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Abstract. Ogden-type extensions of the free–energy densities currently used
to model the mechanical behavior of nematic elastomers are proposed and an-
alyzed. Based on a multiplicative decomposition of the deformation gradient
into an elastic and a spontaneous or remanent part, they provide a suitable
framework to study the stiffening response at high imposed stretches. Geo-
metrically linear versions of the models (Taylor expansions at order two) are
provided and discussed. These small strain theories provide a clear illustra-
tion of the geometric structure of the underlying energy landscape (the energy
grows quadratically with the distance from a non–convex set of spontaneous
strains or energy wells). The comparison between small strain and finite de-
formation theories may also be useful in the opposite direction, inspiring finite
deformation generalizations of small strain theories currently used in the me-
chanics of active and phase-transforming materials. The energy well structure
makes the free–energy densities non–convex. Explicit quasi–convex envelopes
are provided, and applied to compute the stiffening response of a specimen
tested in plane strain extension experiments (pure shear).
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1. Introduction

Nematic elastomers are rubbery elastic solids made of cross-linked polymeric
chains with embedded nematic mesogens. Their mechanical response is governed
by the coupling of rubber elasticity with the orientational order of a liquid crys-
talline phase. In particular, nematic elastomers exhibit large spontaneous deforma-
tions which can be triggered and controlled by temperature, applied electric fields,
irradiation by UV light. These properties make them interesting as materials for
fast soft actuators and justify the considerable attention that they have attracted
in recent years. The reader is referred to the monograph by Warner and Terentjev
[26] for a thorough introduction to the physics of nematic elastomers, and for an
extensive list of references.

Theoretical modeling of the mechanical response of nematic elastomers has con-
centrated on the occurrence of equilibrium configurations exhibiting fine domain
patterns (stripe domains), and the stress plateau associated with rearrangement of
stripe domains in stretching experiments (soft elasticity). Starting from the pio-
neering work of Warner, Terentjev, and their collaborators [5, 26], several models
have been proposed [1, 7, 16, 17, 19, 27, 28]. The model based on the free–energy
density put forward in [5] is particularly worth mentioning, both for its fundamental
nature and for its success at reproducing (and even predicting) essential features
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of experimental observations. In fact, energy minimizing states computed with
this model replicate experimental evidence with a remarkable degree of accuracy.
Examples include the highly nontrivial spatially dependent domain structures ob-
served in [29] and simulated numerically in [10, 11], the existence of a plateau in the
stress–strain response in some uniaxial extension experiments [18, 10, 11], and the
decay of shear moduli in stretching experiments when the imposed stretch reaches
the ends of the stress plateau [4, 15, 21].

While the Warner-Terentjev model has been quite successful at reproducing ob-
served material instabilities (stripe domains and soft elasticity, which are associated
with the non-convexity of the proposed energies), it is unlikely that it will predict ac-
curately stress-build-up at large imposed stretches. The reason is the Neo-Hookean
form of the expression for the free–energy density, which results from the assump-
tion of phantom gaussian chains made in its derivation from statistical mechanics.
Just as in classical rubber elasticity, stress–strain curves showing the typical hard-
ening response of rubbers at high strains and stresses requires the use of functional
forms richer than the Neo-Hookean template. Inspired by the seminal work of Og-
den [20], we provide here Ogden-type extensions of the Warner-Terentjev model to
the regime of very high strains, and also include finite compressibility effects.

The main new results contained in this paper are the following. By exploiting
a multiplicative decomposition of the deformation gradient into an elastic and a
remanent or spontaneous part, we propose in Section 3 some new Ogden-type ex-
pressions for the free–energy density of nematic elastomers, and provide a template
for further extensions. In Section 4 we compute the geometrically linear version
(Taylor expansion at order two) of the new models, which shows the geometric
structure of the underlying energy landscape in a very transparent fashion: the en-
ergy grows quadratically with the distance from the non-convex set of spontaneous
strains (energy wells). Energies of this type are very common in the theoretical
and computational mechanics community, especially in the context of active and
phase-transforming materials [3]. Our discussion of their relation with a parent fully
nonlinear theory may have the additional side benefit of inspiring generalizations in
the opposite direction, namely, finite deformation generalizations of existing small
strain theories for active materials.

Because of their “energy well” structure with multiple energy wells, the energies
we deal with are invariably non–convex. In Section 5 we provide explicit formulas
for their quasi–convex envelopes, and apply them to a simple thought experiment
(pure–shear) to demonstrate their use and their potential at reproducing the stiff-
ening behavior at very large imposed strains that is typical of elastomeric materials.

2. Classical expressions for the energy density

Let n be a unit vector denoting the current orientation of the nematic director,
and let nr be a reference orientation (e. g., the first basis vector of a given cartesian
frame). The expression for the energy density proposed by Warner and Terentjev
[5, 26] to model incompressible nematic elastomers is

Wn(F ) =
c

2

[

tr
(

Lnr
F

T
L−1
n F

)

− 3
]

, detF = 1, (2.1)

where c > 0 is a material parameter (controlling the rubber energy scale), tr denotes
the trace operator, and

Ln := α2
‖n⊗n+ α2

⊥(I − n⊗n), |n| = 1, (2.2)
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where

α‖ = a
1
3 , α⊥ = a−

1
6 , a =

(

α‖

α⊥

)2

> 1, (2.3)

with a a material parameter (the step-length anisotropy quantifying the magni-
tude of the spontaneous stretch along n accompanying the isotropic-nematic phase
transformation). Moreover, in (2.1), F = ∇y is the gradient of the deformation
y mapping the minimum energy configuration associated with nr into the current

configuration, and F
T
is the transpose of F . Notice that, in view of (2.3), we have

α2
‖α

4
⊥ = detLn = 1. (2.4)

Following [12, 13] (see also the discussion in [15, Section 3]), we choose as ref-
erence configuration the minimum energy configuration associated with the high-
temperature isotropic state, see Figure 1.

y

L
1
2
n

∇y = F

F e
n

∇q = L
1
2
nr

q

n

y

nr

∇y = F

Figure 1. Schematic diagram illustrating two possible choices of
reference configuration (the one for y and the other for y) and the
elastic part F e

n of the deformation gradient F .

Introducing the affine change of variables q, with ∇q = L
1
2
nr , we set

y = y ◦ q,

where ◦ denotes the composition of the maps y and q, and let F := ∇y. We have

F = FL
− 1

2
nr



4 V. AGOSTINIANI AND A. DESIMONE

and can rewrite energy (2.1) as

Wn(F ) :=
c

2

{

tr
[

(L
− 1

2
n F )(L

− 1
2

n F )T
]

− 3
}

, detF = 1.

Note that

L
− 1

2
n = α−1

‖ n⊗n+ α−1
⊥ (I − n⊗n)

= a−
1
3n⊗n+ a

1
6 (I − n⊗n). (2.5)

As we will see later, it is often useful to see Wn as a function of FFT . By defining,
for a positive symmetric matrix B,

W̃n(B) :=
c

2

[

tr
(

L
− 1

2
n BL

− 1
2

n

)

− 3
]

, detB = 1, (2.6)

we have that Wn(F ) = W̃n(FFT ). Finally, denoting by 0 < λ1(F ) ≤ λ2(F ) ≤
λ3(F ) the singular values of F (so that λ2

1(F ) ≤ λ2
2(F ) ≤ λ2

3(F ) are the ordered
eigenvalues of B = FFT ), one easily shows (see the proof of Proposition 5.1 for
details) that

W̃ (B) := min
|n|=1

W̃n(B) =
c

2α2
⊥

[

trB −
(

1− α2
⊥

α2
‖

)

λ2
3 − 3α2

⊥

]

,

or, equivalently, that

W (F ) := min
|n|=1

Wn(F ) =
c

2α2
⊥

[

λ2
1(F ) + λ2

2(F ) +

(

α⊥

α‖

)2

λ2
3(F )− 3α2

⊥

]

=
c

2
a

1
3

[

λ2
1(F ) + λ2

2(F ) +
1

a
λ2
3(F )− 3a−

1
3

]

.

The foregoing algebraic manipulations can be summarized by the schematic graph
of Figure 1, which naturally suggests to introduce the matrices

F e
n := L

− 1
2

n F, Be
n := F e

n(F
e
n)

T = L
− 1

2
n BL

− 1
2

n (2.7)

arising from the decomposition

F = L
1
2
nF

e
n

of the deformation gradient F into an elastic part F e
n and a spontaneous part L

1
2
n .

The matrix L
1
2
n describes the stress-free strain of the material corresponding to the

current orientation n of the nematic director. Using (2.7), expression (2.6) assumes
the classical Neo-Hookean form

W̃n(B) =
c

2
(trBe

n − 3), detB = 1. (2.8)

3. Ogden-type expressions for the energy density

We use the following notation: Sym(3), Psym(3), Orth(3) and SO(3) denote
the set of matrices in R

3×3 which are symmetric, positive definite and symmetric,
orthogonal, rotations, respectively. As usual, we label with sym(M) the symmetric

part M+MT

2 of a matrix M ∈ R
3×3.
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Following Ciarlet [9, Chapter 4], and motivated by formula (2.8), we use the

same notation used for the classical expression of the energies (Wn, W , W̃n, and

W̃ ) and propose the following natural generalization of (2.8):

Wn(F ) := W̃n(FFT ), detF = 1, (3.1)

where

W̃n(B) :=

N
∑

i=1

ci
γi

[

tr(Be
n)

γi
2 − 3

]

+

M
∑

j=1

dj
δj

[

tr Cof(Be
n)

δj
2 − 3

]

, detB = 1, (3.2)

Be
n is given by (2.7), CofF is the cofactor of F , and ci, γi, dj and δj are constants

such that

γi, δj ∈ R \ {0}, ci
γi
,
dj
δj

≥ 0, i = 1, ..., N, j = 1, ...,M.

We recall that the p-th power Ap of a matrix A ∈ Psym(3) is well-defined by
the formula

Ap := QDiag(λp
i )Q

T , p ∈ R,

where Q ∈ Orth(3) is a matrix which diagonalizes A. Observe that, choosing

N = M = 1 and γ1 = δ1 = 2, W̃n takes the Mooney-Rivlin form

W̃n(B) =
c1
2
(trBe

n − 3) +
d1
2

(tr CofBe
n − 3) , detB = 1,

and we obtain the Neo-Hookean model (2.8) if d1 = 0. Moreover, setting dj = 0 for
j = 1, ...,M in (3.2) and taking the minimum with respect to |n| = 1, we obtain
energies in “separable form” of the type discussed by Ogden in [20, Chapter 4] (see
Section 5).

A common practice to pass from an incompressible model, with associated energy
density Wdev defined on {F ∈ R

3×3 : detF = 1}, to a corresponding compressible
model W comp is to define

W comp(F ) := Wdev((detF )−
1
3F ) +Wvol(detF ), detF > 0,

where Wvol is such that

Wvol ≥ 0 and Wvol(t) = 0 if and only if t = 1. (3.3)

Here, we choose Wvol of the form

Wvol(t) = c(t2 − 1)− d log t,

for some c, d > 0 such that (3.3) is satisfied. By imposing condition (3.3), we obtain
the function

Wvol(t) = c
(

t2 − 1− 2 log t
)

, t > 0. (3.4)

Wvol defined by (3.4) has also the following properties:

(i) Wvol is a convex function;
(ii) Wvol(t) → +∞, as t → 0+;
(iii) Wvol(t) → +∞, as t → +∞.

By choosing Wdev = Wn, where Wn is defined by (3.1) and (3.2), we define for
detF > 0

W comp
n (F ) := Wn((detF )−

1
3F ) +Wvol(detF ),
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so that

W comp
n (F ) =

N
∑

i=1

ci
γi

[

(detF )−
γi
3 tr(L

− 1
2

n FFTL
− 1

2
n )

γi
2 − 3

]

+

M
∑

j=1

dj
δj

[

(detF )−
2δj
3 tr Cof(L

− 1
2

n FFTL
− 1

2
n )

δj
2 − 3

]

+Wvol(detF ). (3.5)

Also in this case it is useful to express the energy density as function of B = FFT :

W comp
n (F ) = W̃ comp

n (FFT ), detF > 0,

where for every B ∈ Psym(3)

W̃ comp
n (B) =

N
∑

i=1

ci
γi

[

(detB)−
γi
6 tr(L

− 1
2

n BL
− 1

2
n )

γi
2 − 3

]

+

M
∑

j=1

dj
δj

[

(detB)−
δj
3 trCof(L

− 1
2

n BL
− 1

2
n )

δj
2 − 3

]

+Wvol(
√
detB). (3.6)

Proposition 3.1. W comp
n is a non-negative function on {F ∈ R

3×3 : detF > 0}
and

W comp
n (F ) = 0 if and only if FFT = Ln.

Observe that, by left polar decomposition, the condition FFT = Ln (together with
detF > 0) is equivalent to

F ∈ {F ∈ R
3×3 : F = UnR for some R ∈ SO(3)}, Un := L

1
2
n .

Proof. For F ∈ R
3×3 with detF > 0, we denote by ν1, ν2, ν3 the (positive) eigen-

values of L
− 1

2
n BL

− 1
2

n , where B = FFT ∈ Psym(3). Then, by using the standard
inequality between geometric and arithmetic mean and (2.4), for i = 1, ..., N and
j = 1, ...,M we have that

(detB)−
γi
6 tr(L

− 1
2

n BL
− 1

2
n )

γi
2 = (detB)

−γj
6

3
∑

k=1

ν
γi
2

k ≥ 3(detB)
−γi
6

(

3
∏

k=1

ν
γi
2

k

)
1
3

= 3(detB)
−γi
6

[

det
(

L
− 1

2
n BL

− 1
2

n

)]

γi
6

= 3, (3.7)

and

(detB)−
δj
3 trCof(L

− 1
2

n BL
− 1

2
n )

δj
2 = (detB)

−δj
3

[

(ν1ν2)
δj
2 + (ν1ν3)

δj
2 + (ν2ν3)

δj
2

]

≥ 3(detB)
−δj
3

[

(ν1ν2)
δj
2 (ν1ν3)

δj
2 (ν2ν3)

δj
2

]

1
3

= 3, (3.8)

so that, looking at (3.6) and recalling (3.3), W comp
n is non-negative. The equality

holds in (3.7) if and only if ν1 = ν2 = ν3 = ν, that is

L
− 1

2
n BL

− 1
2

n = νI, for some ν > 0, (3.9)

and in (3.8) if and only if ν1ν2 = ν1ν3 = ν2ν3 = α2, that is

Cof(L
− 1

2
n BL

− 1
2

n ) = α2I, for some α > 0. (3.10)
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By (3.9) and (3.10) and by property (3.3) of Wvol, we obtain that W comp
n (F ) =

W̃ comp
n (B) = 0 if and only if L

− 1
2

n BL
− 1

2
n = I. �

4. Behavior for small strains

In order to obtain the geometrically linear approximation of the Ogden-type
model introduced in the previous section, we consider the small strain regime |∇u| =
ε, where u is the displacement associated with the deformation y through y(x) =
x+ u(x), and matrices Ln that scale with ε as

Ln = Ln,ε := (1 + ε)2n⊗ n+ (1 + ε)−1(I − n⊗ n). (4.1)

This scaling is necessary to ensure that the stress-free strains described by Ln are
reachable within a small strain theory, see [22] and [15, Appendix B.1]. Using the
notation introduced in Section 2 and based on the material parameter a, we have

that a
1
3 = 1 + ε. By expanding (4.1) in ε around ε = 0, we obtain

Ln,ε = I + εL̂n + o(ε), with L̂n := 3

(

n⊗ n− 1

3
I

)

. (4.2)

Similarly, from

Un,ε := L
1
2
n,ε = (1 + ε)n⊗ n+ (1 + ε)−

1
2 (I − n⊗ n),

we have that

Un,ε = I + εÛn + o(ε), with Ûn =
1

2
L̂n. (4.3)

Now, we define

W comp
n,ε (F ) := W̃ comp

n,ε (FFT ), detF > 0,

where W̃ comp
n,ε is given by (3.6) with Ln,ε in place of Ln. More explicitly,

W̃ comp
n,ε (B) =

N
∑

i=1

ci
γi

[

(detB)−
γi
6 tr(L

− 1
2

n,εBL
− 1

2
n,ε )

γi
2 − 3

]

+

M
∑

j=1

dj
δj

[

(detB)−
δj
3 trCof(L

− 1
2

n,εBL
− 1

2
n,ε )

δj
2 − 3

]

+Wvol(
√
detB), (4.4)

for every B ∈ Psym(3).

Proposition 4.1. In the small strain regime |∇u| = ε, we have that, modulo terms
of order higher than two in ε,

W comp
n,ε (I +∇u) = µ

∣

∣

∣[e(u)]d − εÛn

∣

∣

∣

2

+
k

2
tr2(∇u), (4.5)

where e(u) = sym(∇u), [e(u)]d denotes the deviatoric part of the matrix e(u), Ûn

is the traceless matrix defined in (4.3) and

k = 4c, µ =
1

2





N
∑

i=1

ciγi +

M
∑

j=1

diδj



 , (4.6)

c, ci, γi, dj and δj being the constants defining W comp
n,ε in (3.4), (4.4).



8 V. AGOSTINIANI AND A. DESIMONE

Notice that the incompressible version of the large and small strain theories can be
obtained by considering the formal limit c → +∞ and k → +∞ in (3.5) (where c is
inside Wvol) and in (4.5), respectively: in the large strain regime we obtain again
Wn defined in (3.1) and (3.2); in the small strain regime we obtain

W comp
n,ε (I +∇u) = µ

∣

∣

∣e(u)− εÛn

∣

∣

∣

2

, tr[e(u)] = 0.

Proof. In order to obtain (4.5), we follow [22] and define for every E ∈ Sym(3) the
linear limit

V (E) := lim
ε→0+

1

ε2
W comp

n,ε (I + εE) = lim
ε→0+

1

ε2
W̃ comp

n,ε

(

(I + εE)2
)

.

Since 0 is the minimum value attained by W̃ comp
n,ε at Ln,ε (see Proposition 3.1), the

linear terms of the Taylor expansions vanish and we have

V (E) = lim
ε→0+

1

ε2

{

1

2
d2W̃ comp

n,ε (Ln,ε)[(I + εE)2 − Ln,ε]
2 + o

(

|(I + εE)2 − Ln,ε|2
)

}

=
1

2
d2W̃ comp

n,0 (I)[2E − L̂n]
2 = 2d2W̃ comp

n,0 (I)[E − Ûn]
2, (4.7)

where the last two equalities are obtained using (4.2)-(4.3). Here, d2W̃ (L)[M ]2

denotes the second differential of the function W̃ evaluated at L and then applied
to [M,M ]. Notice that, for every B ∈ Psym(3),

W̃ comp
n,0 (B) =

N
∑

i=1

ci
γi

[

(detB)−
γi
6 trB

γi
2 − 3

]

+

M
∑

j=1

dj
δj

[

(detB)−
δj
3 tr CofB

δj
2 − 3

]

+Wvol(
√
detB).

Simple rules of tensor calculus give that, for every symmetric matrix H ,

d2W̃ comp
n,0 (I)[H ]2 =

N
∑

i=1

ciγi

{

− 1

12
tr2H +

1

4
|H |2

}

+

M
∑

j=1

djδj

{

− 1

12
tr2H +

1

4
|H |2

}

+ c tr2H,

so that, from (4.7) and from the fact that Ûn is traceless, we have

V (E) =
1

2





N
∑

i=1

ciγi +

M
∑

j=1

diδj



 |E−Ûn|2+



−1

6





N
∑

i=1

ciγi +

M
∑

j=1

diδj



+ 2c



 tr2E.

Writing now V (E) in terms of Ed := E − 1
3 (trE) I, since

|E − Ûn|2 = |Ed − Ûn|2 +
1

3
tr2E,

we obtain that

V (E) =
1

2





N
∑

i=1

ciγi +

M
∑

j=1

diδj



 |Ed − Ûn|2 + 2c tr2E. (4.8)
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It remains to observe that, since W comp
n,ε (F ) can be expressed in terms of FFT

(through W̃ comp
n,ε ), it turns out that

lim
ε→0+

1

ε2
W comp

n,ε (I + εM) = lim
ε→0+

1

ε2
W comp

n,ε (I + εsym(M)) =: V (sym(M)),

for every M ∈ R
3×3. In particular, we have that, modulo terms of order higher

than two,

W comp
n,ε

(

I + ε
∇u

|∇u|

)

= ε2V

(

sym

( ∇u

|∇u|

))

= ε2V

(

e(u)

|∇u|

)

.

Thus, considering ∇u with the proper scale |∇u| = ε and using (4.8), we obtain

W comp
n,ε (I +∇u) =

1

2





N
∑

i=1

ciγi +

M
∑

j=1

diδj





∣

∣

∣[e(u)]d − εÛn

∣

∣

∣

2

+ 2c tr2 (∇u) .

�

Energy densities like (4.5) have been used in the study of nematic elastomers
in the small strain regime in [2, 6, 7, 8, 15, 17]. One reason to derive small strain
theories from the fully nonlinear ones is to obtain the expressions for the initial shear
and bulk moduli in terms of the constants and exponents of the fully nonlinear
models, as done in (4.6). While our main interest here has been to derive the
small strain limit of fully nonlinear Ogden-type models, also the opposite path is
interesting. In fact, energies of the form (4.5) are quite common in the modeling
of active and phase-transforming materials, where geometrically linear theories are
often used [3]. Our discussion of their relation with parent (fully nonlinear) theories
such as (3.1) provides several templates to generalize these small strain theories to
the regime of large deformations.

5. Applications: stress-strain response through

quasiconvex envelopes

In this section we focus on the purely mechanical response of an incompressible
material governed by the Ogden-type energies introduced in Section 3, in the large
deformation regime. This means to consider the stored elastic energies obtained,
for each fixed F , by minimizing the energy density (3.1) with respect to n, and to
use the resulting expressions to compute stable equilibria and associated stresses
arising in the material as a consequence of prescribing its state of deformation.

Minimization with respect to n leads to non-convex stored elastic energies and,
in turn, loss of stability of homogeneously deformed states with respect to configu-
rations exhibiting shear bands (stripe domains, which are indeed observed experi-
mentally). The tool we will use to predict global features of the material response,
such as stress–strain curves, is to replace these expressions with their quasiconvex
envelopes (see the discussion in [8], where a similar study has been performed in
the small strain regime).

Referring to the expressions (3.1)-(3.2) which define the energy density Wn, let
us restrict the attention to the case ci > 0, γi ≥ 2 for i = 1, ..., N and dj = 0 for

j = 1, ...,M , so that Wn(F ) = W̃n(FFT ), where

W̃n(B) =

N
∑

i=1

ci
γi

[

tr(L
− 1

2
n BL

− 1
2

n )
γi
2 − 3

]

, detB = 1. (5.1)
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In order to minimize (5.1) with respect to |n| = 1, we need the following proposition.

Proposition 5.1. Let B ∈ Psym(3) and let 0 < λ2
1 ≤ λ2

2 ≤ λ2
3 be its ordered

eigenvalues and {b1, b2, b3} an orthonormal basis of eigenvectors with Bbi = λ2
i bi,

i = 1, 2, 3.
For every γ ≥ 2, we have that

min
|n|=1

tr
(

L
− 1

2
n BL

− 1
2

n

)

γ
2

= a
γ
6

[

(

λ2
1

)

γ
2 +

(

λ2
2

)

γ
2 +

(

λ2
3

a

)

γ
2

]

. (5.2)

The minimum is achieved by n aligned with b3.

We recall that a > 1, that Ln is defined in (2.2), and that L
− 1

2
n is given by (2.5).

In order to simplify the notation for the proof of Proposition 5.1, let us set

α :=
γ

2
, µi := λ2

i , i = 1, 2, 3, (5.3)

and

Mn := a−
1
2n⊗n+ (I − n⊗n) = (a−

1
2 − 1)n⊗n+ I, (5.4)

so that

L
− 1

2
n = a

1
6Mn. (5.5)

By using the positions (5.3)-(5.5), the thesis (5.2) to be proved is equivalent to

min
|n|=1

tr(MnBMn)
α = µα

1 + µα
2 +

(µ3

a

)α

, (5.6)

for every α ≥ 1, where 0 < µ1 ≤ µ2 ≤ µ3 are the ordered eigenvalues of B. To prove
Proposition 5.1, we need the following two lemmas whose proofs are postponed to
Section 6.

Lemma 5.2. For every unit vector n ∈ R
3, the maximum eigenvalue of MnBMn

is greater than or equal to max{µ2, µ3/a}.

Lemma 5.3. Let 0 < x ≤ y ≤ z and 0 < x ≤ y ≤ z be such that

(i) xyz = x y z, (ii) x+ y + z ≥ x+ y + z, (iii) z ≥ z. (5.7)

Then, for every α > 1 we have that

xα + yα + zα ≥ xα + yα + zα.

Proof of Proposition 5.1. Recall that we want to prove (5.6) and that Mn is defined
in (5.4). We first note that (5.6) is true for α = 1. Indeed,

tr(MnBMn) = B ·M2
n = B ·

[(

1

a
− 1

)

n⊗n+ I

]

=

(

1

a
− 1

)

(Bn) · n+ trB

and, as
(

1
a
− 1
)

< 0, the minimum is obtained when (Bn) · n equals the maximum
eigenvalue of B. This happens if n is parallel to b3 and we have

min
|n|=1

tr(MnBMn) =

(

1

a
− 1

)

µ3 + trB = µ1 + µ2 +
µ3

a
. (5.8)
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Now, by using the definition of the α-power of a positive definite and symmetric
matrix, we write our minimum problem as

min
|n|=1

tr(MnBMn)
α = min

(x,y,z)∈A

(xα + yα + zα), (5.9)

where

A :=
{

(x, y, z) ∈ R
3 : 0 < x ≤ y ≤ z, and

x, y, z eigenvalues of MnBMn for some |n| = 1
}

.

It is easy to check that µ1, µ2 and µ3/a are eigenvalues of Mb3BMb3 , so that, by
relabeling them x, y and z in such a way that x ≤ y ≤ z, we have that

(x, y, z) ∈ A , (5.10)

with z ∈ {µ2,
µ3

a
}. Finally, observe that for every (x, y, z) ∈ A ,

xyz = det(MnBMn) = detB detM2
n =

µ1µ2µ3

a
= x y z. (5.11)

We now apply Lemma 5.3. Take (x, y, z) ∈ A : since (5.7) (i) is assured by (5.11),
(5.7) (ii) by (5.8), and (5.7) (iii) by Lemma 5.2, we have that

xα + yα + zα ≥ xα + yα + zα,

for every α > 1. Thus, by considering also (5.9) and (5.10), we have obtained that

min
|n|=1

tr(MnBMn)
α = xα + yα + zα,

that is (5.6). �

By considering W̃n given by (5.1), we define

W̃ (B) := min
|n|=1

W̃n(B)

=

N
∑

i=1

ci
γi

min
|n|=1

[

tr(L
− 1

2
n BL

− 1
2

n )
γi
2 − 3

]

, detB = 1. (5.12)

In view of Proposition 5.1 and by recalling (2.3), we have that

W̃ (B) =

N
∑

i=1

ci
γiα

γi

⊥

[

λγi

1 + λγi

2 +

(

α⊥

α‖

)γi

λγi

3 − 3αγi

⊥

]

, (5.13)

where 0 < λ2
1 ≤ λ2

2 ≤ λ2
3 are the ordered eigenvalues of B (and λi > 0, i = 1, 2, 3).

Then, we set

W (F ) := W̃ (FFT ), detF = 1. (5.14)

We remark that in all the terms of the sum in (5.12), the minimum is achieved by n
aligned with the eigenvector of B corresponding to its largest eigenvalue λ2

3. There-
fore, within this model, the nematic director is always aligned with the direction of
maximal principal stretch.

Energies of the type above are not quasiconvex, and exhibit material instabili-
ties that reproduce, up to a surprising level of accuracy, those that are observed
experimentally (stripe domain instabilities, [25]). The quasiconvex envelope W qc

of the energy density W is defined by

W qc(F ) := inf
w

1

|Ω|

∫

Ω

W (F +∇w(x)) dx , (5.15)
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where Ω is an arbitrary (Lipschitz) domain (it can be shown that definition (5.15)
does not depend on shape and size of the test region Ω), |Ω| is its volume, and w
is an arbitrary perturbation (a Lipschitz-continuous displacement field perturbing
the affine state y(x) = Fx) vanishing on ∂Ω. Stable materials are characterized
by W qc ≡ W . If, for some F , W qc(F ) < W (F ), then the state of homogeneous
deformation F is unstable: the material shows an energetic preference to develop
spatially modulated deformations with gradient F +∇w(x) (typically, shear bands)
at fixed average deformation F . The minimal energy cost to maintain the state of
average deformation F is W qc(F ), rather than W (F ), and this is achieved through
domain patterns with length scales which are very small compared to the size of
the domain Ω.

For energies such as (5.14), an explicit formula for their quasiconvex envelope is
available. Figure 2 gives a sketch of the sets L, I, and S appearing in the following
proposition.

Proposition 5.4. Let W be the energy density given by (5.14) and (5.13) with α⊥,

α‖, a =
(

α‖

α⊥

)2

defined by (2.3), and ci > 0, γi ≥ 2. Consider the following sets of

3×3-matrices:

L :=

{

F ∈ R
3×3 : detF = 1,

1

λmin(F )
≤ a

1
6

}

, (5.16)

I :=

{

F ∈ R
3×3 : detF = 1,

1

λmin(F )
≥ a

1
6 ,

1

λmin(F )
≥ a−

1
2λ2

max(F )

}

,(5.17)

S :=

{

F ∈ R
3×3 : detF = 1,

1

λmin(F )
≤ a−

1
2λ2

max(F )

}

, (5.18)

where 0 < λmin = λ1 ≤ λmid = λ2 ≤ λmax = λ3 are the ordered singular values of
F . Then, the quasiconvex envelope W qc of W is given by

W qc(F ) =



















0, for F ∈ L
W (F ), for F ∈ S
N
∑

i=1

ci
γi

[

(

a
1
6λmin(F )

)γi

+ 2

(

1

a
1
6λmin(F )

)

γi
2

− 3

]

, for F ∈ I.

(5.19)

Proof. We observe that each summand in W is of the form

ci
γi

[(

λ1(F )

a−
1
6

)γi

+

(

λ2(F )

a−
1
6

)γi

+

(

λ3(F )

a
1
3

)γi

− 3

]

,

and apply the arguments in [14] to conclude that (5.19) holds. �

Consider now

W2(F ) := W̃2(FFT ), detF = 1,

where, for every B ∈ Psym(3) with detB = 1,

W̃2(B) := min
|n|=1

W̃n(B) (5.20)

= min
|n|=1







N
∑

i=1

ci
γi

[

tr(Be
n)

γi
2 − 3

]

+

M
∑

j=1

dj
δj

[tr Cof(Be
n)

δj
2 − 3]







,
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1

6
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Figure 2. Level curves of the quasiconvex envelopes of the Ogden-
type energies (5.19), (5.22), and illustration of the sets L, I, and
S appearing in their definitions (a = 4).

and Be
n is given by (2.7). If dj > 0 for some j = 1, ...,M , these expressions may be

not separable in the sense discussed in [20, Chapter 4], and the characterization of
their quasiconvex envelopes is an open problem, except in the Mooney-Rivlin case
N = M = 1 and γ1 = δ1 = 2 (and c1, d1 ≥ 0). In this case, W̃n is of the form

W̃n(B) =
c1
2
[B·L−1

n − 3] +
d1
2

[

B−1·Ln − 3
]

.

Recalling that

Ln = a
2
3n⊗n+ a−

1
3 (I − n⊗n), a > 1, (5.21)

it is easy to show that

W2(F ) =
c1
2

{

a
1
3

[

tr(FFT ) +

(

1

a
− 1

)

λmax(FFT )

]

− 3

}

+
d1
2

{

1

a
1
3

[

tr(FFT )−1 + (a− 1)
1

λmax(FFT )

]

− 3

}

,

where λmax(FFT ) is the maximum eigenvalue of FFT . Equivalently,

W2(F ) =
c1
2

[

(

λ1

a−
1
6

)2

+

(

λ2

a−
1
6

)2

+

(

λ3

a
1
3

)2

− 3

]

+
d1
2

[

(

λ2λ3

a
1
6

)2

+

(

λ1λ3

a
1
6

)2

+

(

λ1λ2

a−
1
3

)2

− 3

]

.
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Notice that here, again, the n that achieves the minimum in (5.20) is the eigenvector
ofB associated with its largest eigenvalue, just as in the case of (5.13). Using results
obtained by Šilhavý in [23], we have that

W qc
2 (F ) =







0, for F ∈ L
W2(F ), for F ∈ S

Ŵ2(λmin), for F ∈ I
(5.22)

where L, S and I are the sets defined in (5.16)-(5.18), and

Ŵ2(s) :=
c1
2

[

(

a
1
6 s
)2

+
2

a
1
6 s

− 3

]

+
d1
2

[

(

1

a
1
6 s

)2

+ 2a
1
6 s− 3

]

.

From now on, we focus on the incompressible model W defined in (5.13)-(5.14).
We will use the knowledge of the quasiconvex envelope W qc of W to examine
the mechanical response of a sample tested in pure shear. This is a plane strain
condition (plane strain extension) often used in classical rubber elasticity to assess
the performance of constitutive models, see [20, 24] and Figure 5 for a sketch
illustrating these laoding conditions.

Plane strain conditions lead to a simplified expression for W (which becomes
a function of λmax alone) and to a very transparent representation of the quasi-
convex envelope in (λ, δ)-plane, where λ and δ denote applied stretch and shear,
respectively. We start by rewriting the energy given in (5.13) as

W (F ) =
N
∑

i=1

ci
γi

[(

λmin

a−
1
6

)γi

+

(

λmid

a−
1
6

)γi

+

(

λmax

a
1
3

)γi

− 3

]

≥ 0. (5.23)

It is easy to check that in the plane strain conditions defined by

F (λ, δ) =







a−
1
6 0 0

0 λ δ

0 0 a
1
6

λ






,

expression (5.23) simplifies to

W (F (λ, δ)) =

N
∑

i=1

ci
γi

[

1 +

(

a
1
3

λmax

)γi

+

(

λmax

a
1
3

)γi

− 3

]

≥ 0, (5.24)

with equality holding if and only if λmax = a
1
3 . The same arguments (based on a

lamination construction, see below) used in [8] for the small, plane strain case or
in [14] for large strains in three dimensions show that the quasi-convex envelope of
(5.24) is given by

W qc(F (λ, δ)) =

{

0, if λmax(F (λ, δ)) ≤ a
1
3

W (F (λ, δ)), if λmax(F (λ, δ)) ≥ a
1
3 .

Observe that, since

λ2
max(F (λ, δ)) =

1

2

(

λ2 + δ2 +
a

1
3

λ2

)

+
1

2

√

√

√

√

(

λ2 + δ2 +
a

1
3

λ2

)2

− 4a
1
3 ,
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1.0 1.5 2.0 2.5
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-1

0

1

2

Λ

δ

Figure 3. Level curves of the Ogden-type energy (5.13) (a = 4,
c1 = 1.5, γ1 = 1.5, c2 = 0.01, γ2 = 5.0, arbitrary units). The
dashed (red) line gives the zero level set describing the spontaneous
deformations that minimize the energy density.

we have that λmax ≤ a
1
3 if and only if λ ∈

[

a−
1
6 , a

1
3

]

and |δ| ≤ δ∗(λ), where

δ∗(λ) :=
1

λ

(

λ2 − 1

a
1
3

)
1
2 (

a
2
3 − λ2

)
1
2

. (5.25)

This allows us to write W qc as

W qc(F (λ, δ)) =

{

0, if λ ∈
[

a−
1
6 , a

1
3

]

and |δ| ≤ δ∗(λ)

W (F (λ, δ)), otherwise.
(5.26)

Level curves of energy (5.24) and of its quasi-convex envelope (5.26) are shown
in Figure 3 and 4. These plots clearly illustrate that, in fact,

W qc(F (λ, δ)) = f c(λ, δ),

where f c is the convex envelope of the function

f(λ, δ) := W (F (λ, δ)).
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1.0 1.5 2.0 2.5

-2

-1

0

1

2

Λ

δ

Figure 4. Level curves of the quasiconvex envelope of the Ogden-
type energy (5.13) (a = 4, c1 = 1.5, γ1 = 1.5, c2 = 0.01, γ2 =
5.0, arbitrary units). The shaded (red) region gives the set of
macroscopic strains that can be accommodated at zero energy.

Observe that at a macroscopic unsheared (δ = 0) deformation with λ ∈
(

a−
1
6 , a

1
3

)

the energy W qc(F (λ, 0)) = f c(λ, 0) = 0 can be obtained by combining the micro-
scopic deformation states (λ,±δ∗(λ)), with alternating equal and opposite shears
of magnitude δ∗ given by (5.25), in a stripe domain configuration with stripes of
equal width and parallel to the direction x2 of imposed stretch (see [13, 10, 11, 8]
for further details and Figure 5 for a sketch).

Since ∂
∂δ
f(λ, 0) = 0, δ = 0 always gives a stationary point for f(λ, ·). This

equilibrium state is, however, unstable if λ ∈
(

a−
1
6 , a

1
3

)

(the energy plots in Figures

3 and 6 show a local maximum at δ = 0 along lines with constant λ, leading to a
negative shear modulus). Since, as already mentioned, the macroscopic deformation
state (λ, δ = 0) can be resolved by a stripe domain pattern alternating the states
(λ,±δ∗(λ)) in stripes of equal width at a smaller (in fact, zero) energy cost, we have
W qc(F (λ, 0)) = W (F (λ,±δ∗(λ))) (see Figure 4), and the quasi-convex envelope
W qc can be used to obtain a stable, macroscopically unsheared state of minimal
energy for all imposed stretches λ > 0. The corresponding stresses can be computed
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���
���

�δ��λ�

��

λ

��

Figure 5. Sketch of the geometry for the pure shear experiment,
and stripe domain patterns with alternating shears ±δ∗(λ) on
stripes of thickness 1/2h, h ≫ 1, providing the lowest energy con-

figurations for stretches λ ∈
(

a−
1
6 , a

1
3

)

in the plateau region.

-2 -1 1 2
δ

0.1

0.2

0.3

0.4

W

1.5 2.0 2.5
Λ

0.1

0.2

0.3

0.4

W

Figure 6. Sections of the Ogden-type energy (5.13) (dashed lines)
and of its quasiconvex envelope (full lines) at constant λ = 1 (left)
and at constant δ = 0 (right). The energy is in arbitrary units, the
material parameter values are a = 4, c1 = 1.5, γ1 = 1.5, c2 = 0.01,
γ2 = 5.0.

from

σ(λ) :=
∂

∂λ
f c(λ, 0) =











0, if λ ≤ a
1
3

N
∑

i=1

ci

[

− a
γi
3

λγi+1
+

λγi−1

a
γi
3

]

, if λ ≥ a
1
3

(5.27)
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In order to obtain the last equality we have used that, since

λmax(F (λ, 0)) =







a
1
6

λ
, if λ ≤ a

1
12

λ, if λ ≥ a
1
12 ,

we also have

f c(λ, 0) =



































N
∑

i=1

ci
γi

[

1 +
(

a
1
6λ
)γi

+

(

1

a
1
6 λ

)γi

− 3

]

, if λ < a−
1
6

0, if λ ∈
[

a−
1
6 , a

1
3

]

N
∑

i=1

ci
γi

[

1 +

(

a
1
3

λ

)γi

+

(

λ

a
1
3

)γi

− 3

]

, if λ > a
1
3 .

1 2 3 4 5 6
Λ

0.5

1.0

1.5

2.0

2.5

3.0

σ

Figure 7. Stress-strain response in plane strain extension (pure
shear). Dashed lines from Neo-Hookean expression obtained from
(5.13) with N = 1, c1 = 1.0, γ1 = 2, full curves from Ogden-type
expression (5.13) with N = 2, c1 = 1.5, γ1 = 1.5, c2 = 0.01,
γ2 = 5.0 (a = 4, arbitrary units).

The mechanical response in pure shear (5.27) encoded by the Ogden-type energy
is shown in Figure 7. The figure shows the force-stretch curves for a plane strain
extension experiment starting from the minimal energy configuration associated
with a director uniformly aligned with x3 (this is given by λ = a−

1
6 , δ = 0). The

prediction of the Neo-Hookean model with c1 = 1.0, γ1 = 2 is compared with those
of an Ogden-type model with N = 2, c1 = 1.5, γ1 = 1.5, c2 = 0.01, γ2 = 5.0. The
second model is able to capture the stiffening response at large imposed stretches,
which is typical of rubbers, and which the first model completely misses. As is well
known, the plateau at zero applied stress is unrealistic, and it is possible to add
anisotropic corrections to ensure that director reorientation need to be triggered by
a nonzero minimum stress level (see, e.g., [11, 8]).
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6. Appendix

We devote this section to the proof of two lemmas stated in Section 5 and to a
remark on Proposition 5.1.

Proof of Lemma 5.2. Since the maximum eigenvalue of MnBMn is defined as the
maximum value of the scalar product (MnBMnm) · m as |m| = 1, to prove the
lemma it is enough to show that

(MnBMnm) ·m ≥ max
{

µ2,
µ3

a

}

, for some |m| = 1.

If µ3

a
≥ µ2, we define

m :=
v

|v| , where v :=
1√
a
M−1

n b3.

With this choice of m, we have that

(MnBMnm) ·m =
1

|v|2 (BMnv) · (Mnv) =
1

a|v|2 (Bb3) · b3 =
1

|v|2
µ3

a
. (6.1)

Recall the definition of Mn (5.4). It turns out that |v| ≤ |b3| = 1, because a > 1
and

v =

[

n⊗n+
1√
a
(I − n⊗n)

]

b3.

Thus, from (6.1), (MnBMnm) ·m ≥ µ3/a follows.

If µ2 ≥ µ3

a
, we consider (Span{n})⊥, the orthogonal space to n, and choose

m in the set Span{b2, b3} ∩ (Span{n})⊥, which is nonempty. Thus, the fact that
m ∈ Span{b2, b3} implies

(Bm) ·m ≥ µ2, (6.2)

while n ∈ (Span{n})⊥ implies that Mnm = m. This fact, together with (6.2), gives
that

(MnBMnm) ·m = (BMnm) · (Mnm) ≥ µ2.

�

Proof of Lemma 5.3. Suppose first that x = y = z. In this case, we have to prove
that xα + yα + zα ≥ 3xα. To have this, it is enough to use condition (5.7) (ii),
which gives x+ y + z ≥ 3x. Indeed:

xα + yα + zα ≥ 31−α(x+ y + z)α ≥ 3xα,

where the first inequality is standard (descending, e. g., from Hölder’s inequality).
Thus, in the rest part of the proof, we will suppose

x < z. (6.3)

We introduce the functions

w(x, y, z) := xα + yα + zα, v(x, y, z) := xyz, u(x, y, z) := x+ y + z,

and the minimum problem

min
x,y,z>0

w(x, y, z) (6.4)

with constraints

(i) v(x, y, z) = x y z, (ii) u(x, y, z) ≥ x+ y + z, (iii) z ≥ z. (6.5)
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By standard arguments it can be proved that the minimum exists. Let (x0, y0, z0)
be a minimum point. It is not restrictive to suppose that

x0 ≤ y0 ≤ z0.

Claim 1. x0 < z0.
Suppose, by contradiction, that x0 = z0. In this case, (6.5) (i) and (ii) would give
x3
0 = x y z and 3x0 ≥ x + y + z, respectively. Thus, by the standard inequality

between arithmetic and geometric mean, we would obtain

x0 ≥ x+ y + z

3
≥ (x y z)

1
3 = x0

and in turn x = z, against (6.3).
Claim 1 will be used in the proof of the following claim.

Claim 2. z0 = z.
Let us see how the thesis descends from Claim 2 and postpone the proof of the

claim. Since z0 = z, conditions (6.5) (i) and (ii) become

x0y0 = x y, x0 + y0 ≥ x+ y. (6.6)

This two conditions imply the inequality

y20 − (x+ y)y0 + x y ≥ 0

and in turn that
either y0 ≤ x or y0 ≥ y. (6.7)

As an intermediate step, we want to prove that

xα
0 + yα0 ≥ xα + yα. (6.8)

If the contrary were true, by considering also the first condition in (6.6) we would
obtain the inequality

(yα0 )
2 − (xα + yα)yα0 + (x y)

α
< 0

which is true if and only if
x < y0 < y,

against (6.7). Thus, (6.8) holds and therefore

xα + yα + zα = xα + yα + zα0 ≤ xα
0 + yα0 + zα0 .

This fact, together with the definition of (x0, y0, z0) as a minimum point of (6.4)-
(6.5), gives the thesis.
Proof of Claim 2. Suppose, by contradiction, that

z0 > z. (6.9)

Constraint (6.5) (ii) tells us that x0+y0+z0 ≥ x+y+z. If x0+y0+z0 > x+y+z,
this strict inequality, together with conditions (6.5) (i) and (6.9), gives

∇v(x0, y0, z0) = µ∇w(x0, y0, z0),

for some Lagrange multiplier µ 6= 0. A direct computation shows that this last
condition implies x0 = z0, against Claim 1. Therefore, we must have

x0 + y0 + z0 = x+ y + z. (6.10)

Since x0 < z0 from Claim 1, we have three possibilities which we treat separately
in the following cases (a), (b) and (c). We are going to show that every case leads
to a contradiction resulting from (6.9).
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(a). Here we suppose that

x0 = y0 < z0.

Let ε > 0 be such that x(ε) := y0 − ε > 0 and let y = y(ε) and z = z(ε) ≥ y satisfy
the conditions

{

x(ε) + y + z = 2y0 + z0,
x(ε)yz = y20z0.

Setting

a0 = y0 + z0, b0 = y0z0,

it turns out that

y(ε) =
1

2

{

a0 + ε−
√

(a0 + ε)2 − 4b0

(

y0
y0 − ε

)

}

,

z(ε) =
1

2

{

a0 + ε+

√

(a0 + ε)2 − 4b0

(

y0
y0 − ε

)

}

.

It is easy to show that x(ε) ≤ y(ε) ≤ z(ε) for ε sufficiently small. Moreover, up to
a smaller ε, we have that z(ε) ≥ z, since z(0) = z0 and (6.9) holds. Now, let us
introduce the function

f(ε) := x(ε)α + y(ε)α + z(ε)α.

Since (x(0), y(0), z(0)) = (x0, y0, z0) and (x(ε), y(ε), z(ε)) satisfies the constraints
(6.5) of the minimum problem (6.4), it follows that

f ′(0) = 0 and f ′′(0) ≥ 0. (6.11)

Simple computations show that f ′(0) = 0 and

f ′′(0) =
2α

y0(z0 − y0)

[

yα0 + αyα−1
0 (z0 − y0)− zα0

]

. (6.12)

Now, since y0 < z0, we have that yα0 + αyα−1
0 (z0 − y0) < zα0 , in view of the strict

convexity of the function t 7→ tα (α > 1). Thus, from (6.12) we obtain that
f ′′(0) < 0, against (6.11).
(b). Here we suppose that

x0 < y0 = z0.

In this case, constraints (6.5) (i) and (6.10) give
{

x0z
2
0 = G2z,

x0 + 2z0 = 2A+ z,
(6.13)

where

A :=
x+ y

2
, G :=

√

x y.

From (6.13) we deduce that z0 solves the third-order equation

P (t) := 2t3 − (2A+ z)t2 +G2z = 0.

The function P has a local maximum at t = 0 with P (0) > 0 and a local minimum
at t = 2A+z

3 with P
(

2A+z
3

)

< 0. Now, from (6.9), from the fact that

z >
2A+ z

3
(6.14)



22 V. AGOSTINIANI AND A. DESIMONE

and that z0 is a zero of P , it is easy to deduce that

P (t) < 0 for
2A+ z

3
< t < z0 and P (t) ≥ 0 for t ≥ z0. (6.15)

On the other hand,
P (z) = z

[

z2 − (x + y)z + x y
]

,

so that P (z) ≥ 0 in view of the fact that z ≥ y. Together with (6.14) and (6.15),
this implies that z ≥ z0, against (6.9).
(c). Finally, we suppose that

x0 < y0 < z0.

In this case, we consider the matrix whose lines are the gradients ∇w(x0, y0, z0),
∇v(x0, y0, z0), ∇u(x0, y0, z0). Considering (6.4), (6.5) (i), (6.9), and (6.10), it turns
out that

D := det





∇w(x0, y0, z0)
∇v(x0, y0, z0)
∇u(x0, y0, z0)



 = 0. (6.16)

Computing such a determinant gives

D = α [x0 (y
α
0 − zα0 )− y0 (x

α
0 − zα0 ) + z0 (x

α
0 − yα0 )]

= −α [yα0 (z0 − x0)− zα0 (y0 − x0)− xα
0 (z0 − y0)] . (6.17)

Setting λ := y0−x0

z0−x0
∈ (0, 1), so that

y0 = λz0 + (1 − λ)x0, (6.18)

from (6.17) we obtain that

D = −α(z0 − x0) [y
α
0 − λzα0 − (1− λ)xα

0 ] .

This last equality, together with (6.18) and the strict convexity of the function
t 7→ tα (α > 1), implies that D > 0, against (6.16). �

With the following remark we want to show that in the case where the two largest
eigenvalues of B ∈ Psym(3) are equal it is possible to find the analytical expression

of the eigenvalues of L
− 1

2
n BL

− 1
2

n and prove Proposition 5.1 in a more direct way.

Remark 6.1. Let B ∈ Psym(3) and suppose that λ2
1 < λ2

2 = λ2
3 (the case λ2

1 =
λ2
2 = λ2

3 is trivial), where λ2
1, λ

2
2, λ

2
3 are the ordered eigenvalues of B. Let b1, b2,

b3 be the corresponding orthonormal eigenvectors. For a > 1 and a unit vector
n ∈ R

3, consider Ln = Ln(a) defined as in (5.21) and suppose that

n =





n1

n2

n3



 in the orthonormal basis {b1, b2, b3}.

Then, up to the multiplicative constant a
1
3 , we have that the spectrum of

L
− 1

2
n BL

− 1
2

n is






λ2
2,

g(n2
1) +

√

g2(n2
1)− 4

λ2
1
λ2
2

a

2
,
g(n2

1)−
√

g2(n2
1)− 4

λ2
1
λ2
2

a

2







, (6.19)

where

g(t) := (λ2
2 − λ2

1)

(

1− 1

a

)

t+ λ2
1 +

λ2
2

a
, for every 0 ≤ t ≤ 1. (6.20)
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Moreover, we have that

min
|n|=1

(

L
− 1

2
n BL

− 1
2

n

)

γ
2

= a
γ
6

[

(

λ2
1

)

γ
2 +

(

1 + a−
γ
2

)

(

λ2
2

)

γ
2

]

,

and the minimum is attained for n ∈ (Span{b1})⊥.
In order to prove this, let us use the same position used for the proof of Propo-

sition 5.1: µi := λ2
i , i = 1, 2, 3, α = γ

2 , and

Mn := a−
1
6L

− 1
2

n =

(

1√
a
− 1

)

n⊗n+ I.

With this notation, we are going to check that the spectrum of MnBMn is (6.19)
and that

min
|n|=1

tr(MnBMn)
α = µα

1 +

(

1 +
1

aα

)

µα
2 (6.21)

with the minimum attained for n ∈ (Span{b1})⊥.
We note that, as µ1 < µ2 = µ3, we can write B in the following way:

B = µ1(b1⊗b1) + µ2(I − b1⊗b1) = µ2C, (6.22)

where

ρ :=
µ1

µ2
< 1, C := ρ b1⊗b1 + (I − b1⊗b1).

We are going to find the eigenvalues of MnCMn. Note that M−1
n is an invertible

matrix and that there exist λ ∈ R and v ∈ R
3 \ {0} such that MnCMnv = λv if

and only if CM2
n

(

M−1
n v

)

= λ
(

M−1
n v

)

. Therefore, we look for the eigenvalues of
the matrix

CM2
n = [(ρ− 1)b1⊗b1 + I]

[(

1

a
− 1

)

n⊗n+ I

]

= (ρ− 1)

(

1

a
− 1

)

(b1 · n)b1⊗n+ (ρ− 1)b1⊗b1 +

(

1

a
− 1

)

n⊗n+ I, (6.23)

since in this case there are shorter formulas to handle. Recall that we have fixed
the orthonormal basis {b1, b2, b3} where

b1 =





1
0
0



 and n =





n1

n2

n3



 .

Using these expressions we can compute the coefficients of the matrix CM2
n and

obtain

CM2
n =

















ρ

[(

1

a
− 1

)

n2
1 + 1

]

ρ
(

1
a
− 1
)

n1n2 ρ
(

1
a
− 1
)

n1n3
(

1

a
− 1

)

n1n2

(

1
a
− 1
)

n2
2 + 1

(

1
a
− 1
)

n2n3
(

1

a
− 1

)

n1n3

(

1
a
− 1
)

n2n3

(

1
a
− 1
)

n2
3 + 1

















It is already clear that 1 is an eigenvalue of CM2
n. Indeed, using expression (6.23), it

turns out that CM2
nv = v for every vector v in the orthogonal space to Span{b1, n}.

In order to find the other eigenvalues of CM2
n, we use the standard procedure and
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look for the solutions w of the equation det
(

CM2
n − wI

)

= 0. A direct computation
gives

det
(

CM2
n − wI

)

=

{

ρ

[(

1

a
− 1

)

n2
1 + 1

]

− w

}

[

w2 − (δ + 1)w + δ
]

− ρ

(

1

a
− 1

)2

n2
1

(

n2
2 + n2

3

)

(1− w), (6.24)

where

δ :=

(

1

a
− 1

)

(

n2
2 + n2

3

)

+ 1.

Now, since
[

w2 − (δ + 1)w + δ
]

= (w−1)(w−δ), we use the fact that 1−n2
2−n2

3 = n2
1

and rewrite (6.24) as

det
(

CM2
n − wI

)

= (w − 1)P (w), (6.25)

where

P (w) = −w2 +
1

µ2
g(n2

1)w − µ1

µ2a
,

and g is defined in (6.20). The zeros of P are

g(n2
1)±

√

g2(n2
1)− 4µ1µ2

a

2µ2

and

∆(t) := g2(t)− 4
µ1µ2

a
= (µ2 − µ1)

2

(

1− 1

a

)2

t2

+ 2(µ2 − µ1)

(

1− 1

a

)

(

µ1 +
µ2

a

)

t+
(

µ1 −
µ2

a

)2

≥ 0 for every 0 ≤ t ≤ 1.

(6.26)

Thus, looking at (6.25), we have that the spectrum of CM2
n is

{

1,
g(n2

1) +
√

∆(n2
1)

2µ2
,
g(n2

1)−
√

∆(n2
1)

2µ2

}

.

Recalling (6.22), multiplying these eigenvalues by µ2 gives the spectrum of BM2
n,

which is the same of MnBMn.
In order to prove (6.21), let us introduce the function

f(t) := µα
2 +

[

g(t) +
√

∆(t)

2

]α

+

[

g(t)−
√

∆(t)

2

]α

,

and observe that f(n2
1) = tr(MnBMn)

α. Now, we differentiate f in (0, 1):

f ′(t) =
αg′(t)
√

∆(t)

[(

g(t) +
√

∆(t)

2

)α

−
(

g(t)−
√

∆(t)

2

)α]

for every 0 < t < 1.

This tells us that

f ′(t) > 0 for every 0 < t < 1,

since g′(t) = (µ2 −µ1)
(

1− 1
a

)

> 0 and ∆(t) > 0 for every t > 0 (see (6.26)). Thus,

f(0) ≤ f(t) for every 0 < t ≤ 1,
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and therefore

f(0) = µα
2 + µα

1 +
(µ2

a

)α

= min
|n|=1

f(n2
1) = min

|n|=1
tr(MnBMn)

α. (6.27)

Finally, observe that

f(0) = tr(MnBMn)
α, where n =





0
n2

n3



 ∈ (Span{b1})⊥ . (6.28)

Considering (6.27) and (6.28), the proof of (6.21) is completed.
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[23] M. Šilhavý, Ideally soft nematic elastomers, Netw. Heterog. Media 2 no. 2, 2007, 279–311.
[24] L.R.G. Treloar, The Physics of Rubber Elasticity, 3rd ed., Oxford University Press, 1975.
[25] G. C. Verwey, M. Warner, E. M. Terentjev, Elastic instability and stripe domains in

liquid crystalline elastomers, J. Phys. II France 34, 1996, 1273–1290.
[26] M. Warner, E. M. Terentjev, Liquid crystal elastomers, Clarendon Press, Oxford, 2003.
[27] J. Weilepp, H. R. Brand, Director reorientation in nematic-liquid-single-crystal elastomers

by external mechanical stress, Europhys. Lett. 34, 1996, 495–500.
[28] F. Ye, R. Mukhopadhyay, O. Stenull, T.C. Lubensky, Semisoft nematic elastomers and

nematics in crossed electric and magnetic fields, Phys. Rev. Lett. 98, 2007, 147801.
[29] E. R. Zubarev, S. A. Kuptsov, T. I. Yuranova, R. V. Talroze, H. Finkelmann, Mon-

odomain liquid crystalline networks: reorientation mechanism from uniform to stripe do-

mains, Liquid Crystals 26, 1999, 1531–1540.

V. Agostiniani, SISSA, via Bonomea 265, 34136 Trieste - Italy

E-mail address: vagostin@sissa.it

A. DeSimone, SISSA, via Bonomea 265, 34136 Trieste - Italy

E-mail address: desimone@sissa.it


	1. Introduction
	2. Classical expressions for the energy density
	3. Ogden-type expressions for the energy density
	4. Behavior for small strains
	5. Applications: stress-strain response through quasiconvex envelopes
	6. Appendix
	Acknowledgments
	References

