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Abstract. In this paper we provide a new method for establishing the rotational symmetry of
the solutions to a couple of very classical overdetermined problems arising in potential theory, in
both the exterior and the interior punctured domain. Thanks to a conformal reformulation of the
problems, we obtain Riemannian manifolds with zero Weyl tensor satisfying a quasi-Einstein type
equation. Exploiting these geometric properties, we conclude via a splitting argument that the
manifolds obtained are half cylinders. In turn, the rotational symmetry of the potential is implied.
To the authors’ knowledge, some of the overdetermining conditions considered here are new.
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1. Introduction and statement of the results

In this paper we deal with two classical elliptic boundary value problems from potential theory,
namely  −∆u = 0 in Rn \ Ω,

u = c on ∂Ω,
u(x)→ 0 as |x| → +∞,

and

 −∆u = 0 in Ω \ {0},
u = c on ∂Ω,

u(x)→ +∞ as x→ 0.
(1.1)

Here and throughout this paper, Ω ⊂ Rn, n ≥ 3, is a bounded domain with smooth boundary
which contains the origin. It is well known that if Ω is the ball Br0 of radius r0 and centred at
zero, then the function

u0(x) =
|x|2−n

(n− 2)|Sn−1|
satisfies both problems with c = r2−n

0 /(n − 2)|Sn−1|. Here, |Sn−1| is the area of the (n − 1)-
dimensional unit sphere. In the following we will revisit for both problems some classical results
where the radial symmetry of the solution, and thus of the domain, is derived, provided some extra
assumptions are imposed so that the problems become overdetermined. It is worth pointing out
that the literature on this subject is vaste so that giving an exhausted list of the contributors is out
of reach. Here, we limit ourselves to mention the results that are more related to the subsequent
discussion: [18, 15, 13, 10] for the exterior domain, [19, 11] for the interior punctured domain.

In order to accomplish our programme, we propose an unifying point of view, which relies on a
suitable reformulation of the problems in the framework of Riemannian geometry. In particular,
we are going to exploit the conformal structure of the domains under consideration to obtain an
equivalent formulation of the problems which is suitable to be treated via splitting methods. We
refer the reader to the recent work [12] for other interesting applications of splitting principles in
the study of overdetermined problems.

To describe our approach in more detail, we set some notation and recall some basic geometric
facts. Throughout this paper, we let gRn denote the Euclidean metric of Rn. Recall that, in
Rn \ {0}, the metric gRn can be written as dr ⊗ dr + r2gSn−1 , where gSn−1 is the metric induced
by gRn on the unit sphere Sn−1 and r > 0 represents the Euclidean distance to the origin. The
cylindrical metric on Rn \ {0} is instead given by gcyl = r−2dr⊗ dr+ gSn−1 and it is related to gRn

by the conformal factor r−2. Note that, setting t := log r, one obtains the expression

gcyl = r−2gRn = dt⊗ dt+ gSn−1 .
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Geometrically, the variable t can be viewed as the signed cylindrical distance to the hypersurface
{r = 1} or, equivalently, to {t = 0}. It is clear from this expression that the cylindrical metric
is a product metric. To describe the heuristic of our approach, let us remark that when Ω is the
ball Br0 and u0 is the radial solution introduced above, the conformal change which relates the
Euclidean metric to the cylindrical one can be written in terms of u0. More precisely,

gcyl =
(
(n− 2)|Sn−1|u0

) 2
n−2 gRn .

In general, without assuming a priori that Ω is a ball, we take the solution u to one of our problems
and we build the ansatz metric

g = u
2

n−2 gRn

on the manifold with boundary M , which eventually corresponds to Rn \Ω or to Ω \ {0}. We aim
to show that under suitable extra conditions (see, for example, the hypotheses of Theorems 1.1
and Theorem 1.5 below) the metric g is the cylindrical metric, up to a multiplicative constant, so
that (M, g) is isometric to one half round cylinder. Once this has been established, the rotational
symmetry of u follows at once.

The advantage of this strategy is that one can divide the problem into two steps which can
be treated by means of very general principles. The first step consists in proving that g is the
Riemannian product of a half line with a level set of u. To do this we observe that the metric g
and the function f := log u satisfy in M the coupled system

Ricg +∇2f +
df ⊗ df
n− 2

=
|∇f |2g
n− 2

g and ∆gf = 0, (1.2)

consisting of a quasi-Einstein type equation and the prescription that f is g-harmonic. We refer
the reader to Section 2 for the notation and the computations pertaining to the conformal change.
It is interesting to notice how this formulation suggests a connection between this problem and
the static vacuum Einstein equations in General Relativity

f Ricg −∇2f = 0 and ∆gf = 0,

for which analogous rigidity issues arise. To give an example, we just mention the well-known
Black Hole Uniqueness Theorem (see [4] for a mathematical presentation).

Combining the relations in (1.2) with the Bochner identity, we deduce that |∇f |2g obeys the
PDE

∆g|∇f |2g +
〈
∇|∇f |2g

∣∣∇f〉
g

= 2|∇2f |2g.
We then perform in Section 3 an analysis of this equation in several situations with the help of
different overdetermining conditions and we conclude in each case that |∇f |2g is constant and in
turn that ∇f is a nontrivial parallel vector field. This implies that g has the desired product
structure, by a general Riemannian splitting principle. This is described in Section 4, where all
our results are finally proved. We notice en passant that f is an affine function of the g-distance
to ∂M . This gives a geometric interpretation of the quantity

|Du|2

u2n−1
n−2

= |∇f |2g , (1.3)

which is known in the literature as the P -function associated with the electrostatic potential (see
[18]). In other words, the square root of the P -function is the gradient-length of the g-distance to
∂M , up to a constant factor.

The second step of our strategy amounts to showing that the fibers of the product are isometric
to constant curvature spheres. Here the key ingredient is the fact that the Weyl tensor of the
metric g is always zero, so that we can argue in the same spirit as in [7], where a general study of
locally conformally flat quasi-Einstein manifolds is addressed. It is worth mentioning that similar
results were first obtained for locally conformally flat gradient Ricci solitons in [6, 8].

We now pass to enlist in more detail the results which we have obtained implementing the
technique described above. We are aware of the fact that the overdetermining conditions we deal
with are not optimal, but at this stage our aim is more to illustrate in a case study a symmetrization
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technique, which is not based neither on the Alexandroff-Serrin method (see [24, 20, 21, 1]) nor
on the isoperimetric inequality (see [19, 15, 11]), and which gives some geometrical insights into
the method of integral identities introduced by Weinberger, Payne, and Philippin (see [25, 18]).
We believe that our approach can be applied to other type of equations and boundary conditions,
provided that a satisfactory description of the rotationally symmetric solution is available. This
will be the object of future investigations.

We first consider the problem in the exterior domain −∆u = 0 in Rn \ Ω,
u = 1 on ∂Ω,

u(x)→ 0 as |x| → ∞,
(1.4)

where the Dirichlet boundary condition has been normalized to 1 for sake of simplicity. It is worth
pointing out that for every 0 < c ≤ 1 the level set {u = c} is compact, due to the properness of
u. Moreover, as it is noted in Remark A.3, we have that {u = c} is diffeomorphic to a (n − 1)-
dimensional sphere, and thus connected, for every c > 0 sufficiently small.

Our first result shows that the rotational symmetry of the potential u can be deduced provided
a suitable integral inequality is satisfied on some level set of u. To the authors’ knowledge, such
an overdetermining condition as well as its weaker versions (see conditions (1.7) and (1.9) below)
have not yet been considered in the literature.

Theorem 1.1. Let u be the unique solution to problem (1.4). Assume that, for some 0 < c ≤ 1,
the level set {u = c} is regular and it holds

ˆ

{u=c}

|Du|2
[

H

n− 1
− |Du|

(n− 2)u

]
dσ ≤ 0, (1.5)

where H is the mean curvature of the hypersurface {u = c} with respect to the normal pointing
towards the interior of {u ≤ c}. Then Ω is a ball and u is rotationally symmetric.

Let us briefly mention that the regularity of the level set required in the previous statement is
a condition which ensures that the normal is well-defined all over the hypersurface and allows us
to safely use the Divergence Theorem in the proof. However, while we refer the reader to Remark
A.3 for some comments about the regularity of the level sets of u, we point out that the thesis of
this theorem and of the related corollaries still holds when the level set considered is not regular.
We will address this issue with more detail in future work. Also, let us note that we do not require
the connectedness of the level set where condition (1.5) is fulfilled. Indeed, a perusal of the proof
shows that our argument does not rely on the connectedness of {u = c} and, in particular, on the
connectedness of ∂Ω. This information can be deduced a posteriori, as a consequence of (1.5).
Indeed, this integral condition is exploited in the proof to show that |∇f |g is a positive constant
and hence, in view of (1.3), that all the level sets {u = t} for 0 < t ≤ c are regular. In particular,
these level sets are diffeomorphic to each other and hence connected, since {u = c} is diffeomorphic
to a sphere for every c > 0 small enough, as already observed.

By means of the coarea formula and Sard’s Lemma, one can show that an analogous “sphere
theorem” holds if the slice-wise condition (1.5) is replaced by a global integral condition. This is
the content of the following corollary.

Corollary 1.2. Let u be the unique solution to problem (1.4) and suppose that

Φ(1)ˆ 1

0
Φ(c) dc

≤ 2
(n− 1

n− 2

)
, with Φ(c) :=

ˆ

{u=c}

|Du|3

u
dσ. (1.6)

Then Ω is a ball and u is rotationally symmetric.
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To give a physical interpretation of condition (1.5), we recall that the electrostatic capacity or
Newtonian capacity of Ω is defined, according to [16, Section 2.9], as

Cap(Ω) := inf

{ ˆ
Rn
|Dw|2 dµ : w ∈ C∞c , w ≡ 1 in Ω

}
.

It is easy to see that the electrostatic capacity can be equivalently expressed in terms of the solution
u to problem (1.4) as

Cap(Ω) =

ˆ

Rn\Ω

|Du|2 dµ =

ˆ

∂Ω

|Du| dσ =

ˆ

{u=c}

|Du| dσ,

for every 0 < c < 1. Note that the Dirichlet integral of u is finite thanks to Lemmata A.1
and A.2 and that the second and the third equality are due to the Divergence Theorem. In
the following corollary, which is an immediate consequence of Theorem 1.1, we replace condition
(1.5) by a condition involving Cap(Ω) and the total mean curvature of ∂Ω, which is defined as´
∂Ω H/(n− 1) dσ.

Corollary 1.3. Let u be a solution to problem (1.4) satisfying the condition(
max
∂Ω
|Du|2

/
min
∂Ω
|Du|2

)̂
∂Ω

H

n− 1
dσ ≤ Cap(Ω)

n− 2
. (1.7)

Then Ω is a ball and u is rotationally symmetric.

To give another interpretation of condition (1.5), note that, a posteriori, this becomes an equality.
More precisely, if u is rotationally symmetric, one has that

H

n− 1
=

|Du|
(n− 2)u

, (1.8)

on every level set of u. Thus, the geometrical character of condition (1.5) is better understood by
its pointwise version, which gives rise to the following corollary.

Corollary 1.4. Let u be a solution to problem (1.4) satisfying the condition

H

n− 1
≤ |Du|

(n− 2)u
on {u = c}, (1.9)

for some 0 < c ≤ 1 such that {u = c} is a regular level set. Then Ω is a ball and u is rotationally
symmetric.

Let us give one more comment about the geometric nature of (1.8). In force of identity (2.11),
we have that (1.8) holds true on some level set of u is and only if such level set is a minimal
hypersurface inside the conformally flat Riemannian manifold (M, g).

We now pass to consider a more classical set of overdetermining conditions. The following
theorem tells us that if a solution to problem (1.4) is such that |Du| is constant on {u = c}, then
the same conclusions as in Theorem 1.1 can be derived if we replace H by its infimum on {u = c}
in (1.9). It is worth pointing out that this result has been obtained under weaker assumptions by
several authors. Dropping any attempt of being complete, we refer the reader to [1, 13, 15, 20, 21].

Theorem 1.5. Let u be a solution to problem (1.4), satisfying the conditions

|Du| = d on {u = c} and inf
{u=c}

H

n− 1
≤ |Du|

(n− 2)u
on {u = c}, (1.10)

for some 0 < c ≤ 1 and some d > 0. Then Ω is a ball and u is rotationally symmetric.

Hypothesis (1.10) on ∂Ω has been considered in [13] to prove rotational symmetry of the solutions
in the case of partially overdetermined elliptic problems. To give an explanation of the second
condition in (1.10), we observe that, in the same spirit of [15], one can deduce from the constancy
of the gradient on ∂Ω that either H/n−1 = |Du|/(n−2)u or H/n−1 > |Du|/(n−2)u on {u = c}.



RIEMANNIAN ASPECTS OF POTENTIAL THEORY 5

While the first case allows us to conclude, the second case can be excluded thanks to the second
condition in (1.10) or, as done in [15], thanks to the assumption that Ω is starshaped. A similar
comment can be made about the corresponding condition in Theorem 1.8 below. Finally, we point
out that, as well as for Theorem 1.1 and related corollaries, the connectedness of Ω is not required
and can be deduced a posteriori.

We now turn the attention to the second problem in (1.1). In other words, we consider a solution
of the Laplace equation in the punctured domain, with constant Dirichlet boundary data and with
a non-removable singularity at the origin. As pointed out in [23], note that the first and the third
condition of this problem imply that −∆u = d|∂Ω|δ0 in Ω, for some d > 0, where δ0 is the Dirac
distribution centred at 0 and the equation is understood in the sense of distributions. For this
reason, in what follows we will always deal with the problem{

−∆u = d |∂Ω| δ0 in Ω,
u = c on ∂Ω,

(1.11)

for some given d > 0 and c ∈ R. For future reference, let us remark that the first equation in the
above problem implies that ˆ

∂Ω
|Du|dσ = d |∂Ω|. (1.12)

This can be easily deduced via the Divergence Theorem and Lemma A.4.
The next results are the counterpart of Theorem 1.1, Corollary 1.4, and Theorem 1.5 in the

interior punctured domain. To the authors’ knowledge, the following overdetermining condition
(1.13) and its weaker version (1.14) have not been considered in the literature so far.

Theorem 1.6. Let u be a solution to problem (1.11) satisfying the integral condition

 
∂Ω

H

n− 1
|Du|2 dσ( 

∂Ω
|Du|dσ

)2 ≥
(
|Sn−1|
|∂Ω|

) 1
n−1


 
∂Ω
|Du|3 dσ( 

∂Ω
|Du| dσ

)3


n

2(n−1)

, (1.13)

where H is the mean curvature of the hypersurface ∂Ω with respect to the normal pointing towards
the exterior of Ω. Then Ω is a ball and u is rotationally symmetric.

Note that the quantity
(
|Sn−1|/|∂Ω|

) 1
n−1 appearing in the above integral inequality is the in-

verse of the n-dimensional Russel capacity (see [10] and the references therein). In the following
straightforward corollary of Theorem 1.6 we consider the pointwise version of hypothesis (1.13).
This result can be seen as a bridge between Theorem 1.6 and Theorem 1.8 below.

Corollary 1.7. Let u be a solution to problem (1.11) satisfying the condition

H

n− 1
≥
(
|Sn−1|
|∂Ω|

) 1
n−1


( 

∂Ω
|Du| dσ

)2

 
∂Ω
|Du|2 dσ




 
∂Ω
|Du|3 dσ( 

∂Ω
|Du|dσ

)3


n

2(n−1)

on {u = c}. (1.14)

Then Ω is a ball and u is rotationally symmetric.

In the following theorem we consider the case where a solution to problem (1.11) has constant
Neumann boundary data. In this case, the first equation of (1.11) and (1.12) imply that the
constant must coincide with d, namely

|Du| = d on ∂Ω. (1.15)

Let us remark that when this condition is fulfilled, then the pointwise inequality (1.14) reduces to

H

n− 1
≥
(
|Sn−1|
|∂Ω|

) 1
n−1

on {u = c}.
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The following results tells us that a weaker version of this condition coupled with (1.15) guarantees
the radial symmetry of the solutions.

Theorem 1.8. Let u be a solution to problem (1.11) satisfying the conditions

|Du| = d on ∂Ω and sup
∂Ω

H

n− 1
≥
(
|Sn−1|
|∂Ω|

) 1
n−1

. (1.16)

Then Ω is a ball and u is rotationally symmetric.

The same conclusions of the above theorem have been derived under weaker assumptions, e.g.,
in [19, 11]. See also [2] where a 2-dimensional analysis of problem (1.11) with more general
symmetric-type Neumann conditions is performed.

We finally state a result which shows how our method applies to problems defined on annular
domains. This result can be thought of as a link between what we have obtained for the exterior
domain and for the interior punctured domain.

Theorem 1.9. Let u be a positive solution to either problem (1.4) or problem (1.11) satisfying
the conditions

H

n− 1
≥ |Du|

(n− 2)u
on {u = a} and

H

n− 1
≤ |Du|

(n− 2)u
on {u = b},

for some 0 < a < b such that {u = a} and {u = b} are regular level sets. Suppose that either
{u = a} or {u = b} is connected. Then Ω is a ball and u is rotationally symmetric.

More in general, this theorem holds if we replace the pointwise conditions on the level sets
{u = a} and {u = b} with the corresponding integral conditions modeled on (1.5), as it will be
clear from the arguments which are developed in the following sections. It would be interesting
to investigate the relationship between the two-boundaries overdetermining condition in Theorem
1.9 and other overdetermining conditions involving two boundaries, such as the ones given in [9]
and [22].

We believe that the approach that we have developed to deal with the classical problems pre-
sented in this paper may represent a starting point for future investigations. In particular, we
would like to employ the same machinery to treat overdetermined problems for certain types of
semilinear and possibly quasilinear equations.

2. A conformally equivalent formulation of the problems

Let us consider a solution u to either problem (1.4) or problem (1.11). Note that in the first
case 0 < u < 1, whereas in the second case we can suppose that u > 0, up to an additive constant.
We refer the reader to the Appendix for a description of the basic qualitative properties of the
solutions. Here, we present an equivalent formulation of problems (1.4) and (1.11), which is based
on a conformal change of the Euclidean metric. To set up the notation, we let M be either Rn \Ω
in the case of problem (1.4) or Ω \ {0} in the case of problem (1.11). We denote by gRn the flat
Euclidean metric of Rn, and we consider the conformally equivalent metric given by

g := u
2

n−2 gRn . (2.1)

For future convenience, we set f := log u, so that the metric g can be equivalently written as

g = e
2f
n−2 gRn . (2.2)

To proceed, we fix local coordinates {xα}nα=1 in M and we use the formulas from [17, pag 42] to
deduce that

Γγαβ = Gγ
αβ +

1

n− 2

(
δγα∂βf + δγβ∂αf − g

Rn
αβ g

γη
Rn ∂ηf

)
,

where Gγ
αβ and Γγαβ are the Christoffel symbols associated with the metric gRn and g, respectively.

In what follows we will denote by D and ∇ the covariant derivatives of the metrics gRn and
g, respectively. The symbols D2, ∇2 and ∆, ∆g will stand for the corresponding Hessians and
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Laplacian operators. Notice that throughout this paper the Einstein summation convention for
the sum over repeated indices is adopted. As a consequence of the previous formula, we get

∇2
αβw =

∂2w

∂xα∂xβ
− Γγαβ

∂w

∂xγ

= D2
αβw −

1

n− 2

(
∂αw ∂βf + ∂βw ∂αf − 〈Dw|Df〉 gR

n

αβ

)
, (2.3)

for any given w ∈ C2(M). By taking the trace of (2.3), we obtain

∆gw := gαβ∇2
αβw = e−

2f
n−2 (∆w + 〈Dw|Df〉) . (2.4)

In particular, one has ∆gf = 0, because

∆f = −|Df |2. (2.5)

Observe that [5, Theorem 1.159] implies that the Ricci tensor Ricg = Rαβ dx
α⊗ dxβ of the metric

g is related to the one of the metric g by

Rαβ = RRn
αβ −D2

αβf +
∂αf ∂βf

n− 2
− ∆f + |Df |2

n− 2
gR

n

αβ = −D2
αβf +

∂αf ∂βf

n− 2
,

where in the second equality we have used (2.5) and the fact that RicRn = 0. Therefore, from (2.3)
we get

Ricg +∇2f +
df ⊗ df
n− 2

=
|∇f |2g
n− 2

g, (2.6)

since |∇f |2g g = |Df |2 gRn . We remark en passant that the latter identity implies in particular that

|∇f |2g =
|Du|2

u2n−1
n−2

. (2.7)

This formula says that the function |∇f |2g coincides with the P -function usually associated with
problems (1.4) and (1.11), see [15, formula (1.5)] and [11, formula (7)], respectively.

We are now in the position to reformulate problem (1.4) as

∆gf = 0 in M,

Ricg +∇2f +
df ⊗ df
n− 2

=
|∇f |2g
n− 2

g, in M,

f = 0 on ∂M,

f(x)→−∞ as x→∞,

(2.8)

and problem (1.11) as

∆gf = 0 in M,

Ricg +∇2f +
df ⊗ df
n− 2

=
|∇f |2g
n− 2

g, in M,

f = log c on ∂M.

f(x)− log
d |∂Ω| |x|2−n

(n− 2)|Sn−1|
→ 0 as x→ 0.

(2.9)

Note that the limit in (2.9) has been deduced from Lemma A.4. Taking the trace of the second
equation in (2.8) or in (2.9) gives the expression for the scalar curvature Rg of the metric g, namely

Rg

n− 1
=
|∇f |2g
n− 2

.

For the forthcoming analysis it is important to study the geometry of the level sets of f , which
coincide with the level sets of u by definition. To this end, we fix on M the gRn-unit vector
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field ν := −Du/|Du| = −Df/|Df | and the g-unit vector field νg := −∇u/|∇u|g = −∇f/|∇f |g.
Consequently, the second fundamental forms of the regular level sets of u or f with respect to the
flat ambient metric and the conformally-related ambient metric g, are given by

h(X,Y ) = −D2u(X,Y )

|Du|
= −D2f(X,Y )

|Df |
,

hg(X,Y ) = −∇
2u(X,Y )

|∇u|g
= −∇

2f(X,Y )

|∇f |g
,

respectively, where X and Y are vector fields tangent to the level sets. In particular, h and hg are
related by

hg(X,Y ) = e
f

(n−2)

(
h(X,Y )− |Df |

n− 2
〈X|Y 〉

)
.

As a consequence, taking into account the fact that u is gRn-harmonic and f is g-harmonic, we
have that the mean curvatures are given by

H =
D2u(ν, ν)

|Du|
, Hg =

∇2f(νg, νg)

|∇f |g
. (2.10)

They are related by the formula

Hg

n− 1
= e−

f
n−2

(
H

n− 1
− |Df |
n− 2

)
. (2.11)

Having this at hand, we notice that the quantity appearing in hypothesis (1.5) of Theorem 1.1 can
be rewritten as ˆ

{u=c}

|Du|2
[

H

n− 1
− |Du|

(n− 2)u

]
dσ = c

n
n−2

ˆ

{f=log c}

|∇f |2g
Hg

n− 1
dσg. (2.12)

As it will be clear at a later stage, this quantity turns out to be relevant also in the proof of
Theorem 1.6, through hypothesis (1.13).

3. Some consequences of the Bochner formula

For what follows it is useful to specialize the Bochner formula

1

2
∆g|∇f |2g = |∇2f |2g + Ricg(∇f,∇f) +

〈
∇(∆gf)

∣∣∇f〉
g

to our problems. In particular, from equation (2.6) we get

∆g|∇f |2g = 2|∇2f |2g −
〈
∇|∇f |2g

∣∣∇f〉
g
. (3.1)

In this section we exploit some concequences of this formula in relation to some overdetermining
conditions under which the solutions to problems (2.8) and (2.9) can be proved to be affine.

We start by discussing the integral-type conditions, which involve the right-hand side of (2.12).
Integrating identity (3.1) by parts with respect to a weighted measure we obtain the following
general formula.

Lemma 3.1. Given a, b ∈ f(M) such that a < b, and any ϕ : f(M)→ R, we have that

2

ˆ

{a<f<b}

|∇2f |2g eϕ(f) dµg =

ˆ

{a<f<b}

[
ϕ′′(f) + (ϕ′(f))2 − ϕ′(f)

]
|∇f |4g eϕ(f) dµg

+ [1− ϕ′(b)]eϕ(b)

ˆ

{f=b}

|∇f |3g dσg + eϕ(b)

ˆ

{f=b}

2|∇f |2g Hg dσg

− [1− ϕ′(a)]eϕ(a)

ˆ

{f=a}

|∇f |3g dσg − eϕ(a)

ˆ

{f=a}

2|∇f |2g Hg dσg (3.2)
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Proof. First, multiplying equation (3.1) by eϕ(f) and integrating by parts twice on the set {a <
f < b}, one gets

2

ˆ

{a<f<b}

|∇2f |2g eϕ(f) dµg =

ˆ

{a<f<b}

[
ϕ′′(f) + (ϕ′(f))2 − ϕ′(f)

]
|∇f |4g eϕ(f) dµg

+

ˆ

∂{a<f<b}

[
1− ϕ′(f)

]
|∇f |2g 〈∇f | ν〉g eϕ(f) dσg −

ˆ

∂{a<f<b}

〈
∇|∇f |2g | ν

〉
g

eϕ(f) dσg, (3.3)

where ν is the outer unit normal of {a < f < b} on ∂{a < f < b}. Noticing that ν = ∇f/|∇f |g
on {f = b} and ν = −∇f/|∇f |g on {f = a}, and using the formula〈

∇|∇f |2g | ∇f
〉
g

= 2|∇f |3 Hg,

equation (3.2) easily follows from (3.3). �

If we choose the weighting function ϕ so that ϕ′′ + (ϕ′)2 − ϕ′ = 0, then the quantity (1− ϕ′)eϕ
is a first integral and we obtain the following corollary.

Corollary 3.2. If ϕ : I ⊆ f(M)→ R is a solution to ϕ′′ + (ϕ′)2 − ϕ′ = 0 defined on the maximal
interval of existence I, then, setting

K := (1− ϕ′)eϕ,
formula (3.2) particularizes to

2

ˆ

{a<f<b}

|∇2f |2g eϕ(f) dµg = K

( ˆ
{f=b}

|∇f |3g dσg −
ˆ
{f=a}

|∇f |3g dσg

)

+ eϕ(b)

ˆ

{f=b}

2|∇f |2g Hg dσg − eϕ(a)

ˆ

{f=a}

2|∇f |2g Hg dσg, (3.4)

for every a, b ∈ I with a < b.

Specializing this corollary to a suitable choice of the function ϕ, with the following two proposi-
tions we prove that the harmonic function f in problems (2.8) and (2.9) is indeed an affine function,
provided appropriate integral conditions are satisfied.

Proposition 3.3. Let f be a smooth function satisfying problem (2.8) in M = Rn \Ω, where g is
metric defined in (2.2). If the conditionˆ

{f=log c}

|∇f |2g Hg dσg ≤ 0, (3.5)

is fulfilled for some 0 < c ≤ 1, then ∇2f = 0 in {f < log c}.

Proof. We consider the function ϕ(f) = f , which satisfies the equation ϕ′′ + (ϕ′)2 − ϕ′ = 0 with
the first integral K = (1 − ϕ′)eϕ ≡ 0. Therefore, we can apply Corollary 3.2 with a = log ε and
b = log c, for some small ε > 0, obtainingˆ

{log ε<f<log c}

|∇2f |2g ef dµg = c

ˆ

{f=log c}

|∇f |2g Hg dσg − ε

ˆ

{f=log ε}

|∇f |2g Hg dσg.

Next we are going to show that

lim
ε→0

ε

ˆ

{f=log ε}

|∇f |2g Hg dσg = 0. (3.6)
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Combining this fact with the hypothesis (3.5), the statement follows at once. To check (3.6), we
first observe thatˆ

{f=log ε}

|∇f |2g Hg dσg =

ˆ

{f=log ε}

|∇f |g∇2f(νg, νg) dσg ≤
ˆ

{f=log ε}

|∇f |g |∇2f |g dσg,

where in the equality we have used (2.10). By Lemmata A.1 and A.2 and by the identity |∇f |g =

u−
n−1
n−2 |Du|, it is easy to see that there exists a constant A1 > 0 such that

|∇f |g ≤ A1. (3.7)

Now, using (2.3) and making u explicit, we have that∣∣∇2f
∣∣2
g

=

∣∣∣∣D2u

u
− n

n− 2

du⊗ du
u2

+
1

n− 2

∣∣∣∣Duu
∣∣∣∣2gRn∣∣∣∣2

g

= u−
4

n−2

( ∣∣∣∣D2u

u

∣∣∣∣2 +
n(n− 1)

(n− 2)2

∣∣∣∣Duu
∣∣∣∣4 − 2n

n− 2

D2u(Du,Du)

u3

)
≤ A2 u

− 4
n−2

( ∣∣∣∣D2u

u

∣∣∣∣2 +

∣∣∣∣Duu
∣∣∣∣4), (3.8)

for some constant A2 > 0. Note that in the last inequality we have used the fact that∣∣∣∣D2u(Du,Du)

u3

∣∣∣∣ ≤ ∣∣∣∣D2u

u

∣∣∣∣ ∣∣∣∣Duu
∣∣∣∣2 ≤ 1

2

( ∣∣∣∣D2u

u

∣∣∣∣2 +

∣∣∣∣Duu
∣∣∣∣4).

Employing Lemmata A.1 and A.2, from (3.8) we can deduce that there exists A3 > 0 such that

|∇2f |g ≤ A3. (3.9)

Finally, observe that ˆ

{f=log ε}

dσg =

ˆ

{u=ε}

u
n−1
n−2 dσ = ε

n−1
n−2

ˆ

{u=ε}

dσ.

Using Lemma A.1, it is not hard to show that |{u = ε}| ≤ A4 ε
−(n−1)/(n−2), for some A4 > 0, so

that ˆ

{f=log ε}

dσg ≤ A4. (3.10)

Inequalities (3.7), (3.9), and (3.10) imply (3.6). This concludes the proof. �

The following proposition is the counterpart of the previous one in the interior punctured domain.
In this case, since f(x)→ +∞ as x→ 0, the integrability of the function

|∇2f |2eϕ(f)

on {f > log c} is not a priori guaranteed by the choice ϕ(f) = f , so that ϕ has to be chosen
differently. The new determination of ϕ implies that the first integral K is in general different
from 0. This justify the introduction of an extra hypothesis on the limiting behavior of a relevant
integral quantity.

Proposition 3.4. Let f be a smooth function satisfying problem (2.9) in M = Ω \ {0}, where g
is the metric defined in (2.2). If the conditionsˆ

{f=log c}

|∇f |3g dσg = lim sup
t→∞

ˆ

{f=log t}

|∇f |3g dσg and

ˆ

{f=log c}

|∇f |2g Hg dσg ≥ 0 (3.11)

are fulfilled, then ∇2f = 0 in {f > log c}.
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Proof. For c < t < +∞, we consider the family of functions

ϕt(f) := log
(
1− ef/t

)
,

defined for log c < f < log t. Since ϕt satisfies the equation ϕ′′ + (ϕ′)2 − ϕ′ = 0 with the first
integral K = (1 − ϕ′t)eϕt ≡ 1, we can apply Corollary 3.2 with a = log c and b = log(t − ε), for
some small ε > 0, obtaining

2

ˆ

{log c<f<log(t−ε)}

|∇2f |2g
(
1− ef/t

)
dµg =

ˆ

{f=log(t−ε)}

|∇f |3g dσg −
ˆ

{f=log c}

|∇f |3g dσg

+ (ε/t)

ˆ

{f=log(t−ε)}

2|∇f |2g Hg dσg − (1− c/t)
ˆ

{f=log c}

2|∇f |2g Hg dσg.

Letting ε→ 0 in the previous formula, we end up with

2

ˆ

{log c<f<log t}

|∇2f |2g
(
1− ef/t

)
dµg =

ˆ

{f=log t}

|∇f |3g dσg −
ˆ

{f=log c}

|∇f |3g dσg

− (1− c/t)
ˆ

{f=log c}

2|∇f |2g Hg dσg. (3.12)

Finally, by the first condition in assumption (3.11) and by the Monotone Convergence Theorem,
letting t→ +∞ in (3.12) givesˆ

{f>log c}

|∇2f |2g dµg = −
ˆ

{f=log c}

|∇f |2g Hg dσg.

The statement is now a direct consequence of the second condition in assumption (3.11). �

We now come back to the analysis of identity (3.1), this time in relation to pointwise-type
overdetermining conditions for problems (2.8) and (2.9). In analogy with Proposition 3.3 and
Proposition 3.4, our conclusion will be that f is an affine function. We start the analysis of
problem (2.8) with the following lemma.

Lemma 3.5. Let f be a smooth function satisfying problem (2.8) in M = Rn \ Ω, where g is the
metric defined in (2.2). Then, for every 0 < c ≤ 1,

max
{f≤log c}

|∇f |2g = max
{f=log c}

|∇f |2g.

Proof. Let us restrict to the case c=1, so that {f ≤ log c} = M and {f = log c}= ∂M . The proof
for an arbitrary 0 < c < 1 is identical, up to minor changes. We define the functions

wα := |∇f |2g eαf , α ∈ (0, 1).

Using equation (3.1), one can show that the functions wα satisfy

∆gwα + (1− 2α)〈∇wα|∇f〉g − α(1− α)|∇f |2g wα = 2 eαf |∇2f |2g. (3.13)

Observe that due to Lemmata A.1 and A.2 and equation (2.7), we have that wα(x) → 0, as
|x| → ∞. This fact, together with equation (3.13), tells us that the function wα attains its
maximum value on ∂M . Indeed, the equation prevents wα from attaining the maximum in the
interior of M , unless wα is a constant function. But since wα vanishes at infinity, if wα were
constant we would have 0 = wα = |∇f |g on ∂M , which is impossible. Now, let pα ∈ ∂M be such
that maxM wα = wα(pα) so that, fixed an arbitrary x ∈M , we have

wα(pα) ≥ wα(x).

Therefore, up to a subsequence, we have pα → p0, as α → 0+, for some p0 ∈ ∂M , and in turn
|∇f |g(p0) ≥ |∇f |g(x). Since this holds true for every x ∈M , the thesis follows. �
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Combining the above lemma with the Strong Maximum Principle we can deduce the next result.

Proposition 3.6. Let f be a smooth function satisfying problem (2.8) in M = Rn \Ω, where g is
the metric defined in (2.2). If the conditions

|∇f |g = d on ∂M and inf
∂M

Hg ≤ 0, (3.14)

for some d > 0, then ∇2f ≡ 0 in M . Moreover, for every 0 < c < 1, the same conclusion holds in
{f ≤ log c} if condition (3.14) is satisfied with {f = log c} in place of ∂M .

Proof. We first note that Hg ≥ 0 on ∂M . This follows from (2.10) together with the fact that
2∇2f(∇f,∇f) = 〈∇|∇f |2g|∇f〉g ≥ 0, which is due to Lemma 3.5 coupled with the first condition
in (3.14). Now, using [16, Lemma 3.4] and again the first condition in (3.14), we have that either
〈∇|∇f |2g|∇f〉g > 0 on ∂M or |∇f |g is constant in M . Observe that the second condition of (3.14)
and (2.10) prevent the first possibility to occur, because of the compactness of ∂M . Therefore,
we have deduced that |∇f |g is constant in M and in turn, from (3.1), that ∇2f = 0 in M . The
second part of the statement follows by the same argument, up to minor changes. �

Note that, in virtue of Lemma 3.5, the constant d appearing in the previous statement must
coincide with maxM |∇f |g. The following result can be seen as the counterpart of Lemma 3.5 and
Proposition 3.6 for the interior punctured domain.

Proposition 3.7. Let f be a smooth function satisfying problem (2.9) in M = Ω \ {0}, where g
is the metric defined in (2.2). If the conditions

|∇f |g ≡ max
M
|∇f |g on ∂M and sup

∂M
Hg ≥ 0 (3.15)

are fulfilled, then ∇2f = 0 in M .

Proof. Note that from the first condition in (3.15) we obtain that 2∇2f(∇f,∇f) = 〈∇|∇f |2g|∇f〉g ≤
0, so that Hg ≤ 0 on ∂M . Now, using [16, Lemma 3.4] and again the first condition in (3.15), we
have that either 〈∇|∇f |2g|∇f〉g < 0 on ∂M or |∇f |g is constant in M . Observe that the second
condition of (3.15) and (2.10) prevent the first possibility to occur, because of the compactness
of ∂M . Therefore, we have deduced that |∇f |g is constant in M and in turn, from (3.1), that
∇2f = 0 in M . �

4. Product structure of the conformal metric
and rotational symmetry

This section is devoted to the proofs of Theorem 1.1, Theorem 1.5, Theorem 1.6, Theorem 1.8,
and Theorem 1.9. Moreover, at the end of the section we present the proof of Corollary 1.2, which
is a consequence of Theorem 1.1 combined with the coarea formula.

We first show that if an affine function f solves equation (2.6) in a complete noncompact
Riemannian manifold (M, g) with smooth boundary, then (M, g) has a product structure provided
f is constant on ∂M . Moreover, if the Weyl tensor associated with the metric is null, we have that
(M, g) is indeed isometric to one half round cylinder. Building on this result, we then consider
the function f := log u satisfying problems (2.8) and (2.9) and for each of the overdetermining
conditions considered in the theorems we prove that the hypersurfaces {f = log c}, which coincide
with {u = c}, are isometric to constant curvature spheres. The rotational symmetry of u will then
follow by standard arguments.

Since the subsequent proposition and its proof are based on the orthogonal decomposition of
the Riemann tensor as well as on the Gauss equations, we briefly recall these classical formulas for
ease of reference.

Given a n-dimensional Riemannian manifold, the Riemann curvature tensor Rm decomposes as

Rαβγδ = Sαβγδ + Eαβγδ + Wαβγδ, (4.1)
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where the pure-trace or scalar part S of Rm is defined by

Sαβγδ :=
R

n(n− 1)

(
gαγgβδ − gαδgβγ

)
,

the semi-tracelss part E by

Eαβγδ :=
1

n− 2

(
gαγ

◦
Rβδ −gαδ

◦
Rβγ +gβδ

◦
Rαγ −gβγ

◦
Rαδ

)
, (4.2)

where
◦
Rαβ:= Rαβ −

R

n
gαβ (4.3)

is the traceless Ricci tensor
◦

Ric, and the tensor W, the fully traceless part of Rm, is the so-called
Weyl tensor.

We recall that an n-dimensional Riemannian manifold is a space form (or a constant curvature
space) if W = 0 and E = 0. In this case, by the Fundamental Classification Theorem (see [14,
Theorem 3.82]), depending on whether R > 0, R = 0, or R < 0, the manifold is locally isometric
either to a round sphere, or to the flat Rn, or to the hyperbolic space, respectively. In the case
where E = 0, the manifold is said to be an Einstein manifold. Notice that E = 0 if and only

if
◦

Ric= 0. Concerning the Weyl tensor, it is worth pointing out that for n ≤ 3 the tensor W is
not present in the decomposition (4.1), whereas for n > 3 we have that W = 0 if and only if the
manifold is locally conformally flat.

We finally recall the Gauss equations for hypersurfaces. Let N be a hypersurface sitting in
our n-dimensional Riemannian manifold, and fix local coordinates {t, θ1, ..., θn−1} adapted to the
hypersurface in the sense that ∂/∂t is a unit normal to N and ∂/∂θ1, ..., ∂/∂θn−1 are tangent to
N . In this coordinates, the Gauss equations read

Rijkl = Rijkl + hjkhil − hikhjl, (4.4)

Rij = Rij + Ritjt + gklhikhjl −Hhij , (4.5)

R = R + 2Rtt + |h|2 −H2. (4.6)

Here, ḡ is the metric induced by g on the hypersurface, and Rm, Ric, and R are the corresponding
Riemann tensor, Ricci tensor, and scalar curvature.

Having recalled these basic concepts from Riemannian geometry, we are now in the position to
prove the following structure theorem.

Theorem 4.1. Let (M, g) be a complete noncompact Riemannian manifold with smooth boundary.
Suppose that there exists a nonconstant function f : M → R such that the boundary ∂M of M is
a level set of f . We have the following.

(i) If ∇2f ≡ 0 in M , then (M, g) is isometric to the Riemannian product(
[0,+∞)× ∂M, dt⊗ dt+ g|∂M

)
,

where the variable t represents the distance to the boundary.
(ii) If in addition the Weyl tensor W of the metric g vanishes and equation (2.6) is satisfied,

then the (n − 1)-dimensional Riemannian manifold
(
∂M, g|∂M

)
is locally isometric to a

spherical space form and (M, g) is locally isometric to one half round cylinder. If in addition
∂M is connected, the local isometry improves to a global isometry.

Proof. Since in this proof there is no possibility of confusion, we omit the subscript g to all the
quantities. To prove the first part of the statement, note first that by Kato inequality we have

0 = |∇2f | ≥ |∇|∇f || in M,

so that |∇f | is constant everywhere. Clearly, it cannot be |∇f | = 0, because f is noncostant.
Thus, |∇f | > 0 on M and, in turn, the function f can be regarded as a coordinate everywhere



14 V. AGOSTINIANI AND L. MAZZIERI

and locally one can choose a system of coordinates {f, θ1, . . . , θn−1} such that the metric g can be
written as

g =
df ⊗ df
|∇f |2

+ gij(f, θ) dθ
i⊗ dθj .

To obtain the product structure of g, it is enough to show that ∂gij/∂f = 0, for i, j = 1, . . . , n− 1.
Indeed, setting dt = ± df/|∇f | (depending on whether ∇f on ∂M is inward or outward pointing)
and normalizing in such a way that the level set {t = 0} corresponds to ∂M , this would imply that

g = dt⊗ dt+ g|∂M .

Note that this expression tells us that the function t represents the distance to the boundary. The
fact that gij is independent of f is a consequence of the basic computation

0 = ∇2
ijf =

∂2f

∂θi∂θj
− Γfij

∂f

∂f
− Γkij

∂f

∂θk
= −Γfij

= −g
ff

2

(
∂gif
∂θj

+
∂gjf
∂θi
− ∂gij

∂f

)
= −|∇f |

2

2

∂gij
∂f

.

This finishes the proof of (i).
To show that the second part of the statement hods true, we denote by ḡ the metric g|∂M and

we use the same notation for all the Riemannian quantities related to ḡ. We first prove that ∂M
is a space form, that is E = 0 and W = 0, according to (4.1)-(4.3). To check that the condition
◦

Ric= 0, which is equivalent to E = 0, is satisfied, let us use the coordinates {t, θ1, . . . , θn−1} and
note that the Gauss equation (4.5) reduces to

Rij = Rij .

Indeed, it is easy to verify that the product structure of g induces a splitting of Rm as well, so
that Ritjt = 0. Moreover, since ∇2f ≡ 0, then h ≡ 0 on ∂M . Now, using equation (2.6) on ∂M ,
we obtain that for every i, j = 1, . . . , n− 1,

Rij = −∇2
ijf −

∂if∂jf

n− 2
+
|∇f |2

n− 2
gij =

|∇f |2

n− 2
ḡij , on ∂M. (4.7)

Taking the trace, we have that indeed

R

n− 1
=
|∇f |2

n− 2
, (4.8)

and in turn, using again (4.7), we have that
◦

Ric= 0.
To see that W = 0, observe first that from the decomposition (4.1) applied to Rm and from the

definition of S, using E = 0 we get

Wijkl = Rijkl −
R

(n− 1)(n− 2)

(
ḡikḡjl − ḡilḡjk

)
. (4.9)

Observe that we have also used the identity Rijkl = Rijkl, which follows from the Gauss equation
(4.4) and from the fact that h = 0. Now, since W = 0, again from the decomposition of the
Riemann tensor and from the definition of S we have

Rijkl =
R

n(n− 1)

(
gikgjl − gilgjk

)
+ Eijkl =

R

n(n− 1)

(
ḡikḡjl − ḡilḡjk

)
+ Eijkl.

Note that in the second equality we have used the fact that R = R, which is a consequence of (4.6)
coupled with Rtt = 0. The last identity and equation (4.9) imply that

Wijkl = − 2 R

n(n− 1)(n− 2)

(
ḡikḡjl − ḡilḡjk

)
+ Eijkl. (4.10)
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At the same time, equations (4.7)-(4.8) yield
◦
Rij=

(
R/n(n− 1)

)
gij , and in turn

Eijkl =
2 R

n(n− 1)(n− 2)

(
ḡikḡjl − ḡilḡjk

)
.

Substituting this expression into (4.10) gives W = 0. Hence, (∂M, ḡ) is a space form.
In view of identity (4.8), which gives R > 0, we can finally deduce that (∂M, ḡ) is locally

isometric to a constant curvature sphere. �

We now proceed with the proofs of the main theorems stated in the introduction. We start
with the proof of Theorem 1.1, which treats the problem in the exterior domain with the integral
overdetermining condition (1.5).

Proof of Theorem 1.1 (after Proposition 3.3). Let u be a solution to problem (1.4) and let 0 < c ≤
1 be such that the hypotheses of the theorem are satisfied.

Let us consider the metric g defined in (2.1) and the function f = log u, so that the system (2.8)
is satisfied in M = Rn \ Ω. According to (2.12), the hypothesis (1.5) is equivalent toˆ

{f=log c}

|∇f |2g Hg dσg ≤ 0.

Therefore, we can use Proposition 3.3 to deduce that ∇2f ≡ 0 in {f ≤ log c}. At the same time,
since the metric g is by construction globally conformally equivalent to the flat metric gRn , we have
the for n ≥ 4 the corresponding Weyl tensor Wg vanishes. As for the case n = 3, we recall that
Wg is not present in the decomposition (4.1). Hence, we can apply Theorem 4.1 and obtain that
the Riemannian manifold

(
{f = log c}, g|{f=log c}

)
, or equivalently

(
{u = c}, g|{u=c}

)
, is locally

isometric to a constant curvature sphere. Since the conformal factor which relates gRn and g is
a function of u, it is immediate to see that the metric gRn restricted to {u = c} is a constant
multiple of ḡ = g|{u=c}. Hence,

(
{u = c}, gRn |{u=c}

)
is locally isometric to a constant curvature

sphere as well. Observe that from ∇2f ≡ 0 in {u ≤ c} we deduce that |∇f |g is a positive constant
in the same region, so that all the level sets {u = t}, for t ≤ c, are regular and diffeomorphic to
each other. In particular, in view of Remark A.3, the level sets are all diffeomorphic to (n − 1)-
dimensional spheres. Therefore,

(
{u = c}, gRn |{u=c}

)
is indeed globally isometric to a constant

curvature sphere, hence we can set {u = c} = ∂Brc , for some rc > 0.
Let us now show that u is rotationally symmetric in Rn \ Brc . To do this, we note that the

function v(x) := c (rc/|x|)n−2 satisfies the conditions ∆v = 0 in Rn \Brc ,
v = c on ∂Brc ,

v(x)→ 0 as |x| → ∞.
On the other hand, the function u solves the same problem. Hence, by the Maximum Principle,
u = v in Rn \Brc and in turn u is rotationally symmetric in the same set.

Finally, we prove that u is rotationally symmetric on the whole Rn \ Ω. To this end, observe
that the function v previously introduced is defined and analytic all over Rn \{0}. Thus, since u is
analytic as well in M and coincides with v on an open subset of M , they must coincide everywhere.
In particular, u is rotationally symmetric in Rn \ Ω and ∂Ω = ∂Br0 , with r0 = rc c

1/(n−2). �

Now, we proceed with the proof of Theorem 1.6, which pertains to the problem in the interior
punctured domain with the integral condition (1.13).

Proof of Theorem 1.6 (after Proposition 3.4). Let u be the unique solution of problem (1.11). In
order to apply Proposition 3.4 to the function f = log u, we need to check that the conditionˆ

{f=log c}

|∇f |3g dσg = lim sup
t→∞

ˆ

{f=log t}

|∇f |3g dσg (4.11)
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is satisfied. In terms of u, the above condition is equivalent toˆ

{u=c}

|Du|2

u2n−1
n−2

|Du| dσ = lim sup
t→+∞

ˆ

{u=t}

|Du|2

u2n−1
n−2

|Du|dσ. (4.12)

Note that the limsup on the right-hand side is indeed a limit and is independent of the Dirichlet
data. To see this, let us observe that, in view of Lemma A.4, the solution u can be written as

u(x) =
d|∂Ω|

(n− 2)|Sn−1|
|x|2−n + v(x),

for some function v harmonic in Ω. In particular, from this representation one can deduce that
the identity ˆ

{u=t}

|Du|dσ =

ˆ

∂Ω

|Du|dσ = d |∂Ω|

holds for every t ≥ c, and that

lim
x→0

|Du|
u
n−1
n−2

= (n− 2)
n−1
n−2

(
|Sn−1|
d |∂Ω|

) 1
n−2

.

From the above identity and limit we get

lim
t→+∞

ˆ

{u=t}

|Du|2

u2n−1
n−2

|Du|dσ = (n− 2)
2(n−1)
n−2

(
|Sn−1|
d |∂Ω|

) 2
n−2

ˆ

∂Ω

|Du|dσ, (4.13)

which is a quantity that does not depend on the constant value of u on Ω. Therefore, we have that
condition (4.12) is fulfilled if c = c1, with

c1 :=


ˆ
∂Ω
|Du|3 dσ

lim
t→+∞

ˆ

{u=t}

|Du|2

u2n−1
n−2

|Du| dσ



n−2
2(n−1)

.

To stress the fact that c1 only depends on n, Ω and d, let us denote by u0 the solution to problem
(1.11) with homogeneous Dirichlet boundary conditions and use (4.13) to write

c1 = c1(n,Ω, d) =
1

(n− 2)

(
|∂Ω|
|Sn−1|

) 1
n−1

( 
∂Ω
|Du0|3 dσ

) n−2
2(n−1)

( 
∂Ω
|Du0| dσ

) n−4
2(n−1)

· (4.14)

By this discussion, we have that, up to an additive constant, it is always possible to suppose that
u = c1 on ∂Ω, so that (4.12) and in turn (4.11) are satisfied. Observe that this assumption is not
restrictive, because adding a constant does not affect condition (1.13). Moreover, it is a matter of
computation to check that, in this normalized setting, condition (1.13) can be rewritten asˆ

{u=c1}

|Du|2
[

H

n− 1
− |Du|

(n− 2)u

]
dσ ≥ 0

and in turn, by (2.12), as ˆ

{f=log c1}

|∇f |2g Hg dσg ≥ 0.

Therefore, both conditions of hypothesis (3.11) in Proposition 3.4 are satisfied. Hence, by analogy
with the proof of Theorem 1.1, we can apply Proposition 3.4 and Theorem 4.1 to deduce that
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the Riemannian manifold
(
∂Ω, gRn |∂Ω

)
, is isometric to a constant curvature sphere and that u is

rotationally symmetric. �

We now pass to consider the problem in the exterior domain (1.4) with pointwise over deter-
mining conditions.

Proof of Theorem 1.5 (after Proposition 3.6). Let u be a solution to problem (1.4) and let g be the
metric defined in (2.1). Setting f = log u, we have that the system (2.8) is satisfied in M = Rn \Ω.
According to (2.11) and (2.7), the hypothesis (1.10) is equivalent to

|∇f |g =
d

c
n−1
n−2

on {f = log c} and inf
{f=log c}

Hg ≤ 0.

Thus, Proposition 3.6 yields ∇2f ≡ 0 in {f ≤ log c}. Finally, arguing as in Theorem 1.1, we can
deduce, via Theorem 4.1, that

(
∂Ω, gRn |∂Ω

)
is isometric to a spherical space form and that u is

rotationally symmetric. �

We continue with the proof of Theorem 1.8, which deals with the problem in the interior punc-
tured domain with the overdetermining pointwise condition (1.16).

Proof of Theorem 1.8 (after Proposition 3.7). Let u be the unique solution of problem (1.11) sat-
isfying |Du| = d on ∂Ω. In order to apply Proposition 3.7 to the function f = log u, we need to
check that the condition

|∇f |g ≡ max
M
|∇f |g on ∂M

is satisfied. To do this, it is sufficient to prove that

|∇f |2g ≡ lim sup
x→0

|∇f |2g on ∂M. (4.15)

Indeed, from equation (3.1) we have

∆g|∇f |2g +
〈
∇|∇f |2g

∣∣∇f〉
g
≥ 0,

so that, by the Maximum Principle and by (4.15), we have max∂M |∇f |2g = maxM |∇f |2g. In terms
of u, condition (4.15) is equivalent to

|Du|2

u2n−1
n−2

≡ lim sup
x→0

|Du|2

u2n−1
n−2

on ∂Ω. (4.16)

As seen in the proof of Theorem 1.6, Lemma A.4 implies that the lim sup in this condition is

indeed a limit and coincides with (n − 2)2n−1
n−2 (|Sn−1|/d |∂Ω|)

2
n−2 . Therefore, the above condition

holds true if u = c2 on ∂Ω, with

c2 = c2(n,Ω, d) :=
d

n− 2

(
|∂Ω|
|Sn−1|

) 1
n−1

. (4.17)

Note that, up to an additive constant, it is always possible to suppose that u = c2 on ∂Ω, because
adding a constant does not affect hypothesis (1.16). Moreover, by this choice of the Dirichlet
boundary data, simple computations show that the second condition in hypothesis (1.16) is equiv-
alent to

0 ≤ sup
∂Ω

H

n− 1
− |Du|

(n− 2)u
= sup

∂Ω

[
H

n− 1
− |Du|

(n− 2)u

]
.

In turn, using (2.11), this is equivalent to sup∂M Hg ≥ 0. Therefore, we are in the position to use
Proposition 3.7, which yields ∇2f ≡ 0 in M . Finally, arguing as in Theorem 1.1, we can deduce,
via Theorem 4.1, that

(
∂Ω, gRn |∂Ω

)
is isometric to a spherical space form and that u is rotationally

symmetric. �

We now present the proof of the result for annular domains.
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Proof of Theorem 1.9. Let u be the solution to either problem (1.4) or problem (1.11). As usual,
we set f = log u. Observe that, via identity (2.12), the (pointwise) conditions satisfied by u on the
level sets {u = a} and {u = b} imply thatˆ

{f=log a}

|∇f |2g Hg dσg ≥ 0 and

ˆ

{f=log b}

|∇f |2g Hg dσg ≤ 0,

where 0 < a < b. Therefore, a straightforward application of Corollary 3.2 with ϕ(f) = f gives
that ∇2f ≡ 0 in {log a ≤ f ≤ log b}. Hence, |∇f |g is a positive constant in the same region,
so that all the level sets {u = t}, for a ≤ t ≤ b, are regular, diffeomorphic to each other and in
turn connected by hypothesis. The conclusion then follows by the same arguments employed in
the previous proofs. The only difference amounts to observing that a local version of Theorem 4.1
holds, with a finite interval in place of the half straight line [0,+∞). �

We conclude this section with the proof of Corollary 1.2.

Proof of Corollary 1.2. Let us first note that, by the coarea formula and by the first identity in
(2.10), we have

ˆ

Rn\Ω

|Du|3
(

D2u(Du,Du)

(n− 1)|Du|3
− |Du|

(n− 2)u

)
dµ =

1ˆ

0

ˆ

{u=c}

|Du|2
(

H

n− 1
− |Du|

(n− 2)u

)
dσ dc, (4.18)

where we observe that the slice integralˆ

{u=c}

|Du|2
(

H

n− 1
− |Du|

(n− 2)u

)
dσ

is defined for a.e. 0 < c < 1, in view of Sard’s Lemma. Therefore, if the left-hand in (4.18)
is nonpositive, we obtain that condition (1.5) of Theorem 1.1 is satisfied for some regular value
c ∈ (0, 1], so that the conclusion holds. Now, observing that the quantities D2u(Du,Du) and
|Du|4/u are integrable in Rn \Ω thanks to Lemmata A.1 and A.2, an application of the Divergence
Theorem gives ˆ

Rn\Ω

D2u(Du,Du) dµ =
1

2

ˆ

∂Ω

|Du|3 dσ.

Note that we have also use the fact that ∆u = 0 in Rn \ Ω. In view of the previous identity, the
non positivity of the left hand side in (4.18) translates into

ˆ

{u=1}

|Du|3

u
dσ =

ˆ

∂Ω

|Du|3dσ ≤ 2
(n− 1

n− 2

) ˆ

Rn\Ω

|Du|4

u
dµ = 2

(n− 1

n− 2

) 1ˆ

0

ˆ

{u=c}

|Du|3

u
dσ dc,

where in the second equality we have again used the coarea formula. Recalling that

Φ(c) =

ˆ

{u=c}

|Du|3

u
dσ,

the previous inequality coincides with the condition in (1.6) and the thesis follows. �

Appendix: asymptotic behaviour of the solutions

In this section we investigate the asymptotic behaviour of solutions to problem (1.4) and (1.11).
The estimates presented here are well known, since they can be deduced by standard arguments
in the theory of elliptic equations. However, for sake of completeness, we provide the proofs. We
start with the following upper and lower bounds for solutions to problem (1.4).
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Lemma A.1. If u is a solution to problem (1.4), then there exists r0 > 0 and two positive constants
C1 < C2 such that

C1|x|2−n ≤ u(x) ≤ C2|x|2−n, for every |x| ≥ r0. (A-1)

Proof. Note first that 0 < u < 1 on Rn \ Ω, in view of the Strong Maximum Principle. Let then
r0 > 0 be such that Ω ⊂⊂ Br0 , and set

C1 := rn−2
0 min

∂Br0

u, C2 := rn−2
0 max

∂Br0

u.

We define for r > 0

u−(x) := C1|x|2−n, u+(x) := C2|x|2−n.
Observe that (u− − u) ≤ 0 on ∂Br0 and that (u− − u) → 0 as |x| → ∞. Since ∆(u− − u) = 0 in
Rn \Br0 , a simple argument based on the Strong Maximum Principle shows that (u− − u) ≤ 0 in
Rn \Br0 . Similarly, we have that (u+ − u) ≥ 0 on Rn \Br0 . �

Building on the previous lemma, one can derive upper bounds for the first and the second
derivatives of u.

Lemma A.2. If u is a solution to problem (1.4), then there exists r0 > 0 and two positive constants
C3 and C4 such that

|Du(x)| ≤ C3|x|1−n and |D2u(x)| ≤ C4|x|−n, for every |x| ≥ 2r0. (A-2)

Proof. First note that, since u is harmonic, we have in particular that the partial derivative ∂αu
of u is harmonic as well, for every α = 1, ..., , n. Hence, by the Mean Value Property, we have that
for every x ∈ Rn \ Ω and every ρ > 0 such that Bρ(x) ⊂⊂ Rn \ Ω,

∂αu(x) =
1

ωnρn

ˆ

Bρ(x)

∂αudµ =
1

ωnρn

ˆ

∂Bρ(x)

u 〈ν|∂α〉 dσ,

where ν is the outer unit normal on ∂Bρ(x). Therefore, by the positivity of u, we get

|∂αu(x)| ≤ 1

ωnρn

ˆ

∂Bρ(x)

udσ =
n

ρ
u(x), (A-3)

where in the equality we have used the fact that
´
∂Bρ(x) udσ = nωnρ

n−1u(x). In particular, fixing

r0 > 0 such that Ω ⊂⊂ Br0 , we obtain

|∂αu(x)| ≤ n

|x| − r0
u(x) ≤ nC2|x|2−n

|x| − r0
≤ 2nC2|x|1−n,

for every |x| ≥ 2r0, where in the second inequality we have used Lemma A.1. Hence, there exists
C3 > 0 such that the first of (A-2) holds true.

To obtain the second estimate in (A-2), we proceed as before and we get

∂α∂βu(x) =
1

ωnρn

ˆ

∂Bρ(x)

∂αu 〈ν|∂β〉dσ,

for every x ∈ Rn \ Ω and every ρ > 0 such that Bρ(x) ⊂⊂ Rn \ Ω. Thus,

|∂α∂βu(x)| ≤ n

ωnρn+1

ˆ

∂Bρ(x)

udσ =
n2

ρ2
u(x),

where in the inequality we have used (A-3), whereas the equality follows from the Mean Value
Property. In particular, fixing r0 > 0 as before, we deduce from the above estimate that

|∂α∂βu(x)| ≤ n2

(|x| − r0)2
u(x) ≤ n2C2|x|2−n

(|x| − r0)2
≤ 4n2C2|x|−n,
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for every |x| ≥ 2r0. Note that the second inequality follows from Lemma A.1. The last estimate
implies that the second of (A-2) holds true for some C4 > 0. �

Remark A.3. Let u be the solution to problem (1.4). Since ∂Ω is supposed to be smooth,
according to [16, Lemma 3.4] we have that every level set {u = c}, for c ≤ 1 sufficiently close to 1,
is regular. Also, thanks to Lemmata A.1 and A.2, for every ε > 0 sufficiently small the level set
{u = ε} is regular and diffeomorphic to a (n − 1)-dimensional sphere. Note that it may happen
that Du vanishes at some point of Rn \ Ω, so that nonregular level sets of u may exist. However,
observe that the set

{
c ∈ (0, 1) : {u = c} is regular

}
has full Lebesgue measure, in view of Sard’s

Lemma. Finally, recall that if the sublevel {u < c} satisfies the interior sphere condition, then, by
[16, Lemma 3.4], one can conclude that {u = c} is regular.

We now turn the attention to the solutions of problem (1.11). The following lemma describes
their asymptotic behaviour.

Lemma A.4. Let u be the solution to the problem{
−∆u = d|∂Ω|δ0 in Ω,

u = c on ∂Ω,
(A-4)

where Ω is a bounded domain with smooth boundary which contains the origin and d > 0, c∈R are
constants. Then, there exists a unique harmonic function v in Ω such that

u(x) =
d|∂Ω|

(n− 2)|Sn−1|
|x|2−n + v(x), for every x ∈ Ω \ {0}.

Proof. Let us set an := 1/(n − 2)|Sn−1|. It is well-known that −∆(an|x|2−n) = δ0, so that
−∆(u − and|∂Ω||x|2−n) = 0 in Ω, in the sense of distributions. On the other hand, by the
classical regularity theory, a distributional solution of this equation is actually smooth in Ω. By
the maximum principle this solution coincides with the unique solution v of{

−∆v = 0 in Ω,
v = c− and|∂Ω||x|2−n on ∂Ω.

This completes the proof of the lemma. �
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