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Abstract

A Conditional Simple Temporal Network with Uncertainty (CSTNU) is a data
structure for representing and reasoning about time. CSTNUs incorporate
observation time-points from Conditional Simple Temporal Networks (CSTNs)
and contingent links from Simple Temporal Networks with Uncertainty (STNUs).
A CSTNU is dynamically controllable (DC) if there exists a strategy for executing
its time-points that guarantees the satisfaction of all relevant constraints no
matter how the uncertainty associated with its observation time-points and
contingent links is resolved in real time. This paper presents the first sound-
and-complete DC-checking algorithms for CSTNUs based on the propagation of
labeled constraints and demonstrates their practicality.



1 Introduction

A Conditional Simple Temporal Network with Uncertainty (CSTNU) is a data
structure for representing and reasoning about time in domains where some
constraints may apply only in certain scenarios and some events may have
uncontrollable, but bounded durations [1]. They were defined to represent
important features of, for example, (1) workflow systems used to automate
medical-treatment processes [2],[3], and (2) planning systems when uncertain
durations are present [4]. A CSTNU may include observation time-points and
contingent links. An observation time-point represents a test action whose
execution generates a truth value for a corresponding propositional letter. A
contingent link represents an action with an uncertain, but bounded duration.
Observation time-points and contingent links both involve uncertainty and
uncontrollability, since the outcomes of tests and contingent durations are not
known in advance and are not controlled by the scheduling agent; they are only
observed during execution.

CSTNUs generalize Conditional Simple Temporal Networks (CSTNs) [5] and
Simple Temporal Networks with Uncertainty (STNUs) [6]. The dynamic control-
lability (DC) property for CSTNUs generalizes the corresponding properties for
CSTNs and STNUs. In brief, a CSTNU is DC if there exists a strategy for exe-
cuting its time-points that guarantees the satisfaction of all relevant constraints
no matter how the uncertainty associated with its observation time-points and
contingent links is resolved during execution. The DC-checking problem for
CSTNUs is that of determining whether arbitrary CSTNUs are DC.

Combi et al. [7, 8] presented sound constraint-propagation rules for CSTNUs,
but did not address completeness. Following their approach, but focusing on
CSTNs, Hunsberger et al. [9] presented the first practical sound-and-complete
DC-checking algorithm for CSTNs. Recently, they presented a faster version
of their algorithm, called the π-DC-checking algorithm [10], that will be used
in this paper. In other approaches, Hunsberger and Posenato [11] presented
an algorithm that views the DC-checking problem for CSTNs as a two-player
game, searching an abstract game tree to find a “winning” strategy, guided
by Monte-Carlo Tree Search and Limited Discrepancy Search; and Cimatti et
al. [12] reduced the DC-checking problem for CSTNUs (and a broader class of
networks) to a controller-synthesis problem for timed game automata, but have
not shown whether that approach can be made practical for CSTNUs.

Contribution. This paper presents the first practical sound-and-complete DC-
checking algorithms for CSTNUs. The first algorithm reduces the DC-checking
problem for CSTNUs to the DC-checking problem for CSTNs; the second
propagates constraints directly in the input CSTNU. The paper proves that both
algorithms are correct and empirically evaluates their performance.

2 Conditional STNs with Uncertainty (CSTNUs)

This section recalls the definition of a well-defined CSTNU, which allows contin-
gent links (as in an STNU) and observation time-points (as in a CSTN). The
presentation combines and extends definitions from earlier work [13, 1, 8, 10].
The notion of a streamlined temporal network from recent work on CSTNs [14]
is then applied to CSTNUs.

1



Definition 1 (P-Labels). For a set P of propositional letters, a p-label is a
(possibly empty) conjunction of (positive or negative) literals from P . The empty
p-label is notated �. For any p-label `, and any p ∈ P , if ` |= p or ` |= ¬p, we say
that p appears in `. For p-labels, `1 and `2, if `1 |= `2, we say that `1 entails `2.
If `1 ∧ `2 is satisfiable, we say that `1 and `2 are consistent. P∗ denotes the set
of all satisfiable p-labels with literals from P.

Definition 2 (CSTNU). A Conditional Simple Temporal Network with Uncer-
tainty is a tuple, 〈T ,P, L, C,OT ,O,L〉, where:

• T is a finite set of real-valued time-points (i.e., variables with continuous
domain);

• P is a finite set of propositional letters;

• L : T → P∗ assigns p-labels to time-points;

• C is a set of labeled constraints, each of the form, (Y −X ≤ δ, `), where
X,Y ∈ T , δ ∈ R, and ` ∈ P∗;

• OT ⊆ T is a set of observation time-points;

• O : P → OT is a bijection from propositional letters to observation time-
points;

• L is a set of contingent links each of the form (A, x, y, C), where: A ∈
T , C ∈ T \OT , A 6≡ C are called the activation and contingent time-points,
respectively; L(A) = L(C); 0 < x < y <∞; and distinct contingent links
have distinct contingent time-points.

By convention, for each p ∈ P, O(p) (i.e., the observation time-point whose
execution determines the truth value for p) may be denoted by P?.

Hunsberger et al. [9] called a CSTN well-defined if the p-labels on its time-
points and constraints satisfied certain properties. CSTNs that are not well
defined turn out to be useless. Definition 3 extends well-definedness to CSTNUs.

Definition 3 (Well-defined CSTNU). A CSTNU is well defined if:

1. for each (Y −X ≤ δ, `) ∈ C, ` |= L(X) ∧ L(Y );

2. for each T ∈ T , and each p appearing in L(T ):

(a) ` |= L(P?); and

(b) (P?− T ≤ −ε, L(T )) ∈ C, for some ε > 0;

3. for each (Y −X ≤ δ, `) ∈ C, and each p appearing in `, ` |= L(P?); and

4. for each (A, x, y, C, `) ∈ L, L(A) = L(C) = `. ⇐ This property is new for
CSTNUs.

Cairo et al. [14] showed that if S is a well-defined CSTN (i.e., satisfies
properties 1–3 above), then there is a CSTN S� that

1. does not have any labels on its time-points, and

2. is DC if and only if S is DC.
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S� is called a streamlined CSTN. We say that S� is DC-equivalent to S.
This result extends easily to CSTNUs.

Definition 4 (Streamlined CSTNU). Given a well-defined CSTNU S, its stream-
lined version S� is the same as S except that its time-points have no p-labels.

It is straightforward to show that if S is a well-defined CSTNU, then S
is DC if and only if its streamlined version S� is DC. For this reason, this
paper restricts attention to streamlined CSTNUs, which simplifies definitions
and proofs of the main results with no loss of generality.

Each CSTNU has a corresponding graph whose nodes represent time-points,
and whose edges represent various kinds of temporal constraints. To accommo-
date the propositional labels (p-labels) from CSTN graphs and the alphabetic
labels (a-labels) from STNU graphs, each edge in a CSTNU graph may be anno-
tated by both p-labels and a-labels. This paper treats a-labels more rigorously
than in prior work in anticipation of how they are conjoined and modified during
constraint propagation. In particular, an a-label is liberally defined to allow
conjunctions of upper-case letters that may arise during constraint propagation.

Definition 5 (A-Letters, A-Labels). If C1, . . . , Ck are the contingent time-points
for a CSTNU S, then A = {c1, . . . , ck, C1, . . . , Ck} is the set of alphabetic letters
(a-letters) for S; c1, . . . , ck are the lower-case (LC) a-letters; and C1, . . . , Ck are
the upper-case (UC) a-letters. An a-label, ℵ, is a set of a-letters that: (1) is
empty, notated as �; (2) contains exactly one LC a-letter, notated as ci; or
(3) contains one or more UC a-letters, notated as Ci1 . . . Cim . The set of all
a-labels with letters from A is denoted by A∗. A∗u denotes the set of UC a-labels
(that is, a-labels that contain zero or more UC a-letters). For any ℵ,ℵ′ ∈ A∗u,
their conjunction is given by their union (i.e., ℵℵ′ = ℵ ∪ ℵ′).

Each edge in a CSTNU graph is annotated by a triple, called a labeled value,
that generalizes: (1) the numerical weights that appear on edges in STN graphs;
(2) the lower-case and upper-case a-letters that appear on edges in STNU graphs;
and (3) the p-labels that appear on edges in CSTN graphs. Since any pair of
time-points, X and Y , may participate in multiple constraints, an edge from X
to Y may have multiple labeled values, each of the form, 〈δi,ℵi, `i〉.

Definition 6 (Labeled values). A labeled value is a triple, 〈δ,ℵ, `〉, where: δ ∈ R,
ℵ ∈ A∗, and ` ∈ P∗.

In a CSTNU graph, an ordinary STN constraint, Y −X ≤ δ, is represented
by an edge from X to Y annotated by 〈δ, �,�〉; and a conditional constraint,
(Y −X ≤ δ, `), is represented by an edge from X to Y annotated by 〈δ, �, `〉.
Edges associated with contingent links require further introduction.

In an STNU graph, each contingent link (A, x, y, C) gives rise to two edges:
a lower-case edge from A to C labeled by c : x that represents the possibility
that the duration C −A might take on its minimum value x; and an upper-case
edge from C to A labeled by C :−y that represents that C −A might take on
its maximum value y. For a contingent link (A, x, y, C) in a CSTNU graph, the
lower-case edge is annotated by 〈x, c,�〉, and the upper-case edge by 〈−y, C,�〉.

Figure 1 shows the graph for a sample CSTNU. Z is a time-point whose value
is fixed at 0. Each time-point X is implicitly constrained to occur at or after
Z. The dashed edges represent constraints obtained by Algorithm 2, described
in section 6. It determines that this CSTNU is not DC.
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Figure 1: A CSTNU graph with 3 contingent links and one observation tp P?

3 Dynamic Controllability for CSTNUs

The truth values of propositions in a CSTNU are not known in advance; they
are incrementally revealed as observation time-points are executed. Similarly,
the durations of contingent links are only observed as the contingent time-points
happen to execute. However, a dynamic strategy for executing the time-points
in a CSTNU can react to observations and contingent executions in real time.
A viable strategy is one that guarantees that all relevant constraints will be
satisfied no matter which truth values and durations are revealed over time. A
CSTNU with a dynamic and viable strategy is dynamically controllable (DC).

Like much recent work on STNUs and CSTNs [13, 9, 15], this paper defines the
DC property for CSTNUs to allow execution strategies to react instantaneously
to observations, instead of requiring arbitrarily small delays. It generalizes the
DC semantics for STNUs [13] and the π-DC semantics for CSTNs [15].

This paper focuses on CSTNUs whose sets of contingent and observation time-
points are distinct—with no loss of generality because any contingent observation
time-point could be represented by two time-points, C and P?, constrained to
occur simultaneously. An instantaneously reactive strategy could wait for C to
execute and then execute P? at the same time.

Preliminaries. A scenario s specifies a truth value for each proposition, and
a situation ω specifies a duration for each contingent link. A drama is then a
scenario-situation pair (s, ω). The projection of a CSTNU onto a drama (s, ω)
is the STN obtained by restricting attention to the constraints whose labels are
true under s and assigning each contingent duration to the value specified by ω.

Definition 7 (Scenario/Situation/Drama/Projection). A scenario is a function,
s : P → {true, false}, that assigns a truth value to each p ∈ P. A scenario also
determines the truth value, s(`), for any p-label ` ∈ P∗. The set of all scenarios
over P is denoted by I. If (A1, x1, y1, C1), . . . , (Ak, xk, yk, Ck) are the contingent
links for a CSTNU S, then Ω = [x1, y1] × . . . × [xk, yk] is called the space of
situations for S, and any ω = (ω1, . . . , ωk) ∈ Ω is called a situation. A drama
is any pair (s, ω) ∈ I × Ω, where s ∈ I is a scenario, and ω ∈ Ω is a situation.
Let S = 〈T ,P, C,OT ,O,L〉 be any CSTNU, and (s, ω) any drama for S, where
ω = (ω1, . . . , ωk). The projection of S onto (s, ω)—denoted by Prj (S, s, ω)—is
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the STN, (T , Cs), where:1

Cs = {(Y −X ≤ δ) | ∃`, (Y −X ≤ δ, `) ∈ C and s(`) = true}
∪ {(Ci −Ai = ωi) | (Ai, xi, yi, Ci) ∈ L}

3.1 Execution strategies.

Cairo et al. [15] introduced the π-DC semantics for CSTNs that, unlike prior
versions [9, 16], does not permit a kind of circular dependency among simultane-
ous observations. A π-dynamic strategy must specify, for each scenario, both a
schedule for the time-points, and an order of dependency among the observation
time-points. This section extends the π-DC semantics to cover CSTNUs.

Definition 8 (Schedule). A schedule for a set T of time-points is a complete
mapping, ψ : T → R. For any X ∈ T , and any schedule ψ, the execution time
for X in ψ is denoted by [ψ]X . The set of schedules for T is denoted by Ψ.

Definition 9 (Order of Dependency). Let OT = {P1?, . . . , Pn?} be a set of
observation time-points. Any permutation π over (1, 2, . . . , n) effectively specifies
an order for those observation time-points. For any P? ∈ OT , let π(P?) ∈
{1, 2, ..., n} denote the (integer) position of P ? in the order determined by π; let
Πn denote the set of all permutations over (1, 2, . . . , n); and let Π = ∪n≥0Πn.

Definition 10 (π-Execution Strategy). A π-execution strategy for a CSTNU S
is a mapping, σ : (I × Ω)→ (Ψ×Π), where for each drama r = (s, ω) ∈ I × Ω,
σ(s, ω) is a pair (ψr, πr) such that ψr : T → R is a schedule, and πr ∈ Π|OT |
determines an order of dependency among the observation time-points. For
convenience, π is extended such that π(C) = 0 for each contingent time-point C,
and π(X) =∞ for each non-contingent, non-observation time-point X.

The strategy σ is viable if for each drama r = (s, ω), the schedule ψr is a
solution to the projection Prj (S, s, ω). And σ is coherent if for each drama
r = (s, ω), and any P? and Q? in OT , [ψr]P? < [ψr]Q? implies πr(P ?) < πr(Q?)
(i.e., if ψr schedules P? before Q?, then πr orders P? before Q?).

Definition 11 (π-History). Let S = 〈T ,P, C,OT ,O,L〉 be a CSTNU; σ a
π-execution strategy for S; r = (s, ω) a drama; (ψr, πr) = σ(s, ω); t ∈ R; and
d ∈ {1, 2, . . . , |OT |;∞}. Then H(t, d, s, ω, σ) = (Hs,Hω) is the π-history of
(t, d) for the drama (s, ω) and strategy σ, where:

Hs = {(p, s(p)) | P? ∈ OT , [ψr]P? ≤ t, and πr(P?) < d} ;

Hω = {(A,C, [ψr]C − [ψr]A) | ∃x, y such that (A, x, y, C) ∈ L, and [ψr]C ≤ t} .

Hs specifies the truth values of all propositions p observed before time t in the
schedule ψr, as well as those observed at time t if P? is ordered before position
d by the permutation πr. Similarly, Hω specifies the durations of all contingent
links that completed at or before time t in the schedule ψr.

Definition 12 (π-Dynamic Execution Strategy). A π-execution strategy, σ, for
a CSTNU S, is called π-dynamic if for every pair of dramas, (s1, ω1) and (s2, ω2),
and every non-contingent (but possibly observation) time-point X:

1Ci −Ai = ωi abbreviates the pair of constraints, Ci −Ai ≤ ωi and Ai − Ci ≤ −ωi.
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Rule Conditions Pre-existing and generated edges

No Case (NC): XYW
uv

u+ v

Upper Case (UC): A Y X
uC : v

C : u+ v

Lower Case (LC): (v < 0) ACX
c : uv

u+ v

Cross Case (CC): (D 6≡ C and v < 0) ACX
c : uD : v

D : u+ v

Label Removal (LR): (v ≥ −x) XAC
c : x C : v

v

Table 1: Morris-Muscettola rules for DC-checking STNUs

let: (ψ1, π1) = σ(s1, ω1) and (ψ2, π2) = σ(s2, ω2),
let: t = [ψ1]X , and d = π1(X) ∈ {1, 2, . . . , |OT |;∞}.
if: H(t, d, s1, ω1, σ) = H(t, d, s2, ω2, σ)
then: [ψ2]X = t and π2(X) = d.

Thus, if, in the drama (s1, ω1), σ executes X at time t and position d, and the
relevant histories are the same, then σ must also execute X at t and d in (s2, ω2).

Definition 13 (π-DC). A CSTNU, S, is π-dynamically controllable (π-DC) if
there exists a π-execution strategy for S that is both viable and π-dynamic.

4 DC-Checking for STNUs and CSTNs

This section summarizes the DC-checking algorithms for STNUs and CSTNs, due
to Morris and Muscettola [17] and Hunsberger and Posenato [10], respectively,
that play important roles in our new CSTNU DC-checking algorithms.

4.1 DC checking for STNUs.

Table 1 lists the five constraint-propagation rules for STNUs due to Morris and
Muscettola [17].2 The No Case rule captures standard constraint propagation
for STNs. The Upper Case rule generates a conditional constraint that guards
against the possibility that the contingent duration C − A might take on its
maximum value. It can be glossed as: “While C remains unexecuted, X must
wait at least −u− v after the execution of A.”3 The Lower Case rule generates
a constraint that guards against C −A taking on its minimum value. The Cross
Case rule generates a conditional constraint that guards against one contingent
duration C −A taking on its minimum value, while another D −X takes on its
maximum value. The Label Removal rule specifies when a conditional constraint
can have the force of an unconditional constraint.

The Morris-Muscettola DC-checking algorithm applies the rules from Table 1
in at most O(N2) rounds, at a cost of O(N3) per round. Afterward, it computes
the AllMax STN, which is the STN projection in which each contingent link
is set to its maximum duration. The AllMax STN is computed from the fully
propagated STNU by: (1) removing all lower-case edges; and (2) removing the

2Later STNU algorithms [13, 18] use techniques that do not readily transfer to CSTNUs.
3Wait constraints are only relevant if the wait time, −u− v, is positive (i.e., if u+ v < 0).
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Rule Conditions Pre-existing and Generated Edges

LP: u+ v < 0, αβ ∈ P∗ XYZ
〈u, α〉〈v, β〉

〈u+ v, αβ〉

qR0: w < 0, α ∈ Q∗ P?Z
〈w,αp̃〉
〈w,α〉

qR∗3: w < 0, α, β ∈ Q∗ P?ZY
〈w,α〉〈v, βp̃〉

〈max{v, w}, α ? β〉
In each rule, X,Y ∈ T ; P? ∈ OT ; and Z = 0. In qR0 and qR∗3 , p̃ ∈ {p,¬p, ?p};
and p does not appear in α or β (in any form).

Table 2: Constraint-propagation rules for π-DC-checking CSTNs

upper-case letters from all (original or generated) upper-case edges. If the AllMax
STN is consistent, then the STNU is declared to be DC.

4.2 π-DC checking for CSTNs.

Hunsberger et al. [9] presented a 6-rule IR-DC-checking algorithm for CSTNs
(“IR” for “instantaneous reaction”) that is based on the propagation of labeled
constraints. Hunsberger and Posenato [10] subsequently introduced a faster,
3-rule version of their algorithm, called the π-DC-checking algorithm, which is
used in this paper. The π-DC-checking algorithm generates constraints whose
labels may include q-literals, such as ?p, that indicate that a constraint need
only hold as long as the value of p is unknown.

Definition 14 (Q-literals, q-labels). If p ∈ P, then ?p is a q-literal. A q-label
is a (possibly empty) conjunction of literals and/or q-literals. Q∗ denotes the
set of all q-labels.
(For example, p(?q)¬r and (?q)(?r)t¬u are both q-labels.)

The ? operator extends ordinary conjunction to q-labels. Intuitively, if
constraint C1 is labeled by p, and constraint C2 is labeled by ¬p, then both C1

and C2 must hold as long as p is unknown, which is represented by p ? ¬p = ?p.

Definition 15 (?). The operator, ? : Q∗ ×Q∗ → Q?, is defined thusly. First,
for any p ∈ P , p?p = p and ¬p ? ¬p = ¬p; otherwise, for any p1, p2 ∈ {p,¬p, ?p},
p1 ? p2 = ?p. Next, for any `1, `2 ∈ Q∗, `1 ? `2 ∈ Q∗ denotes the conjunction
obtained by applying ? in pairwise fashion to matching literals from `1 and `2,
and conjoining any unmatched literals.
(For example: (p¬q(?r)t) ? (qr¬s) = p(?q)(?r)¬st.)

Table 2 lists the sound-and-complete propagation rules for the π-DC-checking
algorithm for CSTNs. The LP rule implements ordinary STN constraint propa-
gation except that the labels, α and β, from the parent edges are conjoined in
the generated edge. The qR0 rule stipulates that a lower-bound constraint on
P? cannot depend on the value of p determined by executing P?. The qR∗3 rule
specifies when an occurrence of p,¬p or ?p can be removed from a propositional
label. The qR∗3 rule can generate edges whose labels are q-labels.

The π-DC-checking algorithm applies the rules from Table 2 until either:
(Non-DC) a negative self-loop with a consistent label is found; or (DC) no
new edges can be generated. The completeness proof for the π-DC-checking
algorithm shows how, in positive instances, to construct the earliest-first strategy,
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whose execution decisions are based on tracking the current partial scenario and
computing effective lower bounds for unexecuted time-points. The spreading
lemma ensures that lower-bound execution constraints are already present in the
fully propagated network, courtesy of the qR0 and qR∗3 rules. The proof also
shows that upper-bound execution constraints cannot generate negative loops in
the relevant STN projection. Termination is guaranteed by inserting a global
upper bound (or horizon), whose value is h = nM , where n = |T | and M is the
maximum absolute value of any negative edge. The horizon constraints do not
affect the DC property, assuming that all edge weights are rational [14].

An upper bound for the computational complexity of the π-DC-checking
algorithm is O(M |T |(|P||T |3|P| + |T |22|P|)) = O(M |T |43|P|). Although expo-
nential in the worst case, it has been shown to be practical across a variety of
networks.

5 Algorithm 1: Reducing CSTNU-DC to CSTN-
DC

This section introduces a novel DC-checking algorithm for CSTNUs that first
transforms its input CSTNU S into a DC-equivalent CSTN S ′, and then applies
the π-DC-checking algorithm for CSTNs to S ′. The transformation for contingent
links is illustrated below. For each contingent link, (A, x, y, C), a new observation
time-point Pc? is introduced that is constrained to occur exactly x after A.
Executing Pc? generates a value for pc that determines whether the duration
C − A shall be x or y.4 If pc = true, then C must co-occur with Pc? (i.e., x
after A); otherwise, C must execute y − x after Pc? (i.e., y after A). Because
the CSTNU has been transformed into a CSTN, the horizon value h = nM can
be applied to that CSTN without affecting the DC property. The computational
cost of this CSTNU-to-CSTN transformation is O(|L|) (i.e., linear).

A Pc? C
〈x,�〉

〈−x,�〉

〈0, pc〉, 〈y − x,�〉

〈0,�〉, 〈x− y,¬pc〉

6 Algorithm 2: Propagating in the CSTNU

This section introduces a novel DC-checking algorithm for CSTNUs that propa-
gates constraints in the CSTNU using the rules in Table 3. The names of the
rules reflect the STNU and CSTN rules from Tables 1 and 2 that they generalize,
except that z! is a new kind of rule that forward propagates upper-case a-labels.
The z! rule is not needed for DC-checking STNUs, but is needed to ensure
completeness for CSTNU DC-checking. Note that z! and zqR∗3 can generate
conjunctions of upper-case a-labels, which can be handled by all of the other
rules.

To ensure termination, the algorithm inserts the same horizon constraints
seen earlier, then it exhaustively applies the rules from Table 3. It outputs “not

4Cairo and Rizzi [19] proved that restricting contingent durations to be either the minimum
or maximum value, but nothing in between, does not affect the DC property.
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Rule Conditions Pre-existing and Generated Edges

(zLp/Nc/Uc) u+ v < 0, αβ ∈ P∗ XYZ
〈v,ℵ, β〉 〈u, �, α〉

〈u+ v,ℵ, αβ〉

(zLc/Cc) x+ v < 0, C 6∈ ℵ, β ∈ P∗ ACZ
〈x, c,�〉〈v,ℵ, β〉

〈x+ v,ℵ, β〉

(z!) −y + v < 0, β ∈ P∗ Z A C
〈−y, C,�〉〈v,ℵ, β〉

〈−y + v, Cℵ, β〉

(zLr)
m = max{v, w − x}, C 6∈ ℵℵ1,
β, γ ∈ Q∗ AZY C

〈x, c,�〉〈w,ℵ1, γ〉〈v, Cℵ, β〉
〈m,ℵℵ1, β ? γ〉

(zqR0) w < 0, β ∈ Q∗, p̃ ∈ {p,¬p, ?p} P?Z
〈w,ℵ, βp̃〉
〈w,ℵ, β〉

(zqR∗3) w < 0, β, γ ∈ Q∗, p̃ ∈ {p,¬p, ?p} P?ZY
〈w,ℵ1, γ〉〈v,ℵ, βp̃〉

〈max{v, w},ℵℵ1, β ? γ〉
Z = 0; A,C,X, Y ∈ T ; C is contingent; P? ∈ OT ; ℵ,ℵ1 ∈ A∗u.

Table 3: Constraint-propagation rules for CSTNU Algorithm 2

Algorithm 2: CSTNU-DC-CH(G)

Input: G = 〈T ,P, C,OT ,O,L〉: a CSTNU instance
Output: the dynamic controllability status of G.
G′ = distance graph of G;
h = M |T |, where M is the maximum absolute value of any negative edge;

foreach X ∈ T do Add the edges, Z
〈h, �,�〉

X and X
〈0, �,�〉

Z, to G′. ;
do

G′ = zqR0(G
′); // Label Modification

G′ = zqR∗3(G
′);

G′ = zLp/Nc/Uc(G′); // Edge Generation

G′ = z!(G′);
G′ = zLc/Cc(G′);
G′ = zLr(G′);
if (any negative self-loop with a p-label has been found) then return not DC ;

while (rules continue to generate new edges);
return DC

DC” if a negative self-loop with a consistent p-label is found; otherwise, “DC”.
The pseudo-code for the algorithm is given in Algorithm 2.

We begin with relevant definitions, then prove soundness and completeness.

Definition 16 (Precedes). Let σ be a π-dynamic strategy, (s, ω) any drama,
and (ψ, π) = σ(s, ω). For any X,Y ∈ T , if either [ψ]X < [ψ]Y or ([ψ]X = [ψ]Y
and π(X) < π(Y )) then we say that X precedes Y in (ψ, π), notated X ≺πψ Y .

If X ≺πψ P?, then the decision to execute X cannot depend on the observation
of p. In addition, if X and Y are distinct time-points, and at least one of them
is an observation time-point, then X ≺πψ Y if and only if ¬(Y ≺πψ X).

Definition 17 (Satisfy a Labeled Constraint). A π-execution strategy σ satisfies
the labeled constraint (Y − X ≤ δ, `), where ` ∈ P∗, if, for each drama (s, ω),
either s(`) = false or [ψ]Y − [ψ]X ≤ δ, where (ψ, π) = σ(s, ω).

9



Definition 18 (Satisfy a Contingent Link). A π-execution strategy σ satisfies
the contingent link (Ai, xi, yi, Ci) if for each drama (s, ω), [ψ]Ci

− [ψ]Ai
= ωi.

In such a case, we also say that σ satisfies the lower-case and upper-case edges
associated with that contingent link.

From Defns. 7 and 12, it follows that a viable π-execution strategy σ must
satisfy all of the (original) labeled constraints in S (before any constraint propa-
gation) and all of the (original) lower- and upper-case edges in S.

A constraint-propagation rule is sound if whenever a viable and dynamic
σ satisfies the pre-existing edge(s) in that rule, σ must also satisfy the edge
generated by that rule. Now, the rules in Table 3 only generate edges pointing
at Z, which represent lower-bound constraints; however, the generated edges
may have a-labels with multiple UC letters and q-labels (e.g., see rules z!, zLr
and zqR∗3); and many of the rules can propagate such labeled values. Therefore,
the semantics of satisfying a lower-bound edge must accommodate such a-labels
and q-labels.

Definition 19 (Satisfy a Lower-Bound Constraint). A π-execution strategy σ
satisfies the lower-bound constraint (Y ≥ δ, 〈ℵ, β〉) represented by the edge from
Y to Z labeled by 〈−δ,ℵ, β〉, where β ∈ Q∗, and ℵ ∈ A∗u, if for each drama (s, ω),
any of the following hold, where (ψ, π) = σ(s, ω):

(1) [ψ]Y ≥ δ;

(2) for some Ci ∈ ℵ, where (Ai, xi, yi, Ci) ∈ L, ωi < yi
(i.e., the contingent link does not take on its maximum duration);

(3) for some p ∈ β, s(p) = false;

(4) for some ¬p ∈ β, s(p) = true; or

(5) for some ?p ∈ β, P? ≺πψ Y .

If (Z − Y ≤ −δ, β) (i.e., (Y ≥ δ, β)) is a labeled constraint in a CSTNU
(prior to any propagation), then β ∈ P∗, and the corresponding edge in the
graph has the labeled value 〈−δ, �, β〉. For this edge, clauses (2) and (5) in
Defn. 19 are vacuous, whence satisfaction reduces to: [ψ]Y ≥ δ or s(β) = false.
Thus, Defn. 19 reduces to Defn. 17 for original labeled edges that happen be
lower-bound edges.

More generally, it will be useful to note that for any lower-bound edge labeled
by 〈−δ,ℵ, β〉, where β ∈ P∗, satisfaction (i.e., Defn. 19) reduces to:

(i) [ψ]Y ≥ δ;

(ii) for some Ci ∈ ℵ, where (Ai, xi, yi, Ci) ∈ L, ωi < yi; or

(iii) s(β) = false. (‡)

Definition 20 (Soundness). A constraint-propagation rule is sound if whenever
a viable and π-dynamic execution strategy σ satisfies the rule’s pre-existing
(parent) edges, it also satisfies the rule’s generated (child) edge.

Note. In each of the soundness proofs below, σ is assumed to be a viable and
π-dynamic strategy that satisfies the parent edges in the rule under consideration.
Note, too, that soundness proofs for the (zqR0), (zqR∗3) and (zLp/Nc/Uc) rules
are skipped to save space.
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Lemma 1. The (zLc/Cc) rule from Table 3 is sound.

Proof. Suppose σ does not satisfy the generated edge from A to Z in rule
(zLc/Cc). Since the p-label αβ on the generated edge is consistent, it follows
from Defn. 19 that there is some drama (s, ω) such that all of the following hold:

(¬ i) [ψ]A < −u− v;

(¬ ii) for each Ci ∈ ℵ, where (Ai, xi, yi, Ci) ∈ L, ωi = yi; and

(¬ iii) s(αβ) = true.

First, (¬ iii) implies that s(α) = true and s(β) = true. Therefore, since σ
satisfies the edge from C to Z, (¬ ii) implies that [ψ]C ≥ −v. Next, let ω′ be
the same as ω except that the contingent link AC takes on its minimum value
u; and let (ψ′, π′) = σ(s, ω′). Since σ is viable, [ψ′]C − [ψ′]A = u. However,
since C 6∈ ℵ, (¬ ii) also holds for ω′; thus, [ψ′]C ≥ −v must hold. And, since
the only difference between (s, ω) and (s, ω′) is the duration of the contingent
link AC, the first difference between ψ and ψ′ must occur when C executes,
which happens after A executes. Thus, [ψ]A = [ψ′]A = [ψ′]C − u ≥ −v − u,
contradicting (¬ i).

Lemma 2. The (z!) rule from Table 3 is sound.

Proof. Let (s, ω) be any drama for which all Ci ∈ Cℵ take on their maximum
durations (i.e., ωi = yi), and such that s(αβ) = true; and let (ψ, π) = σ(s, ω).
Then s(β) = true and all Ci ∈ ℵ take on their maximum durations. Therefore,
since σ satisfies the parent edge from A to Z, it follows that [ψ]A ≥ −v. Next,
since s(α) = true, and C takes on its maximum duration, then [ψ]C = [ψ]A−u ≥
−v − u. Thus, σ satisfies the generated edge from C to Z.

Lemma 3. The (zLr) rule from Table 3 is sound.

Proof. Suppose that σ does not satisfy the generated edge in rule (zLr). Then,
by Defn. 19, there is a drama (s, ω) for which all of the following hold:

(1†) [ψ]Y < −m;

(2†) for each Ci ∈ ℵℵ1, where (Ai, xi, yi, Ci) ∈ L, [ψ]Ci
− [ψ]Ai

= yi;

(3†) for each p ∈ β ? γ, s(p) = true;

(4†) for each ¬p ∈ β ? γ, s(p) = false; and

(5†) for each ?p ∈ β ? γ, ¬(P? ≺πψ Y ).

where (ψ, π) = σ(s, ω).
Since σ is valid and satisfies the parent edge from Y to Z, one of the following

must hold, by (‡), above.

(1) [ψ]Y ≥ −v;

(2) for some C ′ ∈ Cℵ, where (A′, x′, y′, C ′) ∈ L, [ψ]C′ − [ψ]A′ < y′;

(3) for some p ∈ β, s(p) = false;

(4) for some ¬p ∈ β, s(p) = true; or
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(5) for some ?p ∈ β, P? ≺πψ Y .

Now, (1) contradicts (1†), since −v ≥ −m. (2) holding for some C ′ ∈ ℵ would
contradict (2†). And (5) contradicts (5†), since ?p ∈ β implies p ∈ β ? γ.
Therefore, either (2) holds for C ′ = C (i.e., [ψ]C − [ψ]A < y) or some instance(s)
of (3) or (4) hold.

Suppose some instance(s) of (3) or (4) hold. For (3), if p ∈ β and s(p) = false,
then to avoid contradicting (3†), we must have ?p ∈ β ?γ, which, by (5†), implies
that ¬(P? ≺πψ Y ). We can assume Y and P ? are distinct because any occurrence
of p in β could be removed by (zqR0). Therefore, Y ≺πψ P? must hold. A similar
argument applies to any occurrence of ¬p ∈ β that makes (4) hold. Thus, Y
must precede any P? for which p or ¬p makes (3) or (4) hold, respectively.

Let s′ equal s, except that: if p ∈ β makes (3) hold, then s′(p) = true; and if
¬p ∈ β makes (4) hold, then s′(p) = false. Since σ satisfies the parent edge from
Y to Z, one or more clauses from Defn. 19 must hold for (ψ′, π′) = σ(s′, ω). By
construction, (3) and (4) do not hold for s′; thus, one of the following must hold:

(1′) [ψ′]Y ≥ −v;

(2′) for some C ′ ∈ Cℵ, [ψ′]C′ − [ψ′]A′ < y′; or

(5′) for some ?p ∈ β, P? ≺π′ψ′ Y .

Now (ψ, π) and (ψ′, π′) each determine a sequence of events that can be or-
dered, first by execution time and, second, for simultaneous events, by order
of dependence. Let t′ be the earliest time at which the two sequences differ.
By construction, it must be where some [ψ]R? = [ψ′]R? = t′, but s(r) 6= s′(r).
Furthermore, Y ≺πψ R? and, thus, by the definition of t′, [ψ′]Y = [ψ]Y . But

then (1†) implies that [ψ′]Y = [ψ]Y < −m ≤ −v, whence (1′) is false. As for
(5′), if ?q ∈ β (and hence ?q ∈ β ? γ) and Q? ≺π′ψ′ Y , then [ψ′]Q? ≤ t′, whence

[ψ′]Q? = [ψ]Q? and, thus, Q? ≺πψ Y , which contradicts (5†). Thus, (2′) must
hold for some C ′ ∈ Cℵ. Since σ is valid, and the contingent durations in ω did
not change from (s, ω) to (s′, ω), (2′) and (2) are equivalent. Thus, the only
possibility is that (2) holds for C ′ = C (i.e., [ψ]C − [ψ]A < y).

Next, suppose that [ψ]Y < [ψ]C . Let ω+ be the same as ω except that
C − A = y. It is not hard to check that in the drama (s′, ω+), conditions
(1†)–(5†) all hold, but that none of the conditions (1′)–(5′) can hold. (Changing
to the situation ω+ removed the last possibility (i.e., that C−A < y).) But that
contradicts that σ satisfies the parent edge from Y to Z. Thus, [ψ]Y ≥ [ψ]C .
Next, since σ satisfies the edge from A to Z, by Defn. 19, one of these must hold:

(1A) [ψ]A ≥ −w;

(2A) ∃C ′ ∈ ℵ1, [ψ]C′ − [ψ]A′ < y′;

(3A) for some p ∈ γ, s(p) = false;

(4A) for some ¬p ∈ γ, s(p) = true; or

(5A) for some ?p ∈ γ, P? ≺πψ A.

Now, (2†) contradicts (2A). And (5†) contradicts (5A). (We can assume that A
and P ? are distinct since, otherwise, rule (zqR0) could have been used to remove
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any occurrence of P ? from γ.) And [ψ]A ≤ [ψ]C −x ≤ [ψ]Y −x < −m−x ≤ −w
implies (1A) is false. (The inequalities follow from σ being viable, from [ψ]C ≤
[ψ]Y , from (1†), and m = max{v, w − x}.) Finally, any ?p making (5A) true
would contradict (5†), since [ψ]A < [ψ]C ≤ [ψ]Y . Thus, (3A) or (4A) must hold.

Now, suppose that some p makes both (3) and (3A) true. Then p ∈ β ? γ
and s(p) = false, contradicting (3†). Thus, the letters that make (3) true, if
any, must be distinct from the letters that make (3A) true, if any. Similarly, the
letters that make (4) true must be distinct from those that make (4A) true. In
addition, any p that makes (3) true requires s(p) = false, which implies that p
cannot simultaneously make (4A) true; and any p that makes (4) true cannot
simultaneously make (3A) true. In short, the letters that make (3) or (4) true
are distinct from those that make (3A) or (4A) true. And, to avoid contradicting
(3†) or (4†), for any ±p that makes (3), (4), (3A) or (4A) true, ?p must be in
β ? γ, whence (5†) yields that Y must precede P? (i.e., Y ≺πψ P?).

So, let s′′ be the same as s′ except that if p makes either (3A) or (4A) true,
then s′′(p) 6= s′(p) = s(p). (s and s′ only differ on letters that make (3) or
(4) true. Since those letters are distinct from the letters making (3A) or (4A)
true, s and s′ must agree on all letters that make (3A) or (4A) true.) Let
(ψ′′, π′′) = σ(s′′, ω). Let t′′ be the first time when the events in (ψ′′, π′′) and
(ψ, π) differ. Then for some U?, [ψ′′]U? = [ψ]U? = t′′ and s′′(u) 6= s(u); and Y
precedes U? in (ψ′′, π′′) and (ψ, π). Therefore, [ψ′′]Y = [ψ′]Y = [ψ]Y ≤ t′′ ≤ t′.

Since σ satisfies the edge from A to Z, one or more clauses from Defn. 19
must hold for that edge. By construction, the only candidates are:

(1′′A) [ψ′′]A ≥ −w;

(2′′A) for some C ′ ∈ ℵ1, [ψ′′]A ≥ [ψ′′]C′ ; or

(5′′A) for some ?p ∈ γ, P? ≺π′′ψ′′ A.

Since all events occurring before time t′′ are executed identically by (ψ, π) and
(ψ′′, π′′), (1A) being false implies that (1′′A) must also be false, since [ψ]A <
[ψ]Y ≤ t′′. Similarly, (2A) being false implies that (2′′A) must also be false.
Finally, if ?g ∈ γ makes (5′′A) true, that contradicts (5†), since ?g ∈ β ? γ.
Therefore, Case 1 invariably yields a contradiction!

Theorem 1. The rules from Table 3 are complete.

Proof. Let S be any CSTNU; let S∗ be the CSTNU obtained by fully propagating
S using the rules from Table 3; and suppose that no negative loop with a
consistent p-label was found and, thus, the DC-checking algorithm returned DC.
Let S∗x be the AllMax CSTN obtained by deleting all LC edges from S∗ and
removing all UC a-labels from labeled values in S∗. By construction, the AllMax
CSTN must already be fully propagated. To see this, note that ignoring the
a-labels in the (zLp/Nc/Uc), zqR0 and zqR∗3 rules for CSTNUs from Table 3
reduces them to the LP, qR0 and qR∗3 rules for CSTNs from Table 2, respectively.
Since no negative loop with consistent p-label was found by the CSTNU DC-
checking algorithm, none exist in the AllMax CSTN; hence it too must be
DC.

Construct the earliest-first strategy σ for S, as follows. Let α be the current
partial scenario (CPS), initially �; and let Tu be the unexecuted time-points,
initially T \ {Z}. For each X ∈ Tu, compute its effective lower bound: ELB(X) =
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Figure 2: A negative loop in the modified (left) and original (right) CSTNU S∗

max{δ | ∃(X ≥ δ, `) ∈ S∗x, appl(`, α)}.5 Let (Λ, χ) be the first execution decision:
“if nothing happens before time Λ, then execute the time-points in χ”, where
Λ = min{ELB(X) | X ∈ Tu}; and χ = {X ∈ Tu | ELB(X) = Λ} [20].

Case 1: No contingent time-point executes before time Λ.
For each active contingent link, (Ai, xi, yi, Ci), raise its lower bound to Λ− ai,
where ai = [σ(s)]Ai

. This cannot introduce any new constraints into S∗ or
S∗x; thus, both are still DC. And, since no ELB values have changed, (Λ, χ)
is the earliest-first decision for the CSTN S∗x. Thus, inserting the relevant
execution constraints cannot introduce any negative loops into any relevant STN
projection [10]. Remove any executed time-points from Tu; update the CPS α to
include any new observations; and delete any labeled values that are inconsistent
with those observations.

Case 2: A contingent time-point C executes at some time t ≤ Λ.
Update S∗, as follows. First, replace the labeled value 〈−y, C,�〉 on the original
UC edge from C to A with 〈−δ, �,�〉, where δ = t − [σ(s)]A is the observed
duration for the link (A, x, y, C); and replace the labeled value 〈x, c,�〉 on the
original lower-case edge from A to C by 〈δ, �,�〉. The execution semantics
ensures that δ ∈ [x, y]. Second, remove any labeled value 〈w,ℵ, β〉 from S∗
for which C ∈ ℵ. Third, for each X ∈ Tu, insert a lower-bound constraint,
(X ≥ t, α). (Although ELB(X,α) ≥ Λ ≥ t, the ELB value could have been due
to a C-labeled edge which has since been removed.) Finally, fully propagate the
modified S∗ CSTNU.

Suppose a negative loop with consistent p-label is discovered in the modified
S∗. Any such loop must include the edge from A to C since, otherwise, nothing
could prevent the corresponding loop in the original S∗ from being generated,
which would be even more negative. First, consider the graphs shown in Fig. 2,
where irrelevant details (e.g., p-labels) have been omitted to improve clarity. The
lower-bound X ≥ t = a+ δ in the modified S∗ generates a negative loop only if
−f < 0. But that lower bound on X can only be new/relevant if X’s original
ELB value arose from a C-labeled edge as illustrated on the righthand side,
where −t− ε < −t. But then the (zLr) rule would have generated the labeled
value shown in blue, whence propagating backward from X to C to A to Z,
courtesy of the (zLp/Nc/Uc), (z!) and (zLc/Cc) rules, would have generated a
loop of length (−a− x) + (−f) + x+ a = −f < 0 in the original, a contradiction.
The only other possibility is if the path from C to Z in Fig. 2 included an
occurrence of the (formerly UC) edge from C to A. This case would require a
negative path from C to C, which would have made the original S∗ non-DC, a
contradiction. Thus, the modified S∗ is necessarily DC. Compute ELB values
based on the updated and propagated S∗x graph and continue recursively.

The construction of the strategy will be complete (and the network still
consistent) once all time-points have been executed.

5appl(`, α) holds if ` is applicable given the CPS α [9]. Formally, appl(`, α) holds if each p
that appears in both ` and α appears as p in both or as ¬p in both.
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zUCore: if u < 0: CYZ
〈v,ℵ, β〉 〈u, �, α〉

〈u+ v,ℵ \ C,αβ〉

Table 4: Constraint-propagation rule zUCore for CSTNU Algorithm 2

6.1 Computational complexity.

An upper bound for the computational complexity of Algorithm 2 can be derived
by adapting the original CSTN DC-checking algorithm complexity, while also
considering the presence of a-labels. The three CSTN rules may have to consider
all possible combinations of a-labels and q-labels. It is a matter of combinatoric
operation to show that the complexity of such rules dominates the final upper
bound, O(M |T |43|P|2|L|), where M is the maximum absolute value of any weight
in the graph.

7 Empirical Evaluation

This section presents an empirical comparison of the performance of the two DC-
checking algorithms introduced in this paper. Alg1-DC-Ch is our implementation
of Algorithm 1 (cf. Sect. 5), which converts CSTNUs to CSTNs; Alg2-DC-Ch
is our implementation of Algorithm 2 (cf. Sect. 6) which directly propagates
CSTNU constraints.

In Alg2-DC-Ch we added also a further rule, zUCore only for improving the
practical performance of the algorithm. Rule zUCore optimizes zLp/Nc/Uc
when some conditions are satisfied simplifying the a-label ℵ of the new generated
labeled value. In general, reducing the size of new a-label allows the algorithm
to propagate less labeled values and, therefore, to converge faster. In more
details, if a labeled value 〈v,ℵ, β〉 present in an edge heading Z has to be back
propagated to a contingent time-point C adding a negative labeled value (as
done by zLp/Nc/Uc), then the new labeled value for the edge C → Z can be
simplified removing the C letter in its a-label ℵ.

Theorem 2 (Rule zUCore). Rule zUCore is sound.

Proof. Let σ be a viable and π-dynamic strategy that satisfies the parent edges
in the (zUCore) rule, (s, ω) any drama and (ψ, π) = σ(s, ω) the determined pair
of scheduler ψ and observation time-point order π.

Let us assume that to apply zLp/Nc/Uc to the parent edges presented in
Table 4 and that letter C is present in ℵ. The resulting labeled value 〈u+ v,ℵ, αβ〉
has the a-label ℵ containing C. Soundness of zLp/Nc/Uc guarantees that σ
satisfies the constraint associated to such labeled value.

Without loss of generality, let us assume that ℵ contains only C and that α

and β are true. In this case, σ satisfies Z
〈v, C, β〉

Y because either (1) [ψ]Y ≥ −v
or (2) [ψ]Y ≥ [ψ]C and it satisfies Y

〈u, �, α〉
C because (3) [ψ]C ≥ [ψ]Y −u. Note

that since u is negative by hypothesis, C must be schedule strictly after Y .

Therefore, the constraint Z
〈u+ v, C, αβ〉

C is satisfied either conditions (1)
and (3) hold or (1) and (2) hold. The combination of conditions (1) and (3)
determines that [ψ]C ≥ −(u + v). The combination (2) and (3) is impossible
because it determines that [ψ]Y ≥ [ψ]C [ψ]C ≥ [ψ]Y − u.
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Therefore, the generated constraint is satisfied only because [ψ]C ≥ −(u+ v).
The a-label C is useless and it can be removed as done by zUCore.

Both implementations were made in Java and executed on a JVM 8 in a
Linux machine with an Intel(R) Xeon(R) E5-2637@3.5 GHz and 128GB of RAM.
The source code is freely available [21].

For testing, we built benchmarks with a structure similar to those proposed
by Hunsberger and Posenato [22]. They proposed four benchmarks, each having
DC CSTNs and non-DC CSTNs, obtained from random workflow schemata
generated by the ATAPIS toolset [23]. Each benchmark is generated from
random workflows fixing the number of activities, N , and varying the number of
observations, |P|. Here, we created three benchmarks, called B3, B4, and B5,
each having 250 DC CSTNUs and 250 non-DC CSTNUs, obtained from random
workflow schemata with (1) N = 10, (2) |P| equal to 3, 4 and 5, for B3, B4, and
B5, respectively, and converting activities as contingents links. It is possible
to show that given a workflow instances having N tasks, k XOR connectors
(which determines the number of observations), and j AND connectors, the
corresponding CSTNU instance has 5 + 2N + 6k + 6j nodes, N contingent links,
and k observations. In order to evaluate the experimental execution time on
CSTNU instances of the same order (=number of nodes), we decided to divide
each benchmark, B3, B4, and B5, in five sub-benchmarks, Bji with j = 3, 4, 5
and i = 0, 1, 2, 3, 4, each having 50 instances, generated by fixing also the number
of AND connectors to value 0, 1, 2, 3, and 4, respectively. In this way it is
possible also to evaluate the impact of the parallel components (AND connectors)
on the DC execution time.

Fig. 3 displays the average execution times of the two algorithms over all five
sub-benchmarks of B3, B4, and B5 considering only DC instances.
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Figure 3: Benchmark B3, B4, and B5

Each data point value is the sample average X50 =
∑50

i=1Xi

50 of average execu-
tion times obtained considering the fifty instances of the relative sub benchmark.
Indeed, each Xi is the average execution time obtained executing 3 times the al-
gorithm on instance having index i in the considered sub benchmark6. The error

6The determination of all values required to execute the DC checking for 24 000 times,
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bar of each data point represents 2.010 times the standard error of the mean, S50√
50

,

where S50 is the corrected sample standard deviation, S50 =

√∑50
i=1(Xi−X50)2

49 .
Value 2.010 is the Student’s t distribution value with 49 degrees of freedom.
Therefore, the error bar represents a 95% confidence interval for the average
execution time of the algorithm on instances of the considered benchmark.

From the data in Fig. 3, it emerges that the most difficult instances are related
to workflow schemata having no parallel connectors (i.e., instances belonging to
the first sub-benchmark of each main benchmark). Moreover, in benchmarks B3
and B4 the two algorithms performs better as the number of AND connector
increases. Such behavior is not confirmed in B5, where instances of the last sub
benchmark B54 result to be no the easiest instances as in B34 and B44. After a
thorough instance structure comparison of all instances in sub benchmarks Bi4,
i = 3, 4, 5, we discovered that the setting of parameters for ATAPIS random
generator determined that the generator built instances giving priority to the
layout of AND connectors before the layout of XOR ones. In this way, in all
sub benchmarks but Bi0, i = 3, 4, 5 and B54, the majority of instances have
observation time points that are almost not in sequence. In B54 this behavior
didn’t occur and the benchmark contains many instances having three-four
observation time points over five in sequence determining a greater number of
possible scenarios and, hence, a greater execution time for the checking. In any
case, benchmarks Bi0, i = 3, 4, 5 represent always the worst case for the two
algorithms.
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Figure 4: Worst Case in B3, B4, and B5 of DC instances

Fig. 4 reports only the average execution times obtained from instances of sub-
benchmark B30, B40, and B50, respectively. Such sub benchmarks represent the
worst cases for both the algorithms. Since the y-scale is logarithmic, the diagram
shows that the increment of number of propositions determines a significant
increment of execution time of the two algorithms.

Many of data points depicted in Figure 3 and Figure 4 have an error bar
of relevant size. Therefore, we studied the distribution of execution time of
the two algorithms in all benchmarks. We observed that in all benchmarks the

83.18 hours.

17



distribution is similar to the one depicted in Fig. 5 relative to Alg1-DC-Ch in the
benchmark B5. The distribution is described in terms of quartiles. Each box has
the lower edge equal to the first quartile, Q1, while the upper edge equal to the
third one, Q3. In this way, each box “contains” 50% of execution times. The line
inside each box represents the median of the sample. Horizontal lines outside a
box represent the whiskers. The lower whisker value is the smallest data value
which is larger than Q1 − 1.5IQR, where IQR is the inter-quartile-range, i.e.,
Q3 − Q1. The upper whisker is the largest data value which is smaller than
Q3 + 1.5IQR. Diamond represents the average value of the benchmark. Dots
above the upper whisker represent the data value outliers. The dot in the highest
position in each set of data represents the worst case value of the benchmark.
For each sub benchmark, outliers are around 10% of sub benchmark size (50
instances), but their value are very high with respect to the median/mean value
(the scale of execution time axis is logarithmic).
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Figure 5: Execution time distribution Alg1-DC-Ch in B4 of DC instances

Fig. 6 displays the average execution times of the two algorithms over all five
sub-benchmarks of B3, B4, and B5 considering only NOT DC instances.

The behavior of the two algorithms with respect to the sub-benchmarks
in checking NON-DC instances is similar to the one in checking DC instances.
However, for NON-DC instances the average execution time of each sub bench-
mark is higher till one order of magnitude than the average execution time of
the corresponding DC-instance sub benchmark, cf. Figure 3 vs. Figure 6. As
an example, Alg1-DC-Ch in sub benchmark B50 (benchmark with the worst
average execution time) has an average execution time of 463 ± 708 seconds
when instances are all DC and 1290 ± 1203 seconds when instances are all
NON-DC.

In summary, we can state that experimentally Algorithm Alg1-DC-Ch per-
forms better than Alg2-DC-Ch, and the improvement increases considerably as
the size of the instances increases.
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Figure 6: Benchmark B3, B4, and B5 of NON-DC instances

8 Conclusions

This paper presented the first practical, sound-and-complete DC-checking al-
gorithms for CSTNUs. The first algorithm converts an input CSTNU into
a DC-equivalent CSTN, then runs an existing CSTN algorithm. The second
directly propagates CSTNU constraints, using new rules that ensure complete-
ness. An empirical evaluation demonstrated their practicality across a variety
of benchmarks. Future work aims to determine whether adding new rules can
speed up the algorithms.
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