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Abstract: Adipose tissue possesses phenotypic gene expression characteristics that are similar to human
mesenchymal stem cells (hMSCs). Nevertheless, the multilineage potential may be inhibited, and cells
may not expand adequately to satisfy the requirements of Good Manufacturing Practice (cGMP).
An autologous hMSC-enriched fat product would fulfil the void from a biomedical and clinical perspective.
In this study, we suggest a novel mechanism using a closed system without enzymes, additives or
other modifications, which will produce non-expanded, accessible material. This decentralized fat
product, unlike unprocessed lipoaspirates, adequately encloses the vascular stroma with adipocytes
and stromal stalks along with their vascular channels and lumina. This fat product contained hASCs
and fewer hematopoietic elements such as lipoaspirates, which were digested enzymatically according
to flow cytometric investigations, and molecular analysis also showed significant hASC uniformity
within the cells of the stromal vascular tissue. Moreover, the fat product produced a higher quantity of
hASCs similar to hMSCs in isolation with the typical characteristics of an osteogenic, chondrogenic and
adipogenic lineage. Interestingly, these properties were evident in the non-enzymatic derived adipose
tissue, as opposed to hASCs in isolation from the enzymatically digested lipoaspirates, suggesting that
the aforementioned procedure may be an adequate alternative to regenerate and engineer tissue for the
treatment of various medical conditions and promote efficient patient recovery.

Keywords: adipose stem cells; adipose tissue; non-enzymatic method; Rigenera protocol; enzymatic
digestion

1. Introduction

Human mesenchymal stem cells (hMSCs) can renew themselves efficiently, grow rapidly and
differentiate successfully, all of which make them excellent cell sources in regenerative medicine
in different contexts [1]. Bone marrow can adequately produce hMSCs (hBMSCs) [2], but bone
marrow collection is an invasive and painful procedure; therefore, authors have investigated the
need for alternative sources such as dental pulp [3] together with fetal placental membranes [4] and
adipose tissue [5,6]. A significant quantity of hMSCs, a non-invasive collection mechanism and an
ensured hMSC population that is viable and differentiative are indeed necessary. In light of this, recent
investigations suggest that adipose tissue is an ideal source of multipotent adipose-derived stem
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cells (hASCs) [7,8]. Subcutaneous fat deposits are present in the human body in great quantities and
the enzymatic digestion of lipoaspirates will readily isolate ASCs. Liposuction surgeries are widely
performed in the US (over 300,000) [9] and in Europe (over 200,000), producing from <30 mL to >6 L
of lipoaspirated tissue, which is regularly eliminated with the exception of the Coleman procedure
and other procedures that reprocess the tissue [10–12]. ASCs are phenotypically similar to hMSCs and
also have identical gene expression characteristics. The bone marrow supplies them, and they possess
a long culture period. In addition, ASCs represent a valuable therapeutic alternative for various
conditions according to in vitro and in vivo studies [13–15]. Other studies regarding cell isolation from
the adipose tissue of humans and other species suggest that ASCs possess multipotent qualities such
as adipocyte, chondrocyte, and osteoblast pathways [16–19] but also hepatocyte, neuronal-like and
pancreatic pathways [20–22]. Moreover, ASCs can also be committed to both endothelial and striated
and smooth muscle cell lineages [23–25]. To date, there is also a lack of clinical reports involving
ASCs in cell therapy on humans: the literature mostly reports basic-research-derived protocols and/or
other procedures rather than clinical applications [26,27]. Hence, there is a need for a standardised
method in a clinical setting which will optimize and unify the process schedule and isolation procedure,
as well as the entire tissue manipulation [28,29]. The extensive use and manipulation of stem cells
within a clinical setting has been hindered by the Good Manufacturing Practice regulations regarding
“cell manufacturing” [30,31], which are not applicable according to the European Parliament and
Council (EC regulation no. 1394/2007) as regards minimal manipulation. Nevertheless, in Europe,
these protocols will need to meet the requirements recently set by the European Medicines Agency
(EMA). The EMA is a decentralized section of the European Union (EU), operating in London since
1995. The Agency is required to assess scientific procedures and to ensure safety measures of treatments
and cellular therapy in the European Union. Adequate and accessible procedures are therefore required
to obtain autologous hASCs with minimal manipulation for use in clinical settings.

Our study examines an alternative procedure that involves an enzyme-free technique to obtain
immediately injectable micro grafts, characterized by a high regenerative potential and non-expanded
adipose tissue containing hASCs. The procedure is applicable to a moderately mechanically reduced
cluster size of tissue which has been fully immersed—an adipose micro-graft—defining a closed
system without enzymes. We herein report the procedure in detail, comparing the phenotype of the
system product with methods that involve enzymes. In particular, a non-enzymatic system, named
Rigenera (HBW, Turin, Italy), has been designed to collect and prepare human disaggregated biological
tissue such as dental pulp, dermis, bone, cartilage, and adipose tissue for re-injection. Rigenera® is a
disposable tool that gradually decreases the dimension of the adipose tissue scraps (from spheroidal
clusters with a diameter of 1–3.5 mm to smaller ones of 0.2–0.8 mm) and provides a cellular suspension
injectable with a needle of small diameter, also called a micro graft. The cell suspension preserves the
viability of the regenerative units and of all cells isolated after processing. The complete procedure
requires two steps: a surgical step using liposuction and a mechanical step using a disaggregation
protocol to obtain the adipose micro-grafts.

2. Results

The cellular elements isolated with the Rigenera® method, shown in Figure 1, have been
characterized by their elongated shape, with preserved membranes and a central nucleus. In some cells,
small lipid droplets are also detectable. Moreover, there are no substantial morphological differences
between the two treatment methods, nor among the two different timings of processing with Rigenera®

(30 and 45 s). A cell viability assay, performed with trypan blue staining, shows no significant difference
between the Rigenera® and the enzymatic method, as shown in Figure 2A. Concerning the number of
isolated cells obtained with Rigenera® and with collagenase, it is possible to observe a higher number
of cellular elements with enzymatic digestion of adipose tissue, while, among the two different timings
of processing with Rigenera®, there are no differences, as shown in Figure 2A. In addition, the cells
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obtained using the Rigenera® method were characterized by a lower mitosis rate than the population
doubling isolated with collagenase.

From the cell count, there is a slight difference between the Rigenera® methods and the enzymatic
method in favor of the latter but there are no noticeable differences compared to the two different times
used for the centrifugation of adipose tissue in Rigenera® method, as shown in Figure 2B. In addition,
the ASCs obtained from Rigenera® method were able to proliferate at a higher rate with a mean
Doubling Time of 96 h. The cells isolated with the Rigenera® method are divided at the same speed of
the cells isolated with enzymatic method.
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Figure 1. Panel (A–C) morphological images of Rigenera® methods at 0 h (A), 72 h (B) and 10 days
(C) after 30 s of treatment (scale bar 20 µm). Panel (D–F) morphological images of Rigenera® methods
at 0 h (D), 72 h (E) and 10 days (F) after 45 s of treatment (scale bar 20 µm). Panel G-I morphological
images of enzymatic digestion methods at 0 h (G), 72 h (H) and 10 days (I) (scale bar 20 µm).
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Figure 2. (A) Cell viability testing by trypan blue shows the average number of cells in the Rigenera®

methods and the enzymatic method at 0 h, 72 h and 10 days. (B) Adipose stem cells (ASCs) obtained
from the enzymatic method were able to proliferate at a higher rate with a mean doubling time of 96 h
and divided at the same speed as the cells isolated with non-enzymatic method.

Then, flow cytometry analysis reported a high positivity for MSCs markers, as previously
demonstrated [23], including CD34 (35%), CD73 (60%), CD105 (70%) CD90 (70%), CD117 (29%),
CD29 (78%), while the cells are negative for CD31, CD45 (hematopoietic markers) (Figure 3) compared
to enzymatic digestion.
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Figure 3. Flow cytometry analysis of the non-enzymatic method (A) detected the presence of a cell
population that we had previously identified [17,23,32]: including CD34 (35%), CD73 (60%), CD105
(70%) CD90 (70%), CD117 (29%), CD29 (78%), while the cells are negative for CD31, CD45, compared
to enzymatic digestion (B).

In order to confirm the stemness profile of isolated cells, the mRNA of CD90, CD73, CD105,
CD45 and CD34 were extracted and measured by real-time PCR. The mRNA of stemness markers,
reported in Figure 4, is detectable in all samples. Enzymatic fat digestion was used as control.
A significantly comparable mRNA expression for all the markers related to stemness was detected in the
non-enzymatic disaggregation method compared to enzymatic digestion, confirming the distribution
of stem cells in the fat subsequent to digestion (Figure 4A–C).



Int. J. Mol. Sci. 2018, 19, 2061 6 of 12
Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  6 of 12 

 

 

Figure 4. Gene expression of stemness markers (A,B) and differentiation markers (C) in the two 

digestion methods. Gene expression profile of mesenchymal stem cell specific markers and 

differentiation-specific markers of non-enzymatic fat disaggregation are reported as ratios (R) with 

respect to the mRNA expression of enzymatic fat digestion [13,32]. 

3. Discussion 

European regulations—Directives 2004/23/EC and 1394/2007 established by the European 

Medicines Agency (EMA)—classify MSCs as advanced medicinal products (ATMPs). These 

directives state that, in autologous SVF procedures, cell administration is to be performed within the 

Figure 4. Gene expression of stemness markers (A,B) and differentiation markers (C) in the
two digestion methods. Gene expression profile of mesenchymal stem cell specific markers and
differentiation-specific markers of non-enzymatic fat disaggregation are reported as ratios (R) with
respect to the mRNA expression of enzymatic fat digestion [13,32].
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3. Discussion

European regulations—Directives 2004/23/EC and 1394/2007 established by the European
Medicines Agency (EMA)—classify MSCs as advanced medicinal products (ATMPs). These directives
state that, in autologous SVF procedures, cell administration is to be performed within the same surgical
intervention considering the functionality of the cells to be identical to the fat tissue of the donor.
Cellular treatments are not classified as advanced therapy medicinal products. Nevertheless, the EMA
defines SVF as an advanced therapy medicinal product in non-homologous practice, specifically
involving injured tissue repair in wounds that do not heal, such as scarred tissue and when SVF is used
in combination with other products or similar types of MSC cells (http://www.ema.europa.eu/ema;
accessed on 26 April 2016 (EMA/298458/2016 corr)). Good surgical practice using manipulated cells
as “concurrent treatment” is not defined in EU legislation. Regulation 1394/2007 was established to
ensure that patients are not placed at undue risk and that products without proven safety and efficacy
are not to be used to treat patients.

The “minimal manipulation” of the cells is a main objective when attempting to isolate a
cell population, and mechanical procedures were set for this so as to avoid regulatory restrictions
established by the Food and Drug Administration (FDA) in the US and worldwide. The FDA indeed
considers enzymatic procedures in cell populations to be “more than minimally manipulated” and
have set heavy restrictions on them, while non-enzymatic methods are considered to be “minimally
manipulated” by the FDA. Moreover, procedures that modify the biological, physiological or structural
traits of cells or tissues is defined as substantial manipulation. Tissue dissociation to a single cell state
usually requires several steps including treatment with collagenase, used to digest the extracellular
matrix, and proteases that are broad-specific such as trypsin, used for the dispersion of closely
associated cells. In addition, enzyme-digested tissues might also induce cleavage of a wide variety
of cell membrane receptors, leading to the alteration of cell biological activities. In summary, the use
of collagenase for the separation of cells from the extracellular matrix of tissue is considered a
substantial manipulation.

The Rigenera method provides a minimally manipulated derivative of fat tissue obtained via a
rapid, safe and easy procedure that enables autologous injection into the donor subject. Besides this,
cell expansion or manipulation is avoided, and this is therefore not restricted by the cGMP guidelines.

The Rigenera product displayed a vascular/stromal arrangement that was well-preserved with
perivascular integrity. We evaluated, for each (enzymatic and non-enzymatic) procedure, the SVF yield and
correlated it with in vitro outcomes. Data from the flow cytometry analysis of SVF revealed the expression
of specific mesenchymal stromal stem cell markers (CD34, CD105, CD90, CD73, CD117), according to the
literature [33–35]. The percentages of positive cell populations were similar in all experimental groups.
Thus, SVF cellular composition was similar within the procedures; the only difference being the cell yield.
We particularly observed that the non-enzymatic digestion product was easily transplantable as a fat tissue
derivative containing a multitude of hMSCs and few hematopoietic characteristics. When the adipose tissue
treated by non-enzymatic digestion underwent tissue culture, an essentially pure population of hMSCs was
generated with similar traits to the hMSCs that were isolated from other origins, possessing, for example,
a typical adipogenic lineage. Moreover, these results are correlated with an increased expression of
mesenchymal stem cells markers such as CD90, CD34, CD73, CD105 that are overexpressed, confirming
cytometric analyses, but also a high expression of differentiation markers, indicating the significant
multipotency properties of the cells with non-enzymatic disaggregation. In fact, the hASCs originating from
Rigenera maintained gene expression including stemness potential, and, besides this, the non-enzymatic
digestion method processed lipoaspirates which avoided the use of collagenase and other enzymes,
thus contributing to a more adequate preservation of the cell surface and glycocalyx arrangement compared
to enzymatic procedures.

http://www.ema.europa.eu/ema
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4. Materials and Methods

4.1. Surgical Procedure to Harvest Adipose Tissue

Adipose tissue harvesting was performed on four women subjected to liposuction for aesthetic
purposes, with ages ranging between 28–50 years. Informed consents were obtained prior to tissue
collection, according to the ethical guidelines set by the review board for human studies of AOU
“Ospedali Riuniti”, Ancona, Italy (Micro-adipose graft_01, 18 May 2017).

For the liposuction, the BEAULI protocol, described by Ueberreiter et al. [36], was followed.
In particular, a pulsating water jet was used to infiltrate with contemporaneous aspiration. As for infiltration,
the ranges were 1 to 3 from 90 mL/min ± 15% to 130 mL/ min ± 15%. The Klein’s tumescence solution
was used, prewarmed to 37 to 38 ◦C. The cannulas used measured 38 mm in external diameter and were
sharp-tipped. Aspiration was performed immediately after the first infiltration. Negative pressure for the
aspiration was set to 500 mbar and the Rigenera protocol [37,38] was followed. The obtained lipoaspirate
tissue was washed twice with sterile saline solution and prepared for enzymatic or for mechanic digestion.

4.2. Isolation, Expansion and Viability of ASCs

A first portion of adipose tissue samples, subsequently processed with Rigenera® technology,
were placed in the sterile 16 mL capsules. 12 mL of lipoaspirate and 4 mL of complete culture medium
Dulbecco minimum essential medium (DMEM) with 10% of fetal bovine serum (FBS), 1% of a mix
of penicillin/streptomycin 1:1 and 0.6% amphotericin B were prepared for mechanic desegregation.
Desegregation was performed for 30 and 45 s, in order to determine which of the two timings was
most suitable to obtain a better vascular stromal fraction, without affecting its vitality. The second
portion of lipoaspirates was digested with collagenase following previously published protocol [32].
Briefly, the lipoaspirates were digested at 37 ◦C in HBSS with 1 mg/mL collagenase type I (GIBCO
life technology) and 2% bovine serum albumin (BSA) for 45 min at 37 ◦C. After digestion enzyme
activity was neutralized with complete medium and centrifuged at 1200× g for 10 min, to obtain a
high-density pellet, which constitutes the stromal vascular fraction (SVF). It was then resuspended
in 5 mL of 160 mM NH4Cl and incubated at room temperature for 10 min to lyse contaminating red
blood cells. The SVF was collected by centrifugation and filtered through a 70-µm nylon mesh to
remove cell debris. SVF of adipose tissue processed with both methods was transferred in 25-cm2

flasks (BD Falcon™, Becton Dickinson, Milan, Italy), after addiction of 6 mL of complete medium and
incubated at 37 ◦C in humidified air with 5% CO2. The medium was purchased by Sigma-Aldrich
(Milan, Italy), while the serum and antibiotic mix were acquired by GIBCO Life Technologies (Waltham,
MA, USA). When at confluence, cells were treated with trypsin-EDTA 1% (GIBCO Life Technologies,
USA), harvested and centrifuged at 1200 rpm for 5 min. The supernatant was discarded and cells pellet
was resuspended in 10 mL of complete medium, placed in 75 cm2 plates and incubated at 37 ◦C and
5% of CO2 until 80% confluence was detectable. Cell viability was evaluated by trypan blue staining at
0 h, 72 h and 10 days.

4.3. Growth Curve

Both the cells excreted with Rigenera® and enzymatic digest were plated in 6-well plates. Cells
were collected and re-suspended in PBS for a period of 96 h at a 12-h interval. Cell suspension was
counted under a microscope at 20× magnification and viable cells were counted and presented on a
linear graph. The doubling time (DT) was set from the growth curves or via the following formula:

DT = (t − t0)log2/(logN − logN0) (1)

where t (time) and t0 represented when the cells were counted, and N and N0 represented the cell
numbers at times t and t0, respectively.
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4.4. Flow Cytometry Analysis and Phenotype Characterization

At confluence, the cells derived from the Rigenera digestion method or the lipoaspirates from the
digestive solution were detached with trypsin-EDTA (200 mg/L EDTA, 500 mg/L trypsin; Cambrex,
Milan, Italy). At least 200,000 cells were, directly placed in incubation using fluorescent conjugated
antibodies for 30 min at 4 ◦C then washed and re-suspended in 0.6 mL. Specimens were examined
using FACS Aria II flow cytometry (Becton & Dickinson, Mountain View, CA, USA). The antibodies
herein investigated were: anti-CD117 PE (c-kit) (Miltenyi-Biotech, Calderara di Reno, Bologna, Italy);
anti-CD34 FITC and PE (Miltenyi-Biotech); anti-CD90 FITC (BD Pharmingen, Buccinasco, Milano,
Italy); anti-CD105 FITC (Santa Cruz, CA, USA); anti-CD73 PE (Miltenyi-Biotech); anti-CD29 PE
(Miltenyi-Biotech); anti-CD31 FITC (Miltenyi-Biotech); and anti-CD45 Cy and PE (BD Pharmingen).

4.5. Real-Time PCR

Real-time PCRs were carried out using the designed primers at a concentration of 300 nM
and FastStart SYBR Green Master (Roche, Monza, Italy) on a Rotor-Gene 3000 (Corbett Research,
Sydney, Australia). Real-time PCR was also performed according to the user’s manual for the human
mesenchymal stem cell Profiler PCR Array (SABiosciences, Frederick, MD, USA) and using RT2 SYBR
Green ROX FAST Master Mix (Qiagen, Milan, Italy). The data were analyzed using Excel-based PCR
Array Data Analysis Templates (SABiosciences). The thermal cycling conditions were as follows:
15 min denaturation at 95 ◦C, followed by 40 cycles of 15 s denaturation at 95 ◦C, annealing for 30 s
at 60 ◦C, and 20 s elongation at 72 ◦C. Differences in gene expression were evaluated by the 2∆∆Ct

method. Values were normalized to the expression of glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) internal reference whose abundance did not change under our experimental conditions.
Experiments were performed with three different cell preparations and repeated at least three times.

The results are reported as ratios with respect to the mRNA expression of enzymatic fat digestion.

4.6. Statistical Analysis

All data were statistically analyzed using a one-way ANOVA test. The threshold for statistical
significance was set at p-values < 0.05. Repeatability represented as a standard deviation to calculate
the differences between measurements using SPSS 16.0 software (SPSS Inc., Chicago, IL, USA)
for assessment.

5. Conclusions

Adipose tissue has recently been considered in relation to plastic surgery and regenerative
treatments, with successful investigations into isolated SVF and ASCs. However, the cellular treatment
methods have not been fully exploited, especially due to restrictive worldwide measures, which
fundamentally entail a common operating protocol, toxin- and xeno-free reagents, replacing enzymes
and enabling a rapid monitoring of quality standards to ensure an adequate cell identity and the
efficiency of the donor tissue. The objective of a procedure that enables cell isolation from adipose
tissue has been set: a procedure that ensures a sterile and safe environment and cell material stability
but not all cell isolation systems are closed, and where cleanroom systems are required for a sterile,
isolated setting.

Enzymatic digestion is currently the gold standard procedure, providing more adipose-derived
stromal cells from adipose tissue; however, we demonstrate that our mechanical methods enable
the easy extraction of good quality adipose-derived stromal cells, which could be sufficient for
routine clinical use after clinical qualification. In addition, mechanical methods allow the isolation
of adipose-derived stromal cells with stemness and immunosuppressive properties similar to those
obtained after collagenase digestion. Our processing protocol is rapid, simple, and reproducible,
providing adipose-derived stromal cell–enriched stromal vascular fraction.
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Our study displays a unique product to use autologously, obtained from enzymatic digestion,
that provides an efficient alternative in the treatment of damaged tissue thanks to its minimal
manipulation factor and its clinical accessibility. Finally, laboratory and pre- clinical studies will
be required to confirm the safety of stromal vascular fraction and to ensure a strict clinical framework
for its use in regenerative medicine.

Author Contributions: F.D.F., M.R. operated on the patients; F.D.F., S.M., G.C., E.D.P. performed the cell isolation,
characterization of the cells and performed the molecular experiments; F.D.F., S.M., G.C. analyzed and interpreted
the results, including performing statistical analysis; F.D.F. wrote the draft manuscript; F.D.F., A.S., M.R. revised
the manuscript to its final version. All authors have made substantial intellectual contributions to the evolution of
the concepts presented in the manuscript and approved the final version submitted.

Funding: This research received no external funding.

Acknowledgments: We thank Giuseppina Caraglia B.A., English language expert and assistant for Department
of Sciences and Environmental, Biological, Pharmaceutical Technologies, Caserta, Second University of Naples for
providing excellent technical revision and support.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Abbasi-Malati, Z.; Roushandeh, A.M.; Kuwahara, Y.; Roudkenar, M.H. Mesenchymal stem cells on horizon:
A new arsenal of therapeutic agents. Stem Cell Rev. 2018, 14, 484–499. [CrossRef] [PubMed]

2. Verna, P.; Bansal, H.; Agrawal, A.; Leon, J.; Sundell, I.B.; Koka, P.S. Evaluation of bone marrow processing
protocol for therapeutic applications via culture and characterization of mesenchymal stem cells. J. Stem Cells
2016, 11, 3–13.

3. Koyama, N.; Okubo, Y.; Nakao, K.; Bessho, K. Evaluation of pluripotency in human dental pulp cells. J. Oral
Maxillofac. Surg. 2009, 67, 501–506. [CrossRef] [PubMed]

4. Pozzobon, M.; Piccoli, M.; De Coppi, P. Stem cells from fetal membranes and amniotic fluid: Markers for cell
isolation and therapy. Cell Tissue Bank. 2014, 15, 199–211. [CrossRef] [PubMed]

5. De Francesco, F.; Ricci, G.; D’Andrea, F.; Nicoletti, G.F.; Ferraro, G.A. Human adipose stem cells: From bench
to bedside. Tissue Eng. Part B Rev. 2015, 21, 572–584. [CrossRef] [PubMed]

6. Rigotti, G.; Marchi, A.; Sbarbati, A. Adipose-derived mesenchymal stem cells: Past, present, and future.
Aesthet. Plast. Surg. 2009, 33, 271–273. [CrossRef] [PubMed]

7. Zuk, P.A.; Zhu, M.; Ashjian, P.; De Ugarte, D.A.; Huang, J.I.; Mizuno, H.; Alfonso, Z.C.; Fraser, J.K.;
Benhaim, P.; Hedrick, M.H. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell 2002,
13, 4279–4295. [CrossRef] [PubMed]

8. Bourin, P.; Bunnell, B.A.; Casteilla, L.; Dominici, M.; Katz, A.J.; March, K.L.; Redl, H.; Rubin, J.P.; Yoshimura, K.;
Gimble, J.M. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose
tissue-.derived stromal/stem cells: A joint statement of the International Federation for Adipose Therapeutics
and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy 2013, 15, 641–648.
[PubMed]

9. The American Society for Aesthetic Plastic Surgery. Cosmetic Surgery National Data Bank Statistics 2017.
The American Society for Aesthetic Plastic Surgery: New York. Available online: https://surgery.org/sites/
default/files/ASAPS-Stats2017.pdf (accessed on 15 July 2018).

10. Coleman, S.R.; Lam, S.; Cohen, S.R.; Bohluli, B.; Nahai, F. Fat grafting: Challenges and debates. Atlas Oral
Maxillofac. Surg. Clin. N. Am. 2018, 26, 81–84. [CrossRef] [PubMed]

11. Bagheri, S.C.; Bohluli, B.; Consky, E.K. Current techniques in fat grafting. Atlas Oral Maxillofac. Surg. Clin.
N. Am. 2018, 26, 7–13. [CrossRef] [PubMed]

12. Oberbauer, E.; Steffenhagen, C.; Wurzer, C.; Gabriel, C.; Redl, H.; Wolbank, S. Enzymatic and non-enzymatic
isolation systems for adipose tissue-derived cells: Current state of the art. Cell Regen. 2015, 4, 7. [CrossRef]
[PubMed]

13. Heo, J.S.; Choi, Y.; Kim, H.S.; Kim, H.O. Comparison of molecular profiles of human mesenchymal stem
cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. Int. J. Mol. Med. 2016, 37,
115–125. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s12015-018-9817-x
http://www.ncbi.nlm.nih.gov/pubmed/29687338
http://dx.doi.org/10.1016/j.joms.2008.09.011
http://www.ncbi.nlm.nih.gov/pubmed/19231772
http://dx.doi.org/10.1007/s10561-014-9428-y
http://www.ncbi.nlm.nih.gov/pubmed/24554400
http://dx.doi.org/10.1089/ten.teb.2014.0608
http://www.ncbi.nlm.nih.gov/pubmed/25953464
http://dx.doi.org/10.1007/s00266-009-9339-7
http://www.ncbi.nlm.nih.gov/pubmed/19381713
http://dx.doi.org/10.1091/mbc.e02-02-0105
http://www.ncbi.nlm.nih.gov/pubmed/12475952
http://www.ncbi.nlm.nih.gov/pubmed/23570660
https://surgery.org/sites/default/files/ASAPS-Stats2017.pdf
https://surgery.org/sites/default/files/ASAPS-Stats2017.pdf
http://dx.doi.org/10.1016/j.cxom.2017.10.006
http://www.ncbi.nlm.nih.gov/pubmed/29362076
http://dx.doi.org/10.1016/j.cxom.2017.11.001
http://www.ncbi.nlm.nih.gov/pubmed/29362074
http://dx.doi.org/10.1186/s13619-015-0020-0
http://www.ncbi.nlm.nih.gov/pubmed/26435835
http://dx.doi.org/10.3892/ijmm.2015.2413
http://www.ncbi.nlm.nih.gov/pubmed/26719857


Int. J. Mol. Sci. 2018, 19, 2061 11 of 12

14. Li, X.; Bai, J.; Ji, X.; Li, R.; Xuan, Y.; Wang, Y. Comprehensive characterization of four different populations of
human mesenchymal stem cells as regards their immune properties, proliferation and differentiation. Int. J.
Mol. Med. 2014, 34, 695–704. [CrossRef] [PubMed]

15. Strioga, M.; Viswanathan, S.; Darinskas, A.; Slaby, O.; Michalek, J. Same or not the same? Comparison of
adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev.
2012, 21, 2724–2752. [CrossRef] [PubMed]

16. Strem, B.M.; Hicok, K.C.; Zhu, M.; Wulur, I.; Alfonso, Z.; Schreiber, R.E.; Fraser, J.K.; Hedrick, M.H.
Multipotential differentiation of adipose tissue-derived stem cells. Keio J. Med. 2005, 54, 132–141. [CrossRef]
[PubMed]

17. Ferraro, G.A.; De Francesco, F.; Nicoletti, G.; Paino, F.; Desiderio, V.; Tirino, V.; D’Andrea, F. Human adipose
CD34+ CD90+ stem cells and collagen scaffold constructs grafted in vivo fabricate loose connective and
adipose tissues. J. Cell. Biochem. 2013, 114, 1039–1049. [CrossRef] [PubMed]

18. Gardin, C.; Bressan, E.; Ferroni, L.; Nalesso, E.; Vindigni, V.; Stellini, E.; Pinton, P.; Sivolella, S.; Zavan, B.
In vitro concurrent endothelial and osteogenic commitment of adipose-derived stem cells and their
genomical analyses through comparative genomic hybridization array: Novel strategies to increase the
successful engraftment of tissue-engineered bone grafts. Stem Cells Dev. 2012, 21, 767–777. [CrossRef]
[PubMed]

19. Cho, H.; Lee, A.; Kim, K. The effect of serum types on chondrogenic differentiation of adipose-derived stem
cells. Biomater. Res. 2018, 22. [CrossRef] [PubMed]

20. Yang, D.; Wang, Z.Q.; Deng, J.Q.; Liao, J.Y.; Wang, X.; Xie, J.; Deng, M.M.; Lu, M.H. Adipose-derived stem
cells: A candidate for liver regeneration. J. Dig. Dis. 2015, 16, 489–498. [CrossRef] [PubMed]

21. Salehi, H.; Amirpour, N.; Niapour, A.; Razavi, S. An overview of neural differentiation potential of human
adipose derived stem cells. Stem Cell Rev. 2016, 12, 26–41. [CrossRef] [PubMed]

22. Lee, J.; Kim, S.C.; Kim, S.J.; Lee, H.; Jung, E.J.; Jung, S.H.; Han, D.J. Differentiation of human adipose
tissue-derived stem cells into aggregates of insulin-producing cells through the overexpression of pancreatic
and duodenal homebox gene-1. Cell Transpl. 2013, 22, 1053–1060. [CrossRef] [PubMed]

23. De Francesco, F.; Tirino, V.; Desiderio, V.; Ferraro, G.; D’Andrea, F.; Giuliano, M.; Libondi, G.; De Rosa, A.;
Papaccio, G. Human CD34/CD90 ASCs are capable of growing as sphere clusters, producing high levels of
VEGF and forming capillaries. PLoS ONE 2009, 4, e6537. [CrossRef] [PubMed]

24. Guilak, F.; Estes, B.T.; Diekman, B.O.; Moutos, F.T.; Gimble, J.M. 2010 Nicolas Andry Award: Multipotent
adult stem cells from adipose tissue for musculoskeletal tissue engineering. Clin. Orthop. Relat. Res. 2010,
468, 2530–2540. [CrossRef] [PubMed]

25. Wang, F.; Zachar, V.; Pennisi, C.P.; Fink, T.; Maeda, Y.; Emmersen, J. Hypoxia enhances differentiation of
adipose tissue-derived stem cells toward the smooth muscle phenotype. Int. J. Mol. Sci. 2018, 19. [CrossRef]
[PubMed]

26. Shaik, S.; Devireddy, R. Cryopreservation protocols for human adipose tissue derived adult stem cells.
Methods Mol. Biol. 2018, 1773, 231–259. [PubMed]

27. Aronowitz, J.A.; Lockhart, R.A.; Hakakian, C.S. A method for isolation of stromal vascular fraction cells in a
clinically relevant time frame. Methods Mol. Biol. 2018, 1773, 11–19. [PubMed]

28. Tuin, A.J.; Domerchie, P.N.; Schepers, R.H.; Willemsen, J.C.; Dijkstra, P.U.; Spijkervet, F.K.; Vissink, A.; Jansma, J.
What is the current optimal fat grafting processing technique? A systematic review. J. Craniomaxillofac. Surg. 2016,
44, 45–55. [CrossRef] [PubMed]

29. Condè-Green, A.; de Amorim, N.F.; Pitanguy, I. Influence of decantation, washing and centrifugation on
adipocyte and mesenchymal stem cell content of aspirated adipose tissue: A comparative study. J. Plast. Sreconstr.
Aesthet. Surg. 2010, 63, 1375–1381. [CrossRef] [PubMed]

30. Agostini, F.; Rossi, F.M.; Aldinucci, D.; Battiston, M.; Lombardi, E.; Zanolin, S.; Massarut, S.; Parodi, P.C.;
Da Ponte, A.; Tessitori, G.; et al. Improved GMP compliant approach to manipulate lipoaspirates, to cryopreserve
stromal vascular fraction, and to expand adipose stem cells in xeno-free media. Stem Cell Res. Ther. 2018, 9.
[CrossRef] [PubMed]

31. Raposio, E.; Ciliberti, R. Clinical use of adipose.derived stem cells: European legislative issues. Ann. Med. Surg.
2017, 24, 61–64. [CrossRef] [PubMed]

32. Peroni, D.; Scambi, I.; Pasini, A.; Lisi, V.; Bifari, F.; Krampera, M.; Rigotti, G.; Sbarbati, A.; Galiè, M. Stem
molecular signature of adipose-derived stromal cells. Exp. Cell Res. 2008, 314, 603–615. [CrossRef] [PubMed]

http://dx.doi.org/10.3892/ijmm.2014.1821
http://www.ncbi.nlm.nih.gov/pubmed/24970492
http://dx.doi.org/10.1089/scd.2011.0722
http://www.ncbi.nlm.nih.gov/pubmed/22468918
http://dx.doi.org/10.2302/kjm.54.132
http://www.ncbi.nlm.nih.gov/pubmed/16237275
http://dx.doi.org/10.1002/jcb.24443
http://www.ncbi.nlm.nih.gov/pubmed/23129214
http://dx.doi.org/10.1089/scd.2011.0147
http://www.ncbi.nlm.nih.gov/pubmed/21521013
http://dx.doi.org/10.1186/s40824-018-0116-z
http://www.ncbi.nlm.nih.gov/pubmed/29556415
http://dx.doi.org/10.1111/1751-2980.12268
http://www.ncbi.nlm.nih.gov/pubmed/26121206
http://dx.doi.org/10.1007/s12015-015-9631-7
http://www.ncbi.nlm.nih.gov/pubmed/26490462
http://dx.doi.org/10.3727/096368912X657215
http://www.ncbi.nlm.nih.gov/pubmed/23031216
http://dx.doi.org/10.1371/journal.pone.0006537
http://www.ncbi.nlm.nih.gov/pubmed/19657392
http://dx.doi.org/10.1007/s11999-010-1410-9
http://www.ncbi.nlm.nih.gov/pubmed/20625952
http://dx.doi.org/10.3390/ijms19020517
http://www.ncbi.nlm.nih.gov/pubmed/29419805
http://www.ncbi.nlm.nih.gov/pubmed/29687394
http://www.ncbi.nlm.nih.gov/pubmed/29687377
http://dx.doi.org/10.1016/j.jcms.2015.10.021
http://www.ncbi.nlm.nih.gov/pubmed/26646638
http://dx.doi.org/10.1016/j.bjps.2009.07.018
http://www.ncbi.nlm.nih.gov/pubmed/19679523
http://dx.doi.org/10.1186/s13287-018-0886-1
http://www.ncbi.nlm.nih.gov/pubmed/29751821
http://dx.doi.org/10.1016/j.amsu.2017.11.002
http://www.ncbi.nlm.nih.gov/pubmed/29204274
http://dx.doi.org/10.1016/j.yexcr.2007.10.007
http://www.ncbi.nlm.nih.gov/pubmed/18022619


Int. J. Mol. Sci. 2018, 19, 2061 12 of 12

33. Mushahary, D.; Spittler, A.; Kasper, C.; Weber, V.; Charwat, V. Isolation, cultivation, and characterization of
human mesenchymal stem cells. Cytometry A 2018, 93, 19–31. [CrossRef] [PubMed]

34. Mildmay-White, A.; Khan, W. Cell surface markers on adipose-derived stem cells: A systematic review.
Curr. Stem Cell Res. Ther. 2017, 12, 484–492. [CrossRef] [PubMed]

35. Nicoletti, G.F.; De Francesco, F.; D’Andrea, F.; Ferraro, G.A. Methods and procedures in adipose stem cells:
State of the art and perspective for translation medicine. J. Cell Physiol. 2015, 230, 489–495. [CrossRef]
[PubMed]

36. Ueberreiter, K.; Tanzella, U.; Cromme, F.; Doll, D.; Krapohl, B.D. One stage rescue procedure after capsular
contracture of breast implants with autologous fat grafts collected by water assisted liposuction (“BEAULI
Method”). GMS Interdiscip. Plast. Reconstr. Surg. DGPW 2013, 2. [CrossRef]

37. Trovato, L.; Monti, M.; Del Fante, C.; Cervio, M.; Lampinem, M.; Ambrosio, L.; Redi, C.A.; Perotti, C.;
Kankuri, E.; Ambrosio, G.; et al. A new medical device rigeneracons allows to obtain viable micro-grafts
from mechanical disaggregation of human tissues. J. Cell Physiol. 2015, 230, 2299–2303. [CrossRef] [PubMed]

38. Purpura, V.; Bondioli, E.; Graziano, A.; Trovato, L.; Melandri, D.; Ghetti, M.; Marchesini, A.; Cusella De
Angelis, M.G.; Benedetti, L.; Ceccarelli, G.; et al. Tissue characterization after a new disaggregation method
for skin micro-grafts generation. J. Vis. Exp. 2016, 4, e53579. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/cyto.a.23242
http://www.ncbi.nlm.nih.gov/pubmed/29072818
http://dx.doi.org/10.2174/1574888X11666160429122133
http://www.ncbi.nlm.nih.gov/pubmed/27133085
http://dx.doi.org/10.1002/jcp.24837
http://www.ncbi.nlm.nih.gov/pubmed/25294367
http://dx.doi.org/10.3205/iprs000023
http://dx.doi.org/10.1002/jcp.24973
http://www.ncbi.nlm.nih.gov/pubmed/25728337
http://dx.doi.org/10.3791/53579
http://www.ncbi.nlm.nih.gov/pubmed/26967938
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Discussion 
	Materials and Methods 
	Surgical Procedure to Harvest Adipose Tissue 
	Isolation, Expansion and Viability of ASCs 
	Growth Curve 
	Flow Cytometry Analysis and Phenotype Characterization 
	Real-Time PCR 
	Statistical Analysis 

	Conclusions 
	References

