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SOMMARIO 
 

L’ischemia/riperfusione (I/R) è una condizione clinica causata da una riduzione di 

perfusione ad un tessuto seguito dal ripristino del flusso sanguigno, che si verifica 

in corso di infarto del miocardio, complicanze vascolari, trapianto d’organo e 

danno renale acuto.  

Durante l’ischemia la riduzione di ossigeno e nutrienti causa l’alterazione del 

metabolismo e dell’omeostasi cellulare con attivazione del metabolismo anaerobio 

che porta ad una riduzione del pH, dell’ATP cellulare che inattiva le ATPasi, ad 

un sovraccarico di calcio e alla disfunzione mitocondriale che influisce 

ulteriormente sulla produzione di ATP. Inoltre l’ischemia attiva le principali 

pathway di morte cellulare: apoptosi, necrosi e autofagia. 

Sebbene la riperfusione sia necessaria per ristabilire l’apporto di ossigeno e 

nutrienti al tessuto, essa esacerba il danno provocando il rilascio di specie reattive 

dell’ossigeno (ROS), il sovraccarico di calcio, la disfunzione endoteliale e la 

risposta infiammatoria, promuovendo così lo sviluppo di danni anche in altri 

organi.  

Diversi studi hanno dimostrato che i macrofagi, grazie alla loro capacità di 

assumere un fenotipo pro-infiammatorio (M1) o pro-rigenerativo (M2) in risposta 

a differenti stimoli, svolgono un ruolo importante nel danno cellulare innescato 

dall’I/R infiltrandosi nel parenchima e promuovendo il danno tissutale. 

Tuttavia i meccanismi biologici alla base di questa condizione non sono ancora 

del tutto chiari. 

In questo processo l’eparanasi (HPSE), una endoglicosidasi che taglia le catene di 

eparan solfato regolando la biodisponibilità di fattori di crescita, lipoproteine, 

chemochine e citochine, sembra poter avere un ruolo importante.  

Per comprendere il coinvolgimento di questo enzima nel processo infiammatorio 

indotto dal danno da I/R abbiamo valutato la capacità dell’HPSE e del suo 

specifico inibitore, SST0001, di modulare la polarizzazione dei macrofagi e il 

crosstalk tra macrofagi e cellule epiteliali del tubulo prossimale renale (HK-2) in 

vitro in un modello di ipossia /riossigenazione (H/R). 



	 4	

Inoltre, abbiamo valutato l’infiammazione renale, la polarizzazione dei macrofagi, 

e le modificazioni istologiche in un modello in vivo di topi sottoposti a I/R 

monolaterale e trattati con SST0001, sacrificati 2 o 7 giorni dopo l’I/R. 

I risultati degli esperimenti in vitro hanno mostrato che l’HPSE sostiene la 

polarizzazione dei macrofagi verso il fenotipo M1 e la produzione di citochine 

proinfiammatorie da parte di questi. L’enzima promuove inoltre l’apoptosi, la 

sintesi e la produzione di damage associated molecular patterns (DAMP), la 

sintesi di citochine proinfiammatorie nelle cellule tubulari renali dopo H/R e 

l’iperespressione dei Toll-like receptors (TLRs) sia nelle cellule HK-2 che nei 

macrofagi. L’HPSE sembra promuovere anche la transizione epitelio-

mesenchimale delle cellule tubulari renali mediata dai macrofagi M1. L’inibizione 

dell’HPSE in vitro blocca tutti gli questi effetti. 

In vivo, l’inibizione dell’HPSE ha dimostrato di ridurre l’infiammazione e la 

polarizzazione dei macrofagi verso il fenotipo M1 dopo il danno da I/R, 

ristabilendo, almeno parzialmente, la funzione e la normale istologia renale e 

riducendo l’apoptosi. 

Questi risultati mostrano per la prima volta che l’HPSE è in grado di mediare la 

polarizzazione dei macrofagi così come il danno renale dopo l’I/R. 

In conclusione il nostro studio dimostra che l’HPSE è un elemento chiave 

coinvolto nei complessi processi biologici attivati dal danno da I/R, regolando las 

attivazione/polarizzazione dei macrofagi e il crosstalk tra queste cellule 

infiammatorie e l’epitelio tubulare renale. 

Inoltre, i risultati di questo studio suggeriscono che l’inibizione dell’HPSE, 

mitigando i danni morfologici e funzionali dovuti al danno da I/R, potrebbe 

rappresentare un nuovo strumento farmacologico nella medicina dei trapianti. 

Ulteriori studi e trial clinici sono necessari per confermare i nostri risultati.  
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ABSTRACT 
 

Ischemia/reperfusion (I/R) is a clinical condition characterized by a decrease of 

tissue perfusion and the subsequent restoration of blood flow. This event occurs in 

myocardial infarction, major vascular surgery complication, organ transplantation 

and acute kidney injury (AKI).  

During ischemia the reduction of oxygen and nutrients cause alteration of cell 

metabolism/energy and homeostasis with the activation of anaerobic metabolism 

leading to decreased pH, the depletion of cellular ATP which inactivates ATPases, 

calcium overload, and mitochondrial dysfunction that further impairs ATP 

production. Moreover, ischemia activates cell death programs: apoptosis, necrosis 

and autophagy-associated cell death. 

Even if reperfusion is necessary to re-establish oxygen and nutrients supply to the 

tissue, it exacerbates the injury with the release of reactive oxygen species (ROS), 

calcium overload, endothelial dysfunction and a pronounced inflammatory 

response promoting damages also in other organs. 

In this process Heparanase (HPSE), an endoglycosidase that cleaves heparan 

sulfate chains modulating extracellular matrix, seemed to have a pivotal role. 

Additionally, many studies have shown that macrophages, thanks to their ability 

to switch between M1 proinflammatory and M2 pro-regenerative phenotypes in 

response to different stimuli, are involved in the disrupted cellular network 

triggered by I/R, by infiltrating into renal parenchyma and causing tissue damage. 

However, although well described, the biological mechanisms underlining this 

process are still only partially understood. 

To better assess this object, we measured the capability of HPSE and its inhibitor, 

SST0001, to control macrophage polarization and the crosstalk between 

macrophages and HK-2 renal tubular cells during in vitro hypoxia/reoxygenation 

(H/R). Besides, we gauged in vivo renal inflammation, macrophage polarization, 

and histologic changes in mice subjected to monolateral I/R and treated with 

SST0001 for 2 or 7 days.  

The in vitro experiments displayed that HPSE sustained M1 macrophage 

polarization, enhancing their production of proinflammatory cytokines. 
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Furthermore, it modulated apoptosis, the synthesis/production of damage 

associated molecular patterns (DAMPs) and the synthesis of proinflammatory 

cytokines in post-H/R tubular cells, and the upregulation of TLRs on both 

epithelial cells and macrophages. HPSE also regulated M1 polarization induced 

by H/R-injured tubular cells and the partial epithelial–to-mesenchymal transition 

(EMT) of these epithelial cells by M1 macrophages. All these effects were 

disallowed by blocking HPSE. Additionally, the inhibition of HPSE in vivo 

reduced inflammation and M1 macrophage polarization in mice undergoing I/R 

injury, partially re-established renal function and normal histology, and decreased 

apoptosis. These results show for the first time that HPSE is able to mediate 

macrophage polarization as well as renal damage and repair after I/R. 

In conclusion, our study demonstrated that HPSE is a pivotal element involved in 

the complex renal biological machinery activated by I/R injury by regulating 

macrophages polarization/activation and the crosstalk between these immune-

inflammatory cells and the renal tubular epithelium. Furthermore, it underlined 

that the inhibition of this enzyme, mitigating functional and morphological 

damages following I/R injury, could represent a new pharmacological tool in 

organ transplant medicine. Additional studies and trials are necessary to confirm 

our results in clinical setting.  
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1. INTRODUCTION 
	

1.1. Ischemia/Reperfusion Injury 
 

Ischemia/reperfusion (I/R) is a clinical condition characterized by a decrease of 

tissue perfusion and the subsequent restoration of blood flow. This event occurs in 

myocardial infarction, major vascular surgery complication, organ transplantation 

and acute kidney injury (AKI).  

During ischemia the reduction of oxygen and nutrients cause alteration of cell 

metabolism/energy and homeostasis [1] with the activation of anaerobic 

metabolism leading to decreased pH, the depletion of cellular ATP which 

inactivates ATPases (e.g., Na+/K+ ATPase), calcium overload, and mitochondrial 

dysfunction that further impairs ATP production. Moreover ischemia activates 

cell death programs: apoptosis, necrosis and autophagy-associated cell death [2]. 

Even if reperfusion is necessary to re-establish oxygen and nutrients supply to the 

tissue, it exacerbates the injury with the release of reactive oxygen species (ROS), 

calcium overload, endothelial dysfunction and a pronounced inflammatory 

response [3] promoting damages also in distant organs [4] (Fig. 1). 

  

1.1.1. Mechanisms involved in I/R injury 

 

The mechanisms underlying I/R injury (I/R injury) are complex, multifactorial 

and highly integrated. They include the perturbation of calcium (Ca2+) 

homeostasis, production of ROS, the activation of apoptotic and autophagic 

pathways, and inflammation (Fig. 1).  

 

1.1.1.1. Calcium homeostasis 

During ischemia, the production of ATP by anaerobic glycolysis causes 

accumulating lactate, protons and NAD+ and consequent fall in intracellular pH. 

In order to re-establish normal pH, the cell extrudes H+ ions in exchange for Na+ 

via the plasmalemmal Na+/H+ exchanger [5-7]. The Na+ ions are, in turn, 
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exchanged for Ca2+ by the plasmalemmal Na+/Ca2+ exchanger. Increased 

intracellular Ca2+ activates several pathways contributing to cell death and organ 

dysfunction. 

 

1.1.1.2. Oxidative stress 

The reintroduction of molecular oxygen to the tissues exacerbates the ROS 

production that play an important role in tissue injury. The primary ROS produced 

in I/R, by the univalent reduction of a molecule of oxygen, is the superoxide anion 

radical (O2
-) made by cytosolic and membrane enzymes (xanthine oxidase, 

NADPH oxidase, cytochrome P450 oxidases, and uncoupled nitric oxide 

synthase), as well as via the electron transport chain in mitochondria. It is rapidly 

converted into hydrogen peroxide (H2O2) spontaneously, or by superoxide 

dismutase [8]. However, especially in low pH condition, O2
- can be converted into 

hydroperoxyl radical (HOO�), a potent oxidant. O2
- can react with nitric oxide 

(NO), forming peroxinitrite anion (ONOO-) which can be protonated to the highly 

cytotoxic peroxynitrous acid (ONOOH) or transformed in oxydril radical (�OH), 

that is an important modulator of cell signalling [4]. 

ROS induce tissue dysfunction by directly damaging cells via numerous 

mechanisms including peroxidation of cell membrane and organelle lipids, 

oxidation of DNA, activation of matrix metalloproteinases and calpains, 

producing osmotic cell lysis, and opening of the mitochondrial permeability 

transition pore [9]. ROS may also induce cell dysfunction and death by indirect 

mechanisms through the interaction with NO, fatty acids or free iron to form 

peroxynitrite, peroxyl radicals, and hydroxyl radicals, respectively, each of which 

are capable of producing even more cellular damage than superoxide or hydrogen 

peroxide.	 ROS enhance the inflammatory response during reperfusion via 

formation of oxidant-dependent proinflammatory mediators and upregulation of 

cytokines/chemokines and adhesion molecules expression [9]. 

 

1.1.1.3. Apoptosis and autophagy  

Ischemia and reperfusion activate several stimuli that lead to cell death through 

apoptosis, necrosis and autophagy. 
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Apoptosis is characterized by morphological features such as membrane blebbing, 

chromatin condensation, nuclear condensation and cell shrinkage without the 

activation of an inflammatory process. This form of cell death requires caspases 

(CASP) activation, as these enzymes can activate the endonucleases responsible 

for DNA degradation [10]. During I/R injury both intrinsic and extrinsic apoptotic 

pathways are activated.  

Ca2+ overload and oxidative stress cause the opening of mitochondrial 

permeability transition pore (MPTP) with consequent mitochondria depolarization 

and the release of cytochrome c and apoptosis-inducing factor (AIF) that activate, 

respectively, caspase-dependent and caspase-independent cell death programs [11, 

12]. 

Beyond direct effects on mitochondria, calcium may activate phospholipases and 

calpains, which in turn cause the processing and release of the mitochondrial 

protein AIF which translocates to the nucleus to mediate DNA fragmentation [13]. 

For the extrinsic pathway, the upregulation of Fas and Tumor necrosis factor-α 

(TNF-α) receptor and their ligands during I/R leads to the formation of death 

inducing signaling complex (DISC) activating CASP-8 which, in turn, cleaves 

and activates CASP-3.  

The extrinsic and intrinsic pathways lead to activation of CASP-3 that causes cell 

shrinkage and nuclear fragmentation within the apoptotic cell.  

Necrosis is a faster process with early membrane failure, cell swelling and the 

release of cellular debris, leading to tissue infiltration of inflammatory-cells with 

consequent cytokines release [14]. 

Autophagy is the tightly regulated intracellular catabolic process that serves as the 

cellular quality control mechanism for the removal of damaged and dysfunctional 

organelles and protein aggregates, that activate it [15]. Autophagy is both a 

survival and death mechanism: in stressful condition as like as I/R, autophagy 

helps cell survival by removing damaged organelles and intracellular pathogens, 

and generating amino acids and fatty acids. However, uncontrolled autophagy 

leads to cell death [4]. 
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Fig. 1: Major pathologic events contributing to I/R. Cells under ischemic condition undergo 

anaerobic metabolism which alters intracellular pH and Ca2+ homeostasis. The subsequent 

reperfusion leads to the production of a wide amount of ROS which promote DNA, proteins and 

lipids damages; as a consequence, inflammatory response is activated. These series of events 

promote cell death. From [4]. 

 

1.1.1.4. Inflammation  

Inflammation is one of the most important factors triggered by I/R.  

Following I/R inflammation occurs in absence of pathogens and is activated by 

danger signals from injured cells. It is characterized by the production of 

proinflammatory cytokines and chemokines, and is orchestrated by several cell 

types: neutrophils, dendritic cells, natural killer cells, platelets and macrophages. 

 

1.1.1.4.1. Neutrophils 

Neutrophils are the largest circulating fraction of leukocytes and the first to arrive 

at the site of injury [16].  

Neutrophils are recruited by signals provided by chemokines that are produced by 

tissue resident macrophages and endothelial cells [17]. Once neutrophils 
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transmigrate through the endothelium, they release the content of their granules 

containing proteases and release ROS through the ‘respiratory burst’. Moreover 

additional leukocytes are recruited through the production of cytokines and 

chemokines by neutrophils [18]. 

 

1.1.1.4.2. Dendritic cells 

Dendritic cells (DCs) originate from circulating mononuclear phagocytes that, 

once infiltrated into injured tissue, can differentiate into DCs or macrophages. 

They orchestrate the adaptive response representing a link between innate and 

adaptive immunity. In the context of organ transplantation, DCs derived from 

donor tissue have the capacity to activate pattern recognition receptors (PRRs) 

following I/R injury, however, they are also capable of modulating peripheral T-

cell tolerance playing a protective role [19, 20]. 

 

1.1.1.4.3. Natural killer cells  

Natural killer (NK) cells are lymphocytes capable of distinguish between “self” 

and “non-self” by the activation or the inhibition of cell surface receptors through 

the major histocompatibility complex 1 (MHC-I) [21]. In a renal model of I/R 

injury, NK cells seem to be recruited by the production of the chemokine CCR5 

released by tubular epithelial cells after Toll-like receptor (TLR)-2 activation; 

moreover they contribute to the injury stimulating the production of additional 

chemokines by tubular epithelial cells [22, 23]. It has been reported also that NK 

cells directly stress epithelial cells by inducing their apoptosis [18]. 

 

1.1.1.4.4. Platelets 

Several studies underlined the role of platelets on inflammatory response in I/R 

injury, in addition to their role on thrombogenesis. Upon tissue damage, activated 

platelets aggregate and adhere to the endothelium, to leukocytes and lymphocytes 

through P-selectin and integrin-mediated mechanisms, and it seems to mediate 

leucocytes transmigration [24, 25]. Furthermore, platelets release a number of 

pro-inflammatory factors such as Interleukin (IL)-1β, RANTES, H2O2 and 

proapoptotic molecules that directly enhance inflammation [4]. 
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 1.1.1.4.5. Macrophages 

Macrophages are a critical component of the phagocytic system involved in the 

inflammatory response. They can be resident in the tissues or can originate from 

circulating monocytes that, once infiltrate in the site of injury, differentiate into 

macrophages [26]. They exhibit a high degree of plasticity and in response to 

different local microenvironments, resting macrophages can polarized into 

different phenotypes, proinflammatory (M1) or anti-inflammatory (M2) with 

different role [27].  

M1 macrophages are induced by lipopolysaccharide (LPS) or interferon-γ (IFN-γ), 

they enhance the early inflammatory response producing pro-inflammatory 

mediators including IL-1β, IL-6, TNF-α, and MCP-1, and are characterized by the 

expression of inducible nitric oxide synthase (iNOS). 

M2 macrophages are induced by IL-4 and IL-10 [28] and play a role in the second 

phase of inflammation. They have an anti-inflammatory function and are involved 

in wound healing, tissue regeneration, but also fibrosis [29]. M2 macrophages are 

characterized by the expression of mannose receptor (MR) (in human) or Arginin 

1 (Arg1) (in mice), that represent the M2 markers [30].  

After I/R injury, macrophages exposed to inflammatory environment assume the 

M1 phenotype and produce, together with the other inflammatory cells, pro-

inflammatory cytokines. In a model of renal I/R the depletion of macrophages 

prior to I/R ameliorated the injury. In contrast, if macrophages were depleted even 

days after I/R injury tubular proliferation and repair resulted impaired, because of 

the depletion of M2 macrophages [31]. This suggests that M1 macrophages play 

an important pathological role in the early stage of injury, while in the late stage 

M2 macrophages promote tissue repair.  
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1.1.2. I/R injury in kidney 

	
In renal transplantation, the development of the I/R injury is often followed by 

important pathophysiological alterations that can lead to acute impairment and 

trigger pro-fibrotic pathways. The latter may be responsible of an early onset and 

development of the chronic allograft nephropathy (CAN) [32]. 

Particularly, I/R injury is implicated in a severe clinical complication of the first 

post-transplant stage namely delayed graft function (DGF) [32], characterized by 

a strong association with both acute rejection and decreased graft survival [33-36]. 

In the long term, patients with DGF are approximately 1.5 times more susceptible 

to graft loss at 5 years, and present an overall 10% lower graft survival rate 

compared to patients with early graft function [33, 37, 38].	 Because of the 

negative impact of DGF on both short and long-term graft outcome, great efforts 

have been made to identify factors associated with DGF, and to identify valuable 

easy clinical/biological algorithms to predict this condition [39-41], but, at the 

moment, no suitable biomarkers have successfully entered in routine clinical 

practice. 

As shown by the transcriptomic profile of pre-transplant biopsy, several donor 

(e.g., age, diabetes, hypertension) and graft characteristics together with length of 

cold ischemia time are involved in the biological machinery leading to DGF, but 

also recipients’ conditions may have a pivotal role [36]. 

Our group has recently demonstrated that an upregulation of some cellular 

elements (karyopherins) in immune cells of dialyzed chronic kidney disease 

(CKD) patients could predispose them to develop DGF in the post-transplant 

period [42, 43]. 

Additionally, the ischemic phase induces apoptosis and/or necrosis of tubular 

epithelial cells with a consequent release of danger-associated molecular patterns 

(DAMPs), such as hyaluronic acid, fibronectin (FN), heat shock proteins (HSP), 

and DNA which activate TLR-2 and -4, and the PRR [44]. All of them may 

activate cell death signalling pathways and intra-cellular proinflammatory 

networks [45]. 
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Mostly, when engaged, TLRs elicit the production of several proinflammatory 

cytokines, such as TNF-α, IL-1β, IL-6, CCL2, MIP-2, and chemokines further 

accompanied by neutrophil and macrophage infiltration [26, 27, 46, 47]. 

Additionally, I/R may activate the intra-parenchymal complement system that can 

exacerbate tissue damage [46]. 

Moreover, the abovementioned biological machinery may determine a pro-

fibrogenic tissue response. This is characterize by four major phases: 1) primary 

injury of the organ; 2) persistent parenchymal cells injury that stimulate the 

activation of effector cells into fibrogenic myofibroblast; 3) extra cellular matrix 

(ECM) is elaborated from myofibroblasts which produce α-smooth muscle actin 

(α-SMA) and secrete a high amount of collagen, FN and laminin; 4) the large 

deposition of ECM together with its insufficient degradation are responsible for 

the progression to fibrosis up to organ deformation and failure [48, 49]. 

Myofibroblasts sources include resident fibroblast, fibrocytes, pericytes and also 

epithelial cells undergoing epithelial to mesenchymal transition (EMT) [50]. 

During EMT epithelial cells are characterized by the gradual loss of epithelial 

proteins E-cadherin, zonula occludens-1 (ZO-1), cytokeratin and the acquisition 

of mesenchymal markers as like as α-SMA, FN, vimentin (VIM) and fibroblast 

specific protein-1 (FSP-1) (Fig. 2) [51]. 
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Fig. 2: Renal ischemia-reperfusion injury. Ischemia-reperfusion injury causes the generation 

and the release of DAMPs from renal injured cells, which promote inflammatory cells recruitment 

and release of proinflammatory cytokines and chemokines and enhances the production of ROS, 

intensifying the immune response and further amplifying the level of tubular necrosis and 

apoptosis. Activated endothelium, monocytes and injured tubular epithelium have all been shown 

to secrete pro-fibrogenic factors which in turn activate local fibroblasts and lead tubular cells to 

EMT, inducing collagen deposition and tissue repair. Modified from [46]  
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1.1.3. Inflammation in renal I/R injury  

	
Both innate and adaptive immune responses are important contributors to the 

pathology of renal I/R injury. The innate component is responsible for the early 

response to injury and comprises neutrophils, monocytes/macrophages, DCs, NK 

cells. Neutrophils attach to the activated endothelium and accumulate in the 

kidney particularly in the peritubular capillary network of the outer medulla, as 

early as 30 minutes after reperfusion. They produce proteases, myeloperoxidase, 

ROS, and cytokines, which leads to increased vascular permeability and reduced 

tubular epithelial and endothelial cell integrity [52], aggravating renal injury [53]. 

Endothelial cells increase the expression of chemokine fractalkine (CX3CL1) that 

interacts with the receptor CX3CR1 on macrophages membrane, favouring their 

migration into interstitial tissues [54].  

Macrophages enhance the inflammatory cascade by producing proinflammatory 

cytokines and have an important role in I/R injury.  

Activation of TLRs by damaged renal tubular epithelial cells and IFN-γ secreted 

by NK cells promotes full activation of M1 macrophages [55], that predominate 

during the early injury phase, when tubular apoptosis is prominent. 

Conversely, during the tubular repair phase, when tubular cells are proliferating 

and repopulating the denuded basement membrane, renal macrophages express 

markers of M2 phenotype. It has been demonstrated that proximal tubular 

epithelial cells promote this process through the production of GM-CSF [27]. 

Interestingly in a study with I/R injury for 8 weeks, Ko and his colleagues showed 

that macrophage depletion attenuates inflammation and tubulointerstitial fibrosis 

with a decrease in the expression of inflammatory and profibrotic cytokines [56], 

suggesting that macrophages are involved in both the early inflammation and later 

fibrogenesis.  

If the inflammatory process becomes deregulated because of the persistence of 

M1 macrophages, AKI can get on CKD and can promote the development of 

fibrosis (Fig. 3). 	
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Fig. 3: Macrophages polarization during injury and repair. During renal inflammation, 

circulating monocytes are recruited into the kidney because of the release of cytokines and 

chemokines by neutrophils and kidney resident cells. They differentiate into macrophages and 

polarize to distinct phenotypes under the influence of local microenvironments. Th1 

proinflammatory cytokines (such as IFN-γ and TNF-α) induce M1 macrophages, while Th2 anti-

inflammatory cytokines (such as IL-4, IL-13, and IL-10) promote M2 polarization. Moreover, the 

uptake of apoptotic cells and the production of Th2 cytokines can cause the switch from M1 to M2 

phenotype. M1 macrophages produce an abundance of proinflammatory cytokines (IL-1, IL-6, and 

TNF-α), iNOS, and ROS, promoting renal injury, while M2 macrophages synthesize anti-

inflammatory cytokines (IL-10 and TGF-β) and trophic factors. However, unresolved 

inflammation and uncontrolled wound healing processes can trigger the process of renal fibrosis 

by enhancing activation and differentiation of macrophages. From [57]. 
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1.2. Heparanase 

 
Heparanase (HPSE) is the only known mammalian endo-β-D-glucuronidase 

capable of cleaving (HS) side chains of Heparan Sulfate Proteoglycans (HSPGs) 

[58]. It belongs to the clan A glycosyl hydrolase family [59]. This enzyme 

participates in the remodelling of ECM and regulates the bioavailability of several 

molecules such as growth factors, lipoproteins, chemokines and cytokines that are 

released following HS degradation. 

HS is a polysaccharide presents in the ECM and in cellular surface in the form of 

proteoglycan. It binds several molecular factors, regulating a lot of biological 

activities such as angiogenesis, fibrosis and tumour metastasis. 

In detail HPSE cleaves HS chains catalyzing the hydrolysis of the β-glycosidic 

bond at specific intrachain sides yielding 5-7 kDa fragments [60, 61]. HPSE acts 

also on heparin, generating fragments of 5-20 kDa [62]. 

 
1.2.1 Heparanase expression, biogenesis and structure 

	
HPSE primary structure is highly conserved in different species like mammals, 

chicken and zebrafish. Human HPSE is encoded by a single copy of HPSE gene, 

located on chromosome 4q22, which encodes the 1a and 1b spliced mRNA 

isoforms [63].  

In normal cells and tissues the HPSE promoter is silenced by methylation and p53 

antigen except for placenta, activated immune cells and keratinocytes where 

HPSE is constitutively active [64]. In other cell types and tissues the expression of 

HPSE can be induced by different mediators through the activation of NF-kB 

transcription factor [65].  

HPSE is produced as a 543 amino acids pre-pro-enzyme. Upon translocation into 

the endoplasmatic reticulum, the N-terminal signal peptide (Met1-Ala35) is 

removed and the latent 65 kDa pro-HPSE is generated. The pro-enzyme is 

transferred to the Golgi apparatus, encapsulated in vesicles and secreted [60]. It 

interacts with different extracellular components among which HS and HSPGs 

such as syndecan-1 (SDC-1). Once formed, HPSE-syndecan complex is rapidly 
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internalized into lysosomes and endosomes, leading to its processing and 

activation mediated by cathepsin L at perinuclear localization [66, 67]. Then 

HPSE can be carried on the cellular surface or released into the ECM where it 

exerts its activity of cleaving HS (Fig. 4). 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4: HPSE processing, localization, enzymatic and non-enzymatic activities. HPSE is 

synthesized in the endoplasmic reticulum as a latent precursor. After moving to the Golgi 

apparatus, pro-HPSE is secreted outside the cell (1). HPSE is then uptaken [by syndecans, 

mannose-6-phosphate-receptor and low-density lipoprotein receptor (LDLR)-related protein] (2), 

and delivered to lysosome where it is proteolytically processed by cathepsin-L and converted to 

the active enzyme (3). The interaction of latent HPSE with HPSE-binding proteins activates 

various intracellular signaling pathways implicated in angiogenesis, cell adhesion and migration 

(4). Extracellular HSPGs degradation encourages cell migration, thus enhancing tumor cell 

invasiveness and metastasis (5). Angiogenesis, EMT and inflammatory response are indirectly 

regulated by HPSE via HS-linked growth factors that are released after HS cleavage (6). Nuclear 

HPSE translocation is implicated in cell differentiation, inflammation and glucose metabolism 

through gene transcription regulation mechanisms (7). From [49]. 

 

Activated HPSE is a noncovalent heterodimer composed of the N-terminal 8 kDa 

(Gln36-Glu109) chain and the C-terminal 50 kDa (Lys158-Ile543) chain [68]. The 

proposed 3D structure, confirmed by the crystallography analysis, is a (β/α) 8-TIM 

barrel fold. The first three alternated β-strands/α-helices belong to the 8 kDa chain, 

the other five are provided by the 50 kDa chain [69, 70]. The 50 kDa chain folds 
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also into a carboxy-terminal β-sandwich domain, essential for protein secretion, 

enzymatic and non-enzymatic activity (Fig. 5) [71]. 

The proteolytic activation of HPSE displays a ≈ 10Å cleft containing the HS-

binding site, more precisely a catalytic nucleophile and proton donor site 

consisting of Glu343 and Glu225 residues [59, 69]. Besides, Levy-Adam et al. 

identified two other residues, Lys158 and Lys159, close to the active site, that are 

very important for heparanase-heparin/HS interaction and as a consequence for 

HPSE inhibition strategies [72]. 

 

 

 

 

 

 

 

 
 

 

 

 

 

	
Fig. 5: Crystal structure of heparanase. Heparanase is composed of a TIM-barrel fold which 

contains the active site of the enzyme and a C-terminus domain required for secretion and 

signaling function of the protein. Heparanase has a catalytic mechanism which includes a putative 

proton donor at Glu225 and a nucleophile at Glu343 (red) as well as the heparin/heparan sulfate 

binding domains (HBD1 = Lys158-Asp171& HBD2 = Gln270-Lys280; yellow and brown, respectively) 

that are located in close proximity to the active site micro-pocket fold. The C-domain is comprised 

of 8 β-strands arranged in two sheets, as well as a flexible, unstructured loop that lies in-between 

(blue). Notably, the 8 kDa subunit (grey) enfolds the 50 kDa subunit (green), contributing β/α/β 

unit to the TIM-barrel fold and, moreover, one of the 8 β strands that comprise the C-domain. 

From [73]. 
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1.2.2. Heparanase activity 

	
HPSE catalyses the cleavage of HS chains present in pericellular space (perlcan) 

and cell surface (glypican). More precisely, HPSE recognizes a specific site on 

HS, a tetrasaccharide that forms a HPSE binding cleft. The enzyme binds to this 

cleft and cleaves the glycosidic bond between glucuronic acid (GlcA) and N-

sulfated/6-O-sulfated glucosamine or N-acetylated/6-O-sulfated glucosamine  [69, 

74] (Fig. 6).  

 

 

 

 
 

 

Fig. 6. The structure of HS and the reactions catalyzed by heparanase. Modified from [75]. 

	
By its enzymatic activity HPSE participates at the turnover of HSPGs on cell 

surface and matrix, promotes the remodelling of ECM and basal membrane, and 

the release of HS-linked growth factors, chemokines and cytokines into the local 

environment. In this way HPSE favours cells migration and proliferation, but also 

neovascularization and inflammation [60].  

 

1.2.2.1. Strategies for heparanase inhibition 

In the last two decades several classes of HPSE inhibitors have been developed 

ranging from monoclonal antibodies, nucleic acid, small-molecules to 

polysulfated saccharides-molecule inhibitors.  

Antibodies against HPSE are an efficient strategy to inhibit its activity; recently 

two monoclonal antibodies were described: one against the KKDC peptide and 

the other against the full-length HPSE protein. They resulted able to neutralize 

extracellular HPSE and to decrease its intracellular content [76]. The combined 

application of the two antibodies seems to limit tumour growth, favouring the 

development of novel antibodies or combination with small-molecules inhibitors. 
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Small-molecules inhibitors are characterized by high variability in molecular 

weight; relevant functional group and physiochemical properties supporting the 

idea that HPSE could be inhibited by several mechanisms and several compounds 

with different structures [60].  

Another approach, developed for basic research but not yet tested in clinical trial, 

is based on the inhibition of HPSE gene expression by antisense oligonucleotide, 

aptamers, siRNAs, shRNAs and miRNAs. This strategy results to prevent 

different cancer cell lines proliferation and invasiveness and to reduce tumour 

growth and angiogenesis in in vivo models [77-79].  

In the last few years vaccination against HPSE was also investigated, not only as 

therapeutic but also as preventive strategy. Immunized serum showed to decrease 

invasiveness of melanoma cell line and profilactic vaccination significantly 

reduced tumour growth and metastasis in treated mice [80].  

However, the only HPSE inhibitor compounds reaching the phase of clinical trial 

belong to the class of polysaccharides. The development of these compounds is 

based on the capacity of heparin to inhibit HPSE activity due to competition with 

HS for binding to the enzyme. Heparin contains some saccharide sequences 

recognized and cleaved by HPSE, and therefore it acts as a substrate for this 

enzyme. However, its peculiar anticoagulant activity hampered its 

pharmacological activity [60].  

This has led to apply and evaluate heparin modifications, looking for new 

compounds. Improved inhibitory functions were attributed at the glycol-split 

heparins because of their higher conformational freedom conferred by the split 

portions, which favour the accommodation of polysaccharide chain within the 

HPSE binding site [81]. Currently, four HPSE-inhibitors are being trailed: PI-88, 

PG545, SST0001 and M402 (Fig. 7).  

PG545 is a fully sulphated HS mimetic, able to inhibit HPSE enzymatic function 

on HS chain. It is in Phase I clinical trial against solid tumours [82, 83].  

SST0001-ronepartat is a semisynthetic heparin-like polymer transformed into a 

15-25 kDa glycol-split N-acetyl heparin. With reduced anticoagulant properties 

and a powerful anti-HPSE activity [81]. It is in Phase I study with dexamethasone 

in patients with advance multiple myeloma.  
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M402-necuparanid is another glycol-split HS mimetic with low molecular weight 

(5-8 kDa). It is currently under Phase II trial investigation in patients with 

pancreatic cancer [60]. 

 

 
Fig. 7. HPSE inhibitors in clinical trials. From [60]. 

	
1.2.3. Heparanase in physiological and pathological condition 

	
In physiological condition HPSE is expressed in few tissues like placenta and 

keratinocytes, and it seems to be involved in embryotic implantation and 

development, wound repair, HS turnover, tissue remodelling, immune 

surveillance and hair growth [84]. In non-cancer cells the expression of HPSE is 

constitutively inhibited through epigenetic mechanism and through the activity of 

p53.  

In pathological condition (cancer, inflammation, I/R injury and fibrosis) HPSE is 

upregulated by several factors such as mutated variance of p53, hypoxia, 

inflammatory cytokines and ROS, hyperglycemia, albuminuria and estrogens [85]. 
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1.2.3.2. Heparanase and inflammation 

HPSE is involved in the inflammatory response controlling the release of 

proinflammatory cytokines (IL-2, IL-8, bFGF, TGF-β), modulating the interaction 

between leucocytes and vascular endothelium, and favouring leucocytes 

recruitment, rolling process and extravasation. This leads to the establishment of 

the innate immune response by the activation of TLRs and NF-kB [60, 86-90]. 

Moreover, HPSE results to promote monocytes to macrophages activation and to 

favour the establishment of chronic inflammation [91].  

Interestingly, the stimulation of TLRs is among the leading candidate pathways 

for HPSE-dependent macrophage activation for two main reasons: i) intact 

extracellular HS inhibits TLR-4 signaling and macrophages activation and so its 

removal relieves the inhibition; ii) soluble HS released upon HPSE activation can 

stimulate TLR-4 [92].  

As a consequence, HPSE has an essential role in inflammation [93, 94].  

 

1.2.3.3. Heparanase and kidney I/R injury  

As demonstrated by our research group, HPSE has a pivotal role in EMT of renal 

proximal tubular epithelial cells induced by I/R injury [95].  

HPSE is crucial to the induction of EMT by FGF-2 and regulates TGF-β-related 

EMT [96] as well as its production in renal proximal tubular epithelial cells [97, 

98]. In fact, diabetic HPSE-ko mice, contrarily to the wild-type (WT), did not 

show TGF-β increment in renal tissue and did not develop proteinuria, mesangial 

matrix expansion or tubulo-interstitial fibrosis [99]. 

Moreover, our research group has recently demonstrated that renal epithelial 

tubular cells (HK-2) underwent to hypoxia/reoxygenation upregulated HPSE and 

this enzyme mediated the activation of EMT transcriptional program. This 

mechanism was inhibited in HPSE-silenced HK-2 and WT cells treated with 

SST0001 [95]. We confirmed these data in mice overexpressing HPSE (HPA-tg) 

undergoing I/R injury. They showed more severe renal dysfunction compared to 

their WT littermates. In particular HPA-tg mice exhibited more tubular dilatation, 

cell detachment from basement membrane, cast formation and loss of brush 
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border. In addition, HPA-tg mice displayed higher levels of serum creatinine 

following renal I/R as compared with WT mice subjected to the same procedure. 

Similar results were obtained in a mouse model of AKI. HPA-tg mice display 

HPSE upregulation along with proinflammatory and pro-fibrotic factors 

overexpression; a pre-treatment with the HPSE inhibitor PG545 abolished the 

EMT transcriptional program and cytokines overexpression and improved renal 

function [100].  

HPSE overexpression results also associated with increased macrophages 

infiltration [95]. Celie et al. showed that, within 24 hours after renal I/R injury, 

HSPGs in the peri-tubular capillaries were induced to bind L-selectin and MCP-1, 

facilitating monocytes extravasation [101]. HPSE overexpression, degrading HS 

and releasing chemokines anchored within ECM and cell surface, sustained 

continuous activation of kidney damaging macrophages [92].  

All these findings indicate that HPSE has a pivotal role in the pathogenesis of 

renal I/R injury. 
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2. AIM OF THE STUDY 
	
In this study we investigated the role of HPSE in the recruitment, activation and 

function of macrophages during I/R injury in vitro and in C57BL/6J mice 

subjected to monolateral I/R injury by vascular clamping. 

It is already known that renal epithelial tubular cells can produce a high amount of 

HPSE after I/R injury contributing to the onset and development of partial EMT. 

Additionally, HPSE resulted to be involved in the activation of the parenchymal 

immune inflammatory state modulating monocytes recruitment and activation into 

macrophages [90-92, 95].  

Although macrophages are involved in this mechanism, the complete biological 

machinery is only partially investigated. 

To this purpose we decided to explore: I) the contribution of HPSE on 

macrophages polarization; II) the effects of HPSE on apoptosis and production of 

cytokines and DAMPS by I/R injured renal epithelial tubular cells; III) the 

crosstalk between macrophages and injured renal cells.  
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3. MATERIAL AND METHODS 

 

3.1. In Vitro study 
 

3.1.1. Cell culture and treatments 

	
The following cell lines were employed in the study: 

Wild type human renal proximal tubular cells (HK-2) (ATCC® CRL-2190™);  

HPSE- silenced HK-2 cells; 

Human monocytes (U937).  

 

3.1.1.1. HK-2 cells transfection with HPSE shRNA plasmid 

A stable HPSE-silenced HK-2 cell line was obtained by transfection with shRNA 

plasmid targeting human HPSE (NM_006665) purchased from OriGene 

(Rockville, MD, USA). Four different shRNAs have been used and shRNA pRS 

non-effective GFP plasmid (TR30003) was used as negative control.  

HK-2 cells were seeded in 6-well plates at a density of 1.5x105 cells per well. 

When cells reached 70-80% of confluence the medium was replaced with 2 ml of 

fresh complete growth medium. The transfection mixture was prepared diluting 4 

µg of shRNA in 250 µl of M199 medium and 10 µl Lipofectamine™ 2000 

(Invitrogen) in 250 µl of M199 medium. After 5 minutes incubation at room 

temperature the two solutions were combined and incubated for 20 minutes at 

room temperature. The final transfection mixture was added to each well and 

mixed gently by rocking the plate back and forth. After 6 hours medium was 

replaced. Forty-height hours after transfection cells underwent several weeks of 

selection with 0.75 µg/ml of puromycin (Sigma). 

 

3.1.1.2. HK-2 cells cultures and treatments 

HK-2 WT cells were maintained in DMEM-F12 medium with 17.5 mM glucose 

(EuroClone), supplemented with 10% FBS (Biochrom AG), 2 mM L-glutamine, 

100 U/ml penicillin and 100 µg/ml streptomycin. HPSE-silenced HK-2 cells were 

grown in the same medium of WT cells supplemented with 0.75 µg/ml puromycin. 
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All cells were grown to sub-confluence and starved for 24 hours in serum-free 

medium. Then they were seeded in six-well plates and underwent to 24 h hypoxic 

conditions by the influx of 95% Nitrogen and 5% CO2 in a hypoxia incubator 

chamber (STEMCELL) and an indicator test (Sigma Aldrich). The cells were then 

maintained under normoxic conditions for a reoxygenation phase of 6 hours (gene 

expression analysis) or 24 hours (protein expression analysis and vitality assay). 

The cells tested after a complete cycle of hypoxia/reoxygenation are indicated as 

H/R cells.  

Control cells were grown under normoxic conditions for the same time periods. 

WT HK-2 cells were also treated with or without 200 µg/ml SST0001.  

To evaluate the effect of the conditioned medium from M1 or M2 macrophages, 

WT and HPSE-silenced cells in normoxic condition or after I/R were treated with 

the conditioned medium of U937 cells polarized to M1 or M2 macrophages 

(3.1.1.3.). 

 

3.1.1.3. U937 cells 

U937 is a human hematopoietic cell line with the properties of immature 

monocytes. They can be activated by phorbol 12-mystrate 13-acetate (PMA) and 

polarized to the M1 or M2 phenotype.  

 

3.1.1.3.1. U937 cultures and treatments 

U937 cells were cultured in RPMI-1640 medium supplemented with 10% FBS, 

100  U/ml penicillin and 100 µg/ml streptomycin. The cells were seeded at a 

density of 5 × 105 cells/well into six-well plates with RPMI-1640 containing 5% 

FBS and activated with 100  ng/ml PMA (Sigma) for 48 hours. To induce 

polarization, cells were incubated with LPS (100 ng/ml) (Santa Cruz) or IL-4 (20 

ng/ml) (Preprotec) for 2 hours and then medium was replaced with fresh one for 

24 hours. U937 cells were also treated with or without 200 µg/ml SST0001, 1 

µg/ml human recombinant heparanase or with the conditioned medium of WT or 

HPSE-silenced HK-2 cells with or without exposure to H/R. 
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3.1.2. Biomolecular analysis 

	
3.1.2.1. Cell viability assay 

HK-2 cells were plated at a density of 3×103 cells/100 µl per well in 96-well 

plates. The viability of the cells was observed in normoxia (CTR), after 24 hours 

of hypoxia (H) and after 24 hours of reoxygenation (H/R). Cell viability was 

determined using a colorimetric method: the CellTiter 96 Aqueous One Solution 

Cell Proliferation Assay (Promega). Twenty µl of CellTiter 96 Aqueous One 

Solution Reagent were pipetted into each well, plates were incubated for 1 hour at 

37°C and the absorbance were then measured with Microplate Reader Infinite 

M200PRO (Tecan), OD 490 nm. The experiment was performed twice with six 

replicates. 

 

3.1.2.2. Analysis of apoptosis by flow-cytometry 

The percentage of apoptotic cells was determined under normoxia and H/R 

conditions in WT and HPSE-silenced cell populations in the presence or absence 

of SST0001 using the Annexin V-FITC apoptosis detection kit (Immunostep). At 

the end of the treatments cells were washed twice with PBS and resuspended in 

1X Annexin-binding buffer, 10,000 cells/100 µl. Five µl of Annexin V-FITC and 

5 µl of propidium iodide (PI) were added at each cells suspension. Cells were 

incubated at room temperature in the dark for 15 minutes. Then, 400 µl 1X 

Annexin-binding buffer were added to the samples that were analysed using BD 

FACSCanto II flow cytometer (BD Biosciences). Results were expressed as the 

percentage of early apoptotic cells (annexin V+/PI–) relative to all cells. The 

experiment was performed twice in triplicate. 

 

3.1.2.3. Gene expression analysis  

Total RNA was extracted from cells using Trizol reagent (Invitrogen). Gene 

expression was analysed by Real Time PCR. 
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3.1.2.3.1. RNA extraction 

Cells were washed with PBS and 300 µl of Trizol were added, then cells were 

scraped and Trizol suspension was collected. After 10 seconds of vortex and 10 

minutes of incubation at room temperature 60 µl of chloroform were added at the 

homogenized samples that were vortexed again, incubated 10 minutes at room 

temperature and then centrifuged at 12,000×g for 15 minutes at 4°C to separate 

RNA, DNA and proteins. Aqueous phase containing RNA was transferred in a 

new tube and 150 µl of isopropanol were added. The solution was vortexed and 

incubated 10 minutes at room temperature followed by centrifugation at 12,000×g 

for 10 minutes at 4°C to precipitate RNA. The pellet was washed twice with 800 

µl 75% ethanol and resuspended in 10 µl of RNAse-free water. RNA was 

quantified with Nanodrop measuring absorbance at 260 nm and 280 nm. RNA 

samples were stored at -80°C. 

 

3.1.2.3.2. RNA reverse transcription 

Five hundreds ng of total RNA from each sample were reverse-transcribed into 

cDNA using SuperScript II Reverse Transcriptase (Invitrogen). For a 10 µl 

reaction volume, in a tube 500 ng of RNA was mixed with 0.5 µl of Random 

hexamer primer mix (500 µg/ml) (Bioline), 0.5 µl of Deoxynucleotide mix (10 

mM) (Sigma) and sterile water up to 6 µl. Mixture was incubated at 65°C for 5 

minutes and quick chilled on ice. Content was collected by centrifugation and the 

following components have been added: 2 µl of 5X First Strand Buffer, 1 µl of 0.1 

M DTT, 0.5 µl of SuperScript II RT and 0.5 µl of sterile water. Mixture was 

incubated at 25°C for 10 minutes, then at 42°C for 50 minutes and at last 70°C for 

15 minutes. cDNA was diluted in RNAse-free water up to 4 ng/µl and stored at -

20°C.  

 

3.1.2.3.3. Real-time PCR 

Real-time PCR was performed on an ABI-Prism 7500 using Power SYBR Green 

Master Mix 2X (Applied Biosystems) and MicroAmp Optical 384-well reaction 

plate (Applied Biosystem). In a final volume of 10 µl we used 5 µl of SYBR 

Green Master Mix, 0.4 µl of forward and reverse primers (5 µM), 2 µl cDNA (4 



	 37	

ng/µl), 2.2 µl of RNAse-free water. Reaction was performed in duplicate with the 

following real-time PCR parameter: 

 
The comparative Ct method (ΔΔCt) was used to quantify gene expression and the 

relative quantification was calculated as 2-ΔΔCt. Data were normalized to GAPDH 

expression. Primer sequences are listed in Table 1. 

 

3.1.2.4. Western blotting 

Cells were lysed in RIPA buffer (3.30% NaCl 5 M, 2% TRIS 2.5 M, 5% Sodium 

Deoxycholate 10%, 1% SDS 10%, 1% Triton, pH 8) with Complete Protease 

Inhibitor Mixture (Sigma-Aldrich). Proteins were quantified with Pierce™ BCA 

Protein Assay Kit (Thermo Scientific). Briefly, equal amounts of proteins were 

resolved by 10% SDS-PAGE and electro-transferred to 0.45 µm nitrocellulose 

membranes (Amersham™ Protran™ Premium 0.45 µm NC). Membranes were 

placed 2 hours in blocking buffer (TBS-Tween 3% BSA) at room temperature in 

agitation and then were incubated with primary antibodies diluted in TBS-Tween 

0.5% BSA overnight at 4°C. After 3 washing with TBS-Tween, membranes were 

incubated with a secondary peroxidase-conjugated antibody for 1 hour at room 

temperature. The signal was detected with SuperSignals West Pico 

Chemiluminescent substrate solution (Pierce) using Alliance UVitec Mini HD9 

Cambrige (Eppendorf). The antibodies are listed in Table 2.  

 

3.1.2.5. Immunofluorescence  

HK-2 cells were seeded and treated on Chamber culture slides (Falcon). Cells 

were fixed in Paraformaldehyde 4% for 10 minutes. After washing with PBS 3 

times, cells were covered with quenching solution for 10 minutes and then washed 

3 times again with PBS. HK-2 cells were permeabilized with PBS-Triton 0.2% for 

10 minutes and washed 3 times. Cells were saturated in PBS containing 1% BSA 

for 1 hour and then incubated overnight at 4°C with the primary antibody 
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HMGB1 (GeneTex GTX101277). The cells were washed 3 times with PBS and 

incubated for 1 hour at room temperature with the secondary antibody. Nuclei 

were counterstained with Hoechst and slides were mounted with Fluoromount™ 

(Sigma). Immunofluorescence images were acquired using a Leica TCS SP5 

confocal microscope. 

 

3.2. In Vivo study 

 

3.2.1. Animal model of kidney ischemia/reperfusion 

	
Wild-type C57BL/6J mice weighing 23–30 g were maintained on a standard diet 

and water provided ad libitum. The study was carried out according to national 

guidelines for animal experiments as approved by the local committee for the 

supervision of animal experiments. We assigned 42 mice randomly to control (N 

= 14), I/R (N = 14) and I/R+SST0001 (N = 14) groups. In each group, 7 mice 

were sacrificed 2 days post-I/R and the remaining 7 days post-I/R (Fig. 8). The 

mice were anesthetized with sodium pentobarbital (50 mg/kg, IP) and placed on 

temperature-controlled heating table, keeping the body temperature at 37°C. 

Renal ischemia was induced by clamping the left renal artery for 30 min while the 

kidney was kept warm and moist. The clamp was then removed, the kidney was 

observed to confirm the return of blood flow, and the abdominal wall incision was 

sutured. Control mice underwent the same procedures without clamping. The 

mice were allowed to recover in a warmed cage. The I/R+SST0001 mice were 

injected daily (IP) with 0.6 mg SST0001 dissolved in water (Leadiant 

Biosciences). Control and I/R mice were injected daily with the same volume of 

water. The mice were killed by cervical dislocation and blood samples were taken 

at each time point for the measurement of blood urea nitrogen (BUN), creatinine 

and HPSE activity. One half of the left kidney was snap-frozen in liquid nitrogen 

and stored at −80°C and the other half was fixed in formalin, embedded in 

paraffin and used for histological analysis. 
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Fig. 8: Male WT C57BL/6J mice were assigned to control (N = 14), I/R (N = 14) and 

I/R+SST0001 (N = 14) groups. In each group, 7 mice were sacrificed 48 hours post-I/R and the 

remaining 7 days post-I/R. The I/R+SST0001 mice were injected daily (IP) with 0.6 mg SST0001 

dissolved in water. Control and I/R mice were injected daily with the same volume of water. 

 

3.2.2. Biomolecular analysis 

 

3.2.2.1. Gene expression analysis  

Total RNA was extracted from frozen renal tissues using Trizol reagent 

(Invitrogen).  

 

3.2.2.1.1. RNA extraction from renal tissue 

A half of frozen renal tissue was homogenized in 1 ml of Trizol. Two hundreds µl 

of chloroform were added at the homogenized samples that after vortexed were 

incubated other 10 minutes at room temperature. Samples were then centrifuged at 

12000×g for 15 minutes at 4°C to separate RNA, DNA and proteins. Aqueous 

phase containing RNA was transferred in a new tube and 500 µl of isopropanol 

were added. The solution was vortexed and incubated 10 minutes at room 

temperature followed by centrifugation at 12000×g for 10 minutes at 4°C to 

precipitate RNA. The pellet was washed twice with 1 ml of Ethanol 75% and 

resuspended in 100 µl of RNAse-free water. RNA was quantified with Nanodrop 

measuring absorbance at 260 nm and 280 nm. RNA samples were stored at -80°C. 
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3.2.2.1.2. RNA reverse transcription and Real-time PCR 

Five hundred ng of total RNA from each sample were reverse-transcribed into 

cDNA using SuperScript II Reverse Transcriptase (Invitrogen) following the same 

protocol used with cells RNA. (3.1.2.3.2.). As the same, the Real-time PCR was 

performed as reported in 3.1.2.3.3. Primer sequences are listed in Table 1. 

 

3.2.2.2. Western blotting 

A half of frozen renal tissue was lysed in 500 µl RIPA buffer (3,30% NaCl 5M, 

2% TRIS 2,5M, 5% Sodium Deoxycholate 10%, 1% SDS 10%, 1% Triton, pH 8) 

with Complete Protease Inhibitor Mixture (Roche). Proteins were quantified with 

Pierce™ BCA Protein Assay Kit (Thermo Scientific) and western blot analysis 

were performed as previous described (3.1.2.4.). The antibodies are listed in Table 

2.  

 

3.2.3. Histological analysis 

 

3.2.3.1. Tissues inclusion 

Tissues were fixed in formalin for 24 hours and were included in paraffin. Fixed 

kidneys were washed three times with distilled water to remove formalin. 

Samples were dehydrated through passages in ethanol (Sigma Aldrich) 50%, 70%, 

96%, 30 minutes for three times for each ethanol concentration. Samples 

remained in Ethanol 96% over night at 4°C and then they were put on ethanol 

100% for 45 minutes for three times and then in xylene (Sigma Aldrich) for 1 

hour for two times. To allow paraffin to replace xylene into the tissues, samples 

were placed in paraffin Lab-O-Wax (Hysto-Line Laboratories) in a 57°C stove. 

When xylene evaporated dehydrated kidneys were embedded. 

After inclusion, tissues were cut using a microtome to prepare 4 µm sections 

slides. Paraffin sections were stained with Periodic acid-Shiff (PAS) staining, 

hematoxylin-eosin and immuofluorescence for histological analysis.  
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3.2.3.2. PAS staining  

To remove paraffin from the sections, slides were placed three times in xylene for 

10 minutes and then rehydrated throw passages in ethanol 100% (two times), 96%, 

70%, 50%, till distilled water. The staining was performed placing Periodic Acid 

Solution 1% on slides for 20 minutes at room temperature. After rinse sections in 

distilled water a drop of Shiff’s reagent was put on tissue sections for 1 hour and 

then slides were rinse in warm tap water for 10 minutes. Nuclei were 

counterstained with hematoxylin (Sigma) for 10 seconds and then slides were 

rinse in tap water for 5 minutes. Sections were dehydrated through a series of 

ascending ethanol prior to being placed in xylene and mounted with Canada 

balsam (Sigma Aldrich). 

 

3.2.3.3. Hematoxylin-eosin staining 

Tissues section were deparaffinized as before (3.2.3.2). To stain nuclei, a drop of 

hematoxylin (Sigma) was put on each section for 15 seconds and then the stain 

was fixed in tap water. While to stain cytoplasm slides were covered with a drop 

of eosin (Sigma-Aldrich) for 20 seconds, the stain was fixed in tap water. Sections 

were dehydrated through placing them in 50%, 70%, 96%, 100% ethanol to 

xylene and mounted with Canada balsam (Sigma Aldrich). 

 

3.2.3.4. Immunofluorescence  

Tissue sections were deparaffined and antigens were unmasked by heating in a 

microwave oven in sodium citrate buffer (10 mM sodium citrate, 0.05% Tween-

20, pH 6) for 10 minutes and then washed in PBS 10 minutes for three times. The 

sections were permeabilized with 0.2% Triton X-100 and after three washings 

were saturated in PBS containing 1% BSA and 0.1% Triton X-100 for 1 hour. 

Samples were incubated overnight at 4°C with the primary antibodies. The 

sections were then washed with PBS and incubated for 1 hour at room 

temperature with the secondary antibodies. Nuclei were counterstained with 

Hoechst and slides were mounted with Fluoromount™ (Sigma). 

Immunofluorescence images were acquired using a Leica TCS SP5 confocal 

microscope.  



	 42	

3.2.3.5. TUNEL assays 

Apoptotic cells were detected using the Click-iT TUNEL Alexa Fluor 488 

Imaging Assay system (Thermo Fisher Scientific) according to the manufacturer’s 

instructions. The deparaffined tissue sections were fixed in 4% paraformaldehyde 

for 15 minutes at 37°C. Tissue sections were washed in PBS for 5 minutes and 

permeabilized with Proteinase K solution for 15 minutes at room temperature. 

After washing, slides were fixed again in 4% paraformaldehyde for 5 minutes at 

37°C, wash twice in PBS and rinse in deionized water. Tissue sections were 

covered with 100 µl of TdT Reaction Buffer and incubate at 37°C for 10 minutes. 

TdT Reaction Buffer was removed and replaced by 50 µl of TdT reaction mixture 

(47 µl TdT Reaction Buffer, 1 µl EdUTP, 2 µl TdT enzyme). Slides were 

incubated for 1 hour at 37°C and then were rinse in deionized water. Sections 

were washed 3 times with 3% BSA-0.1% Triton in PBS for 5 minutes and then 

rinse in PBS. Forty µl of Click-iT Plus TUNEL reaction cocktail (36 µl Click-iT 

Plus TUNEL Supermix, 4 µl 10X Click-iT Plus TUNEL Reaction buffer additive) 

were placed on tissue slides for 30 minutes at 37°C, protected from light. Each 

slide was washed with 3% BSA in PBS and rinsed with PBS. Nuclei were 

counterstained with Hoechst and slides were mounted with Fluoromount™ 

(Sigma). Immunofluorescence images were acquired using a Leica TCS SP5 

confocal microscope. 

 

3.2.4. Assessment of renal function  

	
To analyze kidney function after I/R injury and SST0001 treatment we performed 

BUN and creatinine assay in mice plasma. Blood was collected the day of the 

sacrifice and 20 µl of EDTA 0.5 M pH 8 was added as anticoagulant agent. Blood 

was then centrifuged at 1500g for 15 minutes at 4°C, and plasma was collected 

and stored at -20°C.  

 

3.2.4.1. Blood Urea-Nitrogen (BUN) Assay 

BUN was measured using a commercial assay kit (Abcam) according to the 

protocol. Forty-nine µl Urea Buffer Assay have been added to 1 µl of plasma. The 
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Reaction Mix was then added to each sample and standard solutions. The plate 

was incubated at 37°C for 60 minutes protected from the light. We measured 

output on Microplate reader (Infinite M200PRO- Tecan), OD 570 nm. 

 

3.2.4.2. Creatinine assay 

Serum Creatinine was detected using Creatinine Assay Kit (Abcam). Thirty µl of 

Creatinine Detection Reagent was added both to 30 µl of serum sample and 

standard solutions, and incubated for 30 minutes at room temperature. We 

measured output on Microplate reader (Infinite M200PRO- Tecan), OD 490 nm. 

 

3.2.4.3. Heparanase Activity Assay 

HPSE activity was measured using a standardized enzyme linked immunosorbent 

assay (ELISA) [27] based on the ability of HPSE to degrade heparan sulfate in 

Matrigel. Twenty-five µl of matrigel 200 µg/ml (Matrigel™ Basement Membrane 

Matrix, BD Bioscience) were placed in 96-multiwell plates for ELISA and left to 

dry at room temperature for 2 hours. The wells were washed with PBST 

(PBS+0.05% Tween 20). Samples were prepared by mixing 1:4 plasma samples 

with HPSE buffer (0.1 sodium acetate pH 5, 0.1 mg/ml BSA, 0.01% TritonX-100, 

protease inhibitor cocktail in presence or absence of low molecular weight heparin 

(LMWH) (50 µg/ml). The samples were incubated at 37°C overnight. Then, plates 

were washed with PBST and saturated at room temperature for 2 hours with the 

blocking buffer (1% BSA, 0.1% Triton X-100 in PBS). Plates were washed and 

incubated with anti-HS-specific monoclonal antibody (mouse IgM Anti-HS Purif. 

clone HepSS-1) diluted 1:500 in blocking buffer for 1 hour at room temperature. 

Wells were washed three times with PBST and incubated with secondary antibody 

(goat anti mouse IgM HRP-conjugated, Santa Cruz) diluted 1:1000 in blocking 

buffer for 1 hour at room temperature, under agitation. After three washing with 

PBST, 50 µl of ABTS [2.2-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid)] 

chromogenic substrate system for ELISA (Sigma) was added to each well for 15 

minutes in the dark. The reaction was blocked with 50 µl of 1% SDS. The 

absorbance was measured at OD 405 nm with Microplate reader (Infinite 
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M200PRO-Tecan). The HPSE activity was calculated as the difference between 

OD 405 nm value with or without LMWH. 

 

3.3. Statistical analysis 
	
Means ± standard deviations (SD) of the real-time PCR data were calculated using 

Rest2009 software. Differences between treated and untreated cells were 

compared using a two-tailed Student’s t-test. A p-value < 0.05 was set as the level 

of significance for all tests. Gene expression differences were analyzed by linear 

regression models with groups (control, I/R and I/R+SST at 2 and 7 days post-

I/R) as categorical variables. Bonferroni-corrected adjusted means and differences 

were computed using the control as the referent group. A Bonferroni-corrected p-

value < 0.05 was considered as statistically significant. 
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3.4. Reagents 
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3.5. Enzymes and commercial kits 

 

 

3.6. Cell culture media and reagents 
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3.7. Primers and antibody tables 

 
TABLE 1: Primer used to perform Real-time PCR analysis. 
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TABLE 2: Primary and secondary antibody used to perform western blot and 
immunofluorescence. 
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4. RESULTS 

 

4.1. In Vitro results 

 
4.1.1. HPSE promotes monocytes activation 

	
To assess the role of HPSE in monocytes activation, U937 cells were treated with 

PMA in combination or not with HPSE for 48 hours. Then, the mRNA levels of 

TNF-α and IL-1β (two main cytokines expressed form activated macrophages 

[102]) were measured by Real–Time PCR (Fig. 9A-B).  

As expected PMA-treated U937 cells showed upregulation of both genes 

compared to control cells. The co-administration of PMA and HPSE exacerbates 

the expression of TNF-α and IL-1β, thus confirming the pivotal role of HPSE in 

macrophages activation [103].  

 

 

	
 

 

 

 

 

 

	
	
	
 

Fig. 9: U937 activation by HPSE. U937 cells exposed or not to PMA were also treated with 1 

µg/ml heparanase. The expression of A) TNF-α and B) IL-1β was evaluated by real-time PCR. 

Data were normalized to GAPDH expression. Mean ± SD (error bars) of two separate experiments 

performed in triplicate: **p<0.001 vs. CTR; # #p<0.001 vs PMA. 
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4.1.2. HPSE induces M1 proinflammatory macrophage polarization 

	
U937 cells activated with PMA for 48 hours were treated with HPSE or with the 

HPSE inhibitor SST0001. Moreover, these treatments were applied in co-

administration with LPS (M1 phenotype inducer) or IL-4 (M2 phenotype inducer). 

 

The expression of the proinflammatory markers TNF-α, IL-6, iNOS and IL-1β 

were measured in activated and LPS-polarized U937 cells by real-time PCR and 

western blot.  

HPSE induced the upregulation of TNF-α, IL-6, iNOS and IL-1β; the co-

administration of LPS exacerbated this effect. The inhibition of HPSE with 

SST0001 suppressed the expression of these proinflammatory genes, especially in 

LPS-treated cells (Fig. 10A-D). Protein analysis confirmed gene expression 

results for iNOS and IL-1β (Fig. 10E). 
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Fig.	10:	Gene and protein expression of proinflammatory cytokines during M1 macrophage 

polarization. M1-associated gene expression of TNF-α (A), IL-6 (B), iNOS (C) and IL-1β (D) 

was evaluated by real-time PCR on PMA-activated U937 cells exposed to LPS in presence or 

absence of 1 µg/ml HPSE or 200 µg/ml SST0001. Data were normalized to GAPDH expression. 

Means ± SD (error bars) of two separate experiments performed in triplicate. **p<0.001, *p<0.05 

vs. CTR, ##p<0.001, #p<0.05 vs. LPS. E) Protein levels of iNOS and IL-1β evaluated by Western 

blot. GAPDH was included as loading control.  
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In addition, for the same cell treatment, we analysed the expression of TLR-2 and 

TLR-4, well-known components of M1 program [104].  

Our results showed that LPS increased only the expression of TLR-2, as 

previously reported [105], while HPSE up-regulated the expression of both TLR-2 

and -4 and this effect was suppressed by SST0001 (Fig. 11A-B). These results 

revealed that HPSE facilitated the polarization of macrophages into M1 

phenotype favouring the activation of TLRs pathway and the production of 

proinflammatory cytokines.  

	
 

 

 

 

 

 

 

 

 

 

Fig. 11: TLR-2 and -4 gene expressions during M1 macrophage polarization. PMA-activated 

U937 cells were exposed to LPS in presence or absence of 200 µg/ml SST0001 or 1 µg/ml HPSE. 

Expression of TLR-2 (A) and TLR-4 (B) was evaluated by real-time PCR. Data were normalized 

to GAPDH expression. Means ±�SD (error bars) of two separate experiments performed in 

triplicate. **p<0.001, *p<0.05 vs. CTR.  
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The effects of HPSE on M2 macrophages polarization were investigated 

measuring the expression of the M2 markers (MR and IL-10) in activated and IL-

4 polarized U937 cells by real-time PCR.  

HPSE and its inhibitor did not affect the expression of MR while the 

administration of IL-4, used as a positive control, increased its expression (Fig. 

12A). SST0001 reduced the basal expression of IL-10, whereas it did not have 

any effect on IL-4 treated cells. HPSE significantly reduced IL-10 expression in 

IL-4 stimulated U937 cells (Fig. 12B). 

 

Fig. 12: Anti-inflammatory cytokine gene expression during M2 macrophage polarization. 

M2-associated gene MR (A), and IL-10 (B) expression was evaluated by real-time PCR on PMA-

activated U937 cells exposed to IL-4 in presence or absence of 1 µg/ml HPSE or 200 µg/ml 

SST0001. Data were normalized to GAPDH expression. Means ± SD (error bars) of 2 separate 

experiments performed in triplicate. **p<0.001 vs. CTR, °°p<0.001 vs. IL-4. 
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4.1.3. HPSE modulates the expression of TLRs and DAMPs and promotes 

apoptosis in renal epithelial tubular cells 

	
The expression of TLRs can be induced also in epithelial tubular cells following 

H/R, thus promoting the release of proinflammatory cytokines [106].  

To better understand the role of HPSE in this context we measured the expression 

of TLR-2 and -4, the nuclear-cytoplasmic translocation of the High Mobility 

Group Box Protein 1 (HMGB1) protein and the frequency of apoptosis in WT and 

HPSE-silenced HK-2 cells, as well as in WT cells treated with SST0001. HMGB1 

is a nuclear protein that acts as a DAMP when it translocates from the nucleus 

into the cytoplasm and then is released into the extracellular fluids [107].  

In WT HK-2 cells H/R up-regulated the expression of both TLR-2 and -4, while 

their expression in HPSE-silenced and in cells treated with the HPSE inhibitor did 

not change (Fig. 13A-B). The upregulation of TLRs and their activation is 

consequence of the release of DAMPs such as HMGB1 from injured cells.  

By immunofluorescence we detected the translocation of HMGB1 into WT HK-2 

cells cytoplasm after H/R, whereas it remained in the nucleus when HPSE was 

silenced or inhibited (Fig. 13C).  

The analysis on cells viability after H/R injury underlined the involvement of 

HPSE in the development of kidney I/R damage. In fact, HK-2 cells viability was 

reduced after H/R and the amount of apoptosis was increased, but these effects 

were inhibited by the administration of SST0001 or the HPSE gene silencing (Fig. 

13D-E).  
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Fig. 13: TLR expression, DAMP production and cell viability and apoptosis, in H/R-injured 

tubular epithelial cells. WT and HPSE-silenced HK-2 cells were exposed to H/R, and WT cells 

were also treated or not with 200 µg/ml SST0001. Expression of TLR-2 (A) and TLR-4 (B) was 

evaluated by real-time PCR. Data were normalized to GAPDH expression. Means ± SD (error bars) 

of two separate experiments performed in triplicate. **p<0.001, *p<0.05 vs. wild-type N, 
##p<0.001, #p<0.05 vs. wild-type H, °°p<0.001, °p<0.05 vs. wild-type H/R. C) Representative 

images of one of two immunostaining experiments for HMGB1 (green) in WT and HPSE-silenced 

cells with or without SST0001. Nuclei were counterstained with Hoechst dye (blue). D) Cell 

viability was measured by MTS assay 24 and 48 hours after H/R. Error bands represent SD from 

two experiments performed with 6 replicates. E) Evaluation of cell death by apoptosis using 

annexin V–FITC/PI staining. Percentage of apoptotic cells is shown in bar diagram as mean ± SD 

from two experiments in duplicate. *p<0.05 vs. wild-type N, #p<0.05 vs. wild-type H/R. N, 

normoxia; H, hypoxia; H/R, hypoxia/reoxygenation. 
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4.1.4. HPSE regulates the production of proinflammatory cytokines by HK-2 

cells 

	
To assess the potential role of HPSE in the production of proinflammatory 

cytokines by HK-2 cells we measured the gene expression of TNF-α, IL-6, IL-8, 

IL-1β and CASP-1, as well as IL-1β and CASP-1 protein level in our in vitro 

model.  

H/R strongly increased gene expression of the five proinflammatory cytokines 

(Fig. 14A-E) and the protein level of IL-1β and CASP-1 (Fig. 14F) in WT HK2 

cell but the lack of HPSE induced through inhibition or silencing, inhibited this 

effect. 
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Fig. 14: Proinflammatory cytokines in HK2 cells undergoing H/R. Expression of TNF-α (A), 

IL-6 (B), IL-8 (C), IL-1β (D), and Capase-1 (E) was evaluated by real-time PCR. Data were 

normalized to GAPDH expression. Means ± SD (error bars) of two separate experiments performed 

in triplicate. **p<0.001, *p<0.05 vs. wild-type N, ##p<0.001, #p<0.05 vs. wild-type 

H, °°p<0.001, °p<0.05 vs. wild-type H/R. F) Caspase-1 and IL-1β protein levels were evaluated by 

Western blot analysis. GAPDH was included as loading control. N, normoxia; H, hypoxia; H/R, 

hypoxia/reoxygenation.  
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4.1.5. HPSE regulates macrophages polarization induced by conditioned 

medium from HK2 cells injured by H/R 

	
DAMPs and cytokines produced by renal tubular epithelial cells together with the 

upregulation of HPSE after H/R may promote M1 macrophages polarization [95]. 

We treated activated U937 cells with the conditioned medium from WT and 

HPSE-silenced HK-2 cells exposed to H/R and then we analysed the genes 

expression of M1 (TNF-α, IL-1β, iNOS) and M2 (IL-10, MR) markers.  

The conditioned medium from WT tubular cells, collected immediately after 

hypoxia, stimulated the expression of proinflammatory cytokines from PMA-

activated U937, while the conditioned medium from silenced HK-2 cells slightly 

decreased the expression of these cytokines, in particular IL-1β (Fig. 15A-C). 

Western blot confirmed gene expression analysis for IL-1β and iNOS and showed 

the same trend for CASP-1 (Fig. 15D). 

On the contrary, the conditioned medium from WT tubular cells exposed to H/R 

down-regulated the expression of the anti-inflammatory cytokine IL-10 in U937-

activated cells, whereas the medium from HPSE-silenced HK-2 cells did not have 

any effect. MR expression was not modulated by HK-2 conditioned media (Fig. 

15E-F). 
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Fig. 15: Expression of cytokines by PMA-activated U937 cells treated with the conditioned 

media from tubular cells exposed to H/R. PMA-activated U937 cells were exposed to 

conditioned mediua from WT and HPSE-silenced HK-2 cells collected in normoxia, after ischemia, 

and after reoxygenation. Expression of TNF-α (A), IL-1β (B), iNOS (C), MR (E), and IL-10 (F) 

was evaluated by real-time PCR. Data were normalized to GAPDH expression. Means ± SD (error 

bars) of two separate experiments performed in triplicate. **p<0.001, *p<0.05 vs. WT normoxia. 

D) CASP-1, iNOS, and IL-1β protein levels evaluated by Western blot analysis. GAPDH was 

included as loading control.  
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4.1.6. Conditioned medium from M1 polarized macrophages induced partial 

EMT program in renal epithelial tubular cells 

	
The in vitro profibrotic effects of polarized macrophages on renal tubular 

epithelial cells were investigated by measuring the expression of 4 well-known 

EMT markers (α-SMA, VIM, FN, and SNAIL) in wild-type and HPSE-silenced 

HK-2 cells maintained under normoxic conditions or exposed to H/R. In order to 

better define which specific pool of macrophages was able to induce a partial 

EMT in renal epithelial tubular cells, we treated wild-type HK-2 cells with 

conditioned medium of M1 or M2 macrophages under normoxic conditions or 

exposed to H/R. The same medium was added to HPSE-silenced tubular cells to 

assess whether the lack of HPSE could protect these cells from EMT.  

Conditioned medium from M1-polarized U937 cells caused the strong 

upregulation of all the four EMT markers in WT HK-2 cells undergoing H/R. M2-

conditioned medium had no effects on WT HK-2 cells under normoxic condition 

but significantly reduced α-SMA, FN and SNAIL expression compared to WT 

tubular cells exposed to H/R (Fig. 16A-D).  

M1-conditioned medium had no effect in HK-2 cells under normoxic conditions 

while after H/R there is a mild upregulation of α-SMA, VIM and FN (Fig. 16A-D).  

The treatment with the conditioned medium from M2 macrophages had no effects 

on HPSE-silenced HK-2 cells either under normoxic condition or after H/R (Fig. 

16A-D). 
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Fig. 16: mRNA levels of EMT markers in HK-2 cells treated with conditioned media form 

M1 and M2 macrophages. WT and HPSE-silenced (HPSE-sil) HK-2 cells were exposed to H/R, 

and after hypoxia HK-2 culture medium was replaced with conditioned medium collected from 

M1- and M2-polarized U937 cells. Expression of a-SMA (G), VIM (H), FN (I), and SNAIL (J) 

was evaluated by real-time PCR. Data were normalized to GAPDH expression. Means ± SD (error 

bars) of two separate experiments performed in triplicate. *p<0.05, **p<001 vs. WT 

CTR/normoxic, #p<0.05, ##p<0.001 vs. WT CTR H/R, °°p<0.001 vs. WT M1 normoxia, §p<0.05, 
§§p<0.001 vs. WT M1 H/R. CTR, control.  
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Because of IL-1β is the most abundant cytokine produces by M1 macrophages 

and able to induce EMT in renal tubular epithelial cells [108], we measured the 

level of IL-1β released in the conditioned medium of PMA-activated U937 cells 

treated with LPS or IL-4.  

Both precursor and active form of IL-1β were detected in the conditioned medium 

from M1 but not M2 macrophages. In addition, pre-treatment with HPSE 

increased the release of IL-1β in LPS-stimulated cells while in IL-4-polarized 

U937 only a mild presence of IL-1β precursor was detected. SST0001 reduced the 

expression of this cytokine in both treatments (Fig. 17). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17: IL-1β released by U937 cells. The release of IL-1β protein in conditioned medium of 

PMA-activated U937 cells exposed to LPS or IL-4 in the presence or absence of 200 µg/ml 

SST0001 or 1 µg/ml HPSE was evaluated by western blot. Histogram represents quantification of 

active (17 kDa) and inactive (precursor, 31 kDa) IL-1β protein.  
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4.2. In Vivo results 

 
To confirm the results obtained in vitro we used an animal model of unilateral 

kidney I/R injury. We induced I/R in 2 groups of mice by clamping one of the 

renal arteries for 30 min, with one group receiving no treatment and the other 

treated with SST0001. The mice were humanely killed 2 or 7 d after I/R. 

 

4.2.1. I/R induces HPSE expression in injured kidney 

	
Gene expression, protein analysis and immunofluorescence staining of the total 

renal parenchyma revealed the upregulation of HPSE 7 days after ischemic injury; 

the administration of SST0001 significantly reduced the expression of the enzyme 

at both time points (Fig. 18A-D). Immunofluorescence showed that HPSE was 

expressed not only in the glomeruli and tubular cells (white arrowhead) but also in 

the interstitial cells (red arrowhead) (Fig. 18A). HPSE activity in plasma 

increased after 7 days in the untreated mice while decreased in mice injected with 

SST0001 (Fig. 18C).  
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Fig. 18: In vivo HPSE expression and activity induced by monolateral renal I/R. A) 

Representative immunofluorescence staining for HPSE (green) in cortical renal tissues of mice 48 

hours and 7 days after sham operation or I/R kidney injury. Nuclei were counterstained in blue. 

White arrowheads indicate HPSE expression in glomeruli and tubular cells; red arrowheads 

indicate HPSE expression in interstitial cells. B) Box plot representing relative gene expression of 

HPSE evaluated by real-time PCR in renal tissue (n = 7). Results were normalized to GAPDH 
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expression. Graph represents two separate experiments performed in triplicate. C) Box plot 

representing HPSE activity evaluated by ELISA in plasma samples collected from killed mice. 

Graph shows two separate experiments performed in triplicate. *p<0.05, **p<0.001 vs. sham-

treated animals. #p<0.05 vs. I/R. D) HPSE protein levels measured by Western blot analysis in 

randomly selected samples of total kidney lysates. GAPDH was used as loading control. 

 

4.2.2. HPSE promotes in vivo macrophages infiltration/polarization towards 

M1 phenotype and inflammation after I/R in kidney 

	
As expected, renal immunofluorescence staining revealed macrophages 

infiltration (F4/80+ cells) in untreated mice 2 and 7 days after I/R injury (Fig. 

19A-B). Interestingly, in this group of mice 2 days after the injury all infiltrating 

macrophages resulted positive for iNOS (M1 marker) and completely negative for 

Arg1 (M2 marker) (Fig. 19A), while 7 days after, besides a prolonged iNOS 

upregulation, there was an increased number or Arg1+ cells (Fig. 19B).  

On the contrary, mice treated with SST0001 exhibited a lower number of F4/80+ 

cells at both time points and surprisingly most of them were double-positive for 

iNOS and Arg1 (Fig. 19A-B).  
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Fig. 19: Macrophages polarization in vivo. Representative immunofluorescence staining for 

F4/80 (red), iNOS (green), and Arg1 (pink) was performed in renal tissue 48 hours (A) and 7 days 

(B) after I/R. Macrophages are highlighted with arrowheads.  
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Gene expression analysis performed on the total renal parenchyma supported 

these evidences. Infact, iNOS was up-regulated 48 hours and 7 days after I/R in 

untreated mice whereas the treatment with SST0001 lowered its expression to 

basal level (Fig. 20A). Furthermore, gene expression confirmed the increased of 

M2 markers expression 7 days after I/R; SST0001 treatment did not affect M2 

markers expression (Fig. 20B-C). These findings were sustained by protein 

analysis that showed a lower abundance of CD68 (macrophages marker) in kidney 

of SST0001-treated mice at both time points, while Arg1 expression remained 

unchanged (Fig. 20D). 

	

	
Fig. 20: Macrophage polarization in vivo, gene expression. Box plot representing relative 

expression levels of iNOS (A), Arg1 (B), and MR (C) evaluated by real-time PCR in renal tissue. 

Results were normalized to GAPDH expression. Graph represents two separate experiments 

performed in triplicate. *p<0.05, **p<0.001 vs. sham-treated animals, ##p<0.001 vs. I/R. D) CD68 

and Arg1 protein levels was measured by Western blot analysis in randomly selected samples of 

total kidney lysates. GAPDH was used as loading control.  
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To further confirm the involvement of HPSE in M1 macrophages polarization, we 

analysed the expression of genes encoding for proinflammatory cytokines TNF-α, 

IL-1β and IL-6 in mice kidney.  

At both time points all three cytokines were significantly overexpressed in 

untreated ischemic mice, whilst they remained at basal levels in tissue from mice 

treated with SST0001 (Fig. 21A-C). These data were validated by western blot 

analysis (Fig. 21D).  

However, the expression of M2 associated cytokine IL-10 was increased only 7 

days after I/R injury in both untreated and treated mice (Fig. 21E). 

	
Fig. 21: Cytokine expression in vivo. Box plot representing relative expression levels of TNF-α 

(A), IL-1β (B), IL-6 (C), IL-10 (E), evaluated by real-time PCR in renal tissue. Results were 

normalized to GAPDH expression. Graph represents two separate experiments performed in 

triplicate. *P<0.05, **P<0.001 vs. sham-treated animals, #p<0.05, ##p<0.001 vs. I/R. D) TNF-α, 

Caspase-1, and IL-1β protein levels measured by Western blot analysis in randomly selected 

samples of total kidney lysates. GAPDH was used as loading control.  
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I/R up-regulated the expression of TLR-2 and TLR-4 48 hours and 7 days after 

the ischemic damage only in mice not treated with the HPSE inhibitor, SST0001 

treatment maintained their expression at basal levels (Fig. 22A-B). 

 

 
Fig. 22: TLRs expression in vivo. Box plot representing relative expression levels of TLR-2 (A) 

and TLR-4 (B) evaluated by real-time PCR in renal tissue. Results were normalized to GAPDH 

expression. Graph represents two separate experiments performed in triplicate. *p<0.05, *p<0.001 

vs. sham-treated animals, #p<0.05, ##p<0.001 vs. I/R.  
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4.2.3. HPSE inhibition decreased the number of apoptotic cells in renal 

parenchyma after I/R injury 

	
To evaluate if the beneficial effects of HPSE inhibition was mediated also by 

preventing apoptosis, we measured the amount of apoptotic cells in kidney 

sections by TUNEL assay.  

In the group of untreated mice, I/R caused a higher number of apoptotic cells 

compared to SST0001 treated mice (Fig. 23). 

	
	
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

	
Fig. 23: Renal cell apoptosis after I/R injury. Renal cell apoptosis after renal I/R was evaluated 

by TUNEL staining. Apoptotic renal cells in post-I/R kidneys are green, and nuclei are shown in 

blue. 
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4.2.4. I/R injury affects kidney function that is preserved by HPSE inhibitor 

	
I/R had a strong impact on renal function leading to a significantly increment of 

BUN and creatinine in serum of untreated mice 2 days after I/R injury, whereas 

the inhibition of HPSE seemed to preserve renal function in the early phase of the 

damage (Fig. 24A-B). 

 

  
Fig. 24: Renal function in SST0001-treated and untreated mice subjected to I/R. Effects of 

I/R on (A) BUN and (B) serum creatinine after I/R measured in plasma from SST0001-treated and 

untreated mice. Results are expressed as mean ± SD: **p<0.001 vs. SHAM 48h; #p<0.001 vs. I/R 

48 h I/R kidney injury.  

	
Kidney sections were stained with Periodic Shiff-acid to visualize the kidney 

damage. Ischemic non-treated kidney presented tubular injury, as shown by the 

loss of brush border, tubules detachment from the basal membrane and the 

bubbling of tubular cells. These events were substantially reduced in kidney of 

mice treated with SST0001 (Fig. 25).  
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Fig. 25: Histological PAS staining and score of renal tubular cell damage. Panels show 

representative images of PAS and H&E staining of paraffin-embedded cortex. Magnification 40X. 

Histopathological score was evaluated by a skilled pathologist in a blinded manner. Injury scale: 

0 = <1% none, 1 = 1–25% mild, 2 = 25–50% moderate, 3 = 50–100% severe. Values are expressed 

as mean ± standard errors (SEM). 
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5. DISCUSSION 

 
Renal transplantation is the gold standard therapy for patients with chronic renal 

failure but, unfortunately, some patients experience a delayed graft function 

(DGF), a clinical complication induced by I/R injury, that required early post-

transplant dialysis treatment.  

Many studies have shown that macrophages are involved in the troubled cellular 

network triggered by I/R by infiltrating into renal parenchyma and causing tissue 

damage. However, although well described, the biological mechanisms 

underlining this process are still only partially understood. We hypothesized that 

HPSE could have a role in the I/R injury-associated biological machinery in 

kidney. This enzyme is an endoglucuronidase that, cleaving HS chains, remodels 

the ECM and promotes the release of HS-bound cytokines and growth factors. By 

means of these activities HPSE has a role in renal EMT after I/R [95] as well as in 

other renal diseases [60, 65, 92, 98, 109-112]. It has been demonstrated that HPSE 

controls inflammation by regulating the recruitment of leucocytes and the 

interaction of these cells with endothelium, by modulating the bioavailability of 

cytokines in the extracellular matrix and by activating TLRs [90, 92, 113]. 

Therefore, it is plausible that this enzyme modulates also macrophages 

recruitment and their activation/polarization in kidney I/R.  

In our study we investigated the relationship between HPSE and macrophages, 

and its role as a mediator in the crosstalk between macrophages and epithelial 

tubular cells in I/R kidney injury.  

To this purpose, we started treating U937 cells with HPSE or SST0001 (the 

specific HPSE inhibitor) in the presence or absence of LPS and IL-4, two well-

known M1 and M2 polarizing agents. Our results showed that HPSE has a role in 

macrophages activation/polarization, indeed it sustains M1 proinflammatory 

polarization and the production of proinflammatory cytokines (IL-1β, IL-6, TNF-

α), whereas it does not influence M2 pro-regenerative polarization.  

It is known that I/R can induce the activation of the innate immune response and 

cell death pathways in renal epithelial tubular cells leading to renal damage [114]. 

Cell death induces the release of DAMPs such as HMGB1 [115] that, in turn, 
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activate multiple receptors, including TLRs [114, 116] on macrophages and 

parenchymal cells sustaining inflammation [117-119]. As largely described in 

literature, during renal I/R injury, upregulation of TLR-2 and TLR-4 in renal 

tubular epithelial cells, vascular endothelial cells, and immunoinflammatory cells 

[120-122] facilitates the additional leukocyte migration and infiltration, activates 

the innate and adaptive immune responses and promotes the release of 

proinflammatory mediators, which in turn activate macrophages [123]. In this 

crosstalk between macrophages and renal epithelial tubular cells HPSE plays a 

key role. We demonstrated that in HK-2 cells exposed to H/R the upregulation of 

HPSE mediates the upregulation of TLR-2 and -4, the increment of apoptotic cells 

and the release of DAMPs such as HMGB1. HPSE increases the expression of 

TLRs also in macrophages, making them potentially more sensitive to the 

corresponding ligands. All these effects are minimized in the presence of 

SST0001. It is noteworthy that, although fragments of heparan sulfate can 

function as TLR ligands [124], the heparan sulfate mimetic SST0001 does not 

activate TLR signaling.  

HPSE from HK-2 injured cells seems to facilitate the polarization of macrophages 

towards M1 phenotype. In fact, we found that conditioned medium from wild-

type HK-2 cells after H/R can induce the expression of M1 markers in activated 

U937 cells, but the medium from HPSE-silenced cells does not have any effect. 

Nevertheless, these results should be confirmed in primary macrophages. 

Furthermore, as previously reported I/R injury may induce a partial EMT in renal 

epithelial tubular cells. Our study revealed that the cytokines produced by M1 but 

not M2 macrophages mediate the EMT (Fig. 26). Contrarily, the lack of HPSE 

prevents it.  

Future studies will be necessary to elucidate the biological bases of this process. 

In particular, it could be interesting to evaluate the effects of IL-1β, the principal 

cytokine produced by M1 macrophages, on partial EMT in tubular cells at the 

molecular level.  

To validate in vitro results, we performed unilateral renal I/R injury by vascular 

clamping in mice in the presence or absence of SST0001 and we sacrificed them 2 

or 7 days after I/R injury. As expected the in vivo part of the study showed 
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macrophages recruitment into the renal parenchyma during the early post-I/R 

phase (2 days), and confirmed the polarization towards M1 phenotype with an 

increased production of M1-associated pro-inflammatory cytokines. These 

cytokines sustain inflammation (e.g., IL-6) [121], cause parenchymal damage by 

inducing tubular cell death (e.g., TNF-a) [125], and activate fibrotic processes 

(e.g., IL-1β) [126, 127]. We also observed the upregulation of TLRs, which 

sustain the proinflammatory circuit [120-122]. Moreover, our in vivo experiments 

established that the inhibition of HPSE significantly decreases the infiltration of 

M1 macrophages, in turn reducing the production of proinflammatory and 

profibrotic cytokines, maintaining basal TLRs expression levels, and preventing 

I/R-induced tubular cell apoptosis, similarly to the in vitro results.  

Seven days after I/R, we observed evidence of initial M2 polarization reflecting 

the initiation of a macrophage-dependent repair process. In fact, M2 macrophages 

produce anti-inflammatory and proregenerative mediators that modify the 

expression of several genes in parenchymal cells to promote tissue regeneration 

and repair [128, 129]. Our results support the evidence observed by an earlier in 

vivo study which show that the M2 polarization is regulated by specific cytokines 

(IL-4 and IL-10) produced during allograft processes characterized by the 

accumulation T helper 2 and regulatory T lymphocytes, probably enhanced by the 

infiltration of these cells along with M1 macrophages after the phagocytosis of 

apoptotic cells, and the production of cytokines such as colony-stimulating factor 

1 by tubular cells [130].  

The inhibition of HPSE by SST0001 does not reduce the M2 macrophage 

population or the expression of the M2 markers.  

The specific reduction of the M1 component but not the M2 component by 

SST0001 is of great interest because it could provide a new strategy to control the 

initial inflammation that causes tissue damage without inhibiting M2 

macrophages that facilitate repair. This was confirmed by our findings that 

SST0001 also ameliorates renal functions (BUN, creatinine, and histology) in 

mice subjected to I/R, and could in time achieve better organ recovery and the 

prevention of fibrosis.  

A major limitation of our in vivo study is lack of a deep analysis of the biologic 
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elements implicated in the crosstalk between immune cells and renal (tubular and 

glomerular) compartment in an HPSE-dependent manner and vice versa. 

 

 
Fig. 26: Role of HPSE in macrophage polarization and crosstalk with tubular cells during 

I/R. Confirmed event induced by I/R injury is upregulation of HPSE at both tubular and 

glomerular levels (1). HPSE then induces tubular cell apoptosis and DAMP generation (2). 

DAMPs and molecules generated from necrotic cells can activate TLRs both on macrophages and 

tubular cells. HPSE also regulates TLR expression in both cell types (3). Tubular cells in response 

to direct hypoxic stimuli and TLR activation (4) produce proinflammatory cytokines (5) which 

attract and activate macrophages. This event is prevented by lack or inhibition of HPSE. High 

levels of HPSE facilitate M1 polarization of infiltrated macrophages (6). Additional re- lease of 

cytokines and growth factors (7) by macrophages (8) worsen parenchymal damage and sustain 

partial EMT of tubular cells, a condition that over time leads to fibrosis.  
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7. CONCLUSION 
 

In conclusion, our study demonstrated that HPSE was a pivotal element involved 

in the complex renal biological machinery activated by I/R injury by regulating 

macrophages polarization/activation and the crosstalk between these immune-

inflammatory cells and the renal tubular epithelium. Furthermore, it underlined 

that the inhibition of this enzyme, mitigating functional and morphological 

damages following I/R injury, could represent a new pharmacological tool in 

organ transplant medicine. Additional studies and trials are necessary to confirm 

our results in clinical setting.  
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