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Abstract. We present a rigorous derivation of dimensionally reduced theories for thin sheets of
nematic elastomers, in the finite bending regime. Focusing on the case of twist nematic texture, we
obtain 2D and 1D models for wide and narrow ribbons exhibiting spontaneous flexure and torsion.
We also discuss some variants to the case of twist nematic texture, which lead to 2D models with
different target curvature tensors. In particular, we analyse cases where the nematic texture leads to
zero or positive Gaussian target curvature, and the case of bilayers.

1. Introduction

We discuss in this paper some recent (and some new) results motivated by shape programming
problems for thin structures, made of soft active materials. In particular, we focus our attention
on nematic elastomers [1, 2, 5, 14, 15, 28]. These are polymeric materials that, thanks to the
coupling between elasticity and orientational nematic order, undergo spontaneous deformations as
a consequence of a temperature-driven phase transformation.

When a nematic texture (i.e. a spatially-dependent orientation of the nematic director) is present,
non-uniform spontaneous strains lead to stress build-up and non-trivial configurational changes.
Here, we explore in particular the consequences of through-the-thickness changes of orientation in
thin sheets. Plates with spontaneous and controllable curvature emerge in this way. When the
plate is in the form of a narrow ribbon, rods with spontaneous flexure and torsion are generated.
Similar issues have been the object of recent intense investigation, see e.g. [3, 6, 22, 23, 27] and
also [7, 9, 10, 12, 13, 19, 25]. The point of view we adopt here is that of a systematic derivation of
dimensionally-reduced models by means of Γ-convergence. Far from being just a technical exercise,
this technique allows one to derive, rather than postulate, the functional form and the material
parameters (elastic constants, spontaneous curvature, etc.) for dimensionally reduced models of
these structures.

Building upon our recent work [3, 6], which has been in turn inspired by [17, 18, 24], we discuss in
this paper the derivation of models capable of describing non-trivial shapes that can be spontaneously
exhibited by thin sheets of nematic elastomers. In particular, we focus on the twist director geome-
try, and we present a derivation of reduced models for wide and narrow ribbons (namely, rods whose
cross-section is a thin rectangle) by following a sequential dimension reduction technique, namely, a
3D→2D→1D procedure, see Section 2. Plates made of twist nematic elastomers spontaneously de-
form into cylindrical ribbons. This geometry emerges as a “compromise” between the energetic drive
towards a non-zero target curvature (with negative Gaussian curvature) and an isometry constraint
on the mid-surface (which rules out surfaces with non-zero Gaussian curvature). Narrow ribbons
obtained from rectangular plates of vanishing small width behave as rods with spontaneous flexure
and torsion.

Moreover, we also consider in Section 3 some alternative scenarios to the case of twist nematic
texture, in which the target curvature tensor of the 2D reduced model has either zero or positive
Gaussian curvature. Nematic textures realising these possibilities are the splay-bend one and uniform
director alignment perpendicular to the mid-plane, respectively. Alternatively, the three alternative
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scenarios (positive, negative, or zero Gaussian curvature of the target curvature tensor in the 2D
plate theory) can be realised in bilayers, by tuning the spontaneous strains in the two halves of
the bilayer. In all these cases, configurations with non-zero Gaussian curvature are again frustrated
by the isometry constraint. Hence, the configurations that are spontaneously exhibited are always
ribbons wrapped around cylinders. Much of the material relating to nematic elastomer sheets draws
on our analyses contained in [3, 6], but it is presented here from the unifying perspective of a
sequential dimensional reduction, first from three to two dimensions, and then from two to one
dimension. The analysis of thin bilayer sheets is new. We refer the reader to [20] for a discussion of
bilayer beams.

2. Wide and narrow ribbons of nematic elastomers

In this section, we consider a thin sheet of nematic elastomer with twist distribution of the director
along the thickness. Starting from a 3D model, described in Subsection 2.1, we present in Subsection
2.2 the rigorous derivation of a corresponding 2D plate model. In Subsection 2.3 we then derive,
again via Γ-convergence arguments, a 1D rod model from the 2D model.

Before proceeding, let us establish some general notation which will be used throughout. For the
standard basis of R3 and R2, we use the notation {e1, e2, e3} and {f1, f2}, respectively. SO(3) and
Sym(3) are the sets of 3×3 rotations and symmetric matrixes, respectively, and I ∈ SO(3) is the
identity matrix. We use the symbol tr2A for the square of the trace of a matrix A, and denote by S2

the unit sphere of R3. Finally, the symbol C will be used to denote a positive constant depending
on given data, and possibly varying from line to line.

2.1. The three-dimensional model. We consider a thin sheet of nematic elastomer occupying
the reference configuration

Ωε
h := Ωε

h(θ) :=

{
z1e

θ
1 + z2e

θ
2 + z3e3 : z1 ∈

(
− `/2, `/2

)
, z2 ∈

(
− ε/2, ε/2

)
, z3 ∈

(
− h/2, h/2

)}
,

where

eθ1 :=

 cos θ
sin θ

0

 and eθ2 :=

 − sin θ
cos θ

0

 ,

and ε > 0 and h > 0 are small dimensionless parameters such that

`� ε� h.

The directions e1 and e2 play a special role, which is related to the orientation of the nematic director
on the top and bottom faces of the thin sheet, see (2.3) below and Figure 1. For future reference,
we also set Ωε

h := ωε × (−h/2, h/2), with

ωε = ωε(θ) :=

{
z1f

θ
1 + z2f

θ
2 : z1 ∈

(
− `/2, `/2

)
, z2 ∈

(
− ε/2, ε/2

)}
, (2.1)

and

fθi := Rθfi, i = 1, 2, Rθ :=

(
cos θ − sin θ
sin θ cos θ

)
, 0 ≤ θ < π. (2.2)

Our nematic elastomer thin sheet will be modelled by a stored energy density which is heterogeneous
along the thickness. More precisely, in the model we are going to consider, the nematic director varies
along the thickness. This will induce a z3-dependence of the spontaneous strain distributions and, in
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turn, z3-dependent stored energy densities. The system under analysis is a twist nematic elastomer
thin sheet. The distribution of the nematic director in the twist geometry is defined as

n̂h(z3) :=

 cos
(
π
4 + π

2
z3
h

)
sin
(
π
4 + π

2
z3
h

)
0

 , z3 ∈
[
− h

2
,
h

2

]
, (2.3)

see Figure 1. Note that this distribution is constant on each horizontal plane and in particular nh
is (constantly) equal to e1 and to to e2 on the bottom and on the top face of the sheet, respectively.
Also, recall that such distribution is the (ε-independent) solution to the minimum problem

min
n(−h/2) = e1

n(h/2) = e2

ˆ

Ωεh

|∇n|2dz.

This is the orientation arising in the fabrication procedure of the material, in which the director is
oriented in the liquid phase, and then “frozen” by the crosslinking process transforming the liquid
into an elastomer.

e
2

e
1

e
3

Figure 1. Sketch of the twist director field.

Now, if n ∈ R3 is a unit vector representing the local order of the nematic director, the (local)
response of the nematic elastomer is encoded by the positive definite symmetric matrix

L(n) = a
2
3n⊗ n+ a−

1
3 (I− n⊗ n), (2.4)

where a > 1 is a material parameter. More precisely, under the effect of lowering the temperature
below a threshold (isotropic-to-nematic transition temperature), in a region where the nematic di-
rector is n, the material spontaneously deforms via a deformation y such that ∇yT∇y = L(n).
As a consequence, the through-the-thickness variation of the nematic director translates into the
spontaneous strain field

Ĉh(z3) := L(n̂h(z3)) = a
2/3
h n̂h(z3)⊗ n̂h(z3) + a

−1/3
h

(
I− n̂h(z3)⊗ n̂h(z3)

)
. (2.5)

Notice that, in this expression, we allow the material parameter a to be h-dependent. More precisely,
from now on we will assume that

ah = 1 +
α0

h0
h, (2.6)

where α0 is a positive dimensionless parameter, while h0 and h have the physical dimension of length.
This assumption is easily understandable if one thinks that, arguing as in the proof of the Gauss
Lemma (see, e.g., [21, Chapter 5]), a given metric g of R3 can always be expressed around a smooth
hypersurface Σ as

g = dr ⊗ dr + gijdθ
i ⊗ dθj ,
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using coordinates {r, θ1, θ2}, where r is the signed g-distance from Σ. In the coordinates {θ1, θ2},
one can then express the second fundamental form A on Σ as

Aij dθ
i ⊗ dθj =

1

2

∂gij
∂r

dθi ⊗ dθj .

In other words, via the standard identification of metric and strain, curvature is related to the ratio
between the magnitude of the strain difference along the thickness and the thickness itself. Hence,
the linear scaling in h in (2.6) is needed in order to obtain a finite curvature in the limit h→ 0.

To model our system in the framework of finite elasticity, we consider the energy density Ŵh

defined on points of (−h/2, h/2)×R3×3 as

Ŵh(z3, F ) :=

{ µ

2

[
(F TF ) · Ĉ−1

h (z3)− 3− 2 log(detF )
]

+Wvol(detF ) if detF > 0,

+∞ if detF ≤ 0,
(2.7)

which also accounts for compressibility effects. Here, µ > 0 is a material constant (shear modulus)
and the function Wvol : (0,∞)→ [0,∞) is C2 around 1 and fulfills the conditions:

Wvol(t) = 0 ⇐⇒ t = 1, Wvol(t) −→∞ as t→ 0+, W ′′vol(1) > 0.

A typical example of Wvol is t 7→ c (t2 − 1 − 2 log t), where t is nondimensional and c, a positive
constant, is energy per unit volume, so that W ′′vol(1) has the same dimension of µ. Expression (2.7)
is a natural generalization, see [4], of the classical trace formula for nematic elastomers derived by
Bladon, Terentjev and Warner [10], in the spirit of Flory’s work on polymer elasticity [16]. The
presence of the purely volumetric term Wvol(detF ) guarantees that the Taylor expansion at order
two of the density results in isotropic elasticity with two independent elastic constants (shear modulus
and bulk modulus).

Observe that, for every F with detF > 0,

Ŵh(z3, F ) = W0

(
FÛh(z3)−1

)
, Ûh(z3) := Ĉh(z3)

1
2 , (2.8)

where

W0(F ) :=
µ

2

[
|F |2 − 3− 2 log(detF )

]
+Wvol(detF ). (2.9)

Also, note that

W0(F ) ≥ µ

2

[
|F |2 − 3− 2 log(detF )

]
≥ 3

2
µ
[
(detF )

2
3 − 1− log(detF )

2
3
]
≥ 0,

where in the second inequality we have used that |F |2 ≥ 3(detF )
2
3 , due to the inequality between

arithmetic and geometric mean, and the third inequality comes from direct computations. Also,
the second and the third inequalities become equalities iff F TF = αI, for some α ≥ 0, and iff
detF = 1, respectively. All in all, we have that W0 is a nonnegative function minimised precisely at

SO(3). In turn, from (2.8), we have that Ŵh(z3, ·) is a nonnegative function minimised precisely at

SO(3)Ĉ(z3)
1
2 . Let us also point out that from the expression of the second differential D2W0(I) of

W0 at I applied twice to some M ∈ R3×3, namely

Q3(M) := D2W0(I)[M,M ] = 2µ |symM |2 +W ′′vol(1) tr2M, (2.10)

and from the fact that W0(F ) ≥ C|F |2 for |F | � 0, one can easily deduce that

W0(F ) ≥ Cdist2(F,SO(3)), for all F ∈ R3. (2.11)

This is one of the sufficient conditions which allow us to apply the results of [24], in the next
subsection. Note that the quadratic growth of W0 from SO(3) implies that

Ŵh(z3, F ) ≥ Cdist2
(
FÛh(z3)−1, SO(3)

)
≥ Cλ2

min(z3)dist2
(
F,SO(3)Ûh(z3)

)
, for all F ∈ R3,
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where λmin(z3) > 0 is the minimum eigenvalue of Ûh(z3). Also, observe from (2.10) that while µ is
the elastic shear modulus, W ′′vol(1) + 2µ/3 has the physical meaning of bulk modulus.

We denote by F̂ ε
h the free-energy functional corresponding to the energy density Ŵh, i.e.

F̂ ε
h(v) :=

ˆ

Ωεh

Ŵh(z3,∇v(z)) dz, (2.12)

where v : Ωε
h → R3 is a deformation and z = (z′, z3) is a point of Ωε

h, whose components are given
w.r.t. the canonical basis {e1, e2, e3}.

2.2. The plate model. In order to derive rigorously, in the limit as h ↓ 0, a 2D model from the
3D setting, we first make a standard change of variables which allows us to rewrite the energies in
a fixed, h-independent rescaled reference configuration. We denote by x = (x1, x2, x3) = (x′, x3)
an arbitrary point in the rescaled reference configuration Ωε := ωε × (−1/2, 1/2). For every h > 0
small, we define the rescaled energy density Wh : (−1/2, 1/2)× R3×3 −→ [0,+∞] as

Wh(x3, F ) := Ŵh(hx3, F ). (2.13)

Note that Wh fulfills

Wh(x3, F ) = 0 iff F ∈ SO(3)Uh(x3), Uh(x3) := Ûh(hx3).

We also set Ch(x3) := U
2
h(x3). Finally, defining

∇hy :=

(
∂x1y

∣∣∣∣ ∂x2y ∣∣∣∣ ∂x3yh
)

=:

(
∇′y

∣∣∣∣ ∂x3yh
)
, for every y : Ωε −→ R3, (2.14)

the correspondence between the original quantities and the rescaled ones is through the formulas

F̂ ε
h(v) = hF ε

h(y), v(z) := y(z′, z3/h) for a.e. z ∈ Ωε
h. (2.15)

Here, the rescaled free-energy functional F ε
h is defined, on a deformation y : Ωε → R, as

F ε
h(y) :=

ˆ

Ωε

Wh(x3,∇hy(x)) dx.

To deal with the (rescaled) spontaneous strains Ch(x3), we first note that the rescaled director
field has the following expression:

n(x3) := n̂h(hx3) =

 cos
(
π
4 + π

2x3

)
sin
(
π
4 + π

2x3

)
0

, (2.16)

which is independent of h. In turn, we obtain for Ch(x3) the equivalent expression

Ch(x3) = a
2/3
h n(x3)⊗ n(x3) + a

−1/3
h

(
I− n(x3)⊗ n(x3)

)
=
(
a

2/3
h − a−1/3

h

)( I

ah − 1
+ n(x3)⊗ n(x3)

)
= I− 2hB(x3) +Rh(x3), B(x3) :=

1

2

α0

h0

(
I

3
− n(x3)⊗ n(x3)

)
, (2.17)

where ‖Rh‖∞ = o(h) and ‖ · ‖∞ is the norm in the space L∞
(
(−1/2, 1/2),R3×3

)
. Note that in the

third equality we have plugged in expression (2.6) for ah and used the expansion

a
2/3
h − a−1/3

h =
α0

h0
h− 1

3

(
α0

h0

)2

h2 + o(h2).
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Moreover, plugging into (2.17) the expression for n given by (2.16), we have that

B(x3) =
1

2

α0

h0

 1
3 − cos2

(
π
4 + π

2x3

)
1
2 sin

(
π
2 + πx3

)
0

1
2 sin

(
π
2 + πx3

)
1
3 − sin2

(
π
4 + π

2x3

)
0

0 0 1
3

 . (2.18)

The description of the 3D system provided by (2.8), (2.13), and (2.17) allows us to directly use the
results of [24] for the derivation of a corresponding limiting model, in the regime of finite bending
energies. More precisely, in [3] we can state a compactness result for sequences {yh} such that
F ε
h(yh) ≤ Ch2, and a Γ-convergence result for F ε

h/h
2, in the limit h ↓ 0. In particular, we can

compute the limiting 2D model. In order to do it, we first compute, for every G ∈ R2×2, the relaxed
energy density

Q2(G) := min
b∈R2
a∈R

Q3

([
G b
0 a

])
= 2µ

(
|symG|2 + γ tr2G

)
, (2.19)

where Q3 is defined in (2.10) and

γ :=
W ′′vol(1)

2µ+W ′′vol(1)
. (2.20)

The adjective “relaxed” used for the two-dimensional energy density Q2 is due to the fact that it
arises from an optimisation procedure. Then, we compute the doubly relaxed energy density

Q2(G) := min
D∈R2×2

1/2ˆ

−1/2

Q2

(
D + tG+ B̌(t)

)
dt (2.21)

= αT Q2(G− ĀT ) + βT ,

where the 2×2 symmetric matrix B̌ is obtained from B (cf. (2.17) and (2.18)) by omitting the last
row and the last column, namely

B̌ :=
2∑

ij=1

Bij fi ⊗ fj . (2.22)

Moreover, the constants αT (a geometric parameter, reminiscent of the “moment of inertia” of a
cross section of unit width), ĀT (the target curvature tensor), and βT (a positive constant, reminder
of the presence of residual stresses, cf. Remark 2.2) are given by the formulas:

αT =
1

12
, ĀT =

6

π2

α0

h0
diag(−1, 1), βT = µ

(π4 − 4π2 − 48

4π4

)α2
0

h2
0

. (2.23)

The 2D free-energy limit functional turns out to have the following expression:

F ε
lim(y) :=

1

2

ˆ

ωε

[
αT Q2(Ay(x

′)− ĀT ) + βT
]

dx′, (2.24)

if y ∈ W2,2
iso (ωε,R3), while F ε

lim(y) = +∞ elsewhere in W1,2(Ωε,R3). Here, the symbol Ay(x
′)

stands for the second fundamental form associated with y(ωε) and defined at points x′ ∈ ωε, namely

Ay(x
′) := (∇′y(x′))T∇′ν(x′), with ν := ∂1y ∧ ∂2y. Moreover, the class W2,2

iso (ωε,R3) is that of the
isometric immersions of ωε into the three-dimensional Euclidean space, namely

W2,2
iso (ωε,R3) :=

{
y ∈W2,2(ωε,R3) : (∇′y)T∇′y = I2 a.e. in ωε

}
, (2.25)

where I2 is the identity matrix of R2×2.
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The following theorem is a straightforward corollary of the aforementioned compactness and Γ-
convergence results, for which we refer the reader to [3].

Theorem 2.1. Setting

mh := inf
y∈W1,2

F ε
h ,

suppose that {yh} is a low-energy sequence, i.e. it fulfills

lim
h→0

F ε
h(yh)

h2
= lim

h→0

mh

h2
.

Then, up to a subsequence, yh −→ y in W1,2(Ωε,R3), where y ∈ W2,2
iso (ωε,R3) is a solution to the

minimum problem

mlim := min
W2,2

iso (ωε,R3)
F ε
lim.

Moreover, (mh/h
2)→ mlim.

Let us now fix a low-energy sequence {yh} converging to a minimiser y ∈ W2,2
iso (ωε,R3) of the

2D model (2.24), and rephrase the theorem in terms of the physical quantities (2.12). Defin-
ing the deformations vh(z′, z3) = yh(z′, z3/h) in the physical reference configuration Ωh, we have

limh→0 F̂ ε
h(vh)/h3 = mlim, in view of (2.15). Equivalently, for a given small thickness h0, the

approximate identity

F̂ h0
T (vh0) ∼=

µh3
0

12

ˆ

ωε

{∣∣∣∣Ay(x
′)− 6

π2

α0

h0
diag(−1, 1)

∣∣∣∣2 + γH2
y(x
′)

}
dx′ + µh0 α

2
0

(π4 − 4π2 − 48

8π4

)
|ωε|

holds true, modulo terms of order higher than 3 in h0. Here, the symbol Hy denotes the mean
curvature of y(ωε), namely Hy = trAy. In reading the formula, recall that the second fundamental
form has physical dimension of inverse length.

Remark 2.2 (Kinematic incompatibility in 3D and geometric obstructions in 2D). We remark

that the spontaneous strain field Ωε
h 3 z 7→ Ĉ(z) = Ĉ(z3) defined in (2.5) is not kinematically

compatible, meaning that there are no smooth deformations v : Ωε
h → R3 such that, for every

z ∈ Ωε
h, det∇v(z) > 0 and

∇vT∇v(z) = Ĉ(z3).

To prove this fact, one can interpret Ĉ as a given metric on Ωε
h and show equivalently (see [3] and

[11]) that the fourth-order Riemann curvature tensor associated with the metric Ĉ is not identically
zero in Ωε

h. This kinematic incompatibility and the related impossibility of minimising (to the value
zero) the 3D energy functional (2.12), results into the presence of the positive constant βT in the 2D
limiting model (2.23)–(2.24), which reveals the presence of residual stresses. Note at the same time
that the quadratic term Q2(· − ĀT ) in (2.24) per se prevents the attainment of zero as a minimum

value of the energy. Indeed, there are no deformations y in the class W2,2
iso (ωε,R3) such that y(ωε)

has non-zero Gaussian curvature (while det ĀT < 0). More precisely, one can prove (see [3, Lemma
3.8]) that

min
W2,2

iso (ωε,R3)
F lim = F lim(yT ) =

3µ

π4

α2
0

h2
0

(
1 + 2γ

1 + γ

)
|ωε|+ βT

2
|ωε|,

where yT ∈W2,2
iso (ωε,R3) is such that

either AyT ≡
6

π2(1 + γ)

α0

h0
diag (−1, 0) or AyT ≡

6

π2(1 + γ)

α0

h0
diag (0, 1) . (2.26)
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Recall that ωε = ωε(θ) and therefore the minimisers yT are θ-dependent in the sense that the long
axis of the sheet (fθ1 in (2.1)) makes angles θ and π/2−θ with the eigenvectors f1 and f2 corresponding
to the nonzero eigenvalue of the realised second fundamental forms (2.26), respectively.

2.3. The rod model. In this subsection, following [6], we derive a 1D reduced model, in the limit
of vanishing width ε ↓ 0, starting from the 2D setting (2.23)–(2.24). More precisely, the starting
point of the following 1D derivation is the 2D bending energy obtained by multiplying expression
(2.24) by the factor ε−1, namely

F̂ ε(ŷ) :=
1

ε
F ε
lim(ŷ) =

1

2 ε

ˆ

ωε

{
αT Q2(Aŷ(x

′)− ĀT ) + βT

}
dx′

=
1

ε

ˆ

ωε

{
µ

12

∣∣Aŷ(x′)− ĀT ∣∣2 +
γµ

12
H2
ŷ(x
′) +

βT
2

}
dx′,

where ŷ is a deformation in the class W2,2
iso (ωε,R3), and ĀT and βT are given in (2.23). Now, observe

that the functional F̂ ε is θ-dependent, θ ∈ [0, π), since our thin and narrow nematic elastomer sheet
has been “cut out” from the plane (e1, e2) at an angle θ with the horizontal axis (see definition (2.1)
of ωε). To simplify the notation, but also to emphasize the θ-dependence of our model, we perform
a change of variable from the θ-rotated strip ωε(θ) to the horizontal strip ωε(0) and introduce, for
a deformation û defined on ωε(0), the energy

Ê ε(û) :=
1

ε

ˆ

ωε(0)

{
µ

12

∣∣∣Aŷ(x′)− ĀθT ∣∣∣2 +
γ µ

12
H2
ŷ(x
′) +

βT
2

}
dx′,

where
ĀθT := RT

θ ĀTRθ,

and Rθ is defined as in (2.2). Note that for every θ ∈ [0, π), we have

ĀθT = k

(
−aθ bθ
bθ aθ

)
, aθ := cos 2θ, bθ := sin 2θ, k :=

6

π2

α0

h0
. (2.27)

Some computations show that indeed Ê ε(û) = F̂ ε(ŷ), whenever û(x′) = ŷ(Rθx
′), x′ ∈ ωε(0).

Keeping this identification in mind, we now proceed similarly to the 3D-to-2D derivation and express
the above energy over the fixed 2D domain

ω := I ×
(
− 1

2
,
1

2

)
, I :=

(
− `

2
,
`

2

)
,

In order to do this, we operate another change variables and define for a deformation û : ωε(0)→ R3

its rescaled version u : ω → R3, given by

u(x1, x2) = û(x1, ε x2), (x1, x2) ∈ ω
(note that we use the same notation x′ = (x1, x2) for points belonging to the different sets ωε(θ),
ωε(0), and ω, when there is no ambiguity). Moreover, introducing the scaled gradient

∇ε· = (∂1 · |ε−1∂2·)
we obtain that ∇εu(s, t) = ∇û(s, εt) and u belongs to the space of scaled isometries of ω defined as

W2,2
iso,ε(ω,R

3) :=
{
u ∈W2,2(ω,R3) : |∂1u| = |ε−1∂2u| = 1, ∂1u · ∂2u = 0 a.e. in ω

}
.

Similarly, we may define the scaled unit normal to u(ω) by

nu,ε = ∂1u ∧ ε−1∂2u
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and the scaled second fundamental form associated with u(ω) by

Au,ε =

(
nu,ε · ∂1∂1u ε−1nu,ε · ∂1∂2u

ε−1nu,ε · ∂1∂2u ε−2n,ε · ∂2∂2u

)
.

With this definition, Ay,ε(x1, x2) = Av(x1, εx2), and Ê ε(û) = E ε(u), where

E ε(u) :=

ˆ

ω

{
µ

12

∣∣∣Au,ε(x′)− ĀθT ∣∣∣2 +
γµ

12
tr2Au,ε(x

′) +
βT
2

}
dx′, for every u ∈W2,2

iso,ε(ω,R
3).

An adaptation of the theoretical results of [17] allows to prove in [6] a compactness result for
sequences {uε} such that E ε(uε) is uniformly bounded, and a Γ-convergence result for the functionals
E ε. We gather in Theorem 2.3 below the most important consequences of these results. The limiting
1D free-energy functional E lim turns out to have the following expression:

E lim(d1, d2, d3) :=

ˆ
I
Q
θ
T (d′1 · d3, d

′
2 · d3) dx1, (2.28)

on every triplet (d1, d2, d3), representing a orthonormal frame, in the class

A :=
{

(d1, d2, d3) : (d1|d2|d3) ∈W1,2(I, SO(3)), d′1 · d2 = 0 a.e. in I
}
.

In the above expression for E lim, the energy density is defined as

Q
θ
(α, β) := min

γ∈R

{
c|M |2 + 2c|detM |+ Lθ(M) : M =

(
α β
β γ

)}
. (2.29)

We remark, overlooking for the moment the regularity of the deformations, that while in the 2D
setting the admissible deformations are mappings u from the 2D domain ω to R3 such that u(ω) is a
developable surface, in the 1D limiting model they are curves v endowed, at each point v(x1), with a
orthonormal frame (d1(x1), d2(x1), d3(x1)), such that v′ = d1. In particular, in the passage from 2D
surfaces to “decorated” curves, the isometry constraint (u(ω) developable surface) is lost, but still
recognizable in the constraint d′1 ·d2 = 0 (the narrow strip cannot bend within its plane) appearing in
the definition of the admissible class A. Recall that the physical meaning of the relevant quantities
d′1 ·d2, d′1 ·d3, and d′2 ·d3, appearing in the definition of the limiting functional E lim, is that of flexural
strain around the thickness axis (in short, flexure), of flexural strain around the width axis, and of
torsional strain (in short, torsion).

Theorem 2.3. If (uε) ⊂W2,2
iso,ε(ω,R3) is a sequence of minimisers of E ε then, up to a subsequence,

there exist u ∈W2,2(I,R3) and a minimiser (d1|d2|d3) ∈ A of E lim with d1 = y′ such that

yε ⇀ y in W2,2(ω,R3), ∇εyε ⇀ (d1|d2) in W1,2(ω,R3×2),

and

Ay,ε ⇀

(
d′1 · d3 d′2 · d3

d′2 · d3 γ

)
in L2(ω,Sym(2)), for some γ ∈ L2(ω,R3). (2.30)

Moreover,

min
W2,2

iso,ε(ω,R3)
E ε −→ min

A
E lim.
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The explicit expression of Q
θ
T is

Q
θ
T (α, β) =


µ
3k
(
aθα− bθβ

)
+ µ

12k
2
(

2− c1
c a

2
θ

)
+ βT

2 , in DT
µ
3

[
(1 + γ)β2 − kbθβ

]
+ µ

12k
2
(

2− a2θ
1+γ

)
+ βT

2 , in UT
µ
12(1 + γ) (α2+β2)2

α2 + µ
6k
(
aθ

α2−β2

α − 2bθβ
)

+ µ
6k

2 + βT
2 , in VT ,

where γ is given in (2.20), aθ, bθ and k are defined as in (2.27), and

DT :=

{
(α, β) ∈ R2 :

k aθ
1 + γ

α > β2 + α2

}
, (2.31)

UT :=

{
(α, β) ∈ R2 :

k aθ
1 + γ

α ≤ β2 − α2

}
, (2.32)

VT := R2 \ (DT ∪ UT ). (2.33)

Note that UT is the interior of a (possibly degenerate) hyperbola. As for the set DT , note that it
coincides with the interior of a disk, whenever θ /∈ {π/4, 3π/4} (hence aθ 6= 0), while it reduces to

the empty set if θ = π/4 or θ = 3π/4. Note that Q
θ
T is an affine function in DT , and it is a parabola

in β in UT . A deeper analysis of the above expression also shows that Q
θ
T is a continuous function.

Finally, one can show (see [6, Lemma 3.3]) that for every 0 ≤ θ < π, Q
θ
T attains its minimum

value precisely on the following subset of R2:[
−k

2

(
1 + cos 2θ

1 + γ

)
,
k

2

(
1− cos 2θ

1 + γ

)]
×
{
k

2

(
sin 2θ

1 + γ

)}
, k :=

6

π2

α0

h0
. (2.34)

Moreover,

min
R2

Q
θ
T =

µ

12
k2

(
1 + 2γ

1 + γ

)
+
βT
2
.

Building on this, we can construct minimum-energy configurations for the 1D model (2.28)–(2.29),
solving the system

(d1, d2, d3) ∈ A, d′1 · d3 = ᾱ, d′2 · d3 = β̄,

where ᾱ and β̄ are two constant values chosen in the set (2.34). Figure 2 shows a plot of three
minimal-energy configurations corresponding to the case θ = π/4. They both exhibit nontrivial
flexure and torsion.

Figure 2. Minimal-energy configurations for the 1D rod model, in the case θ = π/4.
The central figure exhibits pure (constant) torsion (and zero flexure), while the other
plots are characterised by (constant) ᾱ 6= 0 and β̄ 6= 0. In particular, in the rightmost
picture, flexure is close to zero.



DIMENSION REDUCTION VIA Γ-CONVERGENCE FOR SOFT ACTIVE MATERIALS 11

The previous analysis shows that there are many configurations realising the minimum of the 1D
energy functional (2.28), at fixed θ. It would be interesting to try to derive more refined and “selec-
tive” 1D models capable of breaking this degeneracy, by discriminating between the configurations
shown in Fig. 2. We plan to address this issue in future work.

3. Some variants

Thin sheets of nematic elastomers with twist texture lead to a 2D model with negative target
Gaussian curvature. In this section, we report on some variants of the 3D-to-2D derivation of
Subsections 2.1–2.2, to explore some different scenarios. We show that nematic sheets with splay-
bend texture lead to a 2D model with vanishing Gaussian target curvature (see Subsection 3.1), while
nematic sheets with director uniformly aligned, and perpendicular to the mid-surface, can lead to a
2D model with positive Gaussian target curvature (see Subsection 3.2). Finally, in Subsection 3.3,
we show that thin bilayer sheets provide a rich model system in which positive, zero, or negative
target Gaussian curvature can be produced at will, by tuning the spontaneous strains in the two
halves of the bilayer.

3.1. Splay-bend nematic elastomer sheets. In this subsection, we focus attention on a splay-
bend nematic elastomer thin sheet. In this case, the distribution of the nematic director along the
thickness is given by

n̂h(z3) :=

 cos
(
π
4 + π

2
z3
h

)
0

sin
(
π
4 + π

2
z3
h

)
 , z3 ∈

[
− h

2
,
h

2

]
,

see Figure 3. Note that this distribution, which is constant on each horizontal plane, coincides with
e1 on the bottom face and with e3 on the top face. Using again expression (2.7) for the energy
density, the 3d-to-2d derivation is similar to that performed in Subsections 2.2–2.1. In particular,
we arrive to (rescaled) spontaneous strains of the form (2.17), where now

B(x3) =
1

2

α0

h0

 1
3 − cos2

(
π
4 + π

2x3

)
0 1

2 sin
(
π
2 + πx3

)
0 1

3 0
1
2 sin

(
π
2 + πx3

)
0 1

3 − sin2
(
π
4 + π

2x3

)
 .

Recall that only the top left 2×2 part B̌ of B enters into the definition of the 2D energy density Q2,
see (2.21). Considering that the relaxed density Q2 has the same expression as in (2.19), after some
computations (see [3] for more details) we obtain, similarly to the twist case,

Q2(G) = αSB Q2(G− ĀSB) + βSB, for every G ∈ R2×2,

and in turn the limiting energy functional

F ε
lim(y) =

1

2

ˆ

ωε

[
αSB Q2(Ay(x

′)− ĀSB) + βSB
]

dx′, y ∈W2,2
iso (ωε,R3),

where

αSB = αT =
1

12
, ĀSB =

6

π2

α0

h0
diag(−1, 0), βSB = µ (1 + γ)

(π4 − 12

16

)α2
0

h2
0

.

Moreover, γ is given in terms of the 3D parameters by (2.20). We refer the reader to [6] for the
derivation of a corresponding 1D model as ε ↓ 0, in the spirit of Subsection 2.3.
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If {vh} a low-energy sequence of (physical) deformations, with corresponding energies F̂ ε
h(vh), we

have that

F̂ ε
h0(vh0) ∼= min

y∈W2,2
iso (ωε,R3)

µh3
0

12

ˆ

ωε

{∣∣∣∣Ay(x
′)− 6

π2

α0

h0
diag

(
− 1, 0

)∣∣∣∣2+ γ
(

Hy(x
′)+

6

π2

α0

h0

)2
}

dx′

+ µ (1 + γ)h0 α
2
0

(π4 − 12

32

)
|ωε|,

for a given small thickness h0, where the approximate identity holds modulo terms of order higher
than 3 in h0.

Observe that min F ε
lim = βSB|ωε|/2, since, differently from the twist case (cf. Remark 2.2), the

function x′ 7→ Q2(Ay(x
′)−ĀSB) can be minimised to the constant value zero, by any y ∈W2,2

iso (ωε,R3)
such that Ay ≡ ĀSB.

e
3

e
1

e
2

Figure 3. Sketch of the splay-bend director field.

3.2. Constant director along the thickness. In this subsection, we consider the case where
the nematic director is constant along the thickness and the dependence of the spontaneous strain
(2.4) on the thickness variable is encoded by the magnitude parameter a. More precisely, using the
notation of Subsection 2.1, we suppose that the nematic director n̂(z3) is constantly equal to some
n ∈ S2, whereas the (constant) parameter ah in (2.5) is here replaced by the function

âh(z3) := 1 +
α0

h0
z3, z3 ∈

(
− h

2
,
h

2

)
.

All in all, the (physical) spontaneous strain of this system is defined as

Ĉh(z3) := â
2/3
h (z3)n⊗ n + â

−1/3
h (z3)

(
I− n⊗ n

)
.

Modelling the system using again the prototypical energy density (2.7) and following the same
notation and steps of Subsections 2.1–2.2 we arrive at the rescaled energy densities Wh(x3, ·), x3 ∈
(−1/2, 1/2), characterised by the (rescaled) spontaneous strains

Ch(x3) := Ĉh(hx3) =
(

1 +
α0

h0
z3

)2/3
n⊗ n +

(
1 +

α0

h0
z3

)−1/3(
I− n⊗ n

)
= I− 2hB(x3) +Rh(x3), B(x3) :=

x3

2

α0

h0

(
I

3
− n⊗ n

)
,
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where ‖Rh‖∞ = o(h). The corresponding 2D model that we obtain in the end associates with each

y ∈W2,2
iso (ωε,R3) the energy

F ε
lim(y) =

1

2

ˆ

ωε

Q2(Ay(x
′))dx′ =

1

24

ˆ

ωε

Q2

(
Ay(x

′)− M̌
)

dx′, (3.1)

where the 2×2 symmetric matrix M̌ is given by the formula

M̌ =
1

2

α0

h0

[
(n⊗ n)ˇ− I2

3

]
,

and (n⊗ n)̌ is the 2×2 upper left part of n⊗ n. For example, in the case where n = e3, we have that

M̌ =

(
m0 0
0 m0

)
, m0 := − α0

6h0
.

Notice that this corresponds to a target curvature with positive Gaussian curvature. However,
observable minimal-energy configurations, will always exhibit zero Gaussian curvature, because of
the isometry constraint they are subjected to. The reader is referred to [3] for more details, and for
plots of minimal-energy configurations predicted by (3.1).

3.3. Bilayers. Finally, we consider the case of a bilayer governed, again, by the prototypical energy
density (2.9). A similar problem has been considered in [24] and also in [8]. More precisely, we
consider a model for bilayers where in the physical reference configuration Ωε

h the energy density

Ŵh = Ŵh(z3, F ) is given by (2.8)–(2.9) and the spontaneous (right Cauchy-Green) strain is defined
as

Ĉh(z3) := I − 2h B̂(z3), B̂(z3) :=

{
M1 if z3 ∈ [0, h/2)
M1 if z3 ∈ (−h/2, 0),

for some fixedM1,M2 ∈ Sym(3), whose physical dimension is that of inverse length. We again use the

notation F̂ ε
h for the 3D (physical) free-energy functional, defined as in (2.12). Passing to the rescaled

reference configuration and the corresponding rescaled energy densities Wh : (−1/2, 1/2)×R3×3 −→
[0,+∞] defined as Wh(x3, F ) := Ŵh(hx3, F ), we have that Wh(x3, F ) = W0

(
FUh(x3)−1

)
, where W0

is defined as in (2.9) and Uh(x3) := Ĉh(hx3)1/2, so that

Uh(x3)−1 = I + hB(x3) + o(h), with B(x3) := B̂(hx3) =

{
M1 if x3 ∈ [0, 1/2)
M2 if x3 ∈ (−1/2, 0).

The expression above shows that the spontaneous strains are compatible with the format used in
[24], so that we can proceed as in Section 2 for the derivation of a limiting 2D plate model. The
model is nonlinear, in the sense that it covers the regime of arbitrarily large bending deformations.
The associated strains are however always small, in view of the thinness of the sheet and the fact
that, in the thin limit, the mid-plane deforms isometrically. In particular, the spontaneous strains
are small. Since Uh = I − hB + o(h), we have that the spontaneous linear (or infinitesimal) strains
in the bilayer are described by

Êh(z3) = −h B̂(z3) =

{
E1 := −hM1 if z3 ∈ [0, h/2)
E2 := −hM2 if z3 ∈ (−h/2, 0),

(3.2)

where E1 and E2 are the spontaneous linear strains in the top and bottom half of the bilayer,
respectively.

Proceeding as in Subsection 2.2, to which we refer for the notation, we can use again the results
of [24] to deduce from the functional h−2

´
ΩεWh(x3,∇h(y))dx3, via compactness and Γ-convergence
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arguments, the 2D limit functional

F ε
lim(y) :=

1

2

ˆ

ωε

Q2

(
Ay(x

′)
)
dx′, y ∈W2,2

iso (ωε,R3), (3.3)

where

Q2 := min
D∈R2×2

1/2ˆ

−1/2

Q2

(
D + tG+ B̌(t)

)
dt,

and with Q2 and B̌ defined as in (2.19)–(2.20) and (2.22), respectively. Observe that, denoting by
L the bilinear form associated with Q2, namely,

L(G,H) := 2µ
(
symG · symH + γ trG trH

)
, G,H ∈ R2×2,

we have that

Q2(G) = min
D∈R2×2

1/2ˆ

−1/2

[
Q2(D) +Q2

(
tG+ B̌(t)

)
+ 2L

(
D, tG+ B̌(t)

)]
dt,

=

1/2ˆ

−1/2

Q2

(
tG+ B̌(t)

)
dt+ min

D∈R2×2

[
Q2(D) + 2L

(
D,

ˆ 1
2

− 1
2

(
tG+ B̌(t)

)
dt

)]
. (3.4)

Now, simple computations give that

1/2ˆ

−1/2

Q2

(
tG+ B̌(t)

)
dt = Q2(G)

1/2ˆ

−1/2

t2 dt+

1/2ˆ

−1/2

Q2

(
B̌(t)

)
dt+ 2L

G, 1/2ˆ

−1/2

tB̌(t) dt

 ,

=
1

12
Q2(G) +

1

4
L(G, M̌1 − M̌2) +

1

2

[
Q2(M̌1) +Q2(M̌2)

]
,

=
1

12
Q2

(
G+

3

2
(M̌1 − M̌2)

)
+ c, (3.5)

where in the second equality we have used the fact that

B̌(t) =

{
M̌1 if t ∈ [0, 1/2)
M̌2 if t ∈ (−1/2, 0),

and where we have set

c :=
1

16

[
5Q2(M̌1) + 5Q2(M̌2) + 6L(M̌1, M̌2)

]
.

Also, note that the minimum problem in (3.4) does not depend on G, since
´ 1/2
−1/2 tdt = 0, so that it

is equivalent to minD∈R2×2 f B̌(D), where

f B̌(D) := Q2(D) + 2L(D, Ň), Ň :=

1
2ˆ

− 1
2

B̌(t)dt. (3.6)

It is easy to show that

min
D∈R2×2

f B̌(D) = f B̌(−Ň) = −Q2(Ň) = −1

4
Q2(M̌1 + M̌1), (3.7)
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where in the last equality we have used the explicit expression of B̌, and in turn that of Ň , in terms
of the matrices M̌i’s. Putting together (3.4), (3.5), and (3.6)–(3.7), we obtain that

Q2(G) =
1

12
Q2

(
G+

3

2
(M̌1−M̌2)

)
+c−1

4
Q2(M̌1+M̌1) =

1

12
Q2

(
G+

3

2
(M̌1−M̌2)

)
− 1

16
Q2(M̌1+M̌2).

All in all, turning back to the physical variables and considering a low-energy sequence of defor-
mations {vh}, we have that the limiting 2D plate theory can be summarised by the approximate
identity

F̂ ε
h0(vh0) ∼= min

y∈W2,2
iso (ωε,R3)

h3
0

2

ˆ

ωε

Q2

(
Ay(x

′)
)
dx′

= min
y∈W2,2

iso (ωε,R3)

h3
0

24

ˆ

ωε

Q2

(
Ay(x

′)− 3

2h0
(Ě1 − Ě2)

)
dx′ − h0|ωε|

32
Q2(Ě1 + Ě2),

where Q2 is defined as in (2.19)–(2.20), and Ě1 and Ě2 denote the sub-matrices consisting of the first
two rows and columns of the spontaneous linear strains in the top and bottom part of the bilayer,
respectively, see (3.2). Depending on the values the components of Ě1 and Ě2, one can obtain target
curvature tensors 3(Ě1 − Ě2)/2h0 with positive, zero, or negative determinant, and hence positive,
zero, or negative target Gaussian curvature. In all cases, however, the isometry constraint will have
the effect that energy minimising configurations will be ribbons wrapped around a cylinder.

4. Conclusions and discussion

In this paper, we have discussed a strategy to derive a model for nematic elastomer thin and narrow
films, with a twist nematic texture. The strategy uses a rigorous dimension reduction argument,
from 3D to 2D (plate model), and then from 2D to 1D (narrow ribbon model). This procedure leads
to a degenerate model, which admits as minimisers both spiral ribbons and helicoid-like shapes. It
would be interesting to derive more selective 1D models, able to discriminate between these two
types of configurations, and to deliver unique minimisers in different regimes of the relevant material
and geometric parameters governing the behaviour of thin and narrow strips. This will be attempted
in future work. We refer the reader to [26] for further discussion of spiral ribbon vs. helicoid-like
shapes in thin sheets of nematic elastomers.

In addition, we have considered variants to thin nematic sheets with twist texture, which leads
to 2D models with negative Gaussian target curvature. In the context of nematic elastomers, these
are the splay-bend texture and uniform alignment of the director perpendicular to the mid-plane,
which lead to zero and positive Gaussian target curvature, respectively. We have also shown that
thin bilayer sheets provide a rich model system in which positive, zero, or negative target Gaussian
curvature can be produced at will, by tuning the spontaneous strains in the two halves of the bilayer.
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