
Alessandro Danese

System-level functional and
extra-functional characterization
of SoCs through assertion mining

Ph.D. Thesis

January 14, 2018
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Summary. Virtual prototyping is today an essential technology for modeling, ver-
ification, and re-design of full HW/SW platforms. This allows a fast prototyping
of platforms with a higher and higher complexity, which precludes traditional ver-
ification approaches based on the static analysis of the source code. Consequently,
several technologies based on the analysis of simulation traces have proposed to ef-
ficiently validate the entire system from both the functional and extra-functional
point of view.

From the functional point of view, different approaches based on invariant and
assertion mining have been proposed in literature to validate the functionality of
a system under verification (SUV). Dynamic mining of invariants is a class of ap-
proaches to extract logic formulas with the purpose of expressing stable conditions
in the behavior of the SUV. The mined formulas represent likely invariants for the
SUV, which certainly hold on the considered traces. A large set of representative
execution traces must be analyzed to increase the probability that mined invariants
are generally true. However, this is extremely time-consuming for current sequential
approaches when long execution traces and large set of SUV’s variables are con-
sidered. Dynamic mining of assertions is instead a class of approaches to extract
temporal logic formulas with the purpose of expressing temporal relations among
the variables of a SUV. However, in most cases, existing tools can only mine asser-
tions compliant with a limited set of pre-defined templates. Furthermore, they tend
to generate a huge amount of assertions, while they still lack an effective way to
measure their coverage in terms of design behaviors. Moreover, the security vulner-
ability of a firmware running on a HW/SW platforms is becoming ever more critical
in the functional verification of a SUV. Current approaches in literature focus only
on raising an error as soon as an assertion monitoring the SUV fails. No approach
was proposed to investigate the issue that this set of assertions could be incomplete
and that different, unusual behaviors could remain not investigated.

From the extra-functional point of view of a SUV, several approaches based on
power state machines (PSMs) have been proposed for modeling and simulating the
power consumption of an IP at system-level. However, while they focus on the use
of PSMs as the underlying formalism for implementing dynamic power management
techniques of a SoC, they generally do not deal with the basic problem of how to
generate a PSM.

In this context, the thesis aims at exploiting dynamic assertion mining to improve
the current approaches for the characterization of functional and extra-functional
properties of a SoC with the final goal of providing an efficient and effective system-
level virtual prototyping environment. In detail, the presented methodologies focus
on: efficient extraction of invariants from execution traces by exploiting GP-GPU
architectures; extraction of human-readable temporal assertions by combining user-
defined assertion templates, data mining and coverage analysis; generation of asser-
tions pinpointing the unlike execution paths of a firmware to guide the analysis of
the security vulnerabilities of a SoC; and last but not least, automatic generation of
PSMs for the extra-functional characterization of the SoC.
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Introduction

Virtual prototyping is today an essential technology for modeling, verification and
re-design of full HW/SW platforms. With respect to the serialized approach, where
the majority of SW is developed and verified after the completion of the silicon de-
sign, with the risk of failing aggressive time-to-market requests, virtual prototyping
guarantees a faster development process by implementing the software part almost
in parallel with the hardware design (Fig 1.1). This enables software engineers to
start implementation months before the hardware platform is complete, and HW
designers to explore different solutions concerning functional and extra-functional
(e.g., power behavior) aspects. The core of virtual prototyping is represented by the
virtual system prototype, i.e., an electronic system level (ESL) software simulator of
the entire system, used first at the architectural level and then as a executable golden
reference model throughout the design cycle. Virtual prototyping brings several ben-
efits like, for example, efficient management of design complexity, decoupling of SW
development from the availability of the actual HW implementation, and control
of prototyping costs. More pragmatically, it enables developers to accurately and
efficiently explore different solutions with the aim of balancing design functionality,
flexibility, performance, power consumption, quality, ergonomics, schedule and cost.

A fundamental aspect of the virtual prototyping is its functional [12] and extra-
functional [9] verification. In particular, functional verification aims to answer ques-
tions such as: “is my system correctly implemented? Have I satisfied all the initial
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Fig. 1.1. The virtual prototyping approach.



10 1 Introduction

requirements?” A way to answer these questions is through assertions [19, 52, 79]
and invariant mining [32, 39]. These approaches try to infer the behavior of the
system under verification (SUV) through the analysis of simulation traces generated
with test cases. However, the current approaches for assertions mining based on
simulation traces still have several limitations:

• they tend to generate too complex assertions (i.e., composed by large expressions
involving several variables together in the same formula);

• they capture too specific situations related to the peculiarity of the actual values
stressed by the test cases rather than to the real functionality implemented in
the design;

• they are a very time consuming approach when hundreds of variables have to be
considered in execution traces with millions of simulation instants;

• an analysis of the mined assertions is impractical without a ranking procedure.

Moreover, the security vulnerability [66, 47] of the software running on the plat-
form is becoming ever more critical in the context of virtual prototyping. In this
case, verification engineers have to verify the integration between hardware compo-
nents of the system, and the software controlling the entire platform and providing
the final user with an interface for the entire system. The typical way to verify such
of intergeneration is to manually write down a set of assertions pinpointing the be-
haviors that must not occur and simulate the entire system. However, the current
approaches focus only on raising an error as soon as one of these manual assertions
is violated. No methodology was proposed in the literature to investigate the issue
that this set of assertions could be incomplete and that different, unusual behaviors
could remain not investigated.

Last but not least, we have to deal with aspects related to the extra-functional
verification of the virtual prototyping, and in particular, with the power consump-
tion. In this case, extra-functional verification wants instead to give an answer to the
question: “What will the power consumption of the system be like?” The past has
shown that modeling and estimating the energy consumption through state machines
with adaption to the environment is a promising concept. However, they focus on the
use of Power State Machines (PSM) as the underlying formalism for implementing
dynamic power management techniques and they generally do not deal with the ba-
sic problem of generating PSMs. Despite of the wide adoption of PSMs, in the most
of the works either the presence of PSMs is assumed or they are manually defined
starting from a more or less precise knowledge of the functional blocks composing
the target design [38]. Only in a few cases, automatic approaches are proposed to
create the association between PSM states and their power consumptions [9, 57],
but the identification of such states remains a manual effort.

In the context of functional and extra-functional verification of embedded sys-
tems, my research activity aims at making automatic the extraction of functional
and extra-functional properties that characterize the behaviors of a design. In par-
ticular, the proposed methodologies in this thesis rely on the concept of assertion
mining to automatically extract these aspects from the simulation traces of the
design implementation.
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1.1 Objectives of the thesis

This thesis proposes the methodologies reported in Figure 1.2 to improve the char-
acterization of functional and extra-functional properties of a SoC. In detail, the
proposed methodology focuses on:

1. Efficient extraction of invariants, namely arithmetic/logic relations character-
izing stable conditions among the variables of a design. In particular, this re-
search activity concerns the use of a GP-GPU based parallelizable approach to
make more efficient the extraction of invariants through the analysis of execu-
tion traces and that greatly reduces the execution time with respect to existing
techniques without affecting the accuracy of the analysis.

2. Extraction of temporal assertions, namely temporal-logic formulas describing
how the behavior implemented by the design evolves during the execution time.
In particular, with respect to the current approaches in literature, this second
activity aims at extracting a more compact set of human readable temporal
assertions from execution traces.

3. Automatic detection of firmware security vulnerabilities. This activity aims to
propose an innovative methodology for the automatic detection of security vul-
nerabilities of firmwares by performing assertion mining on symbolic traces gen-
erated through concolic testing of a firmware under verification.

4. The fourth activity concerns the fully-automatic generation of Power State Ma-
chines by adopting an approach that maps, through a calibration process, the
functionalities implemented by the design with its corresponding power con-
sumption.

The rest of this thesis is organized as follows:
Part I introduces some preliminary definitions used in this thesis (Chapter 2). Part
II exposes the approaches developed to improve the functional verification of a SoC
and, in detail, it is divided in three different topics: Chapter 3 and Chapter 4 are
respectively focus on invariant mining and assertion mining through the analysis
of simulation traces. The automatic detection of firmware security vulnerability is
shown in Chapter 5. Part III introduces an approach to improve the extra-functional
verification of a SoC and, in particular, it focuses on the automatic generation
of power state machines describing the power consumption of an IP (Chapter 6).
Finally, Part IV draws some conclusions and introduces future extensions of the
presented approaches while reporting the publications developed during this thesis
in Chapter 7.



!"#$%&'()*)$+,(-#.$.$*-+(

!"#$%&#'())

*+,-.$'%&#)

/01,'2!"#$%&#'()

*+,-.$'%&#)

/01(

,"2"23(

344+,%&#)

4))+#5.2(

,"2"23(

627&#"&2$(

,"2"23(

567)
7'(-$-&"4)

8+9'*-&",)

!%'2+#&8"'"$*(

9+$+:5.2(

!"#$%&'())

*+,$#-)

.#-/0()

1/2%3,*'+)

:) ;) <)=)
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Background

The following definitions are necessary to formalize the methodologies proposed in
the rest of the thesis.

Definition 2.1. Given a finite sequence of simulation instants 〈t1, ..., tn〉 and a
model M working on a set of variables V , an execution trace of M is a finite
sequence T = 〈V1, ..., Vn〉 generated by simulating M , where Vi = eval(V, ti) is the
evaluation of variables in V at simulation instant ti.

Definition 2.2. An atomic proposition is a formula that does not contain logical
connectives.

In the rest of the thesis, we will consider atomic propositions on Boolean variables,
like b = True and b = False, and between numeric or bit vector data types, like v
op u, where op is one of the followings: =, <,≤, >,≥, 6=.

Definition 2.3. A proposition is a composition of atomic propositions through
logic connectives. An atomic proposition itself is a proposition.

In this thesis, I consider the connectives ∨ and ∧ to compose propositions.

Definition 2.4. Given a finite set of atomic propositions AP , the set of Linear
Time Logic (LTL) formulas over AP can be defined, in negation normal form, as
follows:

• a ∈ AP and ¬a are LTL formulas;
• if φ1 and φ2 are LTL formulas then φ1 ∨ φ2, φ1 ∧ φ2, X φ1, φ1Uφ2 and φ1Rφ2

are LTL formulas.

The semantics of temporal operators X (next), U (until) and R (release) is:

• X φ1 holds at time t if φ1 holds at time t+ 1;
• φ1Uφ2 holds at time t if φ1 holds for all instants t′ ≥ t until φ2 holds;
• φ1Rφ2 holds at time t if φ2 holds for all instants t′ ≥ t until and including the

instant where φ1 first becomes true; if φ1 never becomes true, φ2 holds forever.

In the rest of the thesis, a composition of n X operators XX . . .X(a) is abbre-
viated in X[n](a); a formula of the kind ¬a ∨ b is represented by using the logical
implication a→ b; and, finally, G(a) is used as a shortcoming for false release a.

Definition 2.5. A temporal assertion is a composition of propositions through
temporal operators
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Invariant Mining

3.1 Introduction

Automatic invariant detection is a widely adopted strategy to analyze several as-
pects in verification of both SW programs and HW designs. Without forgetting
the importance of invariants for documentation purposes, invariant inference has
been used, for example, for test generation [22], analysis of dynamic memory con-
sumption [16], static checking [63], detection of race conditions [69], identification
of memory access violations [41], generic bug catching [74].

Independently from its use, an invariant is a logic formula that holds between a
couple (or several couples) of points, A and B, of an implementation, thus expressing
a stable condition in the behavior of the system under verification (SUV) for all its
executions. Possibly, A and B may correspond, respectively, to the beginning and
the end of the SUV execution. Different kinds of invariants, like, for example (x ≤ y),
(ax + b = y), (x 6= NULL), can be inferred by either static or dynamic analysis of
the SUV.

Static approaches, like [37, 76], are exhaustive and work well for relatively
small/medium-size implementations. In this category we can find tools such as Ax-
iom Meister [77]. The strongest point of all these approaches is the exhaustiveness
and correctness of the result. Thanks to the formal analysis, we know that the ex-
tracted invariants will be never falsified by the implemented program. Owing to the
complexity of this analysis, these approaches cannot be applied on very big and
complex programs since they will take too much time to exhaustively analyze their
behaviors for every input.

An alternative to static approaches is represented by dynamic invariant min-
ing [33] (Fig 3.1). In this case, invariants are extracted by analyzing a finite set of
execution traces obtained from the simulation of the SUV. Dynamic inference works
even if the source code is not available and it scales better for large SUVs. Indeed,
the efficiency of dynamic miners is more related to the length of analyzed execution
traces and the number of observed variables than the complexity of the SUV.

As a drawback, these techniques, being not exhaustive, can extract only likely
invariants, i.e., properties that are only statistically true during the simulation of
the SUV. Then, to increase the degree of confidence on invariants mined by dynamic
approaches, a large (and representative) set of execution traces must be analyzed
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Fig. 3.1. Dynamic mining of likely invariants.

However, for complex HW designs this could require to analyze thousands of ex-
ecution traces, including millions of clock cycles, and predicating over hundreds
of variables, which becomes an unmanageable time-consuming activity for exist-
ing approaches. Similar considerations apply also for execution traces derived from
embedded SW applications.

3.2 State of the Art

To the best of my knowledge the most effective and flexible miner of likely in-
variants is Daikon [33]. It analyses execution traces through an inference engine
that incrementally detects invariants according to templates specified in a gram-
mar configuration file. To extract invariants on specific points of a program, code
instrumentation is required. Daikon has been mainly used for documentation, de-
bugging, testing and maintainability of SW programs. A brief overview of Daikon’s
functionalities is reported at the end of the current section.

Several mining tools alternative to Daikon, and the relative uses, are referenced
in [24]. In this section, I refer to some of them in representation of different cate-
gories (commercial vs. academic, hardware vs. software-oriented). For example, from
a commercial point of view, Daikon inspired the creation of Agitator [60] that dynam-
ically extracts invariants to check their compliance with respect to manually defined
conditions. An alternative academic approach is implemented in DIDUCE [74]. It
aids programmers to identify root causes of errors on Java programs. DIDUCE’s en-
gine dynamically formulates strict invariant hypotheses obeyed by the program at
the beginning, then it gradually relaxes such hypotheses when violations are detected
to include new behaviours. Finally, in the HW domain, IODINE [40] infers likely
invariants for HW design descriptions. Inferred invariants refer to state-machine
protocols, request-acknowledge pairs, and mutual exclusion between signals.

Contrary to the approach proposed in the current thesis, previous approaches
require the instrumentation of program points which can be done only when the
source code of the SUV is available. Moreover, they cannot take advantage of massive
parallel execution on GPUs, thus they scale badly for large sets of long execution
traces.
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Daikon

Daikon analyses the execution traces through an inference engine that incrementally
detects likely invariants according to a list of templates specified in a configuration
file. The execution traces are generally obtained by running an instrumented tar-
get program that reports the values of several program points. Usually, the most
used program points on which Daikon infers invariants are global variables and
input/output arguments of methods. The internal engine of Daikon can be repre-
sented as a hierarchy of classes. Each of them implements a checker for a specific
arithmetic/logic pattern between variables. Several variables’ domains are currently
supported, e.g., Daikon can extract likely invariants for Boolean, numeric, string and
vector variables. The main idea behind the incremental invariant-inference engine
of Daikon can be summarized in three steps: 1) instantiate a candidate invariant
(i.e., a class) for each selected template given a combination of variables; 2) remove
the candidate invariants contradicted by a sample of the trace; and 3) report the
invariants that remain after processing all the samples, and after applying post-
processing filtering. In order to efficiently extract invariants many optimizations
have been implemented in Daikon. The most relevant of them are:

• If two or more variables are always equal, then any invariant that can be verified
for one of those variables is also verified for each of the other variables.

• A dynamically constant variable is one that has the same value at each observed
sample. The invariant x = a (for constant a) makes any other invariant over
(only) x redundant.

• Suppression of invariants logically implied by some set of other invariants is
adopted. For example, x > y implies x ≥ y, and 0 < x < y and z = 0 imply
xdivy = z.

With respect to the approach proposed in Daikon, in this thesis I do not need
code instrumentation, and I encode information on candidate invariants by means
of a vector-based data structure, which is more efficient and particularly suited for
parallel computing, as proved by experimental results. On the contrary, the inference
engine of Daikon cannot be easily ported on a GPU. To the best of my knowledge
this is the first implementation of an invariant miner that runs on a GPU.

3.3 Objectives

To overcome the scalability issue affecting the current state-of-the art approaches for
mining likely invariants, I present the invariant miners Turbo and Mangrove in this
thesis. By exploiting GPU architectures, both the proposed approaches can greatly
reduce the execution time for invariant mining with respect to existing techniques,
without affecting the accuracy of the analysis.

3.4 Background

This section reports preliminary definitions that are necessary to understand the
proposed approaches. Then, it presents a brief overview of the Graphic Process Unit
(GPU) architecture to create the necessary background for describing the parallel
algorithm of the proposed mining methodologies.
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Preliminary definitions

Definition 3.1. Given an execution trace T (def. 2.1), and two simulation instants
ti and tj such that 1 ≤ ti ≤ tj ≤ n, a time window TWi,j = 〈(Vi, ti), . . . , (Vj , tj)〉
is a subsequence of contiguous elements of T .

Definition 3.2. Given a set of variables V of a model M and an execution trace T
(def. 2.1), a trace invariant (T-invariant) is a logic formula over V that is true
for each simulation instant in T .

Definition 3.3. Given a set of variables V of a modelM, an execution trace T (def.
2.1), and a time window TWi,j ⊆ T , a time window invariant (TW-invariant) is
a logic formula over V that is true for each simulation instant in TWi,j.

GPU architecture

GPUs are multi-core coprocessors originally intended to speed-up computer graph-
ics. However, their highly-parallel structure makes GPUs powerful devices also for
the elaboration of general-purpose computing-intensive processes that work in par-
allel on large blocks of data. This approach is commonly known as general-purpose
computing on graphics processing units (GPGPU). The affirmation of GPGPU was
further supported by the definition of ad hoc parallel computing platforms and pro-
gramming models, like CUDA [23] and OpenCL [64].

Figure 3.2 shows the internal architecture of common GPUs. A GPU is com-
posed of various (streaming) multiprocessors, each one consisting of several process-
ing cores that execute in parallel a sequence of instructions, commonly known as
kernel-function. Multiple program threads organized in blocks are distributed and
concurrently executed by the cores of each multiprocessor. Inside a multiprocessor,
data are elaborated in SIMD (single instruction, multiple data) mode. As a con-
sequence, threads running on the same core that need to perform instructions on
different branches of a conditional statement are executed sequentially. This issue
is known as “divergence” and it is one of the most important cause of performance
degradation in GPGPU. In this computational platform, there are four types of
memories, namely shared, constant, texture and global memory. All of them, but
shared memory, are freely accessible by an external CPU, which is used to submit
kernels to the GPU. The shared memory is very fast and it is available only for
threads belonging to the same block for data sharing.

3.5 Methodology

In the next section, the methodologies Turno and Mangrove are exposed. In the
first approach (Turno), a sequential algorithm, and a parallel algorithm for GPUs
are presented to manage the mining of invariants on execution traces composed
of millions of simulation instants and tens of variables in a few seconds. The two
algorithms can work on execution traces from both HW and SW domains. Moreover,
when an exhaustive mining of invariants on different time windows, belonging to the
same execution trace, is required (for example, for extracting invariants to be used
in mining of temporal assertions [25]), the parallel version can analyze hundreds of
thousands of sub-traces on the order of minutes.
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Fig. 3.2. GPU architecture.

Fig. 3.3. Use of the invariant vector to check invariants on different time windows.

The second approach, namely Mangrove, is an alternative to the parallel version
of Turbo. Mangrove is particularly addressed in mining trace invariants, namely
invariants always holding on the entire analyzed simulation trace. As reported in the
experimental results, the overall performance of the mining algorithm are increased
up to three orders of magnitude with respect to Turbo.

3.5.1 Turbo

Methodology

This section presents a dynamic parallelizable approach for mining both trace in-
variants and time window invariants. Indeed, a T-invariant is a TW-invariant for a
time window that extends from the first to the last simulation instant of the corre-
sponding trace. Thus, to avoid burdening the discussion, in the following, I use the
term invariant when concepts apply indistinctly to T-invariants and TW-invariants.
I first propose a sequential algorithm (Section Sequential algorithm) to dynamically
infer invariants. Afterwards, I will illustrate the changes that I made to implement
an its parallel version running on a GPU (Section Parallel algorithm).

Given a set of variables V of a model M, both the sequential and parallel algo-
rithms rely on a bit vector-based data structure, called invariant vector, to efficiently
represent logic relations among the variables in V . Without lack of generality, let
TW be a time window, and I = {inv1, inv2, . . . , invn} be a list of n invariant tem-
plates representing logic relations among the set of variables V . We can track if
a m-ary logic relation corresponding to the invariant invi ∈ I, instantiated with
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a tuple1 of variables (v1, . . . , vm) ∈ V m, holds in TW by using an invariant vec-
tor, inv result, composed of n elements. Element i of inv result corresponds to
the instance invi(v1, . . . , vm) of the invariant template invi referred to the tuple
(v1, . . . , vm). Thus, inv result[i] is 0 if invi(v1, . . . , vm) is false at least once in TW ;
it is 1 otherwise.

Given a set of execution traces and a set of different time windows, this invariant
vector allows us to rapidly analyze the following conditions, for all instances of the
invariant templates:

C1: invi(v1, . . . , vm) is true for at least one time window of one execution trace. This
is necessary, for example, to prove that there exists at least one execution run
that brings the model to a stable condition where invi(v1, . . . , vm) remains true
for a given time interval.

C2: invi(v1, . . . , vm) is true for at least one time window of all the considered execu-
tion traces. This shows a stable condition occurs, where invi(v1, . . . , vm) is true,
for a given time interval at least once per each execution run of the model.

C3: invi(v1, . . . , vm) is true for at least one execution trace. This can prove that
there exist at least one run of the model where the condition invi(v1, . . . , vm)
remains always stable for the entire duration of the execution run.

C4: invi(v1, . . . , vm) is true for all the analysed execution traces. This statistically
proves invi(v1, . . . , vm) holds always each time the model is executed, assum-
ing that the analysed traces are statistically representative of all the model’s
behaviors.

For example, in Figure 3.3, the use of the invariant vector is reported for a
simple execution trace involving two numeric variables (u and v) and one Boolean
variable (z). Two time windows of length 3 are highlighted, related, respectively,
to the time intervals [0,2] and [1,3]. The six logic relations on the left and the
two on the right are used as invariant templates, respectively, for the numeric and
the Boolean variables. By considering only numeric variables (same considerations
apply for the Boolean variable), in the first time window, the invariant templates
u 6= v and u < v are true (red box), thus the corresponding invariant vector is
{0, 1, 1, 1, 0, 0}. Meanwhile, in the second time window only the invariant template
u 6= v is true (green box), thus the corresponding invariant vector is {0, 1, 0, 0, 0, 0}.
As a consequence, a global invariant vector for the numeric variables, for example
to check condition C1, is obtained by applying a bitwise OR among the invariant
vectors of each time window. Condition C2 is checked by a bitwise AND among the
global invariant vectors of different execution traces. Finally, C3 and C4 are similarly
obtained by analyzing the whole execution traces without time-window partitioning.

Sequential algorithm

In the current implementation, my algorithm can infer binary logic relations repre-
sented by the following invariant templates

• {(u = v), (u 6= v), (u < v), (u ≤ v), (u > v), (u ≥ v)} for a pair of numeric
variables (u, v);

• {(v = true), (v = false)} for a Boolean variable v.

1 The arity of the tuple depends on the arity of the invariant.
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However, the approach is independent from the specific template, thus it can be
easily extended to consider further kinds of arithmetic logic relations between two
or more variables and constants, like, for example, being in a range (a ≤ v ≤ b) and
linear relationships (v = au+ b).

The sequential approach follows the strategy implemented in Algorithm 1. Given
a set V of variables, an execution trace T and an integer l > 0, it extracts all
formulas that hold on at least one time window of length l included in T . This
thesis is intended to present the mining algorithm and its optimization for parallel
computing, while no consideration is reported on the choice of the length of the
time windows. Indeed, the selection of the value for the parameter l depends on
the desired kind of verification. For example, by varying the parameter l, different
time window intervals can be analyzed to check conditions of kind C1. On the
contrary, if l is set to the size of T , the algorithm computes invariants holding on
the whole execution trace, thus providing results for analyzing conditions of kind C3.
Finally, calling the algorithm on several execution traces, the existence of invariants
satisfying conditions C2 and C4 can be analyzed too.

Assuming the presence of two sets of invariant templates: IBool for Boolean vari-
ables and INum for numeric variables, the algorithm starts by invoking the function
invariantChecker, which calls getBoolInv and getNumInv, respectively, on each
Boolean variable u ∈ V and on each pair of numeric variables (u, v) ∈ V × V .

The execution flow of getBoolInv and getNumInv is practically the same. They
first initialize elements of the invariant vector inv result to 0 (lines 17 and 37). In
the current implementation, I have 6 invariant templates for numeric variables and
2 for Boolean variables, as described at the beginning of this section. At the end of
the algorithm execution, inv result[i] is 1 if the corresponding invariant invi holds
at least on one time window of T . Then, getBoolInv and getNumInv iterate the
following steps for each time window of length l belonging to the execution trace T
(lines 18-32 and 38-54):

1. Before starting the analysis of a new time window, another invariant vector
(local res) of the same length of inv result is initialized to 1 (lines 19 and 39).
At the end of the time window analysis, local res[i] is 1 if no counterexample has
been found for the corresponding invariant invi.

2. During the analysis of a time window, local res[i] is set to 0 as soon as a counter
example is found within the time window for invariant invi (lines 22-23 and 43-45).

3. At the end of the time window analysis, inv result is updated according to the
value of local result (lines 28 and 50). If local result is 1 then also inv result
becomes 1 to store that the algorithm found a time windows where invi holds.

The number of checks performed by the algorithm (i.e., lines 22 and 23 for the
Boolean variables, and line 44 for the numeric variables), in the worst case, depends
on:

• the number of variables’ pairs to be checked (i.e., |V |2, for the considered 2-ary
invariants);

• the length of the time-window (i.e., l), and consequently the number of time
windows in the execution trace (i.e., (length(T )− l + 1)); and

• the total length of the execution trace (e.g., length(T )).

Thus, according with the previous considerations, the algorithm scales best in
|T | for very small time windows or those close to |T |. To reduce the overall execution
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Algorithm 1 Sequential Algorithm

1: function invariant checker(T, l, V )
2: for all u ∈ V do
3: if getType(u) == BOOL then
4: print(getBoolInv(T, l, u));
5: end if
6: if getType(u) == NUMERIC then
7: for all v ∈ V ∧ u 6= v do
8: if getType(v) == NUMERIC then
9: print(getNumInv(T, l, u, v));

10: end if
11: end for
12: end if
13: end for
14: end function
15:

16: function getBoolInv(T, l, u)
17: inv result[2] = {0} ;
18: for t = 0; t <getSize(T )−l + 1; t = t+ 1 do
19: local res[2] = {1};
20: for s = 0; s < l; s = s+ 1 do
21: u val=getValue(T , t+ s, u);
22: local res[0]=local res[0]∧(u val==false);
23: local res[1]=local res[1]∧(u val==true);
24: if allZero(local res) then //optimization 1
25: break;
26: end if
27: end for
28: inv result = inv result ∨ local res;
29: if allOne(inv result) then //optimization 2
30: break;
31: end if
32: end for
33: return inv result;
34: end function
35:

36: function getNumInv(T, l, u, v)
37: inv result [6] = {0} ;
38: for t = 0; t <getSize(T )−l + 1; t = t+ 1 do
39: local res [6] = {1};
40: for s = 0; s < l; s = s+ 1 do
41: u val=getValue(T , t+ s, u);
42: v val=getValue(T , t+ s, v);
43: for i = 0; i <getSize(INum); i = i+ 1 do
44: local res[i]=local res[i]∧check(inv i, u, v);
45: end for
46: if allZero(local res) then //optimization 1
47: break;
48: end if
49: end for
50: inv result = inv result ∨ local res
51: if allOne(inv result) then //optimization 2
52: break;
53: end if
54: end for
55: return inv result;
56: end function
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Fig. 3.4. A relation dictionary and the corresponding mining matrix. Shaded ele-
ments are not used. The diagonal is used for Boolean variables.

time, two optimizations were introduced. The first concerns the checking of invari-
ants within a single time window TW . The iteration on all the simulation instants of
TW exits as soon as a counter example for each invariant has been found (lines 24-25
and 46-47). This optimization generally reduces execution time in case of very long
time windows that expose very few invariants. The second optimization concerns the
checking of invariants by considering all time windows of the same execution trace
T . The iteration on all the time windows of T exits as soon as all invariants have
been verified on at least one time window (lines 29-30 and 51-52). This optimization
reduces execution time in case of very long execution traces with several time win-
dows and high probability of finding time windows where the candidate invariants
hold.

Parallel algorithm

According to the considerations reported at the end of the previous section, the
sequential algorithm is efficient when the length of the execution trace T is low and
the corresponding time windows are either short or almost as long as T . On the
contrary, the worst cases occur for a very long execution trace T with time windows
whose length is near to the half of the length of T . To preserve efficiency even in cases
where invariant mining becomes unmanageable by using the sequential algorithm, I
defined also a parallel version that can be executed by a GPU.

The parallel algorithm works on a mining matrix M of |V |∗|V | unsigned integers.
The set of variables V of a model is partitioned in two subsets VBool and VNum that
contain, respectively, Boolean and numeric variables. The binary representation of
the unsigned integer stored in each element M [i][j], with i 6= j, corresponds to
the invariant vector of the pair (vi, vj) ∈ VNum × VNum. Each element on the
diagonal M [k][k] corresponds to the invariant vector of a Boolean variable vk ∈
VBool. Elements M [i][i] with vi ∈ VNum and M [i][j] with either vi ∈ VBool or
vj ∈ VBool are not used. Elements M [j][i] below the diagonal are not used too, since
they would contain the dual of the invariant vector stored in M [i][j]. In summary,(
|VBool|+(|VNum| ∗ (|VNum| − 1)) /2

)
elements of M are active during the execution

of the algorithm. A list of the variable pairs corresponding to the active elements of
the mining matrix is stored in a relation dictionary. Figure 3.4 shows an example of
a relation dictionary and the corresponding mining matrix.

The mining matrix can be generalized to an n-dimensional array to mine logic
relations with arity till n. For example, to mine unary, binary and ternary templates,
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a three-dimensional array (a cube) should be used to represent all the possible
combination of three variables. In this case, unary relations will be stored in the
element M [i][i][i] (diagonal of the cube), binary relations will use only the faces of
the cube, and ternary relations also internal elements. For simplicity and without loss
of generality, in the following I consider only unary relations on Boolean variables
and binary relations on numeric variables.

The execution flow of the parallel approach can be summarized in three steps:

1. create and copy the mining matrix and the relation dictionary into the global
memory of the GPU;

2. run a parallel kernel in the GPU to extract invariant;
3. read the mining matrix from the global memory and print the results.

In order to achieve a better performance, two different kernel implementations
were defined for the step 2: one for mining T-invariant (check T-invariants) accord-
ing to conditions C3 and C4 defined at the beginning of this section, and one for
mining TW-invariants (check TW-invariants) according to conditions C1 and C2.

Mining of T-invariants: The check T-invariants kernel searches for invariants that
are true in every simulation instant of an execution trace. The kernel takes advantage
of the efficient allocation of threads in the GPU. The idea behind the approach is:

• to instantiate in the GPU as many thread blocks as the number of entries of
the relation dictionary (i.e., each block works on a different entry of the relation
dictionary), and

• to instantiate for each block the maximum number of available threads (e.g.,
1024 threads in case of the GPU I used for experimental results).

Every thread of a block checks in parallel to the other threads of the same
block if each of the considered invariant templates is true for the target entry of the
relation dictionary in a precise simulation instant t of the execution trace (i.e., each
thread works in parallel on different simulation instants). The approach to verify if
an invariant template holds on a pair of variables is exactly the same implemented
in functions getBoolInv and getNumInv of the sequential algorithm previously
introduced. After checking, each thread updates the corresponding invariant vector
into the mining matrix (the elements of the matrix are at the beginning initialized
with 1). In particular, the thread that works on pair (vi, vj) for a simulation instant
t stores the result in element M [i][j] by means of an AtomicAnd operation, which
is executed sequentially with respect to other AtomicAnd performed by different
threads that work on the same pair (vi, vj) but on different simulation instants.
In this way, when all threads complete the kernel execution, the number stored
in M [i][j] represents the final invariant vector of (vi, vj) over the execution trace.
The same considerations apply for elements of kind M [k][k] related to each Boolean
variable vk.

Moreover, to increase the efficiency of the parallel approach, the following opti-
mizations have been implemented:

• The execution trace is partitioned in slices which are asynchronously loaded into
the GPU global memory. To achieve better performance I used different streams
(i.e., cudaStream) to asynchronously load and elaborate different slices of the
execution trace.
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Fig. 3.5. Allocation of thread blocks. Block(i, j) works on dictionary entry j by
analyzing slice i of the execution trace.

• If the threads of a block falsify all invariant templates for an entry of the relation
dictionary in one slice of the execution trace, they do not check the same invariant
templates in the subsequent slices of the same execution trace. This does not
create divergence on threads because all the threads of a block deal with the
same entry of the relation dictionary.

Figure 3.5 graphically shows how the threads of different blocks can work in
parallel, on different entries of the relation dictionary and different time intervals,
to speed-up the invariant checking. For example, block(0,0) works on simulation
instants belonging to the interval [0, 1023] for the entry (u, v), while block (0,1)
works on the same interval but for the entry (u, z), and block(1,0) works on the
same entry (u, v) of block (0,1) but on the interval [1024, 2047].

Mining of TW-invariants: The check TW-invariants kernel searches for invariants
that are true in at least one time window of an execution trace. The idea behind the
approach is basically the same as for the check T − invaraint kernel, i.e., to assign
an entry of the relation dictionary to every block of threads. However, two aspects
differentiate check T-invariants from check TW-invariants:

• each thread of the same block checks if invariant templates are true on a different
time window of the same execution trace (not on a different time instant);

• the thread that works on the entry (vi, vj) of the relation dictionary for a given
time window stores the result in element M [i][j] of the mining matrix (the el-
ements of the matrix are at the beginning initialized with 0) by means of an
AtomicOr operation. This guarantees that at the end of the procedure, each
element of the invariant vector stored in M [i][j] is set to 1 if the corresponding
invariant template has been satisfied by at least one time window.

Furthermore, to increase the efficiency of the parallel approach, the following
optimizations have been implemented:

• Since all threads of the same block analyze the same entry of the relation dictio-
nary on overlapping time windows, the currently-analyzed slice of the execution
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Fig. 3.6. Use of the shared memory to speed up mining of TW-invariants.

trace is copied in the GPU shared memory. This greatly reduces the time re-
quired for retrieving the value of analyzed variables, since the latency of the
shared memory is really lower than the latency of the GPU global memory. For
example, Fig. 3.6 shows how a block of 1024 threads works to check invariant
templates for the dictionary entry (u, v). First, values assumed by u and v on
a slice of the execution trace (e.g., simulation instants in the interval [0, 2047])
are copied into the shared memory. Then, all threads of the block check the
invariant templates on different time windows with the same length. Each time
window starts one simulation instant later than the precedent time window. If
a time window exceeds the slice, new data are shifted from the execution trace
into the shared memory and the verification process is resumed. When all time
windows have been analysed, every thread stores its local result into the mining
matrix through an AtomicOr.

• In case the currently-analyzed time window exceeds the slice of the execution
trace loaded in the shared memory, as soon as all invariant templates have been
falsified, the block of threads stops to check the same invariant templates on
the following slices. This does not create divergence on threads because all the
threads of a block deal with the same entry of the relation dictionary.

Experimental results

The sequential and the parallel approaches have been evaluated in comparison with
Daikon version 5.2.0. For a fair comparison, Daikon has been configured such that
it searched only for the same invariant templates implemented in my algorithms.
This restriction does not affect the fairness of the comparison. In fact, the inclusion
of a larger set of invariant templates would have the same effect on my algorithms
as well as on Daikon, i.e., the verification time would increase proportionally with
the number of invariant templates to be checked. The extension to the full set of
Daikon’s template is an ongoing activity.

For all experiments, my approaches and Daikon extracted the same set of in-
variants. Thus, from the accuracy point of view they are equivalent, while they
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Trace Numeric Boolean Invariants Daikon Sequential Parallel
length variables variables number time (s.) time (s.) time (s.)

1000000 15 15 0 27.3 2.8 3.2
3000000 15 15 0 74.4 8.5 9.1
5000000 15 15 0 118.3 13.9 14.9
1000000 10 10 0 21.6 2.0 2.5
1000000 30 30 0 47.6 5.6 6.4
1000000 50 50 0 73.9 9.1 9.3

1000000 15 15 120 20.3 6.5 3.3
3000000 15 15 120 51.6 19.7 8.8
5000000 15 15 120 82.3 32.8 14.8
1000000 10 10 55 15.4 2.9 2.3
1000000 30 30 465 35.2 25.6 6.1
1000000 50 50 1275 58.5 80.7 10.5

Table 3.1. Execution time (in seconds) to mine T-invariants from execution traces
with and without invariants at varying of the trace length and the variable number.

Time window Numeric Boolean Invariants Daikon Sequential Parallel
length variables variables number time (s.) time (s.) time (s.)

100000 50 50 0 ≈141×105 2378.9 39.5
500000 50 50 0 ≈209×105 1324.8 26.1
900000 50 50 0 ≈69×105 272.1 12.9

5 50 50 1275 ≈42×105 128.4 10.9
25 50 50 1275 ≈43×105 312.2 11.1

100000 50 50 1275 ≈326×105 ≈147×104 2887.8
500000 50 50 1275 ≈778×105 ≈832×104 8075.7
900000 50 50 1275 ≈273×105 ≈333×104 2949.6

Table 3.2. Execution time (in seconds) to mine TW-invariants from an one-million-
long execution trace (violet rows refer to the best cases where time windows are
short; the red row refers to the worst case where the length of the time windows is
half of the trace).

differ from the execution time point of view. Performances have been evaluated on
execution traces with different characteristics by running experiments on an AMD
Phenom II X6 1055T (3GHz) host processor equipped with 8.0GB of RAM, running
Linux OS, and connected to an NVIDIA GEFORCE GTX 780 with CUDA Toolkit
5.0. Results are reported for mining both T-invariants, covering conditions C3 and
C4 as well as TW-invariants, covering conditions C1 and C2.

Execution time for mining T-invariants

The type of SUV (i.e., HW design or SW program), and the complexity of the SUV
(in terms, for example, of memory elements, lines of code, cyclomatic complexity)
are not particularly relevant to measure the performance of approaches for dynamic
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invariant mining. The analysis of a long execution trace exposing several invariants
among variables, even if corresponding to a functionally simple SUV, may require
much more time than a shorter execution trace of a very complex SUV. Indeed, exe-
cution time of invariant mining depends on the number and length of the execution
traces to be analyzed, the number of considered variables, and the number of invari-
ants actually present in the traces. Thus, experimental results have been conducted
on randomly generated execution traces with different values for such parameters
by considering boolean and numeric (integer and real) data-type variables.

Table 3.1 reports the time2 spent by the three approaches (Daikon, sequential
algorithm and parallel algorithm) to analyze execution traces from which no invari-
ant (above the central double line) and several invariants (below the central double
line) can be mined (see Column Invs). For traces without invariants (but I observed
the same behavior in case of very few invariants), my sequential and parallel ap-
proaches present similar execution times, which are one order of magnitude lower
than Daikon’s time. The speed-up achieved by the parallel algorithm thanks to the
use of the GPU, is compensated in the sequential algorithm by optimization 1 (lines
24 and 46 of Algorithm 1), which allows the sequential algorithm to discard the
entire execution trace as soon as all invariant templates have been falsified.The par-
allel algorithm, on the other hand, partially benefits from this optimization, since
it must elaborate at least an entire slice of the execution trace. When the number
of invariants that can be mined in the trace increases, the effect of optimization 1
decreases, thus the parallel algorithm becomes the most efficient solution thanks to
its capability of analysing in parallel several instants of the execution trace.

Execution time for mining TW-invariants

The second experiment shows the performance of the two proposed approaches com-
pared to Daikon for mining TW-invariants on at least one time window of an exe-
cution trace. This analysis is more time consuming than mining T-invariants on the
whole execution trace, since a huge number of partially overlapping time windows
must be iteratively analyzed. This is necessary, for example, for temporal assertion
miners, where invariants extracted from different time windows are composed of
means of temporal operators to create temporal assertions that hold on the whole
execution trace [25].

Table 3.2 shows the results at varying time window lengths, by considering an
execution trace with one million instants. When the length of time windows is low
(violet rows), the sequential and the parallel algorithms require, respectively, few
minutes and few seconds to complete the analysis, while Daikon is up to five orders
of magnitude slower. For long time windows (hundreds of thousand of simulation
instants), the parallel approach is two orders of magnitude faster than the sequential
algorithm and three than Daikon. The worst case, as expected, occurs when the
length of the time windows is half of the execution trace and the number of invariants
is high (red row). It actually takes a couple of hours with the parallel algorithm,
while it would take about 3 months with the sequential algorithms and 6 months

2 Reported execution times include also the time required to read the execution
trace and print the list of mined invariants. This time is not negligible and it is
practically the same for the three approaches. Its removal would further amplify
the difference among the scalability of the approaches.
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with Daikon. Indeed, execution times reported for Daikon, and part of those of
the sequential algorithm (highlighted by symbol ≈) have been estimated according
to values achieved on shorter execution traces, because it would be unmanageable
to run real experiments. The parallel algorithm, on the other hand, scales very
efficiently also in these cases.

3.5.2 Mangrove

Methodology

In this section, I propose an alternative, which is called Mangrove3, to the par-
allel algorithm of the methodology Turbo. Mangrove even more greatly benefits
from advanced graphics processing unit (GPU) programming techniques, such that
the memory throughput of the GPU is significantly improved. As reported in the
experimental results, the overall performance of this invariant miner algorithm are
increased up to three orders of magnitude with respect to Turbo. The drawback of
Mangreove is that only trace invariants (def 3.2) can be extracted from an execution
trace T .

The main mining function, in its sequential form, is reported in Algorithm 2.
The inputs of the function are represented by an execution trace T of the SUV,
an invariant template set I, and a variable dictionary D. The dictionary contains
tuples of different arity composed by all the possible combinations of the variables
V of the SUV. Such tuples represent the actual parameters to be substituted inside
the formal parameters of the invariant templates during the mining phase.

3 From the shape of the mangrove roots that resemble several parallel computation
flows, in opposition with the Daikon [33] radish which is unique.

Algorithm 2 The invariant mining algorithm.

1: function sequential mining(D, I, T )
2: for all tuple ∈ D do
3: template set = I
4: for all instant ∈ T do
5: for all inv ∈ template set do
6: if ¬check invariant(inv,tuple,instant) then
7: template set = template set \ inv
8: end if
9: end for

10: if template set = ∅ then
11: break
12: end if
13: end for
14: result = result ∪ 〈tuple, template set〉
15: end for
16: end function
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The algorithm extracts all likely invariants for T that correspond to logic for-
mulas included in I, by substituting in the elements of I all the possible tuples of V
belonging to D, according to the respective arity. More precisely, the check invariant
function (line 5) checks if a specific template inv, instantiated with the current tu-
ple of variables tuple, holds at simulation time instant. When a counterexample
is found for inv, it is removed from the template set (line 6) for the current tuple
of variables. If all elements of the template set are falsified (line 8), the algorithm
restarts by considering the next tuple in the dictionary, by skipping the remaining
simulation instants of T . At the end, the algorithm collects all the pairs composed
by the the survived templates and the corresponding tuples of the variable dictio-
nary (line 11). The instantiation of the tuples in the survived templates represent
the final set of likely invariants for T . The current implementation supports the in-
variant template sets reported in Table 3.3. Boolean and numeric templates include,
respectively, only Boolean variables and numeric variables.

The proposed algorithm has a worst-case time complexity equal to O(|V|K · |τ | ·
|I|), where V is the number of considered variables, K is the arity of the invariant
template belonging to I with the highest arity, |τ | is the number of simulation
instants in the execution trace τ , and |I| is the number of invariant templates
included in I.

The parallel implementation for GPUs

The mining approach reported in Algorithm 2 is well suited for parallel computation.
In fact, the problem can be easily decomposed in many independent tasks, each one
having regular structure and fairly balanced workload. It implements the mining
algorithm with the aim of exploiting the massive parallelism of GPUs and, at the
same time, an inference strategy to reduce redundant checking of invariants. In
addition, since reading the execution trace from the mass storage and moving it to
the GPU device for the mining phase is computationally time consuming, Mangrove
implements a strategy to overlap data transfers and mining phase.

Fig. 3.7 shows an overview of the GPU kernel organization and, in particular, how
thread blocks are mapped to the trace variables for the reading and mining phases.
Consider a matrix representing the execution trace, in which the columns represent
the execution time instants and the rows hold the variable values (for the sake of
clarity, the execution trace of the example in Fig. 3.7 consists of three variables).
Each thread block is mapped to (i.e., it performs the reading and mining phase

BOOLEAN NUMERIC

Unary Binary Ternary Unary Binary Ternary

Template Set I true, false
=, 6=, <, >, ≤,
≥

Template Set II true, false =, 6=
Var1 = Var2andVar3
Var1 = Var2or Var3
Var1 = Var2xorVar3

Var = Const
Var 6= Const
Var < Const
Var ≤ Const

Var1 = Var2
Var1 ≤ Var2
Var1 <

√
Var2

Var1 = log Var2
Var1 < Var2 + 1
Var1 = Var2 ∗ 2

Var1 = Var2
Var3

Var1 = min(Var2,Var3)
Var1 = max(Var2,Var3)
Var1 < Var2 ∗ Var3
Var1 ≤ Var2 + Var3

Table 3.3. Template sets considered by the miner.
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Fig. 3.7. Overview of block mapping and vectorized accesses for the parallel algo-
rithm on GPU.

on) one, two, or three matrix rows if the mining process performs over a unary,
binary, or ternary template, respectively (i.e., each thread block is mapped to a
different entry of the variable dictionary). In each block, threads communicate and
synchronize through shared memory. As for the standard characteristics of the GPU
architectures, such hardware-implemented operations are extremely fast and their
overhead is negligible. Communication and synchronization among block threads
allow avoiding redundant checking of already falsified invariants and stopping the
computation of the whole block as soon as all invariants for a particular set of
variables have been falsified.

For each block, each thread is mapped to four columns. This allows enabling the
vectorized accesses [59] of threads to the variable values in memory. In particular,
each thread loads four consecutive 32-bit words instead of a single word to im-
prove the memory bandwidth between DRAM and thread registers. In addition, the
Boolean and numeric variables included in the variable dictionary are organized over
bit and float arrays in row-major order. This allows the full coalescing of memory
accesses by the GPU threads in the mining phase.

Mangrove computes the mining process by elaborating, in sequence, the unary
templates, the binary templates, and, finally, the ternary templates reported in
Table 3.3.

Optimization of the variable dictionary

The variable dictionary consists of a data structure that initially stores, for each
invariant template, all the tuples of variables that must be substituted as actual pa-
rameters in the template during the mining phase. However, at run time, Mangrove
implements some optimizations in the variable dictionary, to increase the efficiency
of the mining. In particular, Mangrove optimizes the variable dictionary by discard-
ing a tuple for a template when the answer of the relative checking phase can be
derived from the results obtained from previous iterations of the mining procedure.
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This allows saving time by avoiding redundant elaborations, as explained in the next
paragraphs:

• The result of the mining over unary templates is exploited during the mining
of binary templates. As a simple example, Mangrove searches for any Boolean
variable, vara, whose value is always equal (or always different) to any other
Boolean variable, varb. If such a condition occurs, the generation of the entry
< vara, varb > in the dictionary can be avoided since it is redundant.

• The result of the mining over unary and binary templates is used during the min-
ing of ternary templates. For example, by considering the ternary mining phase
on Boolean variables, the goal is to figure out which operator op ∈ {and, or,
xor} can be validated over three different variables (e.g., vara, varb, and varc).
Through the already extracted unary and binary invariants, Mangrove auto-
matically infers some ternary invariants without applying the checking procedure
throughout the execution traces. For instance, the ternary invariant (vara = varb
and varc) reduces to check whether the binary invariant (vara = varb) occurs
when (varb = varc) holds. Similarly (vara = varb xor varc) reduces to check
(vara 6= varc) when varb is constantly set to true.

Data transfer and overlapping of the mining phase

The invariant mining process on the GPU consists of three main phases showed
in Fig. 3.8(a): (i) reading of the execution trace from the mass storage (disk) and
data storing in the host DRAM memory; (ii) data transfer from the host to the
memory of the GPU; (iii) elaboration in the GPU device. The three steps work first
on the numeric variables and then they are repeated for the Boolean variables. The
time spent for such three phases and, in particular, the percentage of time spent
by each phase over the total execution time depends on the invariant template and
on the hardware characteristics. For instance, considering a magnetic mass storage
disk, the reading and data transfer phases spend around the 80% and 20% over the
total time, respectively while the mining time is negligible for unary templates. The
three phases spend around 70%, 20%, and 10%, respectively, over the total time for
binary templates. The percentage of the reading phase sensibly decreases in case of
solid-state disks (SSDs).

Mangrove implements the invariant mining by overlapping the three phases as
shown in Fig. 3.8(b). This allows totally hiding the cost of host-device data transfers
and partially hiding the cost of the mining elaboration. Moreover, Mangrove imple-
ments the data transfer overlapping through asynchronous kernel invocations and
memory copies (i.e., cudaMemcpyAsync in CUDA). Finally, a specific optimization
has been implemented for Boolean variables: Mangrove stores the values of Boolean
variables in arrays of bits to reduce the memory occupation (e.g., 5,000,000 values
of a Boolean variable are stored in 600 KB). In addition, this array-based represen-
tation allows using bitwise operations to concurrently elaborate 32 Boolean values
in a single chunk, thus speeding up the mining phase.

Experimental results

Experimental results have been run on a NVIDIA Kepler GeForce GTX 780 device
with 5 GHz PCI Express 2.0 x16, CUDA Toolkit 7.0, AMD Phenom II X6 1055T
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Fig. 3.8. The invariant mining phases (a), and the overlapped implementation of
Mangrove for GPUs (b).

Length Boolean Vars Numeric Vars Invariants (Temp. set I) Invariants (Temp. set II)

TRACE 1 5,000,000 15 15 0 0
TRACE 2 5,000,000 15 15 142 964
TRACE 3 5,000,000 50 50 0 0
TRACE 4 5,000,000 50 50 1,788 42,371

Table 3.4. Characteristics of execution traces.
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Daikon[33]
Sequential

Turbo
Parallel
Turbo

Mangrove

TRACE 1 103 s < 1 ms 116 ms < 1 ms
TRACE 2 170 s 4,629 ms 116 ms 17 ms
TRACE 3 287 s 2 ms 369 ms < 1 ms
TRACE 4 1366 s 52,160 ms 457 ms 182 ms

TRACE 1 2 m 34 s 22 ms 352 ms < 1 ms
TRACE 2 5 m 47 s 11 m 0 s 1,751 ms 140 ms
TRACE 3 8 m 23 s 119 ms 3,145 ms < 1 ms
TRACE 4 32 m 54 s 7 h 45 m 71,314 ms 4,577 ms

Table 3.5. Comparison of the execution times with respect to state-of-the-art ap-
proaches.

3GHz host processor, and the Debian 7 Operating System. To evaluate the efficiency
of Mangrove experiments have been conducted on different kinds of execution traces,
whose characteristics are summarized in Table 3.4. Traces have been synthetically
generated such that they expose from no invariant to thousands of likely invariants
by considering the template sets reported in Table 3.3. They also differ in terms
of number of considered SUV variables. These are the two parameters that most
influence, together with the length of the trace, the execution time of the mining
algorithm. Indeed, higher is the number of likely invariants exposed by the execution
traces, higher is the time spent for their extraction.
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The efficiency of Mangrove has been compared against the sequential mining
approaches implemented, respectively, in [33] and in Turbo, and the parallel imple-
mentation proposed in Turbo. Table 3.5 shows the execution time required to extract
the likely invariants according the first and second template sets on the traces re-
ported in Table 3.3. For the parallel approaches, the times include the overhead
introduced for data transfer between host and device. Mangrove provides the best
results in all datasets by executing up to four orders of magnitude faster than the
sequential state-of-the-art tool Daikon4. Compared to Turbo, Mangrove executes
up to three orders of magnitude faster5. The improvements achieved in Mangrove
with respect to the parallel approach implemented in Turbo are due to the imple-
mentation of a more efficient strategy for mapping thread blocks to entries of the
variable dictionary, and to the vectorized accesses that best exploit the memory
coalescence and the high memory throughput. These aspects are critical to improve
the performance, since the memory bandwidth may limit the concurrent memory
accesses. Table 3.5 shows that Mangrove is efficient also when no invariant can be
mined (Traces 1 and 3) thanks to the capability of early terminating the search on
a trace as soon as all templates have been falsified. On the contrary, the parallel
implementation proposed in Turbo always requires to analyze the whole trace to
identify the absence of likely invariants, thus wasting time.

3.6 Conclusions

In this thesis, I presented Turbo and Mangrove, two parallel approaches for min-
ing likely invariants by exploiting GPU architectures. Both the approaches greatly
reduce the execution time with respect to existing techniques, without affecting the
accuracy of the analysis. Moreover, advanced GPU-oriented optimizations and in-
ference techniques have been implemented in Mangrove such that execution traces
composed of millions of clock cycles can be generally analyzed in less than one
second searching for thousands of likely invariants. Experimental results have been
conducted on execution traces with different characteristics, and the proposed ap-
proaches have been compared with sequential and parallel implementations of the
most promising state-of-the-art invariant miners. Analysis of the results showed that
Turbo and Mangrove outperforms existing tools for mining time-window and trace
invariants.

4 For a fair comparison, Daikon has been configured to search only for the invariants
specified in the first and second template sets.

5 The approach in Turbo has been extended in order to support also the template
set II.
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Assertion Mining

4.1 Introduction

Assertion-based verification is a common approach to check the functional correct-
ness of a design model against its formal specifications. The desired behaviors are
expressed through temporal assertions, i.e., logics formulas written by means of a
temporal logic like, for example, Linear Time Logic (LTL) or Computation Tree
Logic (CTL). Then, they are verified either statically by model checking, or dynam-
ically by synthesizing assertion checkers that verify if the corresponding assertions
are true or not during the simulation of the Design Under Verification (DUV). Un-
fortunately, assertion definition is a time-consuming and error-prone task, which
requires high expertise to reason in terms of logic formulas. A low-quality set of
assertions negatively affects the verification process. Thus, after their definition, as-
sertions must be analyses in terms of consistency and coverage with respect to both
the informal specifications and the actual implementation of the DUV, i.e., the ver-
ification engineer must guarantee that (i) assertions express expected behaviors in
the correct way, (ii) all expected behaviors are expressed by the assertions, and (iii)
the DUV implements all and only the expected behaviors.

An orthogonal and complementary approach to the manual definition of asser-
tions is represented by assertion mining [4]. Assertions can be mined either statically,
by analyzing the DUV source code, or dynamically, by focusing only on the analysis
of the execution traces of the DUV. Static and dynamic analyses present complemen-
tary advantages and disadvantages concerning accuracy and scalability [31]. Even
if assertions mined by dynamic approaches are guaranteed to be true only for the
considered execution traces, dynamic mining is gaining more and more consensus,
because it is more scalable, and it can be applied also in the case the source code of
the DUV is not available. Figure 4.1 describes the general idea about dynamic as-
sertion mining. The DUV model can be described at different abstraction levels tar-
geting, for example, register transfer level (RTL) or transaction level model (TLM)
hardware descriptions as well as software protocols and embedded software. Execu-
tion traces, generated by simulating the DUV, pass through an assertion miner tool,
whose output is a set of candidate assertions that capture the behaviors exercised
during simulation. The verification engineer then compares the mined assertions
against the initial specifications to verify if all expected behaviors have been imple-



38 4 Assertion Mining

!""#$%&'"(

!""#$%&'(

)*+,-./+%&'(

01#/*%&'(

2$+/#"(

!""#$%&'(

3-'#$(

!"#$%&'()

•  456(3&7#,"(

•  568(3&7#,"(

•  9:(;$&2&/&,"(

•  03<#77#7(9:(

•  =(

*'&'()

•  !'+,>"-"(&?(

#1;#/2#7@

*'#1;#/2#7(

<#A+B-&$"(

•  4#*"#(?&$(?*2*$#(

B#$-./+%&'("2#;"(

•  5#"2<#'/A(

/&B#$+C#(+'+,>"-"(

•  D&/*3#'2+%&'(

•  =(

Fig. 4.1. Assertion mining overview.

mented in the DUV and potentially discover the presence of design errors. Finally,
mined assertions can be used for documentation purposes too.

As a drawback, dynamic mining extracts likely assertions, which are guarantee
to be true only for the considered execution traces, thus a formal checking of mined
assertions against the DUV is generally performed to confirm they globally hold
on the DUV. Moreover, behaviors not exposed by the considered execution traces
cannot be mined. This shortcoming is in common with all dynamic-based verification
approaches, and it is addressed by using coverage metrics to evaluate the quality of
the considered execution traces.

4.2 State of the Art

Different approaches have been proposed in the literature for dynamic assertion min-
ing of hardware designs. Seshia et al. proposed a gate-level approach that extracts
assertions compliant with a predefined set of temporal templates [52].

Approaches that work at more abstracted levels have been proposed by Va-
sudevan et al. in [42] and [55], respectively, for RTL and TLM. The tool Goldmine,
proposed in [42], exploits a decision tree-based algorithm that predicates on Boolean
variables, and it generates LTL assertions in the form of implications, where only the
next temporal operator can be included. The approach in [55] mines assertions in the
form always(a→ F[t1,t2](b)), meaning that the TLM event b must occur from a min-
imum of t1 to a maximum of t2 instants after each occurrence of the TLM event a.
The only approach that generates temporal properties considering arithmetic/logic
expression was proposed in [15]. It is based on a cubic-complexity algorithm that
relies on the Daikon invariant miner and on the generation of accepting automata
to extract candidate assertions. However, the generated properties are hard-to-read,
since these always involve all primary inputs and outputs of the design. Moreover,
it does not define a ranking function to evaluate their quality.

Commercial tools are also available for automatic assertion generation at RTL,
e.g., Atrenta BugScope [17] and Jasper ActiveProp [44]. The first generate SVA
or PSL assertions where only the next temporal operator is considered. The sec-
ond generates both structural and behavioral SVA next-based assertions, but no
arithmetic/logic expressions are considered.

All of these existing approaches suffer of two drawbacks: (i) they rely on a pre-
defined set of templates, thus they are unable to extract generic assertions, and
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(ii) they tend to generate a long list of over-constrained assertions, which makes
impossible their practical analysis by a human without a ranking strategy.

4.3 Objectives

To assist the manual definition of temporal assertions describing the functionalities
implemented by an IP, I presented the assertion miners ODEN and A-TEAM in
this thesis. Both miners work with atomic propositions, which allow them to be
applied in hardware and software domain. Moreover, A-TEAM includes a fault-
based coverage analysis to evaluate and compact the final set of mined temporal
assertions.

4.4 Methodology

In the next section, the methodologies ODEN and A-TEAM are exposed. In par-
ticular, the main characteristics of ODEN with respect to the proposed approaches
[15, 13] are:

• implementation of techniques to improve the quality of the mined assertions re-
lying on (i) analysis of the cones of influence of the DUV, (ii) more efficient and
accurate extraction and composition of atomic propositions, and (iii) classifica-
tion of candidate propositions to be included in the final formulas to avoid the
generation of temporal assertions depending on the testbench peculiarity rather
than the DUV functionality. All these techniques pursue the goal of mining
neither “too simple” nor “too complex” assertions to avoid drawbacks suffered
by [15, 13];

• extension of the temporal patterns considered for assertion mining;
• optimization of the overall execution time.

A-TEAM extends the methodology previously defined in ODEN. The distin-
guishing features of A-TEAM are:

• Mined assertions are compliant with user-defined temporal patterns. Thus the
tool is flexible, and not limited to a predefined set of templates;

• Mined assertions are less prone to be over-constrained with respect to the out-
come of existing approaches, since the tool instantiates a few number of atomic
propositions within each assertion. This makes the assertions more readable.
Moreover, in this form, each assertion covers more easily an entire behavior of
the DUV rather than a specific computational path (which corresponds to a
specific case, among many others, belonging to a general behavior);

• Since behaviors not exposed by the considered execution traces cannot be mined,
the tool includes a coverage analysis to measure the quality of the mined asser-
tions. In case of a too low coverage the user can provide new templates to enrich
the set of assertions. An heuristic-based minimization procedure is also imple-
mented to reduce the final number of mined assertions without decreasing the
overall DUV coverage.
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Fig. 4.2. The execution flow of ODEN.

4.4.1 Oden

Methodology

Figure 4.2 presents an overview of the approach implemented in ODEN. The inputs
are a set of execution traces of the DUV. The output is a set of LTL assertions,
compliant with the templates provided by the user, which hold on the execution
traces supplied as input. ODEN works in three phases:

1. identification of cones of influence: the first step consist of analyzing the
source code of the DUV and execution traces to extract the cone of influence for
each primary outputs of the DUV. This step is necessary to prevent the assertion
miner from generating assertions that mix variables belonging to different cones
of influence. On the contrary, longer assertions could be generated that overlap
unrelated behaviors, degrading both the readability and the quality of the mined
assertions.

2. mining of propositions: execution traces are then partitioned according to
the cones of influence and provided to the proposition miner. Each execution
trace describes the values assigned to primary inputs (PIs) and primary outputs
(POs) of the DUV at each simulation instant. For every cone of influence, the
proposition miner is in charge of extracting propositions representing interesting
relations between PIs and POs that appear frequently in the analyses execution
traces.

3. mining of temporal assertions: the miner propositions are combined to cre-
ate temporal assertions by the assertion miner. Mined assertions are in the form
antecedent→ consequent, where antecedent and consequent are temporal asser-
tions reflecting temporal patterns described in the last section of the methodology
ODEN. Considered variables are PIs and POs of the DUV, since I am interest-
ing in capturing system behaviors at the boundary of the DUV. However, the
methodology could be applied without changes to consider internal variables too.
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Identification of cones of influence

The first step of the methodology consists in the identification of PIs that belong
to the cone of influence of each DUV’s PO. Given a target variable v, its cone of
influence is represented by the set of variables that affect the value of v. This task
is fundamental to better characterize the behaviors of the DUV avoiding the risk
of generating assertions that capture unrelated behaviors in the same formula. I
applied two complementary modalities to extract the cones of influence. When the
DUV source code is available, tools based on static approaches can be adopted like,
for example, CodeSurfer [21]. Currently, I have interfaced our methodology with
CodeSurfer, since it provides a better support for C++ language, which can be
automatically generated starting from popular hardware description languages like,
VHDL, Verilog and SystemC by means of HIFSuite [14]. When the DUV source code
is not available, the extraction of cones of influence can rely only on the analysis of
the execution traces by adopting heuristics techniques like, for example, the solution
proposed in Tane [43], which has the ability of producing a list of likely correlations
among two or more columns of a table of values. When the DUV source code is
not available, our methodology provides Tane with tables representing execution
traces to extract functional dependences among PIs and POs. Independently from
the adopted strategy, at the end of this phase, each execution trace is partitioned
in different slices according to the extracted cones of influence.

Proposition miner

The purpose of the proposition miner is to generate formulas according to Def. 2.3,
that will be used as antecedents and consequents for the final phase of the method-
ology. The proposition miner takes the slices of the execution traces1 as input, and
it works in two steps. It first analyses each slice to extract atomic propositions that
describe simple relations between DUV variables, like, for example, var1 > var2,
var3 = True, etc. Then, it composes atomic propositions to create more complex
propositions that could represent antecedents or consequents of the final assertions,
like, for example, (var1 > var2) ∧ (var3 = True).

(Step 1 - Mining of atomic propositions): Mining of atomic propositions is per-
formed by calling an external tool, i.e., Daikon [33], which is able to dynamically
extract arithmetic/logic expressions among variables of the DUV by analyzing ex-
ecution traces. In Daikon’s terminology, atomic propositions are called invariants,
since they hold throughout the analyzed trace. However, no temporal behavior can
be observed by composing such invariants. Thus, execution traces are tokenized in
sub-traces. Then, Daikon is called to extract invariants of such sub-traces. These
invariants, being true only on some parts of the original execution traces, represent
atomic proposition candidates for creation of temporal assertions, as described in
the following steps of the methodology. Invariants that are true for all sub-traces are
instead discarded. Despite of the fact that the next steps of the proposed method-
ology are independent from the way atomic proposition candidates are extracted,

1 In the following of the ODEN methodology, I use the term execution trace instead
of explicitly referring to its slices not to overload the writing. Indeed, each of the
next steps is executed on the slices derived from the extraction of DUV cones of
influence.
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I have chosen Daikon to this purpose since it is one of the most powerful tools for
such kind of inference. However, since Daikon execution represented the major bot-
tleneck for the approach described in [15], in this proposal the use of Daikon inside
the proposition miner has been optimized as follows.

• Invocation on a reduced set of short sub-traces. In order to extract the most com-
plete set of atomic proposition candidates, execution traces have to be tokenized
in an exhaustive way. Which means we should extract

∑n−1
i=2 i sub-traces from an

n-length execution trace. In order to avoid the generation of this large quantity
of sub-traces, I studied how many invariants are generally mined changing the
sub-trace sizes. After an empirical analysis on a large set of case studies, I indeed
observed that sub-traces longer than 6 simulation instants very rarely provide
new candidates w.r.t. shorter sub-traces. Thus, in the current methodology only
sub-traces whose length is between 2 and 6 simulation instants are considered.
This way, given an execution trace composed of n instants, the total number of
sub-traces provided to Daikon is

∑min(n−2,5)
i=1 (n− i).

• Analysis of a reduced set of invariant patterns. The list of invariant patterns
considered by the Daikon’s inference engine is very rich [53]. However, most of
them are not interesting to mine temporal assertions for behavioral descriptions
of hardware components or embedded SW and they can be removed to save ex-
ecution time. For example, invariants typically occurring in software programs
like x.field is null, array A is sorted, etc., are irrelevant in our context. Thus,
I restricted Daikon to search only for arithmetic/logic expressions involving the
most common relational (e.g., =, 6=, ≤, ≥, <, >) and arithmetic (e.g., +, −,*, ÷)
operators. Moreover, I imposed also that constants are not allowed as operands
of relational operators, with the only exception represented by the Boolean con-
stants True and False. In most of cases, it is unlikely that atomic propositions
like variable = constant play a decisive role for the functionalities of the design.
Instead, it is generally more important to capture relations between variables.

• More efficient invocation on sub-traces. Daikon’s execution flow is composed of
three steps: (i) initialization of internal data structures according to the selected
invariant patterns and the data types of considered variables, (ii) mining of in-
variants, and (iii) printing of results. By profiling the three phases on several
case studies and different lengths of execution sub-traces, I derived interesting
observations. In particular, I observed that the third phase is independent from
the length of the sub-traces analyzed by Daikon and definitely negligible from
the execution time point of view. On the contrary, the second phase strictly de-
pends on sub-trace length. However, execution time related to the second phase
is almost irrelevant (few milliseconds) for the very short sub-traces extracted
by the tokenization procedure. The real bottleneck is represented by the first
phase, which costs, in average, almost one second for each analyzed sub-trace
independently from its length. Considering that in our approach the variables
and the invariant patterns are always the same for every sub-trace, I optimized
the Daikon’s execution flow implementing this simple strategy: (i) create the
initial data structures as usual (ii) by a deep copy save them in memory (iii)
when a new sub-trace has to be analyzed, replace the local initial data structures
with a copy of those previously saved. The time saved with this optimization
is significant and it greatly reduces the impact of Daikon on the overall mining
flow, as reported in the experimental results.
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Fig. 4.3. Generation of candidate propositions.

(Step 2 - Generation of candidate propositions): The generation of proposi-
tions is performed according to the flow described in Figure 4.3. The set of atomic
propositions is evaluated with respect to the execution traces. A checking procedure
(atomic proposition checking) is executed to identify which atomic propositions are
true in each instant of each execution trace. The output of this phase is represented
by a table (atomic proposition trace) for each execution trace whose format is as
follows. The first column refers to the time instants. Then, there is a column for
each atomic proposition reporting its truth value for each time instant of the execu-
tion trace. Subsequently, a composition procedure generates a candidate proposition
from each row of the atomic proposition trace by composing in an AND formula all
atomic propositions that are marked as true. For example, in Figure 4.3, the first
and the second atomic propositions (i.e., ap1 and ap2) are true at time instant 1,
then a candidate proposition is created by composing ap1 and ap2 in the formula
p1 := ap1 ∧ ap2.



44 4 Assertion Mining

The next step (proposition checking) creates a new table (proposition trace)
for each execution trace to identify which candidate propositions are true in each
instant. Such trace will be then applied in the last step if the ODEN methodology
to mine temporal assertions.

Finally, candidate propositions are classified according to the kind of variables
(primary inputs, primary outputs or both) they involve. Such a classification is used
to restrict the work space of the assertion mining algorithm and generate high-quality
assertions. In particular, we can distinguish among:

• PI propositions: they involve only primary inputs of the DUV. They capture
the behaviors of the testbenches used to simulate the DUV, while they cannot
express anything about the behavior of the DUV. They are good candidates to
be antecedents of temporal assertions.

• PO propositions: they involve only primary outputs of the DUV. They observe
conditions occurring as a consequence of the DUV execution. They are defi-
nitely good candidates to be consequents of temporal assertions. However, they
can be used also as antecedents when we are interested in capturing temporal
implications between expected results of a DUV.

• PIPO propositions: they involve both PIs and POs of the DUV. They can be con-
sidered good candidates for both antecedents and consequents. However, when
a PIPO proposition is used as a consequent, it could be appropriate to prune its
atomic propositions that predicate only on PIs.

Assertion Miner

In the last phase of the methodology, the candidate propositions are combined ac-
cording to a set of temporal patterns to create candidate temporal assertions. Given
a candidate proposition pa of type PI, PO or PIPO that acts as antecedent, and
a set of candidate propositions P = (p1c , ..., p

k
c ) of type PO or PIPO that act as

consequences, the considered patterns are the following:

1. Next: always(pa → next pic);
2. N-next: always(pa → next[N ] pic);
3. Until: always(pa → pa until p

i
c);

4. Alternating: always(pa → next (pic before pa)).
5. Next or: always(pa → next (p1c ∨ p2c ∨ ... ∨ pkc ));
6. N-next or: always(pa → next[N ] (p1c ∨ p2c ∨ ... ∨ pkc ));
7. Until or: always(pa → pa until (p1c ∨ p2c ∨ ... ∨ pkc )).

These patterns allow to capture interesting behaviors between PIs and POs of
the DUV according to the classification proposed in [29] that describes frequently
used assertions for representing design specification. Patterns similar to number 1,
3, and 4 have been considered also in [52, 15, 13]. On the contrary, patterns 2, 5, 6
and 7 have never been considered by other temporal mining tools. Approaches based
on Goldmine [54, 80, 78, 71] are instead oriented to capture chain of next events,
like p1 ∧ next p2 ∧ ... ∧ next[i]pi−1 → next[i + 1]pi. Such a kind of pattern is not
considered in this work. I think it is more suited to predicate over internal variables
of the DUV rather than PIs and POs, which are, instead, my target.

The assertion mining algorithm works as shown in Figure 4.4. For each of the
considered patterns, a corresponding accepting automaton has been implemented.
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Fig. 4.4. Generation of temporal assertions.

Given one of the automata and given a couple of candidate propositions, the au-
tomaton is traversed by following each proposition trace generated by the proposition
miner. If the error state is never reached for all the proposition traces, a candidate
assertion is generated and stored by composing the two candidate propositions ac-
cording to the considered temporal pattern. On the contrary, reaching the error state
for at least one proposition trace is a sufficient condition to discard the candidate
assertion. The proposed approach can be easily extended to support further tem-
poral patterns by defining the corresponding automata and composing propositions
accordingly.

The collected candidate assertions are then converted in checkers, by using, for
example, IBM FoCs[2], and connected to the DUV. A different and very larger set of
testbenches, with respect to the set initially used to generate the execution traces, is
applied to stress the DUV and the candidate assertions searching for counterexam-
ples. Each time a checker fails, the corresponding candidate assertion is discarded.
Only assertions that survive to this stressing phase are definitely collected. The
stressing phase is applied to increase the likelihood that the surviving assertions
are satisfied by the DUV independently from the execution traces adopted for their
extraction. Being a dynamic, not exhaustive, approach, we cannot be completely
guaranteed, but larger is the testbench set higher is the probability of collecting
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Fig. 4.5. Next (upper part) an N-next (lower part) pattern automata.

assertions that are satisfied by the DUV without the risk of escaping counterexam-
ples. Since the mining procedure is much more expensive than simulating the DUV
connected with checkers, it makes sense to use a reduced set of testbenches for the
mining phase and a larger set of testbenches for the stressing phase.

In the remaining part of the section, I reported how the automata for the pre-
viously introduced temporal patterns works:

• Next-based patterns number 1 and 2 rely on the automata shown in Fig. 4.5.
The only difference is represented by the number of states to be traversed be-
fore reaching the accepting state (ant) after the activation of the antecedent. In
case the error state is reached the candidate assertion is discarded and a differ-
ent couple of antecedent/consequent candidates is analyzed. The automata for
patterns number 5 and 6 are similar, but in case the error state is reached at
simulation instant t, on the assumption that pa and pc have been activated at
least once before reaching t, an alternative searching procedure is activated. This
procedure analyses the proposition trace to see if a different candidate propo-
sition pj is true at time t instead of pc. If pj is found, it is collected and the
automaton restarts from the initial state searching for a new activation of the
antecedent pa in the rest of the proposition trace. When all proposition traces
are completely traversed, collected propositions are composed in an OR formula
together with pc. Such a formula becomes the consequent of a next or or N-
next or assertion where pa is the antecedent. To avoid the risk a huge number
of propositions are included in the OR formula, the error state can be reached a
maximum number of times defined by the user. When this threshold is overcome
the automaton stops and the couple of candidates pa, pc is definitely discarded.
From my experience reasonable thresholds are between 2 and 4.

• The until pattern number 3 is similar to the next pattern number 1. Its au-
tomaton is depicted in Fig.4.6. The self loop of state cons allows that the pre-
condition pa happens an arbitrary number of times before pc occurs. However,
since always(pa → pa until pc) is a logical consequence of always(pa → next
pc), the self loop of state cons must be traversed at least once during the anal-
ysis of proposition traces to avoid that a next-based assertion is recognized also
as an until-based assertion. On the contrary, the candidate assertion is written
according to the next-based pattern instead of the until one. Concerning the
until or pattern number 7, considerations similar to the next or pattern num-
ber 5 previously reported apply. In case the error state is reached at simulation
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Fig. 4.7. Alternating pattern automaton.

instant t, an alternative searching procedure is activated to find if there exists
pj , different from pc, which is is true at time t. When the execution trace is
completely traversed, all collected propositions are composed together with pc
in an OR formula, which becomes the right operand of the until operator.

• The alternating pattern automaton is shown in Fig. 4.7. Similarly to the case
of the until pattern, always(pa → pc before pa) is a logical consequence of
always(pa → next pc). Thus, the self loop of state cons must be traversed at
least once during the analysis of proposition traces to avoid that a next-based
assertion is recognized also as an alternating-based assertion. On the contrary,
the candidate assertion is written according to the next-based pattern instead
of the alternating one. Similar considerations apply for the self loop of state ant.

Experimental results

Experimental results have been carried out on an Intel Core2 Duo 2.2 GHz pro-
cessor equipped with 2.0 GByte of RAM running Linux OS. Efficiency and effec-
tiveness of the proposed mining methodology has been evaluated by considering the
benchmarks reported in Table 4.1. Thermostat and Breadmaker are embedded SW
(ESW) applications controlling, respectively, the heating system of an oven and a
bread-making machine. B03, B06 and Dig proc are RTL behavioural descriptions
modelling, respectively, a resource arbiter for four devices, an interrupt handler, and
a digital filter implementing quadrature demodulation for two wavelengths. Finally,
Uart is a TLM implementation of an UART controller. For B06 and BMaker two
cones of influence have been identified, only one for the other benchmarks. A set of
execution traces for a total number of 10,000 simulation instants has been generated
for all benchmarks.
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DUV Typology Cones PIs POs Lines

B03 RTL 1 4 4 141
B06 RTL 2 2 6 128

cone 1 RTL - 1 4 -
cone 2 RTL - 2 2 -

BMaker ESW 2 4 4 552
cone 1 ESW - 3 1 -
cone 2 ESW - 1 3 -

Dig proc RTL 1 2 8 2580
Thermostat ESW 1 2 1 56
Uart TLM 1 9 5 14815

Table 4.1. Characteristics of benchmarks.

Table 4.2 reports the number of atomic propositions (AP), the number of propo-
sitions (P), and the number of temporal assertions (Assertions) extracted by the
proposed approach before running the stressing phase. In particular, the number
of assertions have been divided among next-based (X), until-based (U), and alter-
nating (A). Concerning the N-next pattern, values 2 and 3 are considered for the
parameter N. Finally, in the last two columns, the total execution time of the mining
approach (Time) and the percentage of this time spent by Daikon (D) are shown.

As expected, the most time-expensive step of the miner is the extraction of
atomic propositions performed by using Daikon. Daikon time is not so much affected
by the number of considered variables. In fact, considering B06 and BMaker, we
observe that there is a low difference between the execution time related to the single
cones of influence (where the considered variables are a subset of the total), and the
execution time of the DUV without differentiating the cones of influence. Indeed,
Daikon time is dominated by the time spent to initialize internal data structures,
which depends mainly on the data type of the considered variables. For a Boolean
variable only two invariant patterns have to be considered (i.e., var = true, var =
false), which are very simple to be inferred. On the contrary, for numeric data types
the number of invariant patterns is higher and their inference is more difficult. This
justifies why benchmarks where only Boolean variables (e.g., bit and bit vectors)
are involved (i.e., B03, B06 and Uart) have an execution time lower than the other
benchmarks, which are implemented by using integer (i.e., Dig proc) or real data
types (i.e., BMaker and Thermostat).

For B03 a high number of propositions has been generated. This is due to the
nature of the DUV that, being an arbiter among 4 devices, presents a high number
of possible combinations among the four request signals and the four grant signals.
Such different combinations give rise to a high number of next-based assertions
according to the received requests. On the contrary, the sequential length of B03
is too short to reflect until-based behaviors, and no evident alternating behavior is
implemented by the arbiter.

For BMaker and Thermostat only until-based assertions are mined. This is con-
sistent with the fact that their evolution depends on real data-type variables that
evolve in a continuous, rather than discrete, way. Typical behaviors captured by
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DUV AP P
Assertions Time

D
X U A Total (s.)

B03 28 80 240 0 0 240 551 93%
B06 w/o cones 29 13 27 4 0 31 577 93%
B06 w/ cones 23 11 15 6 0 21 1078 93%

cone 1 14 6 12 2 0 14 540 93%
cone 2 9 5 3 4 0 7 538 93%

BMaker w/o cones 37 19 0 9 0 9 1641 89%
BMaker w/ cones 17 9 0 8 0 8 2949 89%

cone 1 8 4 0 3 0 3 1476 89%
cone 2 9 5 0 5 0 5 1473 89%

Dig proc 15 4 12 0 0 12 1916 93%
Thermostat 4 3 0 3 0 3 1297 94%
Uart 20 19 57 0 16 73 394 92%

Table 4.2. Experimental results.

analyzing these benchmarks are “command is off until temperature is higher than
setpoint” or “engine turns clockwise and engine turns fast until input of the mixer
becomes false”.

Extracted assertions have been then subjected to the stressing phase by stim-
ulating the corresponding checkers connected to the DUV with up to 1 million
stimuli. Table 4.3 reports the number of assertions for which the stressing phase was
unable to found counterexamples at varying of the number of stimuli. For most of
benchmarks, I found very few counterexamples by increasing the number of stimuli.
Generally, by using a number of stimuli which is double (20,000) with respect to
the length of execution traces adopted for the mining phase (10,000), the number
of “survived” assertions stabilizes and no new counterexample is found any more.
The only benchmark that does not converge on the number of survived assertions is
Uart. Indeed, Uart, after a set of input is provided, requires 670 simulation instants
before the corresponding result is observable at primary outputs. By using an exe-
cution trace of length 10,000 it means I can simulate completely no more than 15
different operations, which are too few for mining a set of assertions with a high
degree of survival. However, this is not a problem of the proposed methodology, but
a characteristic of the benchmark.

Finally, I report a comparison between ODEN and the approach proposed in
[15]. Concerning the total execution time, the comparison is reported in Table 4.4.
The table reports execution time at varying of the total number of considered sim-
ulation instants in the execution traces. Actual values are reported for ODEN ; for
the proposed methodology in [15], actual values are reported only for 100 and 1,000
simulation instants, since reaching 10,000 simulation instants becomes practically
intractable for most of the considered benchmarks. The execution time for 10,000
simulation instants has been estimated on the basis of the tendency observed for
shorter execution traces. By looking at the table, it appears that the increasing in
execution time for the proposed approach is linear, at varying of the length of exe-
cution traces. On the contrary, for the proposed methodology in [15] the execution
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Design
Number of stimuli

10000 20000 40000 80000 100000 1M

B03 240 191 177 171 171 171
B06 w/o cones 31 30 29 29 29 29
B06 w/ cones 21 21 21 21 21 21

cone 1 14 14 14 14 14 14
cone 2 7 7 7 7 7 7

BMaker w/o cones 9 9 9 9 9 9
BMaker w/ cones 8 8 8 8 8 8

cone 1 3 3 3 3 3 3
cone 2 5 5 5 5 5 5

Dig proc 12 12 12 12 12 12
Thermostat 3 3 3 3 3 3
Uart 73 71 71 67 67 57

Table 4.3. Survived assertions after the stressing phase.

Design
Length of execution traces
ODEN [15]

100 1000 10000 100 1000 10000

B03 6 58 551 569 11202 643227
B06 w/o cones 6 56 577 500 7920 118539
B06 w/ cones 11 105 1043 na na na

cone 1 5 51 505 na na na
cone 2 6 54 538 na na na

BMaker w/o cones 33 167 1641 474 5209 323040
BMaker w/ cones 60 296 2949 na na na

cone 1 30 149 1476 na na na
cone 2 30 147 1473 na na na

Dig proc 13 135 1916 625 12721 730651
Thermostat 13 116 1297 394 7102 252501
Uart 14 134 394 629 10934 425375

Table 4.4. Comparison between execution time (in seconds) of ODEN and the
proposed approach in [15].

time increases polynomially, till becoming unacceptable for long execution traces.
This difference is mainly due to the different way Daikon is used in the extraction of
atomic propositions, which represents the most expensive phase of both the method-
ologies. By adopting the optimizations described in the Proposition miner section
of the ODEN methodology, the cost of Daikon’s invocation on a set of sub-traces is
almost 40 times lower than [15]’s approach.

A different comparison is related to the number of assertions extracted by ODEN
and the proposed approach in [15] at varying the length of the execution traces.
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Design
Length of execution traces
ODEN [15]

100 400 1000 10000 100 400 1000

B03 132 230 240 240 1554 15448 38385
B06 w/o cones 40 39 37 31 204 586 608
B06 w/ cones 32 23 21 21 na na na

cone 1 18 16 14 14 na na na
cone 2 15 7 7 7 na na na

BMaker w/o cones 9 9 9 9 287 1266 834
BMaker w/ cones 8 8 8 8 na na na

cone 1 3 3 3 3 na na na
cone 2 5 5 5 5 na na na

Dig proc 6 7 6 12 24 26 55
Thermostat 3 3 3 3 35 89 88
Uart 34 34 43 73 156 162 341

Table 4.5. Comparison between the number of assertions extracted by ODEN and
the proposed approach in [15].

Results are reported in Table 4.5. We observe that the number of assertions extracted
by the current methodology has an horizontal asymptotic trend, while for [15] the
values generally keeps going to increase by augmenting the number of simulation
instants. This highlights that the approach proposed is not dependent on the length
of the execution traces, but on the number of different behaviors that execution
traces expose. In fact, when the most of cases are covered by the execution traces,
no new assertion is mined. On the contrary, in [15] the number of assertions keeps to
increase for longer traces. The reason is evident by analyzing the assertions extracted
by the two approaches. In [15], assertions are more related to the specific values
assigned to PIs by the testbench. In the approach presented in this paper, assertions
reflect symbolic relations between PIs and POs. For example, several assertions
in [15] include atomic propositions of the kind variable = constant. Clearly, if the
value’s range of a variable is very large, the number of possible atomic propositions
of this kind increases rapidly by using different stimuli. On the contrary, to avoid
such a problem, in this work I explicitly discarded the possibility of comparing a
variable with a constant. As a result, I ODEN generated a smaller set of assertions
that focuses more precisely on the relation among PIs/POs that derives from the
DUV functionality, discarding specific conditions that are just an instance of more
interesting and more general behaviors.

Conclusions

In this thesis I presented ODEN, a mining approach for behavioral descriptions
that automatically extract temporal assertions from execution traces. Mined asser-
tions capture arithmetic/logic relations between PIs and POs according to a set
of temporal patterns that can be easily extended. With respect to similar existing
techniques, the proposed methodology points out an higher efficiency from the exe-
cution time point of view, and an higher effectiveness by considering the quality of
mined assertions.
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Fig. 4.8. The execution flow of A-TEAM.

4.4.2 A-TEAM

Background

The following definitions are necessary to formalize the methodology A-TEAM.

Definition 4.1. A template variable tv is a place holder in a logic formula (def.
2.4) that can be substituted by a proposition (def . 2.3).

Definition 4.2. An assertion template is a logic formula composed of template
variables through temporal operators and logical connectives.

Methodology

Figure 4.8 presents an overview of the approach implemented in A-TEAM. The
inputs are a set of execution traces of the DUV and a set of assertion templates
defined by the user. The output is a set of LTL assertions, compliant with the
templates provided by the user, which hold on the execution traces supplied as
input. A-TEAM works in three phases:

1. Mining of propositions: The first step consists of the extraction of a set of
propositions that frequently hold on the DUV’s execution traces. These proposi-
tions are created by composing atomic propositions through Apriori algorithm [3].
At this stage, the temporal behaviour of the DUV is not considered yet. The mined
propositions only describe the instantaneous status of the DUV at each simulation
instant.

2. Mining of LTL assertions: The mined propositions are then composed into LTL
assertions, compliant with the user-defined assertion templates. Each assertion
template is represented as a syntax tree and a set of justification rules has been
defined to instantiate propositions from the leaves to the root of the tree, such
that the final assertion is guaranteed to be true on the execution traces provided
as input.



4.4 Methodology 53

3. Evaluation of the mined assertions: The goal of the third step is to evaluate
the assertion coverage with respect to the DUV behaviours. Assertions that do
not increase the coverage are discarded. Moreover, a minimization strategy is
implemented to avoid collecting redundant assertions and to keep small the final
set. The evaluation relies on a fault coverage-based analysis, according to the
assumption that higher is the number of faults that make an assertion φ to fail,
higher is the coverage of φ with respect to the DUV behaviors.

Proposition miner

The purpose of the proposition miner is to extract propositions that frequently hold
on the execution traces to describe the instantaneous behaviors of the DUV at each
simulation instant. These propositions are then provided to the assertion miner to
mine temporal behaviors. The extraction of the propositions works as shown in
Algorithm 3. It gets as input the set of DUV execution traces (Traces) and a set of
atomic propositions that predicate on the output ports of the DUV (apSetOut). By
default, apSetOut includes the following set of pre-defined atomic propositions for
Boolean and bit vector data types (if any):

• bi = True and bi = False, for each Boolean variable bi that represents an output
of the DUV;

• Bi = c, for each bit vector variable Bi that represents an output of the DUV,
and for each constant c that can be assigned to Bi.

Moreover, apSetOut can be customized by the user, who is in charge of specifying
further atomic propositions predicating on numeric data type ports (if any), like,
for example, v > 0, u ≤ w+y, etc. In this phase, the variables that represent inputs
for the DUV are ignored, since their values depend on the testbench applied to
stimulate the DUV, rather than on the DUV behaviors.

The output of Algorithm 3 is a set of propositions (Propositions), created by
combining the atomic propositions belonging to apSetOut, which hold in some of the
simulation instants of the Traces. We say that a proposition is frequent if it holds
very often in the Traces2. Both, frequent and infrequent propositions are extracted.
The intuitive idea is that the propositions that frequently hold in the DUV execution
traces can represent a regularity in the behaviors of the design. Thus, in the phase
2 of the approach, A-TEAM initially directs the assertion miner to use the frequent
propositions to generate temporal assertions that probably have a high coverage
with respect to the DUV behaviors. Afterwards, A-TEAM asks the assertion miner
to consider the infrequent propositions too, to generate temporal assertions covering
the remaining corner cases of the DUV.

In detail, Algorithm 3 initially collects, inside itemList, a list of itemsets (lines
2-8) for all the execution traces. An itemset for the simulation instant tj of a trace Ti

represents the subset of the atomic propositions belonging to apSetOut that hold at
tj . Then, the proposition miner calls Apriori algorithm to identify frequent itemsets
inside the execution traces (line 9). Apriori starts by generating sets containing only
one atomic proposition. The sets with a low support are discarded 3. Then, Apriori

2 The threshold for saying a proposition is frequent is a parameter that can be set
by the user.

3 Given a set S of atomic propositions, which are true all together n times inside
an execution trace of length N , the support of S is defined as support(S) = n/N .
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Algorithm 3

1: function propositionsMiner(Traces, apSetOut)
2: itemList = ∅
3: for all Ti ∈ Traces do
4: for all ti ∈ Ti do
5: itemSet = ∅
6: for all ap ∈ apSetOut do
7: if hold(ap, ti, Tj) then
8: itemSet = itemSet ∪ {ap}
9: end if

10: itemList = itemList ∪ itemSet
11: end for
12: end for
13: end for
14: FrequentSets = Apriori(itemList)
15: Propositions = ∅
16: for all set ∈ FrequentSets do
17: p = True
18: for all ap ∈ set do
19: p = p AND ap
20: end for
21: Propositions = Propositions ∪ p
22: end for
23: return Propositions
24: end function

iteratively extends each survived set with a new atomic proposition, and again, the
sets with low support are pruned. The algorithm stops when no set can be further
enlarged without decreasing its support. Apriori ’s complexity grows exponentially
in the number of the considered sets. To bound its execution time, I perform this
mining phase by providing Apriori with atomic propositions that predicates only
on DUV output variables belonging to the same cone of influence, per each cone of
influence. Finally, the proposition miner transform each frequent itemset returned
by Apriori into a proposition, by combining, through the AND operator, the atomic
propositions belonging to the same itemset (lines 10-14). At the end, the set of
propositions is returned (line 15). The threshold for the support is a parameter that
can be selected by the user.

As an example, let us consider the set of atomic propositions apSetOut listed
in Figure 4.9a, and the execution trace T reported in Figure 4.9b, as inputs for
Algorithm 3. Figure 4.9c shows, for each simulation instant ti, the itemset Si ex-
tracted by Algorithm 3, which collects the atomic propositions that are true at time
ti. Finally, Figure 4.9d shows the propositions generated from the frequent itemsets
returned by Apriori, given the itemList of Figure 4.9c.
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t v1 v2 v3 v4 v5 v6 v7

0 false 001 3 2 01 false false

1 true 001 3 2 01 false false

2 true 011 3 3 01 false true

3 true 111 3 3 01 false true

4 false 001 4 3 01 false true

5 false 010 4 3 10 true false

6 false 011 4 4 10 true true

7 false 111 4 4 10 true true

8 false 001 5 4 10 true true

9 false 010 5 4 10 true false

(b) 
Execution trace T

outputsinputs

S0 :  {v5 = 01; !v6; !v7}

S1 :  {v5 = 01; !v6; !v7}

S2 :  {v3 = v4; v5 = 01; !v6; v7}

S3 :  {v3 = v4; v5 = 01; !v6; v7}

S4 :  {v5 = 01; !v6; v7}

S5 :  {v5 = 10; v6; !v7}

S6 :  {v3 = v4; v5 = 10; v6; v7}

S7 :  {v3 = v4; v5 = 10; v6; v7}

S8 = {v5 = 10; v6; v7}

S9 = {v5 = 10; v6; !v7}

(c) 
ItemList

Propositions Support

v7 0.6

v5 = 01 & !v6 0.5

v5 = 01 & v6 0.5

!v7 0.4

v3 = v4 & v7 0.4

(d) 
Propositions

apSetOut = {v3=v4; v5=01; v5=10; b6=true; b6=false; b7=true; b7=false} 

(a) 
Atomic propositions

Fig. 4.9. Generation of propositions.

Assertions Miner

The goal of the assertion miner is to generate LTL assertions by instantiating propo-
sitions in the user-defined assertion templates. Assertion templates represent spec-
ification patterns the verification engineer is interested in, but he/she does not
know if they have been actually implemented, in some form, in the DUV. The
set of mined assertions can confirm the expectations of the verification engineer,
or they can contradict them through missing or unexpected temporal assertions.
In particular, the miner searches for LTL assertions that instantiate the template
G(antecedent → consequent), where antecedent and consequent can be formulas
including logical connectives and temporal operators as reported in Def. 2.4, with
the only restriction that the release (R) and until (U) operators can appear only on
the consequent. For example, the verification engineer can be interested in discov-
ering which propositions must replace the template variables a, b and c to create
different concrete instances of the assertion template G(a → X(bUc)) that hold on
the DUV. A list of practice patterns, frequently adopted for representing design
specifications, that can be used to define the assertion templates for our assertion
miner has been proposed by Dwyer et al. in [30], but the user is free to provide
A-TEAM with his/her own set.

Algorithm 4 illustrates the pseudo-code of the main function of the assertion
miner, i.e., makeAssert. It takes as input an assertion template t, a proposition p
extracted by the proposition miner, a set of atomic propositions on the DUV inputs
apSetIn, a set of atomic propositions on the DUV outputs apSetOut, and a scope
S, initially set at ∅, which is used to take care of simulation instants to be focused
on during the mining procedure. Initially, the makeAssert function is called on the
assertion template t : G(at1 → at2), and then it recursively instantiates a temporal
assertion compliant with t as follows:

• When t is G(at1 → at2) (line-3): The algorithm first generates a temporal asser-
tion β for the consequent by recursively calling makeAssertion on the assertion
template at2. Then, it applies makeImply(at1, apSetIn, β) to generate a new
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Algorithm 4

1: function makeAssert(t, p, apSetIn, apSetOut, S)
2: switch t do
3: case G(at1 → at2)
4: β=makeAssert(at2,p,apSetIn,apSetOut,S)
5: α = makeImply(at1, apSetIn, β)
6: return makeGobally(α, β)

7: case tv
8: if S is ∅ then
9: return p

10: else
11: return getInvariant(S, apSetOut)
12: end if
13: case at1 & at2
14: α = makeAssert(at1,p,apSetIn,apSetOut,S)
15: S = evaluate(α)
16: β = makeAssert(at2,p,apSetIn,apSetOut,S)
17: return α & β

18: case at1 | at2
19: α = makeAssert(at1,p,apSetIn,apSetOut,S)
20: S = evaluate(!α)
21: β = makeAssert(at2,p,apSetIn,apSetOut,S)
22: return α | β
23: case X[n](at)
24: α = makeAssert(at,p,apSetIn,apSetOut,S)
25: return X[n](α)

26: case at U tv
27: α = makeAssert(at,p,apSetIn,apSetOut,S)
28: β = makeUntil(α)
29: return α U β

30: case tv R at
31: β = makeAssert(at,p,apSetIn,apSetOut,S)
32: α = makeRelease(β)
33: return α R β

34: end function

assertion α for the antecedent at1. The function makeImply works as shown
in Algorithm 5 and it will be explained later in this section. However, at this
time is worth noting that makeImply can return α in the form of a disjunction
of formulas, namely α = α1 | . . . | αn. Finally, if both α and β are not NULL,
makeGlobally decomposes α and it returns G(αi → β) for all αi included in α,
otherwise the result will be NULL.
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• When t = tv, i.e. t is a template variable (line 7): If S = ∅, the algorithm in-
stantiates t with the proposition p. On the contrary, the algorithm returns the
proposition generated by getInvariant(S, apSetOut). This function returns the
formula

∧
apj , which composes with the AND operator all the atomic proposi-

tions apj belonging to apSetOut that are true ∀ti ∈ S. It returns, instead, NULL
if no atomic proposition is true in S.

• When t = at1 & at2 (line 10): The algorithm first generates a temporal asser-
tion α according to the assertion template at1. Then, the function evaluate(α)
updates the scope S by including only the simulation instants where α holds on
the execution traces (line 12). Subsequently, it generates a temporal assertion β
according to the template at2 for the new scope S. Finally, it returns α & β, if
both α and β are not NULL, otherwise the result will be NULL.

• When t = at1 | at2 (line 15): This case behaves similarly to the previous. The
only difference is related to the updating of the scope S after α is generated. In
this case, we are interested in discovering what is true when α is false. Thus, S
is updated to include only instants where α does not hold (line 17).

• When t = X[n](at) (line 20): The algorithm recursively calls makeAssert on the
assertion template at to generate the assertion α. Then, it returns X[n](α) if α
is not NULL, otherwise the result will be NULL.

• When t = at U tv (line 23): The algorithm first generates a temporal assertion
α according to the template at. Then, it applies makeUntil(α) to generate a
new assertion β for tv. Finally, it returns α U β if both α and β are not NULL,
otherwise the result will be NULL. The function makeUntil works as shown in
Algorithm 6 and it will be explained later in this section.

• When t = tv R at (line 27): This case behaves similarly to the previous. The
only difference is that first we generate the right side of the release operator and
then the left side by calling makeRelease(β). The function makeRelease works
similarly to makeUntil, according to the semantics of the operator R.

The function makeImply of Algorithm 5 is in charge of creating the antecedent
α of an implication, given the consequence β that has been already mined, at the
time makeImply is called. Let us remember that the only temporal operator that
can appear in the antecedent α is X. Thus, the assertion template at passed to the
makeImply is a conjunction

∧
X[i](alphai), for some i ∈ N . According to the time

spawn considered by the next operators included in at, the set of atomic propositions
apSetIn is unrolled (line 4). For example, if at = α0 ∧ X[3](α3), two instances of
each atomic proposition in apSetIn are included in A, for their possible instantiation
in, respectively, α0 and α3 placeholders. Then, a decision tree algorithm similar
to the one adopted in [42] is used. It provides a set of formulas compliant with
at, such that each of them implies β throughout the execution traces. However,
the decision tree algorithm tends to overfit the antecedents, which become over-
constrained by including atomic propositions in A that are useless to imply β. Thus,
an optimization procedure is implemented to simplify the antecedents (lines 6-13).
It decomposes each antecedent a =

∧
X[i](alphai) in the set of formulas da =

{X[i](alphai) s.t. αi occurs in a}. Then, it tries to prune each antecedent, such that
a lower number of atomic propositions can be used to imply β. This is done by an
iterative procedure that picks up a subset of formulas from da and checks if their
conjunction implies β. The subset size is progressively increased starting from 2,
such that, at the beginning, pairs of formulas included in da are considered. If no
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Algorithm 5

1: function makeImply(at, apSetIn, β)
2: α = false
3: S = evaluate(β)
4: A = unroll(at, apSetIn)
5: antecedentSet = decisionTree(A, β, S)
6: for all a ∈ antecedentSet do
7: da = decompose(a)
8: new da = ∅
9: size = 2

10: while (size ≤ |da|) && (new da = ∅) do
11: new da = prune(da, size, β)
12: size+ +
13: end while
14: new a = recompose(new da)
15: α = α | new a
16: end for
17: if α == false then
18: return NULL
19: else
20: return α
21: end if
22: end function

pair implies β, the size is increased and triples are considered, and so on. As soon
as one iteration of the pruning phase succeeds in implying β, the procedure stops
and the minimized antecedent is returned. In the worst case, the procedure returns
exactly the same antecedent provided by the decision tree, when no minimization is
possible. The final list of minimized antecedents are returned in OR (line 14). NULL
is returned if no antecedent is mined for β.

The function makeUntil of Algorithm 6 is in charge of creating the right operand
β of the formula αUβ, given α. The set of propositions returned by the proposition
miner (section Proposition miner of the A-TEAM methodology) applied to atomic
propositions predicating, this time, over both the DUV inputs4 and outputs, are
considered as possible candidates for β (line 4). The algorithm first extracts the set
S of simulation instants ti such that α holds till ti but it does not hold at time ti+1,
for each sequence of occurrences of α in the execution traces (line 2). Then, for each
proposition p that does not hold in the same instants where α holds except S (lines
4-5), it collects p if it holds for each instant included in S (line 6-9). A disjunction
of all collected propositions is returned, or NULL in case no proposition is found.

Figure 4.10 exemplifies how makeAssert works, given the assertion template
G(vt1 → X(vt2Uvt3)) and the proposition (n3 = n4) ∧ b7. The first template

4 Differently from the justification of the left side of an until, atomic propositions
on inputs are also considered when the proposition miner is used for justifying
the right side.
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Algorithm 6

1: function makeUntil(α)
2: S = getLastInstants(α)
3: β = false
4: for all p ∈ Propositions do
5: if evaluate(p) ∩ {evaluate(α) \ S}) = ∅ then
6: found = true
7: for all ti ∈ S do
8: if p does not hold at ti then
9: found = false

10: break
11: end if
12: end for
13: if found then
14: β = β | p
15: end if
16: end if
17: end for
18: if β == false then
19: return NULL
20: else
21: return β
22: end if
23: end function

matched by makeAssertion is G(at1 → at2). The algorithm then justifies the
consequent of the implication, i.e., X(vt2Uvt3), and then the template variable
vt1 representing the antecedent. The justification of the consequent requires to
recursively call makeAssert on the next operator and successively on the until
nested inside the next. Thus, the procedure begins trying to instantiate the tem-
plate variable vt2. Being the scope S still empty, the algorithm replaces vt2 with
n3 = n4 ∧ b7. Afterwards, it applies makeUntil to replace the variable vt3. The
instants where n3 = n4 ∧ b7 is verified are {2, 3, 6, 7}. Thus, makeUntil collects
and returns the proposition !b1 ∧ B2 = 001 which is verified at the instants
{5, 8}. Once the justification of until and next cases is finished, the mined con-
sequent is X((n3 = n4 ∧ b7) U (!b1 ∧B2 = 001)), and the recursion closes. Subse-
quently, makeImply is called to justify the antecedent of the implication. The
propositions generated at the instants {1, 5} are, respectively, b1 ∧B2 = 001 and
!b1 ∧B2 = 010. Since both are exclusively verified in {1, 5}, the function replaces
vt1 with (b1 ∧B2 = 001) ∨ (!b1 ∧B2 = 010). At the end, makeGlobally breaks the
disjunction in the antecedent to create the following two assertions:
G((b1 ∧B2 = 001)→ X((n3 = n4 ∧ b7) U (!b1 ∧B2 = 001));
G((!b1 ∧B2 = 010)→ X((n3 = n4 ∧ b7) U (!b1 ∧B2 = 001)).
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t b1 B2 n3 n4 … b7

0 false 001 3 2 … false

1 true 001 3 2 … false

2 true 011 3 3 … true

3 true 111 3 3 … true

4 false 001 4 3 … true

5 false 010 4 3 … false

6 false 011 4 4 … true

7 false 111 4 4 … true

8 false 001 5 4 … true

9 false 010 5 4 … false

Assertion template:
G(vt1 -> X (vt2 U vt3))

Considered proposition: 
(n3=n4)  ∧ b7
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Mined assertions:
G((b1 & B2= 001) -> X( ((n3=n4) ∧ b7) U (!b1 & B2= 001) ))
G((!b1 & B2= 010) -> X( ((n3=n4) ∧ b7) U (!b1 & B2= 001) ))

Fig. 4.10. Generation of a temporal assertion.

Algorithm 7

1: function assertionsSection(U , X)
2: I = ∅
3: while ∃u ∈ U such that u 6∈

⋃
i∈I ui do

4: for i = 1..n do
5: with probability xi I = I ∪ {i}
6: end for
7: end while
8: return I
9: end function

Assertion Evaluator

The goal of the third step of our approach is to measure the quality of the mined
assertion by evaluating their coverage with respect to the DUV behaviors. The
evaluation is based on the assertion coverage metrics proposed in [35]. A set of
testable faults is injected in the DUV. Then, the set of faults detected by each
mined assertion is collected. A fault is detected by an assertion if the assertion fails
in the DUV affected by the fault, while it holds on the fault-free DUV. Given a set
of assertions, their coverage is measured as the number of faults that are detected
by at least one assertion in the set with respect to the total number of injected
faults. Achieving 100% assertion coverage guarantees that the assertions cover all
the behaviors affected by the faults. Higher is the quality of the adopted fault model,
more accurate is the assertion coverage, as it happens when a fault model is used
to measure the quality of an automatic test pattern generation process. During the
mining phase, assertions that do not increase the overall coverage are discarded.
Moreover, the final set of assertions is minimized as follows.

Given the sets u1, . . . , un, where ui is the set of faults covered by the i-th
assertion, A-TEAM applies an integer linear programming (ILP)-based approach to
reduce the number of assertions without decreasing the overall assertion coverage. In
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Table 4.6. Experimental results.

Benchmark characteristics param. #ass size(ant) cov (%) time (s.)
Name PIs POs #F #t |tw| A D A D A D A D
uart decode 3to8 7 8 16 1 1 11 28 4.6 3.5 100.0 100.0 1 1
uart edge det 1 4 14 3 4 4 11 2 2.3 100.0 100.0 1 1
uart fifo async16 sr 13 10 195 4 3 35 47 9.2 8.4 91.7 42.5 2970 161
uart shift reg pl 18 16 127 2 4 59 112 7.8 5.4 100.0 70.0 3633 234
fpmul packfp 35 32 163 2 2 88 119 3.3 2.5 96.3 88.9 581 40
fpmul unpackfp 32 45 84 2 2 75 120 1.4 2 96.4 90.4 797 51
fpmul fpround 36 36 124 1 1 75 139 1.4 3 100.0 89.5 147 67
fpmul fpnormalize 36 36 141 1 1 108 189 2 3.4 100.0 100.0 56 40
apbBus controller 142 183 141 1 2 387 232 3.2 3.2 90.0 65.4 1331 720

detail, a variable xi is introduced for each i-th assertion, with the intended meaning
that xi = 1 when the i-th assertion is preserved, and xi = 0 otherwise. We can then
express the problem of minimizing the number of assertions in the following way:

minimize

n∑
i=0

xi; subject to
∑

i:u∈ui

xi ≥ 1, ∀u ∈ U,with xi ∈ {0, 1}

In order to solve the ILP problem in polynomial time, I relax the constraint
on variable xi, by allowing 0 ≤ xi ≤ 1, instead of requiring xi ∈ {0, 1}. I then
apply the CLP linear program solver (https://projects.coin- or.org/Clp) to solve the
relaxed problem. Finally, a heuristics is used to decide if preserving or discarding
each assertion, according to values xi provided by the solution of the relaxed ILP
problem. The heuristics is illustrated in Algorithm 7. It takes in input the set of faults
U = {u|u ∈ ui} covered by at least one assertion, and the result, X = (x1, .., xn),
of the relaxed ILP problem. The set I collects the indexes of the assertions to be
preserved; at the beginning it is initialized at ∅, i.e., no assertion is preserved (line
2). Until a fault u ∈ U exists that it is not covered by any assertion, the algorithm
iteratively preserves the i-th assertion with probability xi (lines 3-4). When all faults
in U are covered by at least one assertion, the algorithm returns I. The obtained
solution is a log(|U |) approximation of the optimal solution [81], where each mined
assertion cannot be discarded without decreasing the coverage of the DUV.

Experimental results

Experimental results have been carried out on an Intel core i7 equipped with a 4.0
GHz processor and 8.0 GByte of RAM, running Linux OS. The effectiveness and
efficiency of A-TEAM have been compared with the decision-tree based approach
implemented in [42]. The comparison has been performed on the set of benchmarks
showed in Table 4.6: some components of a UART, some components of a floating
point multiplier, and an APB bus controller. Columns on the left part of the Table
report the size in bits of the primary inputs (PIs) and primary outputs (POs), and
the number of faults injected for the assertion coverage evaluation procedure (#F ).
The well-know stuck-at fault model has been adopted, and only testable faults have
been considered. It is worth noting that the complexity of dynamic assertion mining
depends on the number of PIs and POs of the DUV, on the number of DUV behav-
iors, and on the length of the analyzed execution traces. On the contrary, the number
of DUV code lines is less relevant, as the source code is not considered. The execu-
tion traces adopted for mining the assertions have been created by simulating each
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benchmark for 10,000 instants. Then, the table reports the configuration parameter
for A-TEAM and the decision tree-based approach, i.e., the number of templates5

defined to mine assertions with A-TEAM (#t), and the width of the time window
considered for the decision tree (|tw|). To be fair in the comparison, the same value
for |tw| has been fixed also in A-TEAM, when the decision tree procedure is called
inside the makeImply function. Finally, for each benchmark, the table reports the
comparison between A-TEAM (Columns A) and the decision tree-based approach
(Columns D) in terms of: number of mined assertions (#ass), average number of
atomic propositions involved in the antecedent of the mined assertions (size(ant)),
achieved assertion coverage (cov (%)), and execution time in seconds (time (s.)).

The following considerations are derived from the comparison of the results.
A-TEAM generally extracts a lower number of assertions, with a lower number
of atomic propositions in the antecedents. On the opposite, the number of atomic
propositions in the consequents (not reported in the table) is always 1 for the deci-
sion tree-based approach, while it varies between 1 and 4 for A-TEAM. Antecedents
are shorter thanks to the decompose-prune-recompose procedure adopted by the
makeImply function, which minimizes the set of atomic propositions originally re-
turned by the decisionTree function. As a consequence, A-TEAM assertions are
not over-constrained in the antecedents, which positively impacts on their capabil-
ity of covering, in average, a higher number of behaviors per assertion. In the few
case where the size of the antecedent is higher (e.g., for uart fifo async16 sr), this
depends on the fact that the decision tree-based miner gave up before completely
exploring a DUV path, while A-TEAM went deeper in the analysis finding, at the
end, an assertion that increases the total coverage. In general, the assertion coverage
achieved by A-TEAM is always higher, even if the number of generated assertions
is lower than the decision tree-based approach. This further proves that assertions
generated by A-TEAM cover in a better way the DUV behaviors affected by the
injected faults. This depends also on the capability of A-TEAM of generating asser-
tions according to different temporal templates, which appears particularly evident
for uart fifo async16 sr, where the A-TEAM coverage, based on 4 templates, dou-
bled the decision-tree coverage that mines just one kind of assertion. Finally, being
shorter (and fewer), the A-TEAM assertions are more easy and fast to be ana-
lyzed by a human. As a drawback of A-TEAM the higher accuracy is paid in terms
of execution time, which is in some cases one order of magnitude higher that the
decision-tree based approach. However, this is due to the higher number of assertion
kinds that A-TEAM search for.

Conclusions

In this thesis I presented an assertion mining tool, A-TEAM, which automatically
extracts assertions from execution traces of the DUV independently from its abstrac-
tion level (e.g., TLM, RTL, gate level). The miner is guided by user-defined tem-
plates, thus differently from existing approaches, it is not restricted to a set of pre-
defined patterns. In addition, a coverage metrics and an integer linear programming-
based approach are used to compact the set of mined assertions. Experimental

5 Remember that the decision tree-based approach, instead, generates only one
kind of assertions, in the form G(a → b), where only the X temporal operator
can occur in a and b.
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results showed that in comparison with the approach proposed in [42], A-TEAM
generates a lower number of simpler assertions, but it achieves a higher coverage of
DUV behaviors according to the coverage metrics proposed in [35]. Future works
will be devoted to reduce the execution time by further optimizing the justification
of the antecedents of implications, which currently represent the bottleneck of the
approach.
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Vulnerability Detection

5.1 Introduction

In the past decade, the number of firmware attacks has been on the rise [66, 47]. For
instance, erroneous hardware configurations let attackers set protected memory loca-
tions as writeable [46]; vulnerable update routines allowed the execution of malicious
code [45]; and vulnerable interrupt handlers were exploited to attack a firmware by
performing operations when the CPU was in the most privileged execution mode
[28].

Consequently, more sophisticated validation techniques and tools are necessary
to guarantee an effective identification of firmware vulnerabilities. Unfortunately,
an exhaustive formal validation of the whole system is not any longer feasible for
nowadays complex embedded systems. Then, verification engineers are more and
more required to prioritize the validation effort to target the most exercised and
vulnerable features of a design. However, this collides with the intractable diversity
of firmware vulnerabilities, which makes their detection a very challenging issue. As
a consequence, vulnerabilities hidden in unlikely execution paths risk to escape the
validation.

As many classes of vulnerabilities are difficult to find without simulation, but
exhaustiveness of the analysis is also important, recent works have combined sym-
bolic simulation and assertion checking in order to verify firmware execution flows
(see Section 5.2). These approaches rely upon a user-defined set of formal assertions
describing behaviours the firmware should not implement. Such assertions, which are
generally derived from a set of security requirements written in natural language, are
first turned into checkers, and then verified in each execution path of the firmware.
If a checker fails, (e.g. a counter example for the corresponding assertion is found),
then the user is alerted that a security requirement was not satisfied. However, if
all assertions pass, no security vulnerability is detect and the system is deemed free
from back doors. Unfortunately the definition of assertions is a difficult and error-
prone manual task. Omitting the definition of an assertion exposes to the risk of
an incomplete validation process, possibly leading to the incapability of detecting
actual vulnerabilities.
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5.2 State of the Art

I am not aware of any platform that can automatically generate assertions/properties
highlighting the rare corner cases of a firmware. Other systems extending KLEE,
which is the symbolic-simulator engine of DOVE, have been proposed [6, 48, 68, 5,
73, 61] in literature. FIE [26] is a platform built on top of KLEE for detecting bugs
in small, simple firmware programs for the MSP4030 family of microcontrollers. FIE
needs of the firmware’s source code to perform symbolic simulation of the firmware,
and it currently supports finding two type of bugs: memory safety violations, such
as buffer overruns and out-of-bounds accesses to memory objects like arrays, as
well as peripheral-misuse errors in which a firmware writes to a read-only memory
location or to locked flash. S2E [20] is a platform from École Polytechnique Fédérale
de Lausanne (EPFL) built on top of the QEMU virtual machine [7] and the KLEE
symbolic execution engine. The S2E ’s novelty consists of its ability to scale to large
real systems by selectively executing symbolically only those parts of a system that
are of interest to the tests. On the contrary of FIE, S2E simulated directly the
binary code of a program. It allows to analyze properties and behaviors (e.g. number
of cache misses) by applying external plugins while running execution paths. In [6]
a prototype of a tool is proposed to specifically detect unauthorized read accesses
performed by interrupt handlers. Given a snapshot of SMRAM, its base address, and
the address of the variable interrupt handler in SMRAM, the tool uses S2E to search
for concrete examples that cause an interrupt handler to read memory locations
outside of SMRAM. DDT [48] is a system for testing closed-source binary device
drivers against undesired behaviors, like race conditions, memory errors, resource
leaks. DDT has two main components: a set of pluggable bug checkers and a driver
exerciser. The exerciser simulate the driver along its execution paths. The dynamic
checkers watch the execution and flag undesired behaviors. DDT provides a default
set of checkers, and this set can be extended with an arbitrary number of other
checkers for both safety and liveness properties. KleeNet [68] and T-Check [51] are
instead tools that use symbolic analysis to generate test cases for sensor networks and
find safety and liveness errors in sensor network applications running on TinyOS.

5.3 Objectives

To overcome the manual definition of assertions and the related risks, I presented
DOVE (Detection Of firmware VulnErabilities) framework in this thesis. By exploit-
ing concolic testing and model counting, DOVE can automatically generate asser-
tions pinpointing corner cases that could hide security vulnerabilities of a firmware
running in a hardware platform.

5.4 Background

A control - flow symbolic simulation is a way of “exploring” all execution paths of a
program. It works by considering symbolic values in specific locations of a program
such as variables, input values or memory locations. A symbolic value represents
all the feasible values that can be assigned. Afterwards, an initial symbolic state is
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Fig. 5.1. Generation of a symbolic tree through the control-flow symbolic simulation
of a program.

created to start simulating the program “step-by-step”. At a high level, a symbolic
state represents a running process having a register file, stack, heap and program
counter. If during the simulation a symbolic state encounters a conditional state-
ment, then new states are generated to independently follow each feasible execution
path. For instance, let us consider the function shown in Figure 5.4a with a symbolic
variable a. At the beginning the symbolic state 1 is created as reported in Figure
5.4b. Then the symbolic states 2 and 5 are generated from the state 1 because of the
condition at line 4. Next the states 3 and 4 are generated from the state 2 because
of the condition at line 6.
When a new symbolic state is generated, an edge is defined between the state that
reached the condition, and the new one. Each edge is labelled with the constraints
that have to be satisfied to follow the path simulated by the new symbolic state.
For instance, the constraint a < 40 labels the edge between the states 1 and 2,
meanwhile a ≥ 40 is the constraint between states 1 and 5. The assignment of a
value x to a variable w that occurs in the symbolic simulation is called a snapshot
of the variable w. Let us take the variables b and c of the function in Figure 5.4a as
example. During the symbolic simulation of the function we can observe four differ-
ent snapshots for b, namely: {(b = 0); (b = 1); (b = 2); (b = 3)}, and one snapshot
for c, namely: {(c = 9)}. A sequence of snapshots that occur during the execution
of a symbolic state is called symbolic trace. The symbolic state 4 of Figure 5.4b
has the symbolic trace 〈(b = 3); (c = 9)〉. The snapshot (b = 3) is first generated
because of the assignment at line 9. Meanwhile the snapshot (c = 9) is generated
because of the assignment at line 11. Throughout this thesis I refer to the whole set
of symbolic states and edges generated by the symbolic simulation as a unique data
structure named symbolic tree.

5.5 Methodology

5.5.1 DOVE

Figure 5.2 presents an overview of execution flow implemented in DOVE. The input
parameters are a firmware in binary code and an abstract hardware model of the
hardware where the firmware is executed. The output is a set of temporal assertions
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Fig. 5.2. The execution flow of the framework DOVE.

highlighting corner cases that may hide security vulnerabilities of the firmware under
verification. DOVE works in three phases:

1. Symbolic simulation: The first phase consists of simulating the firmware with
the purpose of maximizing its execution-path coverage. This objective is achieved
by using KLEE[18], a symbolic simulator capable of concurrently executing dif-
ferent execution paths by exploiting symbolic values. The result of this step is a
symbolic tree tracing how the values of the registers and/or memory locations of
the abstract hardware model change after the execution of each instruction of the
firmware.

2. Probability mapper: Each path from the root to a state of the previously gen-
erated symbolic tree is then analyzed. The objective of this analysis is to get the
probability of following a given firmware’s execution path. In particular, DOVE
applies a weighted model-counting based approach to count the different solu-
tions that satisfy the constraints representing the conditions encountered along a
path π. Afterwards, the number of solutions is applied to get the probability of
executing π.

3. Assertion generator: In the third and last phase, the goal is to generate for-
mal assertions representing difficult-to-traverse execution paths that possibly hide
security vulnerabilities that escape traditional verification approaches. Assertions
are ordered according to the probability of observing specific values in the registers
and/or memory locations of the abstract hardware model during the execution of
the firmware.

Symbolic Simulation

The symbolic simulation of the firmware works as shown in Algorithm 8. It takes
5 input parameters: an abstract hardware model M , a firmware f , a set W ′ of
memory locations and/or registers that will be filled out with symbolic values, a
set W of memory locations and/or registers that will be traced after the execution



5.5 Methodology 69

Algorithm 8

1: function symbolicSimulation(M,f,W ′,W, n)
2: v = makeInitialSymbolicState(M,f)
3: V = v
4: for i in range(0, n) do
5: V ′ = ∅
6: for all v ∈ V do
7: fillOutSymbolicV ariables(v,W ′)
8: fetch(v)
9: V ′ = V ′ ∪ execute(v)

10: end for
11: V = V ′

12: for all v ∈ V do
13: trace(v,W )
14: end for
15: end for
16: T = makeSymbolicTree(V )
17: return T
18: end function

of each instruction of the firmware, and an upper bound threshold n fixing the
maximum number of instructions possibly executed in each feasible execution path
of the firmware.

In detail, Algorithm 8 generates an initial symbolic state v by using the function
makeInitialSymbolicState(M, f) (line 2). This function runs a primitive of KLEE
that instantiates the initial symbolic state, and performs the initialization steps of
the hardware model M . In particular, the initialization steps of M consists in loading
the binary code of the firmware f into the text memory and setting all registers and
memory locations with an initial value. At the end of this step, v represents an
instance of the abstract hardware model ready to execute the first instruction of the
firmware. Next, the state v is inserted into the set V , which represents the pool of
active symbolic states (line 3). Afterwards, for a fixed number of loops (lines 4-15),
Algorithm 8 performs the following two macro phases for each state v in V : 1) it
loads and executes a firmware instruction, 2) it takes a snapshot of the abstract
model’s variables.
In detail, in the first macro phase Algorithm 8 generates an empty set of symbolic
states V ′ (line 5). Next, for each state v in V (lines 6-10), it fills out the variables
of the hardware model of v by using the function fillOutSymbolicV ariables(v,W ′)
(line 7). In particular, for each variable w′ in W ′ fillOutSymbolicV ariables runs
a primitive of KLEE to generate a new symbolic value x. Then, the corresponding
variable w′ in v gets the value x. After that, Algorithm 8 loads a new instruction
of the firmware in v by using the function fetch(v) (line 8). This function reads
the program counter (PC) of the hardware model, and loads into the instruction
registers (IR) the addressed instruction of the firmware. Finally, through the function
execute(v) (line 9), the loaded instruction is simulated. The result of this simulation
is a set of symbolic states. In particular, if the instruction in IR is an arithmetic or
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Algorithm 9

1: function probabilityMapper(v, C)
2: p = computeProbability(C)
3: setProbability(v, p)
4: for all b in edges(v) do
5: push(C, b.contraint)
6: probabilityMapper(b.node, C)
7: pop(C)
8: end for
9: end function

memory related statement (e.g., load/store), then the state of the hardware model of
v is updated by simulating the instruction in IR, and v is returned. On the contrary,
if the instruction in IR is a conditional statement involving symbolic values, then a
new symbolic state v′ is generated for each feasible branch of the condition. Each
v′ inherits from v: (1) the current state of the abstract hardware model; (2) the
sequence of constraints on the symbolic variables that was satisfied from the initial
symbolic state to reach v′. Finally, the set of generated v′ states are returned as
result. When all the symbolic states v of V simulated an instruction of the firmware,
the set V ′ collecting all the states returned by the function execute is assigned to
V (line 11).
The second macro phase of Algorithm 8 makes for each symbolic state v of V a
snapshot of the variables of the hardware model (lines 12-14) by using the function
trace(v,W ). In particular, for each variable w of W a snapshot of the current value
of w in v is generated and added in the symbolic trace of v. When all symbolic states
in V have simulated a number of n instructions, Algorithm 8 generates a symbolic
tree by using the function makeSymbolicTree(V ) (line 16).

Probability Mapper

The probability mapper calculates the probability of reaching any of the symbolic
states from the root of the symbolic tree. It traverses the symbolic tree with a depth-
first based strategy. At each visited state v, a solver is applied to count the solutions
of the conditions encountered along the execution path from the root to v. The
counted solutions are then used to compute the probability of v. The result of this
phase is an annotated symbolic tree reporting for each symbolic state its probability
of being reached starting from the root.

Algorithm 9 illustrates the pseudo-code of the function probabilityMapper. It
takes as input parameters a symbolic state v, which initially is the root of the
symbolic tree, and a stack of constraints C, which initially is empty. Then, it re-
cursively computes the probability p of all the states in the tree by means of the
function computeProbability(C) (line 2), which is explained later in this section. As
an example, let us consider to apply Algorithm 9 to the symbolic tree of Fig. 5.4b.
Figure 5.3a shows, for each symbolic state, the constraints collected in the stack
C, and the probability of reaching the state. Figure 5.3b reports the corresponding
annotated symbolic tree.
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Fig. 5.3. Probability of reaching a symbolic state by satisfying the constraints along
its execution path.

The function computeProbability calculate the probability of satisfying a set of
constraints C = 〈c1, . . . , cn〉 corresponding to an execution path π in the symbolic
tree. Each ci is an expression that involves arithmetic-logic operators among vari-
ables representing the condition to traverse the i-th edge of pi. These variables are
either primary inputs of the model under validation or they depend on primary
inputs. It is worth noting that the values assumed by primary inputs could be not
uniformly distributed. Thus, the probability of satisfying C is computed accord-
ing to the actual probability distribution of the input variables, which is derived
by performing a dynamic trace profiling of the system under validation. Based on
this distribution, DOVE computes the probability of satisfying C by exploiting the
model-counting strategy proposed in [36]. Let D be the join of the range domains
of all input discrete variables, and let S = 〈(s1, p1), ..., (sn, pn)〉 be a complete par-
tition of D, where each si represents a different input scenario, i.e., the subset of
the feasible input values for the input variables characterized by the same proba-
bility pi, with

∑
i pi = 1. The value of pi is derived by trace profiling. It represents

the probability that the input values provided to the system at time t belongs
to si. From the law of total probability [65], the probability of satisfying the set
of constraints C according to S can be computed as: P (C|S) =

∑
i P (C|si) ∗ pi.

Then, by applying conditional probability, we can rewritten the previous formula
as P (C|S) =

∑
i P (C ∧ si) ∗ 1/P (si) ∗ pi. Furthermore, P (c) can be computed

as #(c)/#(D), where c is a constraint, and the operator #(.) returns the number
of element of D satisfying c. Applying this definition of probability, the previous
formula can be finally rewritten as P (C|S) =

∑
i #(C ∧ si) ∗ 1/#(si) ∗ pi.

Let us consider the set of constraints C listed in Figure 5.4a, and the set of scenarios
S = 〈(s1, p1), (s2, p2), (s3, p3)〉 derived from the probability distribution of the input
values of the variable a (Figure 5.4a) as an example. By computing the conditional
probability formula (1), we have that C has zero probability of being satisfied in the
first and third scenario since no value either in s1 or s3 satisfies all the constraints
belong to C. On the contrary, for the scenario s2, ten values on forty can satisfy
all constraints in C. By weighting with the probability of s2, namely p2, we have
P (C|S) = 2.5%.

Assertion Generation

The goal of the assertion generator is to generate formal assertions pinpointing cor-
ner cases that may hide security vulnerabilities. The assertion generator works by
using first the function snapshotGenerator shown in Algorithm 10 to get a set
of snapshots. Then, it uses the function assertionMiner shown in Algorithm 11
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Fig. 5.4. Getting the probability of satisfying a set of constraints given a set of
scenarios partitioning the input space domain.

to generate a LTL temporal assertion (def. 2.5) for each snapshot. The generated
assertions are in the form G(antecedent → consequent), where antecedent and con-
sequent may involve only the LTL operator X. Moreover, antecedent is composed
only of the constraints collected along an execution path of the symbolic tree. The
consequent is a snapshot, namely a specific value in a register or a memory location
of the hardware abstract model.
The function snapshotGenerator gets as input parameters an annotated symbolic
tree T , and the set W of traced variables during the symbolic simulation. At the be-
ginning, Algorithm 10 initializes the list of snapshots S with ∅ (line 2). Next, for each
variable w of W (lines 3-10), it collects in S′ the set of snapshots of w by visiting the
tree T (line 4, getSnapshots(T,w)). Then, for each snapshot s′ of S′, Algorithm 10
gets the probability p′ of observing s′ during the simulation of the firmware by using
the function DFSAllPaths (line 6). The intuitive idea is to reach all symbolic states
belonging to different execution paths where the snapshot s′ was traced for the first
time. The probability p′ of observing s′ is, therefore, the sum of the probabilities p
of reaching the identified symbolic states. The function DFSAllPaths implements
this strategy through a depth-first search algorithm. It gets as input parameters a
symbolic state v, which is initially the root of the annotated symbolic tree T , and a
snapshot s′. If s′ is traced in v, then DFSAllPaths returns the probability p of v.
On the contrary, DFSAllPaths forwards this search to each node reachable from v
through a recursive call. If a leaf node has not the snapshot s′, then DFSAllPaths
returns the value 0. All returned values are then summed up and returned as final
result. At the line 7, Algorithm 10 annotates the snapshot s′ with the probability p′

by using the function annotateSnapshot(s′, p′). The annotated snapshot s is then
inserted into the list S (line 8). At the end of Algorithm 10, the list S of snapshots
is sorted in accordance with their probability (line 11), and returned as result (line
12).
As an example, let us consider the annotated symbolic tree of Figure 5.3b as input
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Fig. 5.5. The probability of observing a snapshot and the corresponding generated
assertion.

of Algorithm 10. Figure 5.5a shows, for each snapshot s, the probability of observing
s during the simulation of the firmware.

The second step of the assertion generation phase is to generate an assertion for
each snapshot. The function assertionMiner works as shown in Algorithm 11. It
gets as input parameters the annotated symbolic tree T and a list of snapshots S
sorted by using the probability. At the beginning, Algorithm 11 initializes a list of
assertions A with ∅ (line 2). Next, for each snapshot s in S (lines 3-8), it searches
by using the function BFSearch(T.root, s) (line 4) a symbolic state v of T where
the snapshot s was traced. To keep compact the antecedent of the assertions the
function BFSearch implements a breadth-first search based strategy to identify the
state s. In detail, the function defines at the beginning a frontier F of states, which
initially contains only the root node of T . If a state v of F traced the snapshot s,
then v is returned as results. On the contrary, BFSearch enlarges F by collecting
all the reachable states of T from a state already in F . The set F is continually
enlarged as long as a state v that traced s in its symbolic trace is identified. The
antecedent for the snapshot s is then generated by collecting in inverse order the
constraints of the edges of the annotated symbolic tree T from the state v to the root
(line 5 getRevOrderConstraints(v, T.root)). A new assertion having the snapshot
as consequent is generated (line 6), and insert into the list A (line 7). At the end,
the Algorithm 11 returns the list of generated assertions (line 9). As an example,
let us consider the annotated symbolic tree of Figure 5.3b, and the snapshots of
Figure 5.5a as inputs of Algorithm 11. Figure 5.5b shows, for each snapshot s,
the generated assertion with the corresponding ranking value (lowest is the most
rare corner case). Let us consider the assertion ranked as the most rare corner
case, e.g. G((a < 40 ∧ a ≥ 30) → X[2](b = 2)). This assertion reports: if the
constraint (a < 40)∧ (a ≥ 30) is satisfied, then the variable b gets the value 2 after 2
simulated instructions. This assertion belongs to an unlikely simulation flow as only
with probability 2.5% the values of a can satisfy the antecedent of the assertion.
The other assertions in Fig. 5.5b have instead a much higher probability because
many distinct values of a satisfy their antecedents. The snapshot at the first row
does not involve the variable a. It reports that immediately b has value 0 without
any constraint. A verification engineer can then be addressed to investigate if the
detected unlikely execution flow may hide a security vulnerability.

Framework

Figure 5.6 shows the simulation environment of the proposed framework. It con-
sists of an ARM instruction set simulator (ISS), a firmware loader that copies the
firmware binary code under verification into an internal memory of the hardware
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Algorithm 10

1: function snapshotGenerator(T,W )
2: S = ∅
3: for all w in W do
4: S′ = getSnapshots(T,w)
5: for all s′ in S′ do
6: p′ = DFSAllPaths(T.root, s′)
7: s = annotateSnapshot(s′, p′)
8: S = S ∪ s
9: end for

10: end for
11: sortByProbability(S)
12: return S
13: end function

Algorithm 11

1: function assertionMiner(T, S)
2: A = ∅
3: for all s in S do
4: v = BFSearch(T.root, s)
5: antecedent = getRevOrderConstraints(v, T.root)
6: a = makeAssertion(antecedent, s)
7: A = A ∪ a
8: end for
9: return A

10: end function

model, and a memory-mapped register interface (MMRI) that allows users to specify
which memory address a register is mapped to (if any).
Given a new firmware implementation, a verification engineer is supposed to cus-
tomize the following components of the framework before starting verifying the
firmware.

Memory mapped-register: if, for the scenario of interest, some registers are
memory mapped, then the user has to provide the memory address of each memory
mapped register. In detail, DOVE provides the user with the array memoryMapped.
During the simulation of a load/store instruction of the firmware, DOVE scans
memoryMapped. If the addressed memory location of a load instruction matches an
address in memoryMapped, then the value of the corresponding register is returned
to the firmware. Similarly, in case of a simulated store instruction, the corresponding
memory mapper register is updated with the new value provided by firmware.

Symbolic values: To perform symbolic simulation of the firmware some mem-
ory locations of the abstract hardware model have to be filled out with symbolic
values. This part is the most crucial of the verification process as a too large num-
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Fig. 5.6. Internal overview of the abstract hardware model.

ber of symbolic variables can lead to the path explosion problem: the number of
globally feasible paths is roughly exponential in the size of the whole system. On
the contrary, an insufficient number of symbolic variables can lead to not detecting
the security vulnerability of the firmware since the unlikely execution flow will not
be simulated. With DOVE a user can perform a selective symbolic simulation of
the functionalities of the firmware. In particular, it can address the framework to
continually generate new symbolic values for only the memory locations that will
be read by the functionality under verification. DOVE provides the user with the
C++ function:

• void fillOutSymbolicV ariables(Address addresses);

It gets as input parameter an array of memory addresses. DOVE will store a
new symbolic value in each addressed register or memory location before executing
an instruction of the firmware.

Trace values: To generate assertions some memory locations and/or registers of
the abstract hardware mode have to be traced. The definition of these locations is up
to the user, which can address DOVE to consider specific as well as generally used
registers and memory locations. DOVE provides the user with the C++ functions:

• void trace(Address addresses);
• void traceCPU(Register regIndices);

The first function gets as input parameter an array of memory addresses, meanwhile
the second gets an array of CPU registers’ indices.

CaseStudy

I evaluated the effectiveness and the efficiency of DOVE in two case studies concern-
ing the validation of a memory protection mechanism and of an interrupt service
handler. In both cases, the experimental results have been carried out on a 2.6 GHz
Intel Core i5 processor equipped with 8 GByte of RAM and running Linux OS.
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Case study 1: memory protection mechanism

The analyzed firmware acts as an interface between a memory-mapped IP and an
upper-level software. The firmware reads values from the IP interface, then it elab-
orates a memory address on which it stores the read values. In this scenario the
memory location storing the firmware code is not writeable unless the flag bioswe is
set. Moreover, each attempt to change this flag causes an interrupt which resets the
bioswe at its default value, i.e. zero. In a correct execution flow, each value coming
from the IP is then properly stored in a memory location, and, more importantly,
any attempt to manipulate firmware code itself has no effect. However, a security
vulnerability can be located in the interrupt controller register. In fact, if the inter-
rupts can be disabled, then bioswe is exposed to be set, and the firmware code in
memory can be successfully overwritten afterwards, as reported in [46].
Consequently, if the firmware does not properly check the values provided to its input
interface, an attacker can exploit it to first disable the memory protection mecha-
nism, and then to write in a protected memory location. I run DOVE in the above
vulnerable context. We configured DOVE such that it considered symbolic values
for the registers were the IP core interface was mapped. 30 assertions were gener-
ated. In Fig. 5.7 the generated assertions are represented by the blue points. They
are ordered according to the probability of traversing their corresponding execution
paths of the firmware. The assertion with the lowest probability (i.e., 1.4e−39) is:
a1 = G((X(offset = 25) ∧ X[3](data = 0) ∧ X[9](offset = 49) ∧ X[11](data =
1) ∧X[17](23 > 300 + offset))→ X[22](bioswe = 1)).

By analyzing the meaning of a1, we observe that it captures the situation where
the values generated by the IP interface asks the firmware to: 1) disable the in-
terrupts (when offset is 25, the generated physical address hits gbl smi en); 2)
enable the protected memory (similarly, bioswe is hit when offset has value 49);
3) perform a write in its own code. All memory addresses satisfying the constraint
(23 > 300+offset) hit the text memory. The behavior captured by a1 actually high-
lights that the firmware can be exploited to attack the system as reported above.
Other top ranked assertions (a2, a3) highlighted the same behavior In fact, they
correspond to execution paths where the memory mapped registers are manipulated
by the firmware in a different order and with different values. This proves DOVE
was able to focus the attention on rare and dangerous execution paths representing
the presence of a security vulnerability. Subsequently, I removed the vulnerability
by modifying the firmware such that it cannot write into the memory mapped regis-
ter gbl smi en. Then I run DOVE again. This time DOVE generated 23 assertions
represented by the orange points in Fig. 5.7. The probabilities of this new set of
assertions is much higher compared with the probabilities of blue assertions. Thus,
no extremely rare behavior is highlighted this time. In addition, the top-ranked
orange assertions (b1, ..., b4 ) still represent behaviors where the firmware tries to
access memory-mapped registers, but none of them corresponds to a path where
gbl smi en is modified.

Case study 2: interrupt service handler

Interrupt handlers are stored in a protected and inaccessible memory location. The
base address of this location is stored in a CPU internal register (e.g., SMBASE).
When an interrupt is triggered by the firmware, the CPU switches to the supervisor
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Fig. 5.7. Case study 1: Probabilities of assertions generated by DOVE, with (blue)
and without (orange) firmware vulnerability.

mode, copies the values of SMBASE in a location of the protected area, and starts
fetching the instructions of the proper interrupt handler. When the handler returns,
the CPU restores SMBASE by coping back its value from the protected area and
switches to the user mode. In this scenario, a security attack can exploit a vulnerable
implementation of an interrupt handler to execute unauthorized operations when the
CPU is in a privileged mode as reported in [28]. In a not-attacking execution flow,
the interrupt handler is supposed to write values in a buffer outside the protected
area. However, if the interrupt handler does not check the correctness of values
provided as inputs, an attacker can exploit this vulnerability to overwrite the value
of SMBASE stored in the protected area. When a second interrupt then occurs, a
memory location referred to a malicious code is read by the CPU owing to a different
value in SMBASE.

We run DOVE in the above scenario and it generated 60 assertions involving the
program counter (PC) of the CPU. Figure 5.8 shows in the x axes the memory ad-
dresses corresponding to the instructions pointed by the PC during the simulation,
and in the y axes the probability that the PC points to those memory addresses.
The top ranked assertions generated by DOVE pinpointed the corner cases in the
execution flow of the firmware where unauthorized operations are performed, thus
guiding the verification engineers towards suspicious behavior that may correspond
to security holes. In particular, the assertion associated to the most unlikely execu-
tion path (probability= 1.4e−18) was:
G(X[37](mem[0] = 0) ∧X[48](mem[4] = 0x4108)→ X[68](PC = 0x3910)).
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Table 5.1. Case study 1: Symbolic states, assertions and execution time.

Instr. States Assertions Sim. time P. mapper time Gen. time Total time
5 1 9 < 0.1 s. < 0.1 s. < 0.1 s. < 0.1 s.

10 7 17 < 0.1 s. 0.2 s. < 0.1 s. 0.2 s.
15 37 21 0.6 s. 1.3 s. < 0.1 s. 1.9 s.
20 37 23 0.8 s. 1.3 s. < 0.1 s. 2.1 s.
25 188 27 3.2 s. 8.7 s. < 0.1 s. 11.1 s.
30 188 30 4.3 s. 8.9 s. < 0.1 s. 13.2 s.

This assertion reports how specific values processed by the interrupt handler
allow the CPU to fetch an instruction from the memory address 0x3910, where I
stored a fake (malicious) handler to reset the value of SMBASE.

DOVE scalability

Table 5.1 and Table 5.2 report information to analyze the scalability of the approach
implemented in DOVE. In particular, their columns refer, from left to right, to the
number of instructions executed by the firmware and consequently to the number
of states generated by the symbolic simulation, the number of assertions generated
by DOVE, the time required by the three phases of DOVE, and the total execution
time concerning for the two use cases.

As expected, the higher is the number of instructions executed by the firmware,
the larger is the set of generated symbolic states. The number of generated assertions
increased as well, nonetheless the final set of assertions is small and generated in a
few seconds. For the first case study I stopped when no more symbolic state was
generated, while in the second case study I terminated the simulation when no new
assertion was mined.

Conclusions

In this thesis I proposed DOVE, a framework to detect firmware’s vulnerabilities that
could be exploited by an attacker to breach the system security. DOVE is based on a
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Table 5.2. Case study 2: Symbolic states, assertions and execution time.

Instr. States Assertions Sim. time P. mapper time Gen. time Total time
25 1 19 < 0.1 s. < 0.1 s. < 0.1 s. < 0.1 s.
50 11 41 0.1 s. 0.2 s. < 0.1 s. 0.3 s.
75 95 57 1.1 s. 2.4 s. < 0.1 s. 3.5 s.

100 211 58 2.3 s. 6.8 s. < 0.1 s. 9.1 s.
125 340 60 7.0 s. 12.5 s. < 0.1 s. 19.5 s.
150 456 60 10.8 s. 20.5 s. < 0.1 s. 31.4 s.
175 594 60 19.6 s. 31.3 s. < 0.1 s. 51.0 s.
200 3343 60 63.7 s. 170.3 s. < 0.1 s. 234.3 s.

symbolic simulation engine that exhaustively explores the firmware’s computational
paths and provides the verification engineers with a ranked set of assertions. These
assertions describe corner cases in the firmwares execution where vulnerabilities
could remain undetected by applying traditional verification approaches. DOVE
effectiveness and efficiency have been evaluated in two actual scenarios. In both
cases, DOVE was able to highlight the vulnerabilities in a few seconds by generating
a compact set of assertions. The set up of the verification process performed with
DOVE required to add a few lines of code inside an ARM-based abstract model of
the target hardware. This proved that DOVE can be easily and quickly customized
to address other kinds of vulnerabilities with respect to the ones considered in our
case studies.





Part III

Extra-Functional Verification
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Power State Machine

6.1 Introduction

Power state machines (PSMs) are a well-known formalism to model and simulate the
time-based energy consumption of IP cores for early virtual prototyping of system-
on-chips (SoCs) [10, 11, 70, 58, 56, 49]. In this context, the PSMs of IPs included
in the model of the target SoC are monitored by a power manager to allow the
exploration of different dynamic power management solutions [8].

In a PSM, the energy behaviors of the IP are associated to a set of states. In its
simplest form, the power consumption of each PSM state is modeled as a constant
value derived by a designer estimate or from the IP’s data sheet [10, 11]. When
a higher level of accuracy is desired and more precise information about the IP’s
energy behaviors are available, the power consumption of a PSM state is computed
by a more complex function. For example, in [70, 56], such a function is derived by
means of a calibration process based on linear regression, which exploits, as golden
reference, power traces generated at gate level, where the IP’s power consumption
can be more precisely estimated. However, despite of the wide adoption of PSMs, in
the most of the works either the presence of PSMs is assumed [10, 11, 8] or they are
manually defined starting from a more or less precise knowledge of the functional
blocks composing the target IP [58, 49]. Only in a few cases, automatic approaches
are proposed to create the association between PSM states and their power consump-
tions, but the identification of such states remains manual [70, 56]. Unfortunately,
such a manual definition reveals to be inappropriate for the power characterization
of complex designs leading to the generation of a less-accurate simplified model.

6.2 State of the Art

Several methods were proposed for estimating the energy consumption on different
abstraction levels in literature. Luca Benini first introduced the power state machines
in [9]. In this first approach, the PSMs were manually defined by the user and
uniquely applied to optimize system-level power management policies.

The approach proposed by Lebreton [50] required to manually instrument the
source code of a SystemC/TLM component to accordingly keep updated its power
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profile (for instance, on, running, off). An average power consumption is then asso-
ciated at each power profile.

PowerSim [38] is instead an automatic approach. It requires modifying SystemC
Simulation kernel to monitor C++ operators and provide a power consumption es-
timation based on the performed arithmetic/logic operation. The advantage of this
approach is that the model does not have to be changed since a modified SystemC
simulation kernel is applied. However, due to the modified SystemC simulation ker-
nel, this approach cannot be integrated into commercial design environments, which
have a proprietary SystemC kernel that usually cannot be changed. Additionally,
an estimation of communication, especially of abstract models (e. g. TLM), is pos-
sible only with restrictions because merely the assignment operator can be used for
power annotation. Also in the approach, the Power consumption estimators have to
be provided by the user.

The approach proposed by Lorenz [57], which is based on PSM, does not need to
instrument the source code of the component in any way, and it is able to provide the
most suitable power model by monitoring the input/output ports of a component.
This approach relies on the definition of a protocol state machine (PrSTM) and of a
power state machine (PSM). The main task of the PrSM is to monitor the primary
input and output ports of an IP, and accordingly trigger state transitions in the
PSM. Each power state of the PSM is defined with a power model providing the
current power consumption of the monitored IP. In its simplest form, the power
model is a constant value. However, it can be more complex such as a mathematical
function. Like the previously introduced approach, the approach proposed in [57] is
still a manual solution where the user is in charge of defining each component, from
the state of PrSTM to the power model in each power state of the PSM.

Industrial tools have been proposed as well. For instance PrimeTime PX [67]
and Xilinx Power Estimator [34] are industrial tools both performing accurate gate-
level power analysis. The drawback of these approaches is their execution time. Their
execution time is in fact proportional to the complexity and number of memory
elements of the design.

6.3 Objectives

To overcome the manual definition of the power state machine for an IP, I presented
PsmGen (Power state machine Generator) in this thesis. By analyzing functional
and power traces, PsmGen can automatically generate a model describing the power
consumption of an IP meanwhile it is performing its functionality at RTL level.

Background

This section reports preliminary definitions that are necessary to understand the
proposed approaches.

Definition 6.1. A power trace is a finite sequence ∆ = 〈δ1, . . . δn〉, where δi is the
dynamic energy consumption of M at simulation instant ti according to the formula
δi = 1

2
V 2
ddfC · α(ti), being C the total switched capacitance, Vdd the supply voltage,

f the clock frequency, and α(ti) the switching activities of M at time ti.
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Definition 6.2. A power state machine is defined as a 7-tuple
PSM=〈I,O, S, S0, E, λ, ω〉, where I is the input alphabet, O is the output alphabet, S
is a set of states, S0 ⊆ S is the set of initial states, E is a set of enabling functions
e : I → {0, 1}, λ : S × E → S is the transition function, ω : S → O is the output
function that produces the power consumption.

Figure 6.1 shows an example of a PSM composed of three power states that
characterize the power consumption of the IP when it is turned off, idle and operating
with three different constant values (0mW, 15mW and 100mW). Input symbols are
associated with the values that can be assumed by the primary inputs of the IP,
(i.e, on, ready and start). Enabling functions are represented as guards associated
to edges.

Fig. 6.1. An example of a power state machine.

6.4 Methodology

6.4.1 PsmGen

Figure 6.2 presents an overview of Power State Machine Generator (PSMGen)
methodology. It leverages information from several functional and power traces to
define the power states describing the power consumption of the IP when it is exe-
cuting its functionalities. To achieve this goal, the PsmGen performs the following
three phases:

1. Generation of training traces: The first step is the generation of training
traces. In this phase, the IP is simulated by using a set of user-defined test cases.
The result of this step is a functional trace and the corresponding power trace for
each provided test case.

2. Generation of PSMs: In the second step, PsmGen mines temporal assertions
from the functional traces. Such assertions are logic formulas that capture the
functional behaviors of the IP over time. From them, the states and the transitions
of the corresponding PSMs are generated. Then, each state of a PSM is associated
to a power consumption by exploiting the reference power traces.

3. Combination and optimization: The obtained PSMs are then merged to gen-
erate a compact set of PSMs. These PSMs are finally implemented into a SystemC
module.
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Fig. 6.2. PSMGen methodology overview.

Generation of training traces

The way by which the functional and power traces are generated is independent
from the proposed methodology. However, their quality profoundly impacts on the
accuracy of the final PSM. In particular, if the functional traces are unable to cover
all the functionalities implemented by the IP, the resulting PSM will be incomplete,
thus leading to a wrong power consumption estimation. On the other side, the use of
not-accurate power traces for characterizing the energy consumption associated with
the states of the PSM will negatively reflect on their precision. To rely upon a high-
quality set of training traces, the IP is synthesized to gate level with DesignCompiler
[27]. Then, a set of functional traces T=〈τ1, ...τn〉 is generated with ModelSim [62]
by simulating the IP with the provided test cases. Next, for each functional trace a
power trace is generated with PrimeTime [67] 1. At the end of this first phase, a set
of functional T=〈τ1, ...τn〉 and power ∆=〈δ1, ...δn〉 traces are returned as result.

Throughout this chapter, I directly refer to the i-th (δi) trace of ∆ as the power
trace generated by stimulating the IP with the i-th (τi) functional trace of T .

Generation of PSMs

(Step 1 - Mining of functional behaviors of the IP): Given a set of functional traces,
the behaviors of the corresponding IP is captured through a set of proposition traces
that are automatically generated by a mining procedure. It works in two phases. In
the first phase, for each functional trace Φ, the procedure extracts a set of atomic
propositions, which hold frequently on Φ, predicating over the PIs and POs of the
IP. The atomic propositions represent relations between PIs and POs of the IP that
hold in a set of subtraces of Φ. The output of this phase is represented by a matrix
m, where the generic element in position [i, j] reports the truth value of the j-th
atomic proposition at the i-th time instant of the functional trace. In the second
phase, the atomic propositions are combined into a set Prop of propositions, such
that in each simulation instant of Φ one and only one of propositions belonging to
Prop holds. In particular, a composition procedure generates one proposition from
each row of the matrix m by composing in an AND formula all atomic propositions

1 PrimeTime also requires the internal switch activity of an IP to estimate its
power consumption. I record such activity during the functional simulation of the
IP.
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Fig. 6.3. A functional trace and its proposition and power traces.

that are marked as true. Finally, the proposition trace is obtained by identifying
which proposition is true in each simulation instant of the functional trace. The
extracted propositions are used to generate temporal assertions that capture the
functional behaviors of the IP exposed by the functional trace. Such behaviors are
then mapped on states of the PSM.

An example of proposition trace generation is reported in the left side of Fig. 6.3,
Given, the functional trace Φ, atomic propositions that frequently hold on it are,
for instance, v1 = true, v2 = false, v3 > v4, etc. After their extraction, the mining
procedure generates the proposition trace composed of propositions pa, pb, pc and
pd that hold, respectively, in the intervals [0, 2], [3, 5], [5, 6] and [6, 7].

(Step 2 - Generation of states and transitions): The assumption under the use
of a PSM to model the dynamic power of an IP is that there is a correspondence
between a specific functional behavior (characterized by a switching activity) and
its energy consumption. Thus, to generate a PSM, first the IP’s functional behaviors
are mined, then the IP’s energy consumption is associated to each of them.

Before presenting technical details, let me describe the intuitive idea underly-
ing the proposed approach. By observing a time window between two simulation
instants we can observe that the functional behaviors of an IP follow two temporal
patterns, namely, next and until. These two patterns generally alternate when the
IP is operating, such that we can observe several consecutive instants where the
IP remains in a (sequence of) stable condition(s) from the functional point of view
(until pattern), followed by an arbitrarily-long sequence of jumps among different
states (next pattern), before reaching a new stable condition. Moving from one be-
havioral pattern to another, the energy consumption varies as well. Thus, the basic
idea for the automatic generation of a PSM consists of capturing the sequence of
until and next patterns exposed by the IP during its activity and associating to
them the corresponding energy consumption.

More formally, given si and sj characterizing two functional states of an IP, the
meaning of the next and until patterns can be described as follows:

• the next pattern siXsj corresponds to the LTL temporal assertion (state =
si) → next(state = sj) specifying that after si, at the next instant, the IP
moves to sj ;
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Fig. 6.4. The XU automaton and the exemplification of Algorithm 12.

• the until pattern siUsj corresponds to the LTL temporal assertion (state =
si) until (state = sj) specifying that sj is preceded by a sequence of time
instants where the IP remains in si.

According to the mining procedure previously described, we can associate a
functional trace with a proposition trace that formalizes the functional behaviors of
the IP as a sequence of propositions holding on the different time instants. Thus,
to automatically extract the functional behaviors of the IP it is sufficient to search
for the until and next patterns inside the proposition trace. For example, let me
consider the proposition trace Γ reported in Figure 6.3. Starting with the time
instant 0, Γ exposes the following behaviors: paUpb, pbUpc, and pcXpd, respectively,
in the intervals [0, 2], [3, 5], and [6, 7]. Thus, we derive that there are three functional
behaviors that must be associated to three power states of the PSM.

Entering in the technical details, to automatically extract the next and until-
based behaviors, and thus defining the corresponding PSM states, I defined the
PSMGenerator procedure described in Algorithm 12, and the XU automaton shown
in left side of Fig. 6.4. The inputs of the algorithm are a proposition trace Γ , a
dynamic power trace ∆, and a reference to the PSM that will be created. The core
of PSMGenerator is represented by the XU automaton. At the beginning, the XU
automaton is initialized by the function XU initialize (line 2) whose role consists
of filling in a FIFO data structure f with the two propositions corresponding to
instants 0 and 1 of Γ , and setting the current state of the automaton to X. Then,
the function XU getAssertion (line 5) iteratively traverses the XU automaton till
an assertion corresponding to one of the temporal patterns X,U is identified in Γ .
During the traversal, each time a transition is taken on the XU automaton the FIFO
scrolls forward by one position on Γ . As soon as a temporal assertion is identified in
Γ , the function XU getAssertion returns the triplet 〈p, start, stop〉. The start and
stop indexes capture the time interval where p holds in Γ . For each mined temporal
assertion, the following steps are then performed (lines 7-13):

1. getPowerAttributes is called (line 7) to collect the triplet 〈µ, σ, n〉, where, n =
stop− start+ 1 is the number of time instants where the assertion holds, µ is the
mean of the energy consumption values reported in the dynamic power trace ∆ in
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Algorithm 12 PSM generation.

1: procedure PSMGenerator(Γ,∆, PSM)
2: XU initialize(Γ )
3: prev s = nil
4: while true do
5: 〈p, start, stop〉 = XU getAssertion(Γ )
6: if p == nil then break end if
7: 〈µ, σ, n〉 = getPowerAttributes(∆, start, stop)
8: new s = createPowerState(p, 〈µ, σ, n〉)
9: addState(new s, PSM)

10: if prev s 6= nil then
11: 〈t, e〉 = createTransition(prev s, new s)
12: addTransition(〈t, e〉, PSM)
13: end if
14: prev s = new s
15: end while
16: end procedure

the time interval [start, stop], and σ is their standard deviation. In the following
I will refer to the triplet 〈µ, σ, n〉 with the term power attributes.

2. createPowerState is called (line 8) to create a new state of the PSM characterized
by the temporal assertion p and by the power attributes 〈µ, σ, n〉. The output
function of the state is represented by the constant value µ. The new state is then
added to the PSM by the function addState (line 9).

3. for all the new states except the first, createTransition is called (line 11) to create
a transition t between the new state new s and the previously extracted state
prev s. The enabling function e labelling t is represented by the proposition in-
cluded in element f [1] of the FIFO when XU getAssertion stops and recognizes
a pattern for prev s. Finally, addTransition adds the transition to the PSM (line
12).

To clarify how the PSMGenerator procedure works, the right side of Fig. 6.4 ex-
emplifies its application to the proposition trace Γ and the power trace ∆ reported
in Figure 6.3. The XU automaton initially moves from X to U because at time 0
the condition f [1] = f [0] is satisfied. This means we are going to see at least two
consecutive instances of the proposition pa in Γ (at times 0 and 1), and thus we are
going to recognize an until pattern. Then, at time 1 the FIFO is scrolled forward,
and the automaton remains in U because f [1] = f [0] is still true. Finally, at instant
2 the automaton exits U and comes back to X because f [1] 6= f [0], and consequently
XU getAssertion recognizes the assertion paUpb and returns the triplet 〈paUpb, 0, 2〉
which corresponds to the first state of the PSM. The state is then populated with
the mean and the standard deviation corresponding to the values of the power trace
∆ in the interval [0,2]. At instant 3, the automaton moves again to U starting the
capture of a new until pattern. The exit condition from U is reached at the instant
5 when f [1] 6= f [0] with the recognition of pbUpc in the interval [3, 5]. Thus a new
state is created and connected to the first state with a transition whose enabling
function is pb, namely the value of f [1] at time 2 when the first state based on the
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until pattern was created. In a similar way, the PSMGenerator procedure mines the
final state corresponding to pcXpd and it completes when nil is encountered. At the
end, the PSM reported on the right of Fig. 6.4 is obtained.

(Step 3 - Simulation of a single PSM): The PSM generated by the previous method-
ology is in the form of a chain of states, where each state has a unique successor
and a unique predecessor. Its simulation is synchronized with the simulation of the
corresponding IP by connecting primary inputs and outputs of the IP to the PSM.
In this way, at each simulation instant, the values assumed by PIs and POs of the
IP are passed as inputs to the PSM, which decides how to move according to the
temporal assertion characterizing its current state. When the PSM is in a state s
it checks its associated temporal assertion p, whose satisfiability depends on the
functional behavior captured through PIs and POs of the IP. If p follows the until
pattern paUpb, the PSM stays in s till pa is true and it moves to the next state as
soon as pb becomes true. On the contrary, if p follows the next pattern paXpb, the
PSM moves to the next state at the next simulation instant. The enabling function of
the transition outgoing from the current state s is satisfied by construction, because,
in both cases, it corresponds to the exit condition represented by the activation of
proposition pb.

It is worth noting that if the PSM extracted by Algorithm 12 is stimulated
by adopting a functional trace different from the one used for its generation, the
power consumption estimated by the PSM may be wrong when it reaches a state
characterized by an unexpected temporal assertion. This is due to the fact that
the PSM exactly resembles the temporal assertions mined in the proposition trace
extracted from the reference functional trace. For example, let us consider a PSM
reaching a state s whose temporal assertion is paUpb. Then, suppose that when
the PSM enter s, pa is true for a while till pa becomes finally false, but at that
instant pb continues to remain false as well. In this case, the PSM cannot traverse
the outgoing transition of s because pb is expected. Thus, it remains in s loosing
the correct synchronization with the functional trace and generating a wrong power
estimation. This limitation is overcome by generating and combining together several
PSMs extracted by a set of different functional traces. More the functional traces
are representative of all combinations of IP behaviors, lower is the probability of
loosing the synchronization between the functional trace and the power simulation.
The combination and simulation of different PSMs corresponding to the same IP
and their optimization is described in the next sections.

Combination and optimization of PSMs

Given a set of PSMs P, generated for the same IP according to the procedure
proposed in the previous section, I propose an automatic methodology to create a
reduced and optimized set of PSMs Popt.

The first step of the methodology consists of calling the simplify procedure for
each PSM in P. The PSMs extracted by Algorithm 12 are in the form of a chain
of states. The effect of simplify is to shorten such chains, if possible. Thus, for each
PSM in P, simplify iteratively merges into a single state, a sequence of adjacent
states which are “mergeable” from the power point of view. Intuitively, two adjacent
states si and si+1 are mergeable when the means µi and µi+1 of energy consumptions
associated respectively to si and si+1 are “similar”, and their standard deviations σi



6.4 Methodology 91

and σi+1 are “low”. For now, the meaning of terms “similar” and “low” is intuitively
understandable to capture the notion of mergeable states, while technical details are
reported in the section Quantifying the mergeability of power states at the bottom
of this section.

As reported in the algorithm 12, a state s of a PSM is characterized by the
two triplets 〈p, start, stop〉 and 〈µ, σ, n〉. When a sequence of adjacent mergeable
states 〈si, . . . , si+j〉 is found, they are substituted by a new state snew whose triplets
〈pnew, startnew, stopnew〉 and 〈µnew, σnew, nnew〉 are computed as follows:

• startnew = starti; stopnew = stopi+j ; and nnew = ni + ni+1 + · · ·+ ni+j ;
• pnew = {pi; pi+1; . . . ; pi+j}, which represents that first pi holds in the interval

[startnew, stopi], then pi+1 immediately follows in the interval [starti+1, stopi+1],
and so on till pi+j finally holds in the interval [starti+j , stopnew].

• µnew and σnew are, respectively, the mean and the standard deviation of the dy-
namic energy consumption values reported in the time interval [startnew, stopnew]
of the reference power trace.

Finally, snew is connected with the predecessor si−1 of si and the successor
si+j+1 of si+j through the transition outgoing from si−1 and ingoing to si+j+1. The
procedure iteratively executes till no new mergeable state is found. Figure 6.5(a)
graphically exemplifies the effect of simplify on a sequence composed of two states.

After the application of the simplify, the resulting PSMs are merged into a
reduced set P ′ by means of the join procedure. It works similarly to simplify by
collapsing mergeable states, but in this case they are not required to be adjacent
and they can belong to different PSMs. As a consequence, the triplets characterizing
the new state are computed in a different way with respect to simplify. In particular:

• startnew and stopnew become two arrays whose generic element i contains, re-
spectively, the start and stop value of the merged state si, while nnew becomes
the sum of values n of the merged states;

• pnew = {pi||pj || . . . ||pk}, which represents that each time snew is entered one of
the assertions characterizing the set of merged states {si, sj , . . . , sk} is satisfied
and then, when it becomes false, snew is left.

• µnew and σnew are, respectively, the mean and the standard deviation of the
energy consumption values reported in the time intervals [starti, stopi] of the
reference power trace for each merged state.

Finally, snew is connected with the predecessors and the successors of all merged
states through the transitions, respectively outgoing from the predecessors and ingo-
ing to the successors. The procedure iteratively executes till no new mergeable state
is found. Figure 6.5(b) graphically exemplifies the effect of join on two not-adjacent
states.

At the end of the join, we obtain a new set P ′ of more compact PSMs, whose
cardinality can be lower than the cardinality of the original set P, if the join merged
at least two states belonging to different PSMs of P. It is worth noting that, in a
particular case, the join generates a not-deterministic PSM. This happens when
the join merges states that are characterized by the same temporal assertions and
have the same enabling functions in the respective ingoing transitions and the same
enabling functions in the respective outgoing transitions. In this case, when we
enter such a collapsed state during simulation, we cannot deterministically decide
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Fig. 6.5. Exemplification of procedures simplify and join.

the transition to be traversed when the state is left. The simulation of such a not-
deterministic PSMs is guaranteed by exploiting a Hidden Markov Model (HMM)
based strategy, as described in the section Simulation of multiple PSMs.

The final step of the methodology transforms the set of PSMs P ′ in a more
accurate final set Popt by acting on power states with a “too high” standard devia-
tion σ. These states has a high probability of being data-dependent from the energy
consumption point of view, i.e., when the IP is in one of such states the energy
consumption strictly depends on the sequence of data provided to IP’s primary in-
puts. Thus, the use of a constant, represented by the mean µ of energy consumption
values, to characterize the power of such data-dependent states is inaccurate. To im-
prove the precision of the power estimation for such a kind of states, we substitute
µ in a state s with a function extracted by applying a linear regression between the
Hamming distances of consecutive input values exposed in the functional trace and
the corresponding values in the power trace. This substitution is applied only for
states with an strong linear correlation between Hamming distances of inputs and
corresponding values in the power trace, which is a necessary condition for achieving
an accurate result from the linear regression [75].

Quantifying the mergeability of power states: The mergeability of power states is
evaluated by comparing the power attributes of the target states according to three
different cases:

1. comparison between si and sj , where ni = nj = 1. This happens when both the
states are characterized by a temporal assertion respecting the next pattern. In
this case, we can affirm that si and sj are mergeable when |µi − µj | < ε, where ε
is the tolerance fixed by the designer.

2. comparison between two power states si and sj , where ni > 1 and nj > 1. In
this case the states are both characterized by the until pattern. To identify if it is
worth merging the two states, the Welch’s t-test [82] is performed on the power
attributes 〈µ, σ, n〉. Such a test is generally used to determine if two sets of data
are significantly different from each other with an arbitrarily percentage of error.
For lack of space I omit its mathematical formulation, which can be retrieved
in [82].

3. comparison between two power states si and sj , where ni > 1 and nj = 1.
This happens in the tentative of merging an until-based state with a next-based
state. Similarly to Case 2, I use a different formulation of the t-test to see if the
single sample represented by state sj can be merged with the larger set of values
represented by si.
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Simulation of multiple PSMs

While the basic simulation for one single PSM has been previously presented, this
section deal with the concurrent simulation of the complete set of PSMs associated
to an IP. A method for resynchronizing the PSMs when unknown behaviors are
encountered is presented too.

The simulation of multiple PSMs, obtained after the application of the simplify
and join procedures, has two main differences: (i) the power states can be charac-
terized by more than one assertion, and (ii) some PSMs may be non-deterministic.
Concerning the first aspect, when the PSM enters a state s characterized by a se-
quence of assertions {pi; pi+1; . . . ; pi+j} (as a result of simplify), it expects they are
satisfied in a cascade fashion one after the other. Thus, first the PSM checks if pi
is satisfied (for an unbounded period of time in case of until pattern, or just for
one time instant for a next pattern). Then, when pi becomes false (in case of until)
or simply at the next instant (in case of next), the PSM repeats the same analysis
for pi+1, and so on till pi+j , when it leaves s according to the enabling function of
the outgoing transition. On the contrary, if one of the assertions fails the analysis,
i.e., it is not satisfied when expected, it means the PSM has reached an unknown
functional behavior. In this case, the simulation continues but the PSM state is not
changed till a resynchronization procedure allows it jumping to a different state from
which a known behavior can be recognized. During the resynchronization period the
power estimation provided by the PSM is not reliable.

When a join merges a set of states, the resulting state s is characterized by a
set of concurrent assertions of the form {pi||pj || . . . ||pk}. In this case, at least one of
these assertions must be satisfied when entering s, otherwise the resynchronization
procedure is called. When exactly one assertion is satisfied the simulation proceeds
and s is left by traversing the outgoing transition corresponding to the satisfied
assertion. For example, in Figure 6.5(b) the merged state is left by traversing the
transition labeled with pd (respectively pa) when pcUpd (respectively pdUpa) is
satisfied. In some cases, the join procedure can generate a state where the set of
characterizing assertions includes two or more instances of the same assertion. When
such identical assertions are satisfied in a state s, a not-deterministic choice must be
taken to exit s. It is worth noting that a not-deterministic choice could be necessary
also at the very beginning of the simulation, when we need to choose the starting
state among all the initial states that can be activated. Remember that an IP is
associated to a set of PSMs derived from different functional/power traces, thus we
have a set of initial states.

To efficiently manage the not-deterministic choices and the resynchronization
procedure, I adopted a statistical approach based on a Hidden Markov Model. HMMs
are frequently used in temporal pattern recognition, thus they are well suited in our
context to predict the state with the highest probability of being the correct choice in
case of non-determinism or when a resynchronization is necessary. A HMM is defined
as a quintuple 〈Q,E,A,B, π〉, where Q = {Q1, . . . , Qm} is set of hidden states;
E = {E1, . . . , En} is a set of observable events; A = {aij} and B = {bjk} are two
matrices such that their elements aij = P [xt+1 = Qi|xt = Qj ] (with 1 ≤ i, j ≤ m)
and bjk = P [Ek|Qj ] (with 1 ≤ j ≤ m, 1 ≤ k ≤ n) represent, respectively, the
probability of reaching the state Qi at time xt+1 starting from the state Qj at time
xt, and the probability of observing the event Ek at state Qj ; π={pi} is a vector
such that its element pi = P [x0 = Qi] (with 1 ≤ i ≤ m) represents the probability
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of being in state Qi at time 0. By contextualizing the definition of a HMM to the
problem of predicting the next state of a PSM, I implemented a model where Q
contains the states of all the generated PSMs and E contains their characterizing
assertions. Elements {aij} and {bij} of matrices A and B are then defined according
to, respectively, the number of transitions exiting from state i to reach state j, and
the number of times the same assertion j has been included (by join operations) into
the set of assertions characterizing the state i. Finally, the value of the i-th element
of the vector π is computed by counting the number of functional traces that have
originated a PSM with i as its initial state. Given this formalization, during the
simulation of the HMM the next state is chosen by applying the filtering approach,
i.e., a state-of-the-art procedure to predict the next (hidden) states according to a
sequence of observations, which in our case are the functional behaviors captured
by the temporal assertions mined on the proposition traces. When a wrong state s
is predicted (i.e., the simulation cannot exits s because none of its characterizing
assertions is satisfied when expected), the HMM reverts to the last valid state and
it follows a different path by fixing to 0 the probability of reaching again the same
wrong state in the matrix A. In case all transitions exiting from the current state
bring to a wrong state, an unexpected behavior is encountered. This highlights
that the functional traces used for generating the PSMs where incomplete with
respect the the ones used for the simulation. In this case, the simulation of the
model proceeds by remaining in the last valid state till a known behavior is finally
recognized in the future instants.

Experimental results

The proposed methodology has been implemented in an automatic tool that gener-
ates a SystemC model of the extracted PSMs. Its effectiveness and efficiency have
been evaluated by generating the PSMs for the RTL Verilog descriptions of the IPs
reported in Table 6.1: a multiplier-accumulator from the Synopsys DesignWare Li-
brary, and the implementations of a 1KB RAM memory and the AES and Camellia
encryption/decryption algorithms from the Open Core Library. SystemC models of
the considered IPs have been obtained from the original Verilog descriptions by us-
ing HIFSuite [14]. Table 6.1 reports the number of code lines, the size in bits of PIs
and POs, the time required for the gate-level synthesis by using Synopsys Design-
Compiler, and finally the number of memory elements in the gate-level netlist.

The results of a first experiment are reported in Table 6.2. Above the dashed line,
the results are referred to the simulation of the IPs by using the set of test sequences
defined for their functional verification, thus they are assumed to cover the most of
IP behaviors We will refer to such a testset with the name short-TS. Below the line,
a longer set of test sequences has been applied to stimulate the IP’s functionality
several times with different set of data. We will refer to such a testset with the name
long-TS. The precise number of test sequences, which correspond to the total length
of the functional traces used to extract the IP’s behaviors, is shown in Column TS.
Column PX refers to the time required for generating a corresponding set of reference
power traces by using Synopsys PrimeTime PX. The time required by our tool for
the generation of the PSMs is then shown in Column PSMs gen., while the number
of PSMs’ states and transitions are reported, respectively, in Columns States and
Trans. Finally, Column MRE reports, as a measure of PSMs’ accuracy, the mean
relative error (MRE) obtained by comparing the power values estimated through the
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simulation of the PSMs with respect to the reference values provided by PrimeTime
PX. Analyzing the results for each benchmark, we first observed that RAM presents
a high correlation between the Hamming distance of two consecutive input data and
its energy behavior Thus, the linear regression-based approach adopted in our tool
works satisfactory when it relates the RAM’s internal switching activity with the
power consumption by observing the behaviors of PIs and POs. For this reason, the
MRE is very low, even if RAM behaves as a data-dependent IP from the energy
consumption point of view (when it operates in the writing modality). MultSum is
a data-dependent IP too. Its MRE is a bit higher than RAM, since to effectively
capture its functionality by observing PIs and POs it requires to correlate PIs and
POs values on an time window wider than the one currently considered by the linear
regression mechanism implemented in the tool. On the contrary, AES and Camellia
are not data-dependent. However, differently from RAM and MultSim which have
no subcomponent, AES and Camellia are composed by a set of subcomponents. In
this case, it could be more difficult extracting, in an automatic way, the correlation
between the IP’s behaviours and the switching activity by observing only the changes
in IP’s primary inputs and outputs, without a visibility on internal signals connecting
the subcomponents. This is due to the fact that the switching activity is distributed
among subcomponents that could present power behaviors poorly correlated to each
other. This is exactly the case of Camellia. On the other hand, the subcomponents
of AES present a stronger correlation, and thus its MRE is sensibly lower than
Camellia. As a final consideration on Table 6.2, we observe that, with the exception
of Camellia, the MREs below the dashed line are not sensibly improved with respect
to their counterparts above the line. This confirms the fact that high-quality PSMs
can be generated from functional traces obtained by simulating the IP with the same
testbenches adopted for their functional verification.
In conclusion, Table 6.3 reports a performance evaluation and a further accuracy
analysis on the PSMs generated by using the short-TS set. Columns 2 and 3 show the
time required to simulate with the long-TS set, for 500,000 instants, respectively, the
SystemC model of the IPs (IP sim.) and the same IP model connected to the PSMs
(IP+PSMs). Then, Column 4 shows the simulation overhead due to the presence of
the PSMs with respect to simulating the IPs without PSMs. As shown, the overhead
ranges between 3% and 26% and it is inversely proportional to the complexity of
the IP. An even more significant fact is observed by comparing Column IP sim. of
Table 6.3 with the values reported in Column PX under the dashed line of Table 6.2.
This shows that estimating the power values by simulating the PSMs is up to two
orders of magnitude faster than using PrimeTime PX. This speed-up is not paid
in terms of accuracy, as shown by the last two columns of Table 6.3, which report
the MRE and the percentage of wrong-state predictions obtained by simulating the
PSMs, generated from the short-TS testset, with the long-TS testset.

Conclusions

The thesis presented a methodology for the automatic generation of PSMs by adopt-
ing an approach based on (i) dynamic mining of temporal assertions to extract the
IP’s functional behaviours from a set of functional traces, and (ii) a calibration
process to extract the associated power behaviours from a corresponding set of ref-
erences power traces. Finally, a Markov model was defined to implement a SystemC
simulatable model of the PSMs. The power estimation obtained by a system-level
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IP Lines PIs POs Syn. time (s.) Memory elements

RAM 101 44 32 140.2 8192
MultSum 45 49 32 18.8 225
AES 1089 260 129 42.6 670
Camellia 777 262 131 75.2 397

Table 6.1. Characteristics of benchmarks.

IP TS PX (s.) PSMs gen. (s.) States Trans. MRE

RAM 34130 169.0 1.2 9 18 0.30 %
MultSum 12002 19.5 0.6 2 2 4.03 %
AES 16504 144.8 0.7 5 7 3.45 %
Camellia 78004 74.5 5.7 5 10 32.66 %
RAM 500000 5316.7 20.1 9 18 0.29 %
MultSum 500000 750.1 22.6 3 4 3.27 %
AES 500000 3626.0 115.6 13 29 3.09 %
Camellia 500000 2699.0 221.2 5 11 32.64 %

Table 6.2. Characteristics of the generated PSMs.

IP IP sim. (s.) IP+PSMs (s.) Overhead MRE WSP

RAM 13.8 17.5 26.4% 0.29% 0%
MultSum 20.4 24.2 18.4% 3.97% 0%
AES 93.4 98.7 5.6% 3.11% 0%
Camellia 277.1 286.9 3.5% 32.64% 20%

Table 6.3. Simulation times and accuracy evaluation.

simulation of the automatically generated PSMs is up to two orders of magnitude
faster than running a state-of-the-art gate-level power simulator like PrimeTime PX
without a significant loss of accuracy for all IPs, but Camellia, which is composed by
a set of subcomponents whose power behaviours are low correlated to each other. To
mitigate the limitation highlighted by Camellia, I foresee, as future works, the au-
tomatic generation of a power model based on hierarchical PSMs that distinguishes
among IP subcomponents.
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Conclusions and Future works

In the context of system-level virtual prototyping, this thesis presented techniques
and tools addressing the creations of a unified SoC verification environment making
automatic the extraction of functional and extra-functional properties that char-
acterize the behaviors of a SoC. The outcome is represented by a set of different
approaches to automatically: generate invariants and assertions describing the func-
tionalities of a design, detect the security vulnerability of firmware, and create power
models describing the power consumption of a design. In detail, the main contribu-
tions presented in this thesis were:

1. The first GPU-based invariant miners in literature. By exploiting GPUs, both the
presented approaches greatly reduced the execution time with respect to existing
techniques, without affecting the accuracy of the analysis. Time-window invariant
mining is a new concept that certainly must be further investigated and improved.
Nevertheless, the proposed invariant miners are the first introducing time-window
invariant and exploiting GPUs.

2. An assertion miner exploiting user-defined templates to mine temporal assertions.
By using user-defined templates, we have the advantage to precisely define what
behaviors the system is supposed to implement. This allows us to more clearly de-
tect if the designed functionalities are exhibited during the simulation of the SoC.
Moreover, a fault-detection based strategy was applied to evaluate the coverage
of the mined assertions and provide to the user with a compact set of assertions.

3. The first security vulnerability miner that exploits concolic testing and model
counting to automatically generate assertions pinpointing corner cases that could
hide security vulnerabilities of a firmware running in a hardware platform.

4. Finally, the first power state machines generator which combines the analysis of
power and functional traces to automatically generate a model describing the
power consumption variation of an IP meanwhile it is performing its functionality
at RTL level.

However, among all of these contributions, the main lesson learned by developing
this thesis come from the time spent to automatically generate assertions pinpointing



100 7 Conclusions and Future works

security vulnerabilities. I came up with a solution assuring several advantages that
push me to continue extending the developed approaches in the near future:

• All the approaches for dynamically mining invariants and assertions are heavily
affected by the quality of the analyzed execution traces. On the other hand,
symbolic simulation is an excellent strategy to generate high-coverage test cases
for complex programs automatically. Therefore, a first possible extension of this
thesis is the extraction of invariants and assertions from execution traces sym-
bolically generated instead of purely relying upon test cases provided by the
user. Several academic and industrial (VCS Synopsys [1]) tools exist to turn a
Verilog/VHDL design into a C or binary code program. A C or binary program
symbolic engine [18, 72] can be consequently applied to generate high-quality
execution traces. The afterward mined invariants and assertions are more con-
fidently true in design under verification since they are extracted from traces
generated by traversing as many design’s execution branches as possible.

• Secondly, we can exploit the symbolic simulation of a design under verification
to generate a symbolic tree as described in the approach DOV E. The mining
of invariants and assertions through the analysis of a symbolic tree can be more
efficient rather than only considering a large set of purely concrete execution
traces. Afterwards, the mined assertions can be respectively evaluated with the
fault-based evaluation strategy defined in A−TEAM , and further “stressed”
with Mangrove on several simulation traces with millions of clock cycles.
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Published contributions

The work carried on to develop this thesis led to a total of IX publications. Hereby
are listed how the different which publications contributed to the Chapters in the
Part II of this thesis.

The methodologies for invariant mining discussed in Chapter 3, have been pre-
sented in:

• Danese, A., Piccolboni, L., and Pravadelli, G.,
“A parallelizable approach for mining likely invariants”
in Proceedings of the ACM/IEEE 10th International Conference on Hard-
ware/Software Codesign and System Synthesis (CODES 2015), pp. 193-201

• Bombieri, N., Busato, F., Danese, A., Piccolboni, L., and Pravadelli, G.,
“Exploiting GPU architectures for dynamic invariant mining”
in Computer Design of the 33rd IEEE International Conference on Computer
Design (ICCD 2015), pp. 192-195

The methodologies for temporal assertion mining discussed in Chapter 4, have
been presented in:

• Danese, A., Ghasempouri, T., and Pravadelli, G.,
“Automatic extraction of assertions from execution traces of be-
havioural models”
in Proceedings of the ACM/IEEE conference on Design, Automation & Test in
Europe (DATE 2015) pp. 67-72

• Danese, A., Filini, F., and Pravadelli, G,
“A time-window based approach for dynamic assertions mining on
control signals”
In Very Large Scale Integration (VLSI-SoC), 2015 IFIP/IEEE International Con-
ference on (VLSI-SoC 2015) pp. 246-251

• Danese, A., Mocci, J.,and Pravadelli, G.
“Fault model qualification by assertion mining” in Proceedings of the
IEEE 17th Latin American Test Symposium (LATS 2016) pp. 45-50

• Danese, A., Dalla Riva, N., and Pravadelli, G.,
“A-TEAM: Automatic template-base assertion miner”
in Proceedings of the ACM/IEEE conference on Design, Automation Conference
(DAC 2017) pp. 1-6
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The methodologies for security vulnerability detection discussed in Chapter 5,
have been presented in:

• Danese, A., Bertacco, V., and Pravadelli, G.,
“Work-in-Progress: DOVE:Pinpointing firmware security vulnerabili-
ties via symbolic control flow assertion mining”
in Proceedings of the ACM/IEEE 12th International Conference on Hard-
ware/Software Codesign and System Synthesis (CODES 2017), pp. (to appear)

• Danese, A., Bertacco, V., and Pravadelli, G.,
“Symbolic assertion mining for security validation”
in Proceedings of the ACM/IEEE conference on Design, Automation & Test in
Europe (DATE 2018), pp. (to appear)

The methodologies for the automatic generation of power state machines dis-
cussed in Chapter 6, have been presented in:

• Danese, A., Zandona, I., and Pravadelli, G.,
“Automatic generation of power state machines through dynamic min-
ing of temporal assertions
in Proceedings of the ACM/IEEE conference on Design, Automation & Test in
Europe (DATE 2016), pp. 606-611
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43. Ykä Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen. TANE: An
efficient algorithm for discovering functional and approximate dependencies. The
computer journal, 42(2):100–111, 1999.

44. Jasper. http://www.jasper-da.com.
45. Corey Kallenberg, John Butterworth, Xeno Kovah, and C Cornwell. Defeating

signed bios enforcement. Technical report, MITRE, 2013.
46. Corey Kallenberg, Sam Cornwell, Xeno Kovah, and John Butterworth. Setup

for failure: defeating secure boot. In Proc. of SyScan, 2014.
47. Corey Kallenberg and Xeno Kovah. How Many Million BIOSes Would you Like

to Infect? CanSecWest, 2015.
48. Volodymyr Kuznetsov, Vitaly Chipounov, and George Candea. Testing closed-

source binary device drivers with ddt. In Proc. of USENIX Annual Technical
Conference, 2010.

49. H. Lebreton and P. Vivet. Power modeling in SystemC at transaction level,
application to a DVFS architecture. In Proc. of IEEE ISVLSI, pages 463–466,
2008.

50. Hugo Lebreton and Pascal Vivet. Power modeling in systemc at transac-
tion level, application to a dvfs architecture. In Symposium on VLSI, 2008.
ISVLSI’08. IEEE Computer Society Annual, pages 463–466. IEEE, 2008.

51. Peng Li and John Regehr. T-check: bug finding for sensor networks. In Proc.
of ACM/IEEE IPSN, pages 174–185, 2010.

52. Wenchao Li, Alessandro Forin, and Sanjit A Seshia. Scalable specification min-
ing for verification and diagnosis. In Proc. of ACM/IEEE CAD, pages 755–760,
2010.

53. Invariant list of Daikon. http://plse.cs.washington.edu/daikon/download/

doc/daikon.html\#Invariant-list.



106 References

54. Lingyi Liu, Chen-Hsuan Lin, and Shobha Vasudevan. Word level feature dis-
covery to enhance quality of assertion mining. In Proc. of IEEE ICCAD, pages
210–217, 2012.

55. Lingyi Liu and Shobha Vasudevan. Automatic generation of system level as-
sertions from transaction level models. J. Electronic Testing, 29(5):669–684,
2013.

56. D. Lorenz, K. Gruettner, and W. Nebel. Data-and state-dependent power char-
acterisation and simulation of black-box RTL IP components at system level.
In Proc. of Euromicro DSD, pages 129–136, 2014.
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