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1. ABSTRACT 

Erythropoiesis is a dynamic complex multistep process going from committed erythroid progenitors 
to erythroid precursors and circulating mature red cells. Erythroid maturation is strictly dependent 
on EPO signaling cascade. EPO physically interacts with its receptor (EPO-R), which expression is 
downregulated after the basophilic erythroblasts stage.7 Binding of EPO to EPO-R results in EPO-R 
conformational change and it requires the activation of Jak2, as primary kinase. STAT5 is a master of 
erythropoiesis and it resides in cytoplasm. In response to EPO signaling, it binds phospho-tyrosine 
(Tyr) residues in the nucleus, initiating the transcription of several genes important in terminal 
erythroid differentiation. Giving the importance of Jak2 kinase as initiator of the EPO signaling 
cascade, additional kinases, such as Lyn, a Src family kinase, has been described to participate to EPO 
pathway. Lyn is able to phosphorylate EPO-R, Jak2 itself and STAT5. The activation of EPO/Jak2 
signaling pathway is associated with production of reactive oxidative species (ROS), which are also 
generated by a large amount of iron imported into the cells during heme biosynthesis. During 
erythropoiesis, ROS might function as second messenger by modulating intracellular signaling 
pathways. Fyn, a Src kinase, has been previously reported to participate in signaling pathways in 
response to ROS in various cell types.  
Here, we explore the potential contribution of Fyn to normal and stress erythropoiesis by studying 
2-4 months-old Fyn knockout mouse strain (Fyn-/-) and C57BL/6J as wild-type controls. Fyn-/- mice 
showed a mild compensated microcytic anemia associated with signs of dyserythropoiesis. Increased 
ROS levels and Annexin-V+ cells were presented in all Fyn-/- erythroblast subpopulations compared to 
wild-type, suggesting a possible reduction in the efficiency of erythropoietin (EPO) signaling pathway 
in the absence of Fyn. Indeed, in Fyn-/- erythroblasts we observed a reduction in Tyr-phosphorylation 
state of EPO-R associated with a compensatory activation of Jak2 without major change in Lyn 
activity. A reduction in STAT5 activation resulting in down-regulation of Cish, a known direct STAT5 
target gene, was noted in Fyn-/- erythroblasts. This was paralleled by a reduction in GATA1 and 
increased HSP70 nuclear translocation compared to wild type, supporting a higher cellular pro-
oxidant environment in the absence of Fyn. Using the vitro cell forming colony unit assay, we found 
a lower CFU-E and BFU-E cells production, which once again was associated with decreased activation 
of EPO mediated cascade in the absence of Fyn. To explore the possible role of Fyn in stress 
erythropoiesis, mice were treated with recombinant EPO, phenylhydrazine (PHZ) or doxorubicin 
(Doxo). Fyn-/- mice showed a low response to EPO compared to wild-type animals and prolonged 
anemia after either PHZ or Doxo treatment with a delayed hematologic recovery compared to wild-
type mice. When we analyzed the expression of a battery of ARE-genes related to oxidative response 
such as catalase, Gpx, heme-oxygenase 1 and peroxiredoxin-2, we noted up-regulated expression of 
these genes in sorted Fyn-/- erythroblasts compared to wild-type cells. In agreement, we observed 
increased activation of the redox-sensitive transcriptional factor Nrf2 targeting ARE-genes, whose 
regulation has been previously linked to Fyn. In fact, Nrf2 is switched-off by Fyn, ubiquitylated and 
delivered to the autophagosome by the p62 cargo protein. In Fyn-/- sorted erythroblasts, we observed 
(i) accumulation of p62 in large clusters; and (ii) reduction of Nrf2-p62 complex compared to wild-
type cells. To address the question whether the perturbation of Nrf2-p62 system results in 
impairment of autophagy in the absence of Fyn, we used LysoTracker to explore late phases of 
autophagy. Lysosomal progression was defective in Fyn-/- reticulocytes and it was associated with 
accumulation of p62 during in vitro reticulocyte maturation. These data indicate that the absence of 
Fyn blocks the Nrf2 post-induction response to oxidation, resulting in impaired autophagy. To 
validate our working hypothesis, we treated Fyn-/- mice with Rapamycin, an inducer of autophagy. In 
Fyn-/- mice, Rapamycin treatment resulted in decrease dyserythropoiesis, ROS levels and Annexin V+ 
cells, associated with reduction in accumulation of p62 in Fyn-/- erythroblasts. Collectively, our data 
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enabled us to document a novel role for Fyn in erythropoiesis, contributing to EPO-R activation and 
harmonizing the Nrf2-p62 adaptive cellular response against oxidation. 
Future studies will be designed to further characterize the signaling pathways intersects by Fyn in 
normal and diseased erythropoiesis.   
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2. ABBREVIATIONS 

 

ALA: δ aminolevulinic acid 

ALAS: δ aminolevulinic acid synthase 

AMPK: AMP activated protein kinase 

ARE: antioxidant responsive element 

Atg 3: autophagy related protein 3 

Atg 4: autophagy related protein 4 

Atg 5: autophagy related protein 5 

Atg 7: autophagy related protein 7 

Atg 10: autophagy related protein 10 

Atg 12: autophagy related protein 12 

Atg 14: autophagy related protein 14 

Atg 16: autophagy related protein 16 

Atg 101: autophagy related protein 101 

BFU-E: burst forming unit-erythroid 

BMMC: bone marrow derived mast cell 

BMPR: bone morphogenetic protein receptor 

β-thal: β-thalassemia 

CFU-E: colony forming unit erythroid 

CML: chronic myelogenous leukemia 

CPgenIII: coproporphynogen III 

DOXO: doxorubicin 

EKLF: erythroid Kruppel like factor 

EPO: erythropoietin 

EPO-R: erythropoietin receptor 

ERFE: erythroferrone 

ERK: extracellular signal regulated kinase 
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FECH: ferrochelatase 

FIP200: FAK family interacting protein of 200 KDa 

FOXO 3a: forkhead box 0 3a 

Fpn: ferroportin 

GAPDH: glyceraldehyde 3-phosphate dehydrogenase 

G6PD: glucose-6-phosphate dehydrogenase 

Hamp: hepcidin 

HBB: hemoglobin B 

HBA: hemoglobin A 

HistH3: histone H3 

HO-1: heme oxygenase 1 

Hp: haptoglobin 

HSC: hematopoietic stem cell 

HSP70: heat shock protein 70 

hVps34: class III phosphoinositide 3 kinase 

IL-6: interleukin 6 

IRE: iron responsive element 

IRP: iron responsive protein 

Keap1: Kelch like ECH associated protein 1 

KIR: Keap1 interacting region 

LC3: microtubule associated protein 1A/1B light chain 

LDH: lactate dehydrogenase 

LIR: LC3 interacting region 

mTOR: mammalian target of rapamycin 

NAC: N-acetyl cysteine 

NQO1: NADPH dehydrogenase quinone 1 

Nrf2: nuclear factor (erythroid derived 2) like 2 

P: phospho 

Pop I: pro-erythroblasts 
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Pop II: basophilic erythroblasts 

Pop III: polychromatic erythroblasts 

Pop IV: orthochromatic erythroblasts 

PHZ: phenylhydrazine 

PPIX: protoporphyrin IX 

Prx 1: peroxiredoxin 1 

Prx 2: peroxiredoxin 2 

PV: polycythemia vera 

Rapa: rapamycin 

RBC: red blood cell 

ROS: reactive oxygen species 

SFK: src family kinase  

SH1: src homology 1 

SH2: src homology 2 

SH3: src homology 3 

SOD-1: superoxide dismutase 1 

TB: total bilirubin 

Tyr: tyrosine 

TMPRSS6: transmembrane protease serine 6 

TPO: thrombopoietin 

ULK 1: UNC 51 like kinases 1 
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3. INTRODUCTION 

 

          3.1 Erythropoiesis 

Erythrocytes transport and exchange O2/CO2, participating to key processes in cellular 

homeostasis and tissue function(s). In the peripheral circulation, red cells survive 120 

days, based on their ability to go through the narrow capillaries on microcirculation 

system. Aged erythrocytes (i.e.: red cell membrane oxidation, lipid peroxidation) are 

efficiently removed by macrophages mainly localized in spleen. Thus, erythropoiesis 

plays a crucial role to ensure the constant renewal of erythroid population.1 

During development, a first wave of erythropoiesis, described as primitive 

erythropoiesis, begins in the yolk sac, characterized by large and nucleated cells. 

Subsequently, definitive erythropoiesis, in the developing fetal liver, produces small-

enucleated cells, which will then occur in the bone marrow of adult.1 

 Erythropoiesis is a dynamic complex multistep process going from committed 

erythroid progenitors to erythroid precursors and circulating mature red cells (Fig. 1).2  

 

 

Fig. 1: The process of erythropoiesis  

(modified from Palis J. Primitive and definitive erythropoiesis in mammals. Front. Physiol. 2014; 5:3) 

 

 

Erythropoiesis is divided into 3 phases: early erythropoiesis, late erythropoiesis, 

corresponding to terminal erythroid differentiation, and reticulocyte maturation. Early 

erythropoiesis refers to the process by which multi-potential hematopoietic stem cells 

(HSC) proliferate and differentiate into committed erythroid progenitors.2 The first 
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erythroid-specific progenitor is the burst forming unit-erythroid (BFU-E), through 

processes influenced by several multipotent cytokines, such as IL-3 or SCF. The BFU-Es 

expand and develop into erythropoietin (EPO)-responsive colony forming unit-

erythroid (CFU-E), which further expand and differentiate into pro-erythroblasts.3 

Terminal erythroid differentiation begins with morphologically recognizable pro-

erythroblasts, which subsequently undergo sequential mitoses to become basophilic, 

polychromatic, and orthochromatic erythroblasts that enucleate to become 

reticulocytes. During terminal erythroid differentiation, several changes occur, 

including decrease in cell size, hemoglobinization, increased chromatin condensation, 

and enucleation. In addition, terminal differentiation is also accompanied by dramatic 

changes in the expression, as well as assembly, of membrane proteins.3-5 

Erythroid maturation is strictly dependent on EPO signaling cascade.5-6 EPO physically 

interacts with its receptor (EPO-R), which expression is downregulated after the 

basophilic erythroblasts stage.7 Binding of EPO to EPO-R results in EPO-R 

conformational change and it requires the activation of Jak2, as primary kinase. Jak2 

phosphorylates EPO-R, resulting in activation of multiple signaling pathways such as (I) 

the STAT5-BclXL system, involved in maturation and survival of erythroid precursors; 

and (II) the PI3-Kinase/Akt pathway,8-10 promoting both anti-apoptotic and 

proliferation signals.4 

STAT5 is a master of erythropoiesis and it resides in cytoplasm. In response to EPO 

signaling, it binds phospho-tyrosine (Tyr) residues (Y343) on EPO-R cytoplasmic tail. 

STAT5 is then Tyr-phosphorylated and it translocates into the nucleus, initiating the 

transcription of several genes important in terminal erythroid differentiation.11-14 This 

includes genes involved in suppression of cytokine signaling (Cish and Socs3) or in 

epigenetic regulation (Suv420h2).15-16 

Recent studies have shown that mice genetically lacking STAT5 develop anemia, due 

to ineffective erythropoiesis, associated with a blunted response to erythropoietic 

stress. A reduction in Bcl-XL expression has been documented in STAT5-/- mice, leading 

to decrease survival of early stage erythroblasts, further supporting the important role 

of STAT5 in normal and stress erythropoiesis.11-14 

Abnormalities in Jak2/STAT5 signaling pathway have been described in pathologic 

erythropoiesis such as β-thalassemia (β-thal) or Polycytemia Vera (PV).17 
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β-thal is an inherited red cell disorder characterized by reduced or absent production 

of β-globin chains. Ineffective erythropoiesis is one of the hallmarks of β-thal, 

characterized by (i) block in cell differentiation and expansion of erythroid precursors; 

(ii) severe oxidation mainly due to accumulation of free alpha chains; (iii) apoptosis of 

polychromatophilic erythroblasts. Extramedullary erythropoiesis and iron overload are 

additional elements related to the ineffective erythropoiesis, contributing to clinical 

severity of β-thal.18-20 Increased activation of Jak2/STAT5 axis has been shown in β-

thal. Evidences in a mouse model for β-thal suggest Jak2/STAT5 axis as possible 

therapeutic target in β-thal. Ongoing phase II trial with ruxolitinib (NCT02049450), a 

Jak2 inhibitor, in regularly transfused β-thal patients has shown promising results in 

reducing extramedullary erythropoiesis and splenomegaly.21 

Giving the importance of Jak2 kinase as initiator of the EPO signaling cascade, 

additional kinases, such as Lyn, a Src family kinase, has been described to participate 

to EPO pathway. Lyn is able to phosphorylate EPO-R, Jak2 itself and STAT5 (see also 

section 1.2.1).4,22 

The activation of EPO/Jak2 signaling pathway is associated with production of reactive 

oxidative species (ROS), which are also generated by a large amount of iron imported 

into the cells during heme biosynthesis.23 In erythropoiesis, ROS may function as 

second messenger through the transient oxidation of cysteine residues on signaling 

targets, further contributing to increase the complexity of signal transduction in 

response to EPO. To ensure cell survival, proliferation and differentiation, the control 

of oxidative stress is crucial during erythropoiesis. This is supported by abnormalities 

of erythropoiesis reported in mice genetically lacking antioxidant or cytoprotective 

systems, such as Peroxiredoxin 2 (Prx2) or Superoxide Dismutase 1 (SOD1).24-25 In β-

thal mice, our group has recently shown the importance of the interplay between Prx2 

and the redox-sensitive transcription factor, Nrf2 (Nuclear factor (erythroid-derived 2)-

like 2) in supporting β-thal pathologic erythropoiesis.24 

In response to oxidation, Nrf2 binds the Antioxidant Response Element (ARE) region of 

genes encoding for anti-oxidant or cytoprotective systems, such as heme oxygenase 

(HO-1), NADPH dehydrogenase quinone 1 (NQO1) or Prxs.26 

Studies in β-thal erythropoiesis have highlighted the importance of another redox-

related transcriptional factor: FOXO3a.27-28 FOXO3a belongs to the Forkhead Box O 
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(FoxO) family of transcription factors and responds to oxidative stress by the 

upregulation of ROS scavenging enzymes such as Superoxide Dismutase 2 (SOD2) or 

catalase.28 Mice genetically lacking FOXO3a are extremely sensitive to exogenous 

oxidative stress, such as that induced by phenylhydrazine (PHZ).28 

Collectively, these studies indicate the importance of the modulation of intracellular 

signal transduction during erythropoiesis as well as the adaptive mechanisms activated 

in response to oxidation. Although progresses have been made in characterization of 

signaling pathways and cell protective machinery during erythroid maturation, much 

still remain to be investigated in normal and pathological erythropoiesis. 

 

3.1.2 Erythropoiesis and iron homeostasis  

Iron is an essential element in cellular homeostasis and it is involved in redox controlled 

reactions, required in enzymatic cascade as well as in signal transduction pathways.29 

Since the large part of iron is required in hemoglobin synthesis, erythropoiesis deeply 

affects iron metabolism.30 Studies in both acquired and inherited disorders 

characterized by either iron-deficiency or iron-overload have highlighted new 

mechanisms involved in iron homeostasis.29-30  

 

3.1.3 Hepcidin systemic iron homeostasis  

Hepcidin (Hamp) is the master regulator of iron homeostasis. Hamp is mainly 

synthesized by hepatocytes.31 Hamp inhibits the transfer of dietary iron from duodenal 

enterocytes to plasma, the release of recycled iron from macrophages, predominantly 

in the spleen and the release of stored iron from hepatocytes.32 This cascade is related 

to the functional crosstalk between Hamp and its receptor ferroportin (Fpn), resulting 

in decreased iron release from cells to plasma and extracellular fluid.31-32 
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Fig. 2: Iron homeostasis  

(modified from Ganz T. Systemic iron homeostasis. Physiol Rev. 2013; 93:1721-41) 

 

Hamp expression is affected by: (I) iron levels or inflammation as stimulatory factors; 

(II) erythropoietin-stimulated expansion of erythroid precursors as inhibitory factor 

(Fig. 2).31 

Transferrin-bound iron concentrations contributes to regulation of Hamp expression. 

This regulatory pathway involves the bone morphogenetic protein receptor (BMPR) 

complex that signals predominantly through the SMAD4 pathway towards Hamp.31-32 

BMP6 binding to BMPR, limits further intestinal iron absorption and release of iron 

from macrophage stores. Hemojuvelin (also known as HFE2), is another iron-specific 

ligand playing a role in Hamp expression. Hemojuvelin interacts with both BMPs and 

the BMPR, and it is negatively regulated through specific proteolytic cleavage by 

transmembrane protease serine 6 (TMPRSS6; also known as matriptase 2).31-32 Finally, 

interleukin-6 (IL-6) is also involved in Hamp expression in response to inflammatory 

storm.31-32 IL-6 activates the Jak2/STAT3 pathway inducing Hamp expression. Our 

group has recently shown that the absence of Prx2 results in perturbation of IL6 

independent STAT3 activation towards Hamp expression, highlighting the novel role of 

Prx2 in iron homeostasis.33 
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Progresses in the knowledge of the functional link between iron homeostasis and 

pathologic erythropoiesis has allowed the identification of Erythroferrone (ERFE).34 

ERFE suppresses Hamp expression through a still unknown mechanism, possibly 

involving the BMP/SMAD signaling pathway.35-36 

 

3.1.4 Erythropoiesis and heme 

Heme biosynthesis is another crucial event in erythroid hemoglobinization. In all cells, 

heme synthesis occurs through 8 enzymatic reactions, divided between mitochondria 

and cytosol compartments. During erythropoiesis, heme synthesis increases with cell 

differentiation and it is tightly coordinated with iron acquisition and globin gene 

synthesis.37-40 

In heme biosynthesis, the first step is the condensation of succinyl-CoA and glycine to 

form δ-aminolevulinic acid (ALA) in mitochondrial matrix. This reaction is catalyzed by 

ALA synthase (ALAS), which is considered a rate-limiting event. There are two isoforms 

of ALAS, ALAS1 and ALAS2, which are encoded by separated genes. Alas1 gene is 

located on chromosome 3 and it is ubiquitously expressed. It plays an important 

housekeeping function in providing heme in non-erythroid tissues.37-40 Otherwise, 

Alas2 gene is located on the X-chromosome and it is expressed exclusively in erythroid 

cells. Alas2 expression strongly increases during the late stages of erythroid 

differentiation and it is essential for terminal maturation of red cells.41-42 The 

expression of Alas2 is regulated by erythroid-specific transcription factors, such as 

GATA-1.43 At post-transcriptional level, Alas2 expression is sensitive to iron 

intracellular levels. Alas2 transcript contains a 5′ iron responsive element (IRE) that 

interacts with iron responsive proteins (IRPs), linking the regulation of heme 

biosynthesis to the availability of iron in erythroid cells. 

ALA is then exported to the cytosol, where it is converted to coproporphyrinogen III 

(CPgenIII). Then, CPgenIII is imported back to mitochondria and it is converted to 

protoporphyrin IX (PPIX). Finally, ferrous iron (Fe2+) is incorporated into PPIX to form 

heme in mitochondrial matrix, a reaction catalyzed by ferrochelatase (FECH) (Fig. 3).44 

Recently, two heme exporters have been described: (I) FLVCR1a, localized in cellular 

plasma membrane; (II) FLVCR1b, localized in mitochondria plasma membrane. The 

coordinated expression of FLVCR1a and FLVCR1b contributes to control the size of the 
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cytosolic heme pool required to sustain metabolic activity during the expansion and 

hemoglobinization of erythroid cells (Fig. 3).38-40,45,46 

Fig. 3: Heme biosynthesis  

(modified from Tolosano E, et al. Heme and erythropoiesis: more than a structural role. Haematologica. 2014; 

99:973-983) 

 

 

3.2 Src family kinases (SFKs) 

Src family kinases (SFKs) are a group of cytoplasmatic Tyrosine (Tyr)-kinases, which are 

involved in signal transduction pathways important in cell homeostasis.47 SFKs 

comprises 9 members of kinases (Src, Fgr, Hck, Lyn, Yes, Lck, Fyn, Frk and Blk) some of 

which are expressed in a variety of cell types, whereas other are primarily expressed 

by hematopoietic cells, such as Lyn, Fyn or Src.48 SFKs exhibit a conserved domain 

organization that allows them to establish physical association with receptors and 

different proteins located upstream/downstream in signal cascades.48 

All family members are characterized by an N-terminal unique region (50-70 residues) 

of high variability always encompassing a myristoylation and sometimes a 

palmitoylation site, flowed by the ~ 50 amino acid Src homology 3 (SH3) domain, which 
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directs specific association with proline rich motifs related to the PXXP consensus.49-54 

This is followed by ~ 100 amino acid Src homology 2 (SH2) domain which provides the 

interaction with phosphor-Tyr motifs and confers recognition and regulatory 

proprieties. The last domain is the kinase (~ 300 residues), or catalytic domain, or Src 

homology 1 (SH1), responsible for the enzymatic activity (Fig. 4).49-54  

 

 

             

 

 

Fig. 4: Domain organization of the SFKs 

(modified by Salter MW, et al. Src kinases: a hub for NMDA receptor regulation. Nat Rev Neurosci, 2004; 5:317-328) 
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SFKs have two Tyr-motifs that regulate their activity in opposing ways. There is the 

activation loop (A-loop) residue, between the N-lobe and the C-lobe of the kinase 

domain, that is Tyr-phosphorylated in the fully active configuration, while the C-

terminal Tyr-motif is phosphorylated in the fully inactive structure.55-57 This latter can 

interact with its own SH2 domain, making phospho-Tyr tail relatively inaccessible to 

phosphatase catalysis, inactivating SFK.58 It is likely that the combined interactions of 

the SH3 and the SH2 domains stabilize the overall inactive SFK’s configuration through 

the synergic effects of the two domains. Tyr-phosphorylation of the A-loop site has 

been detected in the most highly active forms of SFKs and seems to be important for 

the maximal kinase activity possibly deleting the auto-inhibitory SH3/SH2 intra-

molecular interactions.59 This phosphorylation is likely to be mediated by a trans-

autophosphorylation, indicating that SFK members can crosstalk each other through 

the phosphorylation of the A-loop site.60 Thus, SFKs might be present as: 1) fully closed 

inactive form due to the intra-molecular SH3/SH2 interactions, a phosphorylated C-tail 

and an unphosphorylated A-loop; 2) partially active form in which the SH3 and/or SH2 

interactions are disrupted, but the A-loop is not phosphorylated; 3) fully active form 

with the A-loop phosphorylated with or without SH3/SH2 association displacement.61  

The autophosphorylation site of SFKs, plays a pivotal role when SFK is un-

phosphorylated, forming a short α-helix that prevents substrate binding and 

sequesters the A-loop Tyr. This makes the A-loop unavailable for phosphorylation, 

stabilizing the inactive kinase conformation. Otherwise, when the A-loop is 

phosphorylated, the Tyr forms a salt bridge with a conserved arginine that helps 

stabilizing the enzymatic active SFK configuration.62 

 

3.2.1 SFKs and erythropoiesis 

Among SFKs, Lyn has been recently involved in EPO signaling cascade.63,64 Lyn targets 

specific Tyr-residue on the cytoplasmic tail of Epo-R, contributing to the signaling 

events involved in erythroid maturation and differentiation.63,64 Mouse models either 

lacking Lyn (Lyn-/-) or displaying hyperactive Lyn (Lynup/up), show abnormalities in 

baseline erythropoiesis and in stress erythropoiesis .63,64 
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Table 1. Effects of the absence or hyperactivation of Lyn on immune-hematopoietic system 

Mouse strain Hematological phenotype References 

         

 

 

 

 

    Lyn-/- mice 

- Age-dependent anemia; 

- Extramedullary erythropoiesis with splenomegaly; 

- Dyserythropoiesis; 

- Increase reticulocyte count; 

- Reduced bone marrow progenitor expansion capacity 

and impaired precursors maturation/differentiation 

upon EPO stimulation; 

- Autoimmune disease related to lymphoid 

abnormalities; 

- Perturbations of myelopoiesis with age-related 

increase of myeloid progenitors. 

 

 

 

 

[64] [65] 

[66] [67]  

 

 

 

Lynup/up mice 

- Abnormal red blood morphology (acanthocytes and 

spherocyte-like cells); 

- Chronic mild hemolytic anemia; 

- Increased progenitor expansion capacity and enhanced 

precursors maturation and differentiation; 

- Extramedullary erythropoiesis; 

- Age-related bone marrow exhaustion. 

 

 

 

[68][69] 

[70] 

 

 

Studies in these mouse models have allowed the identification of signaling pathways 

intercrossed by Lyn such as, GAB2/Akt/FOXO3 acting as pro-survival system or ERK1/2 

(extracellular-signal-regulated kinase 1/2) as pro-apoptotic signal.64-67  

Lyn-/- mice show reduced STAT5 activity, which results in decreased expression of BclXL, 

a molecule with anti-apoptotic function in erythropoiesis. 64-67 

In addition, Lynup/up erythroblasts display increased proteolytically degradation of EPO-

R, suggesting an accelerated EPO-R turnover. This is associated with elevated Jak2 

activation partially independent from EPO stimulation. Increased EKLF and STAT5 

phosphorylation has been noted in Lynup/up erythroblasts, indicating possible 

downstream compensatory mechanism to constant activation of Lyn during 

erythropoiesis in this mouse strain.68-70 Finally, perturbation of Lyn function also affects 
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two master systems in erythropoiesis, GATA-1 and EKLF (Erythroid Kruppel-like 

factor).64-67 

 

          3.3 Fyn is an emerging SFK 

Fyn is another member of SFKs. Fyn is primarily localized to the cytoplasmic leaflet of 

the plasma membrane, where it phosphorylates Tyr-residues on key targets involved 

in a variety of different signaling pathways.71 This is functional to either regulate target 

proteins activity and/or generate a docking site on target proteins, allowing the 

recruitment of other signaling molecules.72 Fyn is important in cell growth and survival, 

cell adhesion, integrin-mediated signaling, cytoskeletal remodeling, cell motility, 

immune response and axon guidance.71  

The large part of available studies on mice genetically lacking Fyn are limited to 

neurobiology and brain system. 72-74 

 

3.3.1 Fyn and hematopoiesis  

In different blood cells and during hematopoiesis, recent studies have highlighted the 

role of Fyn as positive mediator of STAT5 function. In mast cell, Fyn is required for 

FcεRI-mediated STAT5 activation with possible additional role in stabilization of un-

phosphorylated STAT5.75-78 Studies on Fyn-/- bone marrow-derived mast cells (BMMCs) 

reveal abnormalities of STAT5 activation, leading to impairment of mast cells 

degranulation.75 Involvement of Fyn in STAT5 activation has been also documented in 

chronic myelogenous leukemia (CML).79 In CML, Fyn has been proposed to contribute 

to the cyclophosphamide cell resistance, suggesting Fyn as a possible new therapeutic 

target in CML.79  

F yn also participates to thrombopoietin (TPO)-induced cascade during in vitro 

megakaryopoiesis. Thus, Fyn may play a pivotal role as an additional kinase to the 

canonical TPO/Jak2 pathway in megakaryopoiesis.80-82 
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3.3.2 Fyn is a redox sensor 

In different cell types, growing evidence indicate Fyn as primary redox sensor in 

oxidation-induced signaling pathway.83-84 Fyn might act as regulatory nexus between 

oxidation and signal transduction such as in its interaction with Nrf2. In fact, Fyn has 

been involved in post-induction regulation of the redox-sensitive transcription factor 

Nrf2.85-86 In presence of a severe cellular oxidative stress, Nrf2 translocates into the 

nucleus activating the expression of acute phase defensive genes.85-86 Then, Nrf2 is 

switched-off by Fyn, which phosphorylates Tyr-568 on Nrf2, resulting in its nuclear 

export and ubiquitylation. 85-86 Mutagenesis experiments have shown that mutation of 

Tyr-213 on Fyn affects both nuclear localization and inactivation of Nrf2, increasing cell 

susceptibility to death.85-86 It has been reported that the prolonged activation of Nrf2 

results in accumulation of polyubiquitylated proteins with an imbalance between 

protein synthesis and protein degradation.87-88 In various cell types, the persistence of 

Nrf2 signaling has been shown to be linked to impaired autophagy, a main cellular 

defensive process against the accumulation of damaged proteins.89  

 

3.4 Autophagy and erythropoiesis 

3.4.1 Autophagy 

Autophagy is an efficient catabolic process responsible for the clearance of damaged 

organelles and proteins, contributing to cell homeostasis.90-93 Autophagy is generally 

activated by starvation or low levels of oxidation, whereas a more intense or prolonged 

oxidative stress overcomes autophagy flux and culminates in cell apoptosis. 94,95 

Autophagy starts with the engulfment of cellular materials by a double-layered 

structure, called the phagophore, that elongates, then closing to form the 

autophagosome. Finally, mature autophagosomes fuse with lysosomes, creating the 

autolysosome, where lysosomal hydrolytic enzymes degrade the cellular content (Fig. 

5).96  
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Fig. 5: The process of autophagy 

     (modified by Dikic I. Proteasomal and autophagic degradation systems. Annu. Rev. Biochem. 2017; 86:193-224) 

 

The core machinery of autophagy consists of autophagy-related proteins (Atg), redox-

sensitive proteins that might be either directly modulated by ROS (e.g.: Atg4 or Atg7) 

or transcriptionally regulated by oxidative stress (e.g.: p62).97-101 The functional 

connection between ROS and autophagy is also supported by the improvement of 

autophagy promoted by exogenous anti-oxidants, such as N-Acetyl-cysteine (NAC).97-

99 Ulk1 phosphorylation is considered one of the main determinants and initiator of 

autophagy.91,96 The second key complex is the Beclin1/PI3K3, whose activity is 

dependent on ULK1 phosphorylation. Beclin1/PI3K3 drives the phagophore formation, 

followed by the recruitment of ubiquitin-like Atg5-Atg12-Atg16L complex that is 

required for autophagosome formation.102 This latter, together with Atg4 and Atg7, 

can activate the microtubule-associated protein 1A/1B light chain 3 (LC3) via lipidation 

with phosphatidylethanolamine (PE) to generate LC3-II. LC3-II anchors to inner and 

outer membranes of autophagosomal structures and it is required for phagophore 

expansion and fusion.91,96,102 In addition, LC3-II recruits proteins carrying the LC3-

interacting region (LIR) to the autophagosome (Fig.6).91,103 The cargo elements are 

then directed by autophagy binding adaptor molecules, such as p62, to the terminal 

phase of autophagy.91,104 p62 is a multifunctional protein consisting of different 

ROS 

Starvation 
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domains and delivers polyubiquitinated cargoes to autophagy pathway through LIR 

domains and/or to proteasomal degradation via the N-terminal.96,104  

      

 

Fig. 6: Schematic representation of autophagy cascade 

(modified by Codogno P. Mechanisms and regulation of autophagy in mammalian cells. Atlas of Genetics and 

Cytogenetics in Oncology and Hematology,2011) 

 

                mTORC1= mammalian target of Rapamycin complex 1; AMPK= AMP-activated protein kinase; ULK1= UNC-51-like kinases 1 

                Atg13= autophagy-related protein 13; Atg101= autophagy-related protein 101; FIP200= FAK family-interacting protein of 200     

                kDa; hVps34= Class III phosphoinositide 3-kinase; Atg14= autophagy-related protein 14; Atg5= autophagy-related protein 5;   

                Atg10= autophagy-related protein 10; Atg7= autophagy-related protein 7; Atg16= autophagy-related protein 16; Atg4=   

                autophagy-related protein 4; LC3= Microtubule-associated protein 1A/1B-light chain 3 (I, cytosolic form; II, membrane bound  

                form); Atg3= autophagy-related protein 3; Atg12= autophagy-related protein 12. 

 

3.4.2 Autophagy and erythropoiesis 

In erythropoiesis, autophagy plays a pivotal role in removal of organelles, such as 

ribosomes or mitochondria (mitophagy), as well as of damaged cytosolic proteins, 

allowing the generation of mature red cells.104,105 During erythropoiesis, ROS 

generation, nutrients deprivation and activation of AMP-activated protein kinase 
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(AMPK) inhibits the mammalian target of rapamycin complex 1 (mTORC1), which is a 

key repressor of autophagy.96,105 Studies on mouse models lacking members of the 

autophagy cascade have allowed the progress in the knowledge on autophagy during 

erythropoiesis. The table below summarizes the main results on autophagy and 

erythropoiesis based on the revision of the literature. 

 

Table 2. Mouse models genetically lacking proteins related to autophagy and 

erythropoiesis 

Mouse 

strain 

Protein function Main findings Ref. 

 

 

Ulk1-/- 

mice 

 

 

Regulation of 

mitochondrial and 

ribosomal clearence 

- Reticulocytosis; 

- Increased mean cell volume (MCV), 

mean corpuscular hemoglobin 

level(MCH) and relative distribution 

width (RDW); 

- Delayed removal of mitochondria 

and ribosomes, resulting in delayed 

red cell maturation; 

- Splenomegaly; 

[105] 

[106] 

[107] 

[108] 

 

 

Atg5-/- 

mice 

 

 

Regulation of 

autophagosome 

formation 

- Decrease in hematopoietic stem cells 

proliferation; 

- Impaired cell cycle progression and 

increased apoptosis; 

- Neonatal lethality due to neuronal 

dysfunction; 

- Iron deficiency anemia; 

 

[109] 

[110] 

 

 

Atg7-/- 

mice 

 

 

Regulation of 

mitochondrial 

removal 

- Reduction in hematopoietic stem 

cells and progenitors of multiple 

lineage; 

- Impaired formation of 

autophagosomes; 

- Erythroid maturation defect; 

- Anemia and reticulocytosis; 

- -Impaired clearance of mitochondria 

[111] 

[112] 

[113] 

[114] 
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Nix-/- 

mice 

 

 

Modulation of 

mitochondrial 

clearance and 

autophagosome 

formation 

- Presence of abnormal mitochondrial 

residues; 

- Hemolytic anemia and erythroid 

hyperplasia; 

- Increased caspase activation and 

phosphatidylserine exposure leading 

to cell death and erythroid 

maturation defect; 

- -Reticulocytosis; 

- Abnormal reticulocytes maturation; 

[115] 

[116] 

[117] 

 

          3.4.3 Autophagy and Nrf2 

On steady state, Nrf2 is stabilized in the cytoplasm by Kelch-like ECH-associated protein 

1 (Keap1).118,119 Under oxidation, Nrf2 is activated, dissociated from Keap1 and it 

translocates into the nucleus. When Nrf2 function is completed, Nrf2 migrates into the 

cytoplasm to be ubiquitylated. In the meantime, p62 interacts with Keap1 through the 

Keap1-interacting region (KIR), re-directing Keap-1 towards autophagic degradation 

(Fig. 8).96,120                                           

                                        

Fig. 8: The p62-KEAP1-Nrf2 axis in stress response 

                       (modified by Zhang DD, et al. p62 links autophagy and Nrf2 signaling. FRBM, 2015;88:199-204)       
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Thus, an interplay has been established between Nrf2 degradation and autophagy.  

p62 is involved in protein quality control mechanism. It binds to the Nrf2 shuttle 

protein Keap1, participating to Keap1 turnover. Thus, accumulation of p62 might be 

used as hallmark of impaired autophagy.121 Our group has recently reported a new 

molecular link between defective autophagy in terminal erythroid differentiation in 

patients with chorea-acanthocytosis.121 Once again, the accumulation of p62 was a 

marker of repressed autophagy in this model of diseased red cell.  
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5. AIM of the study 

 

        Role of Fyn in normal and stress erythropoiesis  
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6. MATERIALS AND METHODS 

         6.1 Drugs and chemicals 

NaCl, Na3VO4, TRIS, Tween 20, EDTA, choline, MgCl2, MOPS, Na2HPO4, KH2PO4, NaF, 

bicine, β-mercaptoethanol, benzamidine, glycine, glycerol, potassium cyanide, 

bromphenol blue, sodium dodecil sulphate (SDS), hydrocortisone, albumin from 

bovine serum (BSA), May-Grunwald-Giemsa’s Azur-Eosin-Methylene Blue solution, 

were obtained by Sigma-Aldrich (Missouri, USA); dithiotreithol (DTT) was from Fluka 

(Buchs, Switzerland); protease inhibitor cocktail tablets were from Roche (Basel, 

Switzerland); 40% Acrylamide/Bis Solution, 37.5:1 was from BIO-RAD (California, USA); 

Luminata Forte Western Hrp solution was from Merck Millipore (Billerica, 

Massachusetts, USA); Prestained Protein Ladder, Triton X-100 and Temed were 

purchased from GE Healthcare Life Biosciences (Little Chalfont, UK); Annexin V Binding 

Buffer was from eBioscience (San Diego, USA); Dulbecco’s Phosphate Buffered Saline 

(DPBS) was from Lonza (Belgium); Iscove's Modified Dulbecco's Medium (IMDM), 

alpha-MEM, L-glutamine and Fetal Cow Serum (FCS) were from TermoFisher 

(Massachusetts, USA); Penicillin-Streptamicin and Amphotericin were from Euroclone 

(Milan, Italy); MethoCult™ M3234 was from StemCell Techologies (Milan, Italy). 

 

6.2 Mice strains 

We studied the following mouse strains: C57BL/6J as normal control (wild-type; WT) 

and Fyn-/- mice. Since in preliminary experiments we observed a more severe 

hematological phenotype in Fyn-/- female mice, we used female mice aging from 2 to 4 

months old. Mouse blood was collected by retro-orbital venipuncture in anesthetized 

mice using heparinized capillares according to the general guidelines of local animal 

facility, University of Verona. Whenever indicated, anemia was induced by 

intraperitoneal injection of PHZ (40 mg/Kg body weight)1or Doxorubicin (0.25 mg/Kg 

body weight).2 Blood was collected at day 2, 4, 8 and 14 from PHZ injection and at day 

3, 6 and 9 after Doxorubicin injection. Spleen and bone marrow were collected at day 

2,4,8 and 14 from PHZ injection and at day 9 after Doxorubicin injection. EPO (10 

U/mice).3 was intraperitoneally injected for 5 days. Blood was collected at day 6, 8 and 

11 after EPO administration. Rapamycin (10 mg/Kg)4 was intraperitoneally injected in 
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a single dose and spleen and bone marrow were collected after 1 week from 

Rapamycin administration.        

 

           6.3 Hematological parameters 

Hematological parameters were evaluated on Siemens ADVIA 120 Hematology 

System. Hematocrit and hemoglobin were manually determined.5,6  

 

6.4 Flow cytometric analysis of mouse erythroid precursors and cell sorting of murine 

bone marrow erythroblasts 

Cells from WT and Fyn-/- mice bone marrows and spleens were collected in BEPS (BEPS: 

PBS 1X, BSA 1%, EDTA 2 mM, NaCl 25 mM). The erythroid precursors were analyzed as 

previously described7 using CD44-Ter119 strategy. Briefly, cells were centrifuged at 

1,500 rpm for 5 min at 4°C and resuspended in the proper volume of BEPS. Cells were 

incubated first with CD16/32, to block Fc receptors, CD45-APC-Cy7, CD44-FITC, CD71-

PE and Ter119-APC (eBioscience, San Diego, USA) antibodies for 30 min at 4°C in the 

dark. Cells were washed and centrifuged at 1,500 rpm for 5 min at 4°C, resuspended 

in BEPS and 7AAD, for cell viability, was added immediately before the analysis. All the 

analysis were performed with the flow cytometer FACSCantoIITM (Becton Dickinson, 

San Jose, CA, USA). Data were stored and processed using FACSDiva software (Becton 

Dickinson Immunocytometry System, San Jose, CA, USA). The biparametric scatter 

plots were analyzed with FlowJo software version vX.0.7 (Tree Star, Ashland, OR, USA) 

(Fig. 9).  

               

               Fig. 9: Example of cytofluorimetric scatter for erythroid precursors from WT mice. Left panel: analysis of CD44+ 

               Ter119low Pop I corresponding to pro-erythroblasts. Right panel: analysis of CD44+-Ter119+ Pop II, III, IV,   

               corresponding to basophilic, polychromatic and orthochromatic erythroblasts respectively. 
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Population III and IV corresponding to polychromatic and orthochromatic 

erythroblasts and total erythroblasts (CD44+Ter119+FSChigh) were sorted from bone 

marrow of both mouse strains as previously reported.7 Sorted cells were used for (i) 

morphological analysis of erythroid precursors on cytospin preparations stained with 

May Grunwald-Giemsa; (ii) immunoblot analysis and (iii) RT-PCR analysis.5,6 For 

immunoblot analysis the following specific antibodies were used: anti P-Ser473-Akt, 

anti Akt, anti P-Ser2448-mTOR, anti mTOR (Cell Signaling, Massachusetts, USA), anti P-

Ser40-Nrf2, anti catalase, anti Nrf2, anti Prx1, anti Prx2, anti p62, anti Rab5 (Abcam, 

Cambridge, UK), anti Keap1 (Proteintech, Manchester, UK), anti GATA-1, anti HSP70, 

anti G6PD, anti NQO1 and GAPDH (Santa Cruz Biotechnology, Texas, USA) and HistH3 

(Cell Signaling, Massachusetts, USA) as loading control. Whenever indicated we carried 

out immunoprecipitation (IP) experiments as previously reported.5 Briefly, 1.5*106 

sorted CD44+Ter119+FSChigh cells from WT and Fyn-/- were resuspended in Complete 

Bicine Solution (CBS: Bicine 25 mM, Triton X-100 1.5%, Na3VO4 1 mM, NaF 1 mM, EDTA 

1 mM, in the presence of protease inhibitors) and underwent 3 cycles of freeze/thaw. 

The supernatant was collected and incubated with washed IP beads (Thermo Scientific, 

MA, USA) and phosphoTyr antibodies (PY99; Santa Cruz Biotechnology, Texas, USA and 

4G10; Millipore, Massachussets, USA). The day after beads were spinned down, 

washed with CBS without inhibitors and solubilized with SB2X+β for 1h at RT. Before 

loading gels, beads were heated at 60°C for 4 min.  Filters were incubated overnight 

with anti EPO-R (Sigma-Aldrich, Missouri, USA), anti STAT5, anti Lyn (Santa Cruz 

Biotechnology, Texas, USA), anti Jak2 (Cell Signaling Technology, Danvers, USA) and 

anti IgG rabbit  (GE Healthcare Life Sciences, Little Chalfont, UK) as loading control. 

Secondary anti-rabbit and anti-mouse antibodies were purchased from GE Healthcare 

Life Biosciences (Little Chalfont, UK). Images were acquired using Image Quant Las Mini 

4000 Digital Imaging System (GE Healthcare Life Sciences, Little Chalfont, UK). 

 

          6.5 Annexin V analysis of mouse erythroid precursors 

Analysis of apoptotic erythroblasts from WT and Fyn-/- mice was carried out on the 

CD44-Ter119 gated cells using the Annexin-V PE Apoptosis detection kit (eBioscience, 

San Diego, CA, USA) following the manufacturer instructions8. Flow cytometric analysis 

was carried out with the FACSCantoIITM flow cytometer (Becton Dickinson, San Jose, 
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CA, USA). Data were stored and processed using FACSDiva software (Becton Dickinson 

Immunocytometry System, San Jose, CA, USA). The biparametric scatter plots were 

analyzed with FlowJo software version vX.0.7 (Tree Star, Ashland, OR, USA). 

 

6.6 Analysis of ROS levels on different populations of erythroid precursors 

The ROS levels of erythroid precursors from WT and Fyn-/- mice were determined using 

the General Oxidative Stress Indicator CM-H2DCFDA (LifeTechnologies, Carlsbad, CA, 

USA) on erythroid precursors as previously described9 with minor changes. Briefly, 

CD44-PE, Ter119-APC, CD45-APC-Cy7 (eBioscience, San Diego, USA) stained cells, from 

mouse bone marrow, were incubated with CM-H2DCFDA (10 μM in PBS, BSA 1% at 37°C 

for 20 min). Cells were then washed once with PBS BSA 1%, stained in ice with 7-AAD 

and analyzed with the FACSCantoIITM flow cytometer (Becton Dickinson, San Jose, CA, 

USA). Data were stored and processed using FACSDiva software (Becton Dickinson 

Immunocytometry System, San Jose, CA, USA). The biparametric scatter plots were 

analyzed with FlowJo software version vX.0.7 (Tree Star, Ashland, OR, USA). 

 

6.7 Murine BFU-E and CFU-E assay 

Incomplete MethoCult™ (M3234) media was thawed at room temperature (15 - 25°C) 

or overnight at 4°C. 0.2*106 cells from BM of WT and Fyn-/- mice were collected in 

Complete α-MEM (α-MEM, 1% Penicillin-Streptomicin, 1% Hydrocortisone, 1% 

nucleotides, Gentamicin 0,025 mg/L, Amphotericin 0,5 ug/mL) and then added to 

MethoCult™ media. Growth factors (SCF 50 ng/mL, IL-3 10 ng/mL and EPO  3U/mL) 

were added fresh every time to complete α-MEM. Media were vortexed to ensure all 

components were thoroughly mixed (let the tube stand for at least 5 minutes to allow 

the bubbles to rise to the top). MethoCult™ mixture containing cells was dispensed 

into sterile culture dishes. Empty wells were filled with sterile water. The plates were 

incubated at 37°C and 5% CO2. After 5 and 10 days, WT and Fyn-/- CFU-Es and BFU-Es, 

were picked up, counted and solubilize in CBS with inhibitors. We carried out IP 

experiments on WT and Fyn-/- CFU-Es. Briefly, 2*106 CFU-Es from WT and Fyn-/- were 

resuspended in CBS with inhibitors and underwent 3 cycles of freeze/thaw. The 

supernatant was collected and incubated with washed IP beads and phosphor-Tyr 

antibodies (PY99; Santa Cruz Biotechnology, Texas, USA and 4G10; Millipore, Billerica, 
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Massachusetts, USA). The day after beads were spinned down, washed with CBS 

without inhibitors and solubilized with SB2X+β for 1h at RT. Before loading gels, beads 

were heated at 60°C for 4 min.  Filters were incubated overnight with anti EPO-R 

(Sigma-Aldrich, Missouri, USA), anti STAT5, anti Lyn (Santa Cruz Biotechnology, Texas, 

USA), anti Jak2 (Cell Signaling Technology, Danvers, USA) and anti IgG rabbit (GE 

Healthcare Life Sciences, Little Chalfont, UK) as loading control.  

 

6.8 In vitro maturation of reticulocytes from WT and Fyn-/- mice after PHZ treatment 

WT and Fyn-/- mice were intraperitoneally injected with PHZ (40 mg/kg) at day 0, 1 and 

3. One week after the first injection of PHZ, blood from WT and Fyn-/- mice was 

collected.10 Washed and packed RBCs from heparinized whole blood were used for (i) 

cytosol preparation, as previously described11-13, (ii) LysoTrack and MitoTrack staining 

and (iii) in vitro maturation of reticulocytes. For in vitro maturation, blood was diluted 

1:500 in 1.5 ml of maturation medium (60% IMDM, 2mM L-glutamine, 100U Penicillin-

Streptomicin, 30% FCS, 1% BSA and 1X Amphotericin) and cultured in a 24-well tissue 

culture plate in a cell culture incubator at 37°C with 5% of CO2 for 3 days. 

 

6.9 MitoTracker and LysoTracker analysis on RBCs and cultured reticulocytes after 

PHZ treatment  

RBCs and cultured reticulocytes from PHZ treated WT and Fyn-/- mice underwent 

lysosome and mitochondria staining using the Lysotracker Green DND-26 

(ThermoFisher Scintific) and the MitoTracker Deep Red (ThermoFisher Scientific), 

following the manufacturer’s instructions.14 Cells were analyzed with the 

FACSCantoIITM flow cytometer (Becton Dickinson, San Jose, CA, USA). Data were stored 

and processed using FACSDiva software (Becton Dickinson Immunocytometry System, 

San Jose, CA, USA). The biparametric scatter plots were analyzed with FlowJo software 

version vX.0.7 (Tree Star, Ashland, OR, USA). 
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  7. RESULTS 

7.1 Fyn-/- mice display a mild mycrocitic anemia 

We first analyzed the hematological parameters of wild-type (WT) and Fyn-/- mice 

(Table 3). Fyn-/- mice showed a very mild hypochromic anemia as defined by reduction 

in hemoglobin (Hb) levels and lower mean corpuscular volume (MCV) (Table 3). This 

was associated with slight but significant increase in reticulocyte count in Fyn-/- mice 

compared to WT.  

 

TABLE 3. HEMATOLOGICAL DATA OF WT AND Fyn-/- MICE 

 WT mice 

(n=10) 

Fyn-/- mice 

(n=10) 

Hct (%) 48.2 ± 1.3 46.1 0.8* 

Hb (g/dl) 15.9 ± 0.6 14.3 0.5* 

MCV (fl) 50.3 ± 0.4 46.5 1.3* 

MCH (g/dl) 15.3 ± 0.3 14.8 1.1 

CHCM (g/dL) 26.4±0.5 29.6 ± 1.4* 

RDW (%) 11.6 ± 0.3 13.2 0.4* 

Retics (103 cells/uL) 451± 40.7 559 45* 

 
                Hct: hematocrit; Hb: hemoglobin; MCV: mean corpuscular volume; MCH: mean corpuscular haemoglobin;   
                CHCM: mean cellular hemoglobin concentration; RDW: red blood cell distribution width; Retics: 
                reticulocytes; *p <0.05 compared to WT mice. 

            
           

Increased total bilirubin (TB) and plasma lactate dehydrogenase (LDH) levels were 

observed in Fyn-/- mice compared to healthy controls (Fig. 1a). Up-regulation of 

haptoglobin (Hp) gene expression was found in liver from Fyn-/- mice (Fig. 1b, left 

panel); whereas, plasma Hp levels showed a trend to increase without reaching 

statistical significance compared to WT (Fig. 1b, right panel). No iron-overload was 

detected in either liver or spleen from Fyn-/- mice (Fig. 1c). Up-regulation of EPO mRNA 
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expression was found in Fyn-/- mice (Fig. 1d). Collectively, these data suggest the 

presence of a very mild hemolytic compensated microcytic anemia in mice genetically 

lacking Fyn.  

 

 

 

 

Fig. 1: (a): TB and plasma LDH levels. Data are presented as means±SD (n=6); *p< 0.05 compared to WT mice [in 

collaboration with Prof E.Tolosano, Universityof Torin, Italy]. (b): RT-PCR expression of Hp on liver from WT and Fyn-

/- mice. Experiments were performed in triplicate. Error bars represent the standard deviations (means±SD); *p< 

0.05 compared to WT mice. [in collaboration with Prof. A. Iolascon and Dr. L. De Falco, University Federico II, 

Naples]; Immunoblot analysis of Hp in WT and Fyn-/- mice. Ponceau Red was used as loading control (densitometric 

analysis are reported in supplementary data); Plasma levels of Hp in WT and Fyn-/- mice [in collaboration with Prof 

E.Tolosano, University of Torin, Italy]. (c): Iron staining (Pearl’s Prussian blue) in liver and spleen from WT and Fyn-

/- mice. One representative image from the other six with similar results is presented. (d):  RT-PCR expression of 

EPO on kidney from WT and Fyn-/- mice. Experiments were performed in triplicate. Error bars represent the standard 

deviations (means±SD); *p< 0.05 compared to WT mice [in collaboration with Prof. A. Iolascon and Dr. L. De Falco, 

University Federico II, Naples]. TB, total bilirubin; LDH, lactate dehydrogenase; RT-PCR, real time polymerase chain 

reaction; Hp, haptoglobin; EPO, erythropoietin. 
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          7.2 The absence of Fyn is associated with dyserythropoiesis, increased oxidative       

          stress and low GATA-1 nuclear translocation 

We carried out morphological analysis of sorted erythroblasts from WT and Fyn-/- mice. 

As shown in Fig. 2a, signs of dyserythropoiesis mainly involving Pop II and Pop III were 

detected in Fyn-/- mice compared to WT. This was associated with increased erythroid 

precursors (CD71+Ter119+cells; Fig. 2b) without evidences of extramedullary 

erythropoiesis. We then measured the generation of ROS in sorted erythroblasts from 

both mouse strains. We found higher ROS levels in Fyn-/- erythroblasts compared to 

WT (Fig. 2c, upper panel). Increased amount of Annexin-V positive erythroblasts was 

found in Fyn-/- mice (Fig. 2c; lower panel).  

 

 

Fig. 2: (a): Morphological analysis of cytospins from sorted WT and Fyn-/- erythroblasts stained with May-Grunwald-

Giemsa. Representative micropictures from other six with similar results. (b): Analysis of total erythroblasts in WT 

and Fyn-/- mice (Ter119-CD71 based gating). Data are presented as means±SD (n= 8); *p< 0.05 compared to WT 

mice. (c) Upper panel: ROS levels of erythroblast in populations II - IV from WT and Fyn-/- mice (Pop II, basophilic 
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erythroblasts; Pop III, polychromatic erythroblasts; Pop IV, orthochromatic erythroblasts). Data are presented as 

means±SD (n=8); *p< 0.05 compared to WT mice. Lower panel: Annexin-V+ erythroblasts in populations II-IV from 

WT and Fyn-/- mice (Pop II, basophilic; Pop III, polychromatic; Pop IV, orthochromatic erythroblasts). Data are 

presented as means±SD (n=8); *p< 0.05 compared to WT mice. (d): Immunoblot analysis with specific antibody 

against GATA-1 and HSP70 on cytosolic and nuclear fraction of sorted CD44+Ter119+FSChigh cells. GAPDH and HistH3 

were used as loading controls. One representative gel from three with similar results is presented. Densitometric 

analysis are reported in supplementary data. (e): RT-PCR expression of HBB major, HBB minor and HBA1 on sorted 

Pop III and Pop IV from WT and Fyn-/- bone marrow (Pop III, polychromatic erythroblasts; Pop IV, orthochromatic 

erythroblasts). Experiments were performed in triplicate. Error bars represent the standard deviations (means±SD 

[in collaboration with Prof. A. Iolascon and Dr. L. De Falco, University Federico II, Naples]. (f): TAU Gel 

Electrophoresis of α/β-globins from WT and Fyn-/- circulating red cells. ROS, reactive oxygen species; TAU, Triton-

Acetic-Urea; RT-PCR, real time polymerase chain reaction. 

 

β-thalassemia (β-thal; see also introduction section 3.1) is a human model of stress 

erythropoiesis and it is characterized by increased ROS levels and hyperactivation of 

Jak2-STAT5 signaling pathway. In β-thal erythropoiesis oxidation affects nuclear 

translocation of GATA-1, a key transcriptional factor involved in erythroid maturation 

events. Thus, we evaluated GATA-1 in Fyn-/- erythropoiesis. In sorted Fyn-/- 

erythroblasts, we observed reduced GATA-1 nuclear translocation compared to WT 

(Fig. 2d). This was associated with increased HSP70 nuclear translocation, similarly to 

that described in β-thal erythroblasts. Indeed, a significant decrease in β-globin chain 

synthesis, was evident in Fyn-/- mouse erythroblasts (Fig. 2e). An accumulation of the 

α-globin chains (α-globin aggregates) was detected in circulating Fyn-/- red cells (Fig. 

2f). These data suggest a possible reduced efficiency of EPO signaling cascade in the 

absence of Fyn.  

 

7.3 The absence of Fyn is associated with reduced efficiency of EPO-signaling 

pathway  

We then explored Jak2-STAT5 Tyr-phosphorylation state, which is strictly dependent 

on the efficiency of EPO signaling cascade. In sorted Fyn-/- erythroblasts, we observed 

reduced activation of EPO-R (decreased Tyr-phosphorylation state of EPO-R), 

compared to WT erythroblasts (Fig. 3a). This was associated with increased Jak2 

compensatory activation, without major difference in Lyn functional state (Fig 3a). In 

sorted Fyn-/- erythroblasts, STAT5 activation was significantly decreased, as supported 

by down-regulation of Cish, an exclusively STAT5 regulated gene (Fig. 3b).  
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Using the vitro erythroid cell forming colony unit assay, we found a lower CFU-E and 

BFU-E cells production from Fyn-/- bone marrow cells in presence of standard EPO 

stimulation (3 U/ml) (Fig. 3c). This was again associated with decreased activation of 

EPO mediated signaling cascade in Fyn-/-  CFU-E with compensatory hyperactivation of 

Jak2 (Fig. 3d). Since the absence of Fyn results in low efficiency of EPO signaling 

cascade, the hyperactivation of Jak2 may be related to increase ROS levels 

characterizing Fyn erythroblasts. 

To better understand the role Fyn in EPO-signaling cascade, we treated both mouse 

strains with recombinant EPO (10 U/day for 5 days; red arrows in Fig. 4a).3 Increase of 

Hct and reticulocytes (as CD71+Ter119+ circulating cells) was blunted in Fyn-/- mice 

compared to WT animals (Fig. 4a). Collectively, these data indicate a reduction in the 

efficiency of EPO signaling pathway in the absence of Fyn.  

 

 

 

Fig. 3: (a): Anti phosphor-Tyr immunoprecipitation analysis of Jak2-STAT5 signaling pathway on sorted 

CD44+Ter19+FSChigh cells from WT and Fyn-/- mice. IgG were used as loading control. One representative gel from 

three with similar results is presented. Densitometric analysis are reported in supplementary data. (b): RT-PCR 

expression of Cish on sorted Pop III and Pop IV from WT and Fyn-/- bone marrow (Pop III, polychromatic 

erythroblasts; Pop IV, orthochromatic erythroblasts). Experiments were performed in triplicate. Error bars 

represent the standard deviations (means±SD); *p< 0.05 compared to WT mice. [in collaboration with Prof. A. 

Iolascon and Dr. L. De Falco, University Federico II, Naples]. (c): In vitro colony-forming unit assay of BFU-Es and 

CFU-Es from WT and Fyn-/- mice. Data are presented as means±SD (n=5); *p< 0.05 compared to WT mice. (d): anti 

phosphor-Tyr immunoprecipitation analysis of Jak2-STAT5 signaling pathway on CFU-Es from WT and Fyn-/- mice. 

IgG were used as loading control. One representative gel from three with similar results is presented. Densitometric 
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analysis are reported in supplementary data.  RT-PCR, real time polymerase chain reaction; CFU-E, erythroid colony-

forming unit; BFU-E, erythroid burst-forming unit. 

 

7.4 Fyn-/- mice display a high sensitivity to PHZ or Doxorubicin induced stress 

erythropoiesis 

We then treated both mouse strains with either PHZ (40 mg/Kg; red arrows in Fig. 4b) 

or Doxorubicin (0.25 mg/Kg; red arrow in Fig. 5a). In mice, PHZ is known to induce 

severe oxidation and acute hemolytic anemia, while Doxorubicin temporary represses 

erythropoiesis with ROS generation.1,2 

As shown in Fig. 4b, PHZ induced a similar marked drop in Hct levels in both mouse 

strains at day 2 after PHZ injection. In Fyn-/- mice, we observed a delayed increase in 

Hct levels at day 4 and 8 compared to WT. The increase in reticulocyte count in PHZ 

treated Fyn-/- mice was blunted compared to WT mice, showing a peak at day 8 after 

PHZ injection (Fig. 4b). As shown in Fig. 4c, we found increased levels of total 

erythroblasts in bone marrow and spleen from both mouse strains following PHZ 

injection. In Fyn-/- spleen, the increase in erythroid precursors was blunted at day 4, 

with a compensatory increase at day 14 after PHZ administration (Fig. 4c, upper panel). 

In bone marrow, we observed a mild increase in total erythroblasts in both mouse 

strains at day 2 and 4 after PHZ injection (Fig. 4c, lower panel). Noteworthy, in Fyn-/- 

mice we found a marked increase in bone marrow total erythroblasts at day 8 after 

PHZ, suggesting a possible compensatory mechanism in Fyn-/- mice do to the lack of 

splenic response following PHZ treatment (Fig. 4c, lower panel). At day 4 and 8 after 

PHZ injection, the amount of Annexin-V+ cells was higher in Fyn-/- polychromatic and 

orthochromatic erythroblasts in both bone marrow and spleen compared to WT 

animals (data not shown).  
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Fig. 4: (a): Hematocrit (Hct) and reticulocyte count in WT and Fyn-/- mice after EPO injection (10 U/mice; red arrows). 

Data are presented as means±SD (n= 5).  (b): Hematocrit (Hct) and reticulocyte count in WT and Fyn-/- mice after 

PHZ injection (40 mg/kg, red arrow). Data are presented as means±SD (n= 5); *p< 0.05 compared to WT mice (c): 

Total erythroblasts in WT and Fyn-/- bone marrow and spleen after PHZ injection. Data are presented as means±SD 

(n= 5); *p< 0.05 compared to WT mice. EPO, erythropoietin; PHZ, phenylhydrazine; Hct, hematocrit. 

 

In Fyn-/- mice, Doxorubicin induced a more severe and prolonged anemia compared to 

WT. We also found a delay in reticulocytes response compared to Doxorubicin treated 

WT animals (Fig. 5a). Total erythroblasts were determined at day 9 after Doxorubicin 

administration in both spleen and bone marrow.2 In Fyn-/- mice, we observed a 

significant reduction in both bone marrow and spleen erythroblasts, compared to 

vehicle treated controls (Fig. 5b). Increased amount of Annexin V+ polychromatic and 

orthochromatic erythroblasts was observed at day 9 after Doxorubicin administration 

in Fyn-/- mice compared doxorubicin treated WT animals (data not shown).  

These data suggest an increased sensitivity of Fyn-/- mice to stress erythropoiesis, 

further supporting the importance of Fyn in EPO signaling cascade. 
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Fig. 5: (a): Hematocrit (Hct) and reticulocyte count in WT and Fyn-/- mice after Doxorubicin injection (0.25 mg/kg; 

red arrow). Data are presented as means±SD (n= 5); *p< 0.05 compared to WT mice. (b): Analysis of total 

erythroblasts in bone marrow and spleen from WT and Fyn-/- mice after Doxorubicin injection. Data are presented 

as means±SD (n= 5). *p< 0.05 compared to WT mice. DOXO, doxorubicin; Hct, hematocrit. 

 

 

7.5 Fyn-/- mice display increased Akt 

Previous studies have shown that EPO-Jak2 pathway can activate Akt, which is also 

directly modulated by ROS (Fig. 6a).15 Thus, we evaluated Akt function in sorted 

erythroblasts from both mouse strains. As shown in Fig. 6b, Fyn-/- mouse erythroblasts 

displayed increased active Akt (Ser 473) compared to WT cells (Fig. 6b). Activation of 

Akt might affect multiple targets involved in response to oxidation. Akt might (I) 

functionally interact with the redox sensitive transcriptional factor Nrf2, resulting in 

Nrf2 activation; or (II) activate mTOR, which phosphorylation represses autophagy.15,16 
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Fig. 6: (a): Schematic representation of EPO signaling pathway intercrossed with autophagy and Nrf2 redox-

sensitive systems. (b):  Immunoblot analysis with specific antibodies against p-Ser473-Akt and Akt from WT and Fyn-

/- sorted CD44+Ter119+FSChigh erythroblasts. GAPDH was used as loading control. One representative gel from three 

with similar results is presented. Densitometric analysis are reported in supplementary data. (c): Immunoblot 

analysis with specific antibodies against p-Ser40-Nrf2 and Nrf2 from WT and Fyn-/- sorted Pop III and Pop IV (Pop III, 

polychromatic erythroblasts; Pop IV, orthochromatic erythroblasts). GAPDH was used as loading control. One 

representative gel from three with similar results is presented. Densitometric analysis are reported in 

supplementary data. (d): RT-PCR expression of Catalase, G6pd, Gpx1, Hmox1 and Prx2 on sorted Pop III and Pop IV 

from WT and Fyn-/- bone marrow (Pop III, polychromatic erythroblasts; Pop IV, orthochromatic erythroblasts). 

Experiments were performed in triplicate. Error bars represent the standard deviations (means±SD); *p< 0.05 

compared to WT mice. [in collaboration with Prof. A. Iolascon and Dr. L. De Falco, University Federico II, Naples].  

 

In Fyn-/- erythroblasts, we found increased activation of Nrf2 (Ser40) compared to WT 

cells, most likely related to the absence of Fyn as key post-induction regulator of Nrf2 

(Fig. 6c). This was supported by up-regulation of ARE-genes for anti-oxidant and 

cytoprotective systems such as Catalase, G6PD, GPX1, HO-1 and Prx2 (Fig. 6d). 
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Immunoblot analysis with specific antibodies showed increased expression of the 

encoded proteins, validating the molecular data (Fig. 7). 

 

 

Fig. 7:  Immunoblot analysis with specific antibodies against G6PD, HO-1, Prx2, Prx1 and NQO1 from WT and Fyn-/- 

sorted Pop III and Pop IV. GAPDH was used as loading control. One representative gel from three with similar results 

is presented. Densitometric analysis are reported in supplementary data. 

 

7.6 In Fyn-/-mice, activation of mTOR impairs autophagy, leading to abnormalities on 

the in vitro reticulocyte maturation 

Previous studies have shown that autophagy plays a key role in erythropoiesis, 

contributing to the correct maturation and differentiation of erythroid precursors (ref). 

Although modulation of mTOR during erythropoiesis is only partially known, mTOR is 

a key protein in autophagy and its activation by Akt represses autophagy.16 In Fyn-/- 

mouse erythroblasts, we found increased active mTOR (Ser2448) associated with 

accumulation of p62 and Rab5, both proteins involved in late phase of autophagy (Fig. 

8a). Moreover, in Fyn-/- erythroblasts, we found accumulation of Keap1, the physiologic 

inhibitor of Nrf2 (Fig. 8a).17 These data suggest an impairment of autophagy processes 

during erythropoiesis in the absence of Fyn. 

Since autophagy has been shown to be important during reticulocyte maturation18, we 

analyzed in vitro reticulocyte maturation from PHZ treated mice.10 We found reduced 

Fyn-/- reticulocyte maturation compared to WT (Fig. 8b, left panel). This was associated 

with decreased lysosomal clearance, as shown by LysoTrack analysis, without major 

difference in mitochondrial clearance, as shown by MitoTrack analysis (Fig. 8b, right 
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panel). An accumulation of p62, was again detected in maturing reticulocytes in the 

absence of Fyn, further supporting the impairment of autophagy in Fyn-/- mice (Fig. 8c).  

 

 

Fig. 8: (a):  Immunoblot analysis with specific antibodies against p-Ser2448-mTOR, mTOR, p62, Keap1 and Rab5 

from WT and Fyn-/- sorted CD44+Ter119+FSChigh erythroblasts. GAPDH was used as loading control. One 

representative gel from three with similar results is presented. Densitometric analysis are reported in 

supplementary data.  (b) (Left) Flow cytometric scatter of RBCs at day 0 and after 3 days of in vitro maturation from 

PHZ treated WT and Fyn-/- mice. One representative of 3 independent experiments with similar results. Data are 

shown as means±SD (n=3); *p< 0.05 compared to WT mice. (Right) Flow cytometry of RBCs at day 0 and after 3 

days of in vitro maturation from PHZ treated WT and Fyn-/- mice intravitally stained with LysoTracker and 

MitoTracker. One representative of 3 independent experiments with similar results. Data are shown as means±SD 

(n=3); *p< 0.05 compared to WT mice. (c): Immunoblot analysis with specific antibodies against p62 in RBCs at day 

0 and after 3 days of in vitro maturation from PHZ treated WT and Fyn-/- mice. Catalase was used as loading control.  

One representative gel from three with similar results is presented. Densitometric analysis are reported in 

supplementary data. 

 

 

 

   

7.7 The mTOR inhibitor Rapamycin unlocks autophagy and ameliorates 

erythropoiesis in Fyn-/- mice  

We then treated both mouse strains with Rapamycin (10 mg/Kg), a known mTOR 

inhibitor, which has been shown to promote autophagy and beneficially impact stress 

erythropoiesis in other mouse models.4 

Rapamycin administration reduced total bone marrow Fyn-/-mouse erythroblasts, 

while no significant effects were observed in control animals as previously reported 
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(Fig. 9a).4 A significant reduction in generation of ROS and in the amount of Annexin- 

V+ cells was found only in erythroid precursors from Fyn-/- mice (Fig. 9b, 9c). In 

agreement with the activation of autophagy we observed decreased levels of p62 in 

Rapamycin treated Fyn-/- erythroblasts compared to vehicle treated animals (Fig. 9d). 

No major change was observed in hematologic parameters as previously reported.4  

These data suggest that the inhibition of mTOR unlocks autophagy and ameliorates 

erythropoiesis in Fyn-/- mice.   

 

 

 

 

Fig. 9: (a): Analysis of total erythroblasts in WT and Fyn-/- bone marrow (Ter119-CD44 based gating) treated with 

either vehicle or Rapamycin. Data are presented as means±SD (n= 5); *p< 0.05 compared to WT mice; °p < 0.05 

compared to vehicle treated mice (b): ROS levels of erythroblast in populations II - IV from WT and Fyn-/- mice 

treated with either vehicle or Rapamycin (Pop II, basophilic erythroblasts; Pop III, polychromatic erythroblasts; Pop 

IV, orthochromatic erythroblasts). Data are presented as means±SD (n=5); *p< 0.05 compared to WT mice; °p < 0.05 

compared to vehicle treated mice. (c): Annexin-V+ erythroblasts in populations II-IV from WT and Fyn-/- mice treated 

with either vehicle or Rapamycin. (Pop II, basophilic; Pop III, polychromatic; Pop IV, orthochromatic erythroblasts). 

Data are presented as means±SD (n=5); *p< 0.05 compared to WT mice; °p < 0.05 compared to vehicle treated mice. 

(d): Immunoblot analysis with a specific antibody against p62 from Fyn-/- sorted CD44+Ter119+FSChigh erythroblasts 

treated with either vehicle or Rapamycin. Catalase was used as loading control. One representative gel from three 

with similar results is presented. Densitometric analysis are reported in supplementary data. 
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8. DISCUSSION 

Here, we found a novel role of Fyn in EPO-mediated signaling pathway in normal and 

stress erythropoiesis. Fyn affects EPO-R and STAT5 Tyr-phosphorylation state, without 

change in Lyn activity but overactivation in Jak2 (Fig. 3). This suggests Fyn as a new 

downstream regulator of STAT5 phosphorylation similarly to that described in Lyn-/- 

mice.3 We carried out a protein alignment using ClustalW2 for Fyn and Lyn (Fig. 10). 

The superposed alignment gives a 62% identity and 78% sequence similarities using 

Blastp algorithm (Fig. 10).  

 

Alignment Score: 54.30 

                                                     Fig. 10: ClustalW2 alignment between Fyn and Lyn kinases  

 

 

Previous studies have shown that Lyn targets STAT5, modulating its Tyr-

phosphorylation state.3 The high similarity between Fyn and Lyn allow us to propose 

Fyn as possible new modulator of STAT5 in erythroid cells.   
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The reduction in STAT5 activation observed in Fyn-/- mouse erythroblasts supports this 

interplay and it is in agreement with previous reports in other cell types (i.e. such mast 

cells and CML cells)19,20. In Fyn-/- mice, the reduction in STAT5 activation may be 

responsible for the microcytic anemia as previously reported in mice genetically lacking 

STAT5.21 

In Fyn-/- mice, the reduced efficiency of EPO signaling pathway was also indicated by 

increased ROS levels and cell apoptosis of the different erythroblast subpopulations 

(Fig. 2). The synergic effect of reduced EPO signaling and increased oxidation results in 

decreased GATA-1 nuclear translocation similarly to that observed in β-thal 

erythropoiesis.22 Indeed, the unbalance in β-globin chain synthesis with accumulation 

of free α-globin chains further support the functional impact of Fyn on erythroid 

maturation (Fig. 2). 

We then explored Jak2/STAT5 pathway in early and late erythropoiesis in Fyn-/- mice. 

The reduction in STAT5 activity observed in both erythroblasts and erythroid 

progenitors (CFU-Es) indicate the critical role of Fyn in modulating the temporary 

dynamics of EPO-induced erythroid maturation (Fig. 3). In Fyn-/- mice, failure in 

response to recombinant EPO supports the proposed role for Fyn in EPO signaling 

cascade (Fig 4a).  

To understand the role of Fyn in stress erythropoiesis, we exposed Fyn-/- mice to either 

PHZ or Doxorubicin. Fyn-/- mice display high sensitivity to both PHZ and Doxorubicin 

with a blunt response of erythropoiesis to these stressful conditions (Fig. 4b, 5). In Fyn-

/- mice, increased oxidation results in Jak2 overoxidation leading to increased activity 

of Akt that is an important signal to ensure erythroid survival and maturation (Fig 

6b).23,24 Akt intersects several pathways such as Nrf2, a redox sensitive transcriptional 

factor, and mTOR, the gatekeeper of autophagy.15,16 Fyn-/- mice display activation of 

Nrf2, resulting in up-regulation of ARE genes and the related encoded proteins for 

antioxidant systems (Fig. 6, 7). However, the up-regulation of these cytoprotectors is 

unable to counteract oxidation of Fyn-/- erythroblasts. In cell homeostasis, the 

prolonged oxidation might overcome autophagy, resulting in cell apoptosis.25 This 

seems to be the case of Fyn-/- erythroblasts where we found increased cell apoptosis 

(Fig. 2c). It is of note that Fyn-/- mouse erythroblasts display mTOR activation resulting 

in impairment of autophagy as supported by accumulation of p62. Since p62 is an 
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autophagy adaptor important in protein quality control system, the accumulation of 

p62 is generally used as a marker of blockage of the autophagic flux.25,26 Thus, we 

propose that the absence of Fyn might result in impairment of late phase of autophagy 

during erythroid maturation (Fig. 8a). In agreement, we found a reduction in in vitro 

reticulocyte maturation with delayed lysosomal clearance and again accumulation of 

p62 in Fyn-/- mouse reticulocytes (Fig. 6b, c). Our group has recently reported an 

impairment of autophagy with accumulation of p62 in both erythroblasts and red cells 

from patient with chorea acanthocytosis. This, further support the crucial role of 

autophagy in erythropoiesis.27 Since no change in mitochondrial clearance was found 

in Fyn-/- in vitro maturating reticulocytes, we might reasonably exclude alteration of 

mitophagy in Fyn-/- mice. This is also supported by similar Nix protein content observed 

in in vitro maturating reticulocytes from both mouse strains (data not shown).25,27 

We carried out the revision of the literature on pharmacologic activators of autophagy 

and erythropoiesis. (Table 4). 

 

 

Table 4. Studies on the effects of Rapamycin on erythropoiesis and diseased red cells 

 Main results Ref. 

Rapamycin  
(10 mg/kg) in 
C57B6/2J mice 
for 3 days 

-Relative low impact on erythroid growth and proliferation: 
reduction in the reticulocyte count, without changes in 
reticulocyte volume or Hb content per cell; 
-No significant effect on bone marrow adult erythropoiesis: 
slight reduction of early erythroid precursors without major 
differences; 
-No significant alterations on mTORC1 downstream signaling 
pathway in reticulocytes: weak reduction in S6 kinase (S6K) 
activity, a widely used marker for mTOR activation; 
-Co-administration of PHZ (50 mg/kg) and Rapamycin delays 
the response to stress erythropoiesis: 

• Increased mortality of mice after 6 days following PHZ; 

• Delayed release of stress reticulocytes and decrease in 
spleen size compared to PHZ-treated mice; 

• Reduced early erythroid precursors proliferation in the 
spleen, suggesting a critical role of mTORC1 signaling 
during stress erythropoiesis;  

• No major changes in EPO levels. 
 

[4] 

MLN0128,  
a selective mTOR 
inhibitor  

-Profound effects on erythroid growth and proliferation:  

• decrease in reticulocytes number, volume and 
hemoglobin content; 

[4] 
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(2 mg/kg) in 
C57B6/2J mice 
for 3 days 

• Decreased proliferation of early erythroid precursors 
with increased late stage erythroblasts; 

• Complete block of mTOR downstream signaling 
pathway; 

-Co-administration of PHZ (50 mg/kg) is lethal after 3 days of 
treatment: critical role of mTORC 1/2 signaling in response to 
acute hemolytic anemia. 

 INK128,  
dual mTORC1/2 
inhibitor 
(1 mg/kg) in 
humanized sickle 
cell mice for 3 
weeks 

-In SCD mice: 
Increased erythrocytes count, Hct and Hb content; 

        Reduced reticulocytosis; 
        Markedly decreased spleen size without changes in total    
        body weight. 
 

[28] 

Sirolimus, 
selective 
mTORC1 inhibitor 
(5 mg/kg) in 
humanized sickle 
cell mice for 3 
weeks 

-In both transplanted and non-transplanted SCD mice,  

• Increased Hct and Hb, after 1 week of treatment; 

• Decreased splenomegaly; 

• Increased RBC lifespan; 

• Improved erythroid maturation; 

• Decreased iron deposition in kidney and liver; 

• Decreased stroke volume (reduced sickling/ vaso-
occlusive crisis). 

[28] 

Rapamycin,  
an mTOR 
inhibitor 
 (4 mg/kg) in 
FOXO3-/-mice for 
5 days/week for 2 
weeks 

- In FOXO3-/-mice and β-thal mice: 

• Increased Hb levels (Foxo3-/- mice and β-thal mice); 

• No major effect on total erythroblast count, but 
ameliorated terminal erythroid differentiation (β-thal 
mice);  

• Blocked cell cycle progression in immature 
erythroblasts (β-thal mice);  

• Amelioration of the β-globin gene expression (β-thal 
mice); 

• Significant reduction in EPO levels; 

[29] 

EPO: erythropoietin; mTOR: mammalian target of Rapamycin; PHZ: phenylhydrazine; Hct: hematocrit; Hb: 

hemoglobin; β-thal: β-thalassemia; SCD: sickle cell disease; RBC: red blood cell 

 

 

These results suggest that autophagy plays a key role in erythroid maturation and that 

modulation of the autophagic process might beneficially impact diseased 

erythropoiesis.4,28,29 In our model, Rapamycin administration reduces total 

erythroblasts and ameliorates cellular homeostasis by reduction of oxidation (Fig. 9a, 

b). The activation of autophagy reduces cell apoptosis as indicated by the decrease 

amount of Annexin V+ cells (Fig. 9c). The restoration of the balance between apoptosis 

and autophagy results in decreased cellular levels of p62 (Fig. 9d). Our data indicate 



56 
 

that the absence of Fyn might affect autophagic lysosomal clearance system, which is 

particularly crucial during reticulocyte maturation.  

In conclusion, we unveil the role of Fyn as a new kinase in EPO signaling cascade, 

increasing the complexity of EPO pathway, which already requires Jak2 as primary 

kinase and Lyn as additional kinase.30 In Fyn-/- mice, the overactivation of Jak2 increases 

Akt function, resulting in persistent activation of Nrf2 and impairment of autophagy by 

mTOR activation. This results in cellular dysfunction which becomes evident when Fyn-

/- mice were exposed to stressful conditions, such as PHZ or Doxorubicin. 

 

Future studies will be designed to further characterize the signaling pathways 

intersects by Fyn in normal and diseased erythropoiesis. The co-administration of 

Rapamycin with PHZ, will help us in dissecting the contribution of activated autophagy 

in response to stress erythropoiesis. In Fyn-/- mice, other more selective inhibitors of 

either mTORC1 or mTORC1/2 might be tested to better understand whether the 

beneficial effect of Rapamycin is strictly dependent on its inhibitory effect on mTORC1 

or involves other important factors in autophagy.  

Since intense or persistent oxidation might block autophagy31, we plan to treat Fyn-/- 

mice with N-Acetyl-Cysteine (NAC) as exogenous antioxidant molecule.32,33 
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A R T I C L E I N F O

Keywords:
Peroxiredoxin-2
Chronic hypoxia
Autophagy
ER stress

A B S T R A C T

Pulmonary-artery-hypertension (PAH) is a life-threatening and highly invalidating chronic disorder. Chronic
oxidation contributes to lung damage and disease progression. Peroxiredoxin-2 (Prx2) is a typical 2-cysteine
(Cys) peroxiredoxin but its role on lung homeostasis is yet to be fully defined. Here, we showed that Prx2-/- mice
displayed chronic lung inflammatory disease associated with (i) abnormal pulmonary vascular dysfunction; and
(ii) increased markers of extracellular-matrix remodeling. Hypoxia was used to induce PAH. We focused on the
early phase PAH to dissect the role of Prx2 in generation of PAH. Hypoxic Prx2-/-mice showed (i) amplified
inflammatory response combined with cytokine storm; (ii) vascular activation and dysfunction; (iii) increased
PDGF-B lung levels, as marker of extracellular-matrix deposition and remodeling; and (iv) ER stress with acti-
vation of UPR system and autophagy. Rescue experiments with in vivo the administration of fused-recombinant-
PEP-Prx2 show a reduction in pulmonary inflammatory vasculopathy and in ER stress with down-regulation of
autophagy. Thus, we propose Prx2 plays a pivotal role in the early stage of PAH as multimodal cytoprotector,
targeting oxidation, inflammatory vasculopathy and ER stress with inhibition of autophagy. Collectively, our
data indicate that Prx2 is able to interrupt the hypoxia induced vicious cycle involving oxidation-inflammation-
autophagy in the pathogenesis of PAH.

1. Introduction

Pulmonary artery hypertension (PAH) is a life threatening highly
invalidating chronic disorder [1–3]. Although in the last decade

progresses have been made in the identifications of factors involved in
its pathogenesis, much still remains to be investigated in the me-
chanism involved in the early stage of PAH [3–5]. Regardless of the
initial event, the combination of chronic inflammation and chronic
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hypoxia promote a high pro-oxidant environment, mediating disease
progression [1,2,4,6,7].

In this scenario, efficient catabolic pathways to either buildup
misfolded/unfolded proteins or to clear intracellular damaged proteins
are required [8–11]. Studies in different models of PAH have shown
that cellular response to face the accumulation of damaged proteins is
mainly through endoplasmic reticulum (ER) stress followed by the ac-
tivation of autophagy to clear damaged proteins and to reduce ER stress
[10,12,13]. Indeed, classic chaperones such as heat shock protein 90
and 70 (HSP) are upregulated in PAH, indicating the requirement of
chaperone systems to deal with the accumulation of damaged proteins
[14].

Prx2 is a typical 2-cysteine (Cys) peroxiredoxin ubiquitously ex-
pressed. Prx2 has been largely investigated in erythroid cells, where it is
able to scavenge low concentration of H2O2 without inactivation due to
over-oxidation [15]. Recently, in different cell models, Prx2 has been
also linked to chaperone activity, priming cells to better tolerate oxi-
dation [16,17]. Studies in mouse genetically lacking Prx2 (Prx2-/-) have
highlighted its protective role against LPS induced lethal shock and
acute distress syndrome (ARDS), suggesting a possible contribution of
Prx2 in inflammatory response [17–23]. In addition, in vitro and in vivo
model of ischemic/reperfusion stress highlighted the key role of Prx2 as
anti-oxidant system [24,25].

Here, we studied the role of Prx2 in development of pulmonary
hypertension in mice genetically lacking Prx2 (Prx2-/-), using hypoxic
stress to explore the early stage of early phase of pulmonary hy-
pertension. Our data collectively indicate that Prx2 plays a pivotal role
in the early phase of hypoxia induced pulmonary hypertension as anti-
oxidant system and chaperone. The administration of Prx2 fused to cell-
penetrating carrier PEP (cell penetrating peptide; PEP Prx2; [19]) (i)
reduces local and systemic inflammation; (ii) prevents vascular acti-
vation and PDGF-B up-regulation; (iii) alleviates ER stress and (i) down-
regulates autophagy activation in response to hypoxia. Thus, PEP Prx2
might represent an interesting new multimodal therapeutic option in
the early stage PAH.

2. Materials and methods

2.1. Drugs and chemicals

Details are reported in Supplemental materials and methods.

2.2. Mouse strains and design of the study

C57B6/2J mice as wildtype controls (WT) and Prx2-/- mice aged
between 4 and 6 months both male and female were used in the present
study [19,26]. The Institutional Animal Experimental Committee,
University of Verona (CIRSAL) and by the Italian Ministry of Health
approved the experimental protocols. Where indicated WT and Prx2-/-

mice were treated with 1) N-Acetyl-Cysteine (NAC) at the dosage of
100 mg/kg/d (in NaCl 0.9%, NaOH 36 mM, pH 9.4; ip) or vehicle only
for 3 weeks [19,20]; 2) PEP Prx2 (in PBS) or vehicle at the dosage of
3 mg/kg/d ip or vehicle for 4 weeks before and during hypoxia [19].
Whenever indicated, mice were exposed to hypoxia (8% oxygen for
10 h, 3 days, 7 days) (Hy) as previously described [27–29]. To collect
organs, animals were first anesthetized with isoflurane, bronch-
oalveolar lavage (BAL) was collected and then mice were euthanized.
Organs were immediately removed and divided into two and either
immediately frozen in liquid nitrogen or fixed in 10% formalin and
embedded in paraffin for histology.

2.2.1. Bronchoalveolar lavage (BAL) measurements
BAL fluids were collected and cellular contents were recovered by

centrifugation and counted by microcytometry as previously reported
[27]. Percentage of neutrophils was determined on cytospin cen-
trifugation. Remaining BAL samples were centrifuged at 1500×g for

10 min at 4 °C. The supernatant fluids were used for determination of
total protein content [27].

2.3. Lung molecular analysis

2.3.1. Lung histology
Multiple (at least five) three-micron whole mount sections were

obtained for each paraffin-embedded lung and stained with hematox-
ylin eosin, Masson's trichome, and May-Grünwald-Giemsa. α-smooth
muscle actin immunohistochemistry (IHC) on lungs was carried out as
previously reported [27,30]. Lung pathological analysis was carried out
by blinded pathologists as previously described [27,30]. Based on
previous reports (18, 38), the pathological criteria for lung histo-
pathology were as follows: i) Bronchus: Mucus: 0: no mucus; +: mucus
filling less than 50% of the area of the bronchus section; ++: mucus
filling more than 50% of the area of the bronchus section. (ii) In-
flammatory infiltrate density: 0: less than 5 inflammatory cells per field;
+: 5–30 inflammatory cells per field; ++ more than 30 inflammatory
cells per field. (iii) Thrombi: 0: no thrombus; + presence of a thrombus
in one field, at magnification 250.

2.3.2. Immunoblot analysis
Frozen lung and heart from each studied group were homogenized

and lysed with iced lyses buffer (LB containing: 150 mM NaCl, 25 mM
bicine, 0.1% SDS, Triton 2%, EDTA 1 mM, protease inhibitor cocktail
tablets (Roche), 1 mM Na3VO4 final concentration) then centrifuged
10 min at 4 °C at 12,000g. Proteins were quantified and analyzed by
mono-dimensional SDS polyacrylamide gel electrophoresis. Gels were
transferred to nitrocellulose membranes for immuno-blot analysis with
specific antibody. Details are reported in Supplemental materials and
methods [21,27,31–33]. Whenever indicated Prx2 dimerization was
studied in lung from PBS perfused mice containing 100 mM NEM, using
an approach similar to that reported by Kumar et al. [34].

2.3.3. RNA isolation, cDNA preparation and quantitative RT-PCR
Total RNA was extracted from tissues using Trizol reagent (Life

Technologies, Monza, Italy). Synthesis of cDNA from total RNA (1 μg)
was performed using Super Script II First Strand kits (Life
Technologies). Quantitative RT-PCR (qRT- PCR) was performed using
the SYBR-green method, following standard protocols with an Applied
Biosystems ABI PRISM 7900HT Sequence Detection system. Relative
gene expression was calculated using the 2(-ΔCt) method, where ΔCt
indicates the differences in the mean Ct between selected genes and the
internal control (GAPDH). qRT-PCR primers for each gene were de-
signed with Primer Express 2.0 (Life Technologies) (primer sequences
are reported in Table 1S) [27,30].

2.4. MDA assay

MDA was determined as previously reported [35].

2.5. Evaluation of right ventricular hypertrophy and echocardiography
measurements

Hearts were fixed with 10% formaldehyde for 24 h. The right ven-
tricular (RV) free wall was separated from the left ventricular with
septum (LV+S) under dissection microscope. RV and LV + S were
separately weighed and used to calculate the ratios RV/(LV + S)/body
weight [36]. Transthoracic echocardiography was performed with a
Vevo 2100 echocardiograph (Visual Sonics, Toronto, Canada) equipped
with a 22–55 MHz transducer (MicroScan Transducers, MS500D) as
previously reported [27,37].

2.6. Statistical analysis

Data were analyzed using either t-test or the 2-way analysis of
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variance (ANOVA) for repeated measures between the mice of various
genotypes. A difference with a P value less than 0.05 was considered
significant.

3. Results

3.1. Mice genetically lacking Prx2 show lung inflammation, increased
pulmonary vascular activation and extracellular-matrix remodeling

Lung histopathologic analysis showed increased peribronchial
edema without changes in the number of mucus cells in Prx2-/- mice
under normoxia compared to wildtype animals (Fig. 1A, upper panel).
The systematic study for α-smooth cells expression showed a staining in
broken line only on bronchial sections of Prx2-/- mice, suggesting an
initial pulmonary vessel muscularization (Fig. 1A, lower panel). In-
creased bronchoalveolar lavage (BAL) levels of proteins and of total
leukocytes were detected in Prx2-/- mice compared to wildtype, in-
dicating an abnormal pulmonary vascular leakage (Fig. 1SA).

In Prx2-/- mice, we observed increased active form of NF-kB and
Nrf2, two redox related transcriptional factors, compared to wildtype
animal (Fig. 1B).

This was associated with increased lung MDA levels (Fig. 1SB) and
up-regulation of the pro-inflammatory cytokines IL-6, IL-1b and IL10
that are known targets of NF-kB (Fig. 1C). We confirmed the increased
expression of IL-6 by immunoblot analysis in lung from Prx2-/- mice
compared to wildtype animals (Fig. 1D). The activation of Nrf2 in the
absence of Prx2 was supported by the up-regulation of Nrf2 related
systems such as HO-1, a vascular and lung cytoprotector, and SOD-1, a
potent anti-oxidant enzyme supports (Fig. 1D) [38]. We also observed
higher levels of (i) endothelin-1 (ET-1), the most potent vasoconstric-
tive and broncho-constrictive cytokine [30]; (ii) VCAM-1, a marker of
vascular endothelial activation [27]; and (iii) PDGF-B, a known factor
involved in lung extra-cellular matrix remodeling [39] (Fig. 1D).

These data link the absence of Prx2 with persistent lung in-
flammation, endothelial vascular activation, and extracellular matrix
remodeling.

Fig. 1. The absence of Prx2 promotes lung inflammation, increased pulmonary vascular activation and extra-matrix remodeling markers. A. Comparison of Prx2-/- with WT
mice shows an increased peribronchial edema in Prx2-/- mice (upper panel Hematoxylin Eosin ×250) and deposits of alpha actin in vascular walls in Prx2-/- mice (lower panel
Immunohistochemistry using anti alpha actin antibody × 600). B. Immunoblot analysis with specific antibodies against phospho-NF-kB (P-NF-kB), NF-kB, phospho-Nrf2 (P-Nrf2) and
Nrf2 of lung from wildtype (WT) and Prx2-/- mice under normoxic condition. One representative gel from six with similar results is presented. Right panel. Densitometric analysis (DU:
Density Units) of immunoblots is shown as means± SD (n = 6); *p<0.05 compared to wildtype. C. IL-6, IL-1b, IL-10 mRNA levels in lung tissues (normalized to GADPH) from WT and
Prx2-/- mice. * p< 0.05 (WT vs Prx2-/-). Each sample (WT; Prx2-/-) is a pool from 5 mice. Representative of three independent experiments. D. Immunoblot analysis with specific
antibodies against IL-6, heme-oxygenase 1 (HO-1), endothelin-1 (ET-1), superoxide dismutase (SOD-1), vascular cell adhesion molecule-1 (VCAM-1), platelet derived growth factor-B
(PDGF-B) and peroxiredoxin-2 (Prx2) of lung from wildtype (WT) and Prx2-/- mice under normoxic condition. One representative gel from six with similar results is presented. Right
panel. Relative quantification of immunoreactivity (DU: Density Units) of IL-6, HO-1, SOD1, ET-1, VCAM1, PDGF-B and Prx2 of lung from wildtype (WT) and Prx2-/- mice under
normoxic condition. Data are shown as means± SD (n = 6); *p< 0.05 compared to wildtype.
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3.2. Prolonged hypoxia promotes the development of early stage pulmonary
hypertension in Prx2-/- mice

Based on our previous report, showing the development of early
stage PAH in a mouse model for sickle cell disease but not in wildtype
mice [36], we exposed both mouse strains to hypoxia (Hy) 8% oxygen
for 7 days. As shown in Fig. 2A, hypoxia induced sparse inflammatory
cell infiltrate with some peribronchial edema in Prx2-/- mice. On the
bronchial epithelium there was no significant change in the number of
mucus cells in both mouse strains. On vascular sections, no thrombus
was found in any of the mouse groups. The systematic study for α-actin
deposition revealed the presence of almost linear staining around
bronchial and vascular sections in Prx2-/- mice (Fig. 2A, lower panel).
While, α-actin depositions were sparse in hypoxic wildtype mice.

We evaluated the presence of RV hypertrophy in both mouse strains
exposed to 7days hypoxia. In Prx2-/- mice, we observed a slight but
significant increase in RV/(LV + S) ratio (normoxia: 0.21±0.03 vs
hypoxia 0.34±0.05; n = 6, P<0.05), whereas no changes were ob-
served in wildtype mice in agreement with our previous report [36].

This was associated with a significant increase in mitral valve decel-
eration time and a reduction in pulmonary acceleration time/ ejection
time ratio (Fig. 2B), indicating early diastolic dysfunction and increased
right ventricular systolic pressure in Prx2-/- mice. In addition, we found
hypoxia induced increased expression of SOD-1 in heart from both
mouse strains, but to a higher extent in Prx2-/- mice (Fig. 1SD). Hypoxia
induced up-regulation of (i) VCAM-1 and ICAM-1; and (ii) atrial na-
triuretic peptide (ANP) was also observed in both mouse strains
(Fig. 1SD).

Our findings are consistent with the development of early stage of
PAH promoted by severe oxidation and amplified inflammatory re-
sponse in Prx2-/- mice exposed to 7-days hypoxia.

3.3. Prx2 plays an important role as cytoprotective system against hypoxia
induced PAH

In order to follow-up the generation of PAH in Prx2-/- mice, we
studied both mouse strains at different time intervals between 0 to 7-
days hypoxia to identify the optimal window-time to analyze

Fig. 2. In Prx2-/- mice, hypoxia induces early stage pulmonary hypertension and is associated with activation of redox-related transcriptional factors. A. Comparison of Prx2-/-

with WT mice shows a sparse inflammatory infiltrate and an increased peribronchial edema in Prx2-/- mice (upper panel Hematoxylin Eosin ×250) and deposits of alpha actin in vascular
walls in Prx2-/- mice (lower panel Immunohistochemistry using anti alpha actin antibody × 600). B. Representative images of mitral inflow pattern recorded by Doppler echo imaging in
wildtype (WT) and Prx2-/- mice under hypoxia as in Fig. 1A. Lower panels. Average mitral valve deceleration time (left panel) and pulmonary acceleration time (PAT) to ejection time
(ET) ratio (right panel). *p<0.05 and **p< 0.01 WT vs Prx2-/- mice; #p<0.05 and ##p<0.01 hypoxia vs basal by one-way ANOVA followed by Newman-Keuls Multiple Comparison
test. The black dashed lines have been added to the graph to favor visual comparison between the white bars vs the black bars. C. Immunoblot analysis with specific antibodies against
peroxiredoxin-2 (Prx2) and thioredoxin-reductase 1 (Trdx) of lung wildtype (WT) and Prx2-/- mice under normoxia (N) exposed to hypoxia) for 10 h (10 h), 3 days (3D), 7 days (7D). One
representative gel from six with similar results is presented. Densitometric analysis of immunoblots is shown in Fig. 2SA. D. Immunoblot analysis with specific antibodies against phospho-
NF-kB (P-NF-kB), NF-kB, phospho-Nrf2 (P-Nrf2) and Nrf2 of lung wildtype (WT) and Prx2-/- mice under normoxia (N) and exposed to hypoxia (Hy) for 10 h (10 h), 3 days (3D), 7 days
(7D). One representative gel from six with similar results is presented. Densitometric analysis of immunoblots is shown in Fig. 2SB.
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mechanism(s) involved in development of PAH. BAL protein and leu-
kocyte count were significantly increased in Prx2-/- mice during hy-
poxia at 10 h, 3 days and 7 days compared to wildtype animals (data
not shown).

Hypoxia markedly increased Prx2 expression in lung from wildtype
mice at 10 h, 3 days and 7 days of exposure (Fig. 2C; Fig. 2SA). This was
associated with time dependent increased expression of thioredoxin-
reductase, a Prx2 repairing system (Trdx; Fig. 2C; Fig. 2SA). The
modulation of Trdx expression during hypoxia even in the absence of
Prx2, may be possible related to the fact that Trdx is part of different
NADPH-dependent pathways [19,40].

In Prx2-/- mice exposed to hypoxia, we observed a rapid and sus-
tained activation of Nrf2 in response to hypoxia, while there was a
reduction in activation of NF-kB (Fig. 2D, 2SB). Otherwise, wildtype
mice showed an early response of Nrf2 at 10 and 3-h hypoxia, partially
overlapping the activation of NF-kB observed at 3 and 7 days hypoxia
(Figs. 2D, 2SB). These data suggest that Nrf2 might be a precocious
back-up mechanism in response to hypoxia, which is early activated in
both mouse strains, but to higher extent in mice genetically lacking
Prx2.

Since pro-inflammatory cytokines are modulated by oxidation and
participates to the development of PAH [3,41,42], we evaluated IL1b
and IL6 expression in lung from both mouse strains during hypoxia. In
Prx2-/- mice, IL-1b mRNA levels were significantly increased at 3 days
of hypoxia compared to wildtype animals, which displayed increased
IL-1b expression only at 7-days hypoxia (Fig. 3A). In Prx2-/- mice, lung
IL-6 mRNA expression was significantly upregulated at 3 days of hy-
poxia followed by a decreased at 7 days of hypoxia to levels still higher
than those observed in wildtype mice (Fig. 3B). These data support an
earlier and amplified inflammatory response in Prx2-/- mice in response
to hypoxia compared to wildtype animals.

We then evaluated markers of pulmonary vascular remodeling (ET-
1, PDGF-B, ANP) and vascular endothelial activation (VCAM-1 and
ICAM-1). As shown in Fig. 3C, ET-1 expression was increased in both
mouse strains but to a higher extent in Prx2-/- mice compared to
wildtype; while PDGF-B levels increased earlier, reaching higher and
constant levels in Prx2-/- mice compared to wildtype during hypoxia.
VCAM-1 and ICAM-1 expression was similarly increased in both mouse
strains at 7 days hypoxia (Fig. 3D). Whereas, ANP levels were higher in
Prx2-/- mice than in wildtype animals exposed to prolonged hypoxia
(Fig. 3D).

Collectively, these data indicate that the absence of Prx2 accelerates
vascular activation and extra-cellular matrix remodeling, amplifying
inflammatory response and oxidation during hypoxia.

3.4. The absence of Prx2 is associated with endoplasmic reticulum (ER)
stress and up-regulation of ATF6

Studies in different models of PAH have shown that hypoxia and/or
PDGF-B and /or ET-1 induce severe proteins damage, which promotes
endoplasmic reticulum stress (ER), triggering unfolded protein response
(UPR) system [10,11,13,43]. When the accumulation of damaged pro-
teins exceeds the ER capacity, ER stress leads to activation of autophagy
as adaptive mechanism to clear accumulated misfolded/unfolded pro-
teins [11,44]. UPR system is characterized by 3 branches: IRE, PERK
and ATF6, this latter has been reported to be mainly involved in PAH
[12,45]. As shown in Fig. 4A, ATF6, Chop and sXbp1 were up-regulated
in lung from Prx2-/- mice under normoxia compared to wildtype ani-
mals. Whereas, GADD34 was downregulated in Prx2-/- mice compared
to wildtype animals (Fig. 4A). In response to hypoxia, we observed
dynamic changes of the main UPR systems: (i) ATF6; (ii) GADD34 and
Chop, related to PERK and Xbp1, a component of IRE branch [10]. As
shown in Fig. 4B, increased mRNA levels of both Chop and Xbp1 were
observed at 10 h in Prx2-/- mice, while GADD34 was still significantly
increased at 3-days hypoxia compared to normoxic Prx2-/- animals. In
chronically exposed Prx2-/- mice, ATF6 and sXbp1 mRNA levels were

again higher than in normoxia Prx2-/- animals (Fig. 4B). Wildtype an-
imals show an early signs of ER stress with up-regulation of ATF6 and
Xbp1 at 10-h hypoxia, with no major change in chronic hypoxia
(Fig. 4B). It is of note that in lung from wildtype mice, we found Prx2
organized in multimers, possible reflecting the acquisition of chaperone
like function (data not shown) [31,46,47].

These data indicate that the absence of Prx2 triggers ER stress
during hypoxia, contributing to the early appearance of PAH in Prx2-/-

mice.

3.5. PEP Prx2 treatment rescues prolonged hypoxia induced heart and lung
inflammatory vasculopathy and prevents ER stress

To address the question whether Prx2 plays a role in lung chronic
inflammatory disease, we firstly evaluated the impact of recombinant
fusion protein PEP Prx2 (1.5 mg/kg/day ip; 3 weeks) to both mouse
strains under room air condition. In normoxic Prx2-/- mice, PEP Prx2
treatment (i) prevented Nrf2 and NF-kB activation (Fig. 3SA); (ii) re-
duced HO-1 protein expression (Fig. 3SB); and (iii) decreased the levels
of ET-1, VCAM-1 and PDGF-B (Fig. 3SB). No major changes were ob-
served in wildtype animals (Fig. 3SA, 3SB). In order to evaluate whe-
ther the effects of PEP Prx2 treatment were specific of Prx2 or related to
a general anti-oxidant effect, we treated both mouse strains with NAC
(100 mg/kg/day for 3 weeks), a known anti-oxidant agent previously
used in other in vitro and in vivomodels of PAH [6,48]. No changes were
present in the levels of Nfr2 and NF-kB activation in Prx2-/- mice treated
with NAC, suggesting that the effects of PEP Prx2 are peculiar of Prx2
and not only related to its general antioxidant effects (data not shown).

In Prx2-/- mice exposed to 7 days hypoxia, PEP Prx2 treatment
significantly reduced the hypoxia mediated diastolic dysfunction and
ameliorated RVSP, as suggested by the increased in PAT/ET ratio
(Fig. 4C, 4SA). In agreement, in heart from PEP Prx2 treated Prx2-/-

mice exposed to 7 days hypoxia, we found a reduction of ANP ex-
pression as well as of markers of vascular endothelial activation
(Fig. 4D). This was associated with a decrease in levels of SOD-1 and in
oxidation of proteins from heart of hypoxic Prx2-/- mice treated with
PEP Prx2 (Fig. 4SB). We found similar evidences of the beneficial effects
of PEP Prx2 on lung from Prx2-/- mice exposed to prolonged hypoxia. As
shown in Fig. 5A, PEP Prx2 promoted a significant reduction in chronic
hypoxia induced increase of ANP, VCAM-1, ICAM-1 and PDGF-B levels
compared to vehicle treated Prx2-/- animals. In addition, PEP Prx2 de-
creased the hypoxia induced ATF6 expression, suggesting a possible
role of Prx2 as chaperone in agreement with the reduced expression of
classic chaperone HSP70 and 90 (Fig. 5B).

To better understand the role of Prx2 in development of PAH, we
chose to further study Prx2-/- mice at day 3 of hypoxia. This represents
the turning point in the imbalance between oxidation/anti-oxidant
activities and the activation of cellular defense mechanisms against
cytotoxic effects of accumulation of damage proteins. Indeed, we found
a significant increase in the amount of Prx2 dimers in lung from wild-
type after 3 days hypoxia compared to normoxic wildtype animals
(Fig. 4SC), supporting the role of Prx2 as H2O2 sensor generated during
hypoxia as previously shown in other models [34,49].

3.6. In Prx2-/- mice, PEP Prx2 prevents the hypoxia induced oxidative stress
and reduces inflammatory vascular activation and extracellular matrix
remodeling

PEP Prx2 administration prevented the hypoxia induced increased
in BAL protein and leukocyte content in both mouse strains (Fig. 4SD).
This was associated with a marked reduction in protein oxidation state
in both mouse strains exposed to 3 days hypoxia and treated with PEP
Prx2, supporting the local anti-oxidant effect of exogenous PEP Prx2
treatment during hypoxia stress (Fig. 5C). In agreement, we found that
PEP Prx2 administration prevented the hypoxia induced Nrf2 and NF-
kB activation in both mouse strains (Fig. 5D, 5SA). This was paralleled
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by the reduction in HO-1, IL-6, ET-1, VCAM-1 and PDGF-B (Fig. 6A).
These data suggest that PEP Prx2 treatment during hypoxia is able

to (i) decrease local pulmonary inflammation and oxidation, (ii) reduce
systemic inflammatory response; (iii) beneficially affect hypoxia ab-
normalities in pulmonary vascular leakage; and (iv) prevent hypoxia
activation of redox-sensitive transcriptional factors Nrf2 and NF-kB.

3.7. PEP Prx2 alleviates ER stress and down-regulates autophagy in Prx2-/-

mice exposed to hypoxia

As shown in Fig. 6B, PEP Prx2 significantly down-regulated G-
ADD34 in lung from Prx2-/- mice compared to vehicle treated animals.
This was associated with a marked decrease in HSP70 and 90 expres-
sion in lung from both mouse strains exposed to 3 days hypoxia and
treated with PEP Prx2 (Fig. 6C). This is agreement with previous reports
on preventing PAH development by blocking ER stress with exogenous
chemical chaperones [12].

Since a link between ER stress and activation of autophagy has been
proposed to deal the accumulation of damaged proteins [10,44], we
evaluated key elements of autophagy machinery and the effects of PEP
Prx2 treatment in both mouse strains at 3 days hypoxia. Based on re-
vision of the literature, we chose to analyze the expression of (i) au-
tophagy related proteins ULk1 that is required for initiation of autop-
hagy; (ii) LC3 I/II, a coordinator of phagosomal membranes and (iii)
p62, a key cargo protein and component of inclusion bodies; and (iv)
pro-caspase 3/caspase 3, involved in digestion of damaged proteins
[9,50–52]. As shown in Fig. 7A, normoxic Prx2-/- mice showed in-
creased LC3-II formation associated with increased expression of Ulk1
and p62 compared to wildtype mice. This was associated with higher
expression of pro-caspase 3/caspase 3, indicating an activation of au-
tophagy to clear intracellular oxidative damaged proteins in Prx2-/-

mice. In both mouse strains, hypoxia markedly activated autophagy as
supported by increased LC3I/II expression, consumption of Ulk1 and
reduction of p62, suggesting a clearance of p62 positive inclusion

Fig. 3. In Prx2-/- mice, hypoxia is associated with amplified inflammatory response, vascular activation and increased expression of PDGF-B, a marker of extracellular matrix
remodeling. A-B. IL-1b (A) and IL-6 (B) mRNA levels in lung tissues (normalized to GADPH) wildtype (WT) and Prx2-/- mice under normoxia (N) and exposed to hypoxia for 10 h (10 h),
3 days (3D), 7 days (7D). *p< 0.05 compared to wildtype; ^ p value< 0.05 compared to normoxic mice. Each sample is a pool from 5 mice. Representative of three independent
experiments. C. Upper panel. Immunoblot analysis with specific antibodies against endothelin-1 (ET-1) and platelet derived growth factor-B (PDGF-B) of lung from wildtype (WT) and
Prx2-/- mice under normoxia (N) and exposed to hypoxia for 10 h (10 h), 3 days (3D), 7 days (7D). One representative gel from six with similar results is presented. Lower panel. Relative
quantification of immunoreactivity (DU: Density Units) of ET-1 and PDGF-B in lung from wildtype (WT) and Prx2-/- mice under normoxia (N) and exposed to hypoxia for 10 h (10 h), 3
days (3D), 7 days (7D). Data are shown as means± SD (n= 6). *p<0.05 compared to wildtype; ^ p< 0.05 compared to normoxic mice. The grey area highlights the changes in the ET-1
and PDGF-B expression in the mouse strains at 3 days hypoxia. D. Upper panel. Immunoblot analysis with specific antibodies against atrial natriuretic peptide (ANP), vascular adhesion
molecule -1 (VCAM-1) and intracellular adhesion-molecule- 1 (ICAM-1) of lung from wildtype (WT) and Prx2-/- mice under normoxia (lane 1 and 2) and exposed to 7 days (7D) hypoxia.
One representative gel from six with similar results is presented. Lower panel. Relative quantification (DU: Density Units) of immunoreactivity of ANP, VCAM-1, ICAM-1 in lung from
wildtype (WT) and Prx2-/- mice under normoxia and exposed to 7 days (7D) hypoxia. Data are shown as means± SD (n = 6); *p< 0.05 compared to wildtype; ^ p< 0.05 compared to
normoxic mice.
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bodies containing damaged proteins (Fig. 7A). It is of note that the pro-
caspase/caspase 3 ratio was also increased in both mouse models ex-
posed to hypoxia, but to higher extent in Prx2-/- mice compared to
wildtype (Fig. 7A).

As a proof of concept that Prx2 is important in the crossroad be-
tween hypoxia induced oxidation and autophagy, we evaluated the
effects of PEP Prx2 treatment on autophagy in mice exposed to 3 days
hypoxia. As shown in Fig. 7A, PEP Prx2 administration rescued the
hypoxia induced activation of autophagy. These data indicate that Prx2
acts as multimodal cytoprotective system and is important to prevent
the development of PAH.

4. Discussion

Here, we firstly show the novel role of Prx2 as lung multimodal
cytoprotector against hypoxia induced PAH. Our data also indicate that
Prx2 is required in management of the physiologic oxidation in lung
under room air condition. In fact, normoxic Prx2-/- mice show we lung
chronic inflammatory vasculopathy and vascular dysfunction, asso-
ciated with activation of extracellular matrix remodeling. This is in
agreement with previous studies in mouse models genetically lacking
other anti-oxidant systems such as SOD-1, which show increased sus-
ceptibility to both acute and chronic lung injury [53–55].

Fig. 4. Hypoxia induces ER stress in Prx2-/- mice and PEP Prx2 administration prevents the hypoxia induced diastolic dysfunction with reduction of inflammatory vascu-
lopathy. A-B. ATF6, CHOP, GADD34, sXBP1 mRNA levels in lung tissues wildtype (WT) and Prx2-/- mice under normoxia (N) *p< 0.05 compared to wildtype. Each sample is a pool from
5 mice. Representative of three independent experiments (A). ATF6, CHOP, GADD34, sXBP1 mRNA levels in lung tissues (normalized to GADPH) wildtype (WT) and Prx2-/- mice exposed
to hypoxia for 10 h (10 h), 3 days (3D), 7 days (7D). Each sample is a pool from 5 mice. (B) ATF6 *p<0.05 for WT mice 10 h vs 3D; 10 h vs 7D. ATF6 *p< 0.05 for Prx2-/- mice 10 h vs
3D; ^ p< 0.05 for WT mice 7D vs Prx2-/- mice 7D. CHOP *p<0.05 for WT mice 10 h vs 3D; 10 h vs 7D. CHOP *p<0.05 for Prx2-/- mice 10 h vs 3D; 10 h vs 7D; ^ p< 0.05 for WT mice
10 h vs Prx2-/- mice 10 h. GADD34 *p<0.05 for WT mice 10 h vs 3D; 10 h vs 7D. GADD34 *p<0.05 for Prx2-/- mice 10 h vs 3D. sXbp1 *p< 0.05 for WT mice 10 h vs 3D; 10 h vs 7D. ^
p<0.05 for WT mice 7D vs Prx2-/- mice 3D and 7D. sXbp1 *p< 0.05 for Prx2-/- mice 10 h vs 3D. ^ p< 0.05 for WT mice 7D vs Prx2-/- mice 7D. C. Average mitral valve deceleration time
(left panel) and pulmonary acceleration time (PAT) to ejection time (ET) ratio (right panel); *p< 0.05 vehicle treated Prx2-/- mice vs PEP Prx2 treated Prx2-/- mice; by one-way ANOVA
followed by Newman-Keuls Multiple Comparison test. The black dashed lines have been added to the graph to favor visual comparison between the white bars vs the black bars.
Representative images of mitral inflow pattern recorded by Doppler echo imaging in Prx2-/- mice treated with PEP Prx2 are shown in Fig. 4SA. D. Immunoblot analysis with specific
antibodies against atrial natriuretic peptide (ANP), vascular adhesion molecule -1 (VCAM-1), intracellular adhesion-molecule- 1 (ICAM-1) and superoxide dismutase-1 (SOD-1) of heart
from Prx2-/- mice under normoxia (lane 1) and exposed to 7 days (7D) hypoxia treated with either vehicle or PEP Prx2. One representative gel from six with similar results is presented;
GAPDH was used as protein loading control. Right panel. Relative quantification of immunoreactivity (DU: Density Units) of ANP, VCAM-1, ICAM-1, SOD1 of heart from Prx2-/- mice
under normoxia and exposed to 7 days (7D) hypoxia treated with either vehicle or PEP Prx2. Data are presented as means± SD (n = 6); ^p< 0.05 compared to Prx2-/- normoxic mice; °
p<005 compared to vehicle treated mice.
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Prx2-/- mice exposed to prolonged hypoxia developed signs of PAH,
combined with inflammatory vasculopathy, sustained by high ET-1
expression and increased PDGF-B levels, as marker of extracellular
matrix remodeling. Both molecules have been reported to accelerate the
development of hypoxia induce PAH [30,39]. The increase ANP lung
and heart expression indicates an attempt of endogenous system to
induce pulmonary vaso-relaxation and to modulate lung and heart
vascular remodeling in response to hypoxia [56,57]. This was co-
ordinated by hypoxia induced activation of acute phase related tran-
scriptional factors: Nrf2 and NF-kB in both mouse strains. The early and
higher activation of Nrf2 in Prx2-/- mice compared to wildtype animals,
supports the role of Nrf2 as back-up mechanism against severe oxida-
tion in mice genetically lacking Prx2 [19]. Whereas, NF-kB seemed to
be more important in prolonged hypoxia for wildtype mice compared to
Prx2-/- animals. The rescue experiments with PEP Prx2 corroborate the
importance of Prx2 in the functional cascade activated in response to
hypoxia.

In this scenario, the absence of Prx2 favors ER stress with the ac-
tivation of autophagy, as important mechanisms to deal with the

accumulation of cytotoxic damaged proteins triggered by hypoxia and
oxidation [10,44]. ER stress activates the UPR system, which is divided
into three branches: ATF6, PERK and IRE1 [10,13]. In Prx2-/- mice,
ATF6 was up-regulated in lung from animals under normoxia and after
prolonged hypoxia. Whereas, GADD34, part of PERK branch, was early
up-regulated at 3 days hypoxia in Prx2-/- mice. This indicate that the
absence of Prx2 favors ER stress most likely due to a reduction of en-
dogenous chaperone power beside the increased expression of classic
heat shock proteins such as HSP70 and 90 in response to hypoxia. PEP
Prx2 alleviated ER stress and prevented the hypoxia induced up-reg-
ulation of UPR system, in agreement with previous report on exogenous
chemical chaperones, reducing ER stress and preventing the develop-
ment of PAH [12,13]. It is of interest to note that previous reports have
shown that PDGF-B and/or ET- activates UPR [13,43]. In our model,
the absence of Prx2 resulted in high levels of PDGF-B and ET1 that
potentiate the hypoxia induced activation of UPR system. The rescue
experiments with PEP Prx2 corroborate the pivotal role of Prx2 in lung
homeostasis.

The behavior of defensive autophagy in Prx2-/- mice exposed to

Fig. 5. PEP Prx2 administration prevents lung vascular remodeling and alleviates ER stress induced by prolonged hypoxia. A. Immunoblot analysis with specific antibodies
against atrial natriuretic peptide (ANP), vascular adhesion molecule -1 (VCAM-1), intracellular adhesion-molecule- 1 (ICAM-1) and PDGF-B of lung from Prx2-/- mice under normoxia
(lane 1) and exposed to 7 days (7D) hypoxia treated with either vehicle or PEP Prx2. One representative gel from six with similar results is presented; GAPDH was used as protein loading
control. Right panel. Relative quantification of immunoreactivity (DU: Density Units) of ANP, VCAM-1, ICAM-1 and PDGF-B in lung from Prx2-/- mice under normoxia (lane 1) and
exposed to 7 days (7D) hypoxia treated with either vehicle or PEP Prx2. Data are shown as means± SD (n = 6); ^ p< 0.05 compared to Prx2-/- normoxic mice; ° p< 0.05 compared to
Prx2-/- treated with vehicle. B. Immunoblot analysis with specific antibodies against activating transcriptional factor-6 (ATF6), heat shock protein 70 (HSP70) and heat shock protein 90
(HSP90) of lung from Prx2-/- mice under normoxia (lane 1) and exposed to 7 days (7D) hypoxia treated with either vehicle or PEP Prx2. One representative gel from six with similar results
is presented; GAPDH was used as protein loading control. Right panel. Relative quantification of immunoreactivity (DU: Density Units) of ATF6, HSP70 and HSP90. Data are shown as
means± SD (n = 6); ^ p<0.05 compared to Prx2-/- normoxic mice; ° p<0.05 compared to Prx2-/- treated with vehicle. C. The carbonylated proteins (1 μg) were detected by treating
with DNPH and blotted with anti-DNP antibody. Right panel. Quantification of band area was performed by densitometry and expressed as % of WT. The data are presented as
means± SD of at least three independent experiments *p<0.05 compared to WT; ° p< 0.05 compared to vehicle treated mice (n = 3). D. Immunoblot analysis with specific antibodies
against phospho-NF-kB (P-NF-kB), NF-kB, phospho-Nrf2 (P-Nrf2) and Nrf2 of lung from wildtype (WT) and Prx2-/- mice under normoxic condition treated with either vehicle or
penetrating peptide fusion protein peroxiredoxin-2 (PEP Prx2). One representative gel from six with similar results is presented. Densitometric analysis of immunoblots is shown in
Fig. 5SA.
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hypoxia is strongly linked to ER stress in the absence of Prx2. Treatment
with PEP Prx2 reduced ER stress and switched-off autophagy as sup-
ported by the reduction in LC3II and accumulation of p62 (Fig. 6A).
This was parallel by a decrease of hypoxia induced HSP70 and 90 ex-
pression and down-regulation of GADD34 and ATF6 levels in PEP Prx2
treated Prx2-/- mice exposed respectively to 3 and 7 days hypoxia.

Collectively, our data indicate that PEP Prx2 has a multimodal ac-
tion targeting: (i) the inflammatory response; (ii) vascular and extra-
cellular matrix remodeling, (iii) ER stress and autophagy (Fig. 7B). The
correction of the imbalance between oxidation and anti-oxidant sys-
tems combined with a chaperone like function exerted by Prx2 might
interrupt the vicious circle, established between oxidation-chronic in-
flammation with ER stress and activation of autophagy towards the
generation of PAH (Fig. 7B).

In conclusion, we have firstly highlighted the novel pivotal role of
Prx2 in preventing PAH induced by hypoxia. The high bio-complexity
of PAH requires multimodal therapeutic approaches, which simulta-
neously act on different targets involved in its pathogenesis. Our data
collectively support a rationale for considering Prx2 as novel

therapeutic option in treatment of the early phase of PAH.
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Fig. 6. PEP Prx2 administration reduces ER stress and prevents chaperone expression in the early phase of hypoxia. A. Immunoblot analysis with specific antibodies against IL-6,
endothelin-1 (ET-1), vascular cell adhesion molecule-1 (VCAM-1), platelet derived growth factor-B (PDGF-B) of lung from wildtype (WT) and Prx2-/- mice under normoxic condition
treated (lane 1–2) or exposed to hypoxia (3D) and treated with either vehicle or penetrating peptide fusion protein peroxiredoxin-2 (PEP Prx2). One representative gel from six with
similar results is presented. GAPDH was used as loading control. Right panel. Relative quantification of immunoreactivity (DU: Density Units) of IL-6, ET-1, VCAM-1 and PDGF-B. Data
are shown as means± SD (n = 6). *p< 0.05 compared to wildtype; ^p<0.05 compared to normoxic mice; °p< 005 compared to vehicle treated mice. B. GADD34 levels in lung tissues
(normalized to GADPH) wildtype (WT) and Prx2-/- mice treated with either vehicle or penetrating peptide fusion protein peroxiredoxin-2 (PEP Prx2) exposed to hypoxia for 3D *p<0.05
compared to wildtype. Each sample is a pool from 5 mice. Representative of three independent experiments. C. Immunoblot analysis with specific antibodies against heat shock protein-
70 (HSP70) and -90 (HSP90) of lung from wildtype (WT) and Prx2-/- mice under normoxic condition treated (lane 1–2) or exposed to hypoxia (3D) and treated with either vehicle or
penetrating peptide fusion protein peroxiredoxin-2 (PEP Prx2). One representative gel from six with similar results is presented. GAPDH was used as loading control. Right panel. C.
Relative quantification of immunoreactivity (DU: Density Units) of HSP70 and HSP 90. Data are shown as means± SD (n = 6); ^p< 0.05 compared to normoxic mice; °p<005
compared to vehicle treated mice.
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Supplementary data associated with this article can be found in the
online version at http://dx.doi.org/10.1016/j.freeradbiomed.2017.08.004.
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a b s t r a c t

The data presented in this article are related to the research paper
entitled “peroxiredoxin-2 plays a pivotal role as multimodal
cytoprotector in the early phase of pulmonary hypertension”
(Federti et al., 2017) [1]. Data show that the absence of peroxir-
edoxin-2 (Prx2) is associated with increased lung oxidation and
pulmonary vascular endothelial dysfunction. Prx2−/− mice dis-
played activation of the redox-sensitive transcriptional factors, NF-
kB and Nrf2, and increased expression of cytoprotective system
such as heme-oxygenase-1 (HO-1). We also noted increased
expression of both markers of vascular activation and extracellular
matrix remodeling. The administration of the recombinant fusion
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protein PEP Prx2 reduced the activation of NF-kB and Nrf2 and was
paralleled by a decrease in HO-1 and in vascular endothelial
abnormal activation. Prolonged hypoxia was used to trigger pul-
monary artery hypertension (PAH). Prx2−/− precociously devel-
oped PAH compared to wildtype animals.

& 2017 Published by Elsevier Inc. This is an open access article
under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject area Health Sciences
More specific sub-
ject area

Oxidation, peroxiredoxin-2 and pulmonary artery hypertension

Type of data Text file, Figures
How data was
acquired

Image Quant Las Mini 4000 Digital Imaging System (GE Healthcare Life
Sciences). Densitometric analyses were performed using the ImageQuant TL
software (GE Healthcare Life Sciences).

Data format Raw analyzed
Experimental
factors

C57B6/2J as wildtype mice and Prx2−/− mice

Experimental
features

Protein expression was analyzed by Western-blotting.
Oxidized proteins were revealed by the Oxyblot Protein Oxidation Detection
Kit (EMD Millipore); MDA pulmonary levels were evaluated by Oxiselect
MDA Immunoblot kit (GE Healthcare).

Data source
location

Dept. of Medicine, LURM, Policlinico GB Rossi, University of Verona and AOUI
Verona; Verona; Italy

Data accessibility Data are available with this article

Value of the data

� Our data show that the absence of Prx2 is associated with increased lung oxidation and abnormal
pulmonary vascular leakage.

� Treatment with fusion protein PEP Prx2 prevents the activation of redox related transcriptional
factors and modulates anti-oxidant systems in both wildtype and Prx2−/− mice.

� PEP Prx2 significantly reduces protein oxidation in lung from exposed to prolonged hypoxia used
to trigger pulmonary artery hypertension.

1. Data

Data show increased lung oxidation (Fig. 1A) and abnormal pulmonary vascular leakage in the
absence of Prx2 (Fig. 1B). This was paralleled by the activation of redox-sensitive transcriptional
factors NF-kB and Nrf2 in lung from Prx2−/− compared to wildtype animals (Fig. 2A). Indeed, in Prx2−/
− we observed (i) increased expression of heme-oxygenase 1 (HO-1), a Nrf2 related cytoprotective
system; (ii) markers of vascular endothelial activation such as endothelin-1 (ET-1) and vascular cell
adhesion molecule -1 (VCAM-1) and (iii) marker of extracellular matrix remodeling as the platelet
growth factor- B (PDGF-B) that has been recently function linked to the development of pulmonary
artery hypertension (Fig. 2B). To verify the role of Prx2 as important anti-oxidant system in pul-
monary homeostasis, we administrated the recombinant fusion protein PEP Prx2 at the dosage of
3 mg/Kg/d ip or vehicle for 4 weeks [1–3]. As shown in Fig. 2, PEP Prx2 significantly reduced both
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NF-kB and Nrf2 activation in lung from Prx2−/− and decreased the expression of both HO-1 and
markers of vascular endothelial activation or extracellular matrix remodeling.

Using prolonged hypoxia to trigger pulmonary artery hypertension, we observed severe lung
pathologic damage and the precocious development of pulmonary artery hypertension in Prx2−/−

mice compared to wildtype animals [4–6]. This was associated with (i) marked activation of redox-
related transcriptional factors; (ii) severe endoplasmic-reticulum stress with activation of the
unfolded protein response (UPR) system; and (iii) activation of autophagy [1].

PEP Prx2 treatment prevented the hypoxia induced protein oxidation in mice exposed to pro-
longed hypoxia (7 days; Fig. 3A) and reduced the hypoxia induced increased expression of HO-1 in
both mouse strains exposed to 3 days hypoxia (Fig. 3B). Collectively, these data indicate the important
role of Prx2 in lung homeostasis against hypoxia, a known trigger of lung injury.

2. Experimental design, materials and methods

2.1. MDA assay

MDA was determined as previously reported [7,8].

2.2. Measurement of BAL protein content

2.2.1. Bronchoalveolar lavage assay
Bronchoalveolar lavage (BAL) fluids were collected and cellular contents were recovered by cen-

trifugation and counted by microcytometry as previously reported [6,9].

Fig. 1. A. 10 μg of soluble proteins of lung homogenate were tested for MDA-protein adducts. Quantification of band area was
performed by densitometry and expressed as % of WT. The data are presented as means 7 SD of at least three independent
experiments; statistically significant differences were determined by Student's t-test. *p o 0.05. B. Upper panel. BAL protein
content fromwildtype (WT) and Prx2−/− mice under normoxic condition. Data are presented as means7 SD (n ¼ 6; *p o 0.05
compared to WT mice). Lower panel. BAL leukocyte content from wildtype (WT) and Prx2−/− mice under normoxic condition.
Data are presented as means 7 SD (n ¼ 6; *p o 0.05 compared to WT mice).
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2.2.2. Immunoblot analysis
Frozen lung from each studied group were homogenized and lysed with iced lyses buffer as

previously described [3,10,11]. Gels were transferred to nitrocellulose membranes for immuno-blot
analysis with specific antibody: anti-NFkB-phospho-S536 (93H1) (Cell Signaling Technology, Leiden,
NL); anti-NFkB p65 (C22B4) (Cell Signaling Technology, Leiden, NL); anti-Nrf2-phospho-S40 (Clone
EP1809Y, AbCam, Cambridge, UK); anti-Nrf2 (AbCam, Cambridge, UK); anti-Heme Oxygenase-1 (HO-
1) (Santa Cruz Biotechnology, Heidelberg, Germany), anti-Endothelin-1 (ET-1) (Santa Cruz Bio-
technology, Heidelberg, Germany); anti-VCAM-1 (R and D Systems, Minneapolis, MN, USA); anti-
PDGF-B (AbCam, Cambridge, UK); anti-GAPDH (Sigma Aldrich, Saint Louis, MO, USA) was used as
loading control. Images were acquired using Image Quant Las Mini 4000 Digital Imaging System (GE
Healthcare Life Sciences). Densitometric analyses were performed using the ImageQuant TL software
(GE Healthcare Life Sciences) [11].

Fig. 2. A. Immunoblot analysis with specific antibodies against phospho-Nrf2 (P-Nrf2), Nrf2 phospho-NF-kB (P-NF-kB) and NF-
kB of lung fromwildtype (WT) and Prx2−/− mice under normoxic condition. One representative gel from six with similar results
is presented. Right panel. Relative quantification of immunoreactivity (DU: Density Units) of phospho-NF-kB (P-NF-kB), NF-k,
phospho-Nrf2 (P-Nrf2) and Nrf2 of lung from wildtype (WT) and Prx2−/− mice under normoxic condition treated with either
vehicle or penetrating peptide fusion protein peroxiredoxin-2 (PEP Prx2). Data are shown as means 7 SD (n ¼ 6). *p o 0.05
compared to wildtype; °p o 005 compared to vehicle treated mice. B. Immunoblot analysis with specific antibodies against
heme-oxygenase 1 (HO-1), endothelin-1 (ET-1), vascular cell adhesion molecule-1 (VCAM-1), under normoxic condition
treated with either vehicle or penetrating peptide fusion protein peroxiredoxin-2 (PEP Prx2). One representative gel from six
with similar results is presented. Right panel. Relative quantification of immunoreactivity (DU: Density Units) of heme-oxy-
genase 1 (HO-1), endothelin-1 (ET-1), vascular cell adhesion molecule-1 (VCAM-1), platelet derived growth factor-B (PDGF-B)
of lung from wildtype (WT) and Prx2−/− mice under normoxic condition treated with either vehicle or penetrating peptide
fusion protein peroxiredoxin-2 (PEP Prx2). Data are shown as means 7 SD (n ¼ 6). *p o 0.05 compared to wildtype; °p o
0.05 compared to vehicle treated mice.
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2.2.3. Measurement of lung protein oxidation
Oxidized proteins were revealed by the Oxyblot Protein Oxidation Detection Kit (EMD Millipore).

In brief, the soluble protein extracts were derivatized to 2,4-dinitrophenylhydrazone (DNP) and 1 µg
was loaded on 12% SDS-PAGE, blotted and incubated with an anti-DNP antibody, followed by an HRP
conjugated secondary antibody. The bound activity was revealed by ECL (GE Healthcare). Oxidized
proteins were revealed by the Oxyblot Protein Oxidation Detection Kit (EMD Millipore). In brief, the
soluble protein extracts were derivatized to 2,4-dinitrophenylhydrazone (DNP) and 1 ug was loaded
on 12% SDS-PAGE, blotted and incubated with an anti-DNP antibody, followed by an HRP conjugated
secondary antibody. The bound activity was revealed by ECL (GE Healthcare) [12–14].

2.2.4. Generation of recombinant-PEP Prx2 fusion protein (PEP Prx2)
The fusion protein PEP Prx2 was generated as previously reported [2,3].
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Fig. 3. A. The carbonylated proteins (1 ug) from lung of Prx2−/− mice under normoxic condition or exposed to 7 days (7D)
hypoxia/reoxygenation stress (H/R) treated with either vehicle or penetrating peptide fusion protein peroxiredoxin-2 (PEP
Prx2) at the dosage of 3 mg/Kg/d ip or vehicle for 4 weeks before and during hypoxia (8% oxygen for 7 days). Right panel.
Quantification of band area was performed by densitometry and expressed as % of Prx2 under normoxia. The data are pre-
sented as means 7 SD of at least three independent experiments; ^p o 0.05 compared to Prx2−/− normoxic mice; °p o 005
compared to vehicle treated mice. (n ¼ 3). B. Immunoblot analysis with specific antibodies against heme-oxygenase-1 (HO-1)
of lung from wildtype (WT) and Prx2−/− mice under normoxic condition or exposed to 3 days (3D) hypoxia/reoxygenation
stress (H/R) treated with either vehicle or penetrating peptide fusion protein peroxiredoxin-2 (PEP Prx2) at the dosage of 3 mg/
Kg/d ip or vehicle for 4 weeks before and during hypoxia (8% oxygen for 3 days). One representative gel from five with similar
results is presented. Lower panel. Relative quantification of immunoreactivity (DU: Density Units) of heme-oxygenase 1 of lung
fromwildtype (WT) and Prx2−/− mice under normoxic condition or exposed to 3 days (3D) hypoxia/reoxygenation stress (H/R)
treated with either vehicle or PEP Prx2. Data are presented as means 7 SD of at least five independent experiments; *p o 0.05
compared to wildtype; ^p o 0.05 compared to Prx2−/− normoxic mice; °p o 005 compared to vehicle treated mice. (n ¼ 5).
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Erythropoiesis is a complex multistep process during which committed erythroid 

progenitors undergo terminal differentiation to produce circulating mature red cells. 

Erythroid differentiation is characterized by the production of reactive oxygen species 

(ROS) both in response to erythropoietin (EPO) and to the large amount of iron 

imported into the cells for heme biosynthesis. During erythropoiesis, ROS might 

function as second messenger by modulating intracellular signaling pathways. Fyn, 

an Src kinase, has been previously reported to participate in signaling pathways in 

response to ROS in various cell types. Here, we explore the potential contribution of 

Fyn to normal and stress erythropoiesis by studying 2-4 months-old Fyn knockout 

mouse strain (Fyn-/-) and C57B6/2J as wild-type controls. Fyn-/- mice showed a mild 

compensated microcytic anemia associated with signs of dyserythropoiesis. 

Increased ROS levels and Annexin-V+ cells were presented in all Fyn-/- erythroblast 

subpopulations compared to wild-type, suggesting a possible reduction in the 

efficiency of erythropoietin (EPO) signaling pathway in the absence of Fyn. Indeed, 

in Fyn-/- erythroblasts we observed a reduction in Tyr-phosphorylation state of EPO-

R associated with a compensatory activation of Jak2 without major change in Lyn 

activity. A reduction in STAT5 activation resulting in down-regulation of Cish, a 

known direct STAT5 target gene, was noted in Fyn-/- erythroblasts. This was 

paralleled by a reduction in GATA1 and increased HSP70 nuclear translocation 

compared to wild type, supporting a higher cellular pro-oxidant environment in the 

absence of Fyn. Using the vitro cell forming colony unit assay, we found a lower in 



 2 

CFU-E and BFU-E cells production, which once again was associated with 

decreased activation of EPO mediated cascade in the absence of Fyn. To explore 

the possible role of Fyn in stress erythropoiesis, mice were treated with either 

phenylhydrazine (PHZ) or doxorubicin (Doxo). Fyn-/- mice showed prolonged anemia 

after either PHZ or Doxo treatment with a delayed hematologic recovery compared 

to wild-type animals. When we analyzed the expression of a battery of ARE-genes 

related to oxidative response such as catalase, Gpx, heme-oxygenase 1 and 

peroxiredoxin-2, we noted up-regulated expression of these genes in sorted Fyn-/- 

erythroblasts compared to wild-type cells. In agreement, we observed increased 

activation of the redox-sensitive transcriptional factor Nrf2 targeting ARE-genes, 

whose regulation has been previously linked to Fyn. In fact, Nrf2 is switched-off by 

Fyn, ubiquitylated and delivered to the autophagosome by the p62 cargo protein. In 

Fyn-/- sorted erythroblasts, we observed (i) accumulation of p62 in large clusters; and 

(ii) reduction of Nrf2-p62 complex compared to wild-type cells. To address the 

question whether the perturbation of Nrf2-p62 system results in impairment of 

autophagy in the absence of Fyn, we used Lysotrack to explore late phases of 

autophagy. Lysosomal progression was defective in Fyn-/- reticulocytes and it was 

associated with accumulation of p62 during in vitro reticulocyte maturation. These 

data indicate that the absence of Fyn blocks the Nrf2 post-induction response to 

oxidation, resulting in impaired autophagy. To validate our working hypothesis, we 

treated Fyn-/- mice with Rapamycin, an inducer of autophagy. In Fyn-/- mice, 

Rapamycin treatment resulted in decrease dyserythropoiesis, ROS levels and 

Annexin V+ cells, associated with reduction in accumulation of p62 in Fyn-/- 

erythroblasts. As a proof of concept, we treated both mouse strains with PHZ with or 

without Rapamycin. This latter worsened PHZ induced acute anemia in wild-type 

mice but not in Fyn-/- animals.  Collectively, our data enabled us to document a novel 

role for Fyn in erythropoiesis, contributing to EPO-R activation and harmonizing the 

Nrf2-p62 adaptive cellular response against oxidation during normal and more 

importantly in stress erythropoiesis.  
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β-thalassemia (β-thal) is one of the most common monogenetic disorders 

worldwide, characterized by ineffective erythropoiesis leading to a chronic, 

debilitating anemia associated with high morbidity and mortality. Erythroid 

maturation is a dynamic process tightly regulated by complex signaling 

mechanisms, only partially described either in normal and diseased erythropoiesis. 

To investigate this issue, we carried out a high throughput kinome analysis by 

taking advantage of Kinexus array technology (http://www.kinexus.ca), in sorted 

erythroid precursors from mouse model of (Hbb3th/+) compared to wildtype animals.  

In β-thal mice, we found differential modulation of many protein kinases. Network 

computational analysis unveiled common as well as erythroid precursor-specific 

signaling mechanisms of altered erythrocyte differentiation in beta thalassemia, 

suggesting a selective perturbation in protein kinase/phosphatase balance in β-thal 

erythropoiesis.   

We reasoned that balancing kinome anomalies, by increasing phosphatome activity, 

could normalize kinome signaling pathways, thus ameliorating erythropoiesis. We 

explore the expression and function of different protein phosphatase and we found 

reduced expression and function of protein Tyr-phosphatase receptor type, gamma 

(PTPRG). To investigate PTPRG role in erythropoiesis, we exploited a novel Trojan-

fusion protein (TAT-ICD) we recently patented that delivers intracellularly the 

catalytic domain of PTPRG and up-modulates its signaling cascade, as both a 

research tool to map dysfunctional pathways and as a potential therapeutic agent. 

In β-thal mice, TAT-ICD acted on multiple abnormally activated targets identified by 

computational analysis. TAT-ICD significantly reduced the activation of (i) Jak2- 

STAT5 pathway; (ii) Bruton tyrosine kinase (BTK) that has been reported to be part 

http://www.kinexus.ca)/


of the erythropoietin cascade; (iii) Akt that is involved in TGF-b-smad signaling 

pathway. This was associated with down-regulation of Erfe and Gdf11 gene 

expression in sorted erythroblasts from TAT-ICD treated β-thal mice. Collectively, 

TAT-ICD treatment resulted in amelioration of β-thal ineffective erythropoiesis, 

evaluated by  multiple approaches, including the profile of erythroid maturation and 

the amount of Annexin-V+erythroid cells, reticulocyte count, circulating erythroblasts 

and hemolytic indices (U.S. Patent #62/109,555). The improvement of anemia was 

also associated with reduction in alpha aggregates and membrane bound 

hemichromes in circulating erythrocytes. We also found a reduction of liver and 

spleen iron accumulation in agreement with the beneficial effects on the 

hematologic phenotype.  It is of note that TAT-ICD treatment did not affect either 

peripheral leukocyte counts or spleen lymphocyte pattern.  

Our data unveil abnormalities in signal transduction pathways as new mechanism 

involved in β-thal erythropoiesis, and validate a novel, breakthrough, therapeutic 

approach to reset back to homeostatic equilibrium altered kinome in diseased 

erythropoiesis.  
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The unbalanced hemoglobin chain synthesis in beta-thalassemias leads to hemichrome-
induced damage that contributes to ineffective erythropoiesis, hemolysis and reduced red 
cell survival. Iron overload related to ineffective erythropoiesis and abnormally low 
Hepcidin (Hamp), combined with the cytotoxic effects of free heme with free-alpha-chains 
play a key role in the increased generation of reactive oxygen species (ROS) in beta 
thalassemias.[2][HA{3] Here we used a specific and selective inhibitor of the plasma 
membrane expressed glycine transporter GlyT1 (Ro4917838). Use of Ro4917838 has 
been associated with a dose-dependent decrease in MCH, Hb, soluble transferrin 
receptor, and increase in absolute reticulocytes and RBC counts in several animal 
species, attributed to reduce glycine bioavailability in erythroblasts and decreased heme 
synthesis. In rats, Ro4917838 reduces heme synthesis, and down-regulates erythroid 
transferrin receptor, but does not interfere with hepcidin regulation and systemic iron 
homeostasis (Winter et al. Exp Hematol, DOI: 10.1016/j.exphem.2016.07.003). We aimed 
to determine if reduced cellular availability of glycine in erythroblasts may reduce heme 
synthesis, and impact pathologic erythropoiesis in a mouse model for b-thalassemia. Wild-
type control (WT) C57B6/2J, and beta-thalassemia Hbbth3/+ mice were treated with either 
vehicle or Ro4917838 at dosages of 3, 10, 30 mg/kg/d administered over 4 weeks once 
daily by gavage. [6]RO4917838 administration was associated with significant 
improvements of central hallmarks of the b-thalassemia pathology. Reduced erythrocyte 
destruction was seen bydemonstrated by [8][WM{9]as significant improvements in 
erythrocyte morphology and amelioration of hemoglobin reduction in reticulocytes. We also 
observed an impressively quick reduction of the circulating erythroblast count within 1 
week of initiating treatment. This was also associated with decreased hemolysis 
biomarkers. Ro4917838 induced a significant reduction in extramedullary erythropoiesis 
and reduction in orthochromatic erythroblasts as well as insoluble alpha chain aggregates 
in circulating red cells. Red cell survival of b-thal mice treated with 30 mg/kg/day 
Ro4917838 significantly increased by more than 50%. CD71+ erythroid precursors 
significantly decreased in WT mice treated with Ro4917838 at 30 mg/kg and in b-thal mice 
at the dosage of 30 mg/kg/ d. [10]These data suggest that Ro4917838 ameliorates anemia 
in a b-thalassemia mouse model and positively affects ineffective erythropoiesis and red 
cell survival in peripheral circulation. Ro4917838 may represent a novel therapeutic 
approach for the treatment of anemia in b-thalassemia patients. [1] I do see the point for 
beta-thalassemia, but this does not apply for all thalassemias, I mean the free alpha 
chains. The ROS yes, they have in common. In this sentence it seems to be that the alpha 
chains are culprit for ROS in all thalassemias. [HA{3]I do see the point for beta-



thalassemia, but this does not apply for all thalassemias, I mean the free alpha chains. 
The ROS yes, they have in common. In this sentence it seems to be that the alpha chains 
are culprit for ROS in all thalassemias. ROS was not measured, therefore I would refrain 
mentioning it. No data is shown. [HA{5]ROS was not measured, therefore I would refrain 
mentioning it. No data is shown. I propose deletion of the PK info. Although the information 
is correct I don’t think this is the level of detail needed for the abstract. It may even be 
confusing as it is not the focus of the abstract to do a cross species comparison. [AK7]I 
propose deletion of the PK info. Although the information is correct I don’t think this is the 
level of detail needed for the abstract. It may even be confusing as it is not the focus of the 
abstract to do a cross species comparison. Dosing and dosing frequency is already 
described above, we do not need to repeat this here. [WM{9]Dosing and dosing frequency 
is already described above, we do not need to repeat this here. Was the liver expression 
determined or the serum Hepcidin levels measured? I would rephrase it if latter is the 
case. [HA{11]Was the liver expression determined or the serum Hepcidin levels 
measured? I would rephrase it if latter is the case. 
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THE PYRUVATE KINASE ACTIVATOR AG-348 IMPROVES MURINE Β-THALASSEMIC ANEMIA AND CORRECTS
INEFFECTIVE ERYTHROPOIESIS
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Paris, France, 4ceinge, University, naples, Italy

Background: β-thalassemias (β-thal) are worldwide distributed red cell disorders, characterized by ineffective
erythropoiesis and reduced red blood cell (RBC) lifespan. Increased levels of reactive oxygen species (ROS) have been
reported to play a key role in anemia of β thal, targeting both erythropoiesis and circulating RBCs. Pyruvate kinase (PK)
is an important enzyme in the glycolytic pathway, responsible for conversion of phosphoenolpyruvate to pyruvate, with
concomitant formation of the energy carrier adenosine triphosphate (ATP).  As mature erythrocytes lack mitochondria,
they rely almost exclusively on glycolysis to generate ATP, as well as the interlinked pentose phosphate pathway shunt to
generate the reducing agent NADPH.   The possible impact of PK activity on erythropoiesis is supported by evidence of
ineffective erythropoiesis in human subjects with PK deficiency as well as mouse models of PK deficiency. The PK
activator AG-348 has been evaluated in Phase I trials in healthy human subjects (NCT02149966) and is currently in
Phase II studies in PK deficiency patients (NCT02476916).  In the Phase I studies, AG-348 was shown to decrease
levels of an upstream metabolite 2,3-diphosphoglycerate (2,3-DPG) and increased levels of ATP in  whole blood,
consistent with in vivo activation of PK.
Aims: To evaluate the impact of AG-348 on anemia and ineffective erythropoiesis in a mouse model of β thal intermedia. 
Methods:  Mouse strains C57B6/2J, as wildtype (WT) controls, and Hbbth3/+, as a mouse model of β-thal intermedia, were
used. Female mice aged between 2-3 months were treated with either vehicle or AG-348 at 50 mg/kg bid by oral gavage.
Hematologic parameters, RBC indices, morphology, and reticulocyte count were evaluated at baseline, 7, 14, 21 days of
treatment. Mouse erythropoiesis was studied using the CD44/TER119 gating strategy by FACS. ROS levels and the
amount of Annexin-V+ cells were evaluated in erythroblast populations.  Liver iron accumulation was evaluated by Pearl’s
staining and expression of liver hepcidin was measured by RT-PCR.  
Results:  In Hbb3th/+ mice, 21 days of AG-348 treatment was associated with (i) a marked amelioration of
anisopoykylocytosis; (ii) significantly increased Hb levels, MCV and MCH; (iii) a significant reduction in circulating
erythroblasts (Es) and reticulocyte count; and (iv) reduction of ROS levels in circulating RBCs. In addition, AG-348
significantly decreased the amount of membrane precipitated α-globin chains and increased the amount of soluble Hb
compared to the vehicle treated Hbb3th/+ group. Consistent with these findings, we observed (i) a reduction of
extramedullar erythropoiesis as indicated by both a decrease in spleen weight/mouse weight ratio and total Es
(CD44TER119 Fsc high cells); (ii) a significant increase in pro-Es and basophilic Es, associated with reduction in
orthochromatic Es; (iii) a reduction in ROS levels of Hbb3th/+ Es and the amount of apoptotic orthochromatic Es compared
to vehicle treated Hbb3th/+ mice, suggesting an amelioration of β thal ineffective erythropoiesis.. The amelioration of
ineffective erythropoiesis was paralleled by a reduction in liver iron overload and up-regulation of hepcidin mRNA in liver
from AG-348 treated Hbb3th/+ mice.
 
Summary/Conclusion: Our data show that the PK activator AG-348 beneficially affects ineffective erythropoiesis in a
mouse model of β thal and might represent a novel therapeutic tool in clinical management of anemia in β thalassemic
syndromes.      
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Background 

Fyn is a member of the Src family of tyrosine kinases (SFKs) and shares high homology with Lyn that has been 
previously involved in erythropoiesis. Previous reports have shown that Lyn targets EPO-R/Jak2/STAT5 signaling 
pathway. Although progresses have been done in the knowledge of molecular mechanisms involved in normal and 
diseased erythropoiesis, much still remains to be investigated on signal transduction pathway during erythroid 
differentiation and maturation.  
Aims 

Functional characterization of erythropoiesis in Fyn
-/- 

mice. 
Methods 

Female aged between 2-4 months from C57BL/6J, as wild-type (WT) controls, and Fyn
-/- 

mouse strains were used. 
Phenylhydrazine (PHZ) at 40 mg/kg or Doxorubicin at 0,25mg/kg by intraperitoneal injection were used to explore 
stress erythropoiesis. Hematologic parameters, red indices and reticulocyte count were evaluated as previously 
reported (Matte A, et al. ARS, 2015). Mouse erythropoiesis was studied using the CD44/Ter119 gating strategy by 
FACS. ROS levels and the amount of Annexin V

+
 cells were also evaluated in erythroblast subpopulations. In vitro 

colony-forming unit assay was performed to obtain CFU-Es and BFU-Es. Immunoblot analysis was carried out to 
study early and late erythropoiesis.  
Results 

Fyn
-/-

 mice showed signs of dyserythropoiesis associated with increased total erythroblasts (CD44
+
TER119

+
FSC

high
), 

without extramedullar erythropoiesis. Fyn
-/-

 erythroblasts showed higher ROS levels and increased amount of 
Annexin V

+
 cells, compared to WT, indicating increase oxidative stress and cell aptoptosis. High ROS levels in 

erythroblasts have been described in β-thalassemic mouse erythroid cells as model of stress erythropoiesis. This has 
been linked with instability of GATA-1, which nuclear translocation is prevented and requires the stabilization of heat 
shock protein (HSP70-90). In Fyn

-/-
 mice, we explored GATA-1/HSP70 distribution in subcellular fractions. Fyn

-/-
 

erythroblasts showed reduction in GATA-1 nuclear translocation, compared to WT. In agreement with reduced GATA-
1 nuclear translocation, a marked decrease in β–globin chain synthesis, resulting in an imbalance in α/β globin chain 
levels, was observed in Fyn

-/-
 mice.  

To further characterize the impact of the absence of Fyn on erythropoiesis, we set up a colony-forming unit assay for 
CFU-E and BFU-E. The lack of Fyn resulted in a significant decrease in CFU-E and BFU-E colonies, suggesting an 
impairment of early erythropoiesis. Erythroid commitment and differentiation is strictly dependent on EPO-
R/Jak2/STAT5 signaling pathway. The absence of Fyn resulted in a marked decrease in STAT5 activation, supported 
by a significant down-regulation of Cish, that is strictly regulated by STAT5 function. 
Using Doxorubicin and PHZ, we found a delay in increased reticulocyte count related to either Doxorubicin or PHZ 
treatment, shedding new light on the role of Fyn in stress erythropoiesis.  
In addition, we found chronic activation of Nrf2 related to lack of its physiologic inhibitor, Fyn. Indeed, we found 
increased ARE-related genes such as heme oxygenase-1 (HO-1), which  expression seems to became independent 
from heme concentration in the absence of Fyn. In fact, bilverdin reductase (BVR) that is functionally link to Nrf2 but it 
depends from another transcriptional factor was similar to that observed in WT mice.  
Conclusions 

Our preliminary data support a novel role of Fyn as both oxidative sensor and new modulator of the EPO/STAT5 
pathway. 

 


