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ABSTRACT  

 

Effects of Nitrate supplementation during cycling and walking in old and 

young healthy men 

 

The general objective of the thesis is to investigate the effects induced by nitrates 

(NO3
-) supplementation during muscular exercise at moderate and severe intensity, in 

elderly (60-75 years) and young (20-35 years) people. The NO3
- contribution, equal to 

8.0 mM dissolved in 0.25 L of solution, was provided by means of beetroot juice and 

continued for a period of 8 days. We evaluated the responses of oxidative metabolism, 

taking into consideration both central factors as well as peripheral factors. The peculiar 

and most original aspect of the study is aimed at understanding the effects of NO3
- 

supplementation in the elderly. The interest was also that of understanding the 

mechanisms involved in oxidative metabolic regulation NO3-mediated, in the elderly. 

The aging process is associated with functional and structural changes, especially 

in the cardiovascular and muscular systems, leading to alterations in oxidative metab-

olism. The marked impairment of the transport of O2 and its peripheral use, together 

with the progressive loss of strength and muscle mass, are responsible for the signifi-

cant and progressive worsening of V̇O2 kinetics that characterizes the elderly. 

Also, cardiovascular responses following a nitrate supplementation have been in-

vestigated. Indeed, literature remarks that, nitrates are involved both in the circulatory 

(endothelial) and metabolic (mitochondrial) levels. The interest also was to analyze 

whether nitrates in the two populations (old and young) have a significant effect on 

the main hemodynamic components. We intent also to investigate the effects at met-

abolic level induced by nitrate supplementation during exercise. 

Moreover, the metabolic cost of walking per unit of distance travelled is greater 

in older people than in young adults even when they are healthy and free from gait 

impairment. Other data indicate that the increase in the cost of the metabolic cost of 

the walk occurs around the 7th decade of life that coincides approximately with the 

time in which the changes occur in different biomechanical and bioenergetical factors 

of walking.  
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The study was developed in order to describe the trend of energy cost of locomo-

tion on a treadmill at different intensities administered by varying the speed and slope 

of the instrument. 

The main end point is the verification of the efficacy of BR supplementation in 

improving muscle efficiency in various type of locomotion. In particular, we intend to 

check if NO3
-: 

i) are able to reduce the energy cost of exercise in elderly subjects in the moderate 

and severe intensity domain; 

ii) are able to improve muscle efficiency in relation to a greater availability of ox-

ygen and its use at the peripheral level. 

 

In short, the aim of the studies was to evaluate, through an integrative approach, the 

effects of nitrate supplementation on skeletal muscle oxidative metabolism during ex-

ercise. 

 

Conclusions:  

Main results of these studies suggest that supplementation on nitrate leads to an im-

provement in the efficiency in the elderly during low-intensity exercise and confirms 

the improvement in the young during high-intensity exercise. 

However, these improvements are probably not due to peripheral improvements in 

oxygen transport and extraction, so they must be sought elsewhere, for example at the 

cellular level. 

 

 

 



 

  
 

 
  



 

  
 

 
  



 

  
 

 
 

 

 

 

 

SECTION ONE  

 

 

 

 

Nitric Oxide, Nitrates and Nitrites. 

  



 

  
 

 
  



 

  
 

 
 

 

 

 

 

 

 

 

 

 

Summary of the section 

In this section the NO and its numer-

ous functions are introduced. Moreover, 

are presented pathway for NO production 

inside the body and the effects of aging. We 

expect that NO supplementation has more 

effects on elderly people due to the more 

vascular impairment than the young 

Finally, general view of the thesis is re-

ported. 
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1. Introduction 

 Nitric Oxide (NO), Nitrates (NO3
-) and Nitrites (NO2

-) 

Nitric oxide (NO) is one of the simplest biological molecule in nature, in terms of 

cellular signaling device in the modulation of multiple physiological and pathological 

processes. The discovery of the nitric oxide (NO) pathway in the 1980s represented a 

critical advance in the understanding of cell signaling and subsequently into major new 

advancements in many clinical areas including, but not limited to cardiovascular med-

icine. This seminal finding was viewed as so fundamentally important that the Nobel 

Prize in Physiology or Medicine was awarded to its discoverers, Drs. Louis J. Ignarro, 

Robert Furchgott, and Ferid Murad in 1998, 11 years after NO was identified(Bryan 

and Loscalzo 2011). The Swedish Nobel Assembly sagely noted, “The signal transmis-

sion by a gas that is produced by one cell, penetrates through membranes and regulates 

the function of another cell, represents an entirely new principle for signaling in bio-

logical systems.” More than a decade after the Nobel Prize was awarded for the dis-

covery of NO (Bryan and Loscalzo 2011). 

NO actions are mainly expressed in the vasodilation processes as an endogenous 

regulator of blood flow, protection from ischemic damage, inhibition of platelet ag-

gregation, nerve transmission, regulation of glucose and calcium homeostasis, muscle 

contractility (excitation-contraction coupling), breathing mitochondrial and immune 

and inflammatory response (Clerc et al. 2007; Stamler and Meissner 2001). The half-

life of NO in blood is thought to be very short mainly due to rapid inactivation after 

reaction with hemoglobin (Jon O. Lundberg and Govoni 2004) and the continuous 

generation of NO is essential for the integrity of the cardiovascular system, and de-

creased production and/or bioavailability of NO is central to the development of 

many cardio- vascular disorders (Bryan and Loscalzo 2011), then is necessary to supply 

produce NO and there are two pathways to produce NO, one of these is NO synthase 

(NOS) dependent, (L-arginine – NOS pathway), while the other one is NOS inde-

pendent, (NO3
- - NO2

- - NO pathway). 

 L-arginine pathway 

The main source of endogenous NO in mammals is the L-arginine-NO pathway, 

which is constitutively active in numerous cell types throughout the body (Lundberg, 
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Weitzberg, and Gladwin 2008). NO is produced endogenously by oxidation of the 

nitrogen guanidine of L-arginine, by a reaction catalyzed by the NOS similar to cyto-

chrome P450, which require molecular oxygen (O2) as an electron acceptor, and 

NADPH (Nicotinamide Adenin Dinucleotide Reduced) and FAD (Flavin Adenosine 

Dinucleotide) as cofactors (Moncada and Higgs 1993).  

There are three distinct NOS isoforms in humans, expressing themselves as latent 

enzyme, respectively neuronal (nNOS), endothelial (eNOS) and inducible (iNOS), of 

which the first depend on high concentrations of calcium ions (Ca2
+). The fact that 

NOS involve multiple tissue are indicative of the pluripotency of the effects of NO in 

the physiological field. The gas in question is a free radical whose half-life  in the order 

of milliseconds. and whose diffusion gradient are limited by subsequent oxidation re-

actions in NO2
- and NO3

-, which involve hemoglobin, myoglobin and other super-

oxide radicals. The stabilization of NO in blood and tissues depends on the L-arginine-

NOS pathway as the predominant source of such nitrogenous anions that can be con-

sidered as endocrine molecules that can be converted into NO under certain physio-

logical and pathological conditions (Lundberg et al. 2011). Nitrate is the predominant 

product of final oxidation of NO, whose levels in the blood exceed those of nitrite of 

at least two orders of magnitude (20-40 µM vs 50-300 nM) (Moncada and Higgs 1993), 

possessing a half-life in the circle of 5-8h compared to 110s of the other which is 

rapidly oxidized. It is formed by the reaction of NO with oxyhemoglobin (HbO) which 

gives NO3
- and methemoglobin (Doherty et al. 1998; Gladwin et al. 2000). Nitrite, 

indeed, derives directly from the reaction of two NO molecules with O2, catalyzed by 

the plasma enzyme ceruplasmain (Shiva et al. 2006). 

 NO3
- – NO2

- – NO pathway 

Nitrates (NO3
-) and nitrites (NO2

-) are known predominantly as unwanted resi-

dues of the food chain as to potential toxic and carcinogenic effects, or as inert termi-

nal oxidative products resulting from endogenous NO synthesis (Tannenbaum and 

Correa 1985; Mensinga, Speijers, and Meulenbelt 2003; Lundberg, Weitzberg, and 

Gladwin 2008). However, more recent studies show that such inorganic molecules are 

physiologically recycled into the blood and tissues to produce NO and other bioactive 

nitrogen oxides, by successive reductions (Lundberg et al. 1994; Zweier et al. 1995; 

Cosby et al. 2003; Lundberg, Weitzberg, and Gladwin 2008). Nitrates and nitrite are, 
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indeed, substrates of an alternative biochemical pathway of NO production comple-

mentary to that of L-arginine-NOS, the NO3
- – NO2

- – NO pathway, which improves 

considerably in physiological or pathological conditions of hypoxia and acidosis, when 

the action of NOS, oxygen-dependent, is compromised (Giraldez et al. 1997; 

Østergaard et al. 2007). 

The exogenous nitrates deriving from the diet are rapidly absorbed in the blood-

stream of the upper gastro-intestinal tract, where they mix with the endogenous ni-

trates produced by oxidation of the NOS dependent NO, reaching peaks of NO3
- and 

of NO2
- plasma respectively after 1-2h and 2-3h from ingestion, and then return to 

baseline values after 24h (Webb et al. 2008). After a meal rich in foods containing 

nitrates (Figure 1 – (Lidder and Webb 2013) the plasma concentration of such anions 

increases significantly and remains elevated for a prolonged period of time (half-life of 

NO3
- in the plasma of 5-6 hours), distributing uniformly in all tissues ( Lundberg et al. 

2004).  

 

  

Figure 1  
The Nitrate ‘Veg-Table’: vegetables, ranked from highest to lowest according to mean nitrate content [range] expressed 
in mg kg-1, mmol per UK portion (80 g) and as a guide as the approximate number of nitrate units per portion (1 
nitrate unit = 1 mmol) to facilitate estimation of nitrate intake or to modify intake as desired. Also included is tap 
water and bottled water for comparison. (Lidder and Webb 2012) 
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Although most of the molecules in the bloodstream are excreted in the urine, 

more than 25% enter the salivary glands, through the entero-salivary circle, from which 

it is concentrated in the saliva 10-20 times higher than the plasma values. 

Once the oral cavity has been reached, the optional anaerobic commensal bacteria, 

present mainly in the crypts of the tongue, use the nitrates as acceptors of electrons 

alternative to the oxygen they need for breathing, thus reducing them to nitrites, fol-

lowing the action of enzymes nitrate reductase (Duncan et al. 1995; Lundberg et al. 

2004). 

When the NO2
- salivary come into contact with the acidity of the gastric environ-

ment (pH = 1.5-3) and with abundant reducing agents in the diet (vitamin C, thiocya-

nate, polyphenols), they are rapidly deprotonated to nitric acid (HNO2;  pKa ~ 3.3) [1] 

which spontaneously decomposes into NO and other reactive nitrogen oxides 

(Lundberg et al. 1994)[2] (Figure 2): 

 

NO3
- + H + ↔ HNO2 [1] 

 

2HNO2 → N2O3 + H2O  

N2O3 → NO2 + NO [2] 

 

Figure 2  
The entero-salivary circulation of nitrate in humans. In-
gested inorganic nitrate from dietary sources is rapidly ab-
sorbed in the small intestine. Although much of the circu-
lating nitrate is eventually excreted in the urine, up to 25% 
is actively extracted by the salivary glands and concentrated 
in saliva. In the mouth, commensal facultative anaerobic 
bacteria effectively reduce nitrate to nitrite by the action of 
nitrate reductase enzymes. Nitrate reduction to nitrite re-
quires the presence of these bacteria, as mammalian cells 
cannot effectively metabolize this anion. In the acidic stom-
ach, nitrite is spontaneously decomposed to form nitric oxide 
(NO) and other bioactive nitrogen oxides, which regulate 
important physiological functions. Nitrate and remaining 
nitrite is absorbed from the intestine into the circulation and 
can convert to bioactive NO in blood and tissues under 
physiological hypoxia. (Lundberg et al. 2008) 
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The antibacterial effects of NO suggest a role of gas in the protection against 

pathogens, but also in the regulation of gastric mucosa perfusion and mucus produc-

tion (Lundberg et al., 1994). 

At systemic level, the reduction of NO2 to NO can occur in various pathways 

(Figure 3 –  Lundberg et al. 2011) that involve hemoglobin (Cosby et al. 2003; 

Nagababu et al. 2003) myoglobin(Shiva et al. 2007; Rassaf et al. 2007), xanthine oxi-

doreductase (Zhang et al. 1997; Godber et al. 2000)., ascorbate (Carlsson et al. 2001), 

polyphenols (Peri et al. 2005; Gago et al. 2007), and proton (Benjamin et al. 1994; 

Lundberg et al. 1994). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3:  
Two parallel pathways for NO formation in mammals. NO synthases (NOS) catalyse 
the formation of NO from the substrates L-arginine and molecular oxygen. NO is 
rapidly oxidized to form nitrite (NO2

-) and nitrate (NO3
-), but a recycling of these 

anions may occur by which NO is formed again. Nitrate reduction to nitrite is mainly 
carried out by commensal bacteria in the oral cavity and to a lesser extent also by mam-
malian enzymes in tissues (xanthine oxidase). Once nitrite is formed, several pathways 
exist with the capacity to further metabolize nitrite to NO and other bio- logically active 
nitrogen oxides. Most of these pathways are greatly accelerated under hypoxic conditions. 
Thus, nitrite reduction represents an alternative to the classical NOS pathway for the 
generation of NO. Our diet (mainly green leafy vegetables) is a major contributor to the 
body pool of nitrate and ingestion of nitrate may fuel the nitrate–nitrite–NO pathway. 
Dietary nitrate supplementation is associated with robust NO-like effects including a 
reduction in blood pressure and inhibition of oxygen consumption in humans. In addi-
tion, nitrate or nitrite administration is protective in numerous animal models of cardi-
ovascular disease. (Lundberg et al 2011) 
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 NO effects 

NO oversees various roles inside the body. NO is involved in the vasodilation 

processes as an endogenous regulator of blood flow, protection from ischemic dam-

age, inhibition of platelet aggregation, nerve transmission, regulation of glucose and 

calcium homeostasis, muscle contractility (excitation-contraction coupling), breathing 

mitochondrial and immune and inflammatory response (Clerc et al. 2007; Stamler and 

Meissner 2001). 

1.4.1 Vasodilation and blood flow regulation 

The vasodilatory effects of NO2
- supplementation have known since the 30s 

(Weiss, Wilkins, and Haynes 1937; Furchgott and Bhadrakom 1953; Ignarro et al. 

1981) and nowadays numerous studies confirm the vasodilatory effects NO depend-

ent, produced by low doses of NO2
- following their reduction to NO. Vasodilation 

inducted by NO is dose dependent (Dejam, Hunter, and Gladwin 2007; Filip J. Larsen 

et al. 2006) and determines favorable effects on cardiovascular diseases associated with 

endothelial dysfunction and the reduction of NO bioactivity (arterial hypertension, 

atherosclerosis, stroke) (Giansante and Fiotti 2006; Plavnik et al. 2007) 

Ferguson and colleagues (Ferguson et al. 2013) demonstrated, on a sample of rats, 

significant reductions in blood pressure and blood lactate concentration during exer-

cise, following dietary supplementation of NO3
-, as effects dependent on increase in 

blood flow (~ 38%) to the muscles in exercise, characterized by a high fraction of 

intermediate fibers (type IIa). The consequent greater contribution of O2, more ade-

quately distributed within the active tissues, involves a potential reduction of phos-

phorylation at the substrate level, a better metabolic control and an increase in effi-

ciency, all of which are advantageous conditions for performance.  

In a subsequent study, the same authors reported that the PO2 at the microcircu-

latory level decreases less rapidly as a result of electrically evoked muscle contractions 

on rats fed by BR compared to those fed by water (Ferguson et al. 2015). This is con-

sistent with a greater contribution of O2 during the metabolic transition to exercise, 

then to the saving of intramuscular phosphocreatine (PCr) and to the attenuation of 

the concentrations of adenosine diphosphate (ADP) and inorganic phosphate (Pi). 

These last aspects, in association with the absence of significant variations in muscle 
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pH between the two types of treatment, indicate that a greater "compensatory" con-

tribution by anaerobic glycolysis to energy production has not been established, as 

might be the case if establishing a transitory oxygen debt dependent on an ineffective 

adaptation to local conditions by peripheral perfusion systems (Jones 2014).  

The vasodilatory capacity of nitrites, closely coupled to the deoxygenation of he-

moglobin (Hb), is associated with the synthesis of NO, whose concentrations increase 

with decreasing Hb saturation, therefore it depends on bioactivation mechanisms reg-

ulated by hypoxia (PO2 = 20- 40mmHg, which corresponds to the P50 of the hemo-

globin, saturated to 40-60%) (Lundberg et al., 2008). 

NO2
- react with deoxyhemoglobin (HbFe+2) and a proton (H+) generating NO 

and methemoglobin (HbFe+3) [3]. NO can subsequently bind to a second deoxyhemo-

globin molecule forming an iron-nitrosyl-hemoglobin (HbFe+2-NO) [4]: 

 

NO2
- + HbFe+2 + H+ → NO + HbFe+3 + OH-  [3] 

 

NO + HbFe+2 → HbFe+2-NO  [4] 

 

This simple reaction has important physiological implications as it has properties 

necessary for vasodilating effectively under hypoxia and tissue acidosis. In fact, it uses 

spontaneously nitrates as substrates, deoxyhemoglobin and protons to produce NO, 

the most powerful known vasodilator. 

The maximum reduction rate of NO2
- to NO occurs at PO2 of 30 mmHg, at 50% 

of Hb saturation, due to its greater reactivity with oxyhemoglobin (R-state), even if the 

reaction takes place only with deoxygenated tetramer (T-state) 

It should also be emphasized that the vasodilatory action of NO3
- and NO2

- inor-

ganics must be distinguished from that exercised by organic anions (nitroglycerin and 

amyl-nitrite), since the latter undoubtedly have a greater potency in terms of vasodila-

tory and anti-anginal effects, but they depend, in the bioactivation of the NO, from 

the mitochondrial aldehyde dehydrogenase (mtALDH) and from other enzymes sub-

ject to inducible tolerance (Li et al. 2005) then to the reduction of the activity of the 

biological nitroglycerin following the chronic exposure to drugs. The NO2
- may repre-

sent the active metabolite of nitroglycerine capable of passing the enzymatic metabo-

lism subject to tolerance. 
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1.4.2 Blood pressure and cardiocirculatory factors 

The effects of BR supplementation on cardiocirculatory factors have been studied 

by many researchers. The focus was mainly on the data of: systolic blood pressure 

(SYS), diastolic blood pressure (DIA), mean arterial pressure (MAP) total peripheral 

resistance (TPR) and cardiac output (CO).  

A study (Bond et al. 2014)with acute supplementation of NO3
-, by a single dose 

of 500 ml of beetroot juice (BR) containing ~750 mg of NO3
- showed effects on car-

diovascular response to exercise in the graduated cycle ergometer in overweight young 

women. BR reduced during all workloads the SYS, the Rate Pressure product (RPp = 

HR x SYS) index of myocardial oxygen demand and the TPR at rest. However, no 

effects on DIA, MAP, CO and HR were observed after BR. 

Similar effects were found in another study (Lee et al. 2015) that showed a de-

crease of SYS, DIA, MAP, TRP both in the resting and in the exercise phase after BR 

supplementation (6.4 mmol/day). The authors highlight that NO3
- helps to increase 

the release of oxygen and reduce cardiac work, allowing you to perform the exercises 

longer before the fatigue begins. 

In a study by Liu and colleagues (Liu et al. 2013) arterial stiffness was analyzed 

following spinach ingestion. The researchers observed a greater arterial elasticity, lower 

pulse pressure and lower SYS. The spinach diet compared to placebo showed a reduc-

tion in ejection time, cardiac output, stroke volume and vascular impedance, while no 

changes were observed in DIA. The effects on DIA, however, are different in another 

study by Sobko in 2010 (Sobko et al. 2010) where DIA decreased of 4.5 mmHg. 

Another study showed no significant differences before and after 7 days of rich 

NO3
- vegetable diet (100/300 mg NO3

-/day), in blood pressure, heart rate and arterial 

stiffness (Bondonno et al. 2015) 

Therefore, the effects of NO3
- are various and sometimes in contradiction be-

tween them, but it appears a common modification on vascular function. 
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1.4.3 Protection of tissues from ischaemia-reperfusion injury 

Systemic production of NOS-independent NO was first demonstrated in cardiac 

ischaemia (Duncan et al. 1995), revealing the centrality of these substances in hypoxic 

signaling. 

NO2
- exert a powerful cytoprotective function from lesions resulting from pro-

longed ischemia and reperfusion in different organs, as their reduction to NO provides 

an alternative source of endogenous vasodilator in an environment in which conven-

tional synthesis is compromised (Baker et al. 2007; Tripatara et al. 2007). These find-

ings suggest NO2
- as a therapeutic opportunity for diseases associated with hypoxic 

conditions, in particular myocardial infarction, stroke, organ transplantation, cardio-

pulmonary arrest and disturbances related to sickle cell red blood cells.  

Mitochondrial generation of reactive oxygen species (ROS) is a component nec-

essary for mitochondrial cytoprotection (Xu, Ji, and Boysen 2004), but contributes, at 

high concentrations, to damage, necrosis and cell apoptosis following reperfusion 

events following ischemia. The NO2
- are able to nitrosilate the complex I of the elec-

tron transport chain in ischemia-reperfusion (Dahm, Moore, and Murphy 2006,Shiva 

et al. 2007) by inhibiting its activity and limiting the mitochondrial production of ROS, 

the activation of the permeable mitochondrial pores and the release of cytochrome c, 

with effects on mitochondria and detectable cytoprotective both in acute (immediately 

before reperfusion) and remotely (if taken 24 hours before reperfusion. 

1.4.4 Mitochondrial efficiency 

The reduction of V̇O2 during submaximal exercise, reported by several studies, 

following dietary supplementation of NO3
- (Bailey et al. 2009; F. J. Larsen et al. 2011), 

is due to a greater efficiency of energy metabolism in the oxidation processes of the 

substrates connected to the synthesis of ATP. 

Different possibilities of interaction between NO3
-, NO2

-, NO and mitochondria 

have been identified. The most documented effect of NO is its link with cytochrome 

C oxidase (COX), an electron acceptor of the transport chain, which, at physiological 

concentrations, partially inhibits mitochondrial respiration by competing with oxygen 

(Larsen et al., 2011). This bond, reversible and regulated by oxygen, induces a kinetic 

constraint that affects the reduction of V̇O2 for the synthesis of ATP with consequent 
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increase in phosphorylation efficiency, as well as being functional also to control ROS 

signaling and regulation of tissue oxygen gradients (Thomas 2001). 

The effect of NO2
- seems to be similar to that of NO because the electron 

transport chain proteins are able to reduce it to NO. Furthermore, nitrogen anions 

acting independently of the formation of NO in the regulation and expression of tissue 

proteins inhibit cytochrome C oxygenase, determining a condition that could be per-

ceived by the cell as a mild hypoxia. It follows the triggering of signaling mechanisms 

that involve a down regulation of the nucleotide adenine translocase (ANT), a protein 

involved in mitochondrial proton conductance (Larsen et al., 2011) able to reduce the 

loss of H+ through the mitochondrial membrane. 

The increase in the P/O ratio (~ 19%), classically used to measure the amount of 

oxygen consumed per ATP molecule produced (Hinkle 2005), is indicative of the fact 

that a higher proportion of the electrochemical transmembrane potential is destined 

to at the synthesis of ATP thanks to the lower dissipation of it usually associated with 

the decoupling of the proton transients through the internal membrane (Larsen et al., 

2011). 

1.4.5 Contractile muscle properties 

Much of the research on the physiology of the effects of BR supplementation has 

focused on changes in vascular function or energy metabolism (Jones 2014). A recent 

study has shown important effects also on the intrinsic contractile properties of skele-

tal muscle (Hernández et al. 2012) highlighting a major increase in contractile force at 

≤50 Hz electrical stimulation. At 100 Hz stimulation, the rate of force development 

was ∼35% faster in the NO3
- treated mice. This effect is attributed to the improvement 

in the management of intracellular calcium transients, mediated by the NO which, 

synthesized by the action of nNOS, acts on the calcium channel receptors of the sar-

coplasmic reticulum resulting in an increase in the expression of calsequestrin 1 and 

the receptor of the dihydropyridine. This conduct to an increase in the release of Ca2+ 

and to the ionic sensitivity of the acto-myosin bridges, in particular in the fast fibers 

(type II). This increase in intracellular [Ca2+], in response to excitation, is probably 

more useful in situations where saturation is incomplete, for example, in the explo-

sive/growing phase of contraction or at low stimulation frequencies, allowing an im-

provement in the production of force in these circumstances. The advantages of the 
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excitation-contraction coupling become more evident in the endurance exercise , char-

acterized by the repeated activation of the muscle fibers (Jones 2014). 

The reduction of total ATP expenditure, necessary to support the production of 

contractile strength, following the supplementation of NO3
-, with the same muscle 

tension expressed despite a lower excitation rate, is also linked to the improvement of 

the Ca2+ re-uptake (Hernandez et al., 2012). The impact of this process on the total 

expenditure, normally equal to about 30-50% (depending on the type of fibers in-

volved) of the ATP consumed by the muscle, is reduced in conditions of higher NO 

levels as the action of the gas on the ionic channels, after oxidation, protects from the 

release of excess Ca2+ (Haider et al., 2014). In this way, the best excitation-contraction 

coupling could contribute to reductions in oxygen consumption during sub-maximal 

exercise with supplementation (Bailey et al. 2010; Vanhatalo et al. 2010; Lansley, 

Winyard, Fulford, et al. 2011). 

1.4.6 Reduction O2 consumption and exercise tolerance 

There are several scientific evidences that attest to the positive effects of NO3 

supplementation on physiological responses to exercise (Bailey et al., 2009; Bailey et 

al., 2010; Larsen et al. 2010; Vanhatalo et al., 2010; Lansley Winyard, Fulford et al., 

2011 and several others).  

The first of this group of study was published by Larsen et al in 2007 (Larsen et 

al. 2007). In this study after sodium nitrate (NaNO3) supplementation (0.1 mmol/kg 

of body mass per day – 3 day of supplementation) was observed a reduction of V̇O2 

(~ 5%) at sub-maximal intensity (45-80% V̇O2max), without any change in the concen-

tration of blood lactate (BL), heart rate (HR), ventilation (V̇E) and respiratory quotient 

(RR). Moreover, the study shows a significant increase in the plasma concentration of 

NO2
- at rest (~82%) and a reduction in resting blood arterial pressure (BP – 8-6 

mmHg). These significant improvements in gross efficiency (output per unit of con-

sumed energy) and delta-efficiency (variation of mechanical output due to unitary var-

iation of energy consumed) suggest a real effect on the efficiency of muscular oxidative 

metabolism due to an improvement in energy supply or a slower energy cost of the 

cardiopulmonary processes or a change in substrate use following supplementation 

(Larsen et al., 2011).  
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It is well established that the endurance performances depend on the V̇O2max func-

tion, on the use of the V̇O2max (%V̇O2max) and on the efficiency of the exercise (Coyle 

1995) and considering other factors remain unchanged, an improvement in muscle 

efficiency should allow greater mechanical output at the same energy cost and there-

fore result in improved performance. Recognizing the importance of such evidence, 

Bailey and colleagues (Bailey et al., 2009) examined the influence of NO3 supplemen-

tation (5.6 mmol of NO3
-/day in 0.5 l of beetroot juice for 6 days) on the kinetics of 

the V̇O2 during a running exercise on treadmill at moderate intensity (80% of GET) 

and at high intensity (70%∆ - 70% of the difference between GET and V̇O2max). Re-

sults of this study report a significant increase in plasma levels of NO2
- (~ 95%), a 

reduction in systolic blood pressure (~ 8 mmHg), a reduction in V̇O2 at a steady state 

(~ 5%) in the exercise moderate intensity and a reduction in the amplitude of the slow 

component (~ 23%) during high intensity exercise. This last effect was considered as 

a reflection of the progressive loss of muscular efficiency (Jones, 2014). As for Larsen 

et al. (Larsen et al., 2007), there are no variations in the concentration of BL, in HR, 

in V̇E and in RR at the different intensities of exercise or in the V̇O2 peak reached in 

high-intensity exercise, even if this it is reached later showing a significant increase in 

the time of exhaustion (~ 16%). A subsequent study of Bailey et al., (Bailey et al., 2010) 

on knee extension exercise confirms that, compared to placebo, supplementation with 

beet juice leads to reduced V̇O2 at moderate intensity, but also reduces the amplitude 

of the slow component and the increase in the time of exhaustion (~25%) at high 

intensity. A second study by Larsen and colleagues (Larsen et al., 2011) reports, fol-

lowing dietary supplementation with NaNO3 (0.1 mmol/kg body mass per day for 2 

days), a significant reduction of V̇O2 (~2.7%) and a significant increase in the time of 

exhaustion (~7%), in incremental maximal exercise with use of both arms and legs. A 

similar result of V̇O2max reduction following NO3 supplementation is also reported by 

Bescos and colleagues (Bescos et al. 2011) although not a universally confirmed effect. 

However, as the influence of the length of the supplementation period adopted 

by the various studies on the effectiveness of improving the efficiency of the exercise 

and on performance is not clear, Vanhatalo et al., (Vanhatalo et al., 2010) address the 

issue, highlighting a significant reduction of steady-state V̇O2 in exercise at moderate 

intensity (~4%) 2.5 h after the intake of NO3
- (5.2 mmol per day in 0.5 L of juice for 
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15 days), that is the same after 5 and 15 days, and an efficiency improvement main-

tained for at least 2 weeks. There are no changes in the peak V̇O2, while the peak 

mechanical output is significantly increased at the GET within 15 days of supplemen-

tation. The study by Lansley, (Lansley et al. 2011) reports the effect of supplementation 

of NO3
- (6.2 mmol in 0.5 L of juice per day for 6 days) in the reduction of V̇O2 in the 

moderate-intensity treadmill race, the increase in high-intensity exercise tolerance 

(~15%) and the increase in time of exhaustion in incremental knee extension exercise. 

1.4.7 NO3
- and effects on O2 delivery 

Near Infrared Spectroscopy (NIRS) in vivo has been used since 70s (Jöbsis et al. 

1977) as a non-invasive method to assess the oxygen concentrations in tissues, mainly 

through monitoring the oxygenation and deoxygenation of hemoglobin, although this 

method cannot measure myoglobin and hemoglobin separately (Miura et al. 1998). In 

animal and human skeletal muscles during exercise, the changes in oxygenated hemo-

globin content measured by NIRS bears a high correlation with the changes in venous 

hemoglobin oxygen saturation, and could be used to determine the oxygen kinetics in 

working muscles during exercise (Miura et al. 1998).  

Three studies analyzed the effects of BR supplementation (Bailey et al 2009, 

Breese et al. 2013, 2017)on the O2 extraction at muscle-level in different intensity do-

main. All of these studies have been performed on a sample of young subjects and the 

results are not all in agreement. 

Bailey et al. (Bailey et al., 2009) found an improvement of O2 extraction in the 

vastus lateralis muscle during exercise at moderate intensity with a lower amplitude of 

deoxygenated hemoglobin concentration ([HHb]) after BR, but were not observed any 

changes in kinetics parameters of deoxygenated hemoglobin, so no change in the time 

constant and the delay time. In high-intensity exercise, they did not observe any sig-

nificant change. 

In the first study by Breese and colleagues (Breese et al., 2013), unlike what Bailey 

founded, no improvement in extraction was observed, but a change in the [HHb] ki-

netics, which becomes more rapid after the BR supplementation, during a transition 

from an exercise to moderate intensity to a more severe one, suggested faster O2 ex-

traction. 
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In the most recent study by Breese and colleagues (Breese et al., 2017) the O2 

extraction was investigated in three different muscles: vastus lateralis, vastus medialis 

and rectus femoris. No changes in the parameters of [HHb] were observed at any 

muscle site, and in the amplitude at each site. The overall mean, combining three mus-

cle sites, however, reported a [HHb] at the end of the exercise significantly higher after 

BR, suggesting a greater O2 extraction spread in all the muscular districts. 

1.4.8 NO3
- effects on exercise 

It is important to recognize that, although scientifically important, the time of 

exhaustion and incremental tests, on which the effects of nitrates were observed from 

the first studies (Bailey et al., 2009; Bailey et al., 2010; Larsen et al., 2010; Vanhatalo et 

al., 2010; Lansley et al., 2011a), are evidence related to exercise capacity rather than 

performance testing. Competitive sport typically requires athletes to complete a certain 

distance in the shortest possible time and, inherently to this aspect, the considerable 

size of the effect, in terms of time, in exhaustion tests, are not as extensive in trials 

over time. However, an improvement of 15% in the time of exhaustion resulting from 

a given intervention results in an improvement of 1% in the duration performance for 

which, even if apparently small, such an effect would be highly significant in terms of 

performance for elite athlete. 

Recognizing the importance of assessing the influence of the use of food nitrates 

on sports performance, Lansley et al. (Lansley et al 2011) has tested acute supplemen-

tation of NO3
- (6.2 mmol in 0.5 L of beet juice) 2.5 h before the tests, in high level 

cyclists (average V̇O2max = 56 ml/kg/min) obtaining significant increases in the average 

mechanical power, with the same V̇O2, on the tests of the 4 and 16.1 km with perfor-

mance improvements of 2.8% and 2.7% respectively. Cermak and colleagues (Cermak, 

Gibala, and Loon 2012) examined the influence of nitrates (8 mmol of a day for 6 days) 

on cycle performance tests repeated for 6 days. This shows, in trained cyclists (average 

V̇O2max = 58 ml/kg/min) a reduction (~5%) of the V̇O2 at submaximal exercise inten-

sity (2 x 30 min at 45 and 65% of peak power) and of the peak power, therefore of the 

performance over 10 km, without variations of RR, of the blood concentration of 

lactate, glucose and insulin. 

Overall, studies suggest improvements in pedaling efficiency and performance 

time for events lasting at least 5-30 min, given by dietary supplementation, both acute 
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(Lansley et al., 2011) and chronic (Cermak et al., 2012), in trained cyclists (53-63 

ml/kg/min). Regarding treadmill run performance in active adults, Murphy and col-

leagues (Murphy et al. 2012) reports the increase in speed (5%) of the last kilometers 

on the 5 km and the reduction of effort perception in 75 min following the ingestion 

of 200g of beets cooked (≥ 500 mg or ≥8 mmol of NO3
-). Similar benefits are also 

identified by Bond et al, (Bond et al., 2012) on repeated rowing performance on the 

500m with ergometer in well trained rowers, after supplementation with beet juice 

(0.5L per day for 6 days). More recently, the absence of ergogenic effects induced by 

the use of NO3
- both in acute and short-term (Jones, 2014, Porcelli et al. 2015)in elite 

athletes has been demonstrated (V̇O2max > 60 ml/kg/min). Wilkerson et al. (Wilkerson 

et al., 2012) does not observe any difference on 50 miles time trial in trained cyclists 

2.5 hours after supplementation with beet juice (0.5 L) with a tendency to increase the 

ratio of power to V̇O2. An interesting aspect is given by the relatively low average 

increase in the plasma concentration of NO2
- compared to what is found in the less 

trained subjects suggesting a different responsiveness to treatment with an inverse cor-

relation between the increase in NO2
- levels and best time in the test. In line with these 

results, Cermak and colleagues (Cermak et al., 2012) reported no effects of NO3
- (8.7 

mmol in beet juice) in increasing distance traveled in one hour by trained cyclists (V̇

O2max = 60 ml/kg/min), as well as Peacock and colleagues, (Peacock et al., 2012) ob-

served no differences with supplementation (10 mmol of NO3
-) 2.5 h before exercise, 

on V̇O2 reduction in low-intensity warm up. The absence of differences in the perfor-

mance of trained cyclists and triathletes (V̇O2max = 60 ml/min/kg) over 40 min, fol-

lowing supplementation (10 mg/kg or 0.16 mmol/kg of NaNO3 per day for 3 days) 

are also reported in a study by Bescos and colleagues (Bescòs et al., 2012). As noted 

by Wilkerson., (Wilkerson et al. 2012), there are several reasons why both, fitness level 

of the subjects and the intensity of the exercise, can influence the effects of NO3
- sup-

plementation. It was hypothesized a greater activity of NOS (Jones, 2014) in the more 

trained subjects that would reduce the conversion of NO3
- to NO by NO3

- - NO2
- - 

NO pathway, but also the presence of higher [NO2
-] in blood compared to sedentary 

subjects, therefore the response to a NO3
- standard dose of may be reduced. The in-

creased capillarization of skeletal muscle minimizes the hypoperfusion of the metabol-

ically active tissue, therefore the hypoxia and acidosis conditions reducing the NO3
- 

requirement for the production of NO. For the same reason, low intensity aerobic 
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exercise, in which the skeletal muscle remains well oxygenated and pH no decreases 

significantly, no requires the synthesis of NO by NOS-independent pathway. Finally, 

recent evidences show that the integration of NO3
- preferentially alters the contractile 

function of the type II fibers that are typically present in reduced percentages in en-

durance athletes for which the physiological response to the supplementation is mod-

ified (Jones, 2014). Until now, however, studies that showing negligible effects of NO3
- 

in elite athletes have used acute supplements (2-3 pre-performance hours) (Cermak et 

al., 2012; Wilkerson et al., 2012) and in the short term (3 days) (Bescòs et al., 2012), 

while the researches that indicated the alteration of muscular contractility and mito-

chondrial enzymes refer to supplementations for longer periods (3-7 days) (Jones, 

2014). This aspect increases the possibility that the use of long-term exogenous NO3
- 

and/or higher doses has favorable effects on the performance of elite athletes, as sug-

gested by the results of Cermak and colleagues (Cermak et al., 2012) and Vanhatalo 

and colleagues, (Vanhatalo et al., 2010). 

1.4.9 NO3
- effects on elderly subjects 

Currently there is substantial evidence to support the positive effects of increased 

plasma NO3
- levels following dietary supplementation, using both NaNO3 and beet 

juice, can affect physiological responses to exercise (Bailey et al., 2010; Larsen et al., 

2007). Most of the studies conducted so far refer to the adult active male population 

(more or less trained), but substantially excluding the elderly. 

It should be considered that the bioavailability of L-arginine is limited in the el-

derly, as well as the plasma concentrations NO2
-, marker sensitive to the activity of 

NOS. This suggests that the synthesis of NO dependent on the L-arginine-NOS path-

way could be compromised with the aging process. Furthermore, an increase in the 

production of superoxides (O2
-) occurs, predictably in relation to the reduction of the 

bioavailability of NO, due to the rapidity of reaction between (O2
-) and NO (Kelly et 

al. 2013). Given the positive association between NO and vascular health (Ignarro et 

al. 1999), the perturbations of NO metabolism could contribute to endothelial dys-

function as well as to arterial hypertension that are established with age (Oelze et al. 

2014). It is therefore plausible that the dietary supplementation of NO3
- can improve 

the bioavailability of NO and with it the vascular function in elderly subjects. 
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The aging process is linked to a number of functional and structural modifications 

to the cardiovascular and muscular systems with alterations in the transport and use of 

O2. There is evidence that the kinetics of V̇O2 related to the metabolic transition from 

a resting state to exercise is slowed compared to that of young adults and this may be 

related to a limited supply of muscle O2 (DeLorey, Kowalchuk, and Paterson 2005). 

The reduction of the maximum capacity of oxidative phosphorylation of the elderly 

further affects the slowing down of the kinetic (Gouspillou et al. 2010). Since dietary 

supplementation of NO3
- has shown increases in muscle flow and in the maximum 

speed of synthesis of ATP, it can be hypothesized that its use in the elderly can accel-

erate the oxidative metabolism response. This would reduce the metabolic perturba-

tion and the onset of fatigue, thus increasing exercise tolerance (Larsen et al., 2011). 

The increased bioavailability of NO could favor an improvement in cerebral 

blood flow and cognitive functions in old age. There is also a reduction in the brain 

synthesis capacity of ATP due to oxidative phosphorylation which, together with the 

chronic ischemia of white matter, leads to the decline of cognitive functions (Kelly et 

al., 2013). 
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2. Aging 

Aging is an irreversible physiological process that leads to biological changes, that 

leading to degeneration of tissues,  defined by the sum of all the physiological, genetic 

and molecular changes that accumulate during the years (Sieck 2017). The aging pro-

cess, still under study, is an event characterized by stochasticity (Vijg and Suh 2013) 

and by malleability, because the response of cells and tissues is very variable between 

individuals (Gems, 2013). There are several theories that describe the potential activat-

ing mechanisms of this process (Free radical theory, Harman 1953-2003, DNA altera-

tion theory, Vilenchik 1970, Oxidative stress theory, Sohal & Allen 1990), and despite 

the considerable uncertainties regarding to it, the main hypothesis that aging is char-

acterized as a multifactorial and complex process is widely supported. 

The modifications and the impairments produced in the organism lead to a reduc-

tion of exercise capacity and adaptation, as they affect the progressive decrease of the 

functional reserve, enhanced or accelerated by the concomitance with a sedentary or 

insufficiently active lifestyle (Hardman and Stensel 2013). 

These considerations constitute one of the conditions that underlie the present 

study, aimed at verifying the hypothesis of any positive effects induced by NO3
-  dietary 

supplementation in elderly subjects. In particular, reference is made to the potential 

attenuation or modification, even if limited, of the typical aging impairments, shown 

below, on the practice of physical exercise, the main way of maintaining the efficiency 

and health of the organism despite the advance of age. 

  Effects of aging 

With age, there is a structural and functional deterioration in most of the physio-

logical systems, even in the absence of perceivable disturbances or overt pathologies. 

These physiological changes affect a vast range of tissues, organs and functions, the 

accumulation of which affects the activities of daily life and the maintenance of auton-

omy, and consequently the quality of life (ACSM 2009). 

It is important to present an overview of these processes in order to clarify the 

causes that influence metabolic responses to exercise in the elderly population. 
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2.1.1 Muscle function 

Aging is characterized by changes in the skeletal muscle that determine the decline 

of its ability to generate strength, power and resistance, as effects mainly dependent 

on the progressive and generalized loss of muscle mass in terms of reduction of the 

volume of individual fibers and their number (Granacher, Zahner, and Gollhofer 

2008). This condition, named sarcopenia, is considered by the scientific community as 

a "geriatric syndrome", which may occur early even towards the age of 50, but which 

reaches more than 50% of the population over the age of 80 (Alfonso J Cruz-Jentoft 

et al. 2010; Buffa et al. 2011). It has been shown that from the age of 60 the loss of 

muscle mass varies between 1.4% and 2.5% annually (Frontera et al. 2000) to achieve 

losses of force of about 50% and more around at 70-80 years (Taaffe 2006).  

There is an alteration of the muscular fiber arrangement ("muscular architecture"), 

a decrease in protein turnover (Paillard, 2013), a decrease in the number of satellite 

cells that compromises the regenerative potential and the ability to respond to certain 

training stimuli, and a faster regression rate of the fast fibers (type II) than the slow 

ones (type I) (Granacher, Zahner, and Gollhofer 2008). The loss of muscle mass is 

associated with an increased risk of unfavorable outcomes such as motor disorders, 

balance deficit, disability and decreased quality of life, as a compromise of the perfor-

mance of the usual daily activities (A. J. Cruz-Jentoft et al. 2010). The causes of sarco-

penia can be multiple; in addition to the aging process, in fact, we can add genetic 

predisposition, lifestyle and changes in living conditions, but also pathological condi-

tions. 

It should also be considered that the functionality of the skeletal muscle in the 

generation of force and in the production of the movement can be compromised by 

an incomplete activation of the motor units in central nervous system, by dysfunctions 

of the peripheral nerve, by the reduction of hormonal factors and changes in the exci-

tation-contraction coupling mechanisms (Frontera et al., 2000; Buffa, 2011). 

2.1.2 Cardiovascular functions 

The physiological aging of the cardiovascular system manifests itself as a set of 

structural and functional changes that make it differently responsive to anything that 
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can change its balance. Main structural modifications should be considered the vascu-

lar remodeling in terms of stiffening and thickening of the arterial wall and the conse-

quent reduction of the lumen of the blood vessel, which determines the increase of 

the peripheral resistances, of the differential pressure and of the propagation speed of 

the sphygmic wave. (Biagi 2009). 

The increase in the parietal thickness of the heart, given by the ratio between the 

thickness of the wall and the radius of the ventricular chamber, with consequent im-

balance of the microcirculation, and volumetric increase of the atria, leads to loss of 

elasticity of the left ventricle, so is necessary the increase of left atrium contribution 

for ventricular filling (Biagi, 2009).  

Another characteristic feature of the heart of the elderly are the alterations in en-

ergy metabolism linked to the reduction of the number of mitochondria, the intracel-

lular levels of ATP and of phosphocreatine, the lower use of fatty acids, the variations 

in calcium homeostasis and the proteins involved in electromechanical coupling. There 

are also changes in the diastolic phase due to reduction of the ventricular compliance, 

potentially associated with alterations in calcium re-uptake, with progressive decrease 

of the slow filling and increase of the rapid filling due to the compensatory atrial con-

traction (Biagi, 2009; ACSM, 2009). 

Lastly, changes in the systolic phase are highlighted, maintained by a more vigor-

ous atrial contribution, particularly under stress, due to the increase in the afterload, 

the reduction of aortic compliance and the wall stress of the left ventricle with associ-

ated decrease in the sympathetic regulation (reduced tachycardia response to stress). 

In fact, in the elderly there is a decrease in the maximum heart rate and the ability to 

increase the ejection fraction during exercise, attributable to a lower sensitivity of the 

heart to β-adrenergic stimulation (Biagi, 2009; ACSM, 2009). 

Overall, therefore, the cardiac changes dependent on the aging process indicate 

that in most "healthy" elderly the heart at rest is adequate to satisfy the hemodynamic 

and metabolic demands of the organism. However, when the homeostatic reserve is 

overcome, it is predisposed to the development of diastolic heart failure, for the im-

pairment of left ventricular filling (reduction of relaxation and compliance), as a con-

dition that is evident in over 50% of subjects after 75 years (Biagi, 2009). 
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2.1.3 Lung function 

The effects of aging on the respiratory system are similar to those occurring in 

other organs, with a gradual decrease in efficiency dependent on structural and func-

tional changes in the lungs related to age. The main findings include decreasing the 

volume of the thoracic cavity and lung volumes, and the alteration of the respiratory 

muscles. Increased stiffness of the rib joints, depending on bone and cartilage changes, 

leads to a progressive increase in diaphragmatic respiration (Lowery et al. 2013).  

Aging is also associated with the modification of the composition of the connec-

tive support elements of the alveoli with thickening of the alveolar-capillary membrane 

which, together with the reduction of the total alveolar surface (from 80 cm at 20 years 

old to 60 cm at 80 years old) and to the consequent loss of elasticity of the walls of the 

pulmonary circle, leads to the loss of efficiency of the gaseous exchanges and of the 

diffusion capacity (Shephard 1993).  

There are also structural changes and functional modifications intrinsic to the res-

piratory muscles. Forced breathing is limited, due to reductions in mitochondrial ATP 

reserves necessary to sustain a sudden increase in metabolic demand, to atrophy of 

accessory muscles, to decrease in fiber resistance that can reach 20% around 70 years, 

to their disorganization and to the transitions related to age (Lowery et al., 2013).  

Among the consequent modifications of lung volumes, the increase in the residual 

volume (VR) is particularly evident which, subtracting from the total lung capacity, 

reduces the vital capacity (CV) and, despite having little effect on gaseous exchanges, 

slows the increase in oxygen consumption recorded at the mouth at the beginning of 

the exercise because the extra air introduced with hyperventilation is mixed with a 

greater volume of air already present in the alveoli. The decrease in CV follows a slow 

decrease stared at 20 years old to middle age, and faster in the last years of life, for an 

average decrease of 24.4 ml/year. In any case, the loss of it is less than the decline of 

the V̇O2max (Shephard, 1993; ACSM, 2009). 

Compared to pulmonary dynamics, the aging process is associated with the nar-

rowing of the small part of respiratory tract, progressively compromising the maxi-

mum expiratory speed, but also in this case remains below the decline of the V̇O2max. 

The normal non-uniformity of the current volume distribution is accentuated with 

limiting repercussions during the exercise (Shephard, 1993).  
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Finally, the respiratory function in the elderly is affected by the decreased ability 

to remove mucus from the lungs as a result of the decline of the mechanisms that 

support it. First there is a reduction in the ability to generate the force necessary for 

an effective cough in relation to the weakening of the respiratory muscles, but also the 

ciliary dysfunction (Shephard, 1993; Lowery et al., 2013). 

Overall, therefore, the values at rest (current volume and respiratory rate) have 

small changes, but increases the ventilation for each level of exercise (3-5%/year), that 

conduct an increased energy cost (V̇O2) for the same exercise. In addition to reducing 

efficiency (from 23% in young people to 21.5% to 65 years, to the cycle ergometer), 

there is also an increasing in the energy cost of breathing (from 6% in young to 13% 

of the total at 70 years old) (Shephard, 1993; ACSM, 2009). 

2.1.4 Body composition and metabolism 

Aging involves physiological changes that result not only in reduced functional 

capacity, but also in alterations in body composition. 

Studies carried out on the elderly population of industrialized countries indicate a 

tendency to increase body weight and body mass index (BMI) according to age, in 

particular from 40 to 70, with an annual average rate of 0.30 kg/year, 0.11 kg/m/year 

in men and 0.55 kg/year, 0.22 Kg/m/year in women (Buffa, 2011). Fat mass increases 

progressively in adulthood as a consequence of the reduction in overall energy ex-

penditure, with a preferential increase of the visceral adipose component (intra-ab-

dominal) and redistribution of adipose tissue starting from 45-54 years (ACSM, 2009; 

Buffa, 2011). This is associated with the reduction of lean mass (FFM) in percentages 

of 2-3% per decade from 30 to 70 years, due to the skeletal and muscular components 

(sarcopenia, see Section 2.1.1) and then of metabolically active tissue and important 

physiological regulator, with loss of total proteins and potassium (ACSM, 2009). 

The progressive decrease in bone mass, called osteopenia, depends on the loss of 

bone mineral content from 40 years (0.7-1% per year). One of the main causes of 

osteopenia is estrogen deficiency, although calcium deficiency, vitamin D and hy-

perparathyroidism may contribute to the pathogenesis, and the risk is that turning into 

osteoporosis, a disease that can lead to bone fragility and an increased susceptibility to 

fractures (ACSM, 2009; Buffa, 2011).  
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Parallel to the reduction of the lean mass there are various changes at the meta-

bolic level represented by the decrease in the rate of absolute basal metabolic rate 

(RMR) and normalized per kg of body mass, the decrease of protein synthesis at the 

muscular level and of the oxidation capacity of fatty acids during sub-maximal exercise 

(ACSM, 2009). 
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3. Overall view of thesis 

The general objective of the thesis is to investigate the effects on exercise induced 

by supplementation of nitrates (NO3
-), in elderly (60-75 years) and young (20-35 years), 

during exercise of moderate and severe intensity. The NO3
- contribution, equal to 8.0 

mM dissolved in 0.25 L of solution, was provided by means of beetroot juice and 

continued for a period of 8 days. We evaluated oxidative metabolism, taking into con-

sideration both central factors as well as peripheral factors. 

The aging process is associated with functional and structural changes, especially 

in the cardiovascular and muscular systems, lead to alterations in oxidative metabolism. 

The marked impairment of the transport of O2 and its peripheral use, together with 

the progressive loss of strength and muscle mass, are responsible for the significant 

and progressive worsening of V̇O2 kinetics that characterizes the elderly. 

Also, cardiovascular responses following a nitrate supplementation have been in-

vestigated. Indeed, literature remarks that, nitrates are involved both in the circulatory 

(endothelial) and metabolic (mitochondrial) levels. The interest is therefore to analyze 

whether nitrates in the two populations (old and young) have a significant effect on 

the main hemodynamic components.  

Moreover the metabolic cost of walking per unit of distance travelled is greater in 

older people than in young adults even when they are healthy and free from gait im-

pairment. Other data indicate that the increase in the cost of the metabolic cost of the 

walk occurs around the 7th decade of life that coincides approximately with the time 

in which the changes occur in different biomechanical and bioenergetical factors of 

walking.  

We intent also to investigate the effects at metabolic level induced by nitrate sup-

plementation during exercise. The study was developed in order to describe the trend 

of energy cost of locomotion on a treadmill at different intensities administered by 

varying the speed and slope of the instrument. 

The main end point is the verification of the efficacy of BR supplementation in 

improving muscle efficiency in various type of locomotion. In particular, we intend to 

check if NO3
-: 

i) are able to reduce the energy cost of exercise in elderly subjects in the moderate 

and severe intensity domain; 
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ii) are able to improve muscle efficiency in relation to a greater availability of ox-

ygen and its use at the peripheral level. 

 

In short, the aim of the studies was to evaluate, through an integrative approach, 

the effects of nitrate supplementation on skeletal muscle oxidative metabolism during 

exercise.

 

 

  



 

  

 

 

 

 

 

SECTION TWO 

 

 

STUDY ONE 

The effects of nitrate supplementation  

on different intensities of exercise  



 

  

 

  



 

  

 

 

 

 

 

 

 

 

 

Summary of the section 

In this section are analyzed the effects 

of NO3
-, through supplementation with 

beetroot juice, on different intensities of 

exercise. Experimental protocol includes 

two different transitions from rest to mod-

erate and severe intensities of exercise.  

After an introduction on V̇O2 kinetics 

and NO3
- effects on them, data of oxygen 

consumption, muscular oxygen extraction 

at the muscular level and blood pressure 

parameters are reported and analyzed.
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List of abbreviations 
 

NO3
-  Nitrates  

NO2
- Nitrites 

NO  Nitric oxide 

BR Beetroot 

PL Placebo 

MOD  Moderate intensity of exercise transition 

SEV  Severe intensity of exercise transition 

R Rest phase 

UP  Unloaded pedalling phase 

EXE Exercise phase 

NIRS  Non-invasive near-infrared spectroscopy 

ES Effect size 

V̇O2  Oxygen consumption 

V̇CO2 Carbon dioxide production 

A Amplitude of V̇O2 kinetics 

TD Time delay of V̇O2 kinetics 

τ Time constant of V̇O2 kinetics 

[La]  Lactate concentration 

SAT Saturation of hemoglobin 

[HHb]  Concentration of deoxygenated hemoglobin 

[HbO2]  Concentration of oxygenated hemoglobin 

[THb] Total concentration of hemoglobin 

SYS Systolic pressure 

DIA Diastolic pressure 

MAP Mean arterial pressure 

TPR Total peripheral resistance 

HR Heart rate
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4. Introduction 

 V̇O2 kinetics 

The study of the kinetics of oxygen consumption (V̇O2) and of the physiological 

mechanisms that regulate the dynamic response of V̇O2 to constant-load exercise as-

sumes a certain importance if we consider that oxidative metabolism is the main pro-

cess by which the organism produces energy (David C. Poole and Jones 2012). 

The consumption of oxygen by the tissues is described by the Fick equation [1]: 

 

V̇O2 = Q̇x Δ (a-v)  [1] 

Where: Q̇ is the cardiac output, that is the quantity of blood expelled from the left ventricle in the time 
unit (L / min), corresponding to the product of the heart rate (HR) for the systolic range (SV) Δ(a-
v) represents the arterio-venous difference of the content of O2 (CaO2 - CvO2), therefore the amount 
of oxygen that the cells can extract and use from the bloodstream during the passage of blood into the 
capillaries. 

The V̇O2 therefore depends on the amount of blood circulated by the heart pump 

and on the capacity of O2 utilization by the cells. 

The instantaneous increase of muscular work that occurs with the beginning of 

the exercise at constant load (square wave), starting from a rest condition or a reduced 

metabolic activity, causes an immediate increase in the speed of synthesis of ATP due 

to increasing on muscle contraction, until reaching a level of power to that required. 

The V̇O2, however, follows the mechanical and biochemical events of the contraction 

with a certain latency, showing insufficient, in the initial phase of the exercise, to satisfy 

the metabolic demands. The compensation of the delay related to the production of 

ATP by oxidative pathway determines an increase in the contribution of the anaerobic 

mechanisms (phosphocreatine and glycolysis) which progressively decreases as a func-

tion of time until it is canceled when the coupling between ATP resynthesis speed is 

achieved by oxidative pathway during moderate exercise(David C. Poole et al. 2008). 

The observation of respiratory dynamics in the first few minutes of the exercise 

can provide important information on the regulation of oxidative metabolism in skel-

etal muscles, as the V̇O2 measured at the mouth reflects the muscular one (Poole and 

Jones, 2012). A rapid adjustment of the flow of O2, dependent on the coordinated 
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response of the respiratory, cardiac and muscular systems, reduces the need to "per-

turb" the anaerobic metabolism, thereby depleting the reserves of energy intramuscular 

substrates and unbalancing the metabolites associated with glycolytic stimulation 

(ADP, Pi, H+), with consequent positive effects on exercise tolerance and on the onset 

of muscular fatigue (Burnley and Jones 2007). By simply considering these dynamics, 

it can be assumed that the speed with which the aerobic mechanism is able to adapt to 

a variation in the energy requirements of the muscle in exercise can be a factor that is 

not negligible for performance (Bassett and Howley 2000). Indeed, an excessive inertia 

of the aerobic metabolism linked to the latency in the activation time of the enzymes 

of the Cycle of Krebs and the electron transport chain, or a no optimal distribution of 

the peripheral flow, can result in a consequent increase in the amount of energy pro-

duced anaerobically and as consequence of the O2 debt (Tschakovsky and Hughson 

1999). 

The V̇O2 shows a characteristic exponential response to the increase in metabolic 

demands in constant-load exercise, until a new state of equilibrium is reached. In real-

ity, the phenomenon is not linear, but is made up of the sum of several phases. The 

increase of the parameter, in the initial phase of the transition from the resting state to 

the exercise, presents a first rapid adjustment (Phase I: Cardiodynamics), followed by 

a second phase (Phase II: main or primary component) which represents the real onset. 

The achievement of steady state is replaced, for loads exceeding the moderate intensity 

domain (> GET: gaseous exchange threshold), by a third phase (Phase III: Slow com-

ponent) which progressively tends to increase, reaching (intensity <CP: Critical Power) 

or not the steady state (intensity> CP) (Whipp and Wasserman 1972). The adjustment 

of response of the aerobic metabolism to the load follows a trend that can be modelled 

by the following equation [2], given by the sum of single-exponential functions, each 

corresponding to a specific phase of kinetics: 

 

V̇O$	(t) = 	 V̇O$*+, + [𝐴1	(1 − 𝑒(𝑡−𝑇𝐷1)/𝜏1)	] + 	 [𝐴2	(1 − 𝑒(𝑡−𝑇𝐷2)/𝜏2)] + 	 [𝐴3	(1 − 𝑒(𝑡−𝑇𝐷3)/𝜏3)] [2] 

Where: V̇O2 (t) is the V̇O2 at time t – V̇O2BAS is the V̇O2 at rest – A is the amplitude of the 
variation of the V̇O2 of each phase (1, 2, 3) – TD is the time delay or delay time, which identifies 
the time instant in which the exponential response begins – τ is the time constant, which defines the 
time necessary for the V̇O2 to reach 63.2% of the V̇O2 at the steady state. 
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4.1.1 Phase I 

At the beginning of the aerobic exercise at constant load, a sudden and rapid in-

crease in the consumption of oxygen is observed, represented by an exponential func-

tion that usually exhausts within 10-25s. This phase, called "cardiodynamics", seems 

to reflect the early increase in blood flow to the lungs, which depends from the increase 

in heart rate and myocardial contraction, which are mediated on a neurological level 

and an increase in venous return (Casaburi et al. 1989). In this period, the blood com-

ing from the muscles in exercise and modified by the cellular metabolism, has not yet 

reached the lungs, and its composition is determined by rest conditions, without an 

increasing of muscle extraction of the O2, and then without appreciable changes of the 

respiratory quotient, of the partial pressure of oxygen in the venous blood (PO2) and 

of the partial pressure of carbon dioxide (PCO2) (Burnley and Jones, 2007). This phase 

often shows artifacts, and being considered devoid of metabolic implications, it is nor-

mally excluded from analysis (Maione et al. 2015). 

4.1.2 Phase II 

Phase II follows phase I with a variable delay time, only occasionally higher than 

30 s, from the start of exercise. It is characterized by a slow increase in oxygen con-

sumption, with a value of τ in most cases of about 30-40 s, according to a trend repre-

sented by an exponential function, attributed to the combination of the continuous 

increase of venous return from the muscles in exercise and significant reduction of the 

O2 content in venous blood compared to the concentration of the same in the lungs. 

It therefore reflects the consumption of oxygen at the muscular level linked to the 

increase in mitochondrial respiration and therefore the metabolic changes at this level.  

Because the ability to generate energy through substrate phosphorylation is con-

sidered finite (both due to a limited capacity and to the accumulation of fatigue-related 

metabolites), exercise tolerance in subjects with very slow Phase II, such as those with 

pulmonary, cardiovascular or metabolic diseases or disorders could also be compro-

mised at reduced levels of power. Elite endurance athletes have a remarkably rapid 

Phase II in order to minimize the extent of O2 deficiency and therefore the perturba-

tion of homeostasis in the transition from a low to a higher metabolic level (David C 

Poole et al. 2005). 
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Moderate intensity of exercise at constant load can be described by Phase I and 

Phase II of  V̇O2 with following equation: 

 

V̇O$	(t) = 	 V̇O$*+, + [𝐴1	(1 − 𝑒(𝑡−𝑇𝐷1)/𝜏1)	] + 	 [𝐴2	(1 − 𝑒(𝑡−𝑇𝐷2)/𝜏2)] [3] 

4.1.3 Phase III 

In the exercise performed at an intensity higher than GET, the kinetics of the V̇

O2 show a third phase that begins, by definition, around the third minute. This phe-

nomenon, called "slow component", indicates the rate of increase of V̇O2, often in 

relation to the increase in blood lactate, whose significance has been associated with 

several possible explanations: physical phenomena such as the increase in body tem-

perature, metabolic changes (glucose resynthesis starting from the lactate produced), 

but above all the greater recruitment of fast fibers (type II) (Gaesser and Poole 1996).  

Phase III is quantified as the increase of V̇O2 in comparison to the steady state 

value reached up during phase II of the kinetic. 

On the causes of this phenomenon, hypotheses have been proposed that take into 

consideration factors such as catecholamines, lactic acid, hydrogen ions that could act 

as metabolic stimulators with effects at the peripheral or central level. It seems that it 

is very linked to the concentration of blood lactate as it is found only in exercises in 

which a sustained acidosis is established (Whipp and Wasserman 1972), with a width 

quantitatively linked to level of it. According to others (Poole et al. 1991) 86% of the 

slow component would be associated with intramuscular factors that refer to the re-

cruitment of type II fibers because of their low oxidative capacity. In any case it is 

fundamental to recognize that it expresses the reduction of metabolic efficiency that 

brings an additional consumption of O2 and increase of the "Gain" (mL O2/min/ W) 

(Grassi, Rossiter, and Zoladz 2015), and a delayed achievement of the state stationary, 

(Poole and Jones, 2012).  

 Kinetics and intensity of exercise 

The profile of the V̇O2 response to the metabolic transition, from the resting state 

to the constant-load exercise, is characterized by a certain specificity for the intensity 

of work. 
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There are usually three main intensity domains determined based on the evoked 

metabolic adaptations Moderate, Heavy and Severe. 

4.2.1 High intensity (Heavy Exercise) 

Heavy exercise defines labor intensity higher than GET, but lower than CP, with 

elevated, but stable blood lactate concentrations during exercise (Burnley and Jones, 

2007). The CP represents the asymptote of the Power-duration curve for high-intensity 

exercise, namely the sub-maximal V̇O2 that can be sustained for a prolonged period of 

time. These parameters usually coincide with ~ 50% of the delta between GET and V̇

O2max (Δ50%).  

To this intensity domain, a third phase of the kinetics of the V̇O2 or "slow com-

ponent" appears, which describes a continuous increase of the parameter, according 

to a very slow time constant and an amplitude greater than the steady state value. The 

onset of this phenomenon, which represents 10-20% of the total response, typically 

occurs 90-180 s after the beginning of the effort (Burnley and Jones, 2007) and tends 

to stabilize after about 10-20 min (Pringle et al. 2003). 

4.2.2 Very high Intensity (Severe Exercise) 

The domain of severe intensity is delimited by mechanical outputs between CP 

and V̇O2max and is associated with high concentrations of blood lactate that continue 

to increase over time (Scheuermann et al. 2011, Poole and Jones, 2007), but also to the 

decrease in intramuscular phosphocreatine concentration (Grassi, Rossiter, and 

Zoladz 2015). Also in this case appears the slow component of the V̇O2 which, how-

ever, does not reach equilibrium therefore, in conditions in which the exercise is sus-

tained for a long period of time, it tends to reach its maximum value (V̇O2max) bringing 

the subject to exhaustion (Grassi, Rossiter, and Zoladz 2015) in a time that is faster 

the more the phase time constant is fast. 

 Kinetics of oxygen consumption: central and peripheral mechanisms 

The kinetics of oxygen consumption are generally considered an index of the gen-

eral conditions of integrity of the pulmonary, cardiovascular and muscular systems, 

resulting from the interaction between the mechanisms of regulation of the release of 
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O2 and its use by the muscles. The question concerning the factors responsible for the 

limitation of oxidative metabolism, of a central or peripheral nature, has been widely 

debated in the literature (Murias, Kowalchuk, and Paterson 2011; De Roia et al. 2012). 

The data do not exclude that the immediate response of the V̇O2 to the metabolic 

transition, in the first ~ 20 s of exercise, can be regulated mainly by intracellular factors, 

with particular reference to the ability to provide substrates other than O2 to mito-

chondria. In particular, since mitochondrial respiration is intimately linked to the rate 

of hydrolysis of ATP, one or more of the reagents of this process ([ADP] and [Pi], 

phosphorylation potential and/or [PCr] and [Cr]) are considered potentially responsi-

ble for the major limitation in the regulation of oxidative phosphorylation (Meyer, 

1988). 

Several groups (Poole and Jones, 2012) provided evidence consistent with this 

theory demonstrating a close coupling between the kinetics of the muscular [PCr] and 

that of the V̇O2 at different intensities of exercise. Kindig and colleagues (Kindig 2004) 

reports that the acute inhibition of creatine kinase (CK) in isolated myocytes greatly 

accelerates the kinetics of intracellular PO2, in analogy with the transient of V̇O2, sug-

gesting that changes in ADP concentration, following the splitting of CK-catalyzed 

phosphocreatine at the beginning of the exercise, attenuates the activation of oxidative 

phosphorylation. In addition, competition for the mitochondrial cytochrome c oxidase 

link site between the NO from the vascular endothelium and O2 shows the contribu-

tion to regulating the speed of adjustment of the kinetics of the V̇O2 (Jones et al. 2003), 

as well as the reserve of substrates (acetyl groups and NADH). 

Despite the intracellular factors altering the phosphorylation and/or redox poten-

tial and influencing the oxidative phosphorylation processes, it is possible that after 

the initial delay in activation and the increase of oxidative phosphorylation (~ 20 s, 

potentially due to the intracellular control), all the substrates necessary to drive oxida-

tive metabolism, except O2, are present in saturating concentrations. 

4.3.1 Training effects 

Several studies have shown that changes in the oxidative metabolism response 

occur rapidly in terms of phase II acceleration of 20% and 40% respectively after only 

two and eight sessions of ET or HIT (McKay, Paterson, and Kowalchuk 2009), but 

also slow attenuation of the slow component, at severe exercise intensity, after 2 weeks 
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of RSA (Bailey et al., 2009) or a combination of ET and HIT (Da Boit et al. 2014). In 

2013 Williams and colleagues (Williams, Paterson, and Kowalchuk 2013) showed that 

2-4 weeks of HIT with intervals at 110% of peak V̇O2 leading to acceleration of the 

kinetics of V̇O2, in response to light load (20 W → 45% GET) and moderate (45% 

GET → 90% GET), of similar magnitude. Based on the principle of Henneman and 

colleagues (Henneman, Somjen, and Carpenter 1965) of the hierarchical recruitment 

of motor units, greater reductions in muscle glycogen and [PCr] were reported in type 

I fibers than in type II during ET at 30-80% V̇O2max (Da Boit et al., 2014). The same 

parameters decrease significantly in type I and II fibers after HIT at intensities higher 

than V̇O2max, with glycogen depletion mainly in fast fibers (Da Boit et al., 2014). Since 

HIT, above maximal intensities, induces more adaptations in oxidative enzymes in type 

II fibers than in ET and more important increases in the oxidative capacity of type IIb 

fibers, oxidative metabolism improves more markedly in these types of fibers after 

RSA. The study by De Boit and colleagues (Da Boit et al., 2014) shows that two weeks 

of RSA and ET induce the acceleration of V̇O2 kinetics in the transition from light to 

moderate intensity (-26% and –22%) and the increase in exercise tolerance in the tran-

sition from moderate to severe intensity (+33% and +37%). 

4.3.2 VO2 Kinetics and the elderly 

Aging is associated with the decline of cardiorespiratory functions (Biagi, 2009) 

and of the oxidative capacity of the muscles (Granacher, Zahner, and Gollhofer 2008) 

that influence the adaptive response of oxidative metabolism to exercise, in relation to 

the progressive limitations in transport and use of O2 (Murias, Kowalchuk, and 

Paterson 2011). Typically, a slowing of the kinetics of the V̇O2 in phase II emerges 

(Murias et al. 2011), as a factor associated with higher O2 debt due to less efficient 

phosphorylation at substrate level and diminished of muscular [PCr] for the synthesis 

of ATP necessary to sustain a given activity (DeLorey 2004). This leads early to fatigue 

alerting and reduced exercise tolerance (DeLorey 2004). 

In general, there is a compromise of the ability to increase cardiac output with a 

reduction of O2 contribution to the limb involved in the exercise (Bell et al. 2001), but 

what seems to limit the speed of adaptation of the kinetics of the V̇O2 at the increase 

in the energy requirement is the distribution of the blood flow within the active muscle 

(duManoir et al. 2010). Beyond the structural changes of the microcirculation (Bradley 
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J. Behnke and Delp 2010), the reduction of age-related peripheral perfusion, depend-

ing on the impairment of the local flow regulation capacity (Maione et al., 2015), is the 

reflection of a high rate of change in deoxygenated hemoglobin (HHb) in relation to 

the modification of V̇O2 (Δ[HHb]/ ΔV̇O2 Ratio) in elderly subjects compared to other 

younger ones (DeLorey 2004), in addition to a greater transient reduction of PO2 in 

the microcirculation (Brad J. Behnke et al. 2005). 

Older adults therefore rely on a greater extraction of O2 during the start of the 

exercise, probably due to a lower matching between the local blood flow (contribution 

of O2 through the microcirculation) and its consumption by the muscle (Murias et al., 

2011). 

4.3.3 Metabolic transitions and NO3
- 

Dietary supplementation of NO3
-, reduced to NO2

- and then to NO and other 

reactive nitrogen species, has been shown to affect the intensity of V̇O2 reduction of 

submaximal exercise (Bailey et al. 2010, 2009; Lansley, Winyard, Fulford, et al. 2011; 

F. J. Larsen et al. 2007; Vanhatalo et al. 2011), in association with improving the in-

trinsic contractile properties of skeletal muscle active (Vanhatalo et al., 2010), the in-

crease in mitochondrial efficiency in the oxidation processes of substrates related to 

the synthesis of ATP (Filip J Larsen et al. 2011) and the increase in the contribution 

of O2 peripheral in relation to metabolic demands (Ferguson et al. 2013). From this 

emerges the potential role of NO3
- exogenous in contributing to the positive modifi-

cation of the V̇O2 kinetics in metabolic transients (Breese et al., 2013). 

Considering that dietary supplementation of NO3
- promotes improvements in ab-

solute and relative flow distribution to type II muscle fibers (Ferguson et al. 2013), this 

could improve the coupling between the local contribution of O2 and its consumption 

by the muscle, thus accelerating phase II in the metabolic transition from moderate to 

severe intensity exercise (Breese et al., 2013).  
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5. Materials and Methods 

 Aim of the study 

The aim of this study is to investigate the effects of nitrate supplementation on 

muscle oxidative metabolism during moderate and severe intensity exercise on cicloer-

gometer.  

During moderate intensity exercise, nitrate supplementation effects on V'O₂ 

kinetic parameters is expected to lead to the acceleration of the oxidative metabolism 

response, thus to improvements of the V'O₂ kinetic parameters with feedback on 

muscle efficiency. With respect to severe exercise, in which the partial impairment of 

the availability of O₂ is known, we hypothesize that if nitrates have a predominantly 

vascular role, they can significantly improve the delivery of O₂. While if the efficiency 

increases due to treatment, we hypothesize that this is due to mechanisms located at 

the cellular level (mitochondria), justifying a slight increase in the time constant of 

Phase II. 

 Subjects 

The study participants were 20 volunteered, healthy, subjects divided in two 

groups: 10 old (67 ± 4.3 years) and 10 young (25 ± 3.9 years). During subjects’ selec-

tion phase were recruited 28 men, but 4 refused to participate, 3 were excluded after 

preliminary medical examination and 1 drop out during first supplementation phase. 

The remaining 20 non smoking subjects voluntary participated in the study after given 

their informed and written consensus. 

Inclusion criteria to participate at the study were: a normal clinical exam, absence 

of orthopedic, muscle-skeletal, metabolic, cardiovascular, respiratory or oral cavity pa-

thology,  

Exclusion criteria were: abnormal clinical exam, presence of orthopedic, muscle-

skeletal, metabolic, cardiovascular or respiratory pathology, obesity (BMI ≥ 30 

kg/m2),. 

All procedures were approved by the Department of Neurological and Movement 

Sciences’ ethical committee for research on human subjects. 
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 Study design and protocol 

The study is a double-blind crossover design with Nitrate (BR) or Placebo (PL) 

supplementation. The protocol consisted of a preliminary day of test (D0) in which 

subjects performed a ramp incremental test (EXP1); followed by 3 alternate testing 

days (K1, K2, K3) in which  V̇O2 kinetics tests were performed (EXP2). This plan was 

repeated in 4 experimental phases (BDC1, PS1, BDC2, PS2). 	

In the first phase (BDC1) (basal data collection) basal conditions were measured.	

In the second phase (PS1) (post supplementation) the conditions after first period of 

supplementation (randomly selected between NO3
- or PL) were recorded. 

After at least 10 days of washout, the third phase was performed (BDC2) where 

basal conditions were measured again. In the fourth and last phase (PS2) the condi-

tions after second period of supplementation (opposite of the first period) were deter-

mined. 

 

 

 

Table 1,2: The table shows 
the individual data of sub-
jects examined, Old (up) and 
Young (down).  The values 
of age (Age, years) of the an-
thropometric parameters 
have been reported: height 
(Height, cm) and body mass 
(Weight, Kg), of the maxi-
mum metabolic power, abso-
lute (V̇O2max, mL/min) 
and relative ( V̇O2max, 
mL/min/Kg, , of the maxi-
mum mechanical power 
(Power max, W) and of the 
maximum heart rate 
(Hrmax, bpm) detected in 
the preliminary test, and of 
the Workloads (W) of the 
two intensity domains (Mod-
erate: 80 % GET, and Se-
vere: Δ 50%, W)  

Figure 1: The representation schematically summarizes order of test. After the preliminary evaluations (D0) follow the four 
experimental phases (BDC1, PS1, BDC2 and PS2) in each of which the kinetic evaluation protocol is repeated in non-
consecutive days (K1, K2 and K3). All subjects underwent 8 days of supplementation with NO3- and PL, according to a 
balanced randomization. In PS1 and PS2 the kinetic evaluation protocol is repeated again. PS1 and BDC2 are separated by 
10 days of washout. BS indicated blood sample, that is taken for the determination of the blood concentrations of nitrates and 
nitrites. 
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5.3.1 Supplementation 

The BR supplementation was made by beetroot juice (BR) (250 ml/day – Azienda 

agricola “Aureli” – Ortucchio (AQ) - Italy). The juice was provided in two different 

formulations: one with high concentration (~8.0 mmol) of NO3
- and one with low 

concentration (~0.8 mmol) of NO3
- (used as a placebo (PL)). The PL was identical in 

color, taste, smell and texture to the NO3
- rich BR juice. Supplementation was distrib-

uted by an experimenter not involved in laboratory tests and/or in data analysis and 

the subjects and all the experimenters involved didn’t know what supplementation was 

provided (if BR or PL). The matching of assumptions was known only at the end of 

data analysis.   

This is considered a medium-term supplementation design that lasts for 8 days 

(Porcelli et al. 2015, Wylie et al. 2013). with ingestion of a single daily dose of 250 ml 

of juice before breakfast. The measurements of the kinetics started on the third day 

of treatment. The kinetics protocol took place on average 2.5/3 h after the supple-

mentation. In each phase the same cadence of supplementation/test was repeated. 

The subjects independently provided the supplementation following a sheet of 

instructions delivered to them.  They were also warnings on foods to avoid rich in 

nitrates (spinach, beetroot, salad, rocket and Chinese cabbage) and to avoid the use of 

antibacterial mouthwash. 

  
 

 

Figure 2: The representation schematically sum-
marizes the experimental design that structures the 
presented study, of a longitudinal type in a double-
blind crossover. After the preliminary evaluations 
(EXP1) subjects randomly divided in two groups 
(BR or PL) and perform first two experimental 
phases (BDC1 and PS1). 
After 10 days of washout they crossed their condi-
tion and change supplementation and perform last 
two phases (BDC2 and PS2) 
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 EXP1 – Preliminary ramp incremental test 

To determine peak of oxygen consumption V̇O2max. gas exchange threshold 

(GET), power output (PO), power output peak (POpeak) and maximal heart rate 

(HRmax) a ramp incremental (RI) test was performed. 

RI protocol included 3 min of measurement of baseline condition, where subject 

remained sit on bike without moving. After that, the subject start cycling at 30 

W(warm-up), for 3 min, with self-selected cadence. This cadence was recorded and 

was maintained during all subsequent tests using visual feedback and verbal encour-

agement from the experimenters. Warm-up was followed by RI protocol with different 

workload increments every minute (15, 20, 25, 30 W/min – 2W/8s, 2W/6s. 5W/12s. 

3W/6s) in order to maintain entire test duration between 16 and 18 min. Test ended 

with exhaustion of the subject, and howeevr when the criteria for maximal test were 

reached (V̇O2 plateau, HR ~ HRmax, [la] >10mM). Failure to maintain the indicated 

cadence to within 5 rpm (for longer than 5s) during testing despite strong verbal en-

couragement was considered as the criterion for exhaustion.  

In order to obtain a more reliable measure of V̇O2max a verification trial test (VER) 

was also executed: after 2 min of recovery subjects start pedaling again at 20 W, after 

5 min the workload was augmented to constant-work rate equal to 105% of the me-

chanical power achieved at the end of the ramp test until exhaustion. (David C. Poole, 

Wilkerson, and Jones 2008) 

 EXP2 – V̇O2 Kinetics test 

To measure physiological adaptations at the onset of exercise a V̇O2 kinetics 

(EXP2) test was assessed.  

EXP2 was performed on cycle ergometer (Excalibur Sport – Lode B.V. – Gro-

ningen, The Netherlands) and the protocol provided two square wave transitions of 6 

minutes duration, at 2 different intensities: moderate intensity (MOD – 80%GET) and 

severe intensity (SEV – 50%∆ ;50% of the difference between GET and V̇O2max) and 

was performed in three days (D1, D3, D5).  

After 3 minutes of basal condition measurement, subjects start pedaling at 30 rpm 

(round per minute) for another 3 minutes to warm-up. At the 6th minute the moderate 

intensity transition started: the workload became equivalent to 80% GET (80% GET 
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represents the imposed mechanical load in order to reach a metabolic intensity of 80% 

of GET - gas exchange threshold-). The subject kept his a fix pedaling cadence corre-

sponding to that determined during the RI. The transition lasted 6 minutes and at the 

end the entire procedure was repeated at severe intensity. At the 18th minute the severe 

intensity transition started: the workload became equivalent to 50%∆ (50%∆ repre-

sents the imposed mechanical load in order to reach a metabolic intensity of 50% of 

the difference between GET and V̇O2max. 

 

 

 

 

 

 

 Measures and instruments 

In all the tests the followingmeasurs were done:  

- Pulmonary gas exchange (V̇O2 and V̇CO2) and pulmonary ventilation (V̇E) 

(Quark CPET – Cosmed srl – Rome. Italy).  

- Oxygenated [HbO] and deoxygenated [HHb] hemoglobin concentration on 

vastus lateralis muscle (VL) by Near InfraRed Spectroscopy (NIRS – Oxi-

plexTS™ – ISS Inc. – Champaign. IL. USA) 

- Blood pressure (Portapres® – Finapres medical system B.V. – Enschede. The 

Netherlands).  

- Lactate [La] and Glucose [Glu] concentration (Biosen C-line – EKF Diagnos-

tic – Barleben. Germany), by capillary blood collection (10 µL) from the ear-

lobe performed every 3 minutes, 30s before changing phase. 

- Blood samples were collected by venous sampling to (5 + 5 mL) glass EDTA 

tubes to determine [NO3
-] and [NO2

-]. 

To perform the tests was used 

- Cycle ergometer (Excalibur Sport cycle, Lode – Groningen, The Netherlands) 

Figure 3: The representation schematically summarizes the experimental protocol of V̇O2 kinetics. [La] indicates the meas-
urement of lactate concentrations in the last minute of each phase 
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5.6.1 Quark CPET- Cosmed, Rome, Italy 

Gas exchanges (V̇O2, V̇CO2) and pulmonary ventilation (V̇E) were measured 

breath-by-breath using the metabolimeter with a facial mask. 

The concentrations of inhaled and exhaled gases were sampled at a frequency of 

100 Hz via a capillary line connected to the mask and quantified by respectively para-

magnetic analyzers for O2 with response time of 120 ms and infrared rays (NDIR 

technology) for CO2 with a response time of 100 ms. The measurement of the volume 

of the respiratory flows was carried out by a flowmeter consisting of a bidirectional 

digital turbine inside which a movable vanity unit, free to rotate around its axis, rotates 

at speed and in a direction proportional to the flow of air from which it is invested. 

The number of rotations was transduced into the parameters of interest by an opto-

electronic system with infrared LED diodes based on the frequency of detection of 

the passage of the blades, integrated and processed by a microcomputer. 

Prior to each test, the gas concentration and volume transducer analyzers of the 

turbine were calibrated using a mixture of a gas with known concentrations, according 

to the manufacturer's instructions, (FO2: 0.16; FCO2: 0.05) and a 3.0 L syringe. Con-

centration data e volume were aligned temporally, breath-by-breath, taking into ac-

count the delay in the passage of the gas to the capillary then the discrepancy between 

the time of acquisition of the signal by the analyzer and the flow meter, through the 

calibration of delays. 

5.6.2 Portapres® – FMS, Amsterdam, The Netherlands 

Non-invasive monitoring of the pressure profile was performed by continuous 

recording of the pressure pulse with cuff placed at the level of the phalanx distal of the 

middle or ring finger of the right hand using the photoplethysmographic method.  

The mean arterial pressure values (MAP) were calculated as the mean of the inte-

gral of any data detected by the Beatscope software (FMS), making the correction for 

the height difference between the heart and the fingertips and the individual factors of 

the subject (anthropometric data, age, sex), as indicated by the manufacturer. 
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5.6.3 NIRS – OxiplexTS™ – ISS Inc. – Champaign. IL. USA 

The changes in the oxygenation state at the level of the microcirculation of the 

muscular tissue of the lateral vastus were measured using a non-invasive method using 

NIRS (Near Infrared Spectroscopy) spectroscopy. This instrument detects in real time, 

at a sampling rate of 100Hz, the absolute (micromolar) concentrations of oxyhemo-

globin [HbO], deoxyhemoglobin [HHb], total hemoglobin [THb] and tissue oxygena-

tion index (SAT) whose values are expressed and analyzed, second by second, as aver-

age data. NIRS light is emitted in the muscle at wavelengths between 690 and 830 nm 

using light sources and receivers placed at distances of 1.50 - 3.04 cm, with the intake 

of cellular water at a constant concentration of 70%. 

The NIRS probe was positioned after the treatment of the skin surface (degreased, 

slightly abraded and depilated), at the lower third of the vastus lateralis, calculated as 

the midpoint of the distance between large trochanter and lateral epicondyle of the 

femur of the right leg, secured with adhesive tape. Velcro and elastic straps were used 

to ensure no microspacing of the device and its isolation from external light, minimiz-

ing interference during acquisition. 

The NIRS probe was calibrated before each test session using a calibration block 

with known absorption and dispersion coefficients of the known NIRS electromag-

netic wave, a procedure performed according to the manufacturer's recommendations. 

5.6.4 Lactacidometer 

Blood lactate concentrations ([La], mM) and glucose ([Gly], mM) were detected 

on arterialized capillary blood samples (10 µL) taken from the earlobe. Values were 

obtained using an electrochemical system (Biosen C_line, EKF Diagnostic, Barleben, 

Germany). 

5.6.5 Kit for blood samples 

The evaluation of the plasma concentration of nitrates (NO3
-) and nitrite (NO2

-) 

was carried out on blood samples obtained by venous sampling (5 + 5 mL), for each 

of the experimental phases (BDC1, PS1, BDC2 and PS2). The intervention was con-

ducted, before the experimental session, by medical staff.  
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The analysis of the samples, collected in glass tubes containing EDTA anticoagu-

lant, was performed by Borgo Roma hospital chemical laboratory. 

5.6.6 Excalibur Sport cycle, Lode – Groningen, The Netherlands 

All the tests were performed on an electromagnetic brake cycle ergometer, con-

nected and managed by the metabolimeter (Quark CPET - Cosmed, Rome, Italy).  

The electromechanical characteristics of the ergometer allow the application of 

the workload in 50 ms. The signals of the pedaling frequency (rpm) and of the load 

(W) were digitized into parallel to a 16-channel analog-to-digital converter (MP100, 

Biopac Systems, Goleta, CA) and stored on a computer at a frequency of 100Hz. 
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6. Data analysis 

 Nitrate and Nitrite concentrations 

The blood concentration of nitrates and nitrites was evaluated on plasma with a 

colorimeter kit (Nitrate/Nitrite Colorimetric Assay Kit - Cayman). The plasma fraction 

was prepared by ultra-filtration using filters with a 10 KDa cutoff (Amicon). For the 

test, 10 ul of filtrate were used and the supplier's indications were followed. The read-

ing was done with a reader for 96-well plates at a wavelength of 540 nm (Gralis - Buoty 

Diagnostics) 

 Maximal oxygen consumption (V̇O2max) 

During RI in D0 V̇O2max was determined and it was calculated as the average of 

the V̇O2 recorded in the last 30 seconds before exhaustion. As maximal power output 

(POpeak) was considered the last completed load before the end of test. 

The results V̇O2max was compared with one recorded during VER. V̇O2max of VER 

was calculated as the average the V̇O2 recorded in the final 10 seconds before exhaus-

tion. If the difference between two V̇O2max was more of 100 mlV̇O2/min it was calcu-

lated average between them, otherwise V̇O2max determined after RI was used.  

 Thresholds 

In order to determine the aerobic threshold (GET), data was individually edited 

to remove outlier data (more than 4 SD from the local mean) and aligned to the onset 

of RI. After that Wasserman method was applied. GET has been identified by visual 

inspection, by three independent expert reviewers and averaging their results as the V̇

O2 at which CO2 output (V̇CO2) began to increase out of proportion in relation to V̇

O2 with a systematic rise in the minute ventilation (V̇E)-to-V̇O2 relation and end-tidal 

PO2 whereas the ventilatory equivalent of V̇CO2 (V̇E /V̇CO2) and end-tidal PCO2 is 

stable (Beaver, Wasserman, and Whipp 1986)  

On the basis of V̇O2max and GET the PO used in the EXP2 (80%GET - 50%∆) 

were defined. To define the PO, it was used the relation between PO and V̇O2 during 
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RI. The linear regression between the two parameters was applied and with the equa-

tion of the regression line the PO corresponding to 80%GET and to 50%∆ has been 

calculated.   

 Kinetics parameters 

V̇O2 during EXP2 was measured breath by breath. Single data set was individually 

edited to obtain every second data from breath by breath data. Then linear interpola-

tion second by second was made, through the Spline function (Hughson, Sherrill, and 

Swanson 1988) which allows to calculate the value of the parameters in the instants of 

time in which no breaths have been registered. Data were then examined in order to 

exclude artifacts represented by the values not included in the interval defined by the 

four 4 SD on the local mean.  

After these analysis processes the data of the 3 repetitions of the 3 different days 

of the same experimental phase were aligned with the beginning of the rest (R) phase 

preceding each effort at constant load MOD and SEV and mediated in order to obtain, 

for each subject, a single data set for each experimental condition (BCD1, PS1, BDC2 

and PS2) and intensity of exercise. 

On the single data set were calculated V̇O2 values at steady state at rest (RSS) and 

steady state during unloaded pedalling (UPSS) averaging the last 30 seconds of each 

corresponding phase. It was also calculated the amplitude of unloaded pedalling (AUP) 

as difference between UPSS and RSS. Moreover, the single data set was used for the 

analysis of V̇O2 kinetics at the onset of exercise. It was calculated net V̇O2 relating to 

the 360 seconds of exercise subtracting to each value of V̇O2 during exercise the value 

of UPSS. 

Next step was visual data fitting using the algorithm of Levenberg Marquardt 

(LM) specially implemented in Labview 8.2 (National Instrument. Austin. TX). LM is 

an interactive regression technique considered standard for solving multivariable non-

linear problems, based on an exponential mathematical model with two (phase I and 

phase II) or three components (phase I, phase II and phase III). according to the in-

tensity of exercise analyzed (MOD. two components – SEV. three components) [9] 

(Lador 2005; Whipp and Wasserman 1972). In this way have been obtained values of 
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the amplitude (A). time constant (τ) and time delay (TD) that corresponding to the 

best fit of the values of the data collected. 

 

Equation used by LM are the subsequent: 

 

𝑌(𝑡) = 	𝐻(𝑡 − 𝑇𝐷>)[𝐴>	(1− 𝑒(?@ABC)/DC)	] + 	𝐻(𝑡 − 𝑇𝐷$)[𝐴$	(1− 𝑒(?@ABE)/DE)] + 	𝐻(𝑡 −

𝑇𝐷F)[𝐴F	(1− 𝑒(?@ABG)/DG)]  [1] 

Where: Y(t) is V̇O2 during exercise. A1 – A2 – A3 are amplitudes of first – second – third (if 
present) component. τ1 – τ2 – τ3 are time constants of first – second – third (if present) component, 
that represent time necessary to complete 63% of the total amplitude observed (Hughson et al. 1988). 
TD1 – TD2 – TD3 are time delays of first – second – third (if present) component. 

Referring to equation [1]. H(t – TD1.2.3) is related to Heaviside function. defined as:  

 𝐻(𝑡	– 	𝑇𝐷) = I	0	𝑖𝑓	𝑡 < 𝑇𝐷
	1	𝑖𝑓	𝑡 ≥ 𝑇𝐷                        [2] 

 

It was calculated also mean response time (MRT), a parameter that returns an 

index of the speed of adjustment of the V̇O2. This index is useful in order to obtain 

indications regarding the time necessary to the oxidative metabolism to adapt at the 

variation of energy demands. 

 

𝑀𝑅𝑇 = [(𝜏> +	𝑇𝐷> ∗ 𝐴>) + (𝜏$ +	𝑇𝐷$ ∗ 𝐴$) + (𝜏F +	𝑇𝐷F ∗ 𝐴F)]/(𝐴> + 𝐴$ + 𝐴F)   [3] 

Where: A1 – A2 – A3 are amplitudes of first – second – third (if present) component. τ1 – τ2 – τ3 

are time constants of first – second – third (if present) component. that represent time necessary to 
complete 63% of the total amplitude observed (Hughson et al. 1988). TD1 – TD2 – TD3 are time 
delays of first – second – third (if present) component. 
 

Finally, the Gain, defined as the ratio between V̇O2 necessary to sustain a given 

mechanical output and the respective power (W) was calculated. As V̇O2 it was con-

sidered the difference between total amplitude (ATOT) and of O2 consumed at rest (RSS). 

Gain was calculated as follows, distinguishing the two intensities of exercise: 

 

GainMOD	(mL/min/	W)	=	ATOT/Workload	@	80%GET  [4] 

GainSEV	(mL/min/W)	=	ATOT/Workload	@	Δ50%  [5] 
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 NIRS Parameters 

After collecting data second by second with NIRS (OxiplexTS™ – ISS Inc. – 

Champaign. IL, USA), data were exported with OxiTS™ software (OxiplexTS™ – ISS 

Inc. – Champaign. IL, USA). Data were then examined in order to exclude artifacts 

represented by the values not included in the interval defined by the four 4 SD on the 

local mean.  

After these analysis processes the data of the 3 repetitions of the 3 different days 

of the same experimental phase were aligned with the beginning of the rest (R) phase 

preceding each effort at constant load MOD and SEV and mediated in order to obtain, 

for each subject, a single data set for each experimental condition (BCD1, PS1, BDC2 

and PS2) and intensity of exercise. 

On the single data set were calculated concentration of deoxygenated hemoglobin 

[HHb], oxygenated hemoglobin [HbO], total hemoglobin ([THb]) and saturation 

(SAT) values at steady state at rest (RSS) and steady state during unloaded pedalling 

(UPSS) and during exercise moderate (MODSS) or severe (SEVSS), averaging the last 30 

seconds of each corresponding phase. 

Next step was visual data fitting of [HHb] data, using the algorithm of Levenberg 

Marquardt (LM) specially implemented in Labview 8.2 (National Instrument. Austin. 

TX), LM is an interactive regression technique considered standard for solving multi-

variable nonlinear problems, based on an exponential mathematical model with two 

(phase I and phase II). according to the intensity of exercise analyzed (MOD, two 

components – SEV, three components). In this way have been obtained values of the 

amplitude (A). time constant (τ) and time delay (TD) that corresponding to the best fit 

of the values of the data collected. 

 

Equation used by LM are the subsequent: 

 

𝑌(𝑡) = 	𝐻(𝑡 − 𝑇𝐷>)[𝐴>	(1 − 𝑒(?@ABC)/DC)	] + 	𝐻(𝑡 − 𝑇𝐷$)[𝐴$	i1 − 𝑒(?@ABE)/DE)j  [4] 
Where: Y(t) is HHb during exercise. A1 – A2 are amplitudes of first – second (if present) component. 
τ1 – τ2 are time constants of first – second (if present) component, that represent time necessary to 
complete 63% of the total amplitude observed (Hughson et al. 1988). TD1 – TD2 are time delays of 
first – second (if present) component. 

Referring to equation [4]. H(t – TD1.2) is related to Heaviside function. defined as:  
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 𝐻(𝑡	– 	𝑇𝐷) = I	0	𝑖𝑓	𝑡 < 𝑇𝐷
	1	𝑖𝑓	𝑡 ≥ 𝑇𝐷       [2] 

 

It was calculated also mean response time (MRTHHb) for MOD, a parameter that 

returns an index of the speed of adjustment of the HHb based on TD and τ. 

 

𝑀𝑅𝑇kkl = 𝜏> +	𝑇𝐷> [5] 

Where: τ1 is time constants of first component, that represent time necessary to complete 63% of the 
total amplitude observed (Hughson et al. 1988). TD1 is time delays of first component. 

After that the randomization of the subjects was unveil to perform the appropriate 

matching (BR or PL) and the average and standard deviation were obtained. 

 ∆[HHb]/∆V̇O2 Ratio 

In order to get an index of matching of microvascular blood flow and O2 distri-

bution and muscle O2 utilization, ∆[HHb]/∆V̇O2 Ratio was calculated. This ratio is 

characterized by an overshoot in the first seconds of exercise, during the on-transient 

phase. A reduction of overshoot A suggests a better matching of microvascular blood 

flow and O2 distribution and muscle O2 utilization (Murias et al. 2011). 

To calculate the ratio the second-by-second amplitude of [HHb] (AHHb) and am-

plitude of phase II (A2) of V̇O2 kinetic data were normalized for each subject (0–100% 

of the response). Normalized A2 was left shifted by TD2 for each subject, to remove 

cardiodynamic phase so the onset of exercise coincided with the beginning of phase II 

of V̇O2 kinetic and is aligned with the beginning of [HHb] data signal. Data were fur-

ther averaged into 5-s bins for statistical comparison of the rate of adjustment for 

[HHb] and  V̇O2 kinetic. After that was calculated area under curve (AUC), from the 

beginning of the signal to 150s to ensure that both signal, [HHb] and V̇O2, had already 

reached 100% of their amplitude in MOD exercise (Murias et al. 2011), and that the 

signals are before the beginning of slow component phase in SEV exercise.   
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 Blood pressure (BP) 

After collecting data beat by beat with Portapres® (FMS, Amsterdam, The Neth-

erlands) the data was exported using BeatScope® (FMS, Amsterdam, The Nether-

lands). Then linear interpolation second by second was made, through the Spline func-

tion (Hughson et al. 1988) which allows to calculate the value of the parameters in the 

instants of time in which no breaths have been registered. Data were then examined 

in order to exclude artifacts represented by the values not included in the interval de-

fined by the four 4 SD on the local mean.  

After these analysis processes the data of the 3 repetitions of the 3 different days 

of the same experimental phase were aligned with the beginning of the rest (R) phase 

preceding each effort at constant load MOD and SEV and mediated in order to obtain, 

for each subject, a single data set for each experimental condition (BCD1, PS1, BDC2 

and PS2) and intensity of exercise. 

On the single data set were calculated systolic pressure (SYS), diastolic pressure 

(DIA), mean arterial pressure (MAP) and total peripheral resistance (TPR) values at 

steady state at rest (RSS) and steady state during unloaded pedalling (UPSS) and during 

exercise moderate (MODSS) or severe (SEVSS), averaging the last 30 seconds of each 

corresponding phase. After that the randomization of the subjects was unveil to per-

form the appropriate matching (BR or PL) and the average and standard deviation 

were obtained. 

Due to signal troubles (artifacts, low quality - signal/noise ratio), basal data are 

averaged in order to obtain a unique more reliable value 

6.7.1 Limits 

In the acquisition of data with the Portapres® (PP) for the elderly, some signal 

problems have been found. The data were corrected by means of data collected by a 

parallel measurement carried out with both PhysioFlow® (PF) and Tango®. this in or-

der to be sure that the estimate of the cardiac output with the PP was reliable, and for 

parallel measurement of arterial pressure at the brachial level. The correction coeffi-

cient was obtained and applied to the data obtained by PP. The pressure signal ob-

tained from the PP beat by beat was calibrated through a factor obtained during R by 

a measure of independent brachial pressure (Tango monitor). 
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At R, a correction factor was calculated for cardiac output: 

FCOR = QPF/QPP  [5] 

Then the cardiac output signal was multiplied by the factor of correction (5)  

COPp = QPP*FCOR  [6] 

Consequently, TPR were recalculated starting from the correct COPP signal (Tam et al. 

2004) 

 Statistics 

Statistical analysis was performed using GraphPad Prism 7 software (GraphPad 

Software, USA). After verifying the type of data distribution, using the Kolmogorov-

Smirnov Test and the Shapiro-Wilk Test, a two-way ANOVA test was applied, con-

sidering Age (Old and Young) and treatment (Pre and Post BR, Pre and PL), for re-

peated measurements. 

Multiple comparison in the post-hoc analysis was performed using the Fisher Test 

LSD and, when appropriate, the recommended corrections for parametric data (Tukey, 

Bonferroni and Sidak). 

Statistical significance was accepted for P <0.05. The results are expressed as 

mean ± standard deviation (Mean ± SD). On main relevant data significantly different 

Cohen’s d effect size was calculated. (Sawilowsky 2009) 
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7. Results – Nitrite and Nitrite concentrations 

The first results that are reported are those related to the plasma concentration of 

nitrates [NO3
-] and nitrites [NO2

-].  

 Old 

In elderly subjects supplementation with BR resulted in a significant increase (P 

<0.0001) in [NO3
-] compared to the concentrations found in the other conditions. 

Values of increasing are approximately 93.5% between Pre BR and Post BR (39.87 ± 

22.55 µM vs 615.06 ± 317.38 µM), 92.8% between Post BR and Pre PL (615.06 ± 

317.38 µM vs 44.03 ± 43.33 µM) and 86.5% between Post BR and PL (615.06 ± 317.38 

µM vs 82.94 ± 35.52µM).  As for [NO3
-] also [NO2

-] significantly increasing after BR 

compared to the other conditions. The increasing corresponds to 46.1% between Pre 

BR and Post BR (0.244 ± 0.01 µM vs 0.453 ± 0, 22 µM; p = 0.0003), 47% between 

Post BR and Pre PL (0.453 ± 0.22 µM vs 0.240 ± 0.21 µM, p = 0.0131) and 62.3% 

between Post BR and PL (0.453 ± 0.22 µM vs 0.171 ± 0.12 µM; p = 0.0017) 

 Young 

BR supplementation in young has also resulted in a significant increase in plasma 

levels of both [NO3
-] and [NO2

-] in comparison to concentrations without BR. 

In [NO3
-] the improvements given by supplementation were: 92.4% between Pre 

BR and Post BR (24.32 ± 15.34 µM vs 321.56 ± 246.73 µM), 91.3% between Post BR 

and Pre PL (321.56 ± 246.73 µM vs 27.85 ± 27.35 µM) and 85.1% between Post BR 

and PL (321.56 ± 246.73 µM vs 47.73 ± 18.69 µM). 

In [NO2
-], the increases were 44.4% between Pre BR and Post BR (0.301 ± 0.09 

µM vs 0.542 ± 0.24 µM, p = 0.0099), of 42, 9% between Post BR and Pre PL (0.542 

± 0.24 µM vs 0.309 ± 0.17 µM, p = 0.0131) and 52.7% between Post BR and PL 

(0.542 ± 0.24 µM vs 0.256 ± 0.19 µM; p = 0.0017). 

  Table 3,4: The table shows [NO3
-] and [NO2

-] in 
Old (up) and Young (down). * indicated differences 
from other condition, p<0.05. 
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8. Results – V̇O2 kinetics 

 Old 

Here are reported the result related to group old. Results are divided in MOD and 

SEV. 

8.1.1 Moderate intensity 

The effect of BR supplementation, in relation MOD exercise (80% GET; Work-

load @ 80% GET: 69 ± 24.9 W), is significant on the V̇O2 at steady-state (MODSS – 

Average of the last 30 seconds) with a statistically significant difference between the 

Pre BR and BR conditions (1395.5 ± 41.02 mL/min vs. 1324.8 ± 73.81 mL/min, p = 

0.0420, ES = 1.184) equal to 70.7 mL/min (5.3%) (Figure 5).  

The same occurs on V̇O2 of AUP between Pre BR and BR (142.8 ± 52.65 mL/min 

vs. 91.9 ± 48.68 mL/min, p = 0.0081) with a variation of 50.9 mL/min (35.6%). Also 

V̇O2 of ATOT show significant differences between Pre BR and BR (1030.5 ± 276.62 

mL/min vs. 948.5 ± 240.55 mL/min, p = 0.0139) with a decrease of 82 mL/min (~ 

8%) after treatment.  

BR supplementation has positive effects on Gain (mL/min/W) showing reduc-

tions of 1.29 mL/min/W (9.1%) between Pre BR and BR values (15.5 ± 2.43 

mL/min/W vs 14.2 ± 1.54 mL/min/W, p = 0.0022), and 1.01 mL/min/W (6.5%) 

between BR and Pre PL (14.2 ± 1.54 mL/min/W vs 15.2 ± 2.04 mL/min/W; p = 

0.0265) (Figure 6).  

There are no significant effects depending on the treatment of the kinetic param-

eters related to the cardiodynamic phase (A1, τ1, TD1), and to the main phase (A2, τ2, 

TD2). 

8.1.2 Severe Intensity 

In old group during SEV (50%∆; Workload @ 50%∆: 152.7 ± 25.08 W), there 

are no particular differences in metabolic parameters in response to the step following 

BR supplementation.  

Gain and net mechanical efficiency show no significant difference between the 

different experimental conditions. 
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Table 5: V̇O2 kinetics in Old group. 
Values are expressed as mean ± SD divided in moderate intensity MOD and severe intensity (SEV) and for each intensity the four 
experimental phases (Pre BR, BR, Pre Pl, PL).  EXESS corresponding to the V̇O2 (mL/min) in the last 30 s of exercise. A, τ, TD, 
respectively amplitude (mL/min), time constant (s) and time delay (s) of the main phase, (2) and slow component (3), estimated through 
fitting analysis. ATOT (mL/min) is the value of V̇O2 total amplitude at net of baseline, while AUP (mL/min) is the portion of O2 
consumed during warm up phase at net of the V̇O2 detected at the state of (AUP = UPSS - RSS). Gain (mL/min/W) is the net gain 
calculated as the ratio between ATOT (EXESS - RSS) (mL/min). [La] is lactate concentration at rest. Significance legend (P <0.05): 
* difference to BR condition, ° to Young  

Figure 5 (left) V̇O2 kinetics in Old group, 
during MOD transition from rest to exercise.  
Figure 6 (up): Gain (mL/min/W) in O 
during MOD.  
Significance legend (P <0.05): * difference to 
BR condition 

UP 
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 Young 

8.2.1 Moderate intensity 

The effect of BR supplementation, in MOD (80% GET; Workload @ 80% GET: 

122.1 ± 34.68 W), reduce significantly only TD2 (Pre BR 16.6 ± 4.19 s vs BR 12.9 ± 

4.37 s; p = 0.0498), that results anticipated by 3.7 s. There are no significant differences 

on the values of V̇O2 at MODSS, on kinetic parameters, and on Gain. 

8.2.2 Severe Intensity 

During SEV exercise (50%∆; Workload @ Δ50%: 246.4 ± 48.22 W) there are no 

particular differences in metabolic parameters after BR related to the cardiodynamic 

phase (A1, τ1, TD1), and to the main phase (A2, τ2, TD2). 

The only effects of BR can be observed on slow component phase (Phase III) 

where results a significant reduction of A3 of about 18% between Pre BR and BR 

(381.2 ± 176.62 mL/min vs. 322.6 ± 172, 33 mL/min; p = 0.0341, ES = 0.335), with 

the same total O2 consumption (SEV30s – Average of the last 30 seconds). 

Gain and net mechanical efficiency are not affected by any variation between the 

conditions before and after treatment with BR and PL. 

 

 

 

 

 

 

 

 

 

  

Table 6: V̇O2 kinetics in Young group. 
Values are expressed as mean ± SD divided in moderate intensity MOD and severe intensity (SEV) and for each intensity the four 
experimental phases (Pre BR, BR, Pre Pl, PL).  EXESS corresponding to the V̇O2 (mL/min) in the last 30 s of exercise. A, τ, TD, 
respectively amplitude (mL/min), time constant (s) and time delay (s) of the main phase, (2) and slow component (3), estimated through 
fitting analysis. ATOT (mL/min) is the value of V̇O2 total amplitude at net of baseline, while AUP (mL/min) is the portion of O2 
consumed during warm up phase at net of the V̇O2 detected at the state of (AUP = UPSS - RSS). Gain (mL/min/W) is the net gain 
calculated as the ratio between ATOT (EXESS - RSS) (mL/min). [La] is lactate concentration at rest. 
Significance legend (P <0.05): * difference to BR condition 
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 Young vs Old 

The results relative to the comparison between the two experimental groups (O 

and Y) were obtained with the statistical analysis Time x Age, within the same condi-

tion (Pre BR, BR, Pre PL and PL) transversely to age (O and Y). The values of the 

variables under examination are shown in brackets respecting the O-Y order. 

8.3.1 Moderate intensity 

In the MOD exercise domain, significant differences are found (P <0.0001) on 

MODSS V̇O2 values between O and Y in all experimental conditions (Pre BR: 1395.5 

± 302.28 mL/min vs. 2112.5 ± 431.56 mL/min; BR: 1324.8 ± 296.84 mL/min vs 

2096.2 ± 459.92 mL/min; Pre PL : 1372.4 ± 249.4 mL/min vs 2080.6 ± 460.83 

mL/min; PL: 1369.4 ± 280.16 mL/min vs 2067.4 ± 397.20 mL/min), reflecting the 

different work rate in terms of absolute mechanical power (Workload @ 80% GET: 

69 ± 24.9 W and 122 ± 34.7 W). 

This is also found in the values of V̇O2 defining A2 (Pre BR: 622.8 ± 270.09 

mL/min vs. 1051.5 ± 393.30 Ml/min, p = 0.0018; BR: 562.0 ± 243.42 mL/min vs. 

1068.5 ± 346.76 mL/min, p = 0.0003; Pre PL: 602.1 ± 196.94 mL/min vs 1081.3 ± 

338.90 mL/min, p = 0.0005; PL: 651.2 ± 241.01 vs 1109.5 ± 277.80 mL/min, p = 

0.0009). There are no significant differences in τ2 of despite average values of 4.4 s 

slower in O compared to Y (Pre BR: 21.9 ± 5.96 s vs 17.6 ± 5.36 s; BR: 23.8 ± 6.93 s 

vs 20.6 ± 4.36 s; Pre PL: 23.7 ± 4.37 s vs. 19.4 ± 3.87 s; PL: 25.1 ± 4.80 s vs. 19.0 ± 

Figure 7 (left) V̇O2 kinetics in Y group, 
during all SEV transition, with rest and UP 
phases.  
Figure 8 (up): A3 (mL/min) in Y during 
SEV.  
Significance legend (P <0.05): * difference to 
BR condition. 

UP 
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6.67 s). There is a difference of 5.8 s on the values of TD2 in Post BR (18.8 ± 4.46 s 

vs. 12.9 ± 4.34 s; p = 0.0141), while in other conditions the delay times are similar 

between different ages (Pre BR: 21.9 ± 5.96 s vs 16.6 ± 4.19 s; Pre PL: 19.0 ± 4.46 s 

vs 15.1 ± 4.26 s; PL: 17.3 ± 5.78 s vs 15.1 ± 4.26 s).  

The values of V̇O2 related to AUP, even though averaging 25.1 mL/min more in 

Y, are not statistically significant in terms of differences between groups in all experi-

mental conditions, with the exception of Pre PL (135.0 ± 56.63 mL/min vs. 198.8 ± 

45.67 mL/min: p = 0.0050). Due to different mechanical power sustained by the two 

groups, the ATOT of the V̇O2 are statistically different with a significance equal to p 

<0.0001 in all conditions (Pre BR: 1030, 5 ± 276.62 mL/min vs 1647, 8 ± 420.92 

mL/min; BR: 984.5 ± 240.55 mL/min vs 1613.3 ± 428.19 mL/min; Pre PL: 1009.1 ± 

228.49 mL/min vs 1657.0 ± 422.11 mL/min; PL: 1004.6 ± 254.43 mL/min vs 1618.6 

± 382.61 mL/min). 

The results of Gain are affected by BR supplementation, showing BR values with-

out significant differences between O and Y (14.2 ± 1.54 mL/min/W vs 13.3 ± 1.60 

mL/min/W), unlike other experimental conditions (Pre BR: 15.5 ± 2.43 mL/min/W 

vs 13.7 ± 1.55 mL/min/W, p = 0.0338; Pre PL: 15.2 ± 2.04 mL/min/W vs 13.6 ± 

4.26 mL/min/W, p = 0.0496; PL: 15.1 ± 2.83 mL/min /W vs 14.9 ± 4.89 

mL/min/W, p = 0.0477) even if the values in BR are lower in both (O and Y). 

 

 

 

 

 

 

 

 

8.3.2 Severe Intensity 

Even in the SEV exercise domain the different mechanical power (Workload @ 

Δ50%: 152, 7 ± 25.08 W vs 246.4 ± 48.22 W) sustained by the two groups, determines 

V̇O2 values in operation significantly higher in Y compared to O. This is particularly 

Figure 8; Gain (mL/min/W) in O during 
MOD.  
Significance legend (P <0.05): ° difference to 
BR condition 
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evident in SEV30s in all experimental conditions with p <0.0001 (Pre BR: 2338.0 ± 

283.39 mL/min vs. 3508.7 ± 711.45 mL/min; BR: 2299.4 ± 308.04 mL/min vs. 3502.9 

± 686.42 mL/min; Pre PL: 2340.4 ± 301.48 mL/min vs 3469.4 ± 719.59 mL/min; 

PL: 2297.9 ± 284.84 mL/min vs 3427.0 ± 661.40 mL/min), in A2 on all values, before 

and after treatments (Pre BR: 1344.9 ± 316.13 mL/min vs 2052.7 ± 432.74 mL/min; 

BR: 1326.4 ± 343.22 mL/min vs. 2088.8 ± 359.63 mL/min; Pre PL: 1332.6 ± 275, 15 

mL/min vs. 2070.6 ± 510.85 mL/min; PL: 1326.7 ± 267.87 mL/min vs. 2051.6 ± 

359.44 mL/min), and ATOT (Pre BR: 1927.3 ± 283.28 mL/min vs 2997.0 ± 695.42 

mL/min; BR: 1919.1 ± 283.28 mL/min vs 3008.0 ± 657, 95 mL/min; Pre PL: 1935.8 

± 282.99 mL/min and 2947.3 ± 702.55 mL/min; PL: 1903.7 ± 264.45 mL/min vs 

2949.4 ± 631, 05 mL/min).  

Time constant (τ2) has statistically significant differences between O and Y (Pre 

BR: 31.6 ± 6.80 s vs 23.1 ± 4.09 s, p = 0.0042; Pre PL: 33.3 ± 6.88 s vs 24.2 ± 3.82 s, 

p = 0.018; PL: 32.4 ± 6.60 s vs. 23.2 ± 4.86 s, p = 0.0016) with the exception of BR 

(29.8 ± 4.68 s vs 24.2 ± 5.83 s) although there are 5.5 s more O. Furthermore, a dif-

ference of 4.3 s emerges from the values of TD2 in BR (16.3 ± 4.05 s vs 12.0 ± 3.29 s; 

p = 0.0405). 
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9. Results – Peripheral oxygenation (NIRS) 

Here are reported results of O group of the NIRS data ([HHb], [HbO], [THb] 

and SAT – [HHb] fitting parameters – AUC of Δ[HHb]/∆V̇O2 ratio).  

Results are divided by age, for each group of age the two different exercise inten-

sities (MOD and SEV) are examined. Finally, a comparison between the different ages 

is made. 

 Old 

Here are reported the result related to O group. Results are divided by intensities. 

9.1.1 Moderate intensity 

In group O during MOD exercise there are no significant differences due to BR 

considering the steady states of the four measurements made [HHb], [HbO], [THb] 

and SAT, in none of the phases of exercise, rest (RMSS), unloaded pedalling (UPMSS) and 

exercise (MODSS). 

No significant differences are found even considering the parameters calculated 

through the fitting analysis of [HHb]. Amplitude (A1) is reported, but has not been 

statistically analyzed, because it was not possible to normalize it. 

Finally, no significant differences are found even in the area under the curve 

(AUC) calculated after finding the Δ[HHb]/∆V̇O2 ratio. 

9.1.2 Severe Intensity 

In group O during the SEV exercise, as occurs during the MOD exercise, there 

are no significant differences due to BR considering the stationary states of the four 

measurements made [HHb], [HbO], [THb] and SAT, in none of the phases of exercise, 

rest (RSSS), free load (UPSSS) and exercise (SEVSS). 

No significant differences are found even considering the parameters calculated 

through the fitting process of [HHb]. Amplitude (A2) is reported, but has not been 

statistically analyzed, because it was not possible to normalize it. 

Finally, no significant differences are found even in the area under the curve 

(AUC) calculated after finding the Δ[HHb]/∆V̇O 2 Ratio. 
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Table 7: NIRS data in Old group 
Values are expressed as mean ± SD divided in moderate intensity MOD and severe intensity (SEV) and for each intensity the four 
experimental phases (Pre BR, BR, Pre Pl, PL).  RSS, UPSS and EXE corresponding to average of last 30” of each phase at rest, at 
the end of the freewheeling warm up and in the last 30 s of exercise. SAT is saturation 
Significance legend (P <0.05): °difference to Y group. 

Table 8: [HHb] kinetics parameters in Old group. 
Values are expressed as mean ± SD divided in moderate intensity MOD and severe intensity (SEV) and for each intensity the four 
experimental phases (Pre BR, BR, Pre Pl, PL).  A, τ, TD, respectively amplitude (mL/min), time constant (s) and time delay (s) of 
first (1), and second component (2), estimated through fitting analysis. MRT is mean response time, calculated as sum of τ1 and TD1  

Table 9: Area under curve in O group. 
Values are expressed as mean ± SD divided in moderate in-
tensity MOD and severe intensity (SEV) and for each inten-
sity the four experimental phases (Pre BR, BR, Pre Pl, PL). 
AUC is area under curve calculated after Δ[HHb]/∆V̇O 
2 Ratio   
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 Young 

Here are reported the result related to Y group. Results are divided in MOD and 

SEV. 

9.2.1 Moderate intensity 

Similarly, to what happens in O also in Y there are no significant differences dur-

ing MOD exercise in the stationary states of [HHb], [HbO], [THb] and SAT, in any of 

the phases of the exercise, RMSS, UPMSS and MODSS, and in the parameters of [HHb] 

calculated by the fitting. Amplitude (A1) is reported, but has not been statistically ana-

lyzed, because it was not possible to normalize it. 

With regard to AUC of Δ[HHb]/ ∆V̇O2 ratio, on the other hand, there is a ten-

dency to decrease in the BR phase compared to the other 3 phases (BR 8.62 ± 10.73 

vs Pre BR 11.38 ± 8.66, Pre PL 10.59 ± 5.81, PL 13.04 ± 7.55), but this difference is 

not significant, probably due to the high value of SD in the BR phase. 

9.2.2 Severe Intensity 

In Y, there are no significant differences during the SEV exercise in the stationary 

states of [HHb], [HbO] and [THb], in any of the phases of the exercise, RSSS, UPSSS 

and SEVSS, and in the parameters of [HHb] calculated from the fitting. Amplitude (A2) 

is reported, but has not been statistically analyzed, because it was not possible to nor-

malize it. 

On the other hand, a statistically significant increase in SAT in the BR phase ap-

pears compared to the Pre PL and PL phases (BR 62.27 ± 9.32, vs Pre PL 57.85 ± 

7.53, p = 0.0184, PL 56.67 ± 7.02, p = 0.0013), and an insignificant increase compared 

to Pre BR (BR vs Pre BR 62.27 ± 9.32 vs 60.60 ± 5.26) (Figure 9) 

Finally, no significant differences are found in AUC calculated after finding the 

Δ[HHb]/∆V̇O2 ratio. 

  



 

 83 

  

Table 10: NIRS data in Young group 
Values are expressed as mean ± SD divided in moderate intensity MOD and severe intensity (SEV) and for each intensity the 
four experimental phases (Pre BR, BR, Pre Pl, PL).  RSS, UPSS and EXE corresponding to average of last 30” of each phase 
at rest, at the end of the freewheeling warm up and in the last 30 s of exercise. SAT is saturation. 
Significance legend (P <0.05): *difference to BR condition 

Table 11: [HHb] kinetics parameters in Young group. 
Values are expressed as mean ± SD divided in moderate intensity MOD and severe intensity (SEV) and for each intensity the four 
experimental phases (Pre BR, BR, Pre Pl, PL).  A, τ, TD, respectively amplitude (mL/min), time constant (s) and time delay (s) of 
first (1), and second component (2), estimated through fitting analysis. MRT is mean response time, calculated as sum of τ1 and TD1  

Table 12: Area under curve in Y group. 
Values are expressed as mean ± SD divided in moderate in-
tensity MOD and severe intensity (SEV) and for each inten-
sity the four experimental phases (Pre BR, BR, Pre Pl, PL). 
AUC is area under curve calculated after Δ[HHb]/∆V̇O 
2 Ratio   
 

Figure 9: SAT during SEV in Young  group 
Significance legend (P <0.05): *difference to BR condition 
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 Young vs Old 

The results relative to the comparison between the two experimental groups (O 

and Y) were obtained with the statistical analysis Time x Age, within the same condi-

tion (Pre BR, BR, Pre PL and PL) transversely to age (O and Y). The values of the 

variables under examination are shown in brackets respecting the O-Y order. 

9.3.1 Moderate intensity 

In the comparison of O and Y in the NIRS data during the MOD exercise, no 

significant differences emerge in the fitting parameters of [HHb] and in AUC calcu-

lated from the Δ[HHb]/∆V̇O2 ratio. In AUC seems to be higher in O, but the differ-

ence between O and Y is not significant.  

Instead, some significant differences emerge in the steady states of SAT during R 

in Pre BR and BR (Pre BR 63.12 ± 6.76 vs 68.50 ± 2.85 %, p = 0.0109; BR 64.75 ± 4, 

08 vs 69.07 ± 4.52 %, p = 0.0404) and during UP in the Pre BR phase (66.27 ± 5.78 

vs 70.39 ± 3.04%, p = 0.0242), with SAT in all conditions greater in Y compared with 

O.  

There are also differences in [HHb] in R and UP in the Pre BR phase (R: 36.71 ± 

9.54 vs. 27.23 ± 9.16, p = 0.0137; UP: 31.67 ± 6.99 vs 24.50 ± 7.57, p = 0.0140), with 

[HHb] greater in O in all conditions. 

There are no significant differences between O and Y during exercise phase. 

9.3.2 Severe Intensity 

As in the MOD exercise, even in the SEV exercise there are no significant differ-

ences in the fitting parameters of [HHb] and in the AUC calculated from the 

Δ[HHb]/∆V̇O2 ratio. In AUC seems to be higher in O, but the difference between O 

and Y is not significant. 

There are significant differences, however, in SAT, which is greater in Y, in the 

steady states in R and UP in all experimental phases (R: Pre BR 66.55 ± 6.31 vs 74.92 

± 3.73 % p < 0.0001; BR 68.35 ± 4.68 vs 74.52 ± 5.31 % p = 0.0036; Pre PL 68.10 ± 

5.36 vs 75.53 ± 3.46 %, p = 0.0005; PL 67.91 ± 5.89 vs 73.17 ± 3.20 %, p = 0.0127; 

UP: Pre BR 70.53 ± 5.09 vs 76.23 ± 3.33 %, p = 0.0019; BR 71.39 ± 3.15 vs 77.14 ± 
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4.23 %, p = 0.0018; Pre PL 72.02 ± 4.61 vs 76.15 ± 4.22 %, p = 0.0241; PL 70.97 ± 

4.45 vs 74.91 ± 2.64, p = 0.0311) 

In addition, there are significant differences in [HHb] during R and UP in the 

phases of Pre BR and BR (R: Pre BR 35.97 ± 10.44 vs 23.46 ± 8.60 p = 0.0012; BR 

34.13 ± 9.04 vs 24.96 ± 7.59, p = 0.0171; UP: Pre BR 29.43 ± 6.90 vs 20.56 ± 5.91 p 

= 0.0024; BR 28.71 ± 6.14 vs 20.73 ± 4.65 p = 0.0064), with [HHb] greater in O in all 

conditions. 

There are no significant differences between O and Y during exercise phase. 
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10. Results – Blood pressure 

Here are reported results of O group of the observed parameters (SYS, DIA, MAP 

and TPR).  

Results are divided by age, for each group of age the two different exercise inten-

sities (MOD and SEV) are examined. Finally, a comparison between the different ages 

is made. 

 Old 

Here are reported the result related to O group. Results are divided in MOD and 

SEV. 

10.1.1 Moderate intensity 

During MOD exercise in O, the main differences due to BR supplementation are 

observed in MAP (Pre BR vs BR 103.3 ± 7.1vs 98.35 ± 11 mmHg, p = 0.0249, ES = 

0.535) with a reduction of ~5% and TPR (Pre BR vs BR 1.24 ± 0.22 vs 1.16 ± 0.21, p 

= 0.0458) with a reduction of ~6,5% during R phase. Always in R phase, in TPR there 

is also difference between BR and PL conditions (BR vs PL 1.16 ± 0.21 vs 1.25 ± 0.30, 

p = 0.0226) with TPR in BR slower ~6,5%.  

In DIA differences after BR supplementation was observed only in UP (Pre BR 

vs BR 77.86 ± 11.80 vs 83.71 ± 9.10, p=0.0190). 

In SYS there are no significant differences between conditions during MOD ex-

ercise.  

10.1.2 Severe Intensity 

During SEV exercise in O, differences due to BR supplementation are observed 

in SYS (Pre BR vs BR 220.96 ± 28.58 vs 210.59 ± 34.50 mmHg, p = 0.0336) with a 

reduction of ~4.7% during exercise.  

In DIA there are no significant differences between conditions during SEV exer-

cise 

During SEV exercise in MAP during R phase there is a reduction of ~5,8% due 

to BR (Pre BR vs BR 105.84 ± 12.37 vs 99.70 ± 11 mmHg, p = 0.0056). In MAP there 

is also differences in UP after BR and versus PL condition (Pre BR vs BR 110.23 ± 
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14.53 vs 104.73 ± 11.22 mmHg, p = 0.0331, BR vs PL 104.73 ± 11.22 vs 112.62 ± 11 

mmHg, p = 0.0025), and during exercise SEV (Pre BR vs BR 155.74 ± 23.38 vs 141.85 

± 20.12 mmHg, p <0.0001, BR vs PL 141.85 ± 20.12 vs 150.10 ± 22.58 mmHg, p = 

0.026). During UP reductions are ~5% after BR and ~7% compared with PL. During 

SEV exercise reductions are ~9% after BR and ~5.5% compared with PL. 

TPR have significant differences during R and UP, after BR and compared with 

PL (R: Pre BR vs BR 1.29 ± 0.39 vs 1.18 ± 0.26, ~8.5%, p = 0.0046; BR vs PL 1.18 ± 

0.26 vs 1.26 ± 0.30, ~6.3 %, p = 0.0415 – UP: Pre BR vs BR 1.19 ± 0.26 vs 1.11 ± 

0.25, ~6.7%, p = 0.0216; BR vs PL 1.11 ± 0.25 vs 1.18 ± 0.22, ~6 %, p = 0.0461). 

  

Table 13: Blood pressure in Old group 
Values are expressed as mean ± SD divided in moderate intensity MOD and severe intensity (SEV) and for each intensity the 
four experimental phases (Pre BR, BR, Pre Pl, PL).  RSS, UPSS and EXE corresponding to average of last 30” of each phase 
at rest, at the end of the freewheeling warm up and in the last 30 s of exercise. SYS is systolic pressure, DIA is diastolic pressure, 
MAP is mean pressure and TPR are total peripheral resistances. 
Significance legend (P <0.05): *difference to BR condition, °difference to young group 

Figure 10: TPR during rest MOD in Old  group 
Significance legend (P <0.05): *difference to BR 
condition 

Figure 11 SYS  during SEV exercise in Old  
group. Significance legend (P <0.05): *difference to 
BR condition 
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 Young 

Here are reported the result related to Y group. Results are divided in MOD and 

SEV. 

10.2.1 Moderate intensity 

During MOD exercise in young, there are significant differences only on TPR, 

during R and UP. During R the difference is between BR and PL (BR vs PL 0.84 ± 

0.18 vs 0.93 ± 0.18, ~9.7 %, p = 0.0215). During UP there are differences in both, 

after BR and compared with PL (Pre BR vs BR 0.80 ± 0.18 vs 0.73 ± 0.18, ~8.7%, p 

= 0.0363; BR vs PL 0.73 ± 0.18 vs 0.83 ± 0.20, ~12 %, p = 0.0035). 

There are no differences in SYS, DIA and MAP in various phases during MOD 

exercise. 

10.2.2 Severe Intensity 

During SEV exercise in young, there are significant differences after BR during 

UP in MAP (Pre BR vs BR 103.29 ± 8.94 vs 100.39 ± 9.02, ~3%, p = 0.0328) and 

compared with PL in TPR during R and UP (R: BR vs PL 0.78 ± 0.16 vs 0.86 ± 0.17, 

~9.3 %, p = 0.0398 – UP: BR vs PL 0.67 ± 0.16 vs 0.75 ± 0.17, ~10.6 %, p = 0.016). 

There are no differences in SYS and DIA in various phases during SEV exercise. 

  

Table 13: Blood pressure in Young group 
Values are expressed as mean ± SD divided in moderate intensity MOD and severe intensity (SEV) and for each intensity the 
four experimental phases (Pre BR, BR, Pre Pl, PL).  RSS, UPSS and EXE corresponding to average of last 30” of each phase 
at rest, at the end of the freewheeling warm up and in the last 30 s of exercise. SYS is systolic pressure, DIA is diastolic pressure, 
MAP is mean pressure and TPR are total peripheral resistances. 
Significance legend (P <0.05): *difference to BR condition 
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 Young vs Old 

The results relative to the comparison between the two experimental groups (O 

and Y) were obtained with the statistical analysis Time x Age, within the same condi-

tion (Pre BR, BR, Pre PL and PL) transversely to age (O and Y). The values of the 

variables under examination are shown in brackets respecting the O-Y order. 

10.3.1 Moderate intensity 

In the comparison between O and Y in the MOD exercise the main results to be 

highlighted are on SYS in the operating phase, on DIA and MAP during R and on 

TPR in all conditions. 

SYS during MOD exercise phase in O reaches lower levels than Y and this differ-

ence is significant in all conditions (PreBR 141.45 ± 15.88 vs 165.64 ± 13.89, p = 

0.0073; PrePL 141.45 ± 15.88 vs 165.64 ± 13.89 p = 0.0073, PL 139.51 ± 15.98 vs 

163.51 ± 16.11 p = 0.0078) except that of BR, where the difference between O and Y 

is not significant (BR 142.68 ± 18.17 vs 160.25 ± 15.64). 

DIA during R is at higher values in O than Y in all conditions (PreBR 82.99 ± 

4.31 vs 74.03 ± 7.78, p = 0.0224; BR 85.32 ± 7.15 vs 73.21 ± 7.63, p = 0.0221; 

PrePL82.99 ± 4.31 vs 74.03 ± 7.78, p = 0.0224, PL 82.47 ± 8.29 vs 73.11 ± 6.66 p = 

0.0171) 

MAP during R in O reaches higher levels than Y and this difference is significant 

in all conditions (Pre BR 103.31 ± 7.11 vs 93.40 ± 9.38, p = 0.0365; Pre PL 103.31 ± 

7.11 vs 93.40 ± 9.38, p = 0.0365; PL 101.56 ± 8.33 vs 91.81 ± 8.19, p =0.0395) except 

that of BR, where the difference between O and Y is not significant (98.35 ± 11.00 vs 

91,86 ± 7,78) 

TPR are always higher in O than Y, in all phases and conditions. 

10.3.2 Severe Intensity 

In the comparison between O and Y in the MOD exercise the main results to be 

highlighted are on SYS and MAP in the exercise phase, and on TPR in all conditions. 

SYS during SEV exercise phase in O reaches higher levels than Y and this differ-

ence is significant in all conditions (PreBR 220.96 ± 28.58 vs 190.96 ± 11.96, p = 
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0.0009; BR 210.59 ± 34.50 vs 191.80 ± 19.14, p = 0.0366; PrePL 220.96 ± 28.58 vs 

190.96 ± 11.96, p = 0.0009, PL 212.53 ± 30.24 vs 187.11 ± 15.89 p = 0.0049). 

DIA has no significant differences in any phase and condition. 

MAP during SEV exercise in O reaches higher levels than Y and this difference is 

significant in all conditions (Pre BR 155.74 ± 23.38 vs 138.32 ± 10.32, p = 0.0076; Pre 

PL 155.74 ± 23.38 vs 138.32 ± 10.32, p = 0.0076; PL 150.10 ± 22.58 vs 133.53 ± 

12.13, p =0.0110) except that of BR, where the difference between O and Y is not 

significant (141.85 ± 20.12 vs 133.98 ± 10.16) 

TPR are always higher in O than Y, in all phases and conditions. 
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11. General discussion 

The present study aims to investigate the effects of NO3
- supplementation, carried 

out by administration of beetroot juice (8.0 mmol of NO3
- in 250 mL for 8 days), on 

metabolic responses due to the instantaneous onset of exercise in two intensity do-

mains (Moderate and Severe). Effects on V̇O2 consumption and in cardiovascular sys-

tem were explored, in elderly (O: 68 ± 4.6 years; n = 10) and young (Y: 25 ± 3.9 years; 

n = 10) subjects. 

On V̇O2 kinetics the main results obtained can be summarized as follows: 1) im-

provement of efficiency in moderate exercise (80%GET) in the elderly (O); 2) reduc-

tion of the amplitude of the slow component in severe exercise (Δ50%) in young sub-

jects (Y).  

In the microvascular system, no clear results are observed, except a tendency to 

improve saturation in SEV in Y. There are no improvements in the matching between 

∆[HHb] and ∆V̇O2 and there are no clear changes in the parameters of [HHb] kinetics. 

In blood pressure, main changes were observed in elderly subjects, where lower 

MAP and TPR were observed in R and UP phases during MOD exercise, and during 

exercise in SEV transition. 

 Old 

11.1.1 O2 consumption and NIRS 

Following nitrate supplementation, significant increases in plasma NO3
- and NO2

- 

concentrations occur, with values similar to those reported in previous studies (Larsen 

et al., 2007; Webb et al., 2008; Vanhatalo et al., 2010). 

The fact that the plasma levels of nitrite, closely related to the increase in the 

bioavailability of NO, are only slightly lower than those found in young people sug-

gests that contrary to what is expected, age-related changes in oral bacterial coloniza-

tion are poorly accentuated (Kelly et al., 2013) 

One of the most relevant aspects emerging from the present study is the signifi-

cant reduction of O2 consumption at submaximal intensity following BR supplemen-

tation in the O group. The response of this parameter is in fact influenced by the 

treatment with nitrates both in the low-intensity UP phase (0 W - 30 rpm), and at the 

steady-state of the 80% GET square wave metabolic transition, with a reduction in 
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this last case of 5.3% compared to baseline. This is consistent with the size of the 

variation with as reported in the literature (Bailey et al., 2009; Vanhatalo et al., 2010; 

Larsen et al., 2011), although with different reference to the age of the sample as rep-

resentative of the young population (26 ± 7 years). 

From the energetic point of view, it should be considered that the reduction of V̇

O2, and therefore of the resynthesis of ATP through oxidative phosphorylation (ener-

getically more consistent process), is not compensated by an increase in the glycolytic 

contribution. In fact, the values of accumulation of blood lactate (ΔLa) show the ab-

sence of significant differences between the Pre and Post BR conditions. 

As regards the parameters of the kinetics of the V̇O2, however, no changes in the 

time constant (τ2) were found of Phase II in response to the metabolic transition in the 

moderate intensity domain. . Therefore, there were no reduction in the dependence of 

non-oxidative metabolic processes, unlike those reported by Kelly and colleagues, 

(Kelly et al., 2013) on elderly subjects (men: 64 ± 4 years, and women: 63 ± 2 years). 

Between Pre and post BR there seems to be a slight speeding of adaptation time (~ 2 

s) of the V̇O2 to the metabolic perturbation given by the immediate onset of the exer-

cise, despite the absence of statistical significance of the difference. 

The mechanisms underlying what is reported, in particular the reduction of V̇O2 

to steady state in moderate exercise, following the intake of NO3
-, are currently unclear. 

However, the involvement of NO as a cellular signaling molecule in the modulation 

of a multiplicity of processes implicated in exercise physiology is well established, in 

particular on the regulation of endothelium-dependent vasodilatation, mitochondrial 

respiration and aspects of muscular contractility (Stamler et al. al., 2001). Given the 

results obtained in the condition under examination, a potential NO intervention is 

hypothesized, deriving from the sequence of exogenous nitrate reductions, at the cel-

lular rather than the vascular level, in terms of traceability to a greater efficiency of the 

energy metabolism in the oxidation processes of substrates related to the synthesis of 

ATP. This is plausible if we consider the affinity of nitric oxide gas with mitochondrial 

cytochrome C oxidase, then its interaction with the terminal electron acceptor of the 

electron transport chain which, in physiological concentrations, causes transient inhi-

bition of cellular respiration in competition with O2 (Larsen et al. 2011). Therefore, a 

kinetic constraint is established. That in turn affects the reduction of ˙VO2  perceived 

by the cell as a mild hypoxia. This determines 
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a cascade of functional signals to the down regulation of the nucleotide adenine 

translocase (ANT) responsible for mitochondrial proton conductance. So a reduction 

of H+  loss, is established (Clerk et al., 2007; Hinkle, 2005).. In this regard, the best 

metabolic efficiency observed could be related to the reduction of energy dissipation 

of the proton gradient in heat. In this sense, slower τ2 following NO3
- supplementation, 

which may contribute to the contraction of the mild cell hypoxia necessary for the 

initiation of the P/O optimization processes, suggests a potential difference in sensi-

tivity or latency between the mechanisms that regulate the adaptation of the system to 

the metabolic perturbations induced by the onset of the exercise starting from the rest 

condition. Furthermore, the vascular effect of NO3
-, as the role of NO as secondary 

messenger in the synthesis of GMPc starting from GTP, able to modulate the relaxa-

tion of smooth arteriolar muscle (Ferguson et al., 2015; Jones 2014), could not to be 

highlighted because of the absence of important functional and structural impairment 

at the level of the peripheral district and of muscle perfusion. In fact, the values of the 

time constant of the elderly sample examined are lower than those reported in the 

literature in elderly adults (DeLorey 2004; Scheuermann et al., 2002). It should in fact 

be considered that the characteristics of the subjects recruited in the O group are only 

partially representative of the belonging population, due to the general state of good 

(ACSM, 2009) physical conditioning (V̇O2max = 36 ± 7 mL/min/kg, for an average age 

of 67 ± 4.3 years old). Probably due to this condition the effect supplementation may 

be reduced and not consistent with previous work (Kelly et al., 2013). 

The reduction of the consumed O2 induced by BR supplementation consequently 

leads to a significant improvement in Gain in terms of reduction (6.5%) according to 

an effect size similar to that reported by Larsen et al., (Larsen et al., 2007), attesting an 

action of inorganic anions on the global economy of the system.  

The absence of statistically significant differences on the parameters of the kinet-

ics of V̇O2 in SEV exercise could be traced, in elderly subjects, to the physiological 

selective loss of rapid motor units (Granacher, Zahner, and Gollhofer 2008) and there-

fore to a lower consistency of the potential effect on of them of the NO3
-. The litera-

ture supports, following studies carried out on young subjects, that the action of sup-

plementation is appreciable in terms of improving the efficiency of type II fibers as 

regards the greater perfusion therefore the ability to use O2 and with it to produce ATP 
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with greater efficiency given by the bioactivation of NO3
- in conditions of tissue aci-

dosis and relative hypoxia (Behnke et al., 2005; Breese et al., 2013; Ferguson et al., 

2013). The results obtained by the present study, in relation to the high intensity exer-

cise, do not show the effects of alteration of the efficiency given by the treatment as 

the absence, in fact, of improvements of this parameter. This could indicate that, unlike 

what occurs for slow fibers, rapid ones are not affected by NO3
- mediation. 

In NIRS data on vastus lateralis muscle no evident results were observed in O 

during MOD exercise. No significant differences were found at steady states for 

SAT, [THb], [HbO] and [HHb], and also no improvements in the matching be-

tween Δ[HHb]/∆V̇O2 has been found. Parameters of the [HHb] kinetic  did not show 

a net change. These results are in contrast with results of Bailey and colleagues (Bailey 

et al., 2009), that showed a reduction in [HHb] after 6 days of BR supplementation 

during moderate intensity exercise. Concerning muscle O2 saturation, our results sug-

gest that there were no changes in O2 extraction required to perform moderate inten-

sity exercise, despite the improvement in energy cost.. 

Considering this data in O during MOD there are no clear evidences on BR effect. 

Reduction of V̇O2 induced by the intake of NO3
- could ultimately be attributed in part 

to effects on the intrinsic contractile properties of skeletal muscle in terms of reducing 

ATP expenditure necessary to support the production of force. One of the most ex-

pansive, in term of energy, process of muscle contraction is the pumping of Ca2+ from 

the sarcoplasmic reticulum channels, which can represent up to 50% of the total ex-

penditure (Hernandez et al., 2012). The action of NO on sarcoplasmic reticulum ion 

channel receptors improve the management of intracellular Ca2+ transients and in-

crease release of cytosolic Ca2+, but also its re-uptake. A higher NO level protects the 

channels from the release of ions following oxidation, preventing the excess, and this 

is configured as an aspect that positively affects the energy cost of catch of Ca2+ 

(Haider et al., 2014). 

11.1.2 Blood pressure 

Aging causes inevitable adaptation of the organs and systems, with relative im-

pairment of the metabolic and circulatory function with respect to the young person. 

The initial hypothesis of observing major changes in the most "compromised" organ-

ism was therefore confirmed. 
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During MOD, elderly showed a significant change in MAP, which on average 

decreased of 5mmHg, and a decrease in TPR (6.3%) after BR supplementation. There 

were no significant changes due to treatment in SYS. Similar reductions have also been 

reported in the literature, in particular Lee (Lee et al. 2015) described how 15-day BR 

juice supplement (6.4 mmol/day) favors the decrease of TPR and MAP both at rest 

and during all exercise intensities. Unlike our study, however, Lee also found a signif-

icant reduction in SYS values. 

In the recovery phase after MOD (~55% V̇O2max), the TPR and MAP values were 

significantly different after BR, all the other variables have remained unchanged. Aer-

obic activity has caused A variation of the general homeostasis of the organism, with 

a consequent increase in oxygen transport and blood flow to the muscle in response 

to the metabolic needs imposed by the applied mechanical load. In this phase (post-

exercise), the mechanism linked to the reduction of MAP and TPR is mainly attribut-

able to the effects of NO3- on the circle. We know that at the end of an exercise follows 

a recovery phase during which the flow of blood to the tissues remains high even if 

the mechanical request decreases. In this condition, the shear stress of the arteriolar 

wall is maintained, a mechanism for which NO release is stimulated. Nitric oxide is an 

intracellular signaling molecule that acts by generating a cascade of effects by activating 

guanil-cyclase in many cell types, increasing levels of cyclic GMP and making ion chan-

nels open (Pontieri, Venezuela, and Scavone 1998) This is the mechanism by which 

vasodilation is performed. After supplementation, being present at circulatory level a 

greater availability of nitrates (Larsen et al., 2007), the release of the vasodilator mole-

cule should be facilitated causing a decrease in vascular resistance, increasing the flow 

to the tissue, which should be accompanied to an improvement of the metabolite 

wash-out. (Toth et al. 2007; Bentley et al. 2017). 

In support of this effect we can see once again a significant reduction after BR of 

MAP and TPR in UP warm up before SEV exercise. 

During SEV exercise, due to the treatment, we have a reduction of SYS and this 

reduction in SYS is reflected by reduction in MAP. The decrease of SYS is not due to 

the reduction of TPR, that result unchanged, so there may have been a reduction in 

cardiac output (CO) which is could explained by the reduction of heart rate (HR) 

(Note: HR data is not reported in thesis, but in this condition in O during SEV exercise 

results slower after BR – Pre BR 139.6 ± 14.1 vs BR 134 ± 21.5 bpm, p=0.0098).  
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Regarding this depressive effect after BR heart rate during severe exercise (EXE2) 

and we tried to advance a hypothesis explaining the significant reduction. In literature, 

it was seen that the inhibition of NO production is connected with a modulatory effect 

on the solitary tract nucleus and on the modulation of HR given by the baroreflex and 

therefore that this has a direct positive chronotropic effect (Pontieri, Venezuela, and 

Scavone 1998). Schneider and colleagues (Schneider et al. 2017) observing a reduction 

in pressure after muscular exercise with ischemia (useful for isolating the blood pres-

sure response and evaluating without external conditioning if metaboreflex is present) 

suggest that the BR supplementation is able to attenuate muscle metaboreflex during 

exercise in elderly adults. Then, we can assume that our elderly subjects during BR 

while performing SEV exercise, may have an improvement in blood flow and, at the 

end of the exercise, they may have a greater wash-out of the metabolites and conse-

quently attenuated metaboreflex. If the metaboreflex is attenuated, the stimulus in-

duced by this on the nucleus of the solitary tract is reduced, consequently also the 

stimulus to the sympathetic SN and therefore the heart rate may be depressed. 

 Young 

11.2.1 O2 consumption and NIRS 

Following nitrate supplementation, significant increases in plasma NO3
- and NO2

- 

concentrations occur, with values similar to those reported in previous studies (Larsen 

et al., 2007; Webb et al., 2008; Vanhatalo et al., 2010). 

Differently from previous studies (Larsen et al., 2007; Bailey et al., 2009; Bailey et 

al., 2010; Vanhatalo et al., 2010), in the Y group there are no differences in the values 

of V̇O2 steady-state in moderate exercise dependent on BR supplementation and with 

them, Gain reductions or efficiency improvements. It is not clear which factors are 

due to the absence of effects of nitrate treatment on the kinetics of V̇O2, except for 

the reduction of Phase II delay time (TD2) in BR compared to Pre BR, because the 

functional characteristics (V̇O2max) of the subjects recruited are similar on average to 

those of the experimental groups of previous works. Although in the sample of sub-

jects a couple of them had a VO2max greater than 60 ml/kg/min, which may be a factor 

that negatively affects the effect of supplementation (Porcelli et al., 2015). However, 
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even if these subjects are excluded from the analysis, different significance was not 

observed.  

The physiological responses observed in high-intensity exercise suggest a possible 

influence of nitrates on the alteration of the amplitude of the V̇O2 kinetics. In fact, 

there is a slight increase of A2 equal to about 1.6%, despite the difference is not signif-

icant, and the significant reduction of A3 (18%), with average values of V̇O2 in the last 

30 s of SEV exercise unchanged. In this condition, the energetic contribution by non-

oxidative mechanisms is negligible, since the differences in the accumulation of blood 

lactate (ΔLa) are statistically devoid of significance. 

In NIRS data on vastus lateralis during SEV exercise, no significant results are 

observed, in particular in τ1 and on [HHb] at steady state. These results are in contrast 

with observation of Breese and colleagues (Breese et al. 2013) of faster τ1, that suggest 

BR supplementation might have facilitated muscle O2 extraction in transition from 

MOD to SEV exercise. In our results, this improvement does not appear. Our find-

ings, instead, agree with another recent study of Breese (Breese et al. 2017) and col-

leagues in which appears that at high intensity cycling BR treatment does not alter the 

spatial heterogeneity of the dynamic balance between muscle O2 delivery relative to O2 

utilization during heavy submaximal exercise (Breese et al. 2017). In the same study, 

however, authors observed that average [HHb] in three different muscle is significant 

higher after BR, but there are no differences if muscle are considered individually. So, 

probably, the observation of a single muscle may not be enough to measure an im-

provement in muscle O2 utilization. 

Another hypothesis, as a speculation based on literature, of a possible effect of 

nitrates on the increase of oxidative efficiency following the partial inhibition of cyto-

chrome C oxygenase, with non-selective action on the slow motor units. In fact, the 

increase of A2 could be due to the optimization of the P/O ratio of the type I fibers, 

in association with the progressive improvement of the same mechanism on the fast 

fibers, probably responsible for the reduction of A3, although the reduction effect of 

NO3
- on calcium channels of the sarcoplasmic reticulum in terms of reduction of en-

ergy expenditure related to the management of intracellular ions transients cannot be 

excluded. 
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11.2.2 Blood pressure 

On Y subjects, it was founded only a slight reduction in TPR during UP prior to 

moderate exercise, then, vascular system in the early stages of exercise activates a tissue 

and muscle circulatory response that seems to benefit from BR supplementation. All 

the other subsequent phases of the protocol did not show significant differences. Lit-

erature data shows some effects on MAP and TPR on Y subjects (Lee et al. 2015), that 

are no evident in our conditions. 

 

 Old vs Young 

11.3.1 O2 consumption and NIRS 

In comparison between subgroups, there are implications that assume functional 

relevance in O for a potential use of BR supplementation for the attenuation of the 

limitations to the exercise proper to aging. 

According to the literature (DeLorey 2004; De Roia et al., 2012; Kelly et al., 2013), 

the data obtained in the present study confirm a slowing of the time constant of Phase 

II of the kinetics of V̇O2 according to age at the onset of exercise at the cycle ergom-

eter. Compared to what reported in previous studies, the average values of τ2 of O are 

inferior. Moreover, differences in τ2, in MOD, are meaningless in all experimental con-

ditions. These results probably are due high V̇O2max of our sample of subjects. 

There is, therefore, no greater dependence on no oxidative processes in the transition 

from a reduced metabolic rate to a higher one in elderly subjects than in uncompro-

mising models such as young people. It should be emphasized that the action of nitrate 

in terms of "rejuvenation" of the Old metabolic system is detectable mainly, always 

with absence of significant differences between subgroups, on the Gain in MOD.  

In NIRS data main difference in comparison between O and Y is observed in the 

SAT in the phase of R and of UP after the MOD exercise, where it is higher in the Y, 

indicating a faster recovery rate at the microvascular level in the Y compared to the O 

11.3.2 Blood pressure 

In comparison between O and Y subjects is necessary to underline how the MAP 

values in the elderly at rest, after supplementation, become comparable, approaching 
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the values of the young. In fact, in the Pre BR condition, we can notice a significant 

difference of ~10 mmHg (103.31 O vs 93.40 Y mmHg; p = 0.0365), while after sup-

plementation the difference in basal MAP is reduced, although there remains a differ-

ence of ~5 mmHg (103.31 O vs 98.35 Y), losing its significance. Similar effects on 

MAP are observed during SEV exercise, with reduction after BR, that make difference 

with Y of ~8 mmHg (141.85 O vs 133.98 Y) without significance. 

Basal SYS has no significant difference between O and Y in R and UP phases. 

During MOD exercise SYS is higher in Y, probably due to heavier load (69 O vs 122 

Y mmHg) in Y than O. When intensity of exercise is SEV trend of SYS is opposite, 

higher in O then Y, although the load is always higher in Y(152,6 in O vs 246.4 in Y 

W), but probably near maximal intensity the effect of higher TPR in O is more influ-

ential. 

TPR are always higher in O in comparison with Y, in all phases and intensities of 

exercise, confirming that the system is more “compromise” due to modifications re-

lated to age, like loss of stiffening and thickening of the arterial wall with the conse-

quent reduction of the lumen of the duct, which determines the increase of the pe-

ripheral resistances. 

The overall extent of improvement of vascular response following nitrate supple-

mentation, seems indicative for the adoption of an appropriate diet that provides for 

the proper integration of foods rich in nitrates especially in the elderly person. The 

vascular advantage is also due to the subsequent metabolic advantage with consequent 

improvement in exercise capacity and fatigue tolerance.  

Nitrate supplementation proves to be a useful means to promote vascular re-

sponse in baseline conditions and in recovery phases after moderate stress. 

 
 Study limits 

From the presented study emerge a series of non-negligible aspects that can be 

considered as limits in particular with respect to the size of the effect under examina-

tion and to the statistical power of the results. 

Firstly, the reduced number of the subjects (Old: n = 10, Young: n = 10), in as-

sociation with the inter-individual variability that characterizes each of the two sub-

groups, could prevent the achievement of statistical significance in the different com-

parisons between variables. In particular, elderly subjects, whose recruitment has not 
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always proved to be easy, tend to be unrepresentative of the population to which they 

belong in terms of their fitness level on average higher than that normally expected (V̇

O2max, τ2, MRT). They are physically active and they pay attention to the health benefits 

of exercise and diet, and these aspects may have reduced the potential impact of NO3
- 

supplementation by masking its effects in particular on the vascular level. There may 

therefore have been limited opportunities for nitrates to positively influence exercise 

physiology due to insufficient impairment of the systems involved. 

Any training effects that may have been induced by the overall duration of the 

experimental design were excluded from the randomization of the treatment assign-

ment. 
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12. Conclusion 

Nitrates supplementation to which the subjects recruited in the present study un-

dergo has indeed determined an elevation of the plasma concentrations of this ion and 

consequently the bioavailability of NO of which it is a precursor. 

This intervention in elderly, hypothesized able to influence the physiological re-

sponses to exercise, inducted a reduction in energy demand (5.3%) at the steady-state 

of the moderate exercise. In the same group, at high intensity exercise does not seem 

to benefit from the treatment resulting in an absence of changes in efficiency and ki-

netic parameters. The results obtained suggest that the mechanisms involved in the 

modulation of the responses to the exercise in relation to the higher bioavailability of 

nitrates are mainly cellular rather than vascular.  

Young subjects seem to show a relative effect of nitrates on the development of 

the slow component in high-intensity exercise, which is reduced (18%) without modi-

fying the overall energy demand. 

On blood pressure, as we expected, main effects of nitrate supplementation are 

observed mainly in elderly subjects rather than in young subjects.  

The modulation of the vascular response observed following the administration 

of beetroot juice has mainly affected rest and low intensity exercise (unloaded pedalling 

warm up), rather than during exercise. The changes were seen above regarding mean 

arterial pressure and total peripheral vascular resistance.  

Young people do not seem to benefit from significant vascular effects but there 

is still a modulatory effect of mean resting arterial pressure. 

Considering that the nitrates are part of our diet, for which they are constituted 

as NO reserves that can be implemented from the outside, it is possible to "facilitate" 

the production of NO based on the diet. An appropriate nutritional intervention 

through NO3
- could be a useful strategy adopted in the elderly, natural and economic, 

with positive effects on fatigue tolerance, and able to encourage the practice of daily 

physical activities.
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STUDY TWO 

Nitrates supplementation and  

Priming exercise 

  



 

  

 

  



 

  

 

 

 

 

 

 

 

 

Summary of the section 

In this section are analyzed effects of 

NO3
-, through beetroot juice supplementa-

tion, and the combination with priming ex-

ercise, a high intensity warm-up, before a 

moderate intensity exercise. Experimental 

protocol includes two different transitions 

from unload to moderate intensities of ex-

ercise, with the second one anticipated by 

a severe intensity warm up.  

After an introduction on priming ef-

fect, data of oxygen consumption, oxygen 

extraction of at the muscular level and 

blood pressure parameters in combination 

with beetroot supplementation are re-

ported and analyzed.
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List of abbreviations 
 

NO3
-  Nitrates  

NO2
- Nitrites 

NO  Nitric oxide 

BR Beetroot 

PL Placebo 

MOD  Moderate intensity of exercise transition 

SEV  Severe intensity of exercise transition 

MOD2 Moderate intensity of exercise transition after priming exercise 

PE Priming exercise NIRS  Non-invasive near-infrared spectroscopy 

R Rest phase 

UP Unloaded pedalling warm up phase 

EXE Exercise phase 

ES Effect size 

V̇O2  Oxygen consumption 

V̇CO2 Carbon dioxide production 

A Amplitude of kinetics 

TD Time delay of kinetics 

τ Time constant of kinetics 

[La]  Lactate concentration 

SAT Saturation of hemoglobin 

[HHb]  Concentration of deoxygenated hemoglobin 

[HbO]  Concentration of oxygenated hemoglobin 

[THb] Total concentration of hemoglobin 

SYS Systolic pressure 

DIA Diastolic pressure 

MAP Mean arterial pressure 

TPR Total peripheral resistance 

HR Heart rate 
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13. Introduction 

 Priming effect 

Over the years the study of the metabolic response at exercise onset from resting 

state, V̇O2 kinetics, has been used as a paradigm to try to understand the mechanisms 

that control and/or limit the oxidative metabolism. The results obtained and the re-

flections on them have raised the question of where the main limitation was, whether 

at the central level (O2 delivery) or at the peripheral level (O2 utilization). The PE 

priming exercise (PE) is a tool to try and find an answer to this question. 

PE is a high-intensity warm-up phase (> GET) that has been shown to modify 

the V̇O2 response in the subsequent transition from the resting state to moderate in-

tensity exercise (Murias, Kowalchuk, and Paterson 2011; De Roia et al., 2012). This 

occurs in terms of an increase in the rate of regulation of oxidative metabolism and 

therefore in reduction of the time constant of phase II (Murias, Kowalchuk, and 

Paterson 2011; De Roia et al, 2012), in old population, but, also, in young adults that 

presenting initial values of τ > 20 s (Scheuermann et al., 2002), these evidences, since, 

PE is believed to produce an acute improvement of oxygen delivery (Gerbino, Ward, 

and Whipp 1996) and muscle perfusion (DeLorey, Kowalchuk, and Paterson 2005; 

Brendon J Gurd 2005; B. J. Gurd et al. 2006), has been interpreted as indirect demon-

stration of a larger role of muscle O2 delivery in the limitation of oxidative metabolism 

in older than in younger due to age characteristic decline of the oxidative capacity of 

the muscles (Granacher, Zahner, and Gollhofer 2008). 

Gurd and colleagues, (Brendon J Gurd 2005) reports a similar effect in association 

with increased muscle oxygenation and mitochondrial complex activity of pyruvate 

dehydrogenase (PHD), highlighting that the enzymes involved in oxidative metabo-

lism are subject to an acute, short-term adaptation, and with it that the metabolic inertia 

plays a role in limiting the energy system in question to the onset of physical exercise. 

More recently (Murias et al., 2011; De Roia et al., 2012) it has been shown that 

the acceleration of the kinetics of the V̇O2 depends by an improvement in the matching 

between the delivery of O2 to the muscle and its use (reduction Δ[HHb]/ V̇O2 Ratio), 

following PE, suggesting the importance of increasing muscle perfusion in improving 

adaptation to metabolic transition. Moreover, in study by De Roia and colleagues (De 

Roia et al., 2012) in old subjects were observed and opposite changes in the [HHb] 
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kinetics parameters, increase of time constant (τ1) and reduction of time delay (TD1) 

after PE.  

According to Gerbino and colleagues, ((Gerbino, Ward, and Whipp 1996)), PE 

determines an increase in muscle flow following the vasodilatory effect given by local 

acidification, which is higher in the elderly than in the young. Other authors report, 

acutely to the PE, a rapid increase in the vascularization of the microcirculation de-

pendent on endothelial vasodilation and flow mediated ((Gerbino, Ward, and Whipp 

1996)). Based on this, factors related to both the transport and the use of O2 are prob-

ably involved in the regulation of the kinetics of the V̇O2, although it seems that under 

conditions of time constants> 20 s the speed of adaptation is limited above all by the 

contribution of O2 to the level of the microcirculation of active tissues (Murias, 

Kowalchuk, and Paterson 2011) 
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14. Materials and Methods 

 Aim of the study 

The aim of this study is to investigate the effects of nitrate supplementation on 

muscle oxidative metabolism after PE cicloergometer. 

The slowing of the V̇O2 kinetics in older adults is commonly attributed to limita-

tions in muscle delivery of O2 resulting in increased metabolic disturbance and reduced 

exercise tolerance. For this reason, the interest of the investigation is aimed at com-

paring the effects induced by nitrates compared to those obtained with the PE, since 

it is known that the latter acts by increasing the rate of regulation of oxidative metab-

olism in moderate work carried out after high-intensity exercise. If, unlike the PE, 

supplementation does not modify the parameters of the kinetics of the V̇O2, we hy-

pothesize that the action of the nitrates is not predominantly located on the vascular 

mechanisms. 

 Subjects 

The study participants were 20 volunteered, healthy, subjects divided in two 

groups: 10 old (67 ± 4.3 years) and 10 young (25 ± 3.9 years). During subjects’ selec-

tion phase were recruited 28 men, but 4 refused to participate, 3 were excluded after 

preliminary medical examination and 1 drop out during first supplementation phase. 

The remaining 20 subjects participate in the study after given their informed and writ-

ten consensus. 

Inclusion criteria to participate at the study were: a normal clinical exam, absence 

of orthopedic, muscle-skeletal, metabolic, cardiovascular or respiratory pathology. ,  

Exclusion criteria were: abnormal clinical exam, presence of orthopedic, muscle-

skeletal, metabolic, cardiovascular or respiratory pathology, obesity (BMI ≥ 30 kg/m2), 

the age limits. 

All procedures were approved by the Department of Neurological and Movement 

Sciences’ ethical committee for research on human subjects. 

 

 

 

 



 

 110 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

 Study design and protocol 

The study has a double-blind crossover design with Nitrate (BR) or Placebo (PL) 

supplementation. The protocol included a preliminary day of test (D0) in which sub-

jects performed a ramp incremental test (EXP1) and after that 3 testing days (D1. D2. 

D3) with V̇O2 kinetics tests (EXP3) repeated in 4 experimental phases (BDC1. PS1. 

BDC2. PS2).	

In the first phase (BDC1) basal conditions were measured.	In the second phase 

(PS1) the conditions after first period of supplementation (randomly selected between 

NO3
- or PL) were recorded. 

After at least 10 days of washout. the third phase was performed (BDC2) where 

basal conditions were measured again. In the fourth and last phase (PS2) the condi-

tions after second period of supplementation (opposite of the first period) were deter-

mined. 

 
 
 
 

  

Table 1,2: The table shows 
the individual data of sub-
jects examined, Old (up) and 
Young (down).  The values 
of age (Age, years) of the an-
thropometric parameters 
have been reported: height 
(Height, cm) and body mass 
(Weight, Kg), of the maxi-
mum metabolic power, abso-
lute (V̇O2max, mL/min) 
and relative ( V̇O2max, 
mL/min/Kg, , of the maxi-
mum mechanical power 
(Power max, W) and of the 
maximum heart rate 
(Hrmax, bpm) detected in 
the preliminary test, and of 
the Workloads (W) of the 
two intensity domains (Mod-
erate: 80 % GET, and Se-
vere: Δ 50%, W)  

Figure 1: The representation schematically summarizes order of test. After the preliminary evaluations (D0) follow the four 
experimental phases (BDC1, PS1, BDC2 and PS2) in each of which the kinetic evaluation protocol is repeated in non-
consecutive days (K1, K2 and K3). All subjects underwent 8 days of supplementation with NO3- and PL, according to a 
balanced randomization. In PS1 and PS2 the kinetic evaluation protocol is repeated again. PS1 and BDC2 are separated by 
10 days of washout. BS indicated blood sample, that is taken for the determination of the blood concentrations of nitrates and 
nitrites. 
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14.3.1 Supplementation 

The BR supplementation was made by beetroot juice (BR) (250 ml/day – Azienda 

agricola “Aureli” – Ortucchio (AQ) - Italy). The juice was provided in two different 

formulations: one with high concentration (~8.0 mmol) of NO3
- and one with low 

concentration (~0.8 mmol) of NO3
- (used as a placebo (PL)). The PL was identical in 

color, taste, smell and texture to the NO3
- rich BR juice. Supplementation was distrib-

uted by an experimenter not involved in laboratory tests and/or in data analysis and 

the subjects and all the experimenters involved didn’t know what supplementation was 

provided (if BR or PL). The matching of assumptions was known only at the end of 

data analysis.   

This is considered a medium-term supplementation design that lasts for 8 days 

(Porcelli et al. 2015, Wylie et al. 2013).  

with ingestion of a daily dose of 250 ml of juice before breakfast. The measure-

ments of the kinetics started on the third day of treatment. The kinetics protocol 

took place on average 2.5/3 h after the supplementation. In each phase the same ca-

dence of supplementation/test was repeated.. 

The subjects independently provided the supplementation following a sheet of 

instructions delivered to them.  They were also warnings on foods to avoid rich in 

nitrates (spinach, beetroot, salad, rocket and Chinese cabbage) and to avoid the use of 

antibacterial mouthwash. 

 

 

 

 

 

 

 

 

 

 

Figure 2: The representation schematically sum-
marizes the experimental design that structures the 
presented study, of a longitudinal type in a double-
blind crossover. After the preliminary evaluations 
(EXP1) subjects randomly divided in two groups 
(BR or PL) and perform first two experimental 
phases (BDC1 and PS1). 
After 10 days of washout they crossed their condi-
tion and change supplementation and perform last 
two phases (BDC2 and PS2) 
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 EXP1 – Preliminary ramp incremental test 

To determine peak of oxygen consumption V̇O2max. gas exchange threshold 

(GET), power output (PO), power output peak (POpeak) and maximal heart rate 

(HRmax) a ramp incremental (RI) test was performed. 

RI protocol included 3 min of measurement of baseline condition, where subject 

remained sit on bike without moving. After that, the subject start cycling at 30 

W(warm-up), for 3 min, with self-selected cadence. This cadence was recorded and 

was maintained during all subsequent tests using visual feedback and verbal encour-

agement from the experimenters. Warm-up was followed by RI protocol with different 

workload increments every minute (15, 20, 25, 30 W/min – 2W/8s, 2W/6s. 5W/12s. 

3W/6s) in order to maintain entire test duration between 16 and 18 min. Test ended 

with exhaustion of the subject, and howeevr when the criteria for maximal test were 

reached (V̇O2 plateau, HR ~ HRmax, [la] >10mM). Failure to maintain the indicated 

cadence to within 5 rpm (for longer than 5s) during testing despite strong verbal en-

couragement was considered as the criterion for exhaustion.  

In order to obtain a more reliable measure of V̇O2max a verification trial test (VER) 

was also executed: after 2 min of recovery subjects start pedaling again at 20 W, after 

5 min the workload was augmented to constant-work rate equal to 105% of the me-

chanical power achieved at the end of the ramp test until exhaustion. (Poole, Wilkerson 

and  Jones AM. 2008) 

 

 EXP2 – V̇O2 Kinetics test 

To measure physiological adaptations at the onset of exercise a V̇O2 kinetics 

(EXP2) test was assessed.  

EXP2 was performed on cycle ergometer (Excalibur Sport – Lode B.V. – Gro-

ningen. The Netherlands) and the protocol provided two square wave transitions of 6 

minutes duration,  at the same moderate intensity (MOD and MOD2 – 80%GET). 

The second transition (MOD2), was performed after one step at severe intensity (SEV 

– 50%∆). Tests were executed in three days (D1, D3, D5). 

After 3 minutes of basal condition measurement, subjects start pedaling at 30 rpm 

(round per minute) for another 3 minutes to warm-up. At the 6th minute the moderate 
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intensity transition started: the workload became equivalent to 80% GET (80% GET 

represents the imposed mechanical load in order to reach a metabolic intensity of 80% 

of GET - gas exchange threshold-) .The subject kept his a fix pedaling cadence corre-

sponding to that determined during the RI. The transition lasted 6 minutes. At the end 

the transition at 50%∆ was performed and at the thirtieth minute of exercise the mod-

erate intensity transition MOD2 started again: the workload became equivalent to 80% 

GET. The transition lasted 6 minutes. 

 

 

 

 

 

 

 

 Measures and instruments 

In all the tests the followingmeasurs were done:  

- Pulmonary gas exchange (V̇O2 and V̇CO2) and pulmonary ventilation (V̇E) 

(Quark CPET – Cosmed srl – Rome. Italy).  

- Oxygenated [HbO] and deoxygenated [HHb] hemoglobin concentration on 

vastus lateralis muscle (VL) by Near InfraRed Spectroscopy (NIRS – Oxi-

plexTS™ – ISS Inc. – Champaign. IL. USA) 

- Blood pressure (Portapres® – Finapres medical system B.V. – Enschede. The 

Netherlands).  

- Lactate [La] and Glucose [Glu] concentration (Biosen C-line – EKF Diagnos-

tic – Barleben. Germany), by capillary blood collection (10 µL) from the ear-

lobe performed every 3 minutes, 30s before changing phase. 

- Blood samples were collected by venous sampling to (5 + 5 mL) glass EDTA 

tubes. 

To perform the tests was used 

- Cycle ergometer (Excalibur Sport cycle, Lode – Groningen, The Netherlands) 

Figure 3: The representation schematically summarizes the experimental protocol PE. [La] indicates the measure-
ment of lactate concentrations in the last minute of each phase 
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14.6.1 Quark CPET- Cosmed, Rome, Italy 

Gas exchanges (V̇O2, V̇CO2) and pulmonary ventilation (V̇E) were measured 

breath-by-breath using the metabolimeter with a facial mask. 

The concentrations of inhaled and exhaled gases were sampled at a frequency of 

100 Hz via a capillary line connected to the mask and quantified by respectively para-

magnetic analyzers for O2 with response time of 120 ms and infrared rays (NDIR 

technology) for CO2 with a response time of 100 ms. The measurement of the volume 

of the respiratory flows was carried out by a flowmeter consisting of a bidirectional 

digital turbine inside which a movable vanity unit, free to rotate around its axis, rotates 

at speed and in a direction proportional to the flow of air from which it is invested. 

The number of rotations was transduced into the parameters of interest by an opto-

electronic system with infrared LED diodes based on the frequency of detection of 

the passage of the blades, integrated and processed by a microcomputer. 

Prior to each test, the gas concentration and volume transducer analyzers of the 

turbine were calibrated using a mixture of a gas with known concentrations, according 

to the manufacturer's instructions, (FO2: 0.16; FCO2: 0.05) and a 3.0 L syringe. Con-

centration data e volume were aligned temporally, breath-by-breath, taking into ac-

count the delay in the passage of the gas to the capillary then the discrepancy between 

the time of acquisition of the signal by the analyzer and the flow meter, through the 

calibration of delays. 

14.6.2 Portapres® – FMS, Amsterdam, The Netherlands 

Non-invasive monitoring of the pressure profile was performed by continuous 

recording of the pressure pulse with cuff placed at the level of the phalanx distal of the 

middle or ring finger of the right hand using the photoplethysmographic method.  

The mean arterial pressure values (MAP) were calculated as the mean of the inte-

gral of any data detected by the Beatscope software (FMS), making the correction for 

the height difference between the heart and the fingertips and the individual factors of 

the subject (anthropometric data, age, sex), as indicated by the manufacturer. 
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14.6.3 NIRS – OxiplexTS™ – ISS Inc. – Champaign. IL. USA 

The changes in the oxygenation state at the level of the microcirculation of the 

muscular tissue of the lateral vastus were measured using a non-invasive method using 

NIRS (Near Infrared Spectroscopy) spectroscopy. This instrument detects in real time, 

at a sampling rate of 100Hz, the absolute (micromolar) concentrations of oxyhemo-

globin [HbO], deoxyhemoglobin [HHb], total hemoglobin [THb] and tissue oxygena-

tion index (SAT) whose values are expressed and analyzed, second by second, as aver-

age data. NIRS light is emitted in the muscle at wavelengths between 690 and 830 nm 

using light sources and receivers placed at distances of 1.50 - 3.04 cm, with the intake 

of cellular water at a constant concentration of 70%. 

The NIRS probe was positioned after the treatment of the skin surface (degreased, 

slightly abraded and depilated), at the lower third of the vastus lateralis, calculated as 

the midpoint of the distance between large trochanter and lateral epicondyle of the 

femur of the right leg, secured with adhesive tape. Velcro and elastic straps were used 

to ensure no microspacing of the device and its isolation from external light, minimiz-

ing interference during acquisition. 

The NIRS probe was calibrated before each test session using a calibration block 

with known absorption and dispersion coefficients of the known NIRS electromag-

netic wave, a procedure performed according to the manufacturer's recommendations. 

14.6.4 Lactacidometer 

Blood lactate concentrations ([La], mM) and glucose ([Gly], mM) were detected 

on arterialized capillary blood samples (10 µL) taken from the earlobe. Values were 

obtained using an electrochemical system (Biosen C_line, EKF Diagnostic, Barleben, 

Germany). 

14.6.5 Kit for blood samples 

The evaluation of the plasma concentration of nitrates (NO3
-) and nitrite (NO2

-) 

was carried out on blood samples obtained by venous sampling (5 + 5 mL), for each 

of the experimental phases (BDC1, PS1, BDC2 and PS2). The intervention was con-

ducted, before the experimental session, by medical staff.  
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The analysis of the samples, collected in glass tubes containing EDTA anticoagu-

lant, was performed by Borgo Roma hospital chemical laboratory. 

14.6.6 Excalibur Sport cycle, Lode – Groningen, The Netherlands 

All the tests were performed on an electromagnetic brake cycle ergometer, con-

nected and managed by the metabolimeter (Quark CPET - Cosmed, Rome, Italy).  

The electromechanical characteristics of the ergometer allow the application of 

the workload in 50 ms. The signals of the pedaling frequency (rpm) and of the load 

(W) were digitized into parallel to a 16-channel analog-to-digital converter (MP100, 

Biopac Systems, Goleta, CA) and stored on a computer at a frequency of 100Hz. 

  



 

 117 

15. Data analysis  

 Nitrate and Nitrite concentrations 

The blood concentration of nitrates and nitrites was evaluated on plasma with a 

colorimeter kit (Nitrate/Nitrite Colorimetric Assay Kit - Cayman). The plasma fraction 

was prepared by ultra-filtration using filters with a 10 KDa cutoff (Amicon). For the 

test, 10 ul of filtrate were used and the supplier's indications were followed. The read-

ing was done with a reader for 96-well plates at a wavelength of 540 nm (Gralis - Buoty 

Diagnostics) 

 Maximal oxygen consumption (V̇O2max) 

During RI in D0 V̇O2max was determined and it was calculated as the average of 

the V̇O2 recorded in the last 30 seconds before exhaustion. As maximal power output 

(POpeak) was considered the last completed load before the end of test. 

The results V̇O2max was compared with one recorded during VER. V̇O2max of VER 

was calculated as the average the V̇O2 recorded in the final 10 seconds before exhaus-

tion. If the difference between two V̇O2max was more of 100 mlV̇O2/min it was calcu-

lated average between them, otherwise V̇O2max determined after RI was used.   

 Thresholds 

In order to determine the aerobic threshold (GET), data was individually edited 

to remove outlier data (more than 4 SD from the local mean) and aligned to the onset 

of RI. After that Wasserman method was applied. GET has been identified by visual 

inspection, by three independent expert reviewers and averaging their results as the V̇

O2 at which CO2 output (V̇CO2) began to increase out of proportion in relation to V̇

O2 with a systematic rise in the minute ventilation (V̇E)-to-V̇O2 relation and end-tidal 

PO2 whereas the ventilatory equivalent of V̇CO2 (V̇E /V̇CO2) and end-tidal PCO2 is 

stable (Beaver, Wasserman, and Whipp 1986) 

On the basis of V̇O2max and GET the PO used in the EXP2 (80%GET - 50%∆) 

were defined. To define the PO, it was used the relation between PO and V̇O2 during 
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RI. The linear regression between the two parameters was applied and with the equa-

tion of the regression line the PO corresponding to 80%GET and to 50%∆ has been 

calculated.   

 Kinetics parameters 

V̇O2 during EXP2 was measured breath by breath. Single data was individually 

edited to obtain every second data from breath by breath data. Then linear interpola-

tion second by second was made, through the Spline function (Hughson, Sherrill, and 

Swanson 1988) which allows to calculate the value of the parameters in the instants of 

time in which no breaths have been registered. Data were then examined in order to 

exclude artifacts represented by the values not included in the interval defined by the 

four 4 SD on the local mean.  

After these analysis processes the data of the 3 repetitions of the 3 different days 

of the same experimental phase were aligned with the beginning of the rest (R) phase 

preceding each effort at constant load MOD and SEV and mediated in order to obtain, 

for each subject, a single data set for each experimental condition (BCD1, PS1, BDC2 

and PS2) and intensity of exercise. 

On the single data set were calculated V̇O2 values at steady state at rest (RSS) and 

steady state during unloaded pedalling (UPSS) averaging the last 30 seconds of each 

corresponding phase. It was also calculated the amplitude of unloaded pedalling (AUP) 

as difference between UPSS and RSS. Moreover, the single data set was used for the 

analysis of V̇O2 kinetics at the onset of exercise. It was calculated net V̇O2 relating to 

the 360 seconds of exercise subtracting to each value of V̇O2 during exercise the value 

of UPSS. 

Next step was visual data fitting using the algorithm of Levenberg Marquardt 

(LM) specially implemented in Labview 8.2 (National Instrument. Austin. TX). LM is 

an interactive regression technique considered standard for solving multivariable non-

linear problems, based on an exponential mathematical model with two (phase I and 

phase II) components (phase I, phase II) [1] (Lador et al.. 2006; Whipp & Wasserman. 

1972). In this way have been obtained values of the amplitude (A). time constant (τ) 

and time delay (TD) that corresponding to the best fit of the values of the data col-

lected. 
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Equation used by LM are the subsequent: 

 

𝑌(𝑡) = 	𝐻(𝑡 − 𝑇𝐷>)[𝐴>	(1 − 𝑒(?@ABC)/DC)	] + 	𝐻(𝑡 − 𝑇𝐷$)[𝐴$	i1 − 𝑒(?@ABE)/DE)j  [1] 

Where: Y(t) is V̇O2 during exercise. A1 – A2 are amplitudes of first – second component. τ1 – τ2 
are time constants of first – second component, that represent time necessary to complete 63% of the 
total amplitude observed (Hughson et al. 1988). TD1 – TD2 are time delays of first – second – 
component. 

Referring to equation [1]. H(t – TD1.2.) is related to Heaviside function. defined as:  

 𝐻(𝑡	– 	𝑇𝐷) = I	0	𝑖𝑓	𝑡 < 𝑇𝐷
	1	𝑖𝑓	𝑡 ≥ 𝑇𝐷       [2] 

 

It was calculated also mean response time (MRT), a parameter that returns an 

index of the speed of adjustment of the V̇O2. This index is useful in order to obtain 

indications regarding the time necessary to the oxidative metabolism to adapt at the 

variation of energy demands. 

 

𝑀𝑅𝑇 = [(𝜏> +	𝑇𝐷> ∗ 𝐴>) + (𝜏$ +	𝑇𝐷$ ∗ 𝐴$)]/(𝐴> + 𝐴$) [3] 

Where: Y(t) is MRT. A1 – A2 are amplitudes of first – second component. τ1 – τ2 are time constants 
of first – second component, that represent time necessary to complete 63% of the total amplitude 
observed (Hughson et al. 1988). TD1 – TD2 are time delays of first – second – component. 

Finally, the Gain, defined as the ratio between V̇O2 necessary to sustain a given 

mechanical output and the respective power (W) was calculated. As V̇O2 it was con-

sidered the difference between total amplitude (ATOT) and of O2 consumed at rest 

(BASSS). Gain was calculated as follows: 

 

GainMOD	(mL/min/	W)	=	ATOT/Workload	@	80%GET     [4] 

 NIRS Parameters 

After collecting data second by second with NIRS (OxiplexTS™ – ISS Inc. – 

Champaign. IL, USA), data were exported with OxiTS™ software (OxiplexTS™ – ISS 

Inc. – Champaign. IL, USA). Data were then examined in order to exclude artifacts 



 

 120 

represented by the values not included in the interval defined by the four 4 SD on the 

local mean.  

After these analysis processes the data of the 3 repetitions of the 3 different days 

of the same experimental phase were aligned with the beginning of the rest (R) phase 

preceding each effort at constant load MOD and SEV and mediated in order to obtain, 

for each subject, a single data set for each experimental condition (BCD1, PS1, BDC2 

and PS2) and intensity of exercise. 

On the single data set were calculated concentration of deoxygenated hemoglobin 

[HHb], oxygenated hemoglobin [HbO], total hemoglobin ([THb]) and saturation 

(SAT) values at steady state at rest (RSS) and steady state during unloaded pedalling 

(UPSS) and during exercise moderate (MODSS) or severe (SEVSS), averaging the last 30 

seconds of each corresponding phase. 

Next step was visual data fitting of [HHb] data, using the algorithm of Levenberg 

Marquardt (LM) specially implemented in Labview 8.2 (National Instrument. Austin. 

TX), LM is an interactive regression technique considered standard for solving multi-

variable nonlinear problems, based on an exponential mathematical model with two 

(phase I and phase II). In this way have been obtained values of the amplitude (A). 

time constant (τ) and time delay (TD) that corresponding to the best fit of the values 

of the data collected. 
 

Equation used by LM are the subsequent: 
 

𝑌(𝑡) = 	𝐻(𝑡 − 𝑇𝐷>)[𝐴>	(1 − 𝑒(?@ABC)/DC)	]  [5] 
Where: Y(t) is HHb during exercise. A1 is amplitudes. τ1 is time constants, that represent time 
necessary to complete 63% of the total amplitude observed (Hughson et al. 1988). TD1 are time 
delays. 

Referring to equation [4]. H(t – TD1) is related to Heaviside function. defined as:  

 𝐻(𝑡	– 	𝑇𝐷) = I	0	𝑖𝑓	𝑡 < 𝑇𝐷
	1	𝑖𝑓	𝑡 ≥ 𝑇𝐷       [2] 

 

It was calculated also mean response time (MRTHHb), a parameter that returns an 

index of the speed of adjustment of the HHb based on TD and τ. 
 

𝑀𝑅𝑇kkl = 𝜏> +	𝑇𝐷> [6] 

Where: τ1 is time constants, that represent time necessary to complete 63% of the total amplitude 
observed (Hughson et al. 1988). TD1 is time delays. 



 

 121 

After that the randomization of the subjects was unveil to perform the appropriate 

matching (BR or PL) and the average and standard deviation were obtained. 

 ∆[HHb]/∆V̇O2 Ratio 

In order to get an index of matching of microvascular blood flow and O2 distri-

bution and muscle O2 utilization, ∆[HHb]/∆V̇O2 Ratio was calculated. This ratio is 

characterized by an overshoot in the firsts seconds of exercise, during the on-transient 

phase. A reduction of overshoot A suggests a better matching of microvascular blood 

flow and O2 distribution and muscle O2 utilization (Murias et al. 2011). 

To calculate the ratio the second-by-second amplitude of [HHb] (AHHb) and am-

plitude of phase II (A2) of V̇O2 kinetic data were normalized for each subject (0–100% 

of the response). Normalized A2 was left shifted by TD2 for each subject, to remove 

cardiodynamic phase so the onset of exercise coincided with the beginning of phase II 

of V̇O2 kinetic and is aligned with the beginning of [HHb] data signal. Data were fur-

ther averaged into 5-s bins for statistical comparison of the rate of adjustment for 

[HHb] and  V̇O2 kinetic. After that area under curve (AUC)was calculated, from the 

beginning of the signal to 150s to ensure that both signal, [HHb] and V̇O2, had already 

reached 100% of their amplitude (Murias et al. 2011). 

 Blood pressure 

After collecting data beat by beat with Portapres® (FMS, Amsterdam, The Neth-

erlands) the data was exported using BeatScope® (FMS, Amsterdam, The Nether-

lands). Then linear interpolation second by second was made, through the Spline func-

tion (Hughson et al. 1988) which allows to calculate the value of the parameters in the 

instants of time in which no breaths have been registered. Data were then examined 

in order to exclude artifacts represented by the values not included in the interval de-

fined by the four 4 SD on the local mean.  

After these analysis processes the data of the 3 repetitions of the 3 different days 

of the same experimental phase were aligned with the beginning of the rest (R) phase 

preceding each effort at constant load MOD and SEV and mediated in order to obtain, 

for each subject, a single data set for each experimental condition (BCD1. PS1. BDC2 

and PS2) and intensity of exercise. 



 

 122 

On the single data set were calculated systolic pressure (SYS), diastolic pressure 

(DIA), mean arterial pressure (MAP) and total peripheral resistance (TPR) values at 

steady state at rest (RSS) and steady state during unloaded pedalling (UPSS) and during 

exercise moderate (MODSS) or severe (SEVSS), averaging the last 30 seconds of each 

corresponding phase. After that the randomization of the subjects was unveil to per-

form the appropriate matching (BR or PL) and the average and standard deviation 

were obtained. Due to signal troubles (artifacts, low quality - signal/noise ratio), basal 

data are averaged in order to obtain a unique more reliable value. 

15.7.1 Limits 

In the acquisition of data with the Portapres® (PP) for the elderly, some signal 

problems have been found. The data were corrected by  means of data collected by a 

parallel measurement carried out with both PhysioFlow® (PF) and Tango®. this in or-

der to be sure that the estimate of the cardiac output with the PP was reliable, and for 

parallel measurement of arterial pressure at the brachial level. The correction coeffi-

cient was obtained and applied to the data obtained by PP. The pressure signal ob-

tained from the PP beat by beat was calibrated through a factor obtained during R by 

a measure of independent brachial pressure (Tango monitor). 

At R, a correction factor was calculated for cardiac output: 

FCOR = QPF/QPP [5] 

Then the cardiac output signal was multiplied by the factor of correction (5)  

COPp = QPP*FCOR  [6] 

Consequently, TPR were recalculated starting from the correct COPP signal (Tam et 

al., 2004). 

 Statistics 

Statistical analysis was performed using GraphPad Prism 7 software (GraphPad 

Software, USA). After verifying the type of data distribution, using the Kolmogorov-

Smirnov Test and the Shapiro-Wilk Test, a two-way ANOVA test was applied, con-

sidering PE (MOD and MOD2) and treatment (Pre and Post BR, Pre and PL), for 

repeated measurements. 
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Multiple comparison in the post-hoc analysis was performed using the Fisher Test 

LSD and, when appropriate, the recommended corrections for parametric data (Tukey, 

Bonferroni and Sidak). 

Statistical significance was accepted for P <0.05. The results are expressed as 

mean ± standard deviation (Mean ± SD). On main relevant data significantly different 

Cohen’s d effect size was calculated. (Sawilowsky 2009) 
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16. Results – Nitrite and Nitrite concentrations 

The first results that are reported are those related to the plasma concentration of 

nitrates [NO3
-] and nitrites [NO2

-]. 

 Old 

In elderly subjects supplementation with BR resulted in a significant increase (P 

<0.0001) in [NO3
-] compared to the concentrations found in the other conditions. 

Values of increasing are approximately 93.5% between Pre BR and Post BR (39.87 ± 

22.55 µM vs 615.06 ± 317.38 µM), 92.8% between Post BR and Pre PL (615.06 ± 

317.38 µM vs 44.03 ± 43.33 µM) and 86.5% between Post BR and PL (615.06 ± 317.38 

µM vs 82.94 ± 35.52µM).  As for [NO3
-] also [NO2

-] significantly increasing after BR 

compared to the other conditions. The increasing corresponds to 46.1% between Pre 

BR and Post BR (0.244 ± 0.01 µM vs 0.453 ± 0, 22 µM; p = 0.0003), 47% between 

Post BR and Pre PL (0.453 ± 0.22 µM vs 0.240 ± 0.21 µM, p = 0.0131) and 62.3% 

between Post BR and PL (0.453 ± 0.22 µM vs 0.171 ± 0.12 µM; p = 0.0017). 

 Young 

As for elderly subjects, supplementation with BR in young has also resulted in a 

significant increase in plasma levels of both [NO3
-] and [NO2

-] in comparison to con-

centrations without supplementation. 

In [NO3
-] the improvements given by supplementation were: 92.4% between Pre 

BR and Post BR (24.32 ± 15.34 µM vs 321.56 ± 246.73 µM), 91.3% between Post BR 

and Pre PL (321.56 ± 246.73 µM vs 27.85 ± 27.35 µM) and 85.1% between Post BR 

and PL (321.56 ± 246.73 µM vs 47.73 ± 18.69 µM). 

In [NO2
-], the increases were 44.4% between Pre BR and Post BR (0.301 ± 0.09 

µM vs 0.542 ± 0.24 µM, p = 0.0099), of 42, 9% between Post BR and Pre PL (0.542 

± 0.24 µM vs 0.309 ± 0.17 µM, p = 0.0131) and 52.7% between Post BR and PL 

(0.542 ± 0.24 µM vs 0.256 ± 0.19 µM; p = 0.0017).  

17. Results – V̇O2 kinetics 

The comparison of the data related to the metabolic transitions in the moderate 

intensity domain carried out without PE (MOD) and subsequently with it (MOD2), 

Table 3,4: The table shows [NO3
-] and [NO2

-] in 
Old (up) and Young (down). * indicated differences 
from other condition, p<0.05. 
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was obtained, for each studied group (O and Y) following the statistical analysis Time 

x Moderate, within the same condition (Pre BR and BR, Pre PL and PL). 

The values of the variables under examination are shown in brackets respecting 

the order MOD and MOD2. 

 Old 

17.1.1 Moderate 

The effect of BR supplementation, in relation MOD exercise (80% GET; Work-

load @ 80% GET: 69 ± 24.9 W), is significant on the V̇O2 at steady-state (MODSS – 

Average of the last 30 seconds) with a statistically significant difference between the 

Pre BR and BR conditions (1395.5 ± 41.02 mL/min vs. 1324.8 ± 73.81 mL/min, p = 

0.0420) equal to 70.7 mL/min (5.3%).  

The same occurs on V̇O2 of AUP between Pre BR and BR (142.8 ± 52.65 mL/min 

vs. 91.9 ± 48.68 mL/min, p = 0.0081) with a variation of 50.9 mL/min (35.6%). Also 

V̇O2 of ATOT show significant differences between Pre BR and BR (1030.5 ± 276.62 

mL/min vs. 948.5 ± 240.55 mL/min, p = 0.0139) with a decrease of 82 mL/min (~ 

8%) after treatment.  

BR supplementation has positive effects on Gain (mL/min/W) showing reduc-

tions of 1.29 mL/min/W (9.1%) between Pre BR and BR values (15.5 ± 2.43 

mL/min/W vs 14.2 ± 1.54 mL/min/W, p = 0.0022), and 1.01 mL/min/W (6.5%) 

between BR and Pre PL (14.2 ± 1.54 mL/min/W vs 15.2 ± 2.04 mL/min/W; p = 

0.0265).  

There are no significant effects depending on the treatment of the kinetic param-

eters related to the cardiodynamic phase (A1, τ1, TD1), and to the main phase (A2, τ2, 

TD2). 

17.1.2 Moderate 2 

In MOD2 (80% GET, Workload @ 80% GET: 69 ± 24.9 W) carried out after 

the high metabolic effort (PE), BR effects are identified on the UP values (Pre BR 

572.5 ± 80.10 mL/min vs. BR 536.7 ± 55.30 mL/min; p = 0.0345) according to a 

statistically significant difference of 35.8 mL/min (~6.6%) and on the V̇O2 at the 
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steady state MOD2SS which is reduced by 78.2 mL/min (~5.7%) after BR (Pre BR 

1450.3 ± 329.01 mL/min vs BR 1372.1 ± 309.31 mL/min, p = 0.0257, ES = 0.245). 

In MOD2 BR influence is also significantly visible A2 that decreased by 83.8 

mL/min (~15%) after BR (Pre BR 636.4 ± 288.38 mL/min vs. BR 552.6 ± 236.02 

mL/min, p = 0.049), while no variation on Gain is found. 

17.1.3 Priming effect (PE) - MOD vs MOD2 

From the comparison between the values found in O in MOD and MOD2, it 

appears that the V̇O2 relative to R and UP is higher after PE in all experimental con-

ditions (R: Pre BR: 365,0 ± 41,01 mL/min vs 572,5 ± 80,10 mL/min, p<0.0001; BR 

376,4 ± 73,81 mL/min vs 536,7 ± 55,30 mL/min, p<0.0001; Pre PL 363,3 ± 53,58 

mL/min vs 565,9 ± 76,30 mL/min, p<0.0001; PL 364,8 ± 45,82 mL/min vs 547,8 ± 

78,03 mL/min, p<0.0001; UP: Pre BR: 507.9 ± 74.84 mL/min vs 609.2 ± 72.88 

mL/min, p = 0.0042; BR: 468.3 ± 77.67 mL/min vs. 551.6 ± 60.95 mL/min, p = 

0.0177; Pre PL: 498.2 ± 76.28 mL/min vs 569.3 ± 75.76 mL/min, p = 0.0420; PL: 

498.3 ± 82.36 mL/min vs 589.0 ± 90, 15 mL/min, p = 0.0100). 

There are no statistically significant differences between the values of steady states 

both before and after the treatments (Pre BR: 1395.5 ± 302.28 mL/min vs. 1450.3 ± 

329.01 mL/min; BR: 1324.8 ± 296.84 mL/min vs. 1372.1 ± 309.31 mL/min; Pre PL: 

1372.4 ± 249.4 mL/min vs 1432.5 ± 282.4 mL/min; PL: 1369.4 ± 280.16 mL/min vs. 

1424.8 ± 295.09 mL/min) despite an average difference of 54.4 mL/min. 

Absolute value of [La] is higher in all conditions after PE (Pre BR: 1,12 ± 0,37 

mL/min vs 6,44 ± 2,11 mL/min, p<0.0001; BR 1,14 ± 0,40 mL/min vs 5,80 ± 1,91 

mL/min, p<0.0001; Pre PL 1,14 ± 0,36 mL/min vs 6,07 ± 2,08 mL/min, p<0.0001; 

PL 1,07 ± 0,24 mL/min vs 5,83 ± 1,86 mL/min, p<0.0001). 
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Table 5: V̇O2 kinetics in Old group. 
Values are expressed as mean ± SD divided in moderate intensity MOD and severe intensity (SEV) and for each intensity 
the four experimental phases (Pre BR, BR, Pre Pl, PL).  EXESS corresponding to the V̇O2 (mL/min) in the last 30 s of 
exercise. A, τ, TD, respectively amplitude (mL/min), time constant (s) and time delay (s) of the main phase, (2) and slow 
component (3), estimated through fitting analysis. ATOT (mL/min) is the value of V̇O2 total amplitude at net of baseline, while 
AUP (mL/min) is the portion of O2 consumed during warm up phase at net of the V̇O2 detected at the state of (AUP = UPSS 
- RSS). Gain (mL/min/W) is the net gain calculated as the ratio between ATOT (EXESS - RSS) (mL/min). [La] is lactate 
concentration at rest. 
Significance legend (P <0.05): * difference to BR condition, ° to Young , # to MOD 

Figure 5 (left) V̇O2 kinetics in Old 
group, during all MOD2 transition, 
with R and UP phase 
Figure 6 (up): Gain (mL/min/W) 
in O pre PE e PE (MOD vs MOD2)  
Significance legend (P <0.05): # dif-
ference to MOD 

UP 
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 Young 

17.2.1 Moderate 

The effect of BR supplementation, in MOD (80% GET; Workload @ 80% GET: 

122.1 ± 34.68 W), reduce significantly only TD2 (Pre BR 16.6 ± 4.19 s vs BR 12.9 ± 

4.37 s; p = 0.0498), that results anticipated by 3.7 s. There are no significant differences 

on the values of V̇O2 at MODSS, on kinetic parameters, and on Gain. 

17.2.2 Moderate 2 

In Y in MOD2 (80% GET, Workload @ 80% GET: 122.1 ± 34.6 W) carried out 

after the high metabolic effort (PE), there are no evident effects after BR, neither on 

steady states at end of exercise neither ok kinetics parameters neither on Gain. 

17.2.3 Priming effect - MOD vs MOD2 

In the Y, results that emerge from the comparison between the values found in 

MOD and MOD2 show statistically significant differences on V̇O2 in R and UP in all 

experimental conditions (R: Pre BR: 464,8 ± 64,69 mL/min vs 806,9 ± 180,49 

mL/min, p<0.0001; BR 482,8 ± 83,69 mL/min vs 811,4 ± 201,73 mL/min, p<0.0001; 

Pre PL 423,5 ± 76,47 mL/min vs 810,3 ± 215,88 mL/min, p<0.0001; PL 448,8 ± 

48,80 mL/min vs 784,1 ± 187,16 mL/min, p<0.0001; UP: Pre BR: 644.0 ± 48.18 

mL/min vs 831.2 ± 163.40 mL/min, p = 0.0054; BR: 616.1 ± 66.44 mL/min vs. 810.6 

± 143.60 mL/min, p = 0.0036 Pre PL: 622.3 ± 79.64 mL/min vs. 805.6 ± 178.59 

mL/min, p = 0.0066; PL: 592.7 ± 53.84 mL/min vs 796.2 ± 175.21 mL/min, p = 

0.0021).  

The values steady states between MOD and MOD2 in all experimental conditions 

are similar (Pre BR: 2112.5 ± 431.56 mL/min vs. 2230.9 ± 455.66 mL/min; BR : 

2096.2 ± 459.92 mL/min vs 2205.4 ± 475.55 mL/min, Pre PL: 2080.6 ± 460.83 

mL/min vs 2176.5 ± 474.08 mL/min; PL : 2067.4 ± 397.20 mL/min vs 2205.5 ± 

454.16 mL/min), as well as those of A2 (Pre BR: 1051.5 ± 393.30 mL/min vs 1011.4 

± 314.71 mL/min; BR: 1068.5 ± 346.76 mL/min vs. 1100.7 ± 299.10 mL/min; Pre 

PL: 1081.3 ± 338.90 mL/min vs 986.4 ± 307.40 mL/min; PL: 1109.5 ± 277.80 

mL/min vs. 1040.9 ± 285.37 mL/min) and ATOT (Pre BR: 1647.8 ± 420.92 mL/min 

vs. 1423.9 ± 335.26 mL/min; BR: 1613.3 ± 428.19 mL/min and 1394.1 ± 317.55 
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mL/min; Pre PL: 1657.0 ± 422.11 mL/min and 1366.2 ± 340.13 mL/min; PL: 1618.6 

± 382.61 mL/min vs. 1421.3 ± 318.96 mL/min).  

There are statistically significant differences, instead, between τ2 with an average 

reduction of 4.9 s following the PE (BR: 20.6 ± 4.36 s vs 16.2 ± 2.78 s, p = 0, 0388; 

Pre PL: 19.4 ± 3.87 s vs. 14.7 ± 3.53 s, p = 0.0274; PL: 19.0 ± 6.76 s vs. 13.7 ± 4.59 

s, p = 0.0120), except for the condition of Pre BR in which the values are similar (17.6 

± 5.36 s vs 16.7 ± 4.85 s). TD2 significantly decreases in MOD2 in PreBR (16.6 ± 4.19 

s vs 11.9 ± 3.32 s; p = 0.0095) and in BR (12.9 ± 4.37 s vs 9.4 ± 2.52 s; p = 0.0489). 

Gain values are significantly decreased after PE in all experimental conditions (Pre 

BR: 13.7 ± 1.55 mL/min/W vs 11.9 ± 1.48 mL/min/W, p = 0.0073; BR: 13.3 ± 1.60 

mL/min/W vs 11.6 ± 1.24 mL/min/W, p = 0.0098; Pre PL: 13.8 ± 1.84 mL/min/W 

vs 11.3 ± 1.48 mL/min/W, p = 0.0004; PL: 13.4 ± 1.10 mL/min/W vs 11.8 ± 1.28 

mL/min/W, p = 0.0172). 

Absolute value of [La] is higher in all conditions after PE (Pre BR: 0,80 ± 0,21 

mL/min vs 9,11 ± 2,67 mL/min, p<0.0001; BR 1,02 ± 0,28 mL/min vs 9,26 ± 2,67 

mL/min, p<0.0001; Pre PL 0,87 ± 0,26 mL/min vs 8,59 ± 2,93 mL/min, p<0.0001; 

PL 1,12 ± 0,42 mL/min vs 8,68 ± 3,21 mL/min, p<0.0001) 

 
 
  

Table 5: V̇O2 kinetics in Young group. 
Values are expressed as mean ± SD divided in moderate intensity MOD and severe intensity (SEV) and for each intensity 
the four experimental phases (Pre BR, BR, Pre Pl, PL).  EXESS corresponding to the V̇O2 (mL/min) in the last 30 s of 
exercise. A, τ, TD, respectively amplitude (mL/min), time constant (s) and time delay (s) of the main phase, (2) and slow 
component (3), estimated through fitting analysis. ATOT (mL/min) is the value of V̇O2 total amplitude at net of baseline, while 
AUP (mL/min) is the portion of O2 consumed during warm up phase at net of the V̇O2 detected at the state of (AUP = UPSS 
- RSS). Gain (mL/min/W) is the net gain calculated as the ratio between ATOT (EXESS - RSS) (mL/min). [La] is lactate 
concentration at rest.Significance legend (P <0.05): * difference to BR condition,  # to MOD 

Figure 8 
Time constant τ2 in Y pre PE e PE (MOD vs MOD2)  
Significance legend (P <0.05): # difference to MOD 
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18. Results – Microvascular effects (NIRS) 

The comparison of the data related to the metabolic transitions in the moderate 

intensity domain carried out without PE (MOD) and subsequently with it (MOD2), 

was obtained, for each studied group (O and Y) following the statistical analysis Time 

x Moderate, within the same condition (Pre BR and BR, Pre PL and PL). 

The values of the variables under examination are shown in brackets respecting 

the order MOD and MOD2. 

 Old 

Here are reported the result related to O group. Results are divided in MOD, 

MOD2 and comparison between MOD and MOD2. 

18.1.1 Moderate 

In group O during MOD exercise there are no significant differences due to BR 

considering the steady states of the four measurements made [HHb], [HbO], [THb] 

and SAT, in none of the phases of exercise, rest (RMSS), unloaded pedalling (UPMSS) and 

exercise (MODSS). 

No significant differences are found even considering the parameters calculated 

through the fitting analysis of [HHb]. Amplitude (A1) is reported, but has not been 

statistically analyzed, because it was not possible to normalize it. 

Finally, no significant differences are found even in the area under the curve 

(AUC) calculated after finding the Δ[HHb]/∆V̇O2 ratio. 

18.1.2 Moderate 2 

In group O during MOD2 exercise there are no significant differences due to BR 

considering the steady states of the four measurements made [HHb], [HbO], [THb] 

and SAT, in none of the phases of exercise, rest (RM2SS), unloaded pedalling (UPM2SS) 

and exercise (MOD2SS). 

No significant differences are found even considering the parameters calculated 

through the fitting analysis of [HHb]. Amplitude (A1) is reported, but has not been 

statistically analyzed, because it was not possible to normalize it. 
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Finally, no significant differences are found even in the area under the curve 

(AUC) calculated after finding the Δ[HHb]/∆V̇O2 ratio. 

18.1.3 Priming effect (PE) - MOD vs MOD2 

From the comparison between the values found in O in MOD and MOD2, it 

appears that PE influences the steady states of SAT during R and UP, [HbO] during 

R and UP and [HHb] during R. No significant effects due to PE were found during 

exercise phase. No differences were found from the comparison between MOD and 

MOD2 in [THb]. 

It appears that SAT relative to R and UP is greater after PE in all experimental 

conditions with p<0,0001 (R: Pre BR 63.12 ± 6.76 vs 78.44 ± 6.17; BR 64.75 ± 4.08 

vs 79.93 ± 2.55; Pre PL 64.29 ± 5.53 vs 79.05 ± 3.56; PL 63.98 ± 6.01 vs 79.13 ± 4.36; 

UP: Pre BR 66.27 ± 5.78 vs 75.89 ± 4.84; BR 67.97 ± 4.40 vs 77.06 ± 3.56; Pre PL 

67.69 ± 4.92 vs 76.58 ± 3.59; PL 66.81 ± 4.82 vs 77.28 ± 3.68). 

Also in [HbO] after PE values are greater during R and UP (R: Pre BR 62.34 ± 

10.93 vs 91.23 ± 20.13, p = 0.0025; BR 64.03 ± 13.59 vs 96.51 ± 24.37, p = 0.007; Pre 

PL 58.49 ± 15.18 vs 85.83 ± 23.35, p = 0.0042; PL 57.42 ± 14.41 vs 85.71 ± 23.33, p 

= 0.0031; UP: Pre BR 62.55 ± 12.43 vs 82.08 ± 13.12, p = 0.0227; BR 64.55 ± 15.08 

vs 86.71 ± 21.00, p = 0.0099; Pre PL 58.34 ± 16.04 vs 76.78 ± 17.61, p = 0.0313; PL 

58.00 ± 14.89 vs 78.78 ± 22.37, p = 0.0154). 

In [HHb] only R was influenced by PE with a decrease (Pre BR 36.71 ± 9.54 vs 

25.30 ± 9.06, p = 0.0031; BR 34.89 ± 8.14 vs 24.07 ± 6.12, p = 0.0050; Pre PL 32.24 

± 8.65 vs 22.54 ± 6.27, p = 0.0116; PL 33.05 ± 11.95 vs 22.08 ± 6.95, p = 0.0044). 

In [HHb] parameters calculated with fitting, PE slows down τ1 (Pre BR 4.59 ± 

1.19 vs 8.66 ± 3.62, p = 0.0139; BR 5.04 ± 2.30 vs 8.11 ± 2.56, p = 0.0304; Pre PL 

5.30 ± 2.67 vs 8.84 ± 4.70, p = 0.0259; PL 3.71 ± 2.25 vs 9.99 ± 4.70, p <0.0001) and 

reduces TD1 (Pre BR 9.53 ± 3.28 vs 3.62 ± 2.63, p = 0.0005; BR 7.10 ± 4.48 vs 3.00 

± 2.79, p = 0.0236; Pre PL 8.22 ± 3.62 vs 2.78 ± 2.23, p = 0.0014; PL 9.75 ± 2.91 vs 

3.01 ± 2.23, p = 0.0004). 
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Table 7: NIRS data in Old group 
Values are expressed as mean ± SD divided in MOD (pre Priming Effect, PE) and MOD2 (PE) in the four experimental phases 
(Pre BR, BR, Pre Pl, PL).  RSS, UPSS and EXE corresponding to average of last 30” of each phase at rest, at the end of the 
freewheeling warm up and in the last 30 s of exercise. SAT is saturation 
Significance legend (P <0.05): °difference to Y group, # difference to MOD 

Table 8: [HHb] kinetics parameters in Old group. 
Values are expressed as mean ± SD divided in MOD (pre Priming Effect, PE) and MOD2 (PE) in the four experimental phases 
(Pre BR, BR, Pre Pl, PL).  A, τ, TD, respectively amplitude (mL/min), time constant (s) and time delay (s) of first (1), and second 
component (2), estimated through fitting analysis. MRT is mean response time, calculated as sum of τ1 and TD1 
Significance legend (P <0.05): # difference to MOD 
 

Table 9: Area under curve in O group. 
Values are expressed as mean ± SD divided in MOD (pre 
Priming Effect, PE) and MOD2 (PE) in the four experi-
mental phases (Pre BR, BR, Pre Pl, PL). 
AUC is area under curve calculated after Δ[HHb]/∆V̇O2 
Ratio   
 

Figure 10 
Time constant (τ1) of [HHb] τ1 in O pre PE e 
PE (MOD vs MOD2)  
Significance legend (P <0.05): # difference to 
MOD 

Figure 9 
Time delay (TD1) of [HHb] in O pre PE e 
PE (MOD vs MOD2)  
Significance legend (P <0.05): # difference to 
MOD 
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 Young 

Here are reported the result related to O group. Results are divided in MOD, 

MOD2 and comparison between MOD and MOD2. 

18.2.1 Moderate 

Similarly, to what happens in O also in Y there are no significant differences dur-

ing MOD exercise in the stationary states of [HHb], [HbO], [THb] and SAT, in any of 

the phases of the exercise, RMSS, UPMSS and MODSS, and in the parameters of [HHb] 

calculated by the fitting. Amplitude (A1) is reported, but has not been statistically ana-

lyzed, because it was not possible to normalize it. 

With regard to AUC of Δ[HHb]/ ∆V̇O2 ratio, on the other hand, there is a ten-

dency to decrease in the BR phase compared to the other 3 phases (BR 8.62 ± 10.73 

vs Pre BR 11.38 ± 8.66, Pre PL 10.59 ± 5.81, PL 13.04 ± 7.55), but this difference is 

not significant, probably due to the high value of SD in the BR phase. 

18.2.2 Moderate 2 

In group Y during MOD2 exercise there are no significant differences due to BR 

considering the steady states of the four measurements made [HHb], [HbO], [THb] 

and SAT, in none of the phases of exercise, rest (RM2SS), unloaded pedalling (UPM2SS) 

and exercise (MOD2SS). 

No significant differences are found even in the area under the curve (AUC) cal-

culated after finding the Δ[HHb]/∆V̇O2 ratio. 

Considering the parameters calculated through the fitting analysis of [HHb], dif-

ferences were found in τ1 between BR and Pre BR and Pre PL conditions (BR 9.33 ± 

3.64 vs Pre BR 11.638 ± 4.79, p =0.0453, ES = 0.543; vs Pre PL 11.6402 ± 6.02, p 

<0.0451), with τ1 diminished by ~2 s. Amplitude (A1) is reported, but has not been 

statistically analyzed, because it was not possible to normalize it. 

18.2.3 Priming effect (PE) - MOD vs MOD2 

By means of a comparison between the values found in O in MOD and MOD2, 

it appears that PE influences the steady states of SAT, [HbO], [HHb] during R and 
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UP. No significant effects due to PE were found during exercise phase. No differences 

were found from the comparison between MOD and MOD2 in [THb]. 

It appears that SAT relative to R and UP is greater after PE in all experimental 

conditions with p<0,0001(R: Pre BR 68.50 ± 2.85 vs 81.82 ± 4.03; BR 69.07 ± 4.52 

vs 79.68 ± 5.82; Pre PL 68.04 ± 4.39 vs 82.13 ± 3.14; PL 67.09 ± 3.58 vs 81.64 ± 3.26 

– UP: Pre BR 70.39 ± 3.04 vs 80.99 ± 3.32; BR 70.97 ± 3.98 vs 80.42 ± 4.80; Pre PL 

70.21 ± 3.48 vs 81.00 ± 2.89; PL 69.32 ± 3.26 vs 80.22 ± 3.46). 

Also in [HbO] after PE values are greater during R and UP (R:Pre BR 59.01 ± 

18.21 vs 83.72 ± 28.82, p = 0.0095; BR 63.17 ± 15.84 vs 88.66 ± 28.05, p = 0.0075; 

Pre PL 63.10 ± 21.28 vs 90.71 ± 30.67, p = 0.0038; PL 60.15 ± 16.20 vs 91.81 ± 29.03, 

p = 0.0009 – UP: Pre BR 59.23 ± 19.83 vs 77.31 ± 24.73, p = 0.0348; BR 62.71 ± 

16.56 vs 84.69 ± 23.58, p = 0.0105; Pre PL 62.12 ± 19.20 vs 83.66 ± 26.06, p = 0.0121; 

PL 60.50 ± 15.86 vs 83.00 ± 22.76, p = 0.0088). 

In [HHb] BR and PE seems to have combined effects because in both, R and UP, 

there are decrease value of [HHb] in comparison between MOD and MOD2 in all 

phases except BR (R: Pre BR 27.23 ± 9.16 vs 18.14 ± 6.69, p = 0.0181; Pre PL 29.76 

± 11.95 vs 19.28 ± 6.50, p = 0.0066; PL 29.54 ± 8.75 vs 20.21 ± 6.48, p = 0.0153 – 

BR 27.88 ± 6.84 vs 21.57 ± 6.45 – UP: Pre BR 24.50 ± 7.57 vs 17.91 ± 6.13, p = 

0.0235; Pre PL 25.73 ± 7.04 vs 19.34 ± 5.60, p = 0.0282; PL 26.71 ± 7.88 vs 20.17 ± 

5.72, p = 0.0247 – BR 25.10 ± 5.58 vs 19.80 ± 5.15). 

Also in [HHb] parameters calculated with fitting, BR and PE seems to have com-

bined effects on τ1 because τ1 slows down in all conditions, but in BR τ1 in MOD2 has 

no significant differences from MOD (Pre BR 5.45 ± 2.60 vs 11.64 ± 4.79, p = 0.0009; 

Pre PL 6.39 ± 1.92 vs 11.64 ± 6.02, p = 0.0045; PL 6.16 ± 4.68 vs 10.14 ± 4.60, p = 

0.0233 – BR 5.99 ± 1.87 vs 9.33 ± 3.64). Finally, PE reduces TD1 (Pre BR 8.84 ± 2.23 

vs 2.12 ± 1.32, p <0.0001; BR 7.42 ± 2.58 vs 3.05 ± 2.15, p = 0.0017; Pre PL 8.18 ± 

3.00 vs 3.10 ± 1.68, p = 0.0002; PL 7.36 ± 3.70 vs 2.20 ± 2.43, p = 0.0021) 
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Table 10: NIRS data in Young group 
Values are expressed as mean ± SD divided in MOD (pre Priming Effect, PE) and MOD2 (PE) in the four experimental phases 
(Pre BR, BR, Pre Pl, PL).  RSS, UPSS and EXE corresponding to average of last 30” of each phase at rest, at the end of the 
freewheeling warm up and in the last 30 s of exercise. SAT is saturation. 
Significance legend (P <0.05):  # difference to MOD  

Table 11 [HHb] kinetics parameters in Young group. 
Values are expressed as mean ± SD divided in pre PE (MOD) and PE (MOD2) for each intensity the four experimental phases 
(Pre BR, BR, Pre Pl, PL).  A, τ, TD, respectively amplitude (mL/min), time constant (s) and time delay (s) of first (1), and second 
component (2), estimated through fitting analysis. MRT is mean response time, calculated as sum of τ1 and TD1. Significance legend (P 
<0.05):  # difference to MOD, * to BR condition 
 

Table 12: Area under curve in Young  group. 
Values are expressed as mean ± SD divided in pre PE (MOD) 
and PE (MOD2) in the four experimental phases (Pre BR, BR, 
Pre Pl, PL). 
AUC is area under curve calculated after Δ[HHb]/∆V̇O2 
Ratio.  
 

Figure 11 
Time delay (TD1) of [HHb] in Y pre PE e 
PE (MOD vs MOD2)  
Significance legend (P <0.05): # difference to 
MOD 

Figure 12 
Time constant (τ1) of [HHb] τ1 in Y pre PE e 
PE (MOD vs MOD2)  
Significance legend (P <0.05): # difference to 
MOD, * difference to BR 
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19. Results – Vascular effects 

The comparison of the data related to the metabolic transitions in the moderate 

intensity domain carried out without PE (MOD) and subsequently with it (MOD2), 

was obtained, for each studied group (O and Y) following the statistical analysis Time 

x Moderate, within the same condition (Pre BR and BR, Pre PL and PL). 

The values of the variables under examination are shown in brackets respecting 

the order MOD and MOD2. 

 Old 

Here are reported the result related to O group. Results are divided in MOD, 

MOD2 and comparison between MOD and MOD2. 

19.1.1 Moderate 

During MOD exercise in O, the main differences due to BR supplementation are 

observed in MAP (Pre BR vs BR 103.3 ± 7.1vs 98.35 ± 11 mmHg, p = 0.0249) with 

a reduction of ~5% and TPR (Pre BR vs BR 1.24 ± 0.22 vs 1.16 ± 0.21, p = 0.0458) 

with a reduction of ~6,5% during R phase. Always in R phase, in TPR there is also 

difference between BR and PL conditions (BR vs PL 1.16 ± 0.21 vs 1.25 ± 0.30, p = 

0.0226) with TPR in BR slower ~6,5%.  

In DIA differences after BR supplementation was observed only in UP (Pre BR 

vs BR 77.86 ± 11.80 vs 83.71 ± 9.10, p=0.0190). 

In SYS there are no significant differences between conditions during MOD ex-

ercise.  

19.1.2 Moderate 2 

During MOD2 exercise in O, the main differences due to BR supplementation 

are observed in SYS during R with a reduction in BR respect to other condition (BR 

148.56 ± 25.78 vs Pre BR 164.50 ± 18.05, p =<0.0001; vs Pre PL 164.50 ± 18.05, p 

<0.0001; vs PL 159.29 ± 21.54, p = 0.0039) and in MAP during R (BR 103.18 ± 15.39 

vs Pre BR 114.80 ± 10.23, p <0.0001; vs Pre PL 114.80 ± 10.23, p <0.0001; vs PL 

111.42 ± 11.43, p = 0.0002).  
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In MAP was observed same results also in UP (BR 101.74 ± 16.50 vs Pre BR 

108.84 ± 16.28, p = 0.0062; vs Pre PL 108.84 ± 16.28, p = 0.0062; vs PL 107.29 ± 

13.09, p = 0.0318).  

In TPR there are significant differences due to BR during UP (BR 0.94 ± 0.24 vs 

Pre BR 1.02 ± 0.24, p = 0.0313) with TPR in BR slower ~7,9%.  

In DIA no significant differences after BR supplementation was observed. 

19.1.3 Priming effect (PE) - MOD vs MOD2 

From the comparison between the values found in O in MOD and MOD2 were 

observed differences due to PE that raise SYS during R and exercise (MOD2SS) (R: 

Pre BR 138.77 ± 12.91 vs 164.50 ± 18.05, p = 0.0003; BR 131.67 ± 12.29 vs 148.56 ± 

25.78, p = 0.0159; Pre PL 138.77 ± 12.91 vs 164.50 ± 18.05, p = 0.0003; PL 134.62 ± 

14.25 vs 159.29 ± 21.54, p = 0.0005 – MOD2SS: Pre BR 141.45 ± 15.88 vs 163.15 ± 

28.36, p = 0.0160; BR 142.68 ± 18.17 vs 163.21 ± 19.08, p = 0.0225; Pre PL 141.45 ± 

15.88 vs 163.15 ± 28.36, p = 0.0160; PL 139.51 ± 15.98 vs 164.61 ± 22.07, p = 0.0054). 

In MAP at R, BR and PE seems to have combined effects because MAP is signif-

icant higher in MOD2 in all conditions (Pre BR 103.31 ± 7.11 vs 114.80 ± 10.23, p = 

0.0154; Pre PL 103.31 ± 7.11 vs 114.80 ± 10.23, p = 0.0154; PL 101.56 ± 8.33 vs 

111.42 ± 11.43, p = 0.0371) except after BR (BR 98.35 ± 11.00 vs 103.18 ± 15.39). 

TPR due to PE are slower at R (Pre BR 1.24 ± 0.22 vs 0.98 ± 0.28, p = 0.0174; 

BR 1.16 ± 0.21 vs 0.95 ± 0.34, p = 0.0481; Pre PL 1.24 ± 0.22 vs 0.98 ± 0.28, p = 

0.0174; PL 1.25 ± 0.30 vs 0.97 ± 0.23, p = 0.0098). 

In DIA no significant differences due to PE was observed. 
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Table 13: Blood pressure in Old group 
Values are expressed as mean ± SD divided in MOD (pre Priming Effect, PE) and MOD2 (PE) in the four experimental 
phases (Pre BR, BR, Pre Pl, PL).  RSS, UPSS and EXE corresponding to average of last 30” of each phase at rest, at the end 
of the freewheeling warm up and in the last 30 s of exercise. SYS is systolic pressure, DIA is diastolic pressure, MAP is mean 
pressure and TPR are total peripheral resistances. 
Significance legend (P <0.05): *difference to BR condition, °difference to young group, # difference to MOD 

Figure 13 
MAP in Old group in rest pre PE and  PE 
(MOD vs MOD2)  
Significance legend (P <0.05): # difference to 
MOD, * difference to BR 

Figure 14 
SYS in Old group in exercise pre PE and  PE 
(MOD vs MOD2)  
Significance legend (P <0.05): # difference to 
MOD 
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 Young 

Here are reported the result related to O group. Results are divided in MOD, 

MOD2 and comparison between MOD and MOD2. 

19.2.1 Moderate 

During MOD exercise in young, there are significant differences only on TPR, 

during R and UP. During R the difference is between BR and PL (BR vs PL 0.84 ± 

0.18 vs 0.93 ± 0.18, ~9.7 %, p = 0.0215). During UP there are differences in both, 

after BR and compared with PL (Pre BR vs BR 0.80 ± 0.18 vs 0.73 ± 0.18, ~8.7%, p 

= 0.0363; BR vs PL 0.73 ± 0.18 vs 0.83 ± 0.20, ~12 %, p = 0.0035). 

There are no differences in SYS, DIA and MAP in various phases during MOD 

exercise. 

19.2.2 Moderate 2 

During MOD2 exercise in Y, no significant differences were observed in all pa-

rameters of blood pressure measured, SYS, DIA, MAP and TPR in all phases, rest 

(RM2SS), unloaded pedalling (UPM2SS) and exercise (MOD2SS). 

19.2.3 Priming effect - MOD vs MOD2 

From the comparison between the values found in Y in MOD and MOD2, dif-

ferences were observed due to PE only during exercise (MOD2SS) in SYS, and in TPR 

at R and during UP. 

During MOD2SS SYS are slower due to PE, on contrary to what happens in the 

O (Pre BR 165.64 ± 13.89 vs 145.99 ± 10.08, p = 0.0289; BR 160.25 ± 15.64 vs 139.12 

± 12.24, p = 0.0189; Pre PL 165.64 ± 13.89 vs 145.99 ± 10.08, p = 0.0289; PL 163.51 

± 16.11 vs 140.46 ± 11.95, p = 0.0105). 

TPR due to PE are slower during R (Pre BR 0.90 ± 0.19 vs 0.52 ± 0.11, p = 

0.0004; BR 0.84 ± 0.18 vs 0.51 ± 0.10, p =0.0020; Pre PL 0.90 ± 0.19 vs 0.52 ± 0.11, 

p = 0.0004; PL 0.93 ± 0.18 vs 0.55 ± 0.14, p = 0.0003). Moreover, during UP, TPR 

are slower due to PE (Pre BR 0.80 ± 0.18 vs 0.56 ± 0.09, p = 0.0180; Pre PL 0.80 ± 

0.18 vs 0.56 ± 0.09, p = 0.0180; PL 0.83 ± 0.20 vs 0.54 ± 0.14, p = 0.0050) but after 
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BR there are no significant difference due to reduction on MOD (BR 0.73 ± 0.18 vs 

0.55 ± 0.12). 

In DIA and MAP no significant differences due to PE was observed. 

 

 

 

Figure 16 
TPR in Young group in rest pre PE and PE (MOD 
vs MOD2)  
Significance legend (P <0.05): # difference to MOD. 

Figure 15 
SYS in Young group in exercise pre PE and PE 
(MOD vs MOD2)  
Significance legend (P <0.05): # difference to MOD 
 

Table 13: Blood pressure in Young group 
Values are expressed as mean ± SD divided in MOD (pre Priming Effect, PE) and MOD2 (PE) in the four experimental 
phases (Pre BR, BR, Pre Pl, PL).  RSS, UPSS and EXE corresponding to average of last 30” of each phase at rest, at the end 
of the freewheeling warm up and in the last 30 s of exercise. SYS is systolic pressure, DIA is diastolic pressure, MAP is mean 
pressure and TPR are total peripheral resistances. 
Significance legend (P <0.05): *difference to BR condition, # difference to MOD 
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20. General discussion 

 PE effects and Nitrate in old 

20.1.1 O2 consumption and NIRS 

The PE is constituted as an intervention aimed at improving the contribution of 

O2 to the muscle (Murias, Kowalchuk, and Paterson 2011) considered able to influence 

the V̇O2 response in the transition to moderate exercise. 

PE leads to augmented O2 consumption at R and during UP and this is common 

outcome in all conditions. This in not followed of any significant increase in speed of 

kinetics (τ2) (except in PL condition). An average decrease of 3.4 s was observed, de-

spite of what is observed in the literature (Murias, Kowalchuk, and Paterson 2011; De 

Roia et al, 2012). 

About the variables measured by NIRS, instead, we observed a common trend 

that is reported also in the literature (De Roia et al, 2012). For instance, HHb kinetic 

parameters, are decreased for TD1 (average -4.24 s) and for τ1 (average 5.55 s) in all 

conditions. This is in agreement with previous studies on elderly subject (DeLorey et 

al 2004, De Roia et al, 2012).) The decrease in TD1 is retained related to the early mis-

match between O2 consumption, by the muscle, and O2 delivery. And this is 

attributable to a quicker activation of cell enzymes (mitochondrial enzymes and/or 

PDH) following heavy-intensity warm-up (Gund et al. 2009). PE leads to a better O2 

extraction. The higher values of τ1 are explained by the slower rate of adjustment of 

muscle O2 consumption compared with the adjustment of O2 delivery. So, during 

MOD2, O2 delivery increase relatively swiftly compared to O2 extraction during 

exercise (relatively to MOD). 

De Roia and colleagues (De Roia et al, 2012), observed an improvement of match-

ing between O2 delivery and O2 consumption, with the decrease of the overshoot in 

the Δ[HHb]/ΔV̇O2 Ratio. We observe the same decrease in area under curve of 

Δ[HHb]/ΔV̇O2 Ratio, although this result was not significant, probably due to small 

size and to great variability of the sample (SD is very high). NIRS data depict also that 

the steady state of SAT and [HbO] is higher after PE both in the R and UP phases of 

MOD2, confirming a better muscle oxygenation, induced by the PE, before exercise. 
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In the elderly, BR effects that are observed in MOD2 are similar to those found 

in MOD: significant reduction in O2 consumption at steady state (MOD2SS). Reduc-

tion registered is 78.2 mL/min (~5.7%) after BR (Pre BR 1450.3 ± 329.01 mL/min vs 

BR 1372.1 ± 309.31 mL/min, p = 0.0257). Furthermore, there are no effects due to 

BR supplementation concerning NIRS data, neither in the area under the curve, nor 

in the kinetic parameters of [HHb], nor in the stationary states of SAT, [THb], [HHb] 

and [ HbO]. Therefore, despite a more acidic environment due to greater [La] and the 

need to buffer it, which results in a lowering of PH, the effect of BR supplementation 

leads to very similar results, even if the NO3
- - NO2

- - NO pathway it should be more 

active (Lundberg et al., 2008). Then, it is not understandable where the NO3
- supple-

ment acts after PE.. This consideration is  relative to the similar results obtained at the 

steady state comparing MOD and MOD2 exercise. And this last consideration leads 

to support the hypothesis that the “energetic action” of NO3
- involves mainly cellular 

mechanisms rather than vascular modulation. 

BR is able to Also the Gain on both, MOD and MOD2 results similar, bringing 

values closer to those found by young people, confirming even after PE this "rejuve-

nation" due to BR supplementation. 

20.1.2 Blood pressure 

In comparison between MOD and MOD2 on blood pressure parameters in the 

O, changes emerge during the R phase in SYS, MAP and TPR. In particular, SYS and 

MAP are affected by the increase they undergo during the PE, and do not return to 

baseline values, remaining elevated. However, this does not occur in the condition of 

BR supplementation, where the NO3
- seem to facilitate, probably due to the vasodila-

tory effect of the NO, the return speed at baseline of the SYS and MAP, which in fact 

differ in the BR condition compared to the other conditions. In the MAP, the BR 

condition in MOD2, in fact, is not significantly different from MOD (98.35 vs 103.18 

mmHG), while in SYS, although lower than the other conditions, the significant dif-

ference remains with MOD (131.67 vs 148.56). To underline then how the SYS falls 

in the UP phase, reaching values comparable to MOD, and then rises again to levels 

significantly higher than MOD (average = 22.26) during exercise phase. This phenom-

enon is not observed in young people, where, instead, the SYS in MOD2 decreases 

compared to MOD (average -20.87) and no changes are observed in the exercise phase 
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on TPR, as already reported in the literature (De Roia et al 2012). In this phase no 

effects due to BR supplementation are observed. TPR, instead, are significant lower 

after PE during R phase before MOD2. 

 

 PE effects and Nitrate in Young 

20.2.1 O2 consumption and NIRS 

As for the elderly, even in Y PE leads to augmented O2 consumption at R and 

during UP common to all conditions. Differently from O, however, in Y PE speeds 

the V̇O2 kinetics, with average increase of 4.8 s in τ2, in all experimental conditions 

except for Pre BR. An increasing in the speed of adaptation of the oxidative metabo-

lism in the transition to moderate intensity domain was found, despite the V̇O2 re-

sponse present values of τ2 around 20s (mean time constant cleavage of phosphocre-

atine), indicated by the literature as a quantity that hardly allows the influence on reg-

ulation of kinetics by improvements of the local distribution of O2 induced by PE 

(Poole et al, 2012).  

Gain values in MOD2, as for MOD, are not influenced by BR supplementation, 

but is significantly lowered after PE, indicating that muscle activation does not bring 

improvements on it. 

Also, in Y, NIRS data were in agreement with that are reported in the literature 

(De Roia et al, 2012) in the [HHb] kinetic parameters, with a decrease in TD1 (average 

-4.69 s) and a slowdown of τ1 (average 5.66 s). But here, in the time constant there is a 

difference induced by BR supplementation, highlighting an effect of NO3
- on the speed 

of adaptation of [HHb], which is improved. In fact, in the condition of BR supple-

mentation τ1became not significant different after PE, making it comparable to MOD 

(5.99 vs 9.33).  

 

Therefore, it is hypothesized that in the Y,  a more acidic environment in MOD2 

compared to MOD has been establish, due to the higher concentration of [LA], and 

this influence the activity of NO3
- - NO2

- - NO pathway compared to the elderly, thus 

causing a better adaptations on vascular system (better O2 delivery) and/or a strongest 

interaction with hemoglobin (deoxyhemoglobin) (Lundberg et al., 2008), leading to a 
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faster O2 extraction after BR supplementation (faster activation of mitochondrial 

enzymes and/or PDH). 

Similarly to what is found in the elderly and as reported in the literature (De Roia 

et al, 2012), it was observed a tendency to an improvement of matching between O2 

delivery and O2 consumption, with the decrease of area under curve, although limited, 

in the Δ[HHb]/ΔV̇O2 Ratio, except in BR condition, where area under curve value in 

MOD2 is very close to MOD. Decreasing in area under curve, however, is not signif-

icant, probably due to small size and to great variability of the sample (SD is very high).  

In NIRS data it is also noted that the steady state of SAT and [HbO] is higher 

after PE both in the R and UP phases of MOD2, confirming a better muscle oxygen-

ation, induced by the PE, before exercise. 

20.2.2 Blood pressure 

In comparison between MOD and MOD2 on blood pressure parameters in the 

Y, changes emerge during in TPR during R and UP and in SYS during exercise.  

In TPR there is a significant decrease in all the conditions in the R phase after PE, 

thus modifying the peripheral resistance at the muscle level in the recovery phase after 

PE (average = 0.37). During the UP phase the responses are similar to those observed 

in R, with the exception of the BR phase, where there is no difference between MOD 

and MOD2, due to the decrease of the TPR in MOD, not in MOD2, where there are 

no differences after BR supplementation. During the exercise, there is a decrease in 

TPR, but not significant after PE. 

In SYS an opposite effect due to PE is observed to one observed in O, in fact, 

while in O SYS increase during the exercise phase after PE (average = 22.26), in Y the 

SYS decreases in MOD2 with respect to MOD (average = -20.87). This decrease is 

probably due to lower TPR. 
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 Study limits 

 

The present study springs out a series of non-negligible aspects that can be con-

sidered as limits in particular with respect to the size of the effect under examination 

and to the statistical power of the results. 

Firstly, the reduced number of the sample (Old: n = 10, Young: n = 10), in asso-

ciation with the inter-individual variability that characterizes each of the two sub-

groups, could prevent the achievement of statistical significance in the different com-

parisons between variables. In particular, elderly subjects, whose recruitment has not 

always proved to be easy, tend to be unrepresentative of the population to which they 

belong in terms of their fitness level on average higher than that normally expected (V̇

O2max, τ2, MRT). They are physically more active than usual people of the age and they 

pay attention to the health benefits of exercise and diet. All these aspects may have 

reduced the potential impact of NO3
- supplementation by masking its effects in par-

ticular at vascular level. Therefore, there may have been little chance for nitrates to 

positively influence exercise responses due to insufficient impairment of the systems 

involved. 

Any training effects that may have been induced by the overall duration of the 

experimental design were excluded from the randomization of the treatment assign-

ment. 
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21. Conclusion 

Supplementation of nitrates to which the subjects recruited in the present study 

underwent, has indeed determined an elevation of the plasma concentrations of this 

ion and consequently the bioavailability of NO of which it is a precursor. 

Priming Exercise could be a useful paradigm for discriminating the location of 

nitrate intervention.  

In elderly, priming exercise show similar results observed in no priming condition 

on energy demand (-5.3% in MOD and -5.7% in MOD2) at the steady-state after sup-

plementation. The results obtained suggest that the mechanisms involved in the mod-

ulation of the responses to priming exercise could not be influenced by nitrates.   

In young, instead, priming exercise, that leading to speeding of V̇O2 kinetics could 

have also a better microvascular effect, moreover time constant of the kinetics of de-

oxy hemoglobin became faster in nitrates supplementation. All this consideration un-

derlines a better mismatching between O2 delivery and O2 utilization by the muscle. 

These effect are probably stronger in acidic environment. 

Main results on blood pressure due to priming exercise are on systolic pressure, 

which shows an opposite trend between the elderly and the young. In the elderly, dur-

ing exercise phase, systolic pressure is higher after priming exercise in comparison with 

non-priming one, while in the young it is lowered. In the elderly this tendency is coun-

teracted by nitrate supplementation.  

To clarify the effects of nitrates linked to the priming exercise, further in-depth 

studies would be needed.

  



 

 

 

  



 

 

 

 

 

 

 

SECTION FOUR 

 

 

STUDY THREE 

Nitrates supplementation and  

Energy Cost of walking 

  



 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

Summary of the section 

In this section nitrate supplementation 

effects , on energy cost of walking are ana-

lyzed. Experimental protocol includes a se-

ries of 4 minutes walking at different 

speeds and slopes.  

After an introduction on energy cost 

of walking, experimental data of energy 

cost of walking in young and old are re-

ported and analyzed.
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List of abbreviations 
 

NO3
-  Nitrates  

NO2
- Nitrites 

NO  Nitric oxide 

BR Beetroot 

PL Placebo 

V̇O2  Oxygen consumption 

V̇CO2 Carbon dioxide production 

EC Energy cost 

  



 

 155 

22. Introduction 

The energy cost (EC) is the energy spent per unit distance to transport a Kg of 

body mass ((P. Di Prampero 1986)). It is expressed in milliliters of oxygen (or kilocal-

ories) spent to transport one kilogram of the body for the space of one meter or one 

kilometer. 

EC varies, depending on the form of locomotion used, in fact if we consider a 

more or less similar muscle power, as that of high-level athletes, the speeds are very 

different and vary from 7 km/h (100m freestyle) more than 70 km/h (track cycling). 

These differences are due to all the intrinsic characteristics of each form of locomo-

tion. Therefore, every form of locomotion has its own characteristic EC. 

Not all the energy produced by our body is actually transformed into external 

mechanical work, since most of it is dispersed in heat. This heat dispersion makes the 

efficiency lower, in fact the efficiency of human locomotion varies between 20 and 

30% (P. E. Di Prampero 1985). 

In general, the energy that is produced is used to: overcome the air or water re-

sistance, overcome gravitational forces (raise/lower body center of gravity), overcome 

the inertial forces (acceleration/deceleration of body center of mass), win the friction 

of the point of contact with the ground (wheel, pads), muscle contraction necessary to 

maintain posture, support cardiac and respiratory muscle activity, overcoming the in-

ternal load (energy spent to overcome the resistance to the movement of the limbs) 

The energy spent related to the speed of locomotion allows to calculate EC, using 

following formula (Di Prampero et al., 1986): 

 

𝑬𝑪 = �́̇�∗𝟐𝟎.𝟗𝟐
𝒗

  [1] 

Where: 
�̇� 'is the metabolic power, ie the energy expenditure per unit of time, ie the consumption of oxygen (V̇
O2) per minute (L /min or mL/min). It can also be normalized for body weight (L/min/kg or 
mL/min/kg); 20.92 is the energetic equivalent of O2 (1 kcal = 4.185 kJ; 1 l of O2 = 5 kcal = 
20.92 kJ), which has units of measure kJ/L; v is the speed (km/h, m/s). In the case of walking, it 
is the walking speed on a treadmill. 

Experimentally, therefore, to obtain the energy cost of a certain form of locomo-

tion, the energy spent at a steady state is measured at different rates. 
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Analyzing the characteristic EC of walking, where the resistance effect of the air 

is negligible, a graph with a characteristic U-shape is obtained; this graph shows a min-

imum EC at intermediate speeds (which are usually the self-selected walking speed) 

and higher EC for low and high speeds (before the spontaneous transition to running). 

All the works mentioned here have been carried out on flat, but similar behaviors 

can be observed when walking is carried out on inclined terrain, with different slopes 

(Minetti et al., 2002). In uphill walking EC for the same speed increases as the inclina-

tion increases, but at the same slope still follows the characteristic U-shape, with inter-

mediate walking speed, lower than those on flat, which have the minimum energy cost. 

This increase in EC at a given velocity depending on the slope indicates an increase in 

intensity in locomotion and this implies a different muscle activation with a probable 

greater involvement of type II motor units.  

As seen before, various studies have been performed on the effects of nitrate 

supplementation (BR) on exercise and performance. No one, until now, has measured 

the EC of treadmill walking at various walking speeds and slopes after BR supplemen-

tation. Studies performed so far have shown a significantly reduced oxygen consump-

tion in walking at a constant speed. After BR supplementation compared with placebo 

(PL) there is a significant decrease in the consumption of O2 (V̇O2) in the 4 km/h 

walking in young subjects (22 ± 4 years) (Lansley et al., 2011). On the other hand, a 

work conducted by Kelly showed that in elderly subjects (64 ± 4 years), no variation 

in the O2 consumption was found during walking at the same speed after BR supple-

mentation (Kelly et al., 2013). The latter work is the only one until now, that has stud-

ied the relationship between healthy elderly subjects, BR and walking.  
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23. Materials and Methods 

 Aim of the study 

The aim of the study is to investigate the effects at metabolic level induced by 

nitrate supplementation (NO3
-), and the comparison within a population of elderly 

subjects (60-75 years), and young people (20-35 years old) during exercise locomotion. 

The study was developed in order to describe the trend of energy cost of locomotion 

on a treadmill at different intensities administered by varying the speed and slope of 

the instrument. The increase in the metabolic cost of walking in old age means that 

older adults walk at a slower rate to achieve the same energy expenditure. Based on 

this evidence, the elderly manifests a higher metabolic cost of the path compared to 

the young population at the same intensity. We hypothesized that, there is a decrease 

in the energy cost of locomotion following dietary supplementation of nitrates. And 

that the decrease in the energy cost of locomotion should be significant al moderate 

intensities for elderly subjects. In the young, on the contrary, it is hypothesized a 

possible decrease of the CE of the path particularly at high intensity (up to 20% at 

higher speeds). 

 Subjects 

The study participants were 20 volunteered, healthy, subjects divided in two 

groups: 10 old (67 ± 4.3 years) and 10 young (25 ± 3.9 years). During subjects’ selec-

tion phase were recruited 28 men, but 4 refused to participate, 3 were excluded after 

preliminary medical examination and 1 drop out during first supplementation phase. 

The remaining 20 subjects participate in the study after given their informed and writ-

ten consensus. 

Inclusion criteria to participate at the study were: a normal clinical exam, absence 

of orthopedic, muscle-skeletal, metabolic, cardiovascular or respiratory pathology. ,  

Exclusion criteria were: abnormal clinical exam, presence of orthopedic, muscle-

skeletal, metabolic, cardiovascular or respiratory pathology, obesity (BMI ≥ 30 kg/m2), 

the age limits. 

All procedures were approved by the Department of Neurological and Movement 

Sciences’ ethical committee for research on human subjects. 

. 
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 Study design and protocol 

The study is a double-blind crossover design with Nitrate (BR) or Placebo (PL) 

supplementation. The protocol consested of a preliminary day of test (D0) in which 

subjects performed a ramp incremental test (EXP1); followed by 3 alternate testing 

days (D1, D2, D3) in which  V̇O2 kinetics tests were performed (EXP2). This plan was 

repeated in 4 experimental phases (BDC1, PS1, BDC2, PS2). 	

In the first phase (BDC1) (basal data collection) basal conditions were measured.	

In the second phase (PS1) (post supplementation) the conditions after first period of 

supplementation (randomly selected between NO3
- or PL) were recorded. 

After at least 10 days of washout, the third phase was performed (BDC2) where 

basal conditions were measured again. In the fourth and last phase (PS2) the condi-

tions after second period of supplementation (opposite of the first period) were deter-

mined. 

 

 

Figure 1: The representation schematically summarizes order of test. After the preliminary evaluations (D0) the four experi-
mental phases are followed (BDC1, PS1, BDC2 and PS2) in each of which the execution of the walking evaluation protocol 
is repeated in non-consecutive days (W1 and W2). All subjects underwent 8 days of supplementation with NO3- and PL, in 
PS1 and PS2, according to a balanced randomization. PS1 and BDC2 are separated by 10 days of washout. BS indicated 
blood sample, that is taken for the determination of the blood concentrations of nitrates and nitrites. 

Table 1,2: The table shows 
the individual data of sub-
jects examined, Old (up) and 
Young (down).  The values 
of age (Age, years) of the an-
thropometric parameters 
have been reported: height 
(Height, cm) and body mass 
(Weight, Kg), of the maxi-
mum metabolic power, abso-
lute (V̇O2max, mL/min) 
and relative ( V̇O2max, 
mL/min/Kg, , of the maxi-
mum mechanical power 
(Power max, W) and of the 
maximum heart rate 
(Hrmax, bpm) detected in 
the preliminary test, and of 
the Workloads (W) of the 
two intensity domains (Mod-
erate: 80 % GET, and Se-
vere: Δ 50%, W)  
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23.3.1 Supplementation 

The BR supplementation was made by beetroot juice (BR) (250 ml/day – Azienda 

agricola “Aureli” – Ortucchio (AQ) - Italy). The juice was provided in two different 

formulations: one with high concentration (~8.0 mmol) of NO3
- and one with low 

concentration (~0.8 mmol) of NO3
- (used as a placebo (PL)). The PL was identical in 

color, taste, smell and texture to the NO3
- rich BR juice. Supplementation was distrib-

uted by an experimenter not involved in laboratory tests and/or in data analysis and 

the subjects and all the experimenters involved didn’t know what supplementation was 

provided (if BR or PL). The matching of assumptions was known only at the end of 

data analysis.   

This is considered a medium-term supplementation design that lasts for 8 days 

(Porcelli et al. 2015, Wylie et al. 2013).  

with ingestion of a daily dose of 250 ml of juice before breakfast. The measure-

ments of the kinetics started on the third day of treatment. The kinetics protocol 

took place on average 2.5/3 h after the supplementation. In each phase the same ca-

dence of supplementation/test was repeated. 

The subjects independently provided the supplementation following a sheet of 

instructions delivered to them.  They were also warnings on foods to avoid rich in 

nitrates (spinach, beetroot, salad, rocket and Chinese cabbage) and to avoid the use of 

antibacterial mouthwash. 

 

  

Figure 2: The representation schematically sum-
marizes the experimental design that structures the 
presented study, of a longitudinal type in a double-
blind crossover. After the preliminary evaluations 
(EXP1) subjects randomly divided in two groups 
(BR or PL) and perform first two experimental 
phases (BDC1 and PS1). 
After 10 days of washout they crossed their condi-
tion and change supplementation and perform last 
two phases (BDC2 and PS2) 
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 EXP1 – Preliminary ramp incremental test 

To determine peak of oxygen consumption V̇O2max. gas exchange threshold 

(GET), power output (PO), power output peak (POpeak) and maximal heart rate 

(HRmax) a ramp incremental (RI) test was performed. 

RI protocol included 3 min of measurement of baseline condition, where subject 

remained sit on bike without moving. After that, the subject start cycling at 30 

W(warm-up), for 3 min, with self-selected cadence. This cadence was recorded and 

was maintained during all subsequent tests using visual feedback and verbal encour-

agement from the experimenters. Warm-up was followed by RI protocol with different 

workload increments every minute (15, 20, 25, 30 W/min – 2W/8s, 2W/6s. 5W/12s. 

3W/6s) in order to maintain entire test duration between 16 and 18 min. Test ended 

with exhaustion of the subject, and however when the criteria for maximal test were 

reached (V̇O2 plateau, HR ~ HRmax, [la] >10mM). Failure to maintain the indicated 

cadence to within 5 rpm (for longer than 5s) during testing despite strong verbal en-

couragement was considered as the criterion for exhaustion.  

In order to obtain a more reliable measure of V̇O2max a verification trial test (VER) 

was also executed: after 2 min of recovery subjects start pedaling again at 20 W, after 

5 min the workload was augmented to constant-work rate equal to 105% of the me-

chanical power achieved at the end of the ramp test until exhaustion. (Poole, Wilkerson 

and  Jones AM 2008) 

 EXP4 – Energy Cost (EC) of walking 

The test on EC of walking were carried out in two sessions on a treadmill 

(Hp/Cosmos Saturn®) for each of the four experimental phases (BDC1, PS1, BDC2, 

PS2). This was done in non-consecutive days and approximately at the same time. In 

each experimental session a different working protocol was repeated according to the 

type of path that the subjects faced with progressive and constant increases in speed 

at different inclinations of treadmill. 

To highlight the response of the subjects following BR supplementation, the car-

diopulmonary and metabolic responses to walk at different slopes that correspond to 

different work intensities were analyzed (-10 and -20%, 0%, +10 and +20 %). 
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In the first session, lasting approximately 70 minutes, after an initial period of data 

collection at rest, the subjects walked to the first slope (0%) to 2 km/h for 4 min before 

moving on to the next speed of 3 km/h and then a subsequent increase of 1 km/h 

every 4 min up to a speed of 6 km/h. After 10 minutes of rest the subjects walked with 

a negative slope (-10%) to 3 km/h with increases of 1 km/h every 4 min up to 5 km/h 

to perform after 5 minutes of recovery subjects performed same test at the next slope 

(-20%). 

In the second session, usually done at least after 48 hours, duration approximately 

80 minutes, after an initial period of data collection at rest, the subjects walked to the 

first positive slope (10%) at 2 km/h for 4 min before moving on to the next speed of 

3 km/h and then a subsequent increase of 0.5 km/h every 4 min up to a speed of 5 

km/h. After 10 minutes of rest the subjects faced the next slope (20%) at 2 km/h with 

increases of 0.5 km/h every 4 min up to 4.5 km/h. 

Each speed subjected to the subjects was maintained for 4 min, in order to reach 

after about 3 min. a steady state of metabolic parameters; this allowed the analysis to 

obtain medium and stable parameters related to the specific walking speed. 

All the variations foreseen by the protocol have been reported in advance to the 

subjects through verbal information provided by the experimenters and commands at 

the moment of beginning or end of the various phases. 

  
Figure 3: The representation schemati-
cally summarizes the experimental proto-
cols of EC of walking. 
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 Measures and instruments 

During the test the following parameters were detected: 

- Pulmonary gas exchange (V̇O2 and V̇CO2) and pulmonary ventilation (V̇E) 

(K5b2 – Cosmed srl – Rome. Italy).  

- Rate of perceived exertion (RPE) with Borg scale 6-20, detected in the last 10 

s of each phase of walk at constant load 

23.6.1 K5B2 - Cosmed, Rome, Italy 

Gaseous exchanges (V̇O2, V̇CO2) and pulmonary ventilation (V̇E) were measured 

breath-by-breath using the metabolimeter with a facial mask. The concentrations of 

inhaled and exhaled gases were sampled at a frequency of 100 Hz via a capillary line 

connected to the mask and quantified by respectively paramagnetic analyzers for O2 

with response time of 120 ms and infrared rays (NDIR technology) for CO2 with a 

response time of 100 ms. The measurement of the volume of the respiratory flows was 

carried out by a flowmeter consisting of a bidirectional digital turbine inside which a 

movable vanity unit, free to rotate around its axis, rotates at speed and in a direction 

proportional to the flow of air from which it is invested. The number of rotations was 

transduced into the parameters of interest by an opto-electronic system with infrared 

LED diodes based on the frequency of detection of the passage of the blades, inte-

grated and processed by a microcomputer. 

Prior to each test, the gas concentration and volume transducer analyzers of the 

turbine were calibrated using a mixture of gases with known concentrations, according 

to the manufacturer's instructions, (FO2: 0.16; FCO2: 0.05) and a 3.0 L syringe. Con-

centration data e volume were aligned temporally, breath-by-breath, taking into ac-

count the delay in the passage of the gas to the capillary then the discrepancy between 

the time of acquisition of the signal by the analyzer and the flow meter, through the 

calibration of delays. 

23.6.2 Hp/Cosmos Treadmill – Saturn® 300/100r  

All tests were carried out on Hp/cosmos - Saturn® treadmill with speeds up to 40 

km/h and slope range between -27% and + 27%. 
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 The speed given to patients was set in the User Terminal control panel. This type 

of software allows to set the working program and the duration of the experimental 

protocol speed domains; the progressive speeds have been entered automatically.  

The safety of the subjects has been guaranteed by the arc/cosmos device which 

prevents the fall in case of error, loss of coordination and concentration. This instru-

ment, if activated, immediately brakes the belt motor (11 Kw) stopping the treadmill. 
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24. Data Analysis 

 EC Of walking 

The V̇O2 data measured breath-by-breath were recorded by the metabolimeter 

during each energy cost assessment tests. An average of the last two minutes of breath-

-by-breath samples at each walking speed was done. At each speed, the steady state 

condition have to be reached, so, it was needed to reach at least the third minute of 

walking, on data of V̇O2, heart rate and respiratory quotient (R –V̇CO2 / V̇O2). 

Data were exported and examined in order to exclude artifacts represented by the 

values not included in the interval defined by the four 4 SD on the local mean. Fol-

lowing these operations, the values of V̇O2 at rest (baseline) were calculated as the 

average of the data for the third minute, while those of the effort as an average of the 

last 30 s at each speed administered. The results are therefore average values related to 

the metabolic and ventilator parameters for each speed domain. 

As previously mentioned, the energy spent related to the speed of locomotion 

makes it possible to calculate the EC. Therefore, the EC was calculated using the for-

mula [1] developed by Di Prampero (Di Prampero, 1986): 

 

𝑬𝑪 = �́̇�∗𝟐𝟎.𝟗𝟐
𝒗

 [1] 

Where: �̇� 'is the metabolic power, ie the energy expenditure per unit of time, ie the consumption of 
oxygen (V̇O2) per minute (L /min or mL/min). It can also be normalized for body weight 
(L/min/kg or mL/min/kg); 20.92 is the ventilatory equivalent of O2 (1 kcal = 4.185 kJ; 1 l of 
O2 = 5 kcal = 20.92 kJ), which has units of measure kJ/L; v is the speed (km/h, m/s). In the 
case of walking, it is the walking speed on a treadmill. 

The metabolic expense rate (Ė in W/kg) was calculated from the net values of V̇

O2 (the value of total energy expenditure minus basal V̇O2 (rest conditions)) assuming 

an energy equivalent of 20.9 kJ/LO2 (corresponding to a non-protein respiratory quo-

tient of 0.96). 

To obtain a comparison between the subjects, the EC was normalized for body 

weight so it was expressed in J/Kg*m. Then EC was calculated as: 
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𝑬𝑪 =
vV̇O2SS−	V̇O2BASx

𝒗
∗ 𝒌 ∗ 𝟏

𝑩𝑴
   [2] 

Where: V̇O2SS is O2 consumption calculated at steady state of each step. V̇O2BAS is O2 consumption 
calculated at rest, before starting of exercise. k is a conversion factor to express EC in J/Kg*m, and 
it correspond at (20.92*60)/1000 = 1.2552. BM is body mass 

 Statistical analysis 

Statistical analysis was performed using GraphPad Prism 7 software (GraphPad 

Software, USA). After verifying the type of data distribution, using the Kolmogorov-

Smirnov Test and the Shapiro-Wilk Test, a two-way ANOVA test was applied, con-

sidering as factor speed at same slope and treatment (Pre and Post BR, Pre and PL), 

for repeated measurements. 

Subsequently, in order to directly compare the effects of age, treatment and speed 

in a single test a 3-way-Anova 2x2x2 analysis was performed where these 3 parameters 

were considered, age (O, Y) treatment (Pre and Post BR, Pre and PL) and speed (3 

and 4 km/h – only speeds common to all slopes). Also in this situation Multiple com-

parison in the post-hoc analysis was performed using the Fisher Test LSD and, Statis-

tical significance was accepted for p<0.05. 

Finally, the minimum cost at each slope for each subject was calculated and a 2-

way-Anova analysis was performed for repeated measurements considering the treat-

ment factor (Pre and Post BR, Pre and PL) and the slope factor (-20%, -10%, 0, + 

10%, + 20%).   

After each ANOVA, post-hoc analysis with multiple comparison was performed 

using uncorrected Fisher’s LSD test and statistical significance was accepted for 

p<0.05. The results are expressed as mean ± standard deviation (Mean ± SD). On 

main relevant data significantly different Cohen’s d effect size was calculated. 

(Sawilowsky 2009) 
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25. Results – Nitrite and Nitrite concentrations 

The first results that are reported are those related to the plasma concentration of 

nitrates [NO3
-] and nitrites [NO2

-].  

 Old 

In elderly subjects supplementation with BR resulted in a significant increase (P 

<0.0001) in [NO3
-] compared to the concentrations found in the other conditions. 

Values of increasing are approximately 93.5% between Pre BR and Post BR (39.87 ± 

22.55 µM vs 615.06 ± 317.38 µM), 92.8% between Post BR and Pre PL (615.06 ± 

317.38 µM vs 44.03 ± 43.33 µM) and 86.5% between Post BR and PL (615.06 ± 317.38 

µM vs 82.94 ± 35.52µM).  As for [NO3
-] also [NO2

-] significantly increasing after BR 

compared to the other conditions. The increasing corresponds to 46.1% between Pre 

BR and Post BR (0.244 ± 0.01 µM vs 0.453 ± 0, 22 µM; p = 0.0003), 47% between 

Post BR and Pre PL (0.453 ± 0.22 µM vs 0.240 ± 0.21 µM, p = 0.0131) and 62.3% 

between Post BR and PL (0.453 ± 0.22 µM vs 0.171 ± 0.12 µM; p = 0.0017). 

 Young 

As for elderly subjects, supplementation with BR in young has also resulted in a 

significant increase in plasma levels of both [NO3
-] and [NO2

-] in comparison to con-

centrations without supplementation. 

In [NO3
-] the improvements given by supplementation were appoximately: 92.4% 

between Pre BR and Post BR (24.32 ± 15.34 µM vs 321.56 ± 246.73 µM), 91.3% 

between Post BR and Pre PL (321.56 ± 246.73 µM vs 27.85 ± 27.35 µM) and 85.1% 

between Post BR and PL (321.56 ± 246.73 µM vs 47.73 ± 18.69 µM). 

In [NO2
-], the increases were 44.4% between Pre BR and Post BR (0.301 ± 0.09 

µM vs 0.542 ± 0.24 µM, p = 0.0099), of 42, 9% between Post BR and Pre PL (0.542 

± 0.24 µM vs 0.309 ± 0.17 µM, p = 0.0131) and 52.7% between Post BR and PL 

(0.542 ± 0.24 µM vs 0.256 ± 0.19 µM; p = 0.0017). 

  Table 3,4: The table shows [NO3
-] and [NO2

-] in 
Old (up) and Young (down). * indicated differences 
from other condition, p<0.05. 
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26. Results – EC of walking 

Contrary to what has been hypothesized, only limited differences of the EC of 

walking emerged due to BR supplementation. Furthermore, there were no significant 

differences in speed induced by BR, so these results have not been reported here. Be-

low, however, the effect of the BR for each slope is analyzed. 

 Walking on flat 

The flat walking protocol provided for 5 speeds (2, 3, 4, 5, 6 km/h). Each speed 

was maintained for 4 minutes. These are the results for old and young. 

26.1.1 Old 

The effect of BR supplementation is evident on the EC (Avg last 30"), at speed 

of 2 km/h, with a statistically significant difference (p = 0.0195) between the condi-

tions of Pre BR and BR (3.54 ± 1.24 vs 3.01 ± 0.81 J/kg*m) equivalent to 0.53 J/kg*m 

(~ 15%). There are no significant effects dependent on the treatment on EC in the 

elderly at speeds of 3 km/h between the conditions of Pre BR  and BR (2.77 ± 0.62 

vs 2.41 ± 0.70 J/kg*m; p = 0.1166), 4 km/h between Pre BR and BR conditions (2.65 

± 0.60 vs 2.42 ± 0.64 J/kg*m; p = 0.2915), 5 km/h between Pre BR and BR conditions 

(2.85 ± 0.49 vs 2.65 ± 0.63 J/kg*m; p = 0.3856), 6 km/h between Pre BR and BR 

conditions (3.32 ± 0.53 vs 3.19 ± 0.61 J/kg*m; p = 0.5667) There are no significant 

differences in Placebo conditions. 

26.1.2 Young 

The effect of BR supplementation is evident on the EC (Avg last 30 "), at speed 

of 2 km/h, with a statistically significant difference (p = 0.0045 *) between the condi-

tions of Pre BR and BR (2.63 ± 0.95 vs 2.11 ± 0.51 J/kg*m, ES = 0.682) equivalent 

to 0.52 J/kg*m (~ 20%). same occurs on the values of the EC related to the speed of 

3 km/h between Pre BR and BR (2.36 ± 0.54 vs. 1.83 ± 0.25 J/kg*m; p = 0.0043, ES 

= 1.260) with a variation of 0.53 J/kg*m (~22.4%), at speed of 4 km/h between the 

conditions of Pre BR  and BR (2.35 ± 0.47 vs. 1.96 ± 0.25 J/kg*m; p = 0.0351, ES = 

1.036) with a variation of 0.39 J/kg*m (~16.4%), 5 km/h between Pre BR and BR 
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conditions (2.52 ± 0.47 vs. 2.12 ± 0.19 J/kg*m; p = 0.0291, ES = 1.116) with a varia-

tion of 0.40 J/kg*m (~15.8%), 6 km/h between the conditions of Pre BR  and BR ( 

2.93 ± 0.51 vs 2.53 ± 0.18 J/kg*m; p = 0.0268, ES = 1.046) with a variation of 0.41 

J/kg*m (~13. 9%). 

26.1.3 Old vs Young 

In the comparison between O and Y the EC trend was analyzed at speeds of 3 

and 4 km/h. From this analysis it emerges that in during flat walking a significant 

difference is seen between O and Y subjects following BR supplementation at speed 

of 3 km/h (1.83 ± 0.25 vs 2.41 ± 0.66 J/kg*m; p = 0.0126) with a variation of 0.59 

J/kg*m (~ 24.4%). There are no significant effects from the comparison between the 

elderly and the young at different conditions at the other speeds of the level walk given 

to the subjects. 

 

  

Table 1: EC of walking on flat in Young and Old. Significance legend (P <0.05): *difference 
to pre BR condition. # difference to Young 

Figure 1: EC of walking on flat in Young (left) and Old (right). Significance legend (P <0.05): 
*difference to pre BR condition. 
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 Downhill 

The protocol for downhill walking provided 3 speeds with a negative slope of 

10% (3, 4, 5 km/h) and 3 speeds with a negative gradient of 20% (3, 4, 5 km/h). Each 

speed was maintained for 4 minutes. These are the results for old and young. 

26.2.1 Old 

The effect of BR supplementation does not demonstrate significant treatment ef-

fects on EC in elderly at a 10% negative slope at a rate of 3 km/h between Pre BR and 

BR conditions (1.36 ± 0.42 vs 1.13 ± 0.53 J/kg*m; p = 0.1123), 4 km/h between Pre 

BR and BR conditions (1.35 ± 0.35 vs 1.12 ± 0.52 J/kg*m, p = 0.1154), 5 km/h be-

tween Pre BR and BR conditions (1.38 ± 0.37 vs 1.68 ± 0.72 J/kg*m, p = 0.3509). 

The same result was observed at a 20% negative slope at speed of 3 km/h between 

the Pre BR and BR conditions (1.90 ± 0.47 vs. 1.68 ± 0.72 J/kg*m; p = 0.2770), 4 

km/h between Pre BR and BR conditions (1.99 ± 0.47 vs. 1.88 ± 0.76 J/kg*m; p = 

0.5909), 5 km/h between Pre BR and BR conditions (2.15 ± 0.51 vs 2.21 ± 0.89 

J/kg*m; p = 0.7553). There are no significant differences in Placebo conditions. 

26.2.2 Young 

The effect of BR supplementation does not demonstrate significant treatment ef-

fects on EC in Y at a 10% negative slope at a rate of 3 km/h between Pre BR and BR 

conditions (1.22 ± 0.32 vs 1.00 ± 0.46 J/kg*m; p = 0.0894), 4 km/h between Pre BR 

and BR conditions (1.20 ± 0.32 vs 1.11 ± 0.35 J/kg*m; p = 0.4759), 5 km/h between 

the Pre BR and BR conditions (1.25 ± 0.36 vs 1.18 ± 0.37 J/kg*m, p = 0.5899). 

The same result was observed at a negative slope of 20% at speed of 3 km/h 

between the conditions of Pre BR and BR (2.18 ± 0.39 vs 1.97 ± 0.62 J/kg*m; p = 

0.2349), 4 km/h between Pre BR and BR conditions (1.93 ± 0.57 vs 1.91 ± 0.44 

J/kg*m; p = 0.8975), 5 km/h between Pre BR and BR conditions (2.21 ± 0.62 vs 2.02 

± 0.48 J/kg*m; p = 0.2814). There are no significant differences in Placebo conditions. 
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26.2.3 Young vs Old 

In the comparison between old and young there is no significant difference in 

descent at any speed or slope. There are no significant differences in Placebo condi-

tions. 

 

  

Table 2: EC of walking downhill 10% in Young and Old.  

Table 3: EC of walking downhill 20% in Young and Old.  
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 Uphill 

The protocol for the uphill walking provided 6 speeds with a positive gradient of 

10% (2, 3, 3.5, 4, 4.5, 5 km/h) and 6 speeds with a 20% positive slope (2, 2.5, 3, 3.5, 

4.5 km/h). Each speed was maintained for 4 minutes. These are the results for old and 

young. 

26.3.1 Old 

The effect of BR supplementation does not demonstrate significant treatment ef-

fects on EC in elderly at positive slope of 10%, at speed of 2 km/h between the con-

ditions of Pre BR and BR (6.38 ± 0.57 vs 5.91 ± 0.86 J/kg*m; p = 0.0683), 3 km/h 

between the Pre BR and BR conditions (5.90 ± 0.53 vs 5.65 ± 0.65 J/kg*m; p = 

0.3233), 3.5 km/h between Pre BR and BR conditions (5.96 ± 0.54 vs 5.66 ± 0.48 

J/kg*m, p = 0.2396), 4 km/h between Pre BR and BR conditions (5.98 ± 0.40 vs 5.66 

± 0.58 J/kg*m; p = 0.2098), 4.5 km/h between Pre BR and BR conditions (6.21 ± 

0.37 vs 5.81 ± 0.63 J/kg*m; p = 0.1181), 5 km/h between the Pre BR and BR condi-

tions (6.15 ± 0.50 vs 5.97 ± 0.54 J/kg*m, p = 0.4748). 

The effect of BR supplementation is evident at the 20% positive slope on the EC 

(Avg last 30 "), at speed of 2 km/h, with a statistically significant difference (p = 

0.0045) between conditions of Pre BR- and BR- (10.02 ± 1.36 vs 9.23 ± 1.17 J/kg*m; 

p = 0.0477). No statistically significant differences at speed 2.5 km/h between Pre BR 

and BR conditions (9.87 ± 1.41 vs 9.24 ± 1.19 J/kg*m; p = 0.1118), 3 km/h between 

Pre BR and BR conditions (9.73 ± 1.26 vs 9.35 ± 1.43 J/kg*m; p = 0.3412), 3.5 km/h 

between Pre BR and BR conditions (9.63 ± 1.04 vs 9.28 ± 1.22 J/kg*m; p = 0.3849) 

There are no significant differences in Placebo conditions. 

26.3.2 Young 

The effect of BR supplementation does not demonstrate significant treatment ef-

fects on EC in Y at 10% positive slope, at speed of 2 km/h between Pre BR and BR 

conditions (5.82 ± 1.48 vs 6.00 ± 1.04 J/kg*m; p = 0.3701), 3 km/h between Pre BR 

and BR conditions (5.55 ± 1.09 vs 5.61 ± 0.79 J/kg*m; p = 0.7785), 3.5 km/h between 

Pre BR and BR conditions (5.66 ± 0.96 vs 5.46 ± 0.42 J/kg*m, p = 0.3208), 4 km/h 

between Pre BR and BR conditions (5.48 ± 0.86 vs 5.47 ± 0.40 J/kg*m, p = 0.9613), 
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4.5 km/h between Pre BR and BR conditions (5.73 ± 0.90 vs 5.61 ± 0.50 J/kg*m; p 

= 0.5705), 5 km/h between the Pre BR and BR conditions (5.86 ± 0.84 vs 5.71 ± 0.49 

J/kg*m, p = 0.4554). 

The same result was observed at 20% positive slope at speed of 2 km/h between 

the Pre BR and BR conditions (9.52 ± 1.39 vs 9.17 ± 0.97 J/kg*m; p = 0.2176), 2.5 

km/h between Pre BR and BR conditions (9.41 ± 1.23 vs 8.99 ± 0.80 J/kg*m; p = 

0.1396), 3 km/h between Pre BR and BR conditions (9.33 ± 1.04 vs 9.26 ± 0.75 

J/kg*m; p = 0.8081), 3.5 km/h between Pre BR and BR conditions (9.28 ± 1.07 vs 

9.32 ± 0.76 J/kg*m; p = 0.8892), 4 km/h between Pre BR and BR conditions (9.38 ± 

1.07 vs 9.29 ± 0.73 J/kg*m; p = 0.7642), 4.5 km/h between Pre BR and BR conditions 

(9.45 ± 1.19 vs 9.43 ± 0.78 J/kg*m; p = 0.9601). 

26.3.3 Young vs Old 

In the comparison between Old and young there is no significant difference in 

descent at any speed or slope. 

 

 

 

 

  

Table 4: EC of walking uphill 10% in Young and Old.  

Table 5: EC of walking uphill 20% in Young and Old.  
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 EC and slopes 

The results of the energy cost according to the slope do not show particular treat-

ment effects on minimum EC for each slope. There is only a significant reduction in 

young people during flat (2.17 ± 0.54 vs 1.68 ± 0.33 J/kg*m; p = 0.0172) and in elderly 

at +20% (9.29 ± 0.94 vs. 8.85 ± 0.94 J/kg*m; p = 0.0499). Furthermore, there is no 

significant change in speed at minimum EC. 

 

 

 

 

 

 
  

Table 6: Minimal EC of walking at different slopes in Young and Old.  
Significance p<0.05 * different to Pre BR  

Figure 2: Minimal EC of walking at different slopes in Young and Old.  
Significance p<0.05 * different to Pre BR  
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27. Discussion 

The present study aims to investigate the effects of NO3
- supplementation on EC 

of walking by administering beetroot juice (~8.0 mmol of NO3
- in 0.25 L for 8 days) 

in elderly subjects (Old: 68 ± 4.6 years; n = 10) and young (Young: 25 ± 3.9 years; n 

= 10). EC variations were explored in 5 different slopes and, for each of them, the EC 

at increasing speed was observed and analyzed. The main results obtained can be sum-

marized as follows: 1) reduction of the rising EC in elderly at speed of 2 km/h to a 

positive gradient of 10%; 2) reduction of the EC on flat in young people for all the 

speeds considered. 

No one, until now, has measured the EC of walking on treadmill at various speeds. 

  Old 

Following nitrate supplementation, significant increases in plasma NO3
- and NO3

- 

concentrations occur, with values similar to those reported in previous studies (Larsen 

et al., 2007; Webb et al., 2008; Vanhatalo et al., 2010). The fact that the plasma levels 

of nitrite, closely related to the increase in the bioavailability of NO, are only slightly 

lower than those found in young people suggests that contrary to what is expected, 

age-related changes in oral bacterial colonization are not very strong (Kelly et al., 2013) 

27.1.1 Effects of BR supplementation 

One of the most relevant aspects emerging from the present study is the signifi-

cant reduction of O2 consumption in the uphill slope at a 20% positive slope following 

NO3
- supplementation in Old group. The response of this parameter is, in fact, influ-

enced by the treatment with nitrates, with a reduction at the speed of 2 km/h with a 

statistically significant difference of 7.9%. 

Kelly and colleagues, are the only ones who has studied the relationship between 

healthy elderly subjects, NO3
- supplementation and locomotion. In elderly subjects (64 

± 4 years), no variation in O2 consumption was found during walk at the same speed 

after supplementation of NO3
- (Kelly et al., 2013). 

No other studies were found to compare our results with, because most of them 

were performed on cycle ergometer, where it can measure efficiency rather than EC. 

One of these studies, on young subjects, measured efficiency at 5 different intensities 
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measured as percentage of to the V̇O2max (45, 60, 70, 80 and 85%), finding an improve-

ment (+10%, +3%, respectively) of the efficiency in the 4 lower intensities of exercise 

after supplementation of NO3
- and not PL (Larsen et al., 2007). The data of the present 

study therefore seem to have a direction contrary to those just underlined, highlighting 

a reduction in the EC in elderly in high-intensity exercise. 

The vascular effect of nitrates, as the role of NO as secondary messenger in the 

synthesis of GMPc starting from GTP, able to modulate the relaxation of arteriolar 

smooth muscle (Ferguson et al. 2015,Jones 2014), may not be highlighted due to the 

absence of important functional and structural impairment in the peripheral district 

and muscle perfusion. In fact, it should be considered that the characteristics of the 

subjects recruited in the O group are only partially representative of the belonging 

population as to the general state of good physical conditioning (V̇O2max = 36 ± 7 

ml/min/kg), for this reason the effect of supplementation may be reduced and not 

consistent with previous work (Kelly et al., 2013) 

 Young 

Supplementation of nitrates in young subjects leads to an effective increase in the 

plasma concentrations of nitrates and nitrites and with them the bioavailability of NO. 

27.2.1 Effects of BR supplementation 

One of the most relevant aspects that emerges from the present study is the sig-

nificant reduction of O2 consumption in flat march following NO3
- supplementation 

in the Young group. The response of this parameter is in fact influenced by the treat-

ment with nitrates, with a reduction at speed of 2 km/h of 19.9%. The same occurs 

on values at speed of 3 km/h with a variation of 22.4%, at speed of 4 km/h with a 

variation of 16.4%, at speed of 5 km/h with a variation of 15.8%, and at speed of 6 

km/h with a variation of (13.9%). 

Studies performed so far have shown a significantly reduced oxygen consumption 

in walking at a constant rate. After supplementation of NO3
- compared with placebo 

(PL) there is a significant decrease in the consumption of O2 (V̇O2) in the 4 km/h 

walking in young subjects (22 ± 4 years) (Lansley et al., 2011). This speed in young 

people could be considered 'self selected speed' and the present study shows that the 
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reduction of EC values, on flat, following treatment of NO3
- in young people, 22.4%, 

is obtained at the spontaneous speed of walk. 

The mechanisms underlying what is reported, in particular the reduction of V̇O2 

to steady state in moderate exercise, following the intake of nitrates, are currently un-

clear. However, the involvement of NO as a cellular signaling device in the modulation 

of a multiplicity of processes implicated in exercise physiology is amply established, in 

particular on the regulation of endothelium-dependent vasodilatation, mitochondrial 

respiration and aspects of muscular contractility (Stamler et al. al., 2001). 

The speed of the V̇O2 kinetics in high-intensity exercise, but not in moderate ex-

ercise (Breese et al., 2013), the scarcity of effects observed in the elderly (Kelly et al., 

2013) or in subjects with a V'O2max very high (Porcelli et al., 2015), which are charac-

terized by a greater presence of slow type I fibers to the detriment of fast type II (Pette 

and Staron 2000), have led to hypothesize that the NO3
- supplementation may have 

more effect on fast fibers than slow ones. 

Hernandez and colleagues, have shown an increase in strength following NO3
- 

supplementation in an isolated muscle (Fast Extensor of Fingers - ELD) with fast 

fibers, for stimulation frequencies up to 50 Hz (Hernandez et al., 2012). Similarly, a 

slow muscle (Soleus) muscle that has not undergone any change for each stimulation 

frequency after BR. Data of the present study would indicate a direction contrary to 

the one described above because the exercise intensity at which the main changes in 

EC in young population are highlighted involves a percentage of the V̇O2max which is 

positioned below the first aerobic threshold (30-40% vs 60-70% V̇O2max) or low inten-

sity exercise. A reduction in EC of walking could be related to the optimization of the 

P/O ratio of the type I fibers even if the effect of nitrates on the calcium channels of 

the sarcoplasmic reticulum cannot be excluded in terms of reduction of energy ex-

penditure linked to the management of intracellular ion transients. This consideration 

is supported by Larsen studies which showed a better efficiency in oxidative phos-

phorylation (P/O ratio), with a 19% improvement after NO3
- supplementation and an 

increase in ATP production of 23% (Larsen et al. 2011). 
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 Comparison with Minetti study 

Considering the variability of the EC of walking obtained at different speeds and, 

under different slope conditions, a comparison was made with the study by Minetti 

and colleagues (Minetti et al., 2002) which reports the equations to estimate the energy 

cost at the various slopes. 

Minetti in this work has found that there is an equation that relates EC of walking 

according to the slope. The equation is as follows: 

 

EC = 280.5i5 - 58.7i4 - 76.8i3 + 51.9i2 + 19.6i + 2.5  (R2 = 0.999) 

Where EC is the EC of walking and i is the inclination. 

Our results show that in relation to the prediction equation reported above, the 

elderly subjects of the present study show data overlap in the conditions of walking on 

flat and at the negative slope of 10%. In the walking on flat the young subjects taken 

into consideration by the present study show an EC that moves away from the value 

of the subjects studied by Minetti et al., as consequence of the reduction of the EC 

values of walking on flat after BR supplementation of the. However, on extreme 

slopes, (-20%, +10% and 20%) the trend of the EC of walking moves away from the 

specific EC curve of the subjects studied by Minetti (Minetti et al., 2002) This suggests 

that the athletes investigated by Minetti et al., specialized in mountain endurance races, 

developed a more economical condition during downhill greater than 10%; the same 

result is observed during uphill climb equal to and greater than 10%. Since the move-

ment of center of mass at extreme gradients, which could reduce the overall mechan-

ical work, can be changed little, a possible explanation reported by Minetti of the 

greater economy could be the decrease of the contractions necessary for the stabiliza-

tion during downhill. 
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Figure 3 - 4: Minimal EC of walking at different slopes in Young (up) Old (down)  in 
comparison with study of  Minetti and colleagues. It can be observed from the graphical point of 
view as to the most extreme gradients taken into consideration, ie -10%, + 10% and + 20% 
the EC course of the path moves away from the specific CE of the subjects analyzed in the study 
of Minetti et to the. (Minetti et al., 2002).  
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 Study limits 

From the presented study emerge a series of non-negligible aspects that can be 

considered as limits in particular to the size of the effect under examination and to the 

statistical power of the results.  

Firstly, the reduced number of the sample (Old: n = 10, Young: n = 10), in asso-

ciation with the inter-individual variability that characterizes each of the two sub-

groups, could prevent the achievement of statistical significance in the different com-

parisons between variables. In particular, elderly subjects, whose recruitment has not 

always proved to be easy, tend to be not very representative of the population they 

belong to because of their fitness level that is average higher than that normally ex-

pected (V̇O2max). 

They are physically active and pay attention to the health benefits of exercise and 

diet, and these aspects may have reduced the potential impact of NO3
- supplementa-

tion by masking the effects in particular in vascular level. Any training effects that may 

have been induced by the overall duration of the experimental design were excluded 

from the randomization of the treatment assignment.  
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28. Conclusion 

Supplementation of nitrates to which the subjects recruited in the present study 

have been subjected has indeed determined an elevation of the plasma concentrations 

of this ion and consequently the bioavailability of NO of which it is a precursor.  

This intervention, hypothesized able to influence the physiological responses to 

exercise, proved to be effective in reducing EC values of the flat walking at all speeds 

given (at speed of 2 km/h of 19.9% to 3 km/h of 22.4%, to 4 km/h of 16.4%, to 5 

km/h of 15.8%, and to 6 km/h of 13, 9%) in young. This reduction highlights the 

reduced values following NO3
- supplementation compared to the EC registered values 

of flat walking on the study of Minetti (Minetti et al. 2002). In the same group, the 

exercise at negative (-10%, -20%) and positive (+ 10%, + 20%) slopes does not seem 

to benefit from the treatment resulting in an absence of changes in the EC of walking. 

The results obtained suggest that the mechanisms involved in the modulation of the 

responses to the exercise in relation to the higher bioavailability of nitrates could be 

related to the optimization of the P/O ratio in type I fibers even if the effect of the 

nitrates on calcium channels of the sarcoplasmic reticulum, in terms of reduction of 

energy expenditure related to the management of intracellular ion transients, cannot 

be excluded. 

The elderly seems to show a relative effect of the nitrates in the uphill walk at a 

20% positive slope following the NO3
- supplementation of 7.9%. 

Data of present study seem to have a direction contrary to those reported on 

previous studies, performed, however, on cycle ergometer, highlighting a reduction of 

EC of walking in the elderly in high-intensity exercise. 

However, a vascular effect of the nitrates may not be evident due to the charac-

teristics of the subjects recruited in old group, which are only partially representative 

of the belonging population because of good physical conditioning (V̇O2max = 36 ± 7 

ml/min/kg); this is why the effect of supplementation can be reduced and not con-

sistent with previous work (Kelly et al. 2013).
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