
Dipartimento di Informatica
Università degli Studi di Verona

Rapporto di ricerca
Research report

RR 108/2018
May 2018

A cost model for spatial join
operations in SpatialHadoop

Alberto Belussi
Sara Migliorini
Ahmed Eldawy

Questo rapporto è disponibile su Web all’indirizzo:
This report is available on the web at the address:
http://www.di.univr.it/report

Abstract

Spatial join is an important operation in geo-spatial applications, since it
is frequently used for performing data analysis involving geographical in-
formation. Many efforts have been done in the past decades in order to
provide efficient algorithms for spatial join and this is particularly important
as the amount of spatial data to be processed increases. In recent years, the
MapReduce approach has become a de-facto standard for processing large
amount of data (big-data) and some attempts has been made for extend-
ing existing frameworks for the processing of spatial data. In this context,
SpatialHadoop [1] is an extension of Apache Hadoop [2] which includes a
native support for spatial data, in terms of spatial data types, operations
and indexes. In particular, its provides five different variants of spatial join
which mainly differ in the use of a spatial index and in the way this index is
built and used. In general, none of these algorithm can be considered better
than the others, but the choice might depend on the characteristics of the in-
volved datasets. The aim of this work is to deeply analyse the characteristics
of these algorithms and to define a cost model for them which is based on
some dataset characteristics (i.e., selectivity or spatial properties). The main
goal of the proposed cost model is to rank the spatial join implementations
by defining a partial order among them using a dominance relation. This
cost model has been extensively tested w.r.t. a set of synthetic datasets in
order to prove its effectiveness.

Keywords: Spatial join, cost model, map-reduce, SpatialHadoop

1 Introduction

In the last few years a large amount of efforts has been devoted by researchers
to provide a MapReduce implementation of several operations that are usu-
ally required for performing big data analysis. In particular, the join opera-
tion has attracted much attention since it is frequently used in data process-
ing, for instance a join is necessary for linking log data to user records.

This effort has produced a set of different MapReduce implementations
of the join operations [3, 4], each one applicable to a particular situation.
Therefore, there was a set of follow up works that study some sort of heuris-
tics that allow the system to decide which implementation to apply, given
some parameters that characterize the specific case. These studies produce
some proposals of cost model for MapReduce implementations of the join
operator [3, 4].

This paper considers a particular kind of join, called spatial join, namely a
multi-dimensional join specifically defined for spatial data [5]. In particular,
it proposes a new cost model for spatial join that can be used to model five
different variants of spatial join available in SpatialHadoop [1]: distributed
join with no index (Djni), distributed join with grid-based index (Djgi), dis-
tributed join with repartition (Djre), distributed join with direct repartition
(Djdr), and the MapReduce implementation of the partition-based spatial
merge join (Sjmr). For each of these algorithms, we provide in Sect. 6 a
cost model that takes into account three data metrics, namely size of the
geometries, geometry selectivity, and degree of spatial overlapping.

The cost model produces three separate costs for the three phases of a
MapReduce job – map, shuffle and reduce, and for each phase, it produces
three different metrics – CPU processing, local disk I/O and network I/O. In
this way, the cost model provides a 9× 9 cost matrix that characterizes each
MapReduce implementation. In addition the cost model gives an estimate
of the required number of map and reduce tasks (see Sect. 3.3).

To our knowledge, previous work only deals with the cost estimation for
implementations in MapReduce of the traditional join operation [3,4] and do
not consider spatial or multi-dimensional datasets. Additional details about
related work will be discussed in Sect. 2.

For each one of the five variants of spatial join considered in this paper,
we propose two different scenarios: in the first one we suppose that they
work on indexed input datasets, and in the second one on datasets without
indices. On the data side, we consider different input sets of geometries with
increasing cardinality and containing polygons with different characteristics
w.r.t. the size and selectivity of the geometries (in terms of average MBR
area), and the degree of spatial overlapping of the datasets. Thus, all these

1

features will be considered as parameters of the cost model (see Sect. 3.1).
The main goal of the cost model will be to rank the spatial join implemen-
tations according to the matrix of cost estimates, and define a partial order
among them introducing a dominance relation.

The experiments in Sect. 7 confirmed the effectiveness of the proposed
cost model in ranking the alternative solutions for computing the spatial
join in SpatialHadoop. Indeed, in average the cost model chooses the best
algorithm in the 89% of the cases.

2 Related Work

Spatial join algorithms. Many algorithms have been defined in literature
with the aim to efficiently perform a spatial join between two datasets, con-
sidering the cases in which none, one or both inputs have been previously
indexed. A comprehensive survey about all these variants can be found in [6].
At the same time, to coupe with all these variants, several benchmarking
studies have been performed to evaluate their performance on the basis of
the given input [7–10]. Even if these studies cannot be directly applied to a
MapReduce context, they represent a starting point for the definition of the
cost model presented in this paper.
Cost model for map-reduce join algorithms. The MapReduce frame-
work has become a popular execution environment for the analysis of large
amount of textual data. Among all possible processing activities, the join
between two inputs is one operation that require particular attention and has
been studied. In [3] the authors performs an analysis of a number of well-
known join strategies in MapReduce and provide an experimental comparison
between them. They also explored how the join algorithms can benefit from
certain types of preprocessing techniques, such as a repartition phase. An-
other comparison between join algorithms in Hadoop can be found in [4]. The
authors identified the various parts of a join operation and further subdivide
them into mappers, shufflers and reducers. An attempt to define an accurate
performance model for a generic MapReduce operation has been done in [11].
The authors analyzed the composition of MapReduce tasks and relationships
among them, they decomposed the major cost items, and presented a vector
style cost model which inspired the cost model presented in this paper.
Cost model for map-reduce spatial-join algorithms. A first attempt
to define a cost model for spatial-join algorithms in MapReduce can be found
in [12] where the authors proposed a cost-based and a rule-based optimizer
for a generic spatial join. In particular, the authors abstracted from any spe-
cific implementation and considered a generic spatial join composed of two

2

phases: the partitioning (performed by mappers) and the joining (performed
by reducers). The work mostly evaluates the convenience to perform a pre-
liminary partitioning on only one or both datasets. Conversely, by concen-
trating on the specific SpatialHadoop implementations, the model proposed
in this paper is able to provide a more precise and detailed cost analysis, also
evaluating the advantages of performing a map-side or a reduce-side join in
various situations. Moreover, it also based on some dataset metadata, such
as the selectivity, the dataset cardinalities, and the number of vertices, in
place of the cluster characteristics.

3 A General Cost Model Framework

This section lays the basis for the definition of a cost model for the vari-
ous MapReduce spatial join operators mentioned in Sect. 1. In particular, it
starts by defining a set of parameters that characterize the execution envi-
ronment and the input datasets, and then it provides a general notion of cost
for a given operator.

3.1 Characterization of the MapReduce Environment

The cost model proposed in this paper has been defined by considering some
parameters that characterize the environment in which the spatial join oper-
ator is executed. This set of parameters will be called Hadoop configuration
and is defined as follows.

Definition 1 (Hadoop configuration). A Hadoop execution environment is
characterized by:

• #nodes: number of nodes in the cluster.

• #containers: number of execution containers in the cluster. The num-
ber of containers is typically equal to the number of cores.

• #parMaps: maximum number of mappers that can be executed in par-
allel. This number can be at most equal to the number of containers.

• #parReds: maximum number of reducers that can be executed in paral-
lel. We can safely assume that all reducers can be executed in parallel,
namely only one reduce step will be performed in the cluster. 1

1From the official Hadoop documentation, the maximum number of parallel reducers
could be set equal to the number of available containers multiplied by a factor of 0.95.

3

• splitSz: default size of a split provided to a mapper. It usually corre-
sponds to the block size in the Hadoop distributed file system (HDFS)
which can be for instance 128 MBytes,

• #rep: number of file replications (3 by default).

Moreover, the cost model requires some additional statistical parameters
concerning the input datasets which will be called dataset statistics and are
defined as follows.

Definition 2 (Dataset statistics). Given a dataset D∗, the following param-
eters regarding the dataset content can be defined (the abbreviation MBR is
used to denote the Minimum Bounding Rectangle of a geometry):

• size(D∗): size of the dataset D∗ in bytes,

• #geo(D∗): number of geometries in the dataset D∗,

• mbr(D∗): MBR covering all geometries in D∗,

• mbrAreaavg(D∗): given the MBR of all geometries in D∗, it represents
the average area of such MBRs,

• lenavg
x (D∗) and lenavg

y (D∗): given the MBR of all geometries in D∗, they
represent the average length on the X and Y axis of such MBRs,

• #vertavg(D∗): average number of vertices of the geometries in D∗,

Parameters size(D∗) and #geo(D∗) can be obtained by querying the HDFS.
An estimate for parameters mbr(D∗), lenavg

x (D∗) and lenavg
y (D∗) can be ob-

tained by sampling the input datasets, or we can suppose that they were
computed during the scan of the geometries in a previous access, and that
the system collects these statistics for refining the quality of the cost model
predictions.

For the datasets that has an indexed structure, the following additional
parameters are assumed to be known. Notice that this paper concentrates
for simplicity on grid-based indexes [13, 14], however the extension to other
kind of indexes (e.g., R-Trees) is straightforward.

• #cells(I∗): number of cells in a grid index I∗. Sometimes the abbrevi-
ation #cells(D∗) is used for denoting the number of index cells for the
dataset D∗.

• lencel
x (I∗) and lencel

y (I∗): length on X and Y axis of the cells in the grid
index I∗. Sometimes the parameter D∗ can be used in place of I∗ to
denote its index.

4

For obtaining more accurate estimations, we define the following two
data-related metrics regarding the mutual selectivity between two dataset
Di and Dj.

• σ(A): selectivity of the spatial join between two datasets Di and Dj

w.r.t. a reference space A. The selectivity of the spatial join is a real
number between 0 and 1 representing the probability that given a pair
of geometries (gi, gj), such that gi ∈ Di and gj ∈ Dj, this pair belong
to the spatial join result.

• σmbr(A): selectivity of the spatial join between the MBR of the ge-
ometries in the datasets Di and Dj. This selectivity is similar to the
previous one, but here the MBRs are considered instead of the real
geometries.

These metrics are assumed to be known, indeed they can be estimated in
some way as explained in Sect. 3.2 or in some contexts system administrators
can provide an educated guess based on their experience with the data.

Finally, some additional parameters characterize the size in bytes for
storing a vertex of a geometry, an MBR and a record of a dataset: (i)
vertSz denotes the number of bytes that are needed for the representa-
tion of a single vertex; (ii) mbrSz indicates the number of bytes required
to represent a generic MBR and recSz(D∗) denotes the bytes needed to
store a record of the dataset D∗. More specifically, mbrSz = 4 · vertSz and
recSz(D∗) = #vertavg(D∗) · vertSz.

3.2 Selectivity Estimation

The parameters σ(A) and σmbr(A) represent the basis for the proposed cost
functions, some formulas for their estimation in specific cases have been pro-
posed in [15, 16]. Some possible estimations can be obtained using different
levels of information about the input datasets. In particular, without any
knowledge about the dataset characteristics, we can only assume that each
geometry might intersect any other geometry in the other dataset. Con-
versely, by knowing some statistics about the two datasets and assuming a
uniform distribution for them, we can obtain a more precise estimation by
generalizing the formula proposed in [16] as discussed below.

Definition 3. Given two datasets Di and Dj, the selectivity σ(A) between
them w.r.t. to a reference space A can be obtained by generalizing the formula
in [16] as follows:

5

σ(A) ' 1

A
·
(

mbrAreaavg(Di) + mbrAreaavg(Dj) + (1)

(lenavg
x (Di) · lenavg

y (Dj) + lenavg
x (Dj) · lenavg

y (Di))
)

Proof. Let us consider two random rectangles ri and rj representing the MBR
of a geometry in Di and Dj, respectively. If A is the area of the entire given
spatial context, i.e. A = area(mbr(Di)∩mbr(Dj)), the probability p that the
two rectangles intersect is given by:

p(ri, rj) =
(lenx(ri) + lenx(rj))(leny(ri) + leny(rj))

A

Fig. 1 illustrates the rationale of the formula: the two rectangles ri and
rj intersect if and only if, choosing the upper-left corner of r1 (point p),
it is contained inside the rectangle whose sides are lenx(ri) + lenx(rj) and
leny(ri) + leny(rj).

le
n
y(

r i)

lenx(rj)

le
n
y(

r j)

lenx(ri)

ri

rj

R p

Figure 1: The two rectangles ri and rj intersects if and only if the upper-left
point p is contained in the rectangle R.

The selectivity σ between two datasets Di and Dj can be obtained by
generalizing the previous formula and averaging the probability computed
for all pairs of objects2.

σ(A) =
1

#geo(Di) · #geo(Dj)
·∑

a∈Di

∑
b∈Dj

(lenx(a) + lenx(b))(leny(a) + leny(b))

A

2Notice that the formula assumes that Di and Dj occupy the same reference space,
namely mbr(Di) = mbr(Dj).

6

1

A

(∑
a∈Di

#geo(Dj) ·
(lenx(a)leny(a))

#geo(Di) · #geo(Dj)
+

∑
b∈Dj

#geo(Di) ·
(lenx(b)leny(b))

#geo(Di) · #geo(Dj)
+

∑
a∈Di

∑
b∈Dj

(lenx(a)leny(b) + lenx(b)leny(a))

#geo(Di) · #geo(Dj)


1

A


coverage(Di)∑

a∈Di

(lenx(a)leny(a))

#geo(Di)
+

coverage(Dj)∑
b∈Dj

(lenx(b)leny(b))

#geo(Dj)
+

∑
a∈Di

∑
b∈Dj

(lenx(a)leny(b) + lenx(b)leny(a))

#geo(Di) · #geo(Dj)

 (2)

Notice that the first expanded term depends only on Di, so the sec-
ond summation produces the number of geometries in Dj, and this simi-
larly holds for the second term. The term 1/A ·

∑
g∈D∗(lenx(g) · leny(g))

represents the ratio between the sum of the areas of each data item in D∗
w.r.t. A. It is called coverage(D∗) and can be estimated as: coverage(D∗) '
mbrAreaavg(D∗) ·#geo(D∗)/A, while the summation can be simplified by con-
sidering the average length of MBR sides. Therefore, the formula can be
simplified as follows:

σ(A) ' 1

A
·
(

mbrAreaavg(Di) + mbrAreaavg(Dj) + (3)

(lenavg
x (Di) · lenavg

y (Dj) + lenavg
x (Dj) · lenavg

y (Di))
)

In the experiments, the cost model has been applied by considering the
selectivity estimation produced by this formula. Notice that the original
formula has been defined for rectangles while the proposed cost model is
intended for any kind of geometry. Therefore, the use of σ and σmbr can
produce an overestimation of the real selectivity.

3.3 Cost of a MapReduce Operator

This section provides a general definition for the cost of a MapReduce oper-
ator op. The cost of each operator is divided in three components: (i) the

7

cost of the mappers; (ii) the cost of the shufflers and (iii) the cost of the
reducers. The shuffle phase is the process through which data is sorted by
key and transferred from the mappers to the reducers. Clearly, this phase is
performed only if there are some reducers in the considered job.

The cost of each phase is further subdivided in three parts: CPU, local
I/O and network I/O. The measurement of these cost components is based
on a set of hypothesis:

• The unit of measure for the CPU cost is the time µ required to compares
the x (or y) component of two coordinates, namely to compare two
double values: µ = time(≤ (d1, d2)). From this, the time required to
test the intersection between two MBRs can be defined as 4 · µ, since
it corresponds to the comparison of 4 double values.

• The measure of a disk I/O or network I/O operation is given by the
number of bytes read or written.

Given such hypothesis, the cost of a MapReduce operator can be defined
as follows:

Definition 4 (Cost of an operator). Given a MapReduce operator op and a
Hadoop configuration, the cost of op can be defined by the following tuple:

C(op) = 〈#mapop, #redop,Mop〉 (4)

where #mapop (#redop) is an estimate of the number of mappers (reducers)
andMop is a matrix describing the different cost components (cpu, disk, net)
for the different phases (M: map, S: shuffle, R: reduce) of a job and has the
following structure:

Mop =


Mopcpu Sopcpu Ropcpu

M
op
disk S

op
disk R

op
disk

M
op
net S

op
net R

op
net


Each elements of Mop refers to the cost of an single mapper, reducer or
shuffler.

The matrix can be used to obtain the estimated total cost or the estimated
effective/parallel cost of a job.

Definition 5 (Estimated total and effective cost). Given a MapReduce im-
plementation op of an operator, an Hadoop configuration and the tuple C(op)

8

defining its cost. The estimated total cost of op can be obtained by multiply-
ingMop by a vector containing the estimation of the number of mappers and
reducers as below:

cvtot =Mop ×

 #mapop

#redop

#redop

 =

 cputot

disktot
nettot


In a similar way, the estimated effective cost of op can be obtained by

multiplying M by a vector containing the estimation of the number of map
and reduce runs:

cvpar =Mop ×

 #mapRuns
#redRuns
#redRuns

 =

 cpupar

diskpar
netpar


Notice that #mapRuns has a lower bound equal to d#mapop/#parMapse,

where #parMaps denotes the maximum number of mappers that can be exe-
cuted in parallel using the current Hadoop configuration, while #redRuns is
bound by d#redop/#parRedse, which usually produce only one phase for the
reducers.

Sect. 5-6 present the cost model for each spatial join operator op available
in SpatialHadoop. The cost model focuses on the estimation of C(op), from
which we can obtain both cvpar and cvtot.

4 Processing two Inputs in MapReduce

The join is an operation that requires particular attention when performed
in MapReduce, since it needs to process two datasets (files) at time, while
Hadoop traditionally processes only one argument. This section describes
the details of the reader used by SpatialHadoop to process two input files at
time generating compound splits.

Many works are available in literature that discuss how to perform a
generic join in map-reduce. Solutions in [2,3] use a strategy that combines the
two inputs into a unique file by keeping a reference to the source file. A similar
strategy is applied only by the Sjmr algorithm in Section 6.5. Conversely, the
algorithms in Sections 6.1-6.3 are based on the definition of an input format
and a corresponding software module, called reader, which is able to scan two
files at time, with the aim to produce a set of records each one containing
a pair of geometries coming from the two input datasets. In particular, the
DjInputFormatArray extends the class BinarySpatialInputFormat which
is able to read a pair of files simultaneously. The produced records have as

9

DjInputFormatArray

BinarySpatialnputFormat

DjRecordReader
reader

BinaryRecordReader

internalReader
ShapeArrayRecordReader

SpatialRecordReader

1 1 1 2

Figure 2: Classes which implements the input format and the input reader
for the distributed join algorithms.

key the pair 〈k1, k2〉, built from the input keys, and as value the pair 〈v1, v2〉
where each component has type ArrayWritable, namely an array of shapes.
In particular, the DjRecordReader, provided by the DjInputFormatArray

class, makes a Cartesian product of the values produced by two internal
record readers of type ShapeArrayRecordReader. This last reader reads all
shapes in a split and produces a record whose value is an array containing all
shapes in the block and whose key can be either a rectangle indicating the
MBR of the index cell, if the input file is indexed, or an invalid rectangle, in
case of non-indexed files. Fig. 2 illustrates the main relations between these
classes. Algorithms in Sect. 6.1-6.3 can use different filters in order to refine
the Cartesian product before the map tasks are instantiated.

The use of this reader induces another issue to solve which regards the
fact that it is not guaranteed that both splits, composing the compound
split and containing the geometries to be joined, reside in the same node. In
order to minimize the network I/O cost, the reader tries to put in the same
compound split data residing on the same node; in this way a mapper can
be allocated to that node and read the split locally. However, when this is
not possible, a mapper is assigned by Hadoop to a node where at least one
of the two splits resides. In the cost model we need to estimate the local
and the network I/O costs, thus given a node n chosen for the execution of
a mapper which contains a replica of a Di split, it is necessary to introduce
the estimation Ploc of the probability that also the split of Dj is located in
n. It may be computed as:

Ploc = 1− Pnet (5)

Pnet =

(
#nodes−#rep

#rep

)(
#nodes
#rep

) (6)

where Pnet is the ratio between the combinations corresponding to an alloca-
tion of the replicas of the second split on nodes that do not contain replicas
of the first split and all the possible combinations in which the replicas of
the second split can be allocated on the nodes.

10

5 Spatial Index in SpatialHadoop

Before proceeding with the analysis of the various spatial join operators, we
first analyze the concept of spatial index in such environmen and how it
is built. This section is useful to completely understand and compare the
spatial join operators, since some of them make direct use of indexes, while
others work without them.

SpatialHadoop has two level of indexes [17]: a global and a local one.
The global index determines how data is partitioned among nodes, while the
local index determines how data is stored inside each block. In particular,
the construction of a grid global index on a input dataset D, determines that
D is stored as a set of data files each one containing the records belonging
to one cell (or partition). Some spatial join operators are able to exploit the
use of a global index in order to efficiently retrieve the data to be processed.
SpatialHadoop provides different kinds of global and local indexes, this paper
concentrates only on grid index, the extension to other kinds of indexes is
straightforward.

The construction of an index involves two MapReduce jobs, the first one
determines the grid to be used for the dataset partitioning (see Sect. 5.1),
while the second one partitions the data using the computed grid (see Sect. 5.2).

5.1 Grid Construction

The construction of the grid implies the identification of a global MBR for
the entire dataset, this is done by the MapReduce job called Mbr. During
the map phase, the algorithm computes the MBR of each geometry inside the
splits. Thanks to an intermediate combiner, the reducer receives only one
MBR from each mapper and generates the final MBR covering the whole
dataset.

The cost for operator Mbr can be defined as C(Mbr) = 〈#mapMbr, 1,MMbr〉
where #mapMbr = dsize(D∗)/splitSze, since the data contained in D∗ are par-
titioned among mappers according to the split size, while only one reducer is
used to obtain the final result. The estimation of MMbr is discussed below.

Estimate 1 (Estimate for MMbr). The components of MMbr are reported
in Table 1 and their rationale is discussed in the following paragraphs.
cpu rationale. (i) The CPU cost of each mapper corresponds to the com-
putation of the MBR for all geometries in a split, thus it linearly depends on
their average number of vertices. The total number of vertices in a split can
be estimated by dividing the split size by the dimension of a vertex in bytes
(dsplitSz/vertSze). (ii) The CPU cost of each shuffler is dominated by the

11

Table 1: Estimation of the components of the matrix M for the grid in-
dex construction. Column Mbr regards the corresponding operator which
computes the dataset MBR, while column Part regards the corresponding
operator which partitions the dataset across the grid.

Cost Mbr Part

M
a
p

(M
)

#map

⌈
size(D∗)

splitSz

⌉ ⌈
size(D∗)

splitSz

⌉

cpu

MBR computation⌈
splitSz

vertSz

⌉
· 2µ

intersection check

#geosp(D∗) · #cells(I∗) · 4µ

disk

reading

splitSz +

writing

#geosp(D∗) ·mbrSz

reading

splitSz+

writing

(#pairsmp(D∗, I∗) · recSz(D∗))
net 0 0

S
h
u

ffl
e

(S
) cpu

MBR ordering

#mapMbr · log(#mapMbr) · 2µ


list construction

#pairs(D∗, I∗)
#redPart

+

ordering

#cells(I∗)
#redPart

log

(
#cells(I∗)
#redPart

) · 2µ

disk

writing

#mapMbr ·mbrSz

writing

#pairs(D∗, I∗)
#redPart

· recSz(D∗)

net

reading

#mapMbr ·mbrSz

reading

#pairs(D∗, I∗)
#redPart

· recSz(D∗)

R
ed

u
ce

(R
)

#red 1 max(1,min(#cells(I∗), #parReds)

cpu

MBR enlarge

#mapMbr · 4µ
#cells(I∗)
#redPart

' 0

disk

reading

#mapMbr ·mbrSz +

writing

mbrSz

reading and writing

2 ·
(
#pairs(D∗, I∗)

#redPart
· recSz(D∗)

)

net

writing

mbrSz · (#rep− 1)

writing

#pairs(D∗, I∗)
#redPart

· recSz(D∗) · (#rep− 1)

ordering procedure it applies on the MBRs produced by the mappers. Thanks
to the use of a combiner, the number of MBRs to be ordered is equal to the
number of mappers (#mapMbr). (iii) The reducer only computes the global
MBR by scanning the MBRs received from the shuffler.
disk i/o rationale. (i) Each mapper reads locally one split of size splitSz
and writes locally one MBR of size mbrSz for each processed geometry. In
particular, #geosp(D∗) is an estimates of the number of geometries of D∗
contained in a split and it can be computed as follows:

#geosp(D∗) =
splitSz

recSz(D∗)
(7)

(ii) The shuffler only writes locally one MBR of size mbrSz for each mapper.
(iii) The reducer reads locally what the shuffler has produced and writes locally
one copy of the global MBR of size mbrSz.
network i/o rationale. (i) The mappers do not read/write remotely, (ii)

12

the shuffler reads remotely one MBR of size mbrSz for each mapper, and
finally (iii) the reducer writes remotely (#rep− 1) copies of the result.

Given a global MBR for the entire dataset D∗, the number of grid cells (or
partitions) is determined by considering the size of D∗ so that the content of
each cell can fit inside a split. Since I∗ is an index with replication, namely a
geometry can be stored several times if it intersects multiple cells, the dataset
size is multiplied by a replication factor α in order to consider such situation.

#cells(I∗) = max

1,

⌈√
size(D∗) · α

splitSz

⌉2
 (8)

Notice that the number of required cells is also enlarged in order to obtain a
squared grid.

5.2 Data Partitioning

The grid built by the previous job is used during the following phase which
performs the actual data partition. In particular, each mapper receives a
split containing a set of geometries of D∗ and all cells of I∗, and it produces
as output the pairs 〈c, g〉 where the geometry g intersects the cell c. In order,
to evaluate the result produced by the mappers, it is necessary to estimate
the average number of cells of I∗ that are intersected by a geometry g ∈ D∗.

#cell∩geo(D∗, I∗) =

⌈
lenavg

x (D∗)

lencel
x (I∗)

⌉
·

⌈
lenavg

y (D∗)

lencel
y (I∗)

⌉
+ β (9)

The formula takes care of both the fact that a geometry can span between
multiple cells because its extent on the X or Y axis is greater than the cor-
responding extent of a cell (first two terms) and/or it crosses a cell boundary
(see factor β).

Moreover, to account for the case when some geometries in D∗ are com-
pletely outside the grid (as we will see in Sect. 6.3), we estimate the number
of geometries intersecting the index grid by multiplying the number of ge-
ometries (i.e., #geo(D∗)) by the following factor rint:

rint(D∗, I∗) =
area(mbr(D∗) ∩mbr(I∗))

area(mbr(D∗))
(10)

This factor considers the size of geometries negligible w.r.t. the size of the
reference space. Moreover, when the dataset D∗ completely overlaps the grid
of I∗, rint is equal to 1.

13

The cost of Part can be defined as C(Part) = 〈#mapPart, #redPart,MPart〉,
where #mapPart = dsize(D∗)/splitSze, since the number of mappers only de-
pends on the input size, while #redPart = max(1,min(#cells(I∗), #parReds)),
since the number of reducers can be greater than one only if #parReds is
greater that one with a maximum that is equal to the number of cells in the
index I∗. The estimation of MPart is discussed below.

Estimate 2 (Estimate for MPart). The components of the MPart are re-
ported in third column of Table 1.
cpu rationale. (i) The CPU cost of each mapper is given by the cost of
checking the MBR intersection between the geometries in a split and all the
cells of its index #cells(I∗) (this check costs 4µ), where #geosp(D∗) is esti-
mated using Eq. 7 and #cells(I∗) using Eq. 8. (ii) The shuffler combines the
results produced by the mappers obtaining a list for each cell and orders such
lists based on their key (i.e., the cell geometry). The parameter #pairs(D∗, I∗)
is an estimate of the number of pairs 〈c, g〉 produced by all mappers. It can be
computed in different ways according to the available statistics, some possible
estimates are shown in Table 2. In the a priori case a geometry overlaps all
grid cells, while using Eq. 9-10 we can obtain a more precise estimate. The
number of cells to be ordered by each shuffler is computed by dividing the to-
tal number of cells (#cells(I∗)) by #redPart. Insertion in the list and the test
for ordering cells cost both 2µ. (iii) Finally, the reducer simply writes to the
HDFS the result, so that a separate file split is generated for each partition.
Therefore, its CPU cost can be considered negligible.
disk i/o rationale. (i) Each mapper reads locally its split of size splitSz
and writes locally the resulting pairs 〈c, g〉 whose number is estimated by pa-
rameter #pairsmp(D∗, I∗) (see Table 2). (ii) Each shuffler writes locally the
total number of produced pairs, estimated by #pairs(D∗, I∗), divided by the
number of reducers (#redPart) and (iii) finally, the reducers read and write
the pairs produced by the shufflers.
network i/o rationale. These estimations regard only the reading phase
of the shufflers and the writing phase of the reducers, for which the same
considerations done in the previous paragraph apply.

6 Spatial Join Algorithms

SpatialHadoop provides five different operators for performing the spatial
join. The main differences between them are: (i) the use of indexed or not-
indexed data, (ii) the possibility to repartition one of the two datasets using
the index of the other, (iii) the execution of the intersection tests on the

14

Table 2: Estimates for parameters #pairs(D∗, I∗) and #pairsmp(D∗, I∗).
Par Estimate

#pairs(D∗, I∗)
a priori
#geo(D∗) · rint(D∗, I∗) · #cells(I∗)
with complete statistics
#geo(D∗) · rint(D∗, I∗) · #cell∩geo(D∗, I∗)

#pairsmp(D∗, I∗)
a priori
#geosp(D∗) · rint(D∗, I∗) · #cells(I∗)
with complete statistics
#geosp(D∗) · rint(D∗, I∗) · #cell∩geo(D∗, I∗)

map or on the reduce side. All operators share a plane-sweep like algorithm
(PSalgo) for checking the intersections between two list of geometries. The
difference mainly resides in the way they build the two lists.

PSalgo firstly orders the geometries in the two lists based on the minimum
X coordinate of their MBR. Then given the two ordered lists, it scans them
switching from one list to the other one according to the MBR distribution
along the X axis. Finally, for each pair of intersecting MBRs, the actual
intersection between the underlying geometries is checked. The estimate of
the PSalgo cost is presented below based the study in [16].

Estimate 3 (CPU cost of PSalgo). Given two datasets Di, Dj and two sub-
sets of their geometries li ⊆ Di and lj ⊆ Dj, with cardinality ni and nj,
respectively, the CPU cost for executing PSalgo on them is estimated as:

ps(ni, nj, A) =

ordering li

ni log(ni) · µ +

ordering lj

nj log(nj) · µ +
MBR intersection

ni · nj · σmbr(A) · 4µ +

geometry intersection

ni · nj · σmbr(A) · T∩geo

where A is the area of the reference space used for computing the selectivity
using Eq. 2.
Rationale: (i) The cost of the ordering phases depends on the cardinality
of the lists and is classically estimated as n log(n). (ii) The number of com-
parisons between MBRs can be estimated by means of the MBR selectivity
between the two datasets (i.e., σmbr(A)), for which an estimate has been pro-
posed in Eq. 2. (iii)The number of intersection test between geometries can be
estimated using the same selectivity parameter. (iii) T∩geo is the cost of test-
ing the intersection between two geometries using a plane-sweep algorithm
applied to their vertices. Therefore, given v = #vertavg(Di) + #vertavg(Dj),
T∩geo = v log(v) · 2µ.

15

Table 3: Summary of the various spatial join operators.
Op Reader Index Join-side Rep. Sect.

Djni X 0 map 7 6.1
Djgi X 2 map 7 6.2
Djre X 1 map X 6.3
Djdr 7 1 reduce X 6.4
Sjmr 7 0 reduce 7 6.5

Table 4: Estimation for the spatial join operators (map-side). Notice that
MPart∗ , SPart∗ and RPart∗ are obtained from column 3 of Table 1 by properly
instantiating the input dataset and grid index.

Cost Djni Djgi Djre (Rep) Djre (join)

M
a
p

(M
)

#map

⌈
size(Di)

splitSz

⌉⌈
size(Dj)

splitSz

⌉
#cells(Ii)·

#cells(Ij)Pgrid
∩cells

#mapPart(Di, Ij)
#cells(Ii)·

#cells(Ij)Prep
∩cells

cpu

plane-sweep alg.

ps(#geosp(Di),

#geosp(Dj), A)

filtering phase

(#geocl(Di, Ii)+

#geocl(Dj , Ij)) · 4µ+
plane-sweep algorithm

ps(#geoselcl (Di, Ii),

#geoselcl (Dj , Ij), Ammbr)

MPartcpu (Di, Ij)
MDjgi
cpu

Ammbr = Acl

disk

reading Di

splitSz +
reading Dj

splitSz · Ploc +
writing

joinSzmap(A)

reading Di

cellSz(Di) +
reading Dj

cellSz(Dj) · Ploc +
writing

joinSzmap(Ammbr)

MPartdisk (Di, Ij)
MDjgi
disk

Ammbr = Acl

net

reading Dj

splitSz · Pnet +
writing

joinSzmap(A)·

(#rep− 1)

reading Dj

cellSz(Dj) · Pnet +
writing

joinSzmap(Ammbr) ·

(#rep− 1)

MPartnet (Di, Ij)
MDjgi
net

Ammbr = Acl

Shuffle (S) 0 0 SPart(Di, Ij) 0

Reduce (R) 0 0 RPart(Di, Ij) 0

The following sections provide a brief description of each algorithm and an
analysis of its costs. Table 3 summarizes the main differences between them
and provides a reference to the corresponding section. In the table, column
Reader indicates the use by the mappers of a reader module, which ac-
cesses two files at time; column Index indicates the number of datasets that
require an index, column Join-side indicates if the join task is performed
by the mappers or the reducers, column Rep. indicates if a repartition is
applied before the join, and finally the column Sect. reports the subsection
describing the algorithm.

16

6.1 Distributed Join with No Index

The first considered spatial join operator works on two input datasets that
are not indexed, it is the MapReduce implementation of the Block Nested
Loop Join (BNLJ) and it will be called Djni in the following. Djni is a
map-only job, namely it has no reducers, and clearly it can also be classified
as a map-side join.

Given two input files Fi, Fj, the map input is prepared by the reader,
which generates one pair of splits for each mapper; overall all the pairs of
splits belonging to the Cartesian products Fi × Fj will be considered. Fig. 3
illustrates the behaviour of a mapper of Djni when it works on a “combined”
split s = (spliti, splitj) ∈ Fi × Fj. It initially loads the content of such splits
into two lists, then it applies PSalgo for checking the intersection between the
geometries in the two lists.

Di

Dj

File i File j

spliti

splitj Join spliti x splitj

spliti

splitj

Figure 3: Example of execution of the Djni algorithm. The two input
datasets Di and Dj are stored respectively into two files. Each split spliti of
Di will be compared with every split of Dj. Moreover, a generic split can
contain geometries belonging to any area of the reference space, since data
is not indexed.

The cost for operator Djni(Di, Dj) can be defined as:

C(Djni) = 〈#mapDjni, 0,MDjni〉

where: #mapDjni = dsize(Di)/splitSze · dsize(Dj)/splitSze, since all the possi-
ble pairs of splits are generated and each pair is processed by one mapper,
while the cost estimates ofMDjni are reported in of Table 4 (column 2) and
are justified by the following considerations.

Estimate 4 (Estimate for MDjni). Djni is a map-only job, thus Table 4
reports only the cost of the mappers.

17

cpu rationale. Notice that this cost is influenced only by the application
of PSalgo to the input lists and considering as reference area A the area of
the entire reference space A = area(mbr(Di)∪mbr(Dj)). Thus, the cost only
depends on the number of geometries contained in the lists #geosp(D∗), which
derives directly from the split size (see Eq. 7). The total CPU cost for Djni
is dominated by the number of mappers (#mapDjni).
disk i/o rationale. Each mapper certainly reads locally one split of size
splitSz, and with probability Ploc (see Eq. 5) also the second one. Moreover,
it writes locally the result of the join between the two lists of geometries.
The size in bytes of such result (i.e., joinSzmap(A)) depends on the selectivity
between the input datasets and can be estimated as:

joinSzmap(A) = #geosp(Di) · #geosp(Dj) · σ(A) ·
(recSz(Di) + recSz(Dj)) (11)

where A = area(mbr(Di) ∪mbr(Dj)).
network i/o rationale. Each mapper reads the second split of size splitSz
from the network with a probability Pnet (see Eq. 6) and it writes remotely
(#rep− 1) copies of the join result (joinSzmap(A)).

6.2 Distributed Join with Grid Index

The second spatial join operator considered in this paper works on two in-
dexed datasets, it will be called Djgi and is a MapReduce adaptation of the
Grid File Spatial Join algorithm [18]. This operator is similar to the previous
one, it is again a map only job (and consequently a map-side join) However,
in this case the reader work on indexed data, namely the key of each record
represents an index cell, and a filter is used for preparing the input splits, so
that only the pairs of splits regarding intersecting cells are generated. There-
fore, the number of generated combined splits, and consequently the number
of mappers, is equal to the number of pairs of intersecting cells. With refer-
ence to Fig. 4, given a cell ci ∈ Ii, it is combined only with the cells of Ij for
which the intersection is not empty (i.e., kh, ki, kj, kk).

In order to estimate the number of mappers, we need to introduce a
formula to compute the probability Pgrid

∩cells that given two index cells, ci ∈ Ii
and cj ∈ Ij, their intersection is not empty. Suppose that the cells of Ij are
smaller than the cells of Ii, this probability can be defined as:

Pgrid
∩cells = rint(Dj, Ii) · rinDi, Ij) · (12)⌈

lencel
x (Di)

lencel
x (Dj)

⌉
·
⌈
lencel

y (Di)

lencel
y (Dj)

⌉
·
(((((((((((
#cells∩(Ii,mbr(Dj))

#cells∩(Ij,mbr(Di)) ·(((((((((((
#cells∩(Ii,mbr(Dj))

18

where rint(D∗, I∗) has been defined in Eq. 10 and is the percentage of cells of
I∗ that falls inside the MBR of D∗, while #cells∩(I∗, mbr(D∗)) is the number
of cells of I∗ that intersect the MBR of D∗ and it can be explicitly computed
from the available statistics.

The formula is obtained by considering the conjunction of the event
corresponding to the choice of a cell of Ii that falls in the intersection
mbr(Di)∩mbr(Dj) (namely, rint(Dj, Ii)) with the event corresponding to the
choice of a cell of Ij that falls in the same intersection (namely, rint(Di, Ij));
then among all the possible pairs of cells that fall in the intersection (denom-
inator) we count the number of intersecting cells (numerator), producing the
fraction that appears in the formula.

Di

Dj

Index i Index j

Join ci x kh

ci

kh

Di

Dj

ki

kj

kk

ci

kh

Figure 4: Example of execution of the Djgi algorithm. The two input
datasets Di and Dj have been indexed using a grid. Each cell ci of Ii will
be compared only with any other cell of Ij for which the intersection is not
empty (i.e., kh, ki, kj and kk). Notice that in this case only geometries that
reside in a nearby space will be compared.

The cost for the operator Djgi can be defined as:

C(Djgi) = 〈#mapDjgi, 0,MDjgi〉

where #mapDjgi = #cells(Ii)·#cells(Ij)·Pgrid
∩cells, while the components ofMDjgi

are discussed below. Notice that if the two datasets occupy the same region,
namely their MBRs completely overlap, the terms rint(D∗, I∗) are equal to
1 and #cells∩(I∗, mbr(D∗)) = #cells(I∗), so the estimation of the number of
mappers becomes: #mapDjgi = dlencel

x (Di)/lencel
x (Dj)e·dlencel

y (Di)/lencel
y (Dj)e·

#cells(Ii).

Estimate 5 (Estimate for MDjgi). Djgi is a map-only job, thus column
three of Table 4 contains only the mapper costs.
cpu rationale. The CPU cost of a Djgi mapper is very similar to the

19

cost of a Djni mapper; the only difference is the presence of the prelimi-
nary filter phase that reduces the number of geometries that are contained
in the lists received by PSalgo. This filter is applied at the beginning of each
map iteration: the intersection between two cells is computed (called mmbr)
and only the geometries that intersect mmbr are considered during the plane-
sweep. The filter cost is dominated by the number of geometries of Di and Dj

contained in each of cell of their corresponding indexes Ii and Ij. The num-
ber of geometries in each cell of I∗, namely #geocl(D∗, I∗), can be estimated,
considering a uniform distribution, by dividing the number of geometries in
D∗ by the number of cells of I∗. In the general case, the overlap between a
grid I∗ and the MBR of D∗ can be only partial (as we will see for Djre in
Sect. 6.3), thus in the following formula we use the number of intersecting
cells (i.e., #cells∩(I∗,mbr(D∗))) instead of the total number of cells, even if
in the Djgi case these numbers coincide:

#geocl(D∗, I∗) =
#geo(D∗) · α

#cells∩(I∗,mbr(D∗))
(13)

The replication factor α > 1 introduced in Tab. 2 is also used here to deter-
mine the geometries per cell.

The filter phase reduces the number of geometries to be considered by
PSalgo. In particular, parameter #geosel

cl (D∗, I∗) is an estimate of the average
number of geometries of D∗ that survive after the filter phase. It is obtained
by multiplying #geocl(D∗, I∗) by a filter factor, denoted as ψ(D∗), that can be
estimated by considering the cells dimensions of the indexes. Let us assume
that Ij has cells are smaller than the cells of Ii, then ψ(Dj) = 1 while
ψ(Di) = area(cells of Ij)/area (cells of Ii). Clearly, this can be an over-
estimation of the selectivity, since it considers only the cell dimensions and
not their displacement. Notice also that in this case the cost estimation of
PSalgo considers a selectivity computed on an area equal to the average area
of the not empty mmbr (called Ammbr).
disk i/o rationale. As in the case of the operator Djni, each mapper
reads locally the first dataset and with a probability Ploc the second one, the
only difference is that the split size is not fixed but it depends on the number
of geometries in each index cell, namely cellSz = #geocl(D∗, I) · recSz(D∗)).
Moreover, it writes locally one copy of the join result (i.e., joinSzmap(Ammbr))
whose dimension depends on the selectivity computed using Ammbr.
network i/o rationale. As in the case of the operator Djni, each mapper
reads remotely the second dataset with a probability Pnet and the split size
is the same of the one used for the local I/O. Moreover, it writes remotely
(#rep− 1) copies of the join result with the same size estimated for the local
I/O.

20

6.3 Distributed Join with Repartition

A variant of Djgi is the operator denoted as Djre, which additionally per-
forms a repartition of one of the two datasets w.r.t. the index of the other.
It is a MapReduce adaptation of the Bulk-Index Join [19]. In particular, if
both input datasets are indexed, the smaller one is repartitioned using the
index of the bigger one; conversely, if only dataset Dj (Di) is indexed, then
Di (Dj) is repartitioned using the index of Dj (Di). This operator consists
of two map-reduce jobs, the first one performs the repartition and the sec-
ond one is similar to Djgi. The repartition phase can be particularly useful
when the two datasets have a partial overlapping in this case the geometries
of the repartitioned dataset that do not intersect the MBR of the other are
filtered out, since they certainly will not participate to the join result. More-
over, only pairs of fully overlapping cells will be considered, thus leading to
a reduced number of balanced mappers.

Di

Dj

Index i Index j

Join ci x ci

ci

ci

ci

Figure 5: Example of execution of the Djre algorithm. In this case dataset
Di is repartitioned using the grid index of Dj. Therefore, after such repar-
tition any cell ci ∈ Ii will be compared only with the corresponding cell
ci ∈ Ij.

6.3.1 Repartition Phase

Without loss of generality we consider that Di has to be repartitioned w.r.t.
the index of Dj. The repartition is performed by a job, called Rep, composed
of a map and a reduce phase. The mappers scan each geometry of Di and
build a pair 〈c, g〉 for each cell c ∈ Ij that intersects a geometry g ∈ Di. This
job is similar to the Part job performed during the index construction and
illustrated in Sect. 5.2. However, in this case the dataset to be partitioned is

21

Di while the considered index is Ij, namely the index of Dj. Therefore, with
reference to the formulas defined in Eq. 10 the factor rint could be different
from 1.

6.3.2 Join Phase

The cost of the join job is the same as the cost of the Djgi operator except
for the formula which computes the P∩cells since in this case the two datasets
share the same index grid. In other words, the number of combined splits
that will be generated is equal to the number of cells that intersect the MBR
of both datasets. P∩cells can be obtained by simplifying Eq. 12 as follows:

Prep
∩cells =

#cells∩(Ij,mbr(Di))

#cells∩(Ij,mbr(Dj)) · #cells∩(Ij,mbr(Di))
(14)

Moreover, as regards to the selectivity used for computing the result dimen-
sion, namely joinSzmap(Ammbr), since the cells of both indexes are the same,
for each mapper it always occurs that: Ammbr = Acl, where Acl is the area of
a cell.

6.4 Distributed Join with Direct Repartition

A variant of Djre consists in performing the repartition and the join inside
the same job. In this case, the mappers are responsible for performing the
repartition, while the reducers perform the join. This operator can be clas-
sified as a reduce-side join and will be denoted as Djdr. In particular, the
mappers perform the same job described for the Rep job in Section 6.3.1,
while the reducers receive from the shuffler a set of cells together with their
intersecting geometries coming from the repartitioned dataset Di. For each
received cell, a reducer loads the geometries of Dj that resides in the same
cell, through the use of the index, then it executes PSalgo on these two lists.

The cost for operator Djdr can be defined as follows:

C(Djdr) = 〈#mapDjdr, #redDjdr,MDjdr〉

where #mapDjdr = dsize(Di)/splitSze and #redDjdr = max(1, min(#cells∩(Ij,
mbr(Di)), #parReds)), which are equal to the number of mappers and reduc-
ers for the Rep job presented in Sect. 6.3.1. The estimates of MDjdr are
discussed below.

Estimate 6 (Estimate forMDjdr). The cost estimates ofMDjdr are reported
in Table 5 (column 2) and are justified by the following reasoning.
cpu rationale. (i) The CPU cost of each mapper and shuffler is equal to

22

Table 5: Estimation for the spatial join operators (reduce-side).
Cost Djdr Sjmr (Di grid) Sjmr (Dj grid) Sjmr (join)

M
a
p

(M
)

#map #mapRep(Di) #mapMbr(Di) #mapMbr(Dj)

⌈
size(Di) + size(Dj)

splitSz

⌉
cpu MRep

cpu (Di, Dj) MMbr
cpu (Di) MMbr

cpu (Dj)

cell-geom pairs

#pairsmp(D∪, I∪) · 4µ

disk MRep
disk(Di, Dj) MMbr

disk (Di) MMbr
disk (Dj)

reading

splitSz +
writing

#pairsmp(D∪, I∪) · recSz(D∪)

net MRep
net (Di, Dj) MMbr

net (Di) MMbr
net (Dj) 0

S
h
u

ffl
e

(S
)

cpu SRep
cpu (Di, Dj) SMbr

cpu (Di) SMbr
cpu (Dj) (

list constr.

#pairs∪ +

ordering

#cellsred∪ log #cellsred∪)2µ

disk SRep
disk(Di, Dj) SMbr

disk (Di) SMbr
disk (Dj)

writing

#pairs∪ · recSz(D∪)

net SRep
net (Di, Dj) SMbr

net (Di) SMbr
net (Dj)

reading

#pairs∪ · recSz(D∪)

R
ed

u
ce

(R
)

#red #redRep #redMbr(Di) #redMbr(Dj) max(1,min(#cells(I∪), #parReds))

cpu

#cellsred(Di) ·
intersection test

ps(#geocl(Di, Ij),

#geocl(Dj , Ij , Acl))

RMbr
cpu (Di) RMbr

cpu (Dj)

#cellsred∪ ·
intersection test

ps(#geocl(Di, I∪),

#geocl(Dj , I∪)), Acl

disk

#cellsred(Di) · (
reading

(cellSz(Di)+

cellSz(Dj) · Ploc) +
writing

joinSzcl(Acl, Ij))

RMbr
disk (Di) RMbr

disk (Dj)

reading

#pairs∪ · recSz(D∪) +
writing

#cellsred∪ · joinSzcl(Acl, I∪)

net

#cellsred(Di) · (
reading

cellSz(Dj) · Pnet +
writing

joinSzcl(Acl, Ij)·

(#rep− 1))

RMbr
net (Di) RMbr

net (Dj)

writing

#cellsred∪ · joinSzcl(Acl, I∪) ·

(#rep− 1)

the corresponding costs of the Rep job (Sect. 6.3.1). (ii) For each cell c
passed to a reducer, it applies PSalgo to the list of geometries coming from the
two datasets and belonging to c. The number of geometries belonging to a
cell of Ij, namely #geocl(D∗, Ij), is estimated as done in Eq. 13. Parameter
#cellsred(Di) is an estimate of the number of cells processed by each reducer
and it can be computed as: #cells∩(Ij,mbr(Di))/#redDjdr.
disk i/o rationale. The local I/O cost for each mapper and shuffler is the
same as the corresponding cost of the Rep job (Sect. 6.3.1). As regards to
the reducers, each task reads the records of Di locally, while the records of
Dj can be read locally only with probability Ploc. Finally, joinSzcl(Acl, Ij) is
the estimated size in bytes of the result produced by each reducer for each cell

23

and it can be computed as:

joinSzcl(Acl, Ij) = #geocl(Di, Ij)#geocl(Dj, Ij)σ(Acl) ·
(recSz(Di) + recSz(Dj)) (15)

which is similar to the output produced by each mapper in the Rep job.
However, since a reducer could process more than one cell, this parameter is
multiplied for the number of cells assigned to each reducer (#cellsred(Di)).
network i/o rationale. As for the previous costs, also the cost of the
network I/O for the mappers and shufflers is equal to the corresponding costs
of the Rep job (Sect. 6.3.1). As regards to the reducers, for each cell c, they
read remotely, with a probability Pnet, the portion of Dj overlapping c of size
cellSz(Dj); while they write remotely (#rep − 1) copies of the result of size
joinSzcl(Acl, Ij).

6.5 Spatial Join Map Reduce

The last operator considered in this paper is called SJMR (Spatial Join Map
Reduce) and has been designed to perform spatial join efficiently for non-
indexed datasets. It is the map-reduce implementation of the Partition Based
Spatial Merge Join [20] and it will be denoted as Sjmr in the following.
It uses a uniform grid for performing the spatial join which is computed
from the union of the MBR of the two datasets, while the cell dimension is
automatically determined based on the input files size.

Di

Dj

Grid ixj

Join cij

cij

cij

Figure 6: Example of execution of the Sjmr algorithm. In this case a global
index I∪ is build which includes the union of the MBRs of the two datasets.
Each cell cij is separately processed considering the geometries coming from
both datasets.

24

6.5.1 Grid Computation

The uniform grid is built by using two map reduce jobs, each one is respon-
sible for determining the MBR of a dataset. The cost of the each Mbr job
can be estimated as shown in Sect. 6.2. The two MBRs are then merged
into a global one and the number of required cells is determined so that the
content of each cell can fit into a split. In particular, #cells(I∪) denotes the
number of cells for this uniform grid and it is computed using Eq. 8 where
D∗ = Di ∪Dj.

6.5.2 Join Phase

As regards to the join phase, each mapper receives in input a set of geometries
coming from both datasets. Notice that Sjmr does not use the binary reader
introduced in Sect. 4 for combining the input files. Conversely, the input files
are merged into a single one by concatenating them. For each geometry g
in input, a mapper directly computes the set of cells that intersect its MBR.
For each match cell-geometry found in this step, it writes in output the pair
〈c, 〈f, g〉〉, where the key is the grid cell c, and the value is again a pair
containing the identifier f of the file from which the geometry comes from
and the geometry g itself. Each reducer can work on one or more cells. For
each cell, it builds two lists by dividing the geometries in a cell based on
the file from which they come from. Given the two lists, PSalgo is performed
on them for producing the final result. Figure 6 illustrates the behaviour of
Sjmr when processes a grid cij belonging to the global grid built considering
the union of the two datasets.

The cost of operator Sjmr can be defined as follows:

C(Sjmr) = 〈#mapSjmr, #redSjmr,MSjmr〉

where #mapSjmr = d(size(Di)+size(Dj))/splitSze, since it works on the union
of the two input datasets, while #redSjmr = max(1,min(#cells(D∪), #parReds)),
since the number of reducers can be greater than one only if the Hadoop
configuration allows more than one reducers, with a maximum equal to the
number of cells. The components of the MSjmr are discussed below.

Estimate 7 (Estimate forMSjmr). The cost estimates ofMSjmr are reported
in Table 5 (column 5) and are justified by the following rationale.
cpu rationale. (i) Each mapper works on a split coming from the union
of the two input datasets: D∪ = Di ∪ Dj. The operation performed on
each geometry takes a constant time (i.e., 4µ) to determine the intersect-
ing cells, since it only uses some comparisons between the MBR coordi-
nates and the cell lengths. The average number of geometries contained in a

25

split is represented by the parameter #geosp(D∪), which can be estimated as
#geosp(D∪) = splitSz/recSz(D∪), where recSz(D∪) is the average record size
computed considering the records of both datasets. Moreover, the estimated
number of matches cell-geometry (#pairsmp(D∪, I∪)) is computed as in Ta-
ble 2. (ii) The shufflers collect the pairs produced by the mappers, combines
the record related to the same cell into lists and order such lists based on the
key (i.e., the cell). The number of records to be combined by the shuffler is
estimated by the parameter #pairs∪:

#pairs∪ =
#pairs(Di, I∪) + #pairs(Dj, I∪)

#redSjmr

The number of cells ordered by each shuffler is estimated by the parameter
#cellsred∪ :

#cellsred∪ =
1

#redSjmr

· ((16)

#cells∩(I∪,mbr(Di)) + #cells∩(I∪,mbr(Dj))−
#cells∩(I∪,mbr(Di ∩Dj))

where the term #cells∩(I∪, D∗) is the number of cells of I∪ that intersect
D∗. Notice that in the formula #cells∩(I∪, mbr(Di∩Dj)) has been subtracted
for not counting twice the same cell. (iii) Finally, the reducers perform the
spatial join using PSalgo inside each cell. Each reducer works on a number of
cells #cellsred∪ (see Eq. 16).
disk i/o rationale. (i) Each mapper reads locally a union split of size
splitSz and writes locally a record for each intersecting pair of geometry-
cell. The average number of intersecting pairs has been estimated above by
the parameter #pairsmp(D∪, I∪), while the size of each record is estimated as
recSz(D∪) = #vertavg(D∪) · vertSz, where #vertavg(D∪) is the average num-
ber of vertices of the geometries contained in the union of the two datasets
Di ∪Dj. (ii) Given the output produced by the mappers, each shuffler writes
locally its combined records whose number is estimated by #pairs∪ and whose
size by recSz(D∪). (iii) Each reducer reads locally the input produced by its
corresponding shuffler and writes a portion of the join result whose size is
obtained by multiplying the number of its cells (#cellsred∪) by the parameter
joinSzcl(Acl, I∪) (see Eq. 15).
network i/o rationale. Only the shufflers and the reducers performs net-
work I/O. In particular, each shuffler reads a portion of the data produced
by all mappers (of size #pairs∪ · recSz(D∪)) and the reducers remotely write
(#rep− 1) copies of the results.

26

7 Validation and Experiments

The cost model presented in the previous sections has been validated using
a set of experiments on synthetic datasets. We first evaluate the quality of
the cost model by comparing the estimated costs and the actual measured
costs, considering a representative case where geometries in each dataset have
an MBR area equal to 1e−8 w.r.t. the area of the reference space and five
vertices, while the size of a dataset is 128 MBytes and the size of the other
one varies from 128 MBytes to 5120 MBytes. In this comparison we try to
keep the various cost components as much separated as possible. However,
as regards to the I/O, we compare the sum of the local and network I/O
estimates with the total number of bytes read and written as reported in the
Hadoop logs (HDFS/File: Number of bytes read/written); indeed, the
statistics that we can find in the logs do not distinguish between readings and
writings. The actual comparison regarding this overall I/O cost can be done
directly, since the estimates and measured values are both in bytes, while for
the CPU cost we can only compare the trend of the estimates with the trend
produced by the log value CPU time spent. Fig. 7 reports the estimated cost
for the overall I/O, while Fig. 8 reports the number of bytes read and written
by each algorithm as reported in the Hadoop logs. The average difference
between the two is about 9%. Similarly, Fig. 9-10 report the estimated and
actual CPU costs; as we can notice the two trends are very similar. However,
the estimated CPU costs are lower than the measured one, since the CPU cost
taken from the logs includes the time required by Hadoop to instantiate the
map-reduce jobs, while we omit it in the proposed cost model formulation.

In order to compare the results produced by the cost model with the ones
produced by the experiments, we introduce a relation of dominance. This
relation can be applied to the cost estimations in order to produce a partial
order among the operators, with the aim to choose the best candidate in a
given situation.

Definition 6 (Dominance). Given two cost vectors cv∗(op1), cv∗(op2) defined
as in Def. 5, representing the estimates of the cost for operators op1 and op2

respectively, where * stands for tot or par. We say that op1 dominates op2

according to the cost model (op1 ≺ op2), if the following conditions hold:

• ∀i ∈ {1, 2, 3} : cv∗(op1)[i] ≤ cv∗(op2)[i]

• ∃j ∈ {1, 2, 3} : cv∗(op1)[j] < cv∗(op2)[j]

where cv∗(op)[i] denotes the i-th elements of vector cv∗(op).

27

0	

5E+09	

1E+10	

1,5E+10	

2E+10	

2,5E+10	

3E+10	

3,5E+10	

128	 384	 768	 1152	 1536	 1920	 2304	 2688	 3072	 3584	 4096	 4608	 5120	

Co
st
	

Es'mated	I/O	cost	(local+net)	128	

DJNI	

DJGI	

DJRE	

DJDR	

SJMR	

Figure 7: Estimated trend for the local and network I/O in MBytes for
the cases |Di| = 128 MBytes and |Dj| from 128 MBytes to 5120 MBytes,
considering the various spatial-join algorithms. Sjmr has the greater I/O
since it initially repartitions the two datasets, while Djre and/or Djdr has
the lower I/O since they repartition only the smaller dataset.

The equality among the estimated costs is evaluated considering a thresh-
old of 1%. Moreover, since the partial order cannot always produce one best
candidate, we apply the following procedure to choose the best algorithm:

1. given the characteristics of the input datasets, we compute the domi-
nance relations among the operators by considering their cost estimates
and we insert in the set F the non-dominated operators.

2. if F = {op}, then op is the best choice.

3. if F contains more then one operator, we can apply some heuristics in
order to reduce its size. Some possible heuristics are described below.
Finally, we randomly choose one of the operators from F .

In the experiments we apply the following heuristic. It is based on a
constant δ computed with a set of experiments on the cluster performance
for comparing the CPU and I/O costs: the aim is to determine in which
cases an advantage on the CPU can balance a disadvantage on the I/O. This
behaviour has been observed in particular for the Sjmr.

Definition 7 (Cost model heuristic). Given two operators op1 and op2 be-
longing to the set F of non-dominated ones and the parameter δ. If op1

28

0,00E+00	

5,00E+09	

1,00E+10	

1,50E+10	

2,00E+10	

2,50E+10	

3,00E+10	

3,50E+10	

4,00E+10	

128	 384	 768	 1152	 1536	 1920	 2304	 2688	 3072	 3584	 4096	 4608	 5120	

Co
st
	

Experiments	-	I/O	(local+net)	128	

DJNI	

DJGI	

DJRE	

DJDR	

SJMR	

Figure 8: Trend for the local and network I/O in MBytes obtained from the
experiments performed with |Di| = 128MBytes and |Dj| from 128 MBytes
to 5120 MBytes, considering the various spatial-join algorithms.

0,0E+00	

2,0E+08	

4,0E+08	

6,0E+08	

8,0E+08	

1,0E+09	

1,2E+09	

1,4E+09	

1,6E+09	

128	 384	 768	 1152	 1536	 1920	 2304	 2688	 3072	 3584	 4096	 4608	 5120	

Co
st
	

Es'mated	CPU	cost	128	

DJNI	

DJGI	

DJRE	

DJDR	

SJMR	

Figure 9: Estimated trend for the CPU cost for the cases |Di| = 128 MBytes
and |Dj| from 128 MBytes to 5120 MBytes, considering the various spatial-
join algorithms. Sjmr is the algorithm with the least number of estimated
comparisons to perform, while Djni is the one with the greatest number of
comparisons to perform.

29

0,00E+00	

5,00E+05	

1,00E+06	

1,50E+06	

2,00E+06	

2,50E+06	

3,00E+06	

3,50E+06	

4,00E+06	

128	 384	 768	 1152	 1536	 1920	 2304	 2688	 3072	 3584	 4096	 4608	 5120	

Co
st
	

Experiments	CPU	cost	128	

DJNI	

DJGI	

DJRE	

DJDR	

SJMR	

Figure 10: Trend for the CPU cost obtained from the experiments performed
for the cases |Di| = 128MBytes and |Dj| from 128 MBytes to 5120 MBytes,
considering the various spatial-join algorithms.

is better than op2 on the CPU cost and op2 is better than op1 on the total
I/O cost, then op1 is discarded from F if the difference on CPU cost does
not balance the difference on the total I/O costs, evaluated considering the
parameter δ.

The cost model has been tested in various scenarios by varying different
characteristics of the involved datasets such as: the dataset cardinalities, the
dimension of the geometry MBRs and the rate of dataset overlapping. The
experiments reveal that the cost model is able to detect the best algorithm
in 88% of cases and, considering the effective execution time, it always gains
from a minimum of 21% to a maximum of 67% w.r.t. a random choice.

Experiment 1 (Cardinality – ExpCard). Given two datasets with the same
reference space (i.e., percentage of overlapping equals to 100%) and whose
elements are polygons with the same number of vertices (i.e., 5) and an MBR
of size 1e−8 w.r.t. the reference space, ExpCard changed the cardinality of
the two datasets starting from 128 MBytes (1 split) to 5120 MBytes (40
splits).

Tables 6-15 reports the results of ExpCard for some of the considered
pairs of cardinalities. Each table is relative to a specific cardinality for dataset
Di (reported in the caption) while column # contains the number of splits
for the dataset Dj, the other four columns reports the ordering obtained
from the experiments as a number and with a color the recommendation
of the cost model, column DL contains the percentage of delay in choosing

30

Table 6: Results of ExpCard without consider the index cost for the case
|Di| = 1 split, while |Dj| is equal to the number of splits in column #.

Djni Djgi Djre Djdr Sjmr DL GW GR

1 2 1 5 4 3 5% 32% 10%

3 4 1 3 2 5 36% 62% 22%

6 4 2 3 1 5 6% 59% 25%

9 4 2 1 3 5 4% 47% 21%

12 4 3 2 1 5 1% 52% 13%

15 4 3 1 2 5 2% 49% 27%

18 4 3 1 2 5 1% 54% 30%

21 4 3 1 2 5 4% 53% 29%

24 4 3 1 2 5 5% 50% 28%

28 4 3 1 2 5 4% 47% 28%

32 5 3 1 2 4 1% 48% 28%

36 5 3 1 2 4 3% 50% 30%

40 4 3 1 2 5 3% 47% 29%

Average 6% 50% 25%

one of the solutions recommended by the cost model in place of the actual
best algorithm, while GW is the percentage of gain in choosing one of the
recommended algorithms in place of the actual worst algorithm and GR is
the same as GW but w.r.t. performing a random choice.

We consider the two cases in which the cost of the index construction is
or is not considered (+2in and +1in means that an algorithm requires the
preliminary presence of two or one index). A green square denotes the al-
gorithms recommended by the cost model, namely the non-dominated ones,
while a red square denotes the worst algorithm, namely the one that is dom-
inated by all the other algorithms. Notice that since the dominance relation
induces a partial order, more than one green square can be present in a row.
Thus, the more the recommendation is focused the more the delay decreases
and the gain increases.

Experiment 2 (MBR size – ExpMBR). Given the datasets considered in
Exp. 1, ExpMBR changes the MBR size of each geometry to 1e−7 w.r.t.
the reference space.

Table 16 reports the results of ExpMBR without and with considering
the cost of the index construction (column IC). In particular, column G
denotes the cardinality in MBytes of the first dataset Di, for each of these
groups the cardinality of the second dataset Dj is changed from 128 MBytes

31

Table 7: Results of ExpCard without consider the index cost for the case
|Di| = 9 splits, while |Dj| is equal to the number of splits in column #.

Djni Djgi Djre Djdr Sjmr DL GW GR

1 4 1 2 3 5 6% 55% 22%

3 2 1 3 5 4 90% 7% -13%

6 5 1 3 4 2 63% 42% 12%

9 5 1 3 4 2 43% 57% 23%

12 5 1 3 4 2 32% 63% 25%

15 5 1 3 4 2 50% 66% 24%

18 5 1 3 4 2 38% 69% 28%

21 5 1 3 4 2 27% 74% 37%

24 5 1 3 4 2 26% 76% 39%

28 5 1 3 4 2 21% 77% 41%

32 5 1 3 4 2 14% 79% 44%

36 5 1 3 4 2 15% 80% 44%

40 5 1 3 4 2 11% 81% 46%

Average 34% 63% 28%

(1 split) to 5120 MBytes (40 splits) and the averages are computed. Column
|F| denotes the average number of non-dominated solutions produced by the
cost model, while column b∈F reports the percentage of cases in which the
operator b, which is the best in the experiments, is contained in F . Column
%DL is the average percentage of delay w.r.t b obtained by selecting one of
the non-dominated solutions in F . Columns %GW and %GR are the aver-
age percentage of gain in choosing one of the non-dominated solutions in F
w.r.t. the experimental worst operator and a random operator, respectively.
Finally, column w∈L reports the percentage of cases in which the operator
w, which is the worst in the experiments, is contained in the set of dominated
solutions L produced by the cost model.

Experiment 3 (Overlapping – ExpOver). Given the datasets considered in
Exp. 1, ExpOver changes the percentage of overlapping of the two datasets
to 50% and 25%.

Table 17 reports the results of ExpOver without and with consider-
ing the cost of the index construction and applying an overlap of 50% and
25% (column OV), the meaning of other columns has been described for
ExpMBR.

32

Table 8: Results of ExpCard without consider the index cost for the case
|Di| = 18 splits, while |Dj| is equal to the number of splits in column #.

Djni Djgi Djre Djdr Sjmr DL GW GR

1 4 3 1 2 5 1% 52% 29%

3 5 1 2 3 4 16% 40% 14%

6 5 1 4 3 2 38% 63% 26%

9 5 1 3 4 2 53% 67% 23%

12 5 1 3 4 2 45% 71% 28%

15 5 2 3 4 1 20% 77% 41%

18 5 1 3 4 2 0% 82% 50%

21 5 1 3 4 2 21% 82% 48%

24 5 2 3 4 1 16% 84% 51%

28 5 2 3 4 1 20% 85% 52%

32 5 2 3 4 1 18% 86% 54%

36 5 3 2 4 1 15% 86% 56%

40 5 2 3 4 1 19% 86% 56%

Average 22% 74% 40%

Table 9: Results of ExpCard without consider the index cost for the case
|Di| = 28 splits, while |Dj| is equal to the number of splits in column #.

Djni Djgi Djre Djdr Sjmr DL GW GR

1 5 3 1 2 4 3% 44% 25%

3 5 1 3 4 2 6% 48% 14%

6 5 1 3 4 2 23% 729% 34%

9 5 1 2 4 3 20% 78% 42%

12 5 1 3 4 2 19% 80% 43%

15 5 1 3 4 2 33% 80% 42%

18 5 2 3 4 1 20% 84% 51%

21 5 2 3 4 1 25% 85% 53%

24 5 2 3 4 1 28% 85% 54%

28 5 2 3 4 1 37% 86% 56%

32 5 2 3 4 1 27% 88% 60%

36 5 2 3 4 1 29% 88% 60%

40 5 2 3 4 1 30% 89% 60%

Average 23% 78% 46%

33

Table 10: Results of ExpCard without consider the index cost for the case
|Di| = 40 splits, while |Dj| is equal to the number of splits in column #.

Djni Djgi Djre Djdr Sjmr DL GW GR

1 5 3 1 2 4 1% 47% 28%

3 5 4 1 2 3 8% 60% 26%

6 5 1 3 4 2 17% 37%

9 5 1 3 4 2 7% 75% 47%

12 5 2 1 4 3 7% 82% 51%

15 5 2 3 4 1 12% 84% 54%

18 5 2 3 4 1 19% 86% 54%

21 5 2 3 4 1 21% 86% 58%

24 5 2 3 4 1 24% 88% 60%

28 5 2 3 4 1 28% 88% 61%

32 5 3 2 4 1 40% 89% 62%

36 5 3 2 4 1 51% 89% 61%

40 5 2 3 4 1 42% 89% 62%

Average 21% 81% 51%

Table 11: Results of ExpCard consider also the index cost for the case |Di|
= 1 split, while |Dj| is equal to the number of splits in column #.

Djni Djgi Djre Djdr Sjmr DL GW GR

+2in +1in +1in

1 1 5 4 3 2 1% 58% 40%

3 1 5 4 3 2 68% 64% 50%

6 1 5 4 3 2 51% 64% 49%

9 1 5 3 4 2 17% 61% 46%

12 1 5 4 3 2 25% 58% 43%

15 1 5 3 4 2 6% 57% 41%

18 1 5 3 4 2 12% 53% 37%

21 1 5 3 4 2 12% 54% 38%

24 1 5 3 4 2 7% 52% 37%

28 1 5 3 4 2 3% 53% 37%

32 2 5 3 4 1 5% 50% 33%

36 2 5 3 4 1 5% 49% 32%

40 1 5 3 4 2 1% 50% 33%

Average 16% 56% 40%

34

Table 12: Results of ExpCard consider also the index cost for the case |Di|
= 9 splits, while |Dj| is equal to the number of splits in column #.

Djni Djgi Djre Djdr Sjmr DL GW GR

+2in +1in +1in

1 1 5 3 4 2 0% 72% 62%

3 1 5 3 4 2 45% 39% 17%

6 2 5 3 4 1 0% 56% 46%

9 5 4 2 3 1 0% 58% 49%

12 5 4 2 3 1 0% 68% 54%

15 5 4 2 3 1 0% 70% 51%

18 5 4 2 3 1 0% 72% 52%

21 5 4 2 3 1 0% 73% 52%

24 5 4 2 3 1 0% 77% 56%

28 5 4 2 3 1 0% 79% 58%

32 5 4 2 3 1 0% 79% 56%

36 5 4 2 3 1 0% 81% 59%

40 5 4 2 3 1 0% 81% 59%

Average 3% 70% 52%

Table 13: Results of ExpCard consider also the index cost for the case |Di|
= 18 splits, while |Dj| is equal to the number of splits in column #.

Djni Djgi Djre Djdr Sjmr DL GW GR

+2in +1in +1in

1 1 5 3 4 2 0% 57% 43%

3 2 5 3 4 1 43% 37% 14%

6 5 4 3 2 1 46% 45% 25%

9 5 4 2 3 1 53% 59% 31%

12 5 4 2 3 1 50% 66% 34%

15 5 4 2 3 1 0% 81% 61%

18 5 4 2 3 1 0% 82% 60%

21 5 4 2 3 1 0% 84% 62%

24 5 4 2 3 1 0% 86% 65%

28 5 4 2 3 1 0% 87% 66%

32 5 4 2 3 1 0% 88% 67%

36 5 4 2 3 1 0% 88% 67%

40 5 4 2 3 1 0% 89% 68%

Average 15% 73% 51%

35

Table 14: Results of ExpCard consider also the index cost for the case |Di|
= 28 splits, while |Dj| is equal to the number of splits in column #.

Djni Djgi Djre Djdr Sjmr DL GW GR

+2in +1in +1in

1 2 5 3 4 1 5% 52% 36%

3 2 5 3 4 1 66% 33% 12%

6 5 4 2 3 1 45% 57% 29%

9 5 4 2 3 1 47% 68% 35%

12 5 4 2 3 1 47% 75% 42%

15 5 4 2 3 1 51% 77% 45%

18 5 4 2 3 1 0% 87% 66%

21 5 4 2 3 1 0% 88% 68%

24 5 4 2 3 1 0% 89% 69%

28 5 4 2 3 1 0% 90% 72%

32 5 4 2 3 1 0% 91% 72%

36 5 4 2 3 1 0% 91% 73%

40 5 4 2 3 1 0% 91% 73%

Average 20% 76% 53%

Table 15: Results of ExpCard consider also the index cost for the case |Di|
= 40 splits, while |Dj| is equal to the number of splits in column #.

Djni Djgi Djre Djdr Sjmr DL GW GR

+2in +1in +1in

1 2 5 3 4 1 4% 48% 32%

3 4 5 2 3 1 77% 31% 9%

6 5 4 2 3 1 47% 65% 35%

9 5 4 2 3 1 50% 74% 41%

12 5 4 2 3 1 42% 78% 45%

15 5 4 2 3 1 47% 81% 50%

18 5 4 2 3 1 45% 83% 52%

21 5 4 2 3 1 0% 90% 70%

24 5 4 2 3 1 0% 90% 72%

28 5 4 2 3 1 0% 91% 73%

32 5 4 2 3 1 0% 92% 75%

36 5 4 2 3 1 0% 93% 77%

40 5 4 2 3 1 0% 92% 76%

Average 24% 78% 54%

36

Table 16: Results of ExpMBR. Column “G” is the cardinality in MBytes
of Di, for each of them the cardinality of Dj is changed from 1 to 40 splits.

G IC |F | b ∈ F %DL %GW %GR w ∈ L

128 7 2.1 85% 9.9% 47.6% 21.8% 100%
1152 7 3.2 77% 32.6% 61.5% 26.2% 100%
2304 7 2.8 62% 40.0% 69.3% 31.9% 100%
3584 7 2.7 46% 51.2% 77.3% 33.8% 100%
5120 7 2.2 15% 52.6% 75.5% 35.8% 100%

128 X 2.0 100% 20.3% 46.0% 31.4% 100%
1152 X 1.2 100% 8.8% 67.9% 48.6% 100%
2304 X 1.4 92% 20.4% 70.2% 47.0% 100%
3584 X 1.5 92% 34.1% 71.6% 45.3% 92%
5120 X 1.8 92% 45.1% 71.3% 41.5% 92%

Table 17: Results of ExpOver. Column “G” is the cardinality in MBytes
of Di, for each of them the cardinality of Dj is changed from 1 to 40 splits.

G IC OV |F | b ∈ F %DL %GW %GR w ∈ L

128 7 0.50 2.1 92% 5% 61% 34% 100%
1152 7 0.50 2.2 85% 44% 73% 43% 100%
2304 7 0.50 3.0 100% 3% 80% 50% 100%
3584 7 0.50 2.8 92% 25% 83% 55% 100%
5120 7 0.50 2.6 92% 20% 86% 60% 100%

128 X 0.50 2.0 100% 26% 55% 39% 100%
1152 X 0.50 1.9 100% 30% 57% 34% 100%
2304 X 0.50 2.2 100% 32% 68% 40% 100%
3584 X 0.50 2.4 100% 34% 76% 53% 100%
5120 X 0.50 2.0 100% 21% 76% 53% 100%

128 7 0.25 2.3 85% 9% 72% 45% 92%
1152 7 0.25 2.2 92% 82% 81% 57% 100%
2304 7 0.25 2.2 100% 46% 86% 63% 100%
3584 7 0.25 2.2 100% 47% 88% 67% 100%
5120 7 0.25 2.2 92% 42% 84% 57% 100%

128 X 0.25 2.0 100% 40% 53% 38% 100%
1152 X 0.25 3.1 100% 53% 48% 21% 100%
2304 X 0.25 3.1 100% 38% 64% 34% 100%
3584 X 0.25 2.9 100% 35% 70% 41% 100%
5120 X 0.25 2.8 100% 31% 73% 46% 92%

37

8 Conclusion

In this paper we present a cost model for ranking the five spatial join al-
gorithms available in SpatialHadoop 2.4. The cost model proposes for each
algorithm some formulas for estimating the cost of the map, shuffle and re-
duce tasks distinguishing three components: CPU, Local I/O and Network
I/O cost. The estimates vary according to the properties of the input datasets
in terms of: cardinality, extent and number of vertices of the geometries, and
spatial overlapping of the datasets.

Exhaustive experiments using synthetic datasets with variable character-
istics allow us to confirm that the proposed cost model is able to detect the
best algorithm in 88% of cases and it always gains from a minimum of 21%
to a maximum of 67% with respect to the random choice of the algorithm
to be executed. In particular, the cost model was able to detect the point at
which the best algorithm changes. Future work will regard the extension of
the cost model to other index types, currently only grid-index is considered,
and to non-uniformly distributed datasets.

References

[1] A. Eldawy and M. F. Mokbel, “SpatialHadoop: A MapReduce frame-
work for spatial data,” in 2015 IEEE 31st International Conference on
Data Engineering, April 2015, pp. 1352–1363.

[2] T. White, Hadoop: The Definitive Guide, 4th ed. O’Reilly Media, Inc.,
2015.

[3] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita, and
Y. Tian, “A Comparison of Join Algorithms for Log Processing in
MapReduce,” in Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’10. New
York, NY, USA: ACM, 2010, pp. 975–986. [Online]. Available:
http://doi.acm.org/10.1145/1807167.1807273

[4] J. Gu, S. Peng, X. S. Wang, W. Rao, M. Yang, and Y. Cao,
“Cost-Based Join Algorithm Selection in Hadoop,” in Proceedings
of the 15th International Conference on Web Information Systems
Engineering, ser. WISE 2014, 2014, pp. 246–261. [Online]. Available:
https://doi.org/10.1007/978-3-319-11746-1\ 18

38

[5] A. Eldawy and M. F. Mokbel, “The era of big spatial data,” in 31st
IEEE International Conference on Data Engineering Workshops, April
2015, pp. 42–49.

[6] E. H. Jacox and H. Samet, “Spatial Join Techniques,” ACM Trans.
Database Syst., vol. 32, no. 1, Mar. 2007. [Online]. Available:
http://doi.acm.org/10.1145/1206049.1206056

[7] E. G. Hoel and H. Samet, “Benchmarking spatial join operations with
spatial output,” in Proceedings of the 21th International Conference on
Very Large Data Bases, ser. VLDB ’95. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1995, pp. 606–618.

[8] A. Papadopoulos, P. Rigaux, and M. Scholl, “A performance evaluation
of spatial join processing strategies,” in Proceedings of 6th International
Symposium on Advances in Spatial Databases, ser. SSD’99. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1999, pp. 286–307.

[9] D. Šidlauskas and C. S. Jensen, “Spatial joins in main memory: Im-
plementation matters!” Proc. VLDB Endow., vol. 8, no. 1, pp. 97–100,
2014.

[10] B. Sowell, M. V. Salles, T. Cao, A. Demers, and J. Gehrke, “An experi-
mental analysis of iterated spatial joins in main memory,” Proc. VLDB
Endow., vol. 6, no. 14, pp. 1882–1893, 2013.

[11] X. Lin, Z. Meng, C. Xu, and M. Wang, “A practical performance model
for hadoop mapreduce,” in 2012 IEEE International Conference on
Cluster Computing Workshops, Sept 2012, pp. 231–239.

[12] I. Sabek and M. F. Mokbel, “On spatial joins in mapreduce,” in Proceed-
ings of the 25th ACM SIGSPATIAL International Conference on Ad-
vances in Geographic Information Systems, ser. SIGSPATIAL’17. New
York, NY, USA: ACM, 2017, pp. 21:1–21:10.

[13] J. Nievergelt, H. Hinterberger, and K. C. Sevcik, “The grid file: An
adaptable, symmetric multi-key file structure,” in Proceedings of 3rd
Conference of the European Cooperation in Informatics – Trends in In-
formation Processing Systems, A. Duijvestijn and P. C. Lockemann, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1981, pp. 236–251.

[14] Spatial Databases with Application to GIS. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2002.

39

[15] N. An, Z.-Y. Yang, and A. Sivasubramaniam, “Selectivity estimation
for spatial joins,” in Proceedings 17th International Conference on Data
Engineering, 2001, pp. 368–375.

[16] W. Aref and H. Samet, “A cost model for query optimization using
r-trees.” in Proceedings of ACM GIS.

[17] A. Eldawy, L. Alarabi, and M. F. Mokbel, “Spatial partitioning tech-
niques in spatialhadoop,” Proc. VLDB Endow., vol. 8, no. 12, pp. 1602–
1605, Aug. 2015.

[18] L. Harada, M. Nakano, M. Kitsuregawa, and M. Takagi, “Query pro-
cessing for multi-attribute clustered records,” in Proceedings of 16th In-
ternational Conference on Very Large Data Bases. Morgan Kaufmann,
1990, pp. 59–70.

[19] J. van den Bercken, B. Seeger, and P. Widmayer, “The bulk index join:
a generic approach to processing non-equijoins,” in Proceedings 15th
International Conference on Data Engineering (Cat. No.99CB36337),
1999, pp. 257–.

[20] J. M. Patel and D. J. DeWitt, “Partition based spatial-merge join,”
SIGMOD Rec., vol. 25, no. 2, pp. 259–270, Jun. 1996. [Online].
Available: http://doi.acm.org/10.1145/235968.233338

40

University of Verona
Department of Computer Science
Strada Le Grazie, 15
I-37134 Verona
Italy

http://www.di.univr.it

