11195 complex located either in the protein binding cavities or
at the dimer interface, according to the experimental data [20] and to the proposed dimer models.
These models are based either on the NMR structure (mTSPO_NMR, [20] and this work) or on the
protein from Rhodobacter Sphaeroides (RsTSPO, this work). Residues at the interface accordingly to
both the NMR data [20] and mTSPO_Rs are in bold. mTSPO_Rs’ binding pockets do not include
exactly the same residues because of differences of the ligands’ binding poses, as obtained with
docking simulations described in the text. On the contrary, mTSPO_NMR binding pockets include
by construction exactly the same residues. The residues within 5 Å from the ligand are assigned to
the binding cavity and reported in this table. The corresponding list of the residues within 4 Å and
6 Å from the ligand is shown in Table S6 and Figure S5. We report also a list of the residues with a
conservation rate higher than 85% in multiple sequence alignment across 148 homologous sequences to
the mTSPO, as determined with the ConSurf server [33], along with the topological area of the protein
where these sequences are found. A detailed discussion of the evolutionary coupling of the residues is
presented in the Results section and in Figure S6.

Region Inferred by Experiment mTSPO_NMR mTSPO_Rs

Binding
Cavity

G19, A23, V26, R27, H43,
R46, L49, A50, I52, W53,
W95, W107, A110, D111,

L114, W143, A147,
L150, N151

Subunit A Subunit B Subunit A Subunit B

G18, G19, F20,
G22, A23, V26,
R27, G30, L31,
K39, P40, S41,
H43, P44, P45,
R46, L49, A50,
I52, W53, W93,

W95, W107,
A108, A110,
D111, L114,
W143, F146,
A147, T148,
L150, N151

G18, G19, F20,
G22, A23, V26,
R27, G30, L31,
K39, P40, S41,
H43, P44, P45,
R46, L49, A50,
I52, W53, W93,

W95, W107,
A108, A110,
D111, L114,
W143, F146,
A147, T148,
L150, N151

P15, G18, G19,
M21, G22, A23,
F25, V26, R27,
G28, E29, Y34,
K39, H43, P44,
R46, L49, A50,
W53, G54, Y57,
N92, W93, W95,
P96, F99, F100,

L112, W143,
F146, A147,
T148, L150,
N151, V154

G18, M21, G22,
A23, F25, Y34,
H43, P44, R46,
L49, A50, W53,
L56, Y57, N92,
W93, A9, W95,
P96, P97, F99,

F100, L112,
V115, Y140,
L141, W143,
A147, L150

Dimer
Interface

V80, G83, Q88, N92,
W93, W95, I98, F100,

G101, A102, D111, V118

F74, T75, E76, D77, M79, V80, P81,
G83, L84, T86, G87, Q88, A90, L91

V6, P7, G10, L11, L13, V14, L17,
G18, F20, M21, Y24 V26, R27(A)

M79, V80, L82, G83, L84, Y85, T86,
G87, A90, L91, W93, A94, P97, I98,

A102, Q104, W107, A108, A110,
D111, L114, V118, A121, A125

Conserved
Residues

LP-I: L37, P40, P44, P45, TM-II: W53, L56, G61, TM-III: N92, W95, F99, F100, TM-V: L136, P139,
Y140, W143, A147, L150, N151

Evolutionary
Coupling

P40, P45 coevolve with L150; P44, P45 with W95; W53 with L56, A147, L150;
W95 with A147 and N151
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Prompted by the pharmacological importance of the protein, here we have constructed a new
model of dimeric mTSPO. We use as a template the prokaryotic protein X-ray structure, which features
the same fold as the eukaryotic one [34]. Our prediction turns out to be fully consistent with the
available experimental topological information, thus delving for the first time into the structural
determinants of this exceptionally important target for pharmacological interventions and diagnostics.

2. Results

The only model reported so far for the functional, dimeric form of eukaryotic TSPOs
(mTSPO_NMR hereafter) is based on mTSPO_NMR_monomer structure [29]. As mTSPO_NMR’s 3D
coordinates are currently not available, we have repeated the procedure reported in [20] to construct
and analyze it. The mTSPO_NMR model (Figure 2A) reveals some drawbacks: (i) Residues N92, W93,
W95, I98, F100, G101, and A102, experimentally identified to be located at the monomer-monomer
interface, are separated by a distance of 9 Å or more (Table 1 and Figure 2A); (ii) Conversely,
there are six residues, from F74 to M79, located at the dimer interface, that were found elsewhere
experimentally (Table 1 and Figure 2A); (iii) The predicted embedding of the protein into the
membrane (as obtained with the ‘Positioning of Proteins in Membranes’, PPM, server [35]) shows
that the dimer is significantly tilted with respect to the membrane plane. As a result, the thickness
of the hydrophobic region of this model is far smaller (14 Å) than that required in a biological
hydrophobic membrane region (Figure 2B and Table S2). Therefore, it is unlikely that mTSPO_NMR
can be correctly embedded in a biological membrane. We underline that the embedding in the
mitochondria membrane is compatible with the generalized membrane used by the PPM server
(http://opm.phar.umich.edu/protein.php?search=tspo). Indeed, the PPM database contains the
monomer of mouse TSPO embedded in mitochondria membrane and either the tilt and membrane
thickness is fully compatible with our modeled structure (Figure 2E); (iv) Several charged residues are
exposed towards the membrane (see Figure 2C); (v) PK11195 forms highly stabilizing interactions in the
Bacillus cereus TSPO/PK11195 X-ray structure (PDBiD: 4RYI) (these are π-stacking interactions with F90
and hydrogen bonds (H-bonds) with W51 (Figure S2B,C)) [36], not present in this model. The ligand
forms here mostly hydrophobic interactions with the protein (Figure S2A). In particular, the two
residues corresponding in the sequence alignment to F90 and W51 of the prokaryotic protein (W95
and W53) are not oriented in an optimal way inside the binding pocket (Figure S2), thus impeding a
similar interaction pattern. This finding is not consistent with the experimental evidence that PK11195
binds stronger to mammalian TSPOs [7,30,31] than to prokaryotic ones [32].

http://opm.phar.umich.edu/protein.php?search=tspo
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Figure 2. The mTSPO_NMR (A–C) and mTSPO_Rs dimers (D–F). (A) The G83XXXG87 motif
(blue surface) of mTSPO_NMR is located at the dimer interface, consistently with the experimental
findings [20] (Table 1). Other residues participating to the dimer interface in the model and according
to experiment [20] are represented by green and orange surfaces, respectively. (B) Embedding of
mTSPO_NMR in a bilayer membrane according to the PPM server [35]. The membrane boundaries
for the individual monomers are shown by pink and cyan spheres. Glycophorin A (PDBiD: 5EH4,
shown as pink ribbons) has been used as template to build the dimer, following the procedure of [20].
The membrane boundaries of this protein derived from the Orientation of Proteins in Membranes
(OPM) database [35] are shown as green spheres. The membrane boundaries of mTSPO_NMR are
not parallel to those of the template guiding the dimerization. (C) mTSPO_NMR electrostatic surface
potential. The surface potentials are calculated using APBS [37]. Red and blue surfaces represent
negative and positive electrostatic potentials (−5 kT/e, +5 kT/e), respectively. The exposed positively
charged (blue) surface in are generated by R27, R46, R156, and R161. (D) The blue surface shows
the G83XXXG87 motif of mTSPO_Rs. The green surface shows the other residues participating to
the dimer interface in each monomer. The orange surface shows the residues participating to the
dimer interface according to the experimental assignments data [20] not already included in the
previous selections. (E) Embedding of mTSPO_Rs in a bilayer membrane according to the PPM server
calculations. The membrane boundaries are shown in red. (F) mTSPO_Rs electrostatic surface potential.
These residues that are exposed towards the lipid membrane in C, have now the sidechains oriented
towards the cytoplasm.

We conclude that these inconsistencies with experimental data may limit the predictive power of
this model. Part of these drawbacks might be caused by limitations of the template structure used.

Therefore, we decided to build a new model (mTSPO_Rs hereafter), based on homology modeling
using the corresponding prokaryotic dimer from RsTSPO, for which an X-ray structure is available
(PDBiD: 4UC1) and whose folding is comparable with the ones of the eukaryotic protein [34].
This template appears rather suitable for this prediction.

Most importantly, our prediction turns out to be consistent with the results from solid-state NMR
(Figure 2). The two subunits of mTSPO_Rs arrange very differently than those of mTSPO_NMR:
they are oriented almost perpendicularly to the membrane bilayer. As a result, the thickness of the
hydrophobic region (~22 Å, see Table S2 and Figure 2D,E) is compatible with that of other membrane
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proteins [35]. Therefore, mTSPO_Rs can be embedded into a membrane bilayer. The side chains of
the charged residues point toward the cytosolic side, as expected for a membrane protein (Figure 2F).
This observation is in line with [34], which compares the electrostatic surface of RsTSPO with that
of mTSPO_NMR_monomer. The dimer interface is mainly hydrophobic (Table 1). It extends along
33 Å. It involves (i) V80, G83, W93, I98, and A102 from TM-III and V118 from TM-IV, consistently with
experimental data [20] (Table 1); (ii) the G83XXXG87 motif, also in agreement with experimental
data [20]; and (iii) the W95XPXF99 motif. Here, the side chains of P97 and I98 are directed to the
interface, while the side chains of W95, P96, and F99 point towards the inner binding cavity of
the protein. This is consistent with the experimental findings that assigns to the dimer interface
residues W95 and I98 from this motif [20]. The other residues occurring at the dimer interface in
the model, are placed in the proximity of other residues identified experimentally. Thus, we cannot
exclude that small structural adjustments in the area of the interface could optimize the interactions,
yielding monomer-monomer contacts fully consistent with the experimental assignments.

The topology of the monomers in the proposed model presents few, still significant differences
with respect the ones in mTSPO_NMR (Figure 1B) in the dispositions of the transmembrane and loops
regions. In turn, the position of several residues located in the binding site differ markedly from
those of mTSPO_NMR (Figure S3): W95, F99, and F100 orient towards the binding cavity, creating an
aromatic pocket suitable to accommodate the PK11195 ligand and offering multiple potential anchor
points for π-stacking interactions. Within the well-known limitations associated with the docking
procedures to a homology model [38], the induced-fit docking [39,40] of PK11195 using Glide [41–43]
and MOE [44,45] scoring functions, confirms that this is the case. Indeed, the ligand establishes at least
one π-stacking and one H-bond in each of the binding sites. The residues involved in these interactions
are W53, W93, and P96 (Figure S2D,E). As expected, in both subunits the ligand shares the same
binding pose, and only small differences can be observed in the two binding pockets. The interactions
patterns are not too different from those found in BcTSPO/PK11195 X-tray structure [36]. With the
same approach, the binding modes of other known mammalian TSPO tracers in mTSPO_Rs have been
also predicted (see Table S7 of the Supporting Information). The protein-ligand interactions turn out to
be overall similar to those discussed for PK11195.

We analyzed the coevolution among relevant regions of the protein (Table 1 and Figure S6).
W95 from the W95XP97XF99 motif, and N151, belonging to the cholesterol recognition amino acid
consensus (CRAC) motif (residues 149–156) [20,46,47] have coevolved. Interestingly, the W95XP97XF99
motif has also coevolved with binding site residues in LP-I and TM-II residues. Moreover, CRAC
domain residue L150 has coevolved with residues of the binding region. These include P40, P44,
and T48, placed in LP-I, as well as W53 placed in TM-II. Furthermore, residues Y140 and L144
belonging to the mirror cholesterol recognition amino acid consensus motif (CARC) [47] have
coevolved with binding-site residues of TM-II (W53, Y57). Our model shows that the W95XP97XF99
motif is involved in ligand binding and receptor dimerization. Our coevolution analysis accordingly
suggest that W95XP97XF99 is evolutionary linked to other binding sites residues, as well as with the
cholesterol-binding motif. This is in line with the suggested role of cholesterol in regulating TSPO
dimerization [20]. Notably, the W95XP97XF99 motif is located at the dimer interface only in our model.

We conclude that our prediction is overall in good agreement with experimental data and appears
a reasonable model of the functional form of mTSPO. In the following section, we discuss the feasibility
of the template structures used for the structural predictions discussed above.

Analysis of the Templates for mTSPO_NMR and for mTSPO_Rs

The ionic detergents used to determine the mTSPO_NMR_monomer structure [29] may affect
significantly the structure of the receptor. Indeed, these modify the binding affinity of TSPO for
PK11195 [30,32], possibly because of structural changes of the receptor. 700-ns MD simulations of
mTSPO_NMR_monomer with and without ligand, in explicit solvent and embedded in a membrane
environment (see Methods for details) suggest that this is indeed the case. The obtained conformations
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appeared to be equilibrated after 400 ns and they lead to a different conformation compared with the
NMR structure (See SI). While the ligand mostly retains its binding pose (see SI), the bending of the
helices (particularly of TM-II and TM-IV, Figure 3) increases, especially in the presence of the ligand.
This leads to a distortion of the helix bundle (Figure 4) and to a shrinking of the protein along the
direction perpendicular to the membrane, especially in the holo protein.Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  7 of 15 
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for the deposited 20 NMR structures of mTSPO_NMR_monomer (PDBiD: 2MGY) (A),
for mTSPO_NMR_monomer without (B) or with PK11195 (C) as a function of the simulation time.
Only the last 300 ns are shown. The Figure was made using the “bendix” plugin of the VMD
program [48].
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Moreover, we have analyzed the membrane embedding of the monomers that build our new
mTSPO_Rs dimer and compared it to the embedding of the mTSPO_NMR_monomer structure
(PDBiD: 2MGY). Using the QMEANBrane program [49], we observe that the monomer of our model
(mTSPO_Rs_monomer) shows higher scores than the NMR monomeric structure, indicating a better
membrane embedding already at the monomeric level (Figure S4).

All the multimeric TSPO structures are either dimers or trimers of RsTSPO from Rhodobacter
sphaeroides and BcTSPO from Bacillus cereus (Table S1). They have a sequence identity with mTSPO
is of 32% and 27%, respectively [28]. These proteins (i) have been crystallized in lipidic cubic
phase conditions [34,50] which have proven to be a reliable method to determine X-ray structures
of membrane proteins; (ii) they present a correctly folded membrane protein according to the
QMEANBrane server, which takes into account general statistical characteristics of membrane
proteins, but not membrane composition [49]; and (iii) they feature a characteristic motif located
at the subunit/subunit interface (A75XXXA79 in TM-III of RsTSPO and G44XXXG48 in TM-II
of BcTSPO). Both motifs are involved in the stabilization of helix-helix contacts across different
transmembrane proteins [51]. The alignment of RsTSPO and mTSPO sequences (Table S1) shows
that the A75XXXA79 motif matches the G83XXXG87 motif of mTSPO—as a crucial element in the
dimerization of mTSPO [20]—and in the resulting model the latest is correctly located at the dimer
interface. This is not the case for the G44XXXG48 motif, which does not align with the G83XXXG87
motif of mTSPO and in the resulting model it would not be located at the dimer interface. Thus,
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BcTSPO, by lacking this crucial feature, appears not to be a suitable template for a structural prediction
of the mTSPO functional dimer.

Although it shares a modest sequence identity with the mouse protein [28], all the results reported
above leads us to suggest that RsTSPO represents a fairly good template for our structural predictions.

3. Discussion

In this paper we propose an alternative dimer model of mammalian TSPO based on the deposited
X-ray structure of bacterial RsTSPO (mTSPO_Rs) with respect the one based on the NMR structure of
mTSPO (mTSPO_NMR). The major differences can be appreciated from Figure 2 and they regard (i) the
dimer interface, (ii) the embedding in a membrane bilayer, and (iii) the binding pocket and the effect
on ligand binding. For all of these aspects, the mTSPO_Rs dimer model appears more suitable than
mTSPO_NMR to describe the physiologically-relevant dimeric structure. The residues at the dimer
interface in mTSPO_Rs match those identified experimentally in solid state NMR [20], the simulated
embedding of mTSPO_Rs in a membrane is reasonable, and the predicted binding of the prototypical
ligand PK11195 if favored in mTSPO_Rs with respect to mTSPO_NMR. Remarkably, our proposed
model can rationalize the higher affinity of PK11195 for mammalian TSPO with respect the bacterial
protein. This is not the case for mTSPO_NMR, where the type and number of interactions do not seem
consistent with the measured nanomolar affinity [7,30,31].

Our model also shows that the W95XP97XF99 motif is involved in both ligand binding and
dimerization. Accordingly, we found that W95XP97XF99 residues have coevolved with residues
responsible for ligand binding and with the ones in the cholesterol binding motifs. This is in agreement
with the suggested role of cholesterol binding on the monomer-dimer equilibrium [20]. Furthermore,
the combined molecular modeling and co-evolution analyses suggest a possible interplay between the
W95XP97XF99 dimerization motif and cholesterol and ligand binding during evolution. Notably this
motif is not part of the dimer interface in mTSPO_NMR, while it is in mTSPO_Rs.

In conclusion, our model is in agreement with the available experimental data and can explain
several aspects of TSPO features related to dimerization and cholesterol binding.

4. Materials and Methods

4.1. Bioinformatics Analyses

We used the ConSurf server (http://consurf.tau.ac.il/2016/) [33] to perform a conservation
analysis across TSPO homologous sequences of TSPO. We set a cut-off value of 95% of sequence
identity and minimal cut off value of 35% homologue identity to retrieve the homologous
sequences to the mTSPO sequence. Further obtained multiple sequence alignment visualized online
(http://molsim.sci.univr.it/TSPO/).

The mTSPO sequence was submitted to the HHPRED server [52,53] to identify the most suitable
template. The Modeller program [54] then generated multiple homology models of the monomer
based on the template. We used a very slow mode of MD annealing technique for precise refinements.
We selected the best homology models according to DOPE [55] and GA341 scores [56], as well as the
model quality according to the QMEANBrane module from Swiss-model [49] (Figure S4).

We cross checked our alignment and model by performing an extensive conservation analysis to
identify the evolutionary relevance of the different amino acid positions in the protein, based on the
phylogenetic relation between homologous sequences to the mTSPO. A total of 1940 sequences were
used to build the Multiple Sequence Alignment, 1882 of which are unique and 148 are homologous
sequences to the mTSPO (visualized online http://molsim.sci.univr.it/TSPO/). As discussed in the
main text, we selected RsTSPO (PDBiD: 4UC1) as a template to build dimer for mTSPO. The homology
model for the dimer has been generated using Modeller [54] and validated similarly as monomer
homology model.

http://consurf.tau.ac.il/2016/
http://molsim.sci.univr.it/TSPO/
http://molsim.sci.univr.it/TSPO/
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CoeViz, a web-based tool [57], is used to identify the evolutionary coupling among the residues
and the functionally related residues in mTSPO. Evolutionary coupling residue pairs were selected
based on their pairwise χ2 scores [58] (cutoff value > 0.7, See Table 1 and Figure S6).

The Positioning of Proteins in Membranes (PPM) server [35] assigns spatial positions of molecules
inside membranes by optimizing their transfer energy from water to the lipid bilayer [59]. It was used
here to assess the embedding of each studied system in the membrane bilayer. Molecular graphics
were drawn using Pymol [60] and VMD [61].

The accession numbers (PDBiD) of the proteins relevant for this work are: 2MGY, 4UC1, 4RYI,
and 5EH4.

The 3D structures of the dimer models of mTSPO discussed in this work are available
upon request.

4.2. MD Simulations of mTSPO_NMR_monomer

The first frame of the NMR ensemble (PDBiD 2MGY) is embedded in a membrane composed
by phosphatidylcholine (POPC, 31%), phosphatidylethanolamine (POPE, 41%) and cholesterol (CHL,
28%) and enclosed in a water box with dimensions (nm) 10.1 × 10.1 × 12.8. The total charge of this
system is kept neutral and the ionic strength is set to 0.15 M by adding potassium (K+) and chloride
(Cl−) ions. The whole system includes mTSPO, PK11195, POPC (84 molecules), POPE (116 molecules),
CHL (98 molecules), water (27126 molecules), K+ (118 ions), and Cl− (124 ions). In the simulation of
the apo protein, only the ligand PK11195 is removed.

The AMBER99SB-ILDN force fields [62], the Slipids [63,64], and TIP3P [65] were used for
the protein and ions, the lipids, and water, respectively. The General Amber force field (GAFF)
parameters [66] were used for PK11195, along with the RESP atomic charge [67,68] fitted with the
electrostatic potential (ESP) from Gaussian 09 [69] calculation with the HF-6-31G* basis set [70,71].
The topology of PK11195 was then converted to GROMACS format using the ACPYPE tool [72].

The Particle Mesh Ewald method [73] was used to treat the long-range electrostatic interaction
with a real space cutoff of 1.2 nm. A 1.2 nm cutoff was also used for the short-range non-bonded
interaction. A time step of 2 fs was set. The LINCS algorithm [74] was applied to constrain all
bonds involving hydrogen atoms. Constant temperature and pressure conditions were achieved via
independently coupling protein/PK11195, lipids, solvent, and ions to a Nosè-Hoover thermostat [75]
at 315 K and Parrinello-Rahman barostat [76] at 1 atm. For each simulation, the systems underwent a
two-steps minimization without restraints. The minimization with conjugated gradient method [77]
followed the steepest descent method. Then 1-ns simulated annealing and 10-ns equilibration with
positional restraint using a force constant of 1000 kJ·mol-1·nm−2 on the heavy atoms of the protein
were carried out. The last 700-ns MD at 315 K and 1 atm was performed with frames collected every
20 ps.

The root mean square deviation of backbone atoms (N, Cα, C atoms, bb-RMSD) and the root
mean square fluctuation (RMSF) were calculated using the g_rms and g_rmsf codes from the Gromacs
package [78]. The 13th structure of the mTSPO NMR ensemble (PDBiD: 2MGY) was selected as the
reference. This choice was based on the results of pairwise RMSD analysis, hydrogen bonds count, and
secondary structure analysis performed on the twenty structures of NMR ensemble. The secondary
structure was defined and calculated with do_dssp [79] embedded in Gromacs. The distortion of
helix was evaluated with the Bendix [48] plug-in in VMD software [61], using default parameters.
The g_cluster module with gromos method in Gromacs [80] was used to perform cluster analysis on
the converged part of the MD simulation (after 400 ns). The cutoff based on bb-RMSD for clustering
is set to 1.2 Å. From the cluster analysis, the central frame of the most populated cluster is selected
as representative structure of mTSPO_NMR_monomer after MD equilibration for the holo and apo
proteins simulated. The trj_cavity package [81] within GROMACS was selected to calculate the volume
of the binding cavity, using a grid spacing of 1.4 Å. The number of H-bonds was calculated with
g_hbond in GROMACS. The PAD flexibility index [82], the distribution of geometry center, dihedral
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angles, rotation angle of PK11195 and contact percentage between PK11195 and residues are all
calculated with an in-house code. The contact percentage is defined as the minimum distance between
any atoms of side chains and ligand, both excluding hydrogen atoms, less than 4.0 Å. Water molecule
with distance less than 5 Å from the geometric center is accounted as molecules within the binding
pocket. MD simulations were performed using Gromacs package [78] on supercomputer.

5. Conclusions

Here, we have presented a computational study aiming to shed light on the structural
determinants of the functional form of mammalian TSPO. The reliability of the dimer construct
based on the NMR monomer of the mouse protein ([20] and this work) appears weakened by
some inconsistencies, possibly caused by the fact that the NMR experiments were carried out under
conditions far from the physiological ones. Therefore, we have proposed an alternative model, quite
different from the previous one, which is in good agreement with the available experimental findings
and supports dimer formation. This model may foster pharmacological studies aimed at a rational
design of novel TSPO targeting ligands.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/9/
2588/s1.
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Abbreviations

TSPO Translocator membrane protein
PET Positron emission tomography
RsTSPO Rhodobacter Sphaeroides
BcTSPO Bacillus Cereus
mTSPO_NMR_monomer Monomer of mTSPO solved by solution NMR experiment, PDBiD: 2MGY

mTSPO_NMR
Dimer model of mTSPO. The prediction is based on
mTSPO_NMR_monomer structure

mTSPO_Rs Dimer model of mTSPO. The prediction is based on the RsTSPO structure
MD Molecular dynamics
bb-RMSD Root-mean square deviation of backbone atoms (N, Cα, C atoms)
RMSF Root-mean square fluctuation

References

1. Papadopoulos, V.; Baraldi, M.; Guilarte, T.R.; Knudsen, T.B.; Lacapère, J.-J.; Lindemann, P.; Norenberg, M.D.;
Nutt, D.; Weizman, A.; Zhang, M.-R.; et al. Translocator protein (18kDa): New nomenclature for the
peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol. Sci.
2006, 27, 402–409. [CrossRef] [PubMed]

2. Beatriz, C.; Leo, V.; Moshe, G. Role of mitochondrial translocator protein (18 kDa) on mitochondrial-related
cell death processes. Recent Pat. Endocr. Metab. Immune Drug Discov. 2013, 7, 86–101. [CrossRef]

3. Papadopoulos, V. On the role of the translocator protein (18-kDa) TSPO in steroid hormone biosynthesis.
Endocrinology 2014, 155, 15–20. [CrossRef] [PubMed]

http://www.mdpi.com/1422-0067/19/9/2588/s1
http://www.mdpi.com/1422-0067/19/9/2588/s1
http://dx.doi.org/10.1016/j.tips.2006.06.005
http://www.ncbi.nlm.nih.gov/pubmed/16822554
http://dx.doi.org/10.2174/1872214811307020002
http://dx.doi.org/10.1210/en.2013-2033
http://www.ncbi.nlm.nih.gov/pubmed/24364587


Int. J. Mol. Sci. 2018, 19, 2588 12 of 15

4. Costa, E.; Auta, J.; Guidotti, A.; Korneyev, A.; Romeo, E. The pharmacology of neurosteroidogenesis. J. Steroid
Biochem. Mol. Biol. 1994, 49, 385–389. [CrossRef]

5. Rupprecht, R.; Papadopoulos, V.; Rammes, G.; Baghai, T.C.; Fan, J.; Akula, N.; Groyer, G.; Adams, D.;
Schumacher, M. Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric
disorders. Nat. Rev. Drug Discov. 2010, 9, 971–988. [CrossRef] [PubMed]

6. Gerhard, A. TSPO imaging in parkinsonian disorders. Clin. Transl. Imaging 2016, 4, 183–190. [CrossRef]
[PubMed]

7. Trapani, A.; Palazzo, C.; de Candia, M.; Lasorsa, F.M.; Trapani, G. Targeting of the translocator protein 18
kDa (TSPO): A valuable approach for nuclear and optical imaging of activated microglia. Bioconjugate Chem.
2013, 24, 1415–1428. [CrossRef] [PubMed]

8. Dolle, F.; Luus, C.; Reynolds, A.; Kassiou, M. Radiolabelled molecules for imaging the translocator protein
(18 kDa) using positron emission tomography. Curr. Med. Chem. 2009, 16, 2899–2923. [CrossRef] [PubMed]

9. Kim, T.H.; Pae, A.N. Translocator protein (TSPO) ligands for the diagnosis or treatment of neurodegenerative
diseases: A patent review (2010–2015; part 1). Expert Opin. Ther. Pat. 2016, 26, 1325–1351. [CrossRef]
[PubMed]

10. Kim, T.H.; Pae, A.N. Translocator protein (TSPO) ligands for the diagnosis or treatment of neurodegenerative
diseases: A patent review (2010–2015; part 2). Expert Opin. Ther. Pat. 2016, 26, 1353–1366. [CrossRef]
[PubMed]

11. Fukaya, T.; Kodo, T.; Ishiyama, T.; Kakuyama, H.; Nishikawa, H.; Baba, S.; Masumoto, S. Design, synthesis
and structure-activity relationships of novel benzoxazolone derivatives as 18kDa translocator protein (TSPO)
ligands. Bioorg. Med. Chem. 2012, 20, 5568–5582. [CrossRef] [PubMed]

12. Vainshtein, A.; Veenman, L.; Shterenberg, A.; Singh, S.; Masarwa, A.; Dutta, B.; Island, B.; Tsoglin, E.;
Levin, E.; Leschiner, S.; et al. Quinazoline-based tricyclic compounds that regulate programmed cell death,
induce neuronal differentiation, and are curative in animal models for excitotoxicity and hereditary brain
disease. Cell Death Discov. 2015, 1, 15027. [CrossRef] [PubMed]

13. Simon-O’Brien, E.; Gauthier, D.; Riban, V.; Verleye, M. Etifoxine improves sensorimotor deficits and reduces
glial activation, neuronal degeneration, and neuroinflammation in a rat model of traumatic brain injury.
J. Neuroinflammation 2016, 13, 203. [CrossRef] [PubMed]

14. Costa, B.; Cavallini, C.; Da Pozzo, E.; Taliani, S.; Da Settimo, F.; Martini, C. The anxiolytic etifoxine
binds to TSPO Ro5-4864 binding site with long residence time showing a high neurosteroidogenic activity.
ACS Chem. Neurosci. 2017, 8, 1448–1454. [CrossRef] [PubMed]

15. Chen, Y.; Veenman, L.; Singh, S.; Ouyang, F.; Liang, J.; Huang, W.; Marek, I.; Zeng, J.; Gavish, M. 2-Cl-MGV-1
ameliorates apoptosis in the thalamus and hippocampus and cognitive deficits after cortical infarct in rats.
Stroke 2017, 48, 3366–3374. [CrossRef] [PubMed]

16. Delavoie, F.; Li, H.; Hardwick, M.; Robert, J.-C.; Giatzakis, C.; Péranzi, G.; Yao, Z.-X.; Maccario, J.;
Lacapère, J.-J.; Papadopoulos, V. In vivo and in vitro peripheral-type benzodiazepine receptor
polymerization: Functional significance in drug ligand and cholesterol binding. Biochemistry 2003,
42, 4506–4519. [CrossRef] [PubMed]

17. Boujrad, N.; Vidic, B.; Papadopoulos, V. Acute action of choriogonadotropin on Leydig tumor cells: Changes
in the topography of the mitochondrial peripheral-type benzodiazepine receptor. Endocrinology 1996,
137, 5727–5730. [CrossRef] [PubMed]

18. Papadopoulos, V.; Fan, J.; Zirkin, B. Translocator protein (18 kDa): An update on its function in
steroidogenesis. J. Neuroendocrinol. 2017, 30, e12500. [CrossRef] [PubMed]

19. Omasits, U.; Ahrens, C.H.; Müller, S.; Wollscheid, B. Protter: Interactive protein feature visualization and
integration with experimental proteomic data. Bioinformatics 2014, 30, 884–886. [CrossRef] [PubMed]

20. Jaipuria, G.; Leonov, A.; Giller, K.; Vasa, S.K.; Jaremko, Ł.; Jaremko, M.; Linser, R.; Becker, S.; Zweckstetter, M.
Cholesterol-mediated allosteric regulation of the mitochondrial translocator protein structure. Nat. Commun.
2017, 8, 14893. [CrossRef] [PubMed]

21. Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and
PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402.
[CrossRef] [PubMed]

http://dx.doi.org/10.1016/0960-0760(94)90284-4
http://dx.doi.org/10.1038/nrd3295
http://www.ncbi.nlm.nih.gov/pubmed/21119734
http://dx.doi.org/10.1007/s40336-016-0171-1
http://www.ncbi.nlm.nih.gov/pubmed/27340650
http://dx.doi.org/10.1021/bc300666f
http://www.ncbi.nlm.nih.gov/pubmed/23837837
http://dx.doi.org/10.2174/092986709788803150
http://www.ncbi.nlm.nih.gov/pubmed/19689272
http://dx.doi.org/10.1080/13543776.2016.1230606
http://www.ncbi.nlm.nih.gov/pubmed/27607364
http://dx.doi.org/10.1080/13543776.2016.1230605
http://www.ncbi.nlm.nih.gov/pubmed/27599163
http://dx.doi.org/10.1016/j.bmc.2012.07.023
http://www.ncbi.nlm.nih.gov/pubmed/22884355
http://dx.doi.org/10.1038/cddiscovery.2015.27
http://www.ncbi.nlm.nih.gov/pubmed/27551459
http://dx.doi.org/10.1186/s12974-016-0687-3
http://www.ncbi.nlm.nih.gov/pubmed/27565146
http://dx.doi.org/10.1021/acschemneuro.7b00027
http://www.ncbi.nlm.nih.gov/pubmed/28362078
http://dx.doi.org/10.1161/STROKEAHA.117.019439
http://www.ncbi.nlm.nih.gov/pubmed/29146879
http://dx.doi.org/10.1021/bi0267487
http://www.ncbi.nlm.nih.gov/pubmed/12693947
http://dx.doi.org/10.1210/endo.137.12.8940407
http://www.ncbi.nlm.nih.gov/pubmed/8940407
http://dx.doi.org/10.1111/jne.12500
http://www.ncbi.nlm.nih.gov/pubmed/28667781
http://dx.doi.org/10.1093/bioinformatics/btt607
http://www.ncbi.nlm.nih.gov/pubmed/24162465
http://dx.doi.org/10.1038/ncomms14893
http://www.ncbi.nlm.nih.gov/pubmed/28358007
http://dx.doi.org/10.1093/nar/25.17.3389
http://www.ncbi.nlm.nih.gov/pubmed/9254694


Int. J. Mol. Sci. 2018, 19, 2588 13 of 15

22. Altschul, S.F.; Wootton, J.C.; Gertz, E.M.; Agarwala, R.; Morgulis, A.; Schäffer, A.A.; Yu, Y.-K. Protein database
searches using compositionally adjusted substitution matrices. FEBS J. 2005, 272, 5101–5109. [CrossRef]
[PubMed]

23. Brosig, B.; Langosch, D. The dimerization motif of the glycophorin a transmembrane segment in membranes:
Importance of glycine residues. Protein Sci. 2008, 7, 1052–1056. [CrossRef] [PubMed]

24. Russ, W.P.; Engelman, D.M. The GxxxG motif: A framework for transmembrane helix-helix association.
J. Mol. Biol. 2000, 296, 911–919. [CrossRef] [PubMed]

25. Senes, A.; Gerstein, M.; Engelman, D.M. Statistical analysis of amino acid patterns in transmembrane helices:
The GxxxG motif occurs frequently and in association with β-branched residues at neighboring positions.
J. Mol. Biol. 2000, 296, 921–936. [CrossRef] [PubMed]

26. Senes, A.; Ubarretxena-Belandia, I.; Engelman, D.M. The Cα—H···O hydrogen bond: A determinant of
stability and specificity in transmembrane helix interactions. Proc. Natl. Acad. Sci. USA 2001, 98, 9056.
[CrossRef] [PubMed]

27. Doura, A.K.; Fleming, K.G. Complex interactions at the helix-helix interface stabilize the glycophorin a
transmembrane dimer. J. Mol. Biol. 2004, 343, 1487–1497. [CrossRef] [PubMed]

28. Li, F.; Liu, J.; Liu, N.; Kuhn, L.A.; Garavito, R.M.; Ferguson-Miller, S. Translocator protein 18 kDa (TSPO):
An old protein with new functions? Biochemistry 2016, 55, 2821–2831. [CrossRef] [PubMed]

29. Jaremko, L.; Jaremko, M.; Giller, K.; Becker, S.; Zweckstetter, M. Structure of the mitochondrial translocator
protein in complex with a diagnostic ligand. Science 2014, 343, 1363–1366. [CrossRef] [PubMed]

30. Lacapère, J.-J.; Delavoie, F.; Li, H.; Péranzi, G.; Maccario, J.; Papadopoulos, V.; Vidic, B. Structural and
functional study of reconstituted peripheral benzodiazepine receptor. Biochem. Biophys. Res. Commun. 2001,
284, 536–541. [CrossRef] [PubMed]

31. Scarf, A.M.; Kassiou, M. The translocator protein. J. Nucl. Med. 2011, 52, 677–680. [CrossRef] [PubMed]
32. Li, F.; Xia, Y.; Meiler, J.; Ferguson-Miller, S. Characterization and modeling of the oligomeric state and ligand

binding behavior of purified translocator protein 18 kDa from rhodobacter sphaeroides. Biochemistry 2013,
52, 5884–5899. [CrossRef] [PubMed]

33. Ashkenazy, H.; Abadi, S.; Martz, E.; Chay, O.; Mayrose, I.; Pupko, T.; Ben-Tal, N. ConSurf 2016: An improved
methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res.
2016, 44, W344–W350. [CrossRef] [PubMed]

34. Li, F.; Liu, j.; Zheng, Y.; Garavito, R.M.; Ferguson-Miller, S. Crystal structures of translocator protein (TSPO)
and mutant mimic of a human polymorphism. Science 2015, 347, 555–558. [CrossRef] [PubMed]

35. Lomize, M.A.; Pogozheva, I.D.; Joo, H.; Mosberg, H.I.; Lomize, A.L. OPM database and PPM web server:
Resources for positioning of proteins in membranes. Nucleic Acids Res. 2012, 40, D370–D376. [CrossRef]
[PubMed]

36. Guo, Y.; Kalathur, R.C.; Liu, Q.; Kloss, B.; Bruni, R.; Ginter, C.; Kloppmann, E.; Rost, B.; Hendrickson, W.A.
Structure and activity of tryptophan-rich TSPO proteins. Science 2015, 347, 551–555. [CrossRef] [PubMed]

37. Lerner, M.G.; Carlson, H.A. APBS Plugin for PyMOL; University of Michigan: Ann Arbor, MI, USA, 2006.
38. Chen, Y.-C. Beware of docking! Trends Pharmacol. Sci. 2015, 36, 78–95. [CrossRef] [PubMed]
39. Totrov, M.; Abagyan, R. Flexible ligand docking to multiple receptor conformations: A practical alternative.

Curr. Opin. Struct. Biol. 2008, 18, 178–184. [CrossRef] [PubMed]
40. Sotriffer, C.A. Accounting for induced-fit effects in docking: What is possible and what is not? Curr. Top.

Med. Chem. 2011, 11, 179–191. [CrossRef] [PubMed]
41. Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.;

Shelley, M.; Perry, J.K.; et al. Glide: A new approach for rapid, accurate docking and scoring. 1. method and
assessment of docking accuracy. J. Med. Chem. 2004, 47, 1739–1749. [CrossRef] [PubMed]

42. Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.;
Mainz, D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for
protein-ligand complexes. J. Med. Chem. 2006, 49, 6177–6196. [CrossRef] [PubMed]

43. Schrödinger, L.L.C. Glide; Schrödinger, LLC: New York, NY, USA, 2017.
44. Chemical Computing Group Inc. Molecular Operating Environment (MOE); Chemical Computing Group Inc.:

Montreal, QC, Canada, 2017.
45. Corbeil, C.R.; Williams, C.I.; Labute, P. Variability in docking success rates due to dataset preparation.

J. Comput. Aided Mol. Des. 2012, 26, 775–786. [CrossRef] [PubMed]

http://dx.doi.org/10.1111/j.1742-4658.2005.04945.x
http://www.ncbi.nlm.nih.gov/pubmed/16218944
http://dx.doi.org/10.1002/pro.5560070423
http://www.ncbi.nlm.nih.gov/pubmed/9568912
http://dx.doi.org/10.1006/jmbi.1999.3489
http://www.ncbi.nlm.nih.gov/pubmed/10677291
http://dx.doi.org/10.1006/jmbi.1999.3488
http://www.ncbi.nlm.nih.gov/pubmed/10677292
http://dx.doi.org/10.1073/pnas.161280798
http://www.ncbi.nlm.nih.gov/pubmed/11481472
http://dx.doi.org/10.1016/j.jmb.2004.09.011
http://www.ncbi.nlm.nih.gov/pubmed/15491626
http://dx.doi.org/10.1021/acs.biochem.6b00142
http://www.ncbi.nlm.nih.gov/pubmed/27074410
http://dx.doi.org/10.1126/science.1248725
http://www.ncbi.nlm.nih.gov/pubmed/24653034
http://dx.doi.org/10.1006/bbrc.2001.4975
http://www.ncbi.nlm.nih.gov/pubmed/11394915
http://dx.doi.org/10.2967/jnumed.110.086629
http://www.ncbi.nlm.nih.gov/pubmed/21498529
http://dx.doi.org/10.1021/bi400431t
http://www.ncbi.nlm.nih.gov/pubmed/23952237
http://dx.doi.org/10.1093/nar/gkw408
http://www.ncbi.nlm.nih.gov/pubmed/27166375
http://dx.doi.org/10.1126/science.1260590
http://www.ncbi.nlm.nih.gov/pubmed/25635101
http://dx.doi.org/10.1093/nar/gkr703
http://www.ncbi.nlm.nih.gov/pubmed/21890895
http://dx.doi.org/10.1126/science.aaa1534
http://www.ncbi.nlm.nih.gov/pubmed/25635100
http://dx.doi.org/10.1016/j.tips.2014.12.001
http://www.ncbi.nlm.nih.gov/pubmed/25543280
http://dx.doi.org/10.1016/j.sbi.2008.01.004
http://www.ncbi.nlm.nih.gov/pubmed/18302984
http://dx.doi.org/10.2174/156802611794863544
http://www.ncbi.nlm.nih.gov/pubmed/20939789
http://dx.doi.org/10.1021/jm0306430
http://www.ncbi.nlm.nih.gov/pubmed/15027865
http://dx.doi.org/10.1021/jm051256o
http://www.ncbi.nlm.nih.gov/pubmed/17034125
http://dx.doi.org/10.1007/s10822-012-9570-1
http://www.ncbi.nlm.nih.gov/pubmed/22566074


Int. J. Mol. Sci. 2018, 19, 2588 14 of 15

46. Fantini, J.; Barrantes, F. How cholesterol interacts with membrane proteins: An exploration of
cholesterol-binding sites including CRAC, CARC, and tilted domains. Front. Physiol. 2013, 4, 31. [CrossRef]
[PubMed]

47. Fantini, J.; Di Scala, C.; Evans, L.S.; Williamson, P.T.F.; Barrantes, F.J. A mirror code for protein-cholesterol
interactions in the two leaflets of biological membranes. Sci. Rep. 2016, 6, 21907. [CrossRef] [PubMed]

48. Dahl, A.C.; Chavent, M.; Sansom, M.S. Bendix: Intuitive helix geometry analysis and abstraction.
Bioinformatics 2012, 28, 2193–2194. [CrossRef] [PubMed]

49. Studer, G.; Biasini, M.; Schwede, T. Assessing the local structural quality of transmembrane protein models
using statistical potentials (QMEANBrane). Bioinformatics 2014, 30, i505–i511. [CrossRef] [PubMed]

50. Landau, E.M.; Rosenbusch, J.P. Lipidic cubic phases: A novel concept for the crystallization
of membrane proteins. Proc. Natl. Acad. Sci. USA 1996, 93, 14532. [CrossRef] [PubMed]

51. Kleiger, G.; Grothe, R.; Mallick, P.; Eisenberg, D. GXXXG and AXXXA: Common α-helical interaction motifs
in proteins, particularly in extremophiles. Biochemistry 2002, 41, 5990–5997. [CrossRef] [PubMed]

52. Söding, J. Protein homology detection by HMM-HMM comparison. Bioinformatics 2005, 21, 951–960.
[CrossRef] [PubMed]

53. Zimmermann, L.; Stephens, A.; Nam, S.-Z.; Rau, D.; Kübler, J.; Lozajic, M.; Gabler, F.; Söding, J.; Lupas, A.N.;
Alva, V. A completely reimplemented mpi bioinformatics toolkit with a new hhpred server at its core.
J. Mol. Biol. 2017, 430, 2237–2243. [CrossRef] [PubMed]

54. Webb, B.; Sali, A. Protein Structure Modeling with MODELLER. In Protein Structure Prediction; Kihara, D.,
Ed.; Springer New York: New York, NY, USA, 2014; pp. 1–15.

55. Shen, M.Y.; Sali, A. Statistical potential for assessment and prediction of protein structures. Protein Sci. 2009,
15, 2507–2524. [CrossRef] [PubMed]

56. Bino, J.; Sali, A. Comparative protein structure modeling by iterative alignment, model building and model
assessment. Nucleic Acids Res. 2003, 31, 3982–3992. [CrossRef]

57. Baker, F.N.; Porollo, A. CoeViz: A web-based tool for coevolution analysis of protein residues. BMC Bioinform.
2016, 17, 119. [CrossRef] [PubMed]

58. Larson, S.M.; Di Nardo, A.A.; Davidson, A.R. Analysis of covariation in an SH3 domain sequence alignment:
Applications in tertiary contact prediction and the design of compensating hydrophobic core substitutions.
J. Mol. Biol. 2000, 303, 433–446. [CrossRef] [PubMed]

59. Lomize, A.L.; Pogozheva, I.D.; Mosberg, H.I. Anisotropic solvent model of the lipid bilayer. 2. energetics of
insertion of small molecules, peptides, and proteins in membranes. J. Chem. Inf. Model. 2011, 51, 930–946.
[CrossRef] [PubMed]

60. DeLano, W.L. The PyMOL Molecular Graphics System, Version 1.7.4.5; Edu Schrödinger, LLC: New York, NY,
USA, 2018.

61. Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38.
[CrossRef]

62. Halgren, T.A. Identifying and characterizing binding sites and assessing druggability. J. Chem. Inf. Model.
2009, 49, 377–389. [CrossRef] [PubMed]

63. Jambeck, J.P.M.; Lyubartsev, A.P. Derivation and systematic validation of a refined all-atom force field for
phosphatidylcholine lipids. J. Phys. Chem. B 2012, 116, 3164–3179. [CrossRef] [PubMed]

64. Jambeck, J.P.M.; Lyubartsev, A.P. An extension and further validation of an all-atomistic force field for
biological membranes. J. Chem. Theory Comput. 2012, 8, 2938–2948. [CrossRef] [PubMed]

65. Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D. Comparison of simple potential functions for simulating
liquid water. J. Chem. Phys. 1983, 79, 926–935. [CrossRef]

66. Wang, J.M.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general
amber force field. J. Comput. Chem. 2004, 25, 1157–1174. [CrossRef] [PubMed]

67. Bayly, C.I.; Cieplak, P.; Cornell, W.; Kollman, P.A. A well-behaved electrostatic potential based method
using charge restraints for deriving atomic charges: The resp model. J. Phys. Chem. 1993, 97, 10269–10280.
[CrossRef]

68. Wang, J.M.; Cieplak, P.; Kollman, P.A. How well does a restrained electrostatic potential (RESP) model
perform in calculating conformational energies of organic and biological molecules? J. Comput. Chem. 2000,
21, 1049–1074. [CrossRef]

http://dx.doi.org/10.3389/fphys.2013.00031
http://www.ncbi.nlm.nih.gov/pubmed/23450735
http://dx.doi.org/10.1038/srep21907
http://www.ncbi.nlm.nih.gov/pubmed/26915987
http://dx.doi.org/10.1093/bioinformatics/bts357
http://www.ncbi.nlm.nih.gov/pubmed/22730430
http://dx.doi.org/10.1093/bioinformatics/btu457
http://www.ncbi.nlm.nih.gov/pubmed/25161240
http://dx.doi.org/10.1073/pnas.93.25.14532
http://www.ncbi.nlm.nih.gov/pubmed/8962086
http://dx.doi.org/10.1021/bi0200763
http://www.ncbi.nlm.nih.gov/pubmed/11993993
http://dx.doi.org/10.1093/bioinformatics/bti125
http://www.ncbi.nlm.nih.gov/pubmed/15531603
http://dx.doi.org/10.1016/j.jmb.2017.12.007
http://www.ncbi.nlm.nih.gov/pubmed/29258817
http://dx.doi.org/10.1110/ps.062416606
http://www.ncbi.nlm.nih.gov/pubmed/17075131
http://dx.doi.org/10.1093/nar/gkg460
http://dx.doi.org/10.1186/s12859-016-0975-z
http://www.ncbi.nlm.nih.gov/pubmed/26956673
http://dx.doi.org/10.1006/jmbi.2000.4146
http://www.ncbi.nlm.nih.gov/pubmed/11031119
http://dx.doi.org/10.1021/ci200020k
http://www.ncbi.nlm.nih.gov/pubmed/21438606
http://dx.doi.org/10.1016/0263-7855(96)00018-5
http://dx.doi.org/10.1021/ci800324m
http://www.ncbi.nlm.nih.gov/pubmed/19434839
http://dx.doi.org/10.1021/jp212503e
http://www.ncbi.nlm.nih.gov/pubmed/22352995
http://dx.doi.org/10.1021/ct300342n
http://www.ncbi.nlm.nih.gov/pubmed/26592132
http://dx.doi.org/10.1063/1.445869
http://dx.doi.org/10.1002/jcc.20035
http://www.ncbi.nlm.nih.gov/pubmed/15116359
http://dx.doi.org/10.1021/j100142a004
http://dx.doi.org/10.1002/1096-987X(200009)21:12&lt;1049::AID-JCC3&gt;3.0.CO;2-F


Int. J. Mol. Sci. 2018, 19, 2588 15 of 15

69. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.;
Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford, CT, USA, 2016.

70. Petersson, G.A.; Al-Laham, M.A. A complete basis set model chemistry. II. Open-shell systems and the total
energies of the first-row atoms. J. Chem. Phys. 1991, 94, 6081–6090. [CrossRef]

71. Petersson, G.A.; Bennett, A.; Tensfeldt, T.G.; Al-Laham, M.A.; Shirley, W.A. A complete basis set model
chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements. J. Chem. Phys.
1988, 89, 2193–2218. [CrossRef]

72. Sousa da Silva, A.W.; Vranken, W.F. ACPYPE-antechamber python parser interface. BMC Res. Notes 2012,
5, 367. [CrossRef] [PubMed]

73. Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An Nlog(N) method for Ewald sums in large systems.
J. Chem. Phys. 1993, 98, 10089–10092. [CrossRef]

74. Hess, B.; Bekker, H.; Berendsen, H.J.C.; Fraaije, J.G.E.M. LINCS: A linear constraint solver for molecular
simulations. J. Comput. Chem. 1997, 18, 1463–1472. [CrossRef]

75. Hunenberger, P. Thermostat algorithms for molecular dynamics simulations. Adv. Polym. Sci. 2005,
173, 105–147. [CrossRef]

76. Parrinello, M.; Rahman, A. Polymorphic transitions in single-crystals—A new molecular-dynamics method.
J. Appl. Phys. 1981, 52, 7182–7190. [CrossRef]

77. Zimmermann, K. Oral: All purpose molecular mechanics simulator and energy minimizer. J. Comput. Chem.
1991, 12, 310–319. [CrossRef]

78. Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast,
flexible, and free. J. Comput. Chem. 2005, 26, 1701–18. [CrossRef] [PubMed]

79. Kabsch, W.; Sander, C. Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded
and geometrical features. Biopolymers 1983, 22, 2577–2637. [CrossRef] [PubMed]

80. Daura, X.; Gademann, K.; Jaun, B.; Seebach, D.; van Gunsteren, W.F.; Mark, A.E. Peptide folding: When
simulation meets experiment. Angew. Chem. Int. 1999, 38, 236–240. [CrossRef]

81. Paramo, T.; East, A.; Garzón, D.; Ulmschneider, M.B.; Bond, P.J. Efficient characterization of protein cavities
within molecular simulation trajectories: Trj_cavity. J. Chem. Theory Comput. 2014, 10, 2151–2164. [CrossRef]
[PubMed]

82. Caliandro, R.; Rossetti, G.; Carloni, P. Local fluctuations and conformational transitions in proteins. J. Chem.
Theory Comput. 2012, 8, 4775–4785. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1063/1.460447
http://dx.doi.org/10.1063/1.455064
http://dx.doi.org/10.1186/1756-0500-5-367
http://www.ncbi.nlm.nih.gov/pubmed/22824207
http://dx.doi.org/10.1063/1.464397
http://dx.doi.org/10.1002/(SICI)1096-987X(199709)18:12&lt;1463::AID-JCC4&gt;3.0.CO;2-H
http://dx.doi.org/10.1007/b99427
http://dx.doi.org/10.1063/1.328693
http://dx.doi.org/10.1002/jcc.540120305
http://dx.doi.org/10.1002/jcc.20291
http://www.ncbi.nlm.nih.gov/pubmed/16211538
http://dx.doi.org/10.1002/bip.360221211
http://www.ncbi.nlm.nih.gov/pubmed/6667333
http://dx.doi.org/10.1002/(SICI)1521-3773(19990115)38:1/2&lt;236::AID-ANIE236&gt;3.0.CO;2-M
http://dx.doi.org/10.1021/ct401098b
http://www.ncbi.nlm.nih.gov/pubmed/26580540
http://dx.doi.org/10.1021/ct300610y
http://www.ncbi.nlm.nih.gov/pubmed/26605630
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Discussion 
	Materials and Methods 
	Bioinformatics Analyses 
	MD Simulations of mTSPO_NMR_monomer 

	Conclusions 
	References

