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Abstract
In the last decade, multi-rotors flying robots had a rapid development in industry
and hobbyist communities thanks to the affordable cost and their availability of
parts and components. The high number of degrees of freedom and the challenging
dynamics of multi-rotors gave rise to new research problems. In particular, we are
interested in the development of technologies for an autonomous fly that would al-
low using multi-rotors systems to be used in contexts where the presence of humans
is denied, for example in post-disaster areas or during search-and-rescue operations.
Multi-rotors are an example of a larger category of robots, called “under-actuated
mechanical systems” (UMS) where the number of actuated degrees of freedom
(DoF) is less than the number of available DoF. This thesis applies methods com-
ing from geometric mechanics to study the under-actuation problem and proposes a
novel method, based on the Hamiltonian formalism, to plan a feasible trajectory for
UMS. We first show the application of a method called “Variational Constrained
System approach” to a cart-pole example. We discovered that it is not possible
to extend this method to generic UMS because it is valid only for a sub-class of
UMS, called “super-articulated” mechanical system. To overcome this limitation,
we wrote the Hamilton equations of the quad- rotor and we apply a numerical “di-
rect method” to compute a feasible trajectory that satisfies system and endpoint
constraints. We found that by including the system energy in the multi-rotor states,
we are able to compute maneuvers that cannot be planned with other methods and
that overcome the under-actuation constraints. To demonstrate the benefit of the
method developed, we built a custom quad- rotor and an experimental setup with
different obstacles, such as a gap in a wall and we show the correctness of the
trajectory computed with the new method.

Thesis Advisor: Prof. Paolo Fiorini
Title: Full Professor
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“Say what you know, do what you
must, come what may”

Sofia Kovalevskaya
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Chapter 1

Introduction

1.1 Summary of the Chapter
In this Chapter, we introduce the contest of the problem of the trajectory planning
and the motivations that inspired this thesis. We present the current challenges in
robotics, in particular the ”multi-rotor” systems that have still interesting problems
to overcome. After an overview of the problem and the methods present in litera-
ture, we will show the contribution of this thesis in the field of trajectory planning
and the application of geometric mechanics to robotics.

1.2 Statement of the problem
The problem of this thesis is to find an optimal control input that drives an under-
actuated mechanical system from an initial starting configuration to a final target
configuration. In particular, using a geometric approach [8], we can state the prob-
lem has searching a control function u(t) that minimize a certain cost function

J =
∫ T

0
g(x(t),u(t))dt (1.1)

subject to the following conditions:

• the dynamic evolution of the state space is expressed as ẋ = f (x(t),u(t)) and
is subject to constraints on the kinematics, the dynamics and on the controls

• f and g≥ 0 are smooth and x ∈M where M is a smooth manifold

• the endpoint conditions are x(0) = x0 and x(T ) = xT

A detailed description of the problem is provided in Section 1.8 but the idea
of this thesis is to use concepts coming from the geometric mechanics to gener-
ate an optimal trajectory for under-actuated mechanical systems. In particular, we
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are interested to generate and execute on real quad-rotor a trajectory in the full
configuration-space.

1.3 Motivations
Thanks to recent investments and public attention to the so-called “Industrial revo-
lution 4.0”, the modern society has a big expectation from robotics, which is seen
as an investment to change everybody’s lifestyle. This technological evolution will
have a substantial impact on the way we produce goods and services, but there are
also many open questions involving other aspects of human life such as philosophy,
anthropology, ethics, sociology, law, etc.

Figure 1-1: Robot Yumi ABB: a popular robot used in industry mainly to assemble
light products. Credits: www.abb.com

One of the most sensitive topics in this area is the addition of autonomy to
robots with the aim to transfer the execution of the selected tasks from humans to
machines avoiding tedious procedures and increasing the safety of the operators.

A concrete example of automation on an airplane is the “autopilot” mode which,
since the 1912 assists the pilot in some phases of a regular journey. This feature
allows pilots to focus on critical stages of the flight such as landing and take off,
demanding to the automatic controller the tedious part of the journey

Another field where autonomy is playing an important role in the automotive
industry. Since 2014, Tesla Model S offers a driver assist system composed of ser-
vices such as speed control, autosteer, speed assist and others. This technology
cannot be considered “fully autonomous”, but many companies like Tesla, Google,
and many others are trying to increase autonomation in cars and trucks. The auto-
motive industry was also the first field that gave a precise definition of each level of
autonomy in a car [80]. The levels of autonomy are:

12



• Level 0 -No driving automation: The entire driving task is under the driver
control, also when the safety systems are active.

• Level 1 -Driver assistance: The car has a control on the lateral and longitudi-
nal motion (not at the same time), and the driver controls everything else.

• Level 2 -Partial driving automation: a driving automation system control
(ADS) controls lateral and longitudinal motion at the same time, and the
driver supervises the driving automation system, detecting and responding
to external objects or events.

• Level 3 - Conditional driving automation: ADS controls the entire dynamic
driving task with the expectation that the driver is ready to be warned about
any issues and he is ready to take control of the vehicle.

• Level 4 - High driving automation : Some driving subtasks (ex. parking,
staying in the same lane in the freeway) are done by the automatic system
control without the expectation of a human intervention

• Level 5 - Full driving automation: All the driving tasks are done by the auto-
matic system control without user intervention

Increasing the level of autonomy is not easy because there are a lot of unknown
external events that are difficult to forecast and handle safely.

There are particular environments or situations where the presence of humans is
denied and the only way to operate is through fully autonomous robots. If we look at
space exploration, for example, some projects push forward the use of autonomous
robots on other planets or asteroids. In real missions, the robot receives the task

Figure 1-2: NASA/JPL Curiosity rover Credits: https://www.jpl.nasa.gov

plan from Earth and executes it in complete autonomy. After that, the results taken
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from the onboard sensors are sent back to operators on Earth who analyze them and
decide how to plan the next phase of the mission. In this case, the robot has to avoid
obstacles and make a decision in complete autonomy so it is necessary to take into
account both kinematic and dynamic constraints and merge this information with
the real-time data acquired by the sensors.

There is a strong need for autonomy also when an accident happens and rescuers
cannot search for survivors due to the presence of fire, avalanches, nuclear radia-
tions or other external obstacles. After the Fukushima Dai-ichi nuclear accident in
2011, many robotic researchers focused their efforts to prepare robotic systems that
can reach and operate in post-disaster areas. Two interesting projects that investi-
gate the use of robots in post-disaster areas are the Sherpa project [44] and ERL
Emergency Robots project [24]

In the Sherpa project, the goal is to support operators in search-and-rescue op-
erations in the mountain area. In this project, a fixed-wing drone is used to patrol
a mountain area to find people who are lost. Another case of study considered in
this project was the rescue of people buried by an avalanche with the help of a
multi-rotor that follows a magnetic signal coming from an anti-avalanche system
(ARVA).

A similar project is the “ERL Emergency project” where the goal is to propose
a robotic challenge in which an autonomous robot has to investigate a post-disaster
area to search for possible survivors or to do some emergency tasks (for example
closing a valve etc.).

1.4 Robotic systems classification
There are many methods to drive a robot and many model to represent them as we
will see in the next Chapter. Refering to [61], in this Section we make a simple
classification of the various robotic systems based on their main characteristics:

• Quasi-static system: is a robot described by a configuration space that con-
sider only the position of the robot and it is also controlled using a set of
Cartesian positions. In this case the dynamics does not influence the motion
of the system.

• Kinematic system: is system controlled in velocity where the state space con-
tains only a configuration point q ∈M.

• Mechanical system: a system controlled in force and the state space contains
positions and velocities x = [q, q̇].

• Under-actuated mechanical system (in the following ”UMS” both for singu-
lar and plural devices): A system with less controllable degrees of freedom
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than the observable ones where the control inputs are forces and the dynamic
evolution involve positions and velocities.

Formal definitions, mathematical specifications and other characteristics of UMS
are presented in more details in Chapter 3. In the next Section we present a par-
ticular robot that could be classified as an under-actuated mechanical system: the
multi-rotor. We are interested in this particular robot because it contains heteroge-
neous degrees of freedom (rotational and translational) and it is influenced by the
gravity force.

1.5 Multi-rotors
In the last decade most of the methods concerning the development of autonomous
systems were applied to multi-rotors that ”currently represent the best bet in terms
of maneuverability and their ability to carry small payloads” [49]. Since the be-
gin of the new millennium, multi-rotors had a rapid development in the hobbyist
communities thanks to the affordable cost and the availability of parts and compo-
nents, mainly present in the toy market. The high number of degrees of freedoms
and the challenging dynamics of multi-rotors put new questions also in the research
community.

In [39] authors proposed a first approach to control multi-rotors, finding good
force/torques controls to stabilize the systems. A back-step approached was used to
control the actuated degrees of freedom {roll, pitch,yaw, thrust} in order to mini-
mize the error between the desired trajectory and the position and the attitude esti-
mated by sensors placed on-board. Two years later, in [18] the researchers propose
a Lagrangian model of quadrotor describing the position and the attitude of the sys-
tem using six coordinates {x,y,z,roll, pitch,yaw}. Applying a non-linear controller
[41], the authors show that the multi-rotor is able to reach a target point in the Carte-
sian position {x,y,z,yaw}. A comparison between the two methods can be found
in [12].

Since these early works, the literature counts many different approaches and
variations to stabilize and control multi-rotors. In this thesis, we are interested in
a particular sub-topic involving multi-rotors, which is the planning of trajectory
of multi-rotors from an initial point to a target one, also considering dynamic and
external constraints, as presented in the following Chapters.

The first approach to trajectory planning for multi-rotors was proposed in [21].
In this work authors minimize a cost function that involves the velocity of the multi-
rotor, assuming that the energy consumption is proportional to the average velocity.
The problem of finding an optimal trajectory was reduced to find a sequence of
polynomial functions in the flat-outputs, which is the space of the states generated
by the differential flat equations (see Section 2.5 for details). In a second phase,
the method chooses a speed profile that allows following the computed trajectory
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respecting the dynamics of the system. A very interesting approach was proposed
in [13] where the authors applied the collocation methods to minimize the flying
time. The idea is to approximate the trajectory with a sequence of polynomial
functions parametrize by a sequence of variables (λ ’s). The authors present the
problem of the under-actuation of multi-rotors showing two equations that represent
the second-order non-holonomic constraints (that we present in Chapter 3). These
equations are used to reduce the configuration space from a six-dimensional space
{x,y,z,roll, pitch,yaw} to a four dimensional configuration space {x,y,z,yaw}.

In [34] the authors introduce the concept of the Hamiltonian function (see Chap-
ter 3 for details) to compute a reachable set thanks to the use of a specific toolbox.
In this work, the system dynamics is not considered through the full trajectory but
is approximated by the finite set of segments in which the trajectory is divided. For
each segment, a different control algorithm is chosen, and the problem of finding
the best switching conditions from one segment to the next is also solved. To drive
the multi-rotor to its final state in a given time, the authors propose a validation
method that tests if a sequence of states can reach the desired final configuration.

In [66] the authors use the influence of the dynamics to plan aggressive maneu-
vers, in contrast with the previous works where the focus was to stabilize the quad-
rotor around an equilibrium point. The main idea of the paper is to define a sequence
of keyframes, which are common configuration points defined as {x,y,z,yaw}. The
method builds piece-wise polynomial functions where the parameters are optimized
using, as the cost function, the square of the norm of the jerk. Also in this work,
the authors use the flatness property to control the quad-rotor in the space of the flat
outputs.

In [42] there is an application of the Pontryagin Maximum principle (for details
see Chapter 3). The authors propose to build the augmented Hamiltonian function
considering also the state constraints and searching for good values for the adjoint
variable to minimize the cost function. This is the application to quadrotor of the
direct adjoining approach taken from [25]

The method described in [92] computes an optimized function using a black-box
approach based on the pseudo-spectral method [93]. In this case, the best trajec-
tories in flat outputs are searched to minimize the execution time and satisfy the
multi-rotor dynamics. The benefit of this approach is the possibility of considering
upper and lower bounds of the states and control functions.

The interest in solving the trajectory generation problem is also evident in two
very recent results proposed in [59] and [27]. In [59] the trajectory computation
method is similar to [49] but, thanks to a powerful onboard computer, the state es-
timation of the multi-rotor is computed using a stereo vision camera. In [27] the
trajectory is computed using an interpolating polynomial function whose parame-
ters are chosen to satisfy the multi-rotor dynamics and to avoid possible collisions
with the obstacles, using a special vision sensor.
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1.6 Multi-rotors control
To introduce the contribution of this thesis we presents in more details the control
strategies for multi-rotors found in the literature. We can identify two main classes
of controllers: the attitude controller and the position controller.

1.6.1 Attitude controller

Figure 1-3: A schema of an attitude controller for multi-rotors

As we can see in figure 1-3, the attitude controller use an attitude estimator,
usually placed on-board, which processes the data coming from different sensors
to give the current attitude of the multi-rotor. The reference commands are pro-
vided by the pilot or from a ”Ground station” computer, in the form of four angles
(roll, pitch,yaw, thrust). The attitude controller computes the error between com-
mands and the current attitude and send forces and torques to another controller,
called ”Mixer”. The role of the mixer is to transform the desired forces and torques
to a current motors of the multi-rotor. As presented in Chapter 6, there are many
ways to place motors on a frame and we can have a minimum of four motors up to
hundred or more. In this thesis, we decided to work with four motors placed ac-
cording to ”X” configuration to simplify the mathematical formulation and reduce
the cost of the experimental setup.

1.6.2 Position controller
An important task to autonomously is controlling a quad-rotor in Cartesian space,
consider obstacles present in the environment, and decide to avoid or even to in-

17



teract with them. The simplest way to solve this problem is to use the ”Flat-
ness property” (presented in Section 2.5 to map the references commands from
r = (x,y,z,yaw) to r = (roll, pitch,yaw, thurst).

In 1-4 we can see how it is possible to modify the attitude controller presented in
the previous Section to include the Flatness property, changing the reference point
from an attitude configuration to a position configuration.

Figure 1-4: The schema of a position controller for multi-rotors

1.7 Discussion about current techniques
The Flatness property is useful from a practical point of view but in this way, we
lose two degrees of freedom and we can plan the motion of the quad-rotor only
in four degrees of freedom (q = x,y,z,yaw). In particular it is not possible to in-
troduce constraints or target points with a configuration in six degrees of freedom
(q = x,y,z,roll, pitch,yaw). In the Section 1.5 we presented an overview of all the
different techniques and we saw that most of them are based on the Flatness prop-
erty, which induce the authors to use a switching controller passing from an attitude
controller to a position controller [66] [59] because it is the simplest way to control
the multi-rotor in position putting also attitude constraints. This method allow to
execute aggressive maneuvers, such as passing a generic oriented window, but are
local methods so it is not possible to compute a global optimal trajectory, as shown
in Chapter 2

It is also interesting to note that in [34] [42] the authors use optimal control
techniques defining an augmented Hamiltonian function but it is not very clear how
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it is implemented and how the algorithms use the “Pontryagin Maximum principle”.
In general, we can see the most of the works use old methods and apply them

to this new interesting object, which is the multi-rotor, but there is still a lack of
theory. For example, it is not clear how the constraints coming from the under-
actuation affect the planning of a global trajectory.

1.8 Thesis contribution
Motivated by the challenge of trajectory planning for multi-rotors, in this thesis
we are interested in developing a method that generates a feasible trajectory in
six degrees of freedom (q = x,y,z,roll, pitch,yaw) overcoming the limitation of
switching between the attitude controller and the ”Flatness” controller. Figure 1.8
shows an idea of the control schema that is useful to understand the contribution of
the thesis

Figure 1-5: A schema of a position controller for multi-rotors

We want to generate a dynamically feasible trajectory which connects an ini-
tial point to a target one but in a six DoF configuration space. To do this we use
the dynamics of the system and, when we find the desired trajectory, we pass the
subset of actuated degrees (q = roll, pitch,yaw, thurst) to the attitude controller.
Compared to the ”Flatness” property used in the other works present in literature,
we are doing a map between (x,y,z,roll, pitch,yaw)→ (roll, pitch,yaw, thurst) in-
stead of (x,y,z,yaw)→ (roll, pitch,yaw, thurst). The benefit is the possibility of
overcoming constraints represented in six degrees of freedom.

We have carried out an interdisciplinary research that involves four disciplines:
Robotics, Computer Science, Geometric mechanics and Control Theory. Mathe-
matical tools give the possibility to see the concrete case studied in robotics through
a lens which shows the nature of the issues to be solved in trajectory planning. In
particular, Differential Geometry places the role of kinematic and dynamic con-
straints in the correct geometrical spaces, and help solving the challenges of trajec-
tory planning.
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To find a solution of this problem, we started by studying the works done be-
tween the 80’s and the 90’s (see Chapter 2) to find how it is possible to understand
the characteristics of under-actuated mechanical systems from a mechanical and
geometrical point of view. We saw many interesting works and methods which are
not currently “popular” in the robotics community but that give an in-depth under-
standing of the problem that we want to study.

To deal with under-actuated mechanical systems, we need to know how kine-
matic and how potential energies affect the motion of the system.

In particular, we propose to use the Hamiltonian formulation that allows to ex-
plicitly consider the evolution of the energy in the system with the benefit of having
a formal model, given by the differential geometry structures, which is useful as a
link with the advanced mathematical methods, as presented in Chapter 4 and 5

Finally, we propose the implementation of our approach to a real case to execute
a task never presented in the literature: using a quad-rotor to pass through a deep
gap in a wall.

1.9 Organization
In Chapter 2 are presented the literature works about motion planning for multi-
rotors. In Chapter 3 there are the theory useful to understand the characteristics of
the under-actuated mechanical systems whereas in Chapter 4 we applied a method
coming from the geometric mechanics to a simple under-actuated robot: the cart-
pole. In Chapter 5 we presented a method to plan a feasible trajectory for quadrotor
overcoming the limitation introduced by the under-actuation and proposing a task
never done before: flying trough a small gap in a deep wall. In Chapter 6 we
demonstrate the new method building a real setup and we analyzed the results.
Finally in Chapter 7 we present some conclusions and future works.
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Chapter 2

State of the art

2.1 Introduction
In this Chapter we want to present an overview of the methods presented in the
literature about the motion planning problem. We want to understand what are the
main techniques and their limitations to find a specific research area where we want
to give our contribution.

2.2 Motion Planning
Automatic Motion planning is a discipline born in the late 90’[14] with the goal to
give robots the ability to reach a target in an environment that could be partially
known, sometimes with the presence of fixed or moving obstacles. If a robot is
moving in a real world, it has to deal with physical laws and geometrical constraints
so we can say that ”motion planning” is an interdisciplinary research fields which
include knowledge coming from analytical mechanics, control theory, differential
geometry and computer science.

In this thesis, we consider a robot as a mechanical system composed of a set
of actuators and sensors which can make changes to the device and to the real
world. In particular, these physical changes will happen within a defined area,
called workspace. In this area, we can avoid or interact with external objects and
the laws of physics act in kinematic and dynamic properties of the body. In the
workspace, a user plan the motion of the robot as a sequence of movements or goals
to reach that are useful to achieve its needs. According to Jean-Claude LaTombe
[51], we can define the basic motion planning problem as:

Assumption 2.1. Let A be a single rigid object - the robot - moving in the Euclidean
space W, called workspace, represented by RN , with N = 2 or 3.

Assumption 2.2. Let B1 . . .Bq be fixed rigid objects distributed in W. The Bi’s are
called obstacles
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Assumption 2.3. Assume that both the geometry of A,B1 . . .Bq and the locations of
the Bi’s in W are accurately known. Assume further that no kinematic constraints
limit the motion of A (we say that A is free-flying object)

Definition 2.4. The basic motion planning problem is: given an initial position
and orientation and a goal position and orientation of A in W, generate a path
τ specifying a continuous sequence of positions and orientations of A avoiding
contact with the Bi’s starting at the initial position and orientation, and terminating
at the goal position and orientation. Report failure if no such path exists.

To solve a motion planning problem, it is essential to know the configuration of
a robot. In the simplest case, the configuration of a robot is a specification of an
element of the robot relative to a fixed reference point [4]. The set of all possible
configuration of the robots is defined, in this context, as the configuration space. As
we can see in the next Section, there is a more precise definition of configuration
space, but for the 80’s works, this definition was enough to solve the fundamental
motion planning problem. The dimension of the configuration space is equal to the
number of independent variables used to represent the configurations, which are
also called in literature degrees of freedom (DOF) of the robot.

This first approach to motion planning was studied and used to solve the ”piano
mover’s problem” [60]. In this paper, the size of the robot is considerate as a geo-
metric constraint that limits the possible directions of motion due to the presence of
obstacles. The problem is to find a path from a starting configuration to a target one
modifying position and orientation of the robot avoiding the obstacles as shown in
figure 2.2

Figure 2-1: The piano mover’s problem [60]

During the 80’s, roboticists worked on this problem proposing many heuristics
and approximated methods. The idea was to decompose the configuration space
into simple cells finding which ones were inside the free-space defined as space
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where there were no obstacles. Finding a possible collision-free path was the prob-
lem of finding a sequence of free cells connecting the cell with the initial configu-
ration point to the final configuration point. For an overview of all this method, see
the book ”Robot motion planning” [51] and the references within.

In 1987, Jean-Paul Lamond in [53] said that finding a collision-free path along
obstacles without considering the kinematic constraints was an approximation un-
acceptable when we have to deal with real robots, and he introduced new models
and mathematical techniques to represent the reality and achieve more precise com-
putation. Sastry and Murray, in 1989, introduced a new concept [81] in robotics
which uses the kinematics constraints, i.e., constraints on robot velocities,such as
for example nonholonomic constraints. This algorithm is based on differential ge-
ometry concepts, in particular, Lie Algebra, to find a sinusoidal input which drives
the robot in directions that are not allowed by the kinematic constraints.

These approaches can be seen as the solution of the classical mathematical prob-
lem: the ”rolling disk problem” which is the typically constrained motion plan-
ning. During the 90’s many authors proposed different approaches to this problem
[45, 9, 81, 69, 5, 38]

This application shows in a simple way that when a wheel touches the terrain if
we are in the presence of the pure rolling condition, velocity in the point of contact
has to be zero, which is an external kinematic constraint.

Figure 2-2: The ”rolling disk” and the ”car with trailers” examples

The rolling disk case started a long sequence of publications on nonhonolonmic
motion planning with a lot of examples and algorithms. The most popular case
is the ”car-like” motion problem, that researchers solved by developing a different
kind of methods to steering a car with [53, 9, 57, 76, 48] or without [81, 52, 75, 46]
trailers.

Another step forward was done by J.Bobrow et al. in 1985 [10] with the in-
troduction of the Kinodynamic motion planning. In this case, it was pointed out
the importance of considering not only kinematic constraints, but also dynamic
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constraints, in particular bounds on forces, velocities, and accelerations. For an
overview of kynodynamic alghorithms refer to [15]

During the first part of the 90’s many works address this problem, Donald et
al. in 1993 [23] presented a solution to find a path that avoids many obstacles
introducing velocities constraints. The technique is still a graph-based searching on
a set of free-cell, but velocities are used as the weight to assure a safe path.

Fiorini and Shiller in 1993 [29] added the possibility of avoiding also moving
the obstacle, with an algorithm, working in the space of velocities, which considers
the dynamics of the robot and the obstacles and finds an optimal trajectory that
avoids the collisions

2.3 Overview
In the previous Section, we presented a summary of approaches useful to solve a
generic motion planning problem considering many aspects of robots. The aim of
this Chapter is to present, by reviewing the methods and the techniques present in
literature, the main classes of algorithms that solve the motion planning problem.
Recalling the introduction, we describe the motion planning problem for under-
actuated mechanical systems as [61]

Definition 2.5. Motion planning for UMS: giving an initial state x(0) = xstart and
a goal state xgoal , the motion planning problem for a system ẋ = f (x,u) is to find a
control history u(t) with 0 < t < T such that

xgoal = x0 +
∫ T

0
f (x(t),u(t))dt (2.6)

while avoiding any obstacles that may be present on the environment and re-
specting the constraints introduced by the kinematics and the dynamics of the sys-
tem. We also want to minimize some notion of cost

J =
∫ T

0
L(x(t),u(t))dt (2.7)

Respect to the general definition of motion planning [51], we are not interested
only in finding a path that is obstacle-free but a trajectory that is admissible. The
difference is that we take into account the dynamic evolution of the system and
we accept only accelerations and velocities which are feasible by our mechanical
system. Between all possible solutions we are interested in a notion of ”optimum”
to choose the best trajectory in terms of the time, the space, the energy spent etc.

There are many works in literature that approach the problem of the trajectory
planning for UMS. As shown in figure 2.3, we can propose a classification of these
methods. The first classification that we do in this thesis is between local and global
methods.
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Figure 2-3: A simple categorization of trajectory planning methods

2.3.1 Local methods

Local methods started at the end of the 90’s and are currently the most used tech-
niques to find a trajectory in configuration space. The idea supporting these algo-
rithms is to compose a trajectory as a sequence of “small” movements, checking if
the path is free of external obstacle and ensuring that the dynamics of the system
allows following the computed path. There are many approaches to find a solu-
tion using local methods but the most common are search-based algorithms and
trajectory composition.

In the search-based methods, authors discretized the path in a set of many con-
figuration points that are collocated into a search graph composed by vertexes and
edges. To find a solution, authors use heuristic approaches to find a “good” se-
quence of edges which connects a set of vertexes which represent the configuration
point of the desired robot. For a good overview of these methods, the reader could
refer to [55] and references therein. Some examples of this kind of algorithms
are Probabilistic Roadmap Planning (PRP) [47] or rapid-exploring random trees
(RTTs) [56].

The trajectory composition is another approach, which consists of finding a se-
quence of trajectories which are, locally, admissible and obstacle-free. It is possible
to drive a robot form an initial configuration to a final one by connecting all these
pieces while respecting the kinematics and the dynamics of the system. A typical
example could be found in [54] where a trajectory was generated respecting the
nonholonomic nature of the system, whereas in [29] the dynamics of the system
and of the obstacles were also considered.

It is important to notice that local methods cannot consider the dynamics of
the system to find a ”global” optimal trajectory, because when we switch from one
piece to another, we lose the “history” of the dynamic evolution of the system.
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2.3.2 Global methods

It is possible to approach the problem of trajectory planning from a global point
of view, which means that we try to compute a continuous function representing
the complete path in the configuration space connecting the starting point to the
final point. To solve this problem, we are interested in exploiting the role of the
dynamics of the system and we look for the solution of an optimal control problem.
Optimal control is a large research area that addresses the computation of analytical
solutions using the Pontryagin Maximum Principle

In the case of under-actuated systems, however, it is not possible to find an
analytical solution of the control inputs and we need to use a numerical method to
find the desired control inputs. For generic systems, solving the trajectory planning
problem for UMS is equivalent to solve the Two point boundary value problem
(TPBVP) .

In the literature, three main approaches are used to solve this problem:

• Specific equations structure: if it is true that it is not possible, in general, to
find an analytical solution, for specific classes of under-actuated mechanical
systems it is possible to exploit the properties of their dynamic equations to
compute a specific control inputs or it is possible to find a way to linearize the
system and apply the classical methods present in the optimal control theory
for linear systems.

• Indirect methods: these methods use numerical algorithms to find a sub-
optimal solution using techniques that yield local optimum solutions.

• Direct methods: these methods discretized the desired trajectory, fitting para-
metric curves inside the time intervals. The second step is applying a nu-
meric algorithm to find the best parameters of the curves, connecting all the
segments.

We are interested in this class of methods because we want to understand how
to plan a trajectory that considers the dynamics of the system from the initial point
to the final one. It is important to notice that the global methods can be seen from
a geometrical point of view, which is useful to understand the problem and try to
apply useful tools developed in the geometric mechanic community, as we will see
in the next Chapters.

Before presenting the main global methods, in the next Section we propose how
we can apply the notion of “controllability” to non-linear systems.
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2.4 Controllability
In the case of linear systems that we can write system dynamics as

ẋ = Ax+Bu, x ∈ Rn, u ∈ Rm (2.8)

and by the Kalman rank condition (KRC), the system controllability is defined as

Theorem 2.9. It the rank of the matrix

[B|AB|A2B| . . . |Am−1B] (2.10)

is m, it is possible to move the system from any state to any other state in finite time

With nonlinear systems, such as most UMS, the previous notion of controlla-
bility is no longer valid so we need another definition. Some authors [17] [90] [70]
[61] proposed other definition of controllability for nonlinear mechanicals systems,
which is well explained by Sastry in [82]:

• Small-time local accessibility (STLA) at x: For any time T > 0, the reachable
set starting from x at times t < T contains a full-dimensions subset of the state
space.

• Small-time local controllability (STLC) at x: For any time T > 0, the reach-
able set starting from x at times t < T contains a neighborhood of x

• Global controllability:: The robot can reach any state from any other state

To demostrate the STLA condition, it is possible to build the Lie algebra A of
the mechanical system and checks the Lie Algebra Rank condition (LARC) [17].
If a mechanical system has symmetric properties that allow it to move forward and
backward along the Lie bracket directions, it is possible to demonstrate that the
LARC condition implies the STLC but only if we consider dift-less mechanical
systems (see Section 3.3 for details).

To understand this problem is useful to see [86], where the authors propose a
geometric approach to motion planning for under-water UMS showing that is not
possible to use bracketing techniques to demonstrate controllability in the presence
of drift.

2.5 Specific equations structure
Since the early 90’s [58] researchers have studied the structure of the equations
describing the dynamic of UMS systems to find ad-hoc solutions for specific classes
of systems. In this Section, we present some well-known result that are important
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steps in planning a trajectory for a robot. It is important to notice the following
techniques refer to the D’Alembert principle presented in Section 3.3.2 applied to
Nonholonomic mechanical systems (NMS) since, as we will see later, there is a
kinematic reduction from UMS to NMS.

2.5.1 Sinusoidal inputs and chained form
In 1990 Sastry and Murray presented a method [69] based on differential geometry
tools. The idea was to consider a specific class of UMS, called contact structures
known in the field of classical mechanics [4]. When considering these robots, it
is possible to use the first level of Lie Bracketing which, in combination with the
input vectors, span the tangent space of the configuration space. If the configuration
manifold of the systems is Q = R3, it is possible to write the dynamic evolution of
the system in a form called chained form that, in its simplest form, is:

q̇1 = u1

q̇2 = u2

q̇3 = q2u1

(2.11)

If we want to find the best trajectory that connects a given initial configuration
point to a final configuration, we need to evaluate a cost function such as the energy
consumption as

J =
∫ 1

0
u(t)2dt (2.12)

The goal is to minimize J by finding the appropriate control sequence. In this spe-
cial case, the solution computed in the input will be in the form u(t) = eΛtu0 where
Λ is a constant skew-symmetric matrix and the control inputs will be sinusoidal
functions at different frequencies. The computation of ∆ and the initial control u0 is
not a simple procedure and the reader is referred to [69] Using a similar approach,
the work proposed in [87] extends the trajectory planning using the chained form
to a car with n-trailers.

2.5.2 Kinematic reduction
Another approach used to deal with UMS is to apply a kinematic reduction (see
[72] for an introduction to the theory), which is a method to transform a complex
problem into an equivalent simpler problem. From a geometric point of view, the
reduction is done using a map from the original configuration manifold Q to a dis-
tribution lying in the tangent space T Q. An interesting application of this method
was proposed by Ostrowski and Burdick [73] where this theory was used to propose
a way to control a snake-board robot [71]. In particular, in this work the kinematic
reduction was used to simplify the configuration space avoiding the cycle variables
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and, as a consequence, reducing the complexity of the problem. Another example
of kinematic reduction for UMS could be done by mapping the input vectors and
the accelerations constraints of the dynamic system to a tangent space of the con-
figuration manifold in order to search for an optimal path considering the variables
in the same geometrical space. An example of these reductions could be found in
[64] where the Boltzmann-Hamel equations are studied in the context of optimal
control for UMS. Another example is the application of the kinematic reduction to
plan a trajectory of a suspend mass attached to a moving cart [83].

2.5.3 Differentially flat systems
The structure of the dynamic equations of a mechanical system can also be ex-
ploited by using the so-called “differential flatness” property. The first application
of this method in control theory was proposed by Fliess in 1992 [30] and by Mur-
ray [94], showing that there is a direct equivalence between differential flatness and
mechanical system linearized by feedback control. The idea is the possibility of
linearizing a desired mechanical system introducing new variables, called flat out-
puts, that allow computing the control inputs of the system as functions depending
on flat outputs. To clarify this concept, if an UMS has q ∈ Rn degrees of freedom
and u ∈ Rm inputs, we can find a set of y ∈ Rm flat outputs which could be written
in the form

y = y(q,u, u̇, . . . ,up) (2.13)

such that
q = q(y, ẏ, . . . ,yq)

u = u(y, ẏ, . . . ,yq)
(2.14)

This properties was successfully applied to car with n-trails [79], Vertical Take-
Off and Landing (VTOL) aircrafts [63], multi-body robots [50] and quadrotors
[31][39]

2.6 Conclusions
In this Chapter started proposing the difference between local methods and global
methods to solve a motion planning problem and after we shown the main tech-
niques to do trajectory planning for Under-actuated mechanical systems. Today
most of the work in motion planning are based on heuristic approaches which are
easily computed by modern calculators and could deal with obstacles in a simple
way. In general, global methods have the disadvantage that they do not work very
well when there are obstacles on the trajectory. On the other hand, if we want to ex-
ploit the dynamics of the mechanical system, we need to considerate the behavior
of the system as a continuous function otherwise there are points of discontinu-
ity which affect the motion of the robot. In this thesis, we are interested in global
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methods because, despite the fact that are not “popular” since the end of the 90’s, we
think that could have interesting points which can push forward the research in tra-
jectory planning for under-actuated systems. In the following Section, we present
a theoretical framework that will be the base for the application of mathematical
methods to solve the problem of generating a feasible trajectory.
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Chapter 3

Geometric mechanics and control

3.1 Introduction
In this Chapter we present the mathematical background that is useful to understand
the trajectory planning problems for an under-actuated robotic system. We apply
the techniques used in differential geometry to approach problems there are still
open in the robotic community. The knowledge presented in this Chapter comes
from a research area knows as “geometrical mechanics”, in particular we refer to
the work done by Marsden [62], Cortes [20], Bullo [17], Bloch [8] and others.

3.2 Simple mechanical system

3.2.1 Configuration space
If we want to describe the motion of an object, we need to introduce a common
way to identify position and orientation. We start from the definition of particle
which is an object with a mass but without volume. If we collect many particles in
a way that the relation between their positions remains constant in time, we obtain
a so-called rigid body which is an object with a position, orientation, and volume.
Figure 3.2.2 shows the difference between a particle and a rigid body.

When we describe the position of a particle or a rigid body, we need first to de-
fine a reference frame, which allows measuring relative distances and orientations
between the reference frame and the rigid body. In the rest of the thesis, we call
Σworld = {O,w1,w2,w3} the reference inertial frame that is composed by the ori-
gin O and a set of free orthonormal vectors {w1,w2,w3}. With the term ”inertial”
we refer to a frame where the Newton-Euler laws hold, but for a more specific and
formal definition please refer to [4].

Once we have defined the inertial frame, we can specify the position of a particle
or the origin of a reference frame associated with a rigid body using a vector r
which connect the origin Oworld to particle on the body origin. If we consider also
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Figure 3-1: Rigid body and particles

the orientation of the rigid body, we have to introduce another frame, called body
frame Σbody = {Obody,b1,b2,b3} where Obody is the origin of the frame relative
to the rigid body and the position of the particles which compose the rigid body
defined with respect to the basis {b1,b2,b3}. Now it is possible to define a vector
r as r = (Obody−Oworld) that allows measuring the distance between the origins of
the two frames defined before. We also need to set a matrix R∈ SO(3) that describes
the orientation of the rigid body respect the body frame Σbody. It is important to
notice that the orientation is related to the body frame and the position is associated
to the inertial frame.

3.2.2 Generalized coordinates

To describe the behavior of a rigid body considering position and orientation, we
need to a common reference frame that is usually the inertial frame. To this end, we
introduce another rotational matrix W which converts the coordinates describing the
rotation of the rigid body with respect to the body frame in coordinates describing
the rotation with respect to the inertial frame.

This transformation between the coordinates in the body frame, called local co-
ordinates, and the coordinates in the inertial frame, called generalized coordinates
is essential because it is a fundamental concept of the Lagrangian and Hamiltonian
mechanics.

Although most of the works in robotics use local coordinates to describe the
motion of robots, in this thesis we will use the generalized coordinates because they
establish a direct correspondence with the geometrical spaces that are the essential
elements of the methods presented in Chapter 4 and Chapter 5

Definition 3.1. A free mechanical system [17] is a collection {Pα}α∈1,...,Np∪{Bβ}β∈1,...,Nb
of Np particles and Nb rigid bodies. The possible positions of all particles and bod-
ies are described by the set

Q f ree = ((SO(3)×R3)× ...× (SO(3)×R3))×R3...R3 (3.2)
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Figure 3-2: Inertial and body frames

Definition 3.3. An interconnected mechanical system is a collection {Pα}α∈1,...,Np∪
{Bβ}β∈1,...,Nb

of Np particles and Nb rigid bodies restricted to move on a submani-
fold (see definition in Appendix A) Q of Q f ree.

The submanifold Q⊂ Q f ree is called configuration manifold, which is the ge-
ometrical space used to represent a simple mechanical system. This definition con-
tains all the variables used to describe the position and the orientation of a rigid
body and, in general, it is used to describe the kinematics and the dynamics of
every kind of robots.

If we describe a generic robot using a specific configuration manifold Q, we
are interested in finding how many links or joints we can move. We say that if the
dimension dim(Q) is equal to n, we have n-degrees of freedom.

3.2.3 Example: the two link manipulator

To better understand the role of the Configuration manifold to describe a mechan-
ical system, we now present a simple example: the planar two-link robot. In this
example, we consider a robot composed of two joints laying on the same plane.
The first link J1 is connected to a fixed base B and the second link J2 is connected
to the tip of the first link. Finally, we consider a point P placed on the tip of the
second link as shown in figure 3-3. Our goal is to know the position of the point P
considering the angular position of the joints J1,J2.

Starting from an initial inertial frame {Oworld,w1,w2,w3}, we want to identify
the position (x,y) of P knowing the value of the joints J1,J2. As shown in figure 3-3,
we can choose different generalized coordinates, in our example we can use either
the angular position of the joints relative to the previous joints (local coordinates)

33



Figure 3-3: A simple model of two-link manipulator

or relative to the inertial frame (absolute coordinates). In this example we identify
with (θ1,θ2) the relative coordinates and with (φ1,φ2) the absolute ones.

Based on the previous description we can represent the position (x,y) of the
joint P, using the relative coordinates (θ1.θ2) as

x = r1 sin(θ1)+ xpsin(θ1 +θ2)+ yp cos(θ1 +θ2)

y =−r1cos(θ1)− xpcos(θ1 +θ2)+ yp sin(θ1 +θ2)
(3.4)

and, if the choose the absolute coordinates, we obtain:

x = r1 sin(φ1)+ xpsin(φ2)+ yp cos(φ2)

y =−r1cos(φ1)− xpcos(φ2)+ yp sin(φ2)
(3.5)

In this example it is interesting to see that, in both cases, we are in the presence
of a configuration space that lives in a configuration manifold Q = S1×S1. In this
particular example we can visualize this configuration manifold as a geometrical
space called ”torus” which is possible to see in figure 3.2.3

Depending on the choice of local coordinates, the equations 3.4 and 3.5 are,
from a geometrical point of view, two maps that, starting from the configuration
manifold, return the desired position so Q = S×S 7→ R2.
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Figure 3-4: Visualization of the configuration manifold Q = S1×S1

3.2.4 Lagrangian function
When we know how to locate a point in space, and we can measure the distance
between the point and a reference frame, we are ready to consider how to de-
scribe the motion of a particle or the rigid body. Given a configuration space Q
with generalized coordinates qi, i = 1 . . .n, we define a function L(qi, q̇i) called La-
grangian. that returns real values and describes the difference between the energies
acting on the system. We can write, in-fact, the Lagrangian as the difference be-
tween the potential energy V (q, q̇) and the kinetic energy K(q, q̇) of the systems
L(q, q̇) =V (q, q̇)−K(q, q̇).

We want to describe the motion of a rigid body using the previous given La-
grangian function and, to do that, we use the Hamilton’s principle coming from
analytical mechanics [28]:

Theorem 3.6. The motion of a system from time t1 to time t2 is such that the line
integral

I =
∫ t2

t1
Ldt (3.7)

where L = V −K has a stationary value for the correct path of the motion. The
quantity I is also known as action or action integral

This principle describes the dynamics of a system as a variational problem of a
single function, in our case the Lagrangian. If we apply Hamilton’s principle, we
obtain that a trajectory q(t) is has to follow the Euler-Lagrange equation:

d
dt

∂L
∂ q̇i −

∂L
∂qi = 0 (3.8)

The previous set of equations, one for each degree of freedom, is fundamental
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and allows us to describe the free dynamic evolution of a mechanical system. In
this case, the dynamics evolves without the presence of external forces and in the
next Section we show how it is possible also to include forces and torques.

3.2.5 Lagrangian with external forces and torques
If we want to plan the motion of a rigid body, we need to apply a control input which
drives a robot to a certain point in the state space. We are interested to analyze
our systems using geometric mechanics so it is convenient to use force and torque
controls. It is important to notice that the Lagrangian framework is based on the
tangent space T Q and the Hamiltonian framework, that we will present in the next
Section, is more appropriate to study the behavior of the forces and the constraints
because they are components of the co-vector field that lives in the co-tangent space
T ∗Q

At this time, we just introduce the forces in the Euler-Lagrange equations as:

d
dt

∂L
∂ q̇i −

∂L
∂qi = F i +ui (3.9)

where F i denotes the external forces and ui the control input given to execute the
desired trajectory.

3.2.6 Example: the simple hovercraft
In this Section, we use the simple hovercraft example to show how it is possible to
describe the dynamic evolution of a mechanical system using Lagrange equations
3.9. We consider a model of hovercraft as shown in figure 3.2.6

Figure 3-5: A simple model of hovercraft

The hovercraft floats using a constant force that we do not consider, and it can
move in a planar space (x,y) and rotate of a certain angle θ around its center of
mass. We define its configuration space as qH = (x,y,θ) that can be seen, from
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a geometrical point of view, as a point of a configuration manifold Q = R2×S1.
We also consider a set of forces (ux,uy,uθ ) that can drive the hovercraft along all
degrees of freedom.

In the model of this system, there is no potential energy and the Lagrangian can
be written as the function

L(qH , q̇H) =
1
2
(mẋ2 +mẏ2 + Jθ̇

2) (3.10)

recalling Lagrange’s equations

d
dt

∂L
∂ ẋi −

∂L
∂x

= Fx +ux

d
dt

∂L
∂ ẏi −

∂L
∂y

= Fy +uy

d
dt

∂L
∂ θ̇ i
− ∂L

∂θ
= Fu +uθ

(3.11)

considering that there are not external forces F = {Fx,Fy,Fθ} and substituting the
Lagrangian L(qH , q̇H) 3.10, we obtain the three equations that describe the dynam-
ics of the hovercraft:

mẍ = ux

mÿ = uy

Jθ̈ = uθ

(3.12)

3.3 Underactuated mechanical system

In the previous Section, we proposed two approaches to describe the dynamic evo-
lution of mechanical systems. Most robots, in the real world, have to deal with
constraints that affect the motion and that must be considered to generate a pos-
sible trajectory. In general, a mechanical system is affected by the constraints on
position and velocity. If a robot, for example, is moving on a planar surface and
finds an obstacle on its way, from a geometric view we are in the presence of a
holonomic constraint that is a constraint on the configuration manifold. In the next
Sections, we also see constraints on velocities and we will try to give some proper-
ties of under-actuated mechanical systems to understand how it is possible to plan
a trajectory for this kind of systems.

The second type of constraint are called non-holonomic constraint and we will
present in details in the next Section. If we work with under-actuated mechanical
systems, we have other constraints.
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3.3.1 Nonholonomic constraints

The existence of obstacle constraints implies the presence of constraints also on
the tangent space. To explain this concept, we can think that its Cartesian space
composes the configuration space of a robot. If there is an obstacle in the space of
positions, it is natural that there will also be constraints in the space of velocities.
From a geometrical point of view, velocities live in the space called tangent-space,
the reader has an intuitive idea of this particular space looking at Figure 3.3.1 which
represents the tangent space of the configuration space of the ”two-link manipula-
tor” shown at the beginning of this Chapter.

Figure 3-6: A graphical visualization of the tangent space of the two-link manipu-
lator configuration space

From a geometrical point of view, velocity constraints generate a distribution
(for definition see Appendix A) on the tangent space and are called, from a defini-
tion given by Heinrich Hertz in 1984, Nonholonomic constraints. If it is true that a
holonomic constraint implies the presence of a nonholonomic constraint, as shown
before, it is not true the opposite. In order to formalize this concept, we refer to
[8] and we let a mechanical system have n degrees of freedom. We can now write
m < n velocity constraints ak(qi) such that

n

∑
k=1

a j
k(qi)q̇k = 0 (3.13)
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where j = 1, . . . ,m. If the same system has also m position constraints that we can
write as b j(qi) = 0, we can write their time derivatives

n

∑
k=1

∂b j

∂qk q̇k = 0 (3.14)

At this point we have to possibilities, if the constraint distribution generated by
equation 3.13 is the same of the one generated by 3.14, we are in presence of holo-
nomic constraints, otherwise we could say that we are in the presence of nonholo-
nomic constraints.

This concept has substantial implications in trajectory generation because if
finding a trajectory for a holonomic mechanical systems (a system with holonomic
constraints) is relatively simple, as we will show in the next Chapter, dealing with
the motion of an nonholonomic mechanical system is significantly more compli-
cated.

3.3.2 Lagrange-D’Alemebert equations

In Section 3.2.4 we introduced Hamilton’s principle to derive the Lagrangian equa-
tions, and in the previous Section we saw that a particular class of mechanical sys-
tems, called Nonholonomic mechanical systems (NMS), have nonholonomic con-
straints that could interfere with the dynamics. It is possible to extend the Hamil-
ton’s principle (we leave the proof to Section 2-4 of reference [28]) to describe also
the dynamic evolution of NMS using the Lagrange-D’Alembert equation

d
dt

∂L
∂ q̇i
− ∂L

∂qi
=

m

∑
j=1

λ ja
j
i (qi) (3.15)

where i = 1, . . . ,n. The variable λ , are the Lagrange multiplier and a(qi) are func-
tions describing the nonholonomic constraints. These numerical variables modify
the effect of the nonholonomic constraints ai(qi). In the next example we apply the
Lagrange-D’Alembert equations and we write the equations of the nonholonomic
constraints.

3.3.3 Example: The falling rolling disk

In order to understand the nonholonomic constraints, a classical example [20] [8] is
the ”falling rolling disk”. Let we consider a disk with mass m and radius R rotating
around its center of mass of a quantity θ . We also assume that there is a gravity
force Fg = m · g acting on the center of mass. Let also J and I the moment of
inertia with respect to the x and y axes. We can with respect to write the Lagrangian
equation as the difference between the kinetic energy T and the potential energy V :
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Figure 3-7: The common ”falling rolling disk” example

T =
1
2

m(ẋ2 + ẏ2 +Rψ̇ +R2
φ̇

2 sin2(ψ)−mR(ψ2 cos(ψ)(ẋsin(φ)− ẏcos(φ))

+ φ̇ sin(ψ)(ẋcos(φ)+ ẏsin(φ))+
1
2

I(ψ̇2 + cos2(ψ))

+
1
2

J(θ̇ + φ̇ sin(ψ))2

V = mgRcos(ψ)
(3.16)

If we impose the condition that the point of contact between the disk and the
terrain is not slipping, we are imposing the nonholonomic constraint

ẋ = 0 (3.17)

So we can write the two constraints a1 and a2 as

a1 = ẋ− (Rcos(φ))θ̇

a2 = ẏ− (Rsin(φ))θ̇
(3.18)

From a geometric point of view, the configuration manifold is Q=R2×S1×S1×S1

that is the space representing the two translation variables (x,y) and the three an-
gles (θ ,φ ,ψ). As described in the previous Section, the nonholonomic constraints
generate a distribution on the tangent space T Q. This geometrical space represent a
”zone” where we can search for an admissible trajectory, respecting the kinematic
properties of the system. In this example the distribution is generated by the
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In particular, the distribution is generated by a set of vectors

D= span
{

∂

∂θ
,

∂

∂φ
,Rcos(φ)

∂

∂x
+Rsinφ

∂

∂y
+

∂

∂ψ

}
(3.19)

3.3.4 Underactuated mechanical systems
As discussed earlier, we refer to mechanical systems that have a force as the control
input. In robotics and control theory, there is a special class of mechanical system
defined as:

Definition 3.20. Underactuated mechanical system (UMS) is a mechanical system
where the number of degrees of freedom actuated m is less than the number n of
available DoF.

If we are working with UMS, the consequence is the presence of r acceleration
constraints where r = m−n.

It is not simple to describe underactuated mechanical systems because they have
a strong nonlinear dynamic evolution and there is not yet a general approach to
model and control this kind of systems. Some authors tried to exploit the specific
properties of specific UMS, for examaple K. Lynch in [61] propose to classify UMS
in three categories:

1. Pure kinematic: if we are in the presence of an underactuated kinematic sys-
tem and the control inputs are velocities. An example of this kind of system
is the falling rolling disc presented in the previous Section.

2. Pure mechanical: if we have a UMS without nonholonomic constraints, such
as a 3-links manipulator with a passive joint

3. Mixed kinematic and mechanical: if the UMS systems have nonholonomic
constraints and also accelerations constraints. A common example is the
Snakeboard [71] that is a particular skateboard where the input is given as
two torques but the result is a translational movement.

Another interesting concept presented in [61], is that we can write the equation
of motion as

q̇ = f (q)+
m

∑
i=1

uigi(q) where m < n (3.21)

where f (q) is a drift vector field describing the free evolution of the system, gi(q)
are control vector fields which describe how the controls, in case of UMS forces,
influence the dynamic of the system and u = [u1, . . . ,um] is the control vector. In
the case of UMS, we have r = n−m acceleration constraints.

It is important also to point out that the works presented in literature assume
Drift-less UMS which means that f (q) = 0. In this thesis, we are interested also
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to consider underactuated mechanical systems that have a non-negative drift vector
field so f (q) 6= 0.

We follow the Lagrangian models for UMS presented in [3], [77] and [88],
to write the equations of motion of an UMS. Let qA := (qa,qµ) the configuration
of the system where where qa = [q1, . . . ,qm] are the actuated degrees of freedom,
qµ = [qm +1, . . . ,qn] are the non-actuated degrees of freedom and dim(qA) = n. In
the case of drift-less UMS, we can write the Lagrangian equations of motion as

d
dt

∂L
∂ q̇a −

∂L
∂qa = u

d
dt

∂L
∂ q̇µ
− ∂L

∂qµ
= 0

(3.22)

From a geometrical point of view, the configuration manifold Q is composed by
two sub-manifolds Q = Q1×Q2 where qa ∈ Q1 and qµ ∈ Q2 so the Lagrangian L
is a function L : T Q := T Q1×T Q2− > R. It is interesting to notice that the sec-
ond equation could be seen as function which represent the acceleration constraints
affecting UMS, in particular in [3] these are called second-order non-holonomic
constraints.

The previous equations are not valid in general but only for a specific type of
underactuated mechanical systems. If we consider underactuated robots such as
quadrotors, submarines or spacecraft, in-fact, we are not able to describe the dy-
namic evolution of the system with the previous equations. To understand this fact,
we have to refer to references [84] and [91] where there is a definition of Super-
articulated mechanical system

3.3.5 Super-articulated mechanical systems
Definition 3.23. A Super-articulated mechanical system is a system where some of
the configuration variables (or degree of freedom) are directly controlled while the
remaining variables evolve under the dynamic influence of the controlled degrees
of freedom

This definition introduces an important concept that inspires our work, despite
the previous definition of the under-actuated system, here we see that there is the
possibility of moving the non-actuated degrees of freedoms qµ exploiting the dy-
namics of the system. Moreover, the concept of the super-articulated mechanical
system introduced by Ballieul in [91], gives also a condition that the UMS must
satisfy to deal with acceleration constraints. If we represent a Lagrangian function
as L = 1

2 q̇T Mq̇−V (q), the inertia matrix M is partitioned corresponding to (qa,qµ),
we can write

M =

[
N A
A T M

]
(3.24)
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where N , M and A are a invertible matrices. Looking at the matrix N =
N (qa,qµ), a fundamental property arises:

Proposition 3.25. If N (qa,qµ) is an invertible matrix, we have an one-one corre-
spondence between the control trajectory u(t) and the trajectories of the actuated
variables qa.

It the UMS considerate does not satisfy the previous property, cannot be clas-
sified as ”super-articulated mechanical systems” and it is not possible to apply the
method presented in the next Chapter.

3.4 Hamiltonian systems
As explained in Chapter 7.2 of [8], to find and optimized trajectory using a geo-
metric approach could be done with the Hamiltonian framework. The difference
between the Hamiltonian and the Lagrangian framework is how it is possible to
describe the trajectories of a mechanical system. In the optimal control setting, in
particular, applying the ”Pontryagin Maximum principle,” the trajectories are in-
fluenced by the controlled co-vector field whereas in the Lagrangian framework
trajectories are just ”constrained,” as shown in Section 3.3.2. Moreover, following
the definition of Under-actuated mechanical system given in the previous Section,
the second-order non-holonomic constraints are vector fields that live in the second-
order tangent space, but it is not possible to use them to generate a trajectory as in
the first-order non-holonomic case (for example in [81]). The idea that inspires
the method presented in Chapter 5, is that the UMS constraints live in the cotan-
gent space, which is a geometrical space that could be used only working with the
Hamiltonian framework. We are still not able to demonstrate this assertion, but the
methods presented in Chapter 4 and 5 suggest us that this way could give good
results in future works.

Also from a computational point of view, using the Hamiltonian we are able to
search an optimal trajectory on the state space, considering also the energy spend
by the system as presented in Chapter 5

In the Lagrangian framework, if we have n degrees of freedom, we need n equa-
tions of motion of the form

L(qH , q̇H) =
1
2
(mẋ2 +mẏ2 + Jθ̇

2) (3.26)

To find a solution, we need 2n initial values because we are in the presence of
second-order equations. In the Hamiltonian framework instead, we can describe
the system using a set of 2n independent first-order equations. In this way we are
representing the evolution of a point in the configuration space using the phase
space defined as (q, q̇).
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3.4.1 Legendre transform
To find the Hamiltonian equations we apply the Legendre transform that allows to
pass from the Lagrangian framework to the Hamiltonian equations.

Definition 3.27. Starting from the Lagrangian function, we can define the conjugate
momenta as

p1 =
∂L(ql, q̇l, t)

∂ q̇i
(3.28)

where l and i are integer numbers with a value which is smaller than the degree
of freedom of the system. Starting from the equation 3.28, the role of the Legen-
dre transform is to change the variables of our mechanical system from (q, q̇, t) to
(q, p, t).

For a proof of the Legendre transform please refer to [4], for our need we are in-
terested only in a special function, called Hamiltonian, which relates the Lagrangian
to the conjugate momenta:

H(q, p, t) = q̇i pi−L(q, q̇, t) (3.29)

if we compute the differential of the Hamiltonian, that reads

dH =
∂H
∂qi

dqi +
∂H
∂ pi

d pi +
∂H
∂ ti

dti (3.30)

If we replace equation 3.29 in 3.30, we can write

dH = q̇id pi + pidq̇i−
∂L
∂ q̇i
− ∂L

∂qi
dqi−

∂L
∂ t

dt (3.31)

By recalling the definition of momenta and Lagrange equations we can reduce the
previous equation to:

dH = q̇id pi− ṗidqi−
∂L
∂ t

dt (3.32)

Finally, we can split equation 3.32 to obtain the canonical Hamilton equations,
which are equivalent to the Lagrange equations presented in Section 3.2:

q̇i =
∂H
∂ pi

ṗi =−
∂H
∂qi

(3.33)

3.5 Conclusions
In this Chapter, we present an overview of the fundamental concepts used to de-
scribe the characteristics and limitations of the Under-actuated Mechanical Sys-
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tems (UMS). Starting from basic geometric mechanics definitions, we introduced
the Hamiltonian formalism from a geometric point of view. Hamiltonian equations
are the fundamental tools to apply the methods proposed in the next Chapters. We
discovered that it is not possible to apply the “Variational nonholonomic approach”,
proposed in the next Chapter, to all UMS so in this Chapter we show the properties
of a sub-class of UMS, the Super-articulated mechanical systems. Another impor-
tant concept presented in this Chapter is the possibility of using geometric spaces
to solve an optimal control problem. In this way, it is possible to find particular
equations of motion for Super-articulated systems and finding solutions applying
numerical methods, as presented in the next Chapter.
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Chapter 4

Variational constrained problem for
a class of UMS

4.1 Introduction

In the previous Chapters, we presented a few tools from geometric mechanics useful
to plan an optimal trajectory for underactuated mechanical systems. In this Chapter,
we apply these concepts to plan a trajectory for under-actuated mechanical systems
using the variational constrained system approach [2]. The benefit of this method
is to ”respect” the geometric structure of the system. In other words, it is possible to
use the UMS constraints to define a distribution in the cotangent space and comput-
ing feaisible trajectories. Projecting this geometric structures in local coordinates
allows applying numeric algorithms to compute local-optimal solutions [11]. The
basic concepts of differential geometry are defined in Appendix A.

4.2 Problem statement

In Chapter 3 we presented a particular class of UMS called Super-articulated me-
chanical system. For these robots it is possible to define a configuration space
Q = Q1×Q2 as the Cartesian product of two differentiable manifolds, Q1 on which
forces are applied, and Q2 on which the dynamics evolve freely. To apply numer-
ical algorithms to plan a trajectory, we need to project the geometric structures
in local coordinates. If (qa), a = 1, . . . ,r are local coordinates on Q1, and (qµ),
µ = r+1, . . . ,n are local coordinates on Q2, composing the two sets of local coor-
dinates, we obtain qA := (qa,qµ), with a = 1, . . . ,r and µ = r+1, . . . ,n, which are
the local coordinates on Q

This mapping allows to describe the dynamic evolution of a mechanical system
using the Lagrangian function L : T Q := T Q1×T Q2 → R. In this case, external
control forces are applied only to coordinates living in Q1 so we can write the
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Euler-Lagrange equations of motion as

d
dt

(
∂L
∂ q̇a

)
− ∂L

∂qa = ua (4.1)

d
dt

(
∂L
∂ q̇µ

)
− ∂L

∂qµ
= 0 (4.2)

with a = 1, . . . ,r and µ = r+ 1, . . . ,n, and where ua, a = 1, . . . ,r, are the external
forces or control inputs.

To generate an optimal trajectory that drives an UMS from an initial point to
a target point, we want to connects the initial configuration (qA(t0), q̇A(t0)) to final
configuration (qA(t),ua(t)). To choose one solution in the set of the all possible
solutions, we minimize the functional

A (q(·),u(·)) =
∫ t f

0
C (qa(t),qµ(t), q̇a(t), q̇µ(t),ua(t)) dt . (4.3)

where C() is a generic cost function.

4.3 Variational constrained control problem

Variational constrained problems are equivalent to optimal control problems but are
based on geometrical structures. The advantage of this approach is the possibility to
”incorporate” constraints inside the geometrical structure and not just ”adjoining”
them as in the case of the classical optimization techniques that use the Lagrangian
multipliers. In particular, methods presented in Chapter 2 do not consider explicitly
the cotangent space, which is the appropriate geometrical structure where we can
plan a trajectory for UMS respecting the constraints caused by the under-actuation.
In the following Sections, we apply the “Variational constrained systems problem”
to plan an optimal trajectory that is not possible to compute with the standard meth-
ods. thus making clearer the advantages of the underlining geometric structure.

For proofs and details, please refer to [8].
The key point of the variational constrained systems problem [2], is the equiv-

alence between minimize the functional 4.3 and the following cost function:

˜A (q(·)) =
∫ t f

0
L(qa(t),qµ(t), q̇a(t), q̇µ(t), q̈a(t), q̈µ(t))dt (4.4)

subject to the constraints

Φ
µ(qa(t),qµ(t), q̇a(t), q̇µ(t), q̈a(t)) :=

d
dt

(
∂L
∂ q̇µ

)
− ∂L

∂qµ
= 0 (4.5)

48



and to the boundary conditions.
It is important to notice that we can substitute the control input ua(t), used in the

usual notion of cost functional, with the equivalent Lagrangian equation d
dt

(
∂L
∂ q̇a

)
−

∂L
∂qa .

The result is the Lagrangian function L̃ : T 2Q→ R is defined on the second
tangent space T 2Q by the equation

L̃(qa(t),qµ(t), q̇a(t), q̇µ(t), q̈a(t), q̈µ(t)) :=

C
(

qa(t),qµ(t), q̇a(t), q̇µ(t),
d
dt

(
∂L
∂ q̇a

)
− ∂L

∂qa

)
.

(4.6)

Observing that the cost functional ˜A is now independent of the controls u(·),
the computation of the control problem will not give the control trajectory but only
the optimal trajectory in the configuration space. If we are interested in the optimal
control input trajectory, we need to evaluate equations (4.1) substituting optimal
configuration variables q̂a to compute the optimal controls ûa.

According to the theory presented by Colombo et al. in [19], the dynamics of
the higher–order constrained variational problem is determined by a pre–symplectic
Hamiltonian system on a suitable fiber bundle W0 over T Q. In the following, we
recall the basic constructions of the fundamental geometric tools and the motion
equations.

As described in the introduction, the main characteristic of this method is that
is possible to use the explicit constraint function Φµ defined by equations (4.5)
to represent the role of the acceleration constraints. In particular, Φµ generates a
sub-manifold M ⊂ T 2Q where the admissible acceleration lives.

Recalling the Lagrangian equation describing the dynamic evolution of the non-
actuated degrees

d
dt

(
∂L
∂ q̇µ

)
− ∂L

∂qµ
= 0 (4.7)

and assuming the condition that the matrix (Wµν), r+1≤ µ,ν ≤ n, with coefficients
given by

Wµν :=
∂ 2L

∂ q̇µ∂ q̇ν

is non singular, then we can write the accelerations of the non-actuated degrees of
freedom as

q̈µ =W µνFν(qA, q̇A, q̈a) =: Gµ(qA, q̇A, q̈a) , (4.8)

where (W µν) denotes the inverse of the matrix (Wµν) and

Fν(qA, q̇A, q̈a) =
∂ 2L

∂ q̇a∂ q̇ν
q̈a +

∂ 2L
∂qA∂ q̇ν

q̇A− ∂L
∂qν

.
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Therefore (qA, q̇A, q̈a), A = 1, . . . ,n and a = 1, . . . ,r, defines local coordinates
on M . The previous assumption that the matrix Wµν is nonsingular, is verified if L
is a Lagrangian of the mechanical type such as we write it as the difference between
the kinematic and potential energies

At this point, we have the correct geometrical space, which is the sub-manifold
M of the second tangent space T 2Q and it is possible to define the restricted La-
grangian L̃M := L̃|M which describes the energy evolution of a generic under-
actuated mechanical system.

We need another step to put the UMS constraints in the correct geometric space.
Skinner and Rusk in ([85]) proposed a formalism to define the appropriate geomet-
rical space, summarized in figure 4-1, where we can search for a solution. Let
W0 = T ∗(T Q)×T Q M be a fiber product over T Q, locally described by coordinates
(qA, q̇A, p0

A, p1
A, q̈

a). The coordinates p0
A and p1

A are the conjugate momenta of qA

and q̇A, respectively. p0
A are the co-state on the tangent space that has the same role

of the ”Lagrange multipliers” in the Lagrangian frameworks. p1
A are other co-state,

which are related to the evolution of the constraints given by the under-actuation.

W0 = T ∗(T Q)×T Q M

M
�

πM

T ∗(T Q)

π
T ∗(TQ) -

T Q

π

?�

πT∗ Q

τM

-

Figure 4-1: Skinner-Rusk formalism

In this case, the appropriate formalism to find a solution to our problem is the
Hamiltonian formalism presented in Chapter 3. Let ΩW0 = π∗1 (ωT Q) be the pull-
back on W0 of the standard 2–form ωT Q of T Q and HW0(αx,vx) := 〈αx, ιM (vx)〉−
L̃M (vx) the Hamiltonian on W0, where x ∈ T Q, vx ∈Mx = τ

−1
M (x), αx ∈ T ∗x T Q and

〈·, ·〉 denotes the standard pairing of forms with vectors.
We are now ready to use the Hamiltonian formalism to find solutions to our

problem. See Appendix A for details on how to compute solutions using the Hamil-
tonian framework. We can better understand the previous constructions using local
coordinates, the 2–form ΩW0 reads

ΩW0 = dqA∧d p0
A +dq̇A∧d p1

A (4.9)
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and the Hamiltonian is

HW0 = p0
Aq̇A + p1

aq̈a + p1
µGµ(qA, q̇A, q̈a)− L̃M (qA, q̇A, q̈a) (4.10)

The equations of motion of our constrained variational problem are Hamilton
equations for HW0 :

iXHW0
ΩW0 = dHW0 , (4.11)

where iX Ω denotes the contraction of the vector field X with the differential form
Ω.

By construction, the 2–form ΩW0 is a pre–symplectic 2–form, i.e. it is a closed,
possibly degenerate, 2–form. We can simply understand this fact looking at the
local coordinates where q̈a are not present the local representation (4.9) of ΩW0 ,
moreover, its kernel is locally represented by

kerΩW0 = spanR

(
∂

∂ q̈a

)
(4.12)

This is a pre-sympletic form but Hamiltonian functions live on a symplectic
manifold. Tothis problem, we need to build another constraint, using the Gotay-
Nester-Hinds’s algorithm as explained in [36]. To this end, we consider a primary
constraint:

dHW0

(
∂

∂ q̈a

)
= 0 (4.13)

that in local coordinates is represented by the following constraint function:

ϕ
1
a :=

∂HW0

∂ q̈a = p1
a + p1

µ

∂Gµ

∂ q̈a −
∂ L̃M

∂ q̈a = 0 . (4.14)

The zero level set of the constraint ϕ1
a defines a 4n–dimensional manifold W1

equipped with local coordinates (qA, q̇A, q̈a, p0
A, p1

µ), A = 1, . . . ,n, a = 1, . . . ,r and
µ = r+1, . . . ,n. Denoting by ιW1 : W1 −→W0 the canonical inclusion of W1 in W0,
under some mild condition, namely the matrix (Rab), with coefficients given by

Rab =
∂ 2L̃M

∂ q̈b∂ q̈a − p1
µ

∂ 2Gµ

∂ q̈b∂ q̈a (4.15)

being not singular, the manifold (W1,ΩW1) is a symplectic manifold, that is a man-
ifold endowed with a closed and non–degenerate 2–form, where ΩW1 := ι∗W1

ΩW0 is
the pull-back of the 2–form ΩW0 to W1.

We are ready now to compute the Hamilton equation (4.11) in local coordinates.
Let

X = XqA ∂

∂qA +X q̇A ∂

∂ q̇A +X q̈a ∂

∂ q̈a +X p0
A

∂

∂ p0
A
+X p1

A
∂

∂ p1
A

(4.16)
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be the generic vector field on W0. We contract X with the pre–symplectic form ΩW0

iX ΩW0 = XqA
d p0

A +X q̇A
d p1

A−X p0
AdqA−X p1

Adq̇A (4.17)

and equating term by term the righthand side of (4.17) with the differential of HW0 ,
we obtain the coefficients of the Hamiltonian vector field XHW0

:

XqA
= q̇A, X q̇A

= Gµ + q̈a,

X p0
A =

∂ L̃M

∂qA − p1
µ

∂Gµ

∂qA , X p1
A =

∂ L̃M

∂ q̇A − p0
A− p1

µ

∂Gµ

∂ q̇A

Hamilton equation (4.11) in local coordinates reads:

dqA

dt = q̇A,
d2qa

dt2 = q̈a (4.18)

d2qµ

dt2 = Gµ

(
qA, dqA

dt ,
d2qa

dt2

)
(4.19)

d p0
A

dt = ∂ L̃M
∂qA − p1

µ
∂Gµ

∂qA (4.20)

d p1
A

dt = ∂ L̃M
∂ q̇A − p0

A− p1
µ

∂Gµ

∂ q̇A (4.21)

p1
a =

∂ L̃M
∂ q̈a − p1

µ
∂Gµ

∂ q̈a (4.22)

Equation (4.22) is a condition on the vanishing of the coefficient of the differ-
ential of q̈a, it defines the primary constraint ϕ1

a and then the symplectic manifold
W1. Combining equations (4.21) and (4.22) we obtain an evolution equation for p1

a:

d
dt

p1
a =

d
dt

(
∂ L̃M

∂ q̈a − p1
µ

∂Gµ

∂ q̈a

)
=−p0

a− p1
µ

∂Gµ

∂ q̇a +
∂ L̃M

dq̇a .

Differentiating with respect to time and substituting the evolution equation (4.20)
of p0

a we obtain

d2

dt2

(
∂ L̃M

∂ q̈a − p1
µ

∂Gµ

∂ q̈a

)
+

d
dt

(
p1

µ

∂Gµ

∂ q̇a −
∂ L̃M

∂ q̇a

)
+

+
∂ L̃M

∂qa − p1
µ

∂Gµ

∂qa = 0 .
(4.23)

The same procedure for p1
µ gives

d2 p1
µ

dt2 =
d
dt

(
∂ L̃M

∂ q̇µ
− p1

ν

∂Gν

∂ q̇µ

)
+ p1

ν

∂Gν

∂qµ
− ∂ L̃M

∂qµ
. (4.24)

We notice that solving equations (4.23) and (4.24) allows to find p0
µ and p0

a
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using the equation 4.20. From equation 4.20 it is possible to get

p0
µ =

∂ L̃M

∂ q̇µ
− p1

ν

∂Gν

∂ q̇µ
−

d p1
µ

dt
,

combining equation 4.20 and the primary constraint ϕ1
a , we can compute the

momenta of the actuated degrees of freedom:

p0
a =

∂ L̃M

∂ q̇a − p1
ν

∂Gν

∂ q̇a −
d
dt

(
p1

ν

∂Gν

∂ q̈a −
∂ L̃M

∂ q̈q

)
.

Finally, working on the manifold W1 we can put equation 4.24 in normal form
obtaining the ordinary differential equations which describe the dynamic evolution
of our under-actuated mechanical system:

d4qa

dt4 = Γ
a
(

qA, q̇A, q̈a,
...q a, p1

µ , ṗ1
µ

)
,

d2qµ

dt2 = Gµ

(
qA, q̇Aq̈a

)
,

d2 p1
µ

dt2 =
d
dt

(
∂ L̃M

∂ q̇µ
− p1

ν

∂Gν

∂ q̇µ

)
−
(

∂ L̃M

∂qµ
− p1

ν

∂Gν

∂qµ

) (4.25)

where the function Γa is

Γ
a
(

qA, q̇A, q̈a,
...q a, p1

µ , ṗ1
µ

)
:= Rab

[
Hb +

d
dt

Fb−
d
dt

Lb

−
...q c d

dt
Rbc

]
with

Fa =
∂ L̃M

∂ q̇a − p1
µ

∂Gµ

∂ q̇a ,

Ha = p1
µ

∂Gµ

∂qa −
∂ L̃M

∂qa

La =
∂ 2L̃M

∂qA∂ q̈a q̇A +
∂ 2L̃M

∂ q̇b∂ q̈a q̈b +
∂ 2L̃M

∂ q̇β ∂ q̈a
Gβ − ṗ1

µ

∂Gµ

∂ q̈a +

− p1
µ

(
∂ 2Gµ

∂qA∂ q̈a q̇A +
∂ 2Gµ

∂ q̇b∂ q̈a q̈a +
∂ 2Gµ

∂ q̇β ∂ q̈a
Gβ

)
(4.26)

where (Rab) is the inverse matrix of the matrix (Rab) defined in (4.15). Equa-
tions 4.25 generate a flow which allows to reconstruct the momenta p0

A, and, in
combination with the constraint equation (4.22) it also allows to generate the flow
of the Hamiltonian vector field XHW1

.
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The method proposed looks complicated but it allows, starting from the de-
scription of the Lagrangian function, to generate a set of equations that describe the
dynamic evolution of a generic super-articulated mechanical system considering the
acceleration constraints.

For practical use of this method, we implemented a Mathematica ®script that
allows generating the previous equations of motion starting from the Lagrangian
function.

4.4 Trajectory planning

In the previous Section we found a set of equation describing the evolution of the
dynamics for generic super-articulated mechanical system. In this Section we use
these equations to solve a trajectory planning problem i.e. computing an optimal
trajectory ua(t) which drives an UMS system from a staring configuration qA(0) =
qA

start to a final configuration qA(T ) = qA
goal . The first step is to write equation 4.25

in the ODE form q̇ = h(q, p), ṗ = g(q, p) i.e.:

dqa

dt
= q

d2qa

dt2 = q̇

d3qa

dt3 = q̈

d4qa

dt4 = Γ
a
(

qA, q̇A, q̈a,
...q a, p1

µ , ṗ1
µ

)
,

dqµ

dt
= qµ

d2qµ

dt2 = Gµ

(
qA, q̇Aq̈a

)
,

d p1
µ

dt
= p1

µ

d2 p1
µ

dt2 =
d
dt

(
∂ L̃M

∂ q̇µ
− p1

ν

∂Gν

∂ q̇µ

)
−
(

∂ L̃M

∂qµ
− p1

ν

∂Gν

∂qµ

)

(4.27)

We can now apply a numerical method to search for a solution. As a first ap-
proach, we decided to use an indirect method, presented in the next Section, to
find the best trajectory q̂a(t), which connects the starting point to the final config-
uration. Since we are interested in computing the control input u∗(t), so we need
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another step. Recalling the Lagrange equation for the actuated degrees of freedom

d
dt

(
∂L
∂ q̇a

)
− ∂L

∂qa = ua (4.28)

we can substitute the generic trajectory qa with the solution q∗a computed by the in-
direct method q̂a obtaining the desired best control trajectory ûa. Finally we can ap-
ply the best controls ûa to actuated degrees of freedom driving the super-articulated
system to the target configuration.

4.5 The cart-pole
We apply the method proposed in the previous Section to a standard example in
control theory literature: the cart-pole system. In general, the problem is to move
the cart from an initial position to a final one maintaining the pole around the equi-
librium point. In our case, we want to move the cart but avoiding an obstacle put at
a certain height in the final cart position x f .

Formally, we want to plan an optimal trajectory (x(t),θ(t),u(t)) of the con-
figuration variables and of the controls that starting from a given initial configura-
tion (x(0),θ(0), ẋ(0), θ̇(0)), avoids the obstacle and stops at a given final position
(x(t f ),θ(t f ), ẋ(t f ), θ̇(t f )).

To evaluate the best trajectory, we consider the following cost function:

A (x(·),θ(·),u(·)) = 1
2

∫ t f

0
u2dt (4.29)

The configuration space of the systems is Q =R×S1 equipped with local coor-
dinates (x,θ), where x identifies the position of the center of mass of the cart and θ

is the pole angle with respect to the vertical direction. The phase space is T Q with
local coordinates (x,θ , ẋ, θ̇). The Lagrangian of the system is :

L(x,θ , ẋ, θ̇) =
1
2

Mẋ2 +
1
2

m(ẋ2 +2`ẋθ̇ cosθ + `2
θ̇

2)−mg`cosθ
(4.30)

where M is the mass of the cart, m and ` are the mass and the length of the pendu-
lum, respectively, and g is the gravity acceleration constant.

The system is subject to a control force ~F = (u,0) along the x–axis and the
degree of freedom defined by θ is not actuated. The equations of motion of the
controlled system are then

(M+m)ẍ−m`θ̇ 2 sinθ +m`θ̈ cosθ = u,

ẍcosθ + `θ̈ −gsinθ = 0 .
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Figure 4-2: The cart-pole example

From the second equation we obtain

Gθ (x,θ , ẋ, θ̇ , ẍ) =
gsinθ − ẍcosθ

`
(4.31)

and then the constrained Lagrangian L̃ |M is

L̃ |M (x,θ , ẋ, θ̇ , ẍ) =
1
2
[(M+m)ẍ−m`θ̇ 2 sinθ

+mgcosθ sinθ −mẍcos2
θ ]2

(4.32)

where M =
{
(x,θ , ẋ, θ̇ , ẍ, θ̈) ∈ T 2Q | θ̈ = Gθ (x,θ , ẋ, θ̇ , ẍ)

}
is the constraint mani-

fold.
The pre-symplectic 2-form ΩW0 and the Hamiltonian HW0 projected in the dis-

tribution W0 are, respectively

HW0 = p0
x ẋ+ p0

θ θ̇ + p1
x ẍ+ p1

θ Gθ−

− 1
2
[
(M+m)ẍ−m`θ̇ 2 sinθ +m`θ̈ cosθ

]2 (4.33)

The primary constraint is

ϕ
1
x = p1

θ + p1
θ

∂Gθ

∂ ẍ
− ∂ L̃M

∂ ẍ
= 0 . (4.34)
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The submanifold W1 of W0, locally defined by ϕ1
x , equipped with the restriction

ΩW1 of ΩW0 is a symplectic manifold resulting in

R = (M+msin2
θ)2 6= 0 . (4.35)

Using the Gotay-Neste-Hinds’s algorithm we can find a unique vector field XW1

on W1 that satisfies the equation iXW1
ΩW1 = dHW1 , where HW1 denotes the restriction

to W1 of the Hamiltonian HW0 . We are able now to find a unique control, given by
equation (4.1), which minimizes the cost functional A .

The theory presented in this Chapter guarantees the conservation of the Hamil-
tonian vector field XW1 of the symplectic form ΩW1 and of the Hamiltonian HW1

along the flow on W1.
Finally, after some symbolic computation we can write the equations of motions

(4.25) for the controlled cart-pole:

θ̈ = Gθ (x,θ , ẋ, θ̇ , ẍ)

d2 p1
θ

dt2 =
d
dt

∂ L̃M

∂ θ̇
− ∂ L̃M

∂θ
+ p1

θ

∂Gθ

∂θ

d4x
dt4 = R−1

[
−...x

d
dt

R− d
dt

(
∂ 2L̃M

∂θ ∂ ẍ
θ̇ − ṗ1

θ

∂Gθ

∂ ẍ
− p1

θ

∂ 2G
∂θ ∂ ẍ

θ̇

)]
with R defined in (4.35).

4.5.1 Trajectory planning for the cart-pole system
Having computed the equations of motion for the cart-pole system, our goal is now
to drive the cart-pole from an initial configuration point q0 = (x0,θ0) to configura-
tion q f = (x f ,θ f ) avoiding the obstacle placed at point P of coordinates (x f ,yP),
with yP < ` and with θ f chosen so that `cosθ f < yP. We can see this problem
as a Two point boundary value problem (see the book “Applied Optimal Control:
Optimization, Estimation, and Control”[16]):

Given N first-order ordinary differential equations (ODE) in the canonical form

∂yi(x)
∂x

= gi(x,y1,y2, . . . ,yN) with i = 1,2, . . .N (4.36)

and also have r1 boundary conditions at the initial point x1 and r2 boundary condi-
tions at the final point xN , we write the boundary conditions as:

B1 j(x1,y1,y2, . . . ,yN) = 0 with j = 1, . . .r1

B2k(x2,y1,y2, . . . ,yN) = 0 with k = 1, . . .r2
(4.37)

As the first approach, we decided to solve using a standard shooting method.
We use as cost function the difference between the reached position and the desired
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position, after that, we minimize this cost function using the Levenberg-Marquardt
algorithm [32]. As result of this computation, we find the best values for momenta
p1

θ
, which are the momenta of the non-actuated degrees of freedom.
To understand the numerical algorithm, we present a pseudo-code which gives

the idea of the procedure used to find solutions:

F u n c t i o n e r r o r F u n ( par , qa
0,q

µ

0 ,q
a
f ,q

µ

f , t ime )
b e g i n

q0= [ qa
0,0,0,0,q

µ

0 ,0, par[0], par[1] ]
qcurr(t)= odeSolv ( dynEvo , q0 , t ime )
qa

curr = qcurr[0](t f )

qµ
curr = qcurr[4](t f )

r e t u r n [ qa
0−qa

curr,q
µ

0 −qµ
curr ]

end

Program c a r t P o l e
b e g i n

tMax= 1
t = [ 0 , 0 . 1 , . . . , t f ]
o p t P a r = o p t i m i z e ( e r r o r F u n ( par , qa

0,q
µ

0 ,q
a
f ,q

µ

f , t )
qInitopt = [ qa

0,0,0,0,q
µ

0 ,0, par[0], par[1] ]
qopt = o d e I n t ( dynEvo , qInitopt , t ime )

ua = d
dt

(
∂L

∂ q̇a
opt

)
− ∂L

∂qa

end

where function dynEvo (qa, q̇a, q̈a,
...
qa,qµ , q̇µ , p1

µ , ṗ1
µ ) implements the system dy-

namic evolution as solutions of equations (4.25).

4.5.2 Numerical results
In this Section we can see the numerical results obtained using the method presented
in the previous Section The physical parameters of the system are summarized ,
using the values in Table 4.1

The first plot in Figure 4-3 shows the evolution of the center of mass of the
cart: we can observe that the cart goes ahead until reaches a maximum near 0.9s
outlined by the dashed vertical line, and then it goes back to the prescribed final
position. The second plot describes the evolution of the pole’s angle θ . The pen-
dulum rotates anticlockwise (over 1rad) and then, with a (small) delay concerning
the x maximum, stops increasing and rotates clockwise to the final position, with-
out touching the obstacle that illustrates the time evolution of the height inverted
pendulum-blue line-compared with the height of the (fixed) obstacle-horizontal red
line). The plot describing the control input in Figure 4-3, shows the evolution of
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Symbol Description Value
M mass of the car 1Kg
m mass of the pole 0.01Kg
` length of the pole 1m
g gravity acceleration 9.81ms−2

q0 initial configuration (0;0)
q f final configuration (1;1)
t0 initial time 0s
t f final time 1s

Table 4.1: Mechanical properties of the cart-pole example using the International
system of unit

the optimal control: at the beginning, the applied control force is positive to move
the cart toward the positive direction of the x axe, then, after 0.6s (and before 0.8s)
it changes sign and first slows down the cart-pole, then reverses the direction of the
motion to reach the final position.

Figure 4-3: Time evolution of x(t), y(t), θ(t) and the control u(t).

59



4.6 Quadrotor with a suspended load
Another case of study for the variational constrained system problem is a quadrotor
with a suspend load. This problem could be useful in some practical applications
as presented by various authors [74] [22] [35] [37].

If we control the quadrotor in position, using the Flatness property, as presented
in Chapter 2, we have a similar model as the cart-pole proposed before and shown
in figure 4-4 . For an application of the Flatness property to quadrotor with a sus-
pended load refer to [89].

We suppose that the quadrotor maintains a certain height h and a link of length l
suspends a mass m could freely swing. At a distance x f from the staring point x0 p,
there is an obstacle placed at height d = (h− l).

Our aim is to plan a trajectory in such a way that the quadrotor with the pen-
dulum, starting from a given position P0 arrives at a prescribed final position Pf ,
avoiding the obstacle.

As first example we consider that the quadrotor is also constrained to move
along a line that coincides with the x–axis of our inertial frame (see Fig. 4-4).

Figure 4-4: Simplified model of quadrotor with a suspend load moving along the
x–axis.

We model our system as a mass M with pendulum of length ` and mass m
constrained to move along a straight line at constant high h on which a control
force F acts along the motion direction and that have to make the pendulum avoid
the obstacle P fixed in space at the constant high d > h− `

The configuration space of the systems is Q =R×S1 equipped with local coor-
dinates (x,θ), where x identifies the position of the center of mass of the cart and θ
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is the pendulum angle with respect to the vertical direction. The phase space is the
tangent bundle T Q with local coordinates (x,θ , ẋ, θ̇). The Lagrangian of the system
is :

L(x,θ , ẋ, θ̇) =
1
2

Mẋ2 +
1
2

m(ẋ2 +2`ẋθ̇ cosθ + `2
θ̇

2)−mg`cosθ
(4.38)

where M is the mass of the cart, m and ` are the mass and the length of the pendu-
lum, respectively, and g is the gravity acceleration constant.

The system is subject to a control force F = (u,0), applied parallel to the track,
and we assume the degree of freedom defined by θ as underactuated. The equations
of motion of the controlled system are then

(M+m)ẍ+m`θ̇ 2 sinθ −m`θ̈ cosθ = u,

− ẍcosθ + `θ̈ +gsinθ = 0 .
(4.39)

4.6.1 Numerical results

As we did with the cart-pole system, we used the same numerical method to find a
solution to this problem. In this case the parameters are shown in table 4.2.

Table 4.2: Mechanical properties of the cart-pendulum example using the Interna-
tional System of Unit

Symbol Description Value
M mass of quadrotor 1.3Kg
m mass of load 0.01Kg
` length of link 0.15m
g gravity acceleration 9.81ms−2

q0 initial configuration (0m;3.14rad)
q f final configuration (0;2.71rad)
t0 initial time 0s
t f final time 1s

Also in this study case, it is possible to plan a trajectory and decide the final
configuration of the system. In particular, having the possibility of deciding the final
value of the slung, we are able to avoid obstacles or allowing an automatic unload
of the payload. In the next Section we present a real setup with some preliminary
results.
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Figure 4-5: Time evolution of x(t), θ(t) and the control u(t).

4.7 Conclusions
In this Chapter, we applied a method, called ”Variational constrained system prob-
lem” that use the Hamiltonian framework to solve the problem of trajectory plan-
ning for underactuated mechanical systems. It is interesting to notice that the
method transform the Lagrangian equations of motion to Hamiltonian equations,
including the constraints of the UMS. From a practical point of view, we apply a
numerical method to search for admissible momenta that plan an optimal trajectory.
This is the key point that supports the idea of the thesis presented in Chapter 1.

Using this method, we discovered that it could not be applied to all kind of
UMS, but only to super-articulated system presented in Chapter 3. The primary
case study of this thesis, presented in Chapter 1, is the multi-rotor but we discovered
that the multi-rotor is not a “super-articulated system.” because the model does not
respect the properties defined by Ballieul in [91] so it is not possible to apply the
”Variational constrained system problem.” to multi-rotors.

We are interested in finding another method based on the Hamiltonian frame-
work. Our idea is to see the evolution of momenta as a description of the energy
that is stored inside the system, we want to search for a method that can use this
energy to overcome the constraints imposed by the under-actuation. In the next
Chapter, we will write the Hamiltonian equations describing the multi-rotor and we
will apply a numerical method to plan feasible trajectories.
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Chapter 5

Energy-based method for generic
UMS

In this chapter, we use the Hamiltonian formalism presented in Chapter 3 to solve
the trajectory planning problem for generic under-actuated mechanical systems
(UMS). From the experience gained using the variational constrained systems method
described in the previous Chapter, we want to investigate how the relationship be-
tween the evolution of robot configurations, energy, and input control can be used
to plan a possible trajectory for generic UMS. The method proposed in the previ-
ous Chapter, in-fact, does not allow us to plan a trajectory for all kinds of UMS,
but only for super-articulated mechanical systems. The case study proposed in this
Chapter will be the quad-rotor, a six degrees of freedom flying robot with four ac-
tuated degrees if freedom that is of interest of many researchers, as discussed in the
Introduction.

5.1 Proposed method

Our approach to overcame the constraints imposed by the under-actuation is to
use the energy produced by the motion of the mechanical system. Recalling the
concepts presented in Chapter 3, starting from the Lagrangian L(q, q̇) we describe
the Hamiltonian function as

H(q, p) = q̇i pi−L(q, q̇) (5.1)

and the dynamic evolution of an UMS can be written in the following form:

q̇i =
∂H(q, p)

∂ pi

ṗi =−
∂H(q, p)

∂qi

(5.2)
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We can see two first-order differential equations, one for each degree of free-
dom and one of which is the momenta evolution in explicit form. In the literature,
the a direct numerical methods used to compute an optimal trajectory relay a cost
function that includes position and control inputs of the studied mechanical system.
The optimal trajectory r(t) is a function of the positions x and the control input u:

r = (x,u) (5.3)

In the case of UMS, we are interested in planning also the evolution of energy
“stored” in the system by searching for a solution consider that not only positions
and control inputs, but also the evolution of momenta p. Thus the function to opti-
mize as

r̃ = (x, p,u) (5.4)

The benefit of this approach is the possibility of using the energy stored in the
system to drive the quad-rotor in the degrees of freedom that are not directly con-
trollable. To present this idea, we show an example of the Hamiltonian equations
of a quad-rotor constrained to move along the x-direction and able to rotate along
the y-direction only. Let u = τθ the control along the x-axis then we obtain

ẋ =
px

m
,

θ̇ =
pθ

I3(1+ cos2 θ)
,

ṗx =−mg tanθ ,

ṗθ =
p2

θ
sinθ cosθ

I3(1+ cos2 θ)2 +u .

(5.5)

We can see how the control modifies the momentum pθ and the evolution of the
angle θ . As a consequence, the evolution of the momentum px is influenced by the
angle θ and, finally, also the non-actuated degree of freedom x is actuated by the
momentum. With this procedure, we are able to generate the desired quadcopter
trajectory respecting the initial and final boundary conditions on x and px, which
enables the computation of new maneuvers as presented in the next Section.

5.2 The quad-rotor
First of all we need to formalize a generic model to represent the quad-rotor using
the generalized coordinates. We define a set of three oriented orthonormal vectors
T = {tx, ty, tz} and we call it Inertial reference frame (or World frame). To describe
the orientation, we need similar set of vectors E = {e1,e2,e3} where orientation
remains parallel to T but origin is collocated at the center of mass of the quad-rotor
(Body frame).
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Figure 5-1: The quadorotor coordinates system

We can represent a point in the configuration space as:

q = (x,y,z,ψ,θ ,φ) ∈ R6

where

• ξ = (x,y,z) denotes the position relative to T

• η = (ψ,θ ,φ) are the rotation angles around E

Based on the previous points and considering q = (ξ ,η), we can model our
system starting from Euler-Lagrange equation:

d
dt

(
∂L(q, q̇)

∂ q̇

)
− ∂L(q, q̇)

∂q
= F

whereas the Lagrangian is

L(q, q̇) = T (q)−U(q)

with T (q) is the kinetic energy function and U(q) the potential energy.
We can separate translational part and rotational part of kinetic energy

L(q, q̇) = Ttrans +Trot−U

where

• Ttrans =
1
2mξ̇ T ξ̇ is kinetic energy related to {W}

• Trot =
1
2ωT Iω is rotational kinetic energy

• U =−mgWz is potential energy of the quadrotor
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m is the mass, g is gravity acceleration, ω angular velocity respect to body frame
B and I is inertial matrix expressed by

I =

Ixx 0 0
0 Iyy 0
0 0 Izz


Trot =

1
2ωT Iω is expressed relative to body frame and we re-write this equation

using general coordinates. Variable ω is related to generalized coordinates η̇ by the
equation

ω =Wη η̇

where

Wη =

 −sin(φ) 0 1
cos(φ)sin(θ) cos(θ) 0
cos(φ)cos(θ) −sin(θ) 0


If we substitute last equations into Trot =

1
2ωT Iω we obtain:

Trot =
1
2ωT Iω

Trot =
1
2(Wη η̇)T IWη η̇

We define J(η)= (Wη)
T IWη as inertial matrix expressed in generalized coordinates

to obtain
Trot =

1
2

η̇
TJη̇

that is the rotational kinematic energy of the quadrotor expressed to the inertial
frame.

Summarizing, we can write the Lagrangian as

L(q, q̇) = Ttrans +Trot−U = m
1
2

ξ̇
T

ξ̇ +
1
2

η̇
TJη̇ +mgWz (5.6)

Recalling the original equation

d
dt

(
∂L(q, q̇)

∂ q̇

)
− ∂L(q, q̇)

∂q
= F

we are now interested on working with forces and we separating the translational
from rotational of L:

F =

[
Fξ

τ

]
For translational force we can write

Fξ = RF̂ ∈ R3

66



Figure 5-2: This picture shows the forces applied by rotors

where R represents orientation of the aircraft relative to world frame (using the
Roll-Pitch-Yaw convention)

R =

cosθ cosψ cosψ sinθ sinϕ− sinψ cosϕ cosψ sinθ sinϕ + sinψ sinϕ

cosθ sinψ sinψ sinθ sinϕ + cosψ cosϕ cosϕ sinθ sinψ− cosψ sinϕ

−sinθ cosθ sinϕ cosθ cosϕ


(5.7)

and F̂ is translational force applied to the z-axis in body frame

F̂ =

0
0
u

 (5.8)

where u = ∑
4
i=1 fi is the sum of all forces as shown in figure 5-2.

The generalized torques τ are expressed by

τ =

τψ

τθ

τφ

=

 ∑
4
i=1 τMi

( f2− f4)l
( f3− f2)l

 (5.9)

where l is the distance between the motors and the center of gravity and τMi is the
moment produced by motor i about the center of gravity.

If we substitute the terms computed in equation 5.6 we obtain the equations of
motion

d
dt

[
∂Ltrans

∂ ξ̇

]
− ∂Ltrans

∂ξ
= F̂ → mξ̈ +mgWz = F̂

and
d
dt

[
∂Lrot

∂ η̇

]
− ∂Lrot

∂η
= τ → Jη̈ +N(η , η̇) = τ

where N(η , η̇) =
(
J̇− 1

2
∂

∂η
(η̇TJ)

)
η̇ contains gyroscopic and centrifugal terms.

67



The extended dynamic equations are:

mz̈ = u(cos(θ)cos(φ))−mg
Jψ̈ +N(ψ, ψ̇) = τψ

Jθ̈ +N(θ , θ̇) = τθ

Jφ̈ +N(φ , φ̇) = τφ

We have also two equations that represent the dynamic evolution of the non-
actuated degrees of freedom.

mẍ−u(sin(φ)sin(ψ)+ cos(φ)cos(ψ)sin(θ)) = 0
mÿ−u(cos(φ)sin(θ)− cos(ψ)sin(φ)) = 0

In Chapter 4 we use the equations of the non-actuated DoF to build a distribution
on the cotangent space. In the case of quadrotors this is not possible because it is
not a “super-articulated mechanical system”. In the future we want to understand
the geometrical meaning of these equations. In the next Section we present our
approach to apply geometrical insight to this problem.

5.3 Trajectory planning for quadrotors
In the previous section we presented a mathematical model to describe the quad-
rotor and computing the Lagrangian equations, which are useful to understand the
equation describing the evolution of the non-actuated degrees of freedom. All the
previous equations we described using the generalized coordinates. To reduce the
complexity of the implementation and to use the commercial flight controller, in this
section we model another time the quadrotor but we use the aeronautical convention
Nord-Est-Down (NED) to orient the axes of the inertial frame. Another difference
is that we the angular velocities are relative to the body frame and not relative to the
inertial frame as in the Section before.

As shown in the previous section, the quadrotor equations can include the ex-
ternal forces and the effect of a constraint, for example to maintain a fixed quote
h.

Let T = (tx, ty, tz) be an inertial reference frame oriented according the North-
East-Down (NED) convention, and E = (e1,e2,e3) be a “body frame”, with the unit
vectors e1, e2 and e3 oriented as the principal axes of inertia of the quadrotor (see
Figure 5-10).

The SO(3) component of the configuration space is parametrized via the NED
convention for the Euler’s angles on SO(3) by (q, q̇)= (x,y,z,ψ,θ ,φ , ẋ, ẏ, ż,Ω1,Ω2,Ω3),
with (x,y,z)∈R3 the coordinates of the center of mass of the quadrotor with respect
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Figure 5-3: The figure shows the quadcopter and reference frames.

to the NED inertial frame, and with Ω = (Ω1,Ω2,Ω3) ∈ R3 the angular velocities
of the quadrotor in the body frame representation. The Lagrangian of the system is,
in local coordinates:

L(q, q̇) =
1
2

m(ẋ2 + ẏ2 + ż2)+
1
2

Ω · IΩ+mgz , (5.10)

where g is the gravity acceleration constant, m denotes the mass and I is the tensor of
inertia relative to the center of mass C of the quadrotor. In the body reference frame
the inertia tensor is diagonal IC = diag(I1, I2, I3) and constant in time, where I1, I2
and I3 are the diagonal components with respect to the principal axes of inertia. The
quadrotor symmetry requires that I1 = I2. We compute the Hamiltonian formulation
of the equations of motion via the Legendre transform. The Hamiltonian, denoting
by p the conjugate momentum vector to q, is

H(q, p) =
1

2m
(p2

x + p2
y + p2

z )+
1
2
I−1
C M ·M−mgz , (5.11)

where M = (M1,M2,M3) denotes the angular momentum with respect to the center
of mass C in the body representation frame, conjugated with Ω. Let (Fx,Fy,Fz,τ1,τ2,τ3)∈
R3×R3 be the control forces acting on the quadrotor, whereFx

Fy
Fz

 = R

0
0
u

 , (5.12)
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with R the transformation matrix that represents the quadrotor attitude:

R =

cosθ cosψ cosψ sinθ sinϕ− sinψ cosϕ cosψ sinθ sinϕ + sinψ sinϕ

cosθ sinψ sinψ sinθ sinϕ + cosψ cosϕ cosϕ sinθ sinψ− cosψ sinϕ

−sinθ cosθ sinϕ cosθ cosϕ


(5.13)

We assume a linear model of air resistance, in which the resisting force is pro-
portional to the velocity. Let κx, κy and κz be the resistance coefficients.

The Hamilton’s equations for the quadrotor are

ẋ =
px

m
, ẏ =

py

m
, ż =

pz

m
,

ṗx =
κy

m
px +Fx , ṗy =

κy

m
py +Fy , ṗz =−mg+

κz

m
pz +Fz ,

M1 = I1(ϕ̇− ψ̇ sinθ) , M2 = I1(ψ̇ cosθ sinϕ + θ̇ cosϕ) ,

M3 = I3(ψ̇ cosθ cosϕ + θ̇ sinϕ)

Ṁ1 +
M2M3

I1I3
(I3− I1) = τ1 , Ṁ2 +

M1M3

I1I3
(I1− I3) = τ2 ,

Ṁ3 = τ3 ,

(5.14)

In this thesis we make some simplifications to enlighten the problem aspects
but the method can used without simplification. We start assuming the resistance
coefficients equal to 1 and that the quadrotor does not rotate about the z direction
and maintaining a fixed altitude. By imposing a fixed altitude, ż and ṗz must vanish,
yielding:

u =
mg

cosθ cosϕ
. (5.15)

By imposing that the quadrotor can not rotate about the z direction, we require
that ψ , ψ̇ and Ṁ3 vanish, therefore M3 is constant. Hamilton’s equations for the
constrained system then become:

ẋ =
px

m
, ẏ =

py

m
,

ṗx =−
mg

cosθ
sinθ , ṗy =−

mg
cosϕ cosθ

sinϕ ,

M1 = I1ϕ̇ , M2 = I1θ̇ cosϕ ,

Ṁ1 +
M2M3

I1I3
(I3− I1) = τ1 , Ṁ2 +

M1M3

I1I3
(I1− I3) = τ2 .

(5.16)

If we impose a further constraint that the quadrotor cannot rotate about the x
direction, we deal with a system with two degrees of freedom (x,θ) ∈ R×]0,π[.
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Hamilton’s equation for this systems are then:

ẋ =
px

m
, θ̇ =

pθ

I3(1+ cos2 θ)
,

ṗx =−mg tanθ +
κ

m
px , ṗθ =

p2
θ

sinθ cosθ

I3(1+ cos2 θ)2 + τθ ,

(5.17)

where pθ is the conjugate momentum to θ .

5.4 Implementation

In the previous Section we presented the Hamiltonian equations describing the dy-
namic evolution of the quadrotor. We now want apply a numerical method to com-
pute the best trajectory for configurations qi, momenta pi and control input ui. We
use a direct method, called collocation method presented in the next Section.

5.4.1 Direct collocation method

The direct collocation method was proposed in [40] with the objective to transform
an optimization problem into a general nonlinear programming problem (NLP) that
can be solved by computing n vectors that solve the equation:

minxF(x) (5.18)

subject to the m constraints:
cL ≤ c(x)≤ cU (5.19)

and bounds:
xL ≤ x≤ xU (5.20)

We can transform the equations describing the dynamic evolution of the sys-
tem into a set of constraints imposing cL = cU . In this way, the trajectory gener-
ation problem is transformed into an NLP with a level of approximation that de-
pends on the numerical method used in the solution. There are many numerical
algorithms that can be used to solve this problem, the most common are: Hermite-
Simpson Method [40], High Order Gauss-Lobatto Method [96] and the Pseudospec-
tral Method [26]. A survey of these methods and their performance are presented
in [93] and [6].

The steps performed in the method are as follows. The first step is to consider
a generic state trajectory x(t) and a control trajectory u(t), and to split them into
N events ei ∈ E[t0, t f ] where i ∈ [1,N], ad shown in Figure 5-4. This step produces
two piecewise functions x(t) = ∑

N
i=0 x(ei) and u(t) = ∑

N
i=0 u(ei).
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Figure 5-4: Schematic representation of the direct collocation method

The i-event ei is assumed to represent the dynamical system subject to the dif-
ferential constraint:

x′(t) = f i(x,u,ω, t), t ∈ [ei,ei +1] (5.21)

where ω is a vector containing the kinematic and dynamic parameters of the system
(size, mass, inertia etc.)

Then, we consider only one event [ei,ei+1], and we fit a cubic spline parametrized
as spl(s1,s2,∆). As shown in [40], we can describe the cubic spline in the interval
[ei,ei+1] using a unique variable ∆i. To connect all the segment we must satisfy
a linear equation in which all the independent variables are grouped into a single
vector:

P = [Z,E,ω] (5.22)

where Z = ∑
N
i=0(xi,ui).

To complete the problem description we add the nonlinear boundary conditions

BN =
N

∑
i=0

lBE ≤ bi(x(ei),ei,ω)≤ uBE (5.23)

and the path and control constraints

HN =
N

∑
i=0

lPC ≤ hi(x(ei),u(ei),ω, t)≤ uPC (5.24)

where b,h are assumed to be smooth (∈C2). If all the constraints are grouped into
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a unique vector equation
C = [∆,BN ,HN ] (5.25)

the nonlinear programming problem is defined as:

minimize J = Φ(P)

subject to

l ≤

 P
AP

C(P)

≤ u (5.26)

Given this formulation, we can now solve the trajectory computation problem by
using a numerical solver such as the proprietary library SNOPT [33] or the open-
source project IPOPT[7]. In this thesis we decided to use the “Pytrajectory“ toolbox
[1] that implements the Hermite-Sympson method [40].

5.5 Results

To test the method proposed, as a first step we make some simulations and, in the
next Section, we demonstrate the method on a real setup. To produce a realistic
trajectory, we identify the dynamic parameters of the custom made quadrotor, class
280, shown in Figure 5-5 that are summarized in Table 5.1

Body mass 0.89 Kg
Moment of inertia about wx 0.0048 kg ·m2

Moment of inertia about wy 0.0048 kg ·m2

Drag coefficent 0.5

Table 5.1: Table of the dynamic parameters used in the simulations.

We do not have a real setup running to identify the drag coefficient so we de-
cided a reasonable value for this value looking at results in the literature. To give a
simple visualization of results and to allow an easy testing of the method, we con-
nected the computation to the visualization tool V-REP [78]. We use V-REP only
to define, in a simple and intuitive way, the initial configuration of the quadrotor
and to place the trajectory end point. In the first example we use as trajectory target
a sequence of windows randomly oriented in the space, whereas in the second ex-
ample the desired target is the entrance of the narrow gap in a thick wall. In these
example we do not use the dynamic simulation capabilities offered by V-REP.
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Figure 5-5: Quadrotor used to find the values of the dynamic parameters used in the
simulation.

5.5.1 Task 1: flying trough a sequence of generic oriented win-
dows

In the first example, we want to pass through a sequence of randomly oriented
windows. Passing through a window is a task that has already been presented in
other papers, e.g. [59], [27] and [67]. We present these simulations to show that
our approach can handle some of the most recent solved problems in trajectory
generation.

The quadrotor starts from a hovering position and we want to compute a trajec-
tory that drives the flying robot to a certain final configuration, which is equal to
the window position and orientation. To drive the quadcopter through a sequence
of windows, we assign as the initial condition of the second trajectory the terminal
conditions of the first trajectory and continue with the other windows. By imposing
equal boundary conditions also to the momenta, we are able to ensure a smooth
transition between the segments that compose the complete trajectory. Please note
that this is equivalent to impose continuity of velocity between the segments as done
in previous solutions to this problem. In this case, the quadcopter keeps its center
of mass at a fixed hight, according to equation (5.16). The trajectory computed for
this example is shown in Figure 5-10.

In this example we can place a final configuration for momenta along x and
y directions. In this way we are able to pass trough horizontal windows with a
diagonal movements.

Figures 5-7 and 5-8 show the behavior of the quadrotor during the task described
above. The graphs show 3 dotted lines which represent the instant of time when the
quadrotor passes through a target window. The first window is placed horizontally

74



Figure 5-6: Visualization of the trajectory driving the quadrotor trough a sequence
of generic oriented windows

Figure 5-7: X trajectory that avoid an obstacle after the first window

(roll angle equal to zero) and we imposed positive momenta px = 2 and py = 2
along x and y direction so that the quadrotor slides through the window following a
diagonal direction with respect to the window face. The second window is placed
at a generic position of the world space but is rotated by 0.7 radiants with respect to
the line of the horizon.
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Figure 5-8: Y trajectory that avoid an obstacle after the first window

Figure 5-9: Roll trajectory that avoid an obstacle after the first window

5.5.2 Task 2: flying trough a deep gap in the wall

A new maneuver that can be computed using the method developed in the previ-
ous sections and not with the other methods described in the literature, is to pass
through a small gap in a thick wall. By imposing a non-zero value to energy as
terminal boundary condition, in fact, we use the momenta available in the system
as fictitious control inputs to move the quadrotor in the directions that cannot be
directly actuated, i.e. (x and y).
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Figure 5-10: Visualization of the trajectory driving the quadrotor passing trough a
deep gap in the wall

As in the previous example, we make the quadrotor start from a generic posi-
tion in space, selected by the user, and the algorithm computes the trajectory which
takes it to the target, i.e. the entrance of the gap in the wall, where it arrives with a
non-zero energy. In this case, the quadcopter moves along the x direction according
to equation (5.17). To see the effect of the quadrotor energy, we implement a for-
ward integration using as initial conditions the terminal conditions of the trajectory.
During this phase where the system dynamics evolves, the drag force induced by the
air resistance is more evident and the velocity of the quadrotor decreases as shown
in Figure 5-11. To check whether a real quadrotor would be able to traverse a gap
in the wall with a specific thickness, we can compute the position of the quadrotor
when the effect of the energy is finished. This aspect of trajectory computation will
be investigated in our future works.

Figure 5-11 shows the trajectory generated for the quadrotor, starting from an
initial point x = −1, the quadrotor makes a loop to acquire enough momentum to
satisfy the terminal constraint decided by the user (in this case 2 m · s−1). After
the passage through the entrance of the wall, the quadcopter dynamics evolves as
describe above, with a logarithmic decay of the velocity until reaching the hovering
condition. In this example we decided to stop the simulation after 2 seconds.

5.6 Conclusions

Based on the results achieved in Chapter 4 and motivated by the geometric me-
chanic theory, in this Chapter we used the Hamiltonian formalism to handle the
constraints affecting a generic under-actuated mechanical system. The idea is that
the Hamiltonian equations can explicitly describe the evolution of the energy stored
in the system and make it possible to use a numerical method to compute an opti-
mized trajectory, not only for state variables but also for momenta. The practical
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Figure 5-11: Trajectory generated to pass trough a thick wall

result is the possibility to define a final value for the energy, which is useful to do
maneuvers that are not possible to do otherwise.

We do not have mathematical proofs, but our intuition is that the underactuated
constraints can be represented as co-vector fields that make a distribution on the
cotangent space. In this way, it would be possible to build a geometrical method, as
we shown in Chapter 4, that plan an optimal trajectory.

In the next Chapter, we apply the technique proposed in this Chapter to a real
experimental setup.
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Chapter 6

Experimental results

After the presentation of a method to plan a feasible trajectory for quadrotors in
Chapter 5, in this Chapter we present an application of the method to a real case.
We want to verify that the computed planned trajectory computed drives the quad-
rotor trough a deep gap using a flight controller present on a custom unmanned
aerial vehicle (UAV).

As presented in the Introduction, our goal is to overcome the limits imposed by
the under-actuation by planning a trajectory for the actuated DoF, using the energy
acquired during the motion and move the quadrotor along a non-actuated DoF. To
propose a concrete task, we plan a trajectory that drives the quadrotor through a
small gap in a deep wall. The trajectory has constant values for roll,yaw angles
attitude and y,z positions, we plan a feasible trajectory and only the pitch Dof is
used to complete the trajectory that is not possible with any other techniques.

6.1 Hardware architecture
A quad-rotor is a flying robot composed of many elements that need to operate
together to fly. In figure 6-1 we present, an overview of the hardware components
and the connections between the various elements.

There are four motors that apply a particular force along the rotational axes. To
power the motors, we use the power provided by the battery pack. In Figure 6-1, we
represent with dotted lines the current and with continuous lines the control signals.
The battery pack also applies current to the flight controller but the voltage is lower
(typical 5 volts), so we need a voltage converter called BEC. To support all these
elements we need a rigid structure, called frame that could hold the motors using
two kinds of configuration: X or +. Figure 6-2 shows the two possible frame con-
figurations. The combination of the forces generated by the motors induces forces
and torques to the body frame and the frame configuration must be considered when
computing the motor control inputs.

There is not a big difference between the two configurations, historically the
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Figure 6-1: An overview of the main hardware components

Figure 6-2: The possibile frame configurations

first quad-rotors developed by hobbyists, research centers and universities had a +-
configuration because it was more natural to generate a horizontal motion (i.e., it is
the difference between the front and back motors). When cameras and sensors were
mounted on quad-rotors, it was more convenient to use the X-configuration because
there was more space in the front direction. If we assume that the front of the frame
is heading North, it is possible to identify a specific motor in a unique way using
the first letter of the cardinal points (North, South, North-East, South-East etc.).
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6.1.1 ESCs
We can control the forces generated by the propellers setting the right amount of
current to the motors. The role of the ESC (Electronic Stability Control) is to give
a constant amount of current to the motors proportional to the voltage coming from
the control signal also considering the voltage level of the battery pack. Figure
6-3 shows a typical ESC connected to a battery and to generic flight controller
that we will present in the next Section. ESCs need to be calibrated to set control
voltages corresponding the maximum or the minimum amount of current to motors
so usually the firmware present in the flight control implements also a method to
calibrate it. To control these modules, the flight controller sends a numerical value
(usually a positive integer), and it is not possible to control directly the forces and
the velocities of the propellers.

Figure 6-3: A tipical ESC connected to a motor

In Section 6.3 we present a bench that we built to identify the relationship be-
tween the control inputs and the forces applied by the propellers to the quadrotor
frame.

6.1.2 Flight Controller
The flight controller is the “core” of the systems and implements the control strat-
egy to maintain a desired attitude or position. The firmware runs on a real-time
embedded system with sensors and communication devices. All the information
coming from the sensors are processed by this software that implements device
drivers and control loops for the ESC as presented earlier.

With the support of Figure 6-4, we present now a generic functional architecture
showing the modules implemented on a typical research flight controller.

• Mixing and ESC control: in this part, there are functions that translate the
command coming from the controller into a control signal to the ESCs. In
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Figure 6-4: A functional architecture of a typical flight controller

particular, based on the configuration frame the mixing function translates
the roll, pitch, yaw, thrust rate commands into control commands for the NE,
NW, SE, SW motors (in the case of the X configuration).

• Rate controller: the aim of this feedback controller is converting the velocity
commands coming from the attitude controller into inputs to pass to the mixer
and the EScs. The velocities of the quadrotor are estimated using IMU, in
particular, the gyroscope. We have only a proportional constant, Kr, which
relate the error between the desired velocities and the velocities estimated
by the IMU. It is also possible to bypass the attitude controller and give the
desired velocities directly from the transmitter used by the operator or the
ground-station.

• Attitude controller: The attitude controller is a position/orientation feedback
controller that converts quadrotor positions into reference velocities for the
rate controller. The desired position comes from the ground-station which
gives the plan of the mission, usually through GPS waypoints. The current
position of the quadrotor could be estimated using the GPS or vision systems
if the drone is used in an outdoor environment, otherwise it is possible to use
a visual tracker such as the Optitrack or Vicon systems.

• Position controller: the position controller use the feedback data from an
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external sensor (see sec 6.1.4 for details) computing commands to send to the
Attitude controller as shown in the picture.

To support many flight modes the commercial flight controllers implement all
the previous modalities but, in our experimental setup, we use only the attitude
controller to apply the trajectory planned for the ”pitch” degree of freedom and the
position controller maintaining a constant value for y,z,yaw DoF.

6.1.3 Ground-station

Figure 6-5: A screen-shot of the QGroundstation software

With Groundstation we identify a computer or a tablet used to monitor the
parameters of the quadrotor and to execute a teleoperated or autonomous flight
planned using a sequence of GPS waypoints. The connection between the Ground-
station and the flight controller is called telemetry and usually is a radio connection
(450 or 900 MHz) but it is possible to make a telemetry connection using Bluetooth,
X-Bee or Wi-Fi (2.4 GHz) protocols. Trough the telemetry it is possible to receive
all the onboard data such as the state of IMU, battery voltage, error checks but is
also possible to over-write the on-board parameters. In the research area, it is com-
mon to use the telemetry to overwrite the control commands and to do autonomous
flights.

6.1.4 Position estimation
The Global Position System (GPS) is a technology that is used to estimate the out-
door position of people of devices such as quadrotors. These systems are not precise
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Figure 6-6: The Px4Flow visual odometry device and the OptiTrack system. Cred-
its: www.optitrack.com

enough (around 2m) to be used for feedback in position controller. For this reason,
researchers use two different methods to improve the position estimation:

• Visual tracker: a visual tracker system is a set of infra-red cameras (usually
ten or more) that identify a pattern of markers put on an object, estimating
position and orientation of a rigid body with a precision of 0̃.2 mm. The most
used tracker camera systems are the VICON and the Optitrack.

• Visual devices: Another way to estimate the position of a quadrotor is to
use “simple” cameras and to do visual odometry implementing algorithms
which run on the companion computers or on-chip. Examples of this kind of
devices are the Px4FLow [43], which is possible to see in Figure 6-6 or the
new advance flight controllers such as the Qualcomm Snapdragon Flight Kit
or the Intel Aero Computer Board that have onboard cameras.

In our setup we use a visual tracker system, in particular, the “Optitrack”, to
receive the feedback for positions (y,z) and we also use it to log the dynamic evo-
lution of the axes ”x”, under the effect of the controller trajectory in ”(pitch)”.

6.2 Thesis setup

After presenting the elements that compose a general setup, in this Section, we
present the custom setup built to test the method proposed in Chapter 5. After
many trials with popular “open-source project” such as PX4 [65], Ardupilot 1 etc.
We found that these projects are too complex and have many bugs and issues. For
this reason, we decided to join the ”Librepilot” project, presented in the next sec-
tion, contributing to the project with a custom plugin. With the help of Librepilot
community, we build a custom quadrotor, called “Chirottero”, presented in the next
Section.
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Figure 6-7: The quadrotor used in the experimental phase

6.2.1 Chirottero miniquad

Using the OpenScad software 2, we designed the frame, making the necessary plas-
tic pieces using a 3D printer. All the pieces are linked together using carbon fiber
sticks and the result is a class 150 quadrotor, which means that the distance between
the NE and SW motors is 150 mm.

All files and the instructions to build Chirottero are present on the website of
the author of this thesis 3 but we show the parts lists so that the reader can buy the
components from the toy market and reproduce the experiment:

• Motors: 8520 8.5x20mm 53500RPM Coreless Motor

• Telemetry: HC-06 bluetooth module

• Propellers: 65mm blade propellers

• Flight controller: CC3D brushed FC board.

• Battery: 3.7V 500mAh 20C Battery pack

The total cost of the quadrotor is around 50 e, which is an affordable cost for
an experimental setup usable in many contexts (research, education etc.).

1http://ardupilot.org/
2www.openscad.org/
3www.boriero.it
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6.2.2 Librepilot project
To control Chirottero, we need a firmware that implements the control algorithms
presented in Chapter 6.1 and a Ground-station that communicates, using the Teleme-
try connection, with the on-board controller.

Figure 6-8: The Librepilot user interface

The Librepilot project in an open-source project active since 2015. The goal
of the project is to provide an open environment where the contributors can add
new projects and support new hardware for unmanned autonomous vehicle and
robots. The Librepilot share its code under the GPLv3 license and it is a friendly
environment where it is possible to develop a research activity, as we do in this
thesis.

In Figure 6-9 it is possible to see the user interface of the plugin wrote to im-
plement the method presented in this thesis. The plugin receives the position of
the quadrotor using the “Natural Point Optitrack system” visual tracker trough the
VRPN 4 communication protocol and visualize the useful information in on the
top-left corner. In the upper part of the plugin is also present a Position controller
where is possible to set a desired position and ”Yaw” orientation and where it is
possible to tune the PID parameters in a simple way.

In the lower part of the screen, it is possible to load a comma-separated-value
(CSV) file containing the optimized trajectory with the desired values for the “pitch”
DoF. When the user presses the “Start” button, the Position controller controls the
axis (y,z,yaw) meanwhile the pitch angle is controlled by the values loaded from

4https://github.com/vrpn/vrpn/wiki
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Figure 6-9: The plugin interface used in the experimental phase

the planned trajectory file. The evolution of the x DoF is output of the system
dynamics.

6.3 Dynamic parameters identification
When the hardware and the software one ready, we need to identify the dynamic pa-
rameters of the flying robot to specify the dynamic moodel of the trajectory planner
presented in Chapter 5. In particular, we need to know the mass of the quadrotor
and the inertia matrix.

6.3.1 Dynamic identification

Figure 6-10: The rendering of the CAD model generated to identify the inertia
matrix
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To identify the mass m we used a precise balance board and the result is a mass
of 0.08 kg

The inertia matrix I is more complex to identify and there are many techniques
but, in our case, we decided to compute it using the CAD software ”SolidWorks”.
The 3D files that we printed to obtain the quadrotor frames, were put in the software
(see Figure 6-10), including the correct mass of each piece.

The result of the inertia matrix calculation is:

I =

76591.06 0.00 −91.57
0.00 235968.68 0.00

91.57 0.00 183829.45

 (6.1)

The values are expressed in g∗mm2

6.3.2 Motor identification

After the characterization of the dynamic parameters of the experimental setup, we
need a method that converts the numerical values sent by the FC to the ESC to set
the motor values. To this end, we prepared a benchmark composed of a load cell
and the same flight controller mounted on the Chirottero mini-drone.

Figure 6-11: The benchmark to identify the relationship between command values
and forces/torques applied

The FC and the load-cell are connected to a standard Linux-based PC to log the
data during the identification process. We divided the range of all possible output
values [0−255] in 17 samples and we sent these numerical input values to the ESC.
For each control value, we measured, using the load cell, the force applied by the
rotating blade. Finally, we fit a linear function estimating a constant C f that convert
output commands in forces. Figure 6-12 shows the results. After estimating the
dynamic parameters of Chirottero, in the next Section we use them to demonstrate
that the method proposed in Chapter 5 can be applied to a real setup.
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Figure 6-12: This figure shows the relation between the input control values and the
forces applied by the rotors

6.4 Task results

6.4.1 Task description
To test the task proposed in Section 5.5.2 we build the following setup. We prepared
the flying arena shown in Figure 6-13 where a visual tracker is able to acquire the
position and the orientation of the Chirottero mini-drone. The task is to start from
an initial position x0 = 0.0m that is 1 meter far from the obstacle, which simulates
a deep gap in a wall. The quadrotor has to start from the initial configuration and
acquire enough energy to arrive just before the gap with a pitch angle equal to zero
and with the desired momentum px f . The initial configuration point is x0 = 0 m,
θ0 = 0 deg and the final configuration is x f = 1.04 m and θ f = 0 deg. We also want
to have a final momenta px f = 0.016 K · m

s *. Remembering that the momenta is
px = m · ẋ, the final desired velocity is ẋ f = 0.2m

s .

Figure 6-13: The flying arena with the obstacle simulating a deep gap in a wall

The initial conditions, the final conditions and the dynamic parameters are used
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with the Python program described in Section 5.5.2 to plan a feasible trajectory
that we use to control the pitch angle. In particular, using the telemetry connection
from the Librepilot plugin we send the pitch trajectory to the attitude controller
implemented on the flight control board of the “Chirottero” quadrotor. In the next
Section, we present the results obtained.

6.4.2 Results

In this Section, we present the results of the task of trajectory generation. Figure
6-14 shows a snapshot of the video of the quadrotor passing through the gap using
the energy acquired with the motion.

Figure 6-14: Snapshot of the video showing the task proposed (https://youtu.
be/F96YewACfdU)

Figure 6-15 display plots of the results. In all plots, there are two curves, one
blue and one orange. The blue curve is the trajectory computed by the Python script
implementing the method presented in Chapter 5 and the orange curve is the posi-
tion of the quadrotor recorded using the visual tracker. To have a common timeline,
the two data are synchronized according to the timeline given by the tracker. In the
first figure, it is possible to see the planned and the resulting pitch, in the second and
third figures the evolution of the x axis of the momenta. The last Figure shows a lot
of noise affecting the orange curve because we had to compute the momenta from
the position trajectory logged by the visual tracker so using numerical derivation
with respect the time and this operation introduces noise.

6.5 Conclusion

In this Chapter, we demonstrate that the theory presented in Chapter 5 can be ap-
plied to a real experimental setup. After building a custom mini quad-rotor, we used
the trajectory planned to drive the flying robot through a deep gap. The novel idea is
to impose a final condition on the momenta so it is possible to use the energy stored
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Figure 6-15: The results of the task for the pitch, x and px variables. In blue it is
possible to see the reference trajectory and in orange the trajectory logged by the
visual tracker

to drive the quadrotor along the non-actuated degrees of freedom x maintaining a
pitch angle equal to zero.
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Chapter 7

Conclusions and future works

7.1 Motivations

In the last decade, robotic autonomy has had a big impact on industrial and aca-
demic research. In particular, since the begin of the new millennium, a new flying
robot has been developed that will give a strong contribution to autonomous maneu-
vers: the multi-rotor. A multi-rotor is a small and relatively cheap unmanned aerial
vehicle (UAV) that can be a valid replacement for helicopters in many fields such as
video-shooting or when small payloads needed to be moved. The main problem of
multi-rotors is the high number of Dof and has challenging dynamics, introduced
by the fact that is an Under-actuated Mechanical System (UMS). To increase the
autonomy of multi-rotors, we are interested to plan trajectories that can do maneu-
vers that are difficult for a human to command, for example passing through gaps
that are generically oriented in the space. In our literature review, we identify two
main areas that can be improved:

• Most of the works are based on the “Flatness property” that uses external
position sensors, such as the GPS system or visual trackers, to transform the
controlled attitude degrees of freedom in controlled position DoF (roll, pitch,yaw,z)→
(x,y,z,yaw). This is useful if we assume that the multi-rotor has a constant
value for the “roll” and “pitch” angles but if we move far from the hover-
ing condition, for example, to do aggressive maneuvers, we need to switch
between attitude and the position controllers.

• When the authors plan a trajectory from an initial configuration to a final con-
figuration, in general, they use local methods that connect, using probabilistic
or numerical algorithms, a sequence of feasible segments. The problem of
these methods is that the planner does not consider the dynamics of the sys-
tem and the dynamic constraints along the whole path, and it is only possible
to do an analysis of the constraints in the aftermath.
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Motivated by these points, we decided to see the problem of planning a feasible
trajectory of an under-actuated mechanical system from a global perspective. To
this end, we study the tools and the methods used in geometric mechanics, in par-
ticular, the Hamiltonian formalism, to understand the geometry of the problem and
to propose a novel approach.

7.2 Summary of the thesis

In the first Chapter, we presented the introduction to the trajectory planning and the
motivations that inspired this thesis, showing the current challenges in robotics and
the ”multi-rotor” systems that have still interesting problems to overcome.

In the Chapter 2 there is an overview of the methods presented in the literature
about the motion planning problem. In this Chapter, we showed the difference
between local methods and global methods to solve a motion planning problem
and the main techniques to do trajectory planning for Under-actuated mechanical
systems.

In this Chapter 3 there is the mathematical background useful to understand
the trajectory planning problems for UMS. The knowledge presented comes from
a research area knows as “geometrical mechanics” refering to the work done by
Marsden [62], Cortes [20], Bullo [17], Bloch [8] and others. Starting from basic
geometric mechanics definitions, we introduced the Hamiltonian equations that are
fundamental tools to apply the methods proposed in the following Chapters.

Chapter 4 proposes the application of the ”Variational constrained system ap-
proach” using the Hamiltonian framework to solve the problem of trajectory plan-
ning for underactuated mechanical systems. The example proposed to show the
benefit of the method is the classical “cart-pole” system and to find a solution, we
applied an indirect method to search for admissible momenta that plan an optimal
trajectory.

In Chapter 5 we use the Hamiltonian formalism to solve the trajectory planning
problem for generic under-actuated mechanical systems (UMS). The Hamiltonian
equations can explicitly describe the evolution of the energy stored in the system
and make it possible to use a numerical method to compute an optimized trajec-
tory, not only for state variables but also for momenta. As a practical example, we
proposed the problem of passing with a quadrotor through a small gap in a deep
wall.

In Chapter 6 we tested the method proposed in Chapter 5 building a real setup
scenario. We built a custom low-cost quadrotor and a software plugin that imple-
ment a position controller and can load and execute the planned trajectory. Finally,
we analyzed the results showing that imposing final conditions to momenta, it is
possible to drive the quadrotor in the directions that are not directly controllable.
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7.3 Summary of contributions

In the Chapters of this thesis we gave the following contributions to the problem of
planning a feasible trajectory for UMS:

7.3.1 Study of the problem

Our first contribution, is the analysis of literature regarding trajectory planning for
mechanical systems, a research field active since the early 80’s. In Chapter 2 we
classified the trajectory panning methods in ”Global” and ”Local” methods and we
decided to focus on the global methods. In this sub-class of algorithms, we propose
another classification based on the approaches used by the authors: methods using
specific equation structures, indirect methods and direct methods.

7.3.2 Application of geometric methods to a classic control prob-
lem

After finding the issues introduced by the UMS in the trajectory planning problem,
we found an approach called ”variational constrain problem” that was proposed
in the field of geometric mechanics to solve the problem of UMS constraints. In
Chapter 4, we applied this method to the problem of planning a feasible trajectory
for a cart-pole system. The results of Chapter 4 were published in [11].

However we found that is is not possible to extend the method to multi-rotors
because they do not satisfy the necessary conditions imposed by the method pro-
posed in Chapter 4. As consequence we discovered that this method can be applied
only to “super-articulated mechanical systems” and multi-rotors are not part of this
class of UMS.

7.3.3 A novel method to plan a trajectory for generic UMS

From the experience gained with the cart-pole example, we understood that the
Hamiltonian formalism can be used to describe the evolution of the energy stored
in the UMS. For this reason in Chapter 5 we wrote the Hamiltonian equations of
quadrotor and we applied a classical numerical method, called “direct collocation
method”, to plan a feasible trajectory to drive the quadrotor from an initial con-
figuration to a final configuration. To demonstrate the benefits of the method, in
Chapter 6 we built an experimental setup and carry out a task never done before:
“flying through a small gap in a deep wall”. This method uses the energy stored
during the motion of the quadrotor to overcome the limitations introduced by the
under-actuation constraints.
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7.4 Future work
Despite the efforts spent to understand the geometric nature of the planning feasible
trajectory for generic UMS, it is still not clear why the method proposed in Chapter
4 cannot be applied to all kind of UMS, In particular, we think that the under-
actuated constraints live in the cotangent space of the tangent space T ∗(T Q) where
it is possible to search for an optimal trajectory. Some authors use the Lagrangian
formalism and they consider the UMS constraints as “second-order nonholonomic
constraints”, living in the second-tangent space T 2Q but a method that works with
these kinds of constraints has not been proposed yet. In the future, we are interested
in discussing with the robotic and geometric mechanic communities to search for
a correct geometric description of the UMS constraints and we want to search an
optimal control strategy to solve the problem of trajectory planning for generic
UMS.

In Chapter 5 we applied a numerical method that returns feasible solutions but
does not search for optimal solutions using a functional cost. In future work, we
want to use the optimal control techniques, such as the “Pontryagin Maximum Prin-
ciple”, to compute optimal solutions. The methods presented in this thesis consider
only constraints affecting the dynamics of the system, we plan to consider obsta-
cles that could be present in the space between the initial configuration and the final
configuration.

The flight arena presented in Chapter 6 has a small (less than 6 m2) surface and
we could not test aggressive maneuvers that need more space to be executed. We
plan to find a bigger arena or using a quadrotor that can fly outdoor to have enough
space to test the method presented in Chapter 5.

96



Appendix A

Basic concepts of Differential
geometry

Differential geometry is a mathematical area that solves problems with the help of
geometric spaces allowing also to reach computational solutions. In the context
of this thesis, this tool is useful to find a smooth curve that connect two points
considering the dynamic constraints of a system.

This section presents the mathematical basis of Topology and differential geom-
etry useful to understand a geometric approach to nonholonomic motion planning.
Section A.1 presents some topology notions taken from the book [68]. Section A.3
presents differential geometry concepts taken from the book [95] but with a mod-
ified notation that could be compatible with ”A.Block-Nonholonomic mechanics
and control” book [8].

A.1 Topological space
Definition A.1. A topology on a set X is a collection T of a subset of X having this
properties:

• /0 and X are in T

• The union of the elements of any sub-collection of T is in T

• The intersection of the elements of any finite sub-collection of T is in T

A set X for which a topology T is specified is called a topologycal space

Definition A.2. If X is a topological space with topology T , we say that a subset
U of X is and open set of X if U belongs to the collection T

Definition A.3. let π1 : X×Y → X be defined by equation

π1(x,y) = x; (A.4)
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and let π2 : X×Y → Y be defined by equation

π2(x,y) = x; (A.5)

The maps π1 and π2 are called the projections of X ×Y onto its first and second
factors, respectively.

Definition A.6. If X is a set, a basis for a topology on X is a collection B of subset
of X such that

• For each x ∈ X, there is at least one basis element B containing x.

• If x belongs to the intersection of two basis elements B1 and B2, then there is
a basis elements B3 containing x such that B3 ⊂ B1∩B2

Definition A.7. A subset U of X is said to be an open subset in X if, for each x ∈U,
there is a basis element B ∈ B such that x ∈ B and B ⊂ U. If U is an open set
containing x, we can said that “U is a neighbourhood of x”

Definition A.8. Let X and Y be topological spaces. The product topology on X×Y
is a topology having as basis the collection B of all set

Definition A.9. Let X be a topological space with topology T . If Y is a subset of
x, the collection

TY = {Y ∩U |U ∈T } (A.10)

is a topology of Y , called subspace topology. With this topology, Y is called sub-
space of X

Definition A.11. A subset A of a topological space X is said to be closed it the set
X \A is open.

Definition A.12. A topological space X is called Hausdorff space if for each pair
x1,x2 of distinct points of X, there exits neighborhoods U1 and U2 of x1 and x2,
respectively, that are disjoint.

A.2 Continuous functions
Definition A.13. Let X and Y be topological spaces. A function f : X → Y is said
to be continuous if, for-each open subset V of Y , the set f−1(V ) is an open subset
of X

Definition A.14. Let X and Y be topological spaces; let f : X → Y be a bijection.
If both the function f and the inverse function

f−1 : Y → X (A.15)

are continuous, the f is called homomorphism.

98



Definition A.16. Let U ⊂ Rn be open, and let f : U → R. We say that f is a
differentiable of class Ck on U if the partial derivative ∂ i

∂ ri exists and are continuous
on U for i = 1 . . .k. We say that f is C∞ and a smooth function if is it Ck for all
k ≥ 0.

A.3 Differentiable manifolds
Definition A.17. A locally Euclidean space M of dimension d is a Hausdorff topo-
logical space M for which each point has a neighbourhood homomorphic to an
open subset of Euclidean space Rd . If ϕ is a homomorphism of a connected open
set U ⊂ M onto a open subset of Rd , ϕ is called coordinate map, the functions
xi = ri ◦ϕ are called coordinate functions and the pair (U,ϕ) is called a coordinate
system.

Definition A.18. A structure F of class Ck on a locally Euclidean space M is a
collection of coordinate systems {(Uα),ϕ) : α ∈ A} satisfying the following prop-
erties:

1. ∪α∈AUα = M

2. ϕα ◦ϕβ is Ck for all α,β ∈ A.

3. The collection F is maximal with respect to point 1 and 2;

Definition A.19. a d-dimensional differentiable manifold of class Ck is a pair
(M,F ) consisting of a d-dimensional, second countable, locally Euclidean space
M with a differentiable structure F of class Ck.

A.4 The tangent space
Definition A.20. Let m ∈M. Functions f and g defined on open sets containing m
are said to have the same germ at m, if they agree on some neighborhood of m.

Definition A.21. Two functions being equivalent if and and only if they have the
same germ. The equivalence classes are called germs and we denote them with F̃m.
If f is a smooth function on a neighborhood of m, we denote f its germ.

Definition A.22. A tangent vector v at a point m ∈M is a linear derivation of the
algebra F̃m, That is, for all f , g ∈ F̃m and λ ∈ R,

1. v(f+λg) = v(f)+λv(g)

2. v(f ·g) = f(m)v(g)+g(m)v(f)
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TmM denotes the set of tangent vectors to M at m and is called tangent space.

Corollary A.23. dim(Mm) = dim(M)

Definition A.24. Let (U,ϕ) be a coordinate system with coordinate functions x1, . . . ,xd
and let m ∈U. For each i ∈ (1, . . . ,d), we define a tangent vector (∂/∂xi)|m ∈M
by setting

∂ f
∂xi

∣∣∣∣
m
=

∂ ( f ◦ϕ−1)

∂ ri

∣∣∣∣
ϕ(m)

(A.25)

for each function f which is smooth in a neighborhood of m. We interpreter the pre-
vious equation as the directional derivative of f at m in the xi coordinate direction.

A.5 Tangent vectors
Definition A.26. Let f : M→N be a smooth function and let m∈M. The derivative
of f is the linear map

Tm f : TmM→ Tf (m)N (A.27)

defined as follows. If v ∈ TmM, then Tm f (v) is to be a tangent vector at f (m), so we
describe how it operates on functions.

Definition A.28. Let (U,x1, . . . ,xd) and (V,y1, . . . ,vl) be coordinates systems about
m and ψ(m) respectively. Following the previous definition we can write

dψ

(
∂

∂xy

∣∣∣∣
m

)
=

l

∑
i=1

∂ (yi ◦ψ)

∂x j

∣∣∣∣
m

∂

∂yi

∣∣∣∣
ψm

(A.29)

The matrix ∂ (yi ◦ψ) ∂xi is called the Jacobian of the map ψ respect the coordinate
system

Definition A.30. A smooth mapping σ : (a,b)→M is called a smooth curve in M.
Let t ∈ (a,b), then the tangent vector to the curve σ at t is the vector

dσ

(
d
dr

∣∣∣∣
t

)
∈ Tσ(t)M

we denote the tangent vector to σ at t by ˙σ(t)

Definition A.31. Let M a smooth manifold with differentiable structure F . Let

T M = ∪m∈MTmM

with smooth map called natural projection:
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τ : T M→M, τ(v) = m if v ∈ TmM

Let (U,ϕ) ∈F with coordinate functions x1, . . . ,xd . Define ϕ̃ : τ−1(U)→ R2d by

ϕ̃ = (x1(τ(v)), . . . ,xd(τ(v)),dx1(v), . . . ,dxd(v)) (A.32)

for all v ∈ τ−1(U). We can now construct a topology and a differentiable structure
on T M:

1. if (U,ϕ) and (V,ψ) ∈F , then ψ̃ ◦ ϕ̃−1 is smooth.

2. the collection {ϕ̃−1(W ) : W open in R2d,(U,ϕ) ∈ F} forms a basis for a
topology on T M

3. Let F̃ be a maximal collection, respect to point 2, containing (τ−1(U), ϕ̃) :
(U,ϕ) ∈F then F̃ is a differentiable structure on T M.

T M with this differentiable structure is called tangent bundle.

Definition A.33. Let ψ : M→ N be a smooth function.

1. ψ in an immersion if dψm in non-singular for each m ∈M

2. The pair (M,ψ) is a submanifold of N if ψ is a one-to-one immersion

3. ψ in an imbedding if ψ is a one-to-one immersion which is also a homeomor-
phism into; that is, ψ is open as a map into ψ(M) with the relative topology.

4. ψ is a diffeomorphims if ψ maps M one-to-one onto N and ψ−1 is smooth

A.6 Vector fields
Definition A.34. A mapping σ : [a,b]→M is a smooth curve in M if σ extend to
be a smooth mapping of (a− ε,b+ ε) into M for some ε > 0. If σ : [a,b]→M is a
smooth curve in M, then its tangent vector

˙σ(t) = dσ

(
d
dr

∣∣∣∣
t

)
∈ Tσ(t)M

Definition A.35. A vector field X along a curve σ : [a,b]→M is a mapping X :
[a,b]→ T M which lifts ω; that is τ ◦X = τ . A vector field X is called a smooth
vector field along τ if the mapping X : [a,b]→ T M is C∞ that is a map X : U →
T M such that

τ ◦X = identity map on U (A.36)
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Definition A.37. If X and Y are smooth vector fields on M, we define a vector
field [X ,Y ] called the Lie bracket of X and Y by setting

[X ,Y ]m( f ) = Xm(Y f )−Ym(X f ) (A.38)

Proposition A.39. Lie bracket have the following properties:

1. [X ,Y ] is ineeded a smooth vector field on M

2. if f ,g ∈C∞(M), then [ f X ,gY ]m( f ) = f g[X ,Y ]+ f X gY −g(Y f )X

3. [X ,Y ] = −[Y ,X ]

4. [[X ,Y ],Z ] + [[Y ,Z ],X ] + [[Z ,X ],Y ] = 0 for all smooth vector fields
X ,Y and Z on M

A.7 Distributions and Frobenius theorem
Definition A.40. Let c an integer such that 1 6 c 6 d. A c-dimensional distribution
D on a d-dimensional manifold M is a choice of a c-dimensional subspace D(m) of
TmM for each m ∈M.

Definition A.41. A distribution D is smooth if for each m ∈M there is a neighbor-
hood U of m there are c vector fields X∞, . . . ,Xc of class C∞ on U which span D
at each point of U.

Definition A.42. A vector field X on M is said to belong to (or lie to) the distribu-
tion D(X ∈D) if Xm ∈D(m) if Xm ∈D(m) for each m ∈M.

Definition A.43. A smooth distribution D is called involutive or completely inte-
grable if [X ,Y ] ∈D whenever X and Y are smooth vector fields lying on D .

Theorem A.44. Frobenius theorem: Let D be a c-dimensional, involutive, smooth
distribution on Md . Let m ∈M. Then there exists an integral manifold of D passing
through m. Indeed. there exists a cubic coordinate system (U,ϕ) which is centered
at m, with coordinate functions x1, . . . ,xd such that the slices

xi = constant for all i ∈ {c+1, . . . ,d}

are integral manifold of D; and if (M,ψ) is connected integral manifold of D such
that ψ(N)⊂U, then ψ(N) lies in one of this slices.
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