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Abstract. We consider in the plane the problem of reconstructing a domain
from the normal derivative of its Green’s function with pole at a fixed point

in the domain. By means of the theory of conformal mappings, we obtain

existence, uniqueness, (non-spherical) symmetry results, and a formula relating
the curvature of the boundary of the domain to the normal derivative of its

Green’s function.

1. Introduction

Overdetermined boundary value problems in partial differential equations have
connections to various fields in mathematics; they emerge in the study of isoperi-
metric inequalities, optimal design and ill-posed and free boundary problems, to
name a few. In many such problems one’s interest is focused on a specific feature:
the shape of the domain considered; mainly, its (spherical) symmetry, as in Serrin’s
landmark paper [13] and its many offsprings (see [14], [1], [4], [8], [10], and the
references therein).

With the present paper, we want to start a more detailed analysis of overdeter-
mined problems in the plane, by exploiting the full power of the theory of analytic
functions. As a case study, we shall analyse what appears to be the simplest situ-
ation: in a planar bounded simply connected domain Ω with boundary ∂Ω of class
C1,α, we shall consider the problem

−∆U = δζc in Ω,(1)

U = 0 on ∂Ω,(2)

∂U

∂ν
= ϕ on ∂Ω.(3)

where ν is the interior normal direction to ∂Ω, δζc is the Dirac delta centered at
a given point ζc ∈ Ω and ϕ : ∂Ω → R is a positive given function of arclength,
measured counterclockwise from a reference point on ∂Ω.

Problem (1)-(3) can be interpreted as a free-boundary problem: find a domain Ω
whose Green’s function U with pole at ζc has gradient with values on the boundary
that fit those of the given function ϕ. This formulation serves as a basis to model,
for example, the Hele-Shaw flow, as done in [6] and [12].

By means of the Riemann Mapping Theorem, the solution of (1)-(2) can be ex-
plicitly written in terms of a conformal mapping f from the unit disk D to Ω, which
is uniquely determined if it satisfies some suitable normalizing conditions. Since it
turns out that the normal derivative of U on ∂Ω is proportional to the modulus of
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the inverse of f, then by (3) and classical results on holomorphic functions, we can
derive an explicit formula for f in terms of ϕ (see section §2 for details). With the
help of such a formula, we obtain the following results:

(i) existence and uniqueness theorems for a domain Ω satisfying (1)-(3) (The-
orems 2.2 and 2.3);

(ii) symmetry results relating the invariance of ϕ under certain groups of trans-
formations to that of Ω (Theorems 3.1 and 3.2); of course, when ϕ in con-
stant, we obtain that Ω is a disk — a well-known result (see [10], [8] [1]);

(iii) a formula relating the interior normal derivative of the Green’s function to
the curvature of ∂Ω.

2. Construction of a forward operator and its inverse

In what follows, D will always be the open unit disk in C centered at 0.
Let us recall some basic facts of harmonic and complex analysis. We refer the

reader to [5] and [9] for more details. If Ω ⊆ C is a simply connected domain
bounded by a Jordan curve and ζc ∈ Ω, then, by the Riemann Mapping Theorem,
Ω is the image of an analytic function f : D → Ω which induces a homeomorphism
between the closures D and Ω, has non-zero derivative f ′ in D and is such that
f(0) = ζc. Moreover, if Ω is of class C1,α, 0 < α < 1, that is its boundary ∂Ω is
locally the graph of a function of class C1,α, then, by Kellogg’s theorem, we can
infer that f ∈ C1,α(D) (see [5]).

In the following elementary lemma, which will be useful in the sequel, we relate
f ′ to the so called outer function (see [2]).

Lemma 2.1. Let Ω be a bounded simply connected domain in C and f : D → Ω be
one-to-one and analytic with f ∈ C1(D). Then there exists γ ∈ R such that

(4) f ′(z) = eiγ exp

{
1

2π

∫ 2π

0

eit + z

eit − z
log |f ′(eit)|dt

}
for every z ∈ D.

Proof. The function

f ′(z) exp

{
− 1

2π

∫ 2π

0

eit + z

eit − z
log |f ′(eit)|dt

}
, z ∈ D,

is analytic, never zero in D and has unitary modulus on ∂D; hence it equals the
number eiγ for some γ ∈ R. �

With these premises, given two distinct numbers ζc and ζb ∈ C, we consider

the set O of all C1,α, 0 < α < 1, simply connected

bounded domains such that ζc ∈ Ω and ζb ∈ ∂Ω.

We can put O in one-to-one correspondence with

the class F of all one-to-one analytic mappings

f ∈ C1,α(D) such that f(0) = ζc and f(1) = ζb.

In fact, the arbitrary parameter γ in (4) can be determined by observing that

(5) ζb − ζc =

∫ 1

0

f ′(t)dt.

We now construct our forward operator T as the one that associates to each Ω
in O the interior normal derivative ∂U

∂ν — as function of the arclength, measured
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counterclockwise on ∂Ω, starting from ζb — of the solution of (1)-(2). With our
identification of O with F in mind, for f ∈ F , T (f) is a function of arclength
s ∈ [0, |∂Ω|] and it is defined by the following remarks.

First, notice that, by Gauss-Green’s formula, if U satisfies (1)-(2), then

v(ζc) =

∫
∂Ω

v(ζ)
∂U

∂ν
(ζ)ds(ζ)

for every function v ∈ C1(Ω) ∩ C2(Ω) which is harmonic in Ω.
Secondly, recall that any such function v satisfies the well-known Poisson integral

formula

v(ζ) =
1

2π

∫
∂Ω

v(ζ ′)
1− |f−1(ζ)|2

|f−1(ζ)− f−1(ζ ′)|
ds(ζ ′)

|f ′(f−1(ζ ′))|
, ζ ∈ Ω,

if ∂Ω is rectifiable (see [9]). By comparing the last two formulas (with ζ = ζc =
f(0)), we obtain that

∂U

∂ν
(ζ) =

1

2π|f ′(f−1(ζ))|
, ζ ∈ ∂Ω.

Thirdly, since the arclength on ∂Ω is related to f by the formula

(6) s(θ) =

∫ θ

0

|f ′(eit)|dt, θ ∈ [0, 2π],

the values T (f)(s), s ∈ [0, |∂Ω|], can be defined parametrically by

(7) s =

∫ θ

0

|f ′(eit)|dt, T (f) =
1

2π|f ′(eiθ)|
, θ ∈ [0, 2π].

It is clear that T (f) ∈ C0,α([0, |∂Ω|]) and also that∫ |∂Ω|

0

T (f)(s)ds = 1, T (f) > 0 on [0, |∂Ω|],

for all f ∈ F .
We shall now prove that T is injective by showing that each ϕ in the range of

T determines only one f ∈ F . In fact, for ϕ ∈ C0,α([0, |∂Ω|]) in the range of T , by
formulas (7) it turns out that

(8) 2πϕ(s(θ))s′(θ) = 1, θ ∈ [0, 2π].

This last formula, once integrated between 0 and θ, gives

(9) s(θ) = Φ−1(θ), θ ∈ [0, 2π],

where Φ−1 is the inverse of Φ : [0, |∂Ω|]→ [0, 2π] defined by

(10) Φ(s) = 2π

∫ s

0

ϕ(σ)dσ, s ∈ [0, |∂Ω|].

By the same formulas (7), we then obtain that

(11) |f ′(eiθ)| = 1

2πϕ(Φ−1(θ))
, θ ∈ [0, 2π],

and hence (4) gives

(12) f ′(z) = eiγ exp

{
1

2π

∫ 2π

0

eit + z

eit − z
log

1

2πϕ(Φ−1(t))
dt

}
, z ∈ D,



4 V. AGOSTINIANI AND R. MAGNANINI

where γ is determined by (5). Therefore, for any ϕ in the range of T , a unique
f ∈ F such that T (f) = ϕ is determined by

f(z) = ζc +

∫ 1

0

f ′(tz)zdt, z ∈ D,

with f ′ given by (12).
We collect these remarks in the following theorem.

Theorem 2.2. Given Ω ∈ O, let ζb be a reference point on ∂Ω from which the
arclength on ∂Ω is measured counterclockwise.

Let ϕ be in the range of T , that is ϕ is the interior normal derivative of the
Green’s function on ∂Ω (as function of the arclength).

Then a function f ∈ F is uniquely determined such that T (f) = ϕ and its
derivative is given by

(13) f ′(z) = eiγ exp

{
1

2π

∫ 2π

0

eit + z

eit − z
log

1

2πϕ(s(t))
dt

}
, z ∈ D,

where s and Φ are defined by (9) and (10), respectively.
Moreover, the constant γ is determined by

(14) eiγ
∫ 1

0

exp

{
1

2π

∫ 2π

0

eiτ + t

eiτ − t
log

1

2πϕ(s(τ))
dτ

}
dt = ζb − ζc.

Theorem 2.2 tells us that the operator T is injective. A discussion about its
surjectivity is beyond the aims of this paper. Far from being complete, we want
here to suggest the following criterion.

Referring to [3], let us introduce the so called boundary rotation of a function f
defined in D:

ρ = lim
r→1−

∫ 2π

0

∣∣∣∣Re{1 +
zf ′′(z)

f ′(z)

}∣∣∣∣ dθ, z = reiθ ∈ D.

We consider the class V of all normalized functions

f(z) = z + a2z
2 + a3z

3 + ...

which are analytic, locally univalent and with ρ < +∞. The proof of the surjectivity
of T relies on the problem of finding an analytic and univalent function f from the
disk to f(D) = Ω. The following theorem is based on a sufficient condition, due to
Paatero, that says that any function in the class V with ρ ≤ 4π is univalent (see
[3]).

Theorem 2.3. Let ϕ ∈ C1(R) be L-periodic, strictly positive and satisfying the

compatibility condition
∫ L

0
ϕ(s)ds = 1. If, moreover, ϕ satisfies the condition

max
[0,L]

∣∣∣∣ ϕ′(s)ϕ2(s)

∣∣∣∣ ≤ 2π,

then there exists Ω ∈ O with perimeter L and a solution of the overdetermined
boundary value problem (1)-(3); thus, T is surjective.
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Proof. By Theorem 2.2, we know that a function f ∈ F such that T (f) = ϕ
must satisfy (13). Thus, we have to check Paatero’s condition on (13). From that
expression we deduce that

f ′′(z)

f ′(z)
=

1

2π

∫ 2π

0

2eit

(eit − z)2
log

1

2πϕ(s(t))
dt,

being s defined as in (9) and (10). Now, by observing that

d

dt

(
eit + z

eit − z

)
=
−2izeit

(eit − z)2
,

we can integrate by parts and obtain that

−izf ′′(z)
f ′(z)

=
1

2π

∫ 2π

0

eit + z

eit − z
ϕ′(s(t))s′(t)

ϕ(s(t))
dt.

By the maximum modulus principle, we can estimate, for z ∈ D,∣∣∣∣Re{1 +
zf ′′(z)

f ′(z)

}∣∣∣∣ ≤ 1 +

∣∣∣∣−izf ′′(z)f ′(z)

∣∣∣∣
≤ 1 + max

[0,2π]

∣∣∣∣ϕ′(s(t))s′(t)ϕ(s(t))

∣∣∣∣ ,
and, from (8), we have that ϕ′(s)s′/ϕ(s) = ϕ′(s)/2πϕ2(s). Therefore, we can esti-
mate the boundary rotation of f in the following way:

ρ ≤
∫ 2π

0

(
1 + max

[0,2π]

∣∣∣∣ ϕ′(s(t))

2πϕ2(s(t))

∣∣∣∣) dθ = 2π

(
1 + max

[0,L]

∣∣∣∣ ϕ′(s)

2πϕ2(s)

∣∣∣∣) .
By our assumptions, it follows that ρ ≤ 4π and hence, from Paatero’s criterion for
univalence, f is a homeomorphism from the disk onto f(D). �

3. Symmetries

Remark 1. Theorem 2.2 allows us to rediscover a result already proved in [10] and
also in [8] and [1]: if ϕ is constant, then Ω is a disk. More precisely, given Ω ∈ O
with perimeter L, let ϕ be constantly equal to C > 0. From (13), we obtain that

f ′(z) = eiγ exp

{
1

2π
log

1

2πC

∫ 2π

0

eit + z

eit − z
dt

}
=

eiγ

2πC
,

since
∫ 2π

0
eit+z
eit−zdt = 2π. Therefore, we get that

f(z) = ζc +
eiγ

2πC
z, z ∈ D,

that is Ω is the disk centered at ζc with radius 1
2πC .

Now we want to show how some other symmetry properties of Ω can be derived
from some invariance properties of ϕ and viceversa.

In what follows, for Ω ∈ O, let L = |∂Ω| and let ϕ denote the values of the
interior normal derivative on ∂Ω (as function of arclength) of the Green’s function
of Ω.

In the next theorem, we will identify ϕ with its L-periodic extension to R and
Rζ,β will denote the clockwise rotation of an angle β around a point ζ.

Theorem 3.1. Let Ω ∈ O and n ∈ {2, 3, 4, ...}. Then:

Rζc, 2πn (Ω) = Ω if and only if ϕ is L
n -periodic.
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Proof. Let us fix n and suppose ϕ measured counterclockwise from ζb ∈ ∂Ω. Let
f ∈ F be the unique analytic function from D to Ω such that f(0) = ζc and
f(1) = ζb.

(i) If Ω is invariant by rotations of angle 2π
n around ζc, then f satisfies

f(zei
2π
n ) = ζc + [f(z)− ζc]ei

2π
n , z ∈ D.

By differentiating this expression, we obtain f ′(zei
2π
n ) = f ′(z), from which

s

(
θ +

2π

n

)
=

∫ θ+ 2π
n

0

|f ′(eit)|dt = s(θ) +

∫ θ+ 2π
n

θ

|f ′(eit)|dt,

and hence

(15) s

(
θ +

2π

n

)
= s(θ) + s

(
2π

n

)
, θ ∈ R.

Since

L = s(2π) = s

(
n− 1

n
2π

)
+ s

(
2π

n

)
= ... = ns

(
2π

n

)
,

we have that s
(
θ + 2π

n

)
= s(θ) + L

n . Thus, (15) and (8)-(11) imply that

ϕ

(
s(θ) +

L

n

)
= ϕ

(
s

(
θ +

2π

n

))
=

1

2π|f ′(ei(θ+ 2π
n ))|

=
1

2π|f ′(eiθ)|
= ϕ(s(θ)),

and hence, for every s ∈ R,

ϕ

(
s+

L

n

)
= ϕ(s).

(ii) If now ϕ is L
n -periodic, from (10) we write

(16) Φ

(
s+

L

n

)
= 2π

∫ s+L
n

0

ϕ(σ)dσ = Φ(s) + Φ

(
L

n

)
.

Since (9) holds, it follows that

2π = Φ(s(2π)) = Φ(L) = Φ

(
n− 1

n
L

)
+ Φ

(
L

n

)
= ... = nΦ

(
L

n

)
,

and hence

Φ

(
L

n

)
=

2π

n
= θ +

2π

n
− θ = Φ

(
s

(
θ +

2π

n

))
− Φ(s(θ)).

From this and (16), we infer that

Φ

(
s

(
θ +

2π

n

))
= Φ(s(θ)) + Φ

(
L

n

)
= Φ

(
s(θ) +

L

n

)
,

and, thanks to the invertibility of Φ, we obtain

s

(
θ +

2π

n

)
= s(θ) +

L

n
, θ ∈ R.
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By this formula, (13) and the periodicity of ϕ, it follows that

f ′(z) = eiγ exp

{
1

2π

∫ 2π

0

eit + z

eit − z
log

1

2πϕ(s(t))
dt

}
= eiγ exp

{
1

2π

∫ 2π

0

eit + z

eit − z
log

1

2πϕ
(
s
(

2π
n + t

)
− L

n

)dt}

= eiγ exp

{
1

2π

∫ 2π

0

eit + z

eit − z
log

1

2πϕ
(
s
(

2π
n + t

))dt} .
By a change of variables, we thus get

f ′(z) = eiγ exp

{
1

2π

∫ 2π+ 2π
n

2π
n

ei(t−
2π
n ) + z

ei(t−
2π
n ) − z

log
1

2πϕ(s(t))
dt

}

= eiγ exp

{
1

2π

∫ 2π

0

eit + zei
2π
n

eit − zei 2πn
log

1

2πϕ(s(t))
dt

}
= f ′(zei

2π
n ).

Finally we find

f(z)− ζc =

∫ 1

0

f ′(tz)zdt =

∫ 1

0

f ′(tzei
2π
n )zdt = [f(zei

2π
n )− ζc]e−i

2π
n ,

and hence Rζc, 2πn Ω = Ω. �

In what follows, M will denote mirror-reflection with respect to a given axis.

Theorem 3.2. A domain Ω ∈ O is symmetric with respect to a generic axis passing
through ζc if and only if ϕ(s) = ϕ(L− s) for all s ∈ [0, L].

Here ϕ is measured counterclockwise starting from an intersection point of the
axis with ∂Ω.

Proof. (i) Suppose Ω symmetric with respect to a given axis passing through ζc,
that isM(Ω) = Ω. Short of rotations and translations, we can assume the symmetry
axis to coincide with the real axis, so that Mz is the conjugate z of z.

Let f ∈ F be the unique mapping from D to Ω such that f(0) = ζc and f(1) = ζb,
where ζb is supposed to be one of the intersection point of ∂Ω with the symmetry
axis. We keep in mind that arclength on ∂Ω is measured counterclockwise from ζb.

It is clear that ζc − ζb ∈ R and

(17) f(z) = f(z);

thus,

f(eiθ) = f(ei(2π−θ)), θ ∈ [0, 2π].

Differentiating the latter formula with respect to θ and taking the modulus, yields

(18) |f ′(eiθ)| = |f ′(ei(2π−θ))|, θ ∈ [0, 2π];

thus, from (6), we have that

s(2π − θ) = L− s(θ), θ ∈ R.

From this formula and (11), we obtain:

ϕ(L− s(θ)) = ϕ(s(2π − θ)) =
1

2π|f ′(ei(2π−θ))|
, θ ∈ R.
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Finally, from (18), it follows that

ϕ(s) = ϕ(L− s), s ∈ [0, L].

(ii) Suppose now ϕ(s) = ϕ(L− s) for all s ∈ R. From (10) we write

Φ(L− s) = 2π

∫ L−s

0

ϕ(σ)dσ = 2π

∫ L

s

ϕ(L− σ)dσ = 2π − Φ(s), s ∈ [0, L].

This property of Φ and (9) imply that

Φ(s(2π − θ)) = 2π − θ = 2π − Φ(s(θ)) = Φ(L− s(θ)),

and hence

s(2π − θ) = L− s(θ), θ ∈ R,
by the invertibility of Φ. Then, by differentiating, we have that

|f ′(ei(2π−θ))| = s′(2π − θ) = s′(θ) = |f ′(eiθ)|

for every θ ∈ R. Thus, by a change of variable and by simple properties of the
complex conjugate, we can write that, for z ∈ D,∫ 2π

0

eit + z

eit − z
log |f ′(eit)|dt =

∫ 2π

0

eit + z

eit − z
log |f ′(ei(2π−t))|dt

=

∫ 2π

0

ei(2π−t) + z

ei(2π−t) − z
log |f ′(eit)|dt

=

(∫ 2π

0

eit + z

eit − z
log |f ′(eit)|dt

)
.

Therefore, modulo a rotation, we have obtained that

f ′(z) = f ′(z), z ∈ D,

and hence

f(z) = f(z), z ∈ D,
modulo a translation. Thus, M(Ω) = Ω for some reflection M. �

4. A formula involving curvature

Recall that the curvature (with sign) κ of a planar curve can be defined by the
formula

(19) κ =
dψ

ds
,

where ψ is the angle between the positive real axis and the tangent (unit) vector.
By using the conformal map f : D → Ω already introduced and the Hilbert

transform, we can express the curvature κ of ∂Ω in terms of the interior normal
derivative ϕ of the Green’s function of Ω.

Theorem 4.1. Let Ω ∈ O and ϕ be defined as usual. Then ϕ and the curvature κ
of ∂Ω are related by the formula:

(20) κ(s) = 2πϕ(s)

[
1− 1

2π

∫ |∂Ω|

0

cot

(
Φ(s)− Φ(σ)

2

)
d

dσ
(logϕ)(σ)dσ

]
,

for s ∈ [0, |∂Ω|], where Φ is defined as in (10).
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Proof. Let f : D → Ω be as usual. Now we compute κ in terms of f. Define

ω(θ) = arg(f ′(eiθ))

for θ ∈ [0, 2π]; the angle ψ in (19) is given by

ψ(θ) = arg

(
d

dθ
f(eiθ)

)
= ω(θ) +

π

2
+ θ.

From (19) and (8), we have that

(21) κ(s) =
dψ

dθ

dθ

ds
= 2πϕ(s)[1 + ω′(θ)], s ∈ [0, ∂Ω].

As is well-known (see [7] and [11]), since log |f ′| and arg f ′ are the real and the
imaginary part of the analytic function log f ′, we have that

(22) arg f ′(eiθ) = H(log s′)(θ),

being s′(θ) = |f ′(eiθ)|. Here, H is the Hilbert transformation on the unit circle,
namely,

H(log s′)(θ) =
1

2π

∫ 2π

0

cot

(
θ − t

2

)
log(s′(t))dt.

In our notations, (22) can be rewritten as

ω = H(log s′);

thus,

ω′ = H(s′′/s′),

since H and
d

dθ
commute. From (21), we infer that

κ(s(θ)) = 2πϕ

[
1 +H

(
s′′

s′

)
(θ)

]
, θ ∈ [0, 2π],

and hence

κ(s(θ)) = 2πϕ(s(θ))

[
1− 1

2π

∫ 2π

0

cot

(
θ − t

2

)
ϕ′(s(t))

2πϕ2(s(t))
dt

]
, θ ∈ [0, 2π],

from (8). Finally, we obtain (20) by operating the change of variable σ = s(t) and
by using (9). �

Remark 2. Let D2N denote the Dirichlet-to-Neumann operator, that is D2N
maps the values on ∂Ω of any harmonic function in Ω to the values of its (interior)
normal derivative on ∂Ω. Then, formula (20) can be rewritten as

κ = 2πϕ[1 +D2N (log(ϕ))].
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