
Simple Pattern-only Heuristics Lead To Fast
Subgraph Matching Strategies on Very Large

Networks.

Antonino Aparo, Vincenzo Bonnici, Giovanni Micale, Alfredo Ferro, Dennis
Shasha, Alfredo Pulvirenti, Rosalba Giugno*

University of Verona, Verona, Italy; University of Catania, Catania, Italy;
New York University, New York, USA

rosalba.giugno@univr.it

Abstract. A wide range of biomedical applications entails solving the
subgraph isomorphism problem, i.e. finding all the possible subgraphs
of a target graph that are structurally equivalent to an input pattern
graph. Targets may be very large and complex structures compared to
patterns. Methods that address this NP-complete problem use heuristics.
Their performance in both time and quality depends on a few subtleties
of those heuristics. This paper compares the performance of state-of-the-
art algorithms for subgraph isomorphism on small, medium and very
large graphs. Results show that heuristics based on pattern graphs alone
prove to be the most efficient, an unexpected result.

Keywords: Subgraph isomorphism, Networks biology, Search strategy

1 Introduction

In the last decade, significant national, international and private research re-
sources have been directed at data-driven genome-level projects, such as the
1000 Genomes Project1, Encyclopedia of DNA Elements Project 2, and The
Cancer Genome Atlas Project (TGCA)3. Different approaches have been pro-
posed to integrate data across multiple omics (i.e. whole species) data sets [11].
Well-known examples are protein-protein interaction networks, genetic regula-
tory networks, and metabolic networks. Analysis of such networks has lead to
the discovery of recurrent and statistically over-represented sub-networks[8, 10].

Such biomedical applications entail solving the subgraph isomorphism prob-
lem, an NP-complete problem [9]. The problem consists of finding all the possible
subgraphs of a reference graph (called target) that are structurally equivalent to
another graph (called the pattern)[2]. Given the potentially exponential problem
complexity and the ever growing target graphs, heuristics for subgraph isomor-
phism algorithms must achieve scalability for large networks [5, 1].

1 http://www.internationalgenome.org/
2 http://www.encodeproject.org
3 https://cancergenome.nih.gov/

2 Aparo et al.

We have focused on the two most scalable graph searching algorithms, RI [3,
2] and VF3 [4]. In the literature, such algorithms have been compared on graphs
up to 10000 vertices[4]. In the present paper, we have generated a benchmark of
graphs containing 1008 target graphs of size up to 20.000 vertices using three dif-
ferent graph generation models (Erdös-Rényi, Barabási, Forest Fire), and about
150.000 pattern graphs of different sizes and densities. Our results show that
heuristic strategies based only on patterns perform well on small graphs and
perform considerable better on large graphs w.r.t strategies which account also
the target graphs.

2 An annotated overview of subgraph isomorphism
algorithms

Basic notions and problem definition. A graph G is a pair (V,E), where V is
the set of vertices and E ⊂ V × V is the set of edges connecting these ver-
tices. G is labeled when a set of labels A is assigned to the vertices and/or
the edges of G using an injective function: a vertex label function α : V → A
and/or an edge label function β : E → A. Labeled graphs can be represented
by a quadruple (V,E, α, β). A graph is directed if each edge has a direction
from the source vertex to the destination vertex, otherwise the graph is undi-
rected. Dense graphs are those for which the ratio |E| / |V | is relatively high
(e.g. the number of edges approaches the square of the number of vertices),
where |V | and |E| are the cardinalities of the two sets. Otherwise, graphs are
considered sparse. Given a pattern graph Gp = (Vp, Ep, αp, βp) and a target
graph Gt = (Vt, Et, αt, βt) the subgraph isomorphism problem is to find a in-
jective function f : Vp → Vt, mapping each vertex of Gp to a unique ver-
tex of Gt, while satisfying the following conditions: (i) ∀v ∈ Vpf(v) ∈ Vt (ii)
∀u, v ∈ Vp : u 6= v ⇒ f(u) 6= f(v); (iii) ∀(u, v) ∈ Ep ⇒ ∃(f(u), f(v)) ∈ Et; (iv)
∀v ∈ Vp ⇒ αp(v) = αt(f(v)) and ∀(u, v) ∈ Ep ⇒ βp(u, v) = βt(f(u), f(v)). This
is an injective mapping because the target graph may have edges that the pat-
tern graph doesn’t. As mentioned in the introduction, the subgraph isomorphism
problem is NP-complete [9].

Features of subgraph isomorphism algorithms. Heuristic algorithms to solve
the subgraph isomorphism problem build on two main paradigms: tree search
([3, 4]) and constraint programming ([7, 13, 12]). In the Tree Search approach,
for each pattern graph, a tree is formed containing all possible mappings of the
pattern into the target graph. A path from the dummy root to a leaf contains
|Vp| nodes (i.e. the number of nodes in the pattern), each node in the tree is a
mapping (v, f(v)) with v ∈ Vp. A path from the root to an internal node rep-
resents a partial matching, because not all vertices in the pattern graph have
been mapped up to that point. The tree is obtained by incrementally extending
a partial solution with a new pair of vertices (v, f(v)) that satisfies the subgraph
isomorphism constraints. If there are no more candidate pairs, the algorithm
backtracks and prunes that branch. An advantage of this approach is that the

Sub-Isomorphism comparisons 3

algorithms have linear memory complexity with respect to the number of ver-
tices.

The constraint programming approach is based on the pre-computation of
compatibility domains, i.e. pattern vertices that are associated to sets of tar-
get vertices that satisfy subgraph isomorphism constraints. These pre-computed
domains are used during the matching phase to select candidate pairs. At each
matching step, domains are reduced by propagating the constraints from the
matched vertices to the unmatched ones and filtering away those vertices that
can not be contained in a final solution. The main problem with this approach
is that it consumes a lot of memory, making it not scalable on large graphs.

In summary, Single Search Tree (SST) approaches offer better performance
and scalability than constraint programming based approaches[2]. The most im-
portant heuristic choices of SST-based algorithms are the variable ordering and
how the tree is visited.

Variable ordering, also known as the search strategy, is the determination
of an ordering of the pattern graph vertices in the branches of the search tree.
The order can be static or dynamic. Static ordering means that the ordering
is fixed a priori, before the search phase starts, and remains the same for all
paths through the tree. In dynamic ordering, the ordering can change for differ-
ent branches, implying additional computation during the traversal of the tree.
Search strategies differ depending on which properties and which graphs are
examined. An algorithm can consider features only of the target graph (target-
dependent) [6] or only of the pattern graph (pattern-dependent) [3] or both [4].
State-driven variable ordering [3, 4] is based on the current state of computation,
while domain-driven [6] regards the values in the variable domains .

The best-performing (and most recent) algorithms using an SST approach
are VF3 [4] and RI [2, 3].

VF3 adopts a dynamic, target-dependent and pattern-dependent variable or-
dering. A scoring function gives a priority to the vertices that have more con-
straints to satisfy, taking into consideration also the probability of finding a
compatible vertex in the target graph. The algorithm in the preprocessing phase
partially pre-computes sets, called feasibility sets, for each vertex. Given a state
s of the SST, during the matching process, classification functions are used to
subdivide the feasibility sets, so that if two nodes belong to different classes they
will never be coupled together. VF3 uses look-ahead procedures to predict down-
ward inconsistency, applying constraints and properties related to the current
partial matching to the neighbors of a vertex.

RI uses a static variable ordering and forms the tree in a target-independent
way. Static variable ordering strategy allows RI to reduce the search space with-
out using predictive pruning verification (which can be expensive). The vertices
are sorted by a score function that takes into account the neighbors of a vertex
in the pattern graph alone. The goal of the ordering is to start with the parts
of the pattern graph that must satisfy the most possible constraints, so can be
filtered away most quickly. During the matching phase, the vertices of the pat-
tern graph are compared with those of the target graph using the search tree.

4 Aparo et al.

As the search tree is traversed the subgraph isomorphism conditions are tested.
If they are not satisfied, then RI backtracks (cutting the corresponding branch
and reducing the search space).

3 Results

In order to compare RI and VF3 across a variety of scenarios, we have generated
a dataset containing graphs obtained according to stochastic (Erdös-Rényi) and
scale-free models (Barabási and Forest-Fire), starting from small (100 node) and
sparse graphs up to large (20,000 node) and dense graphs both with few or many
labels. We used the python library network (for Erdös-Rényi graphs) and igraph
(for Bababasi and Forest-Fire graphs). Altogether, our benchmark consists of
1,008 target graphs.

After the generation of target graphs, a random walk based algorithm was
used to extract the patterns by varying pattern size and density. Starting from
a vertex of the target graph, a neighbor is selected randomly, until the desired
number of vertices of the pattern is reached. Subsequently the algorithm adds
to the pattern the edges not yet selected among the chosen vertices, until the
specified density is reached.

Tests were running on a machine equipped with an Intel Core i7-7700 3.60GHz
8-core CPU and 15 GB of RAM running a Linux Ubuntu 17.04 64bit operating
system. A 3 minute timeout has been set for both algorithms.

Comparisons on the Erdös-Rényi dataset. A graph G with parameter p is
created by connecting its N vertices randomly. Each edge is included in the
graph with probability p independently of any other edge. E = pN(N − 1) is
the expected number of edges. This dataset contains 464 targets graphs of 100,
200, 500, 1,000, 2,000, 5,000, 10,0000, 20,0000 vertices with labels ranging from
0.1% to 30% depending on the number of vertices and with probability p: 0.001,
0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4. From these targets, up to 240
pattern graphs were extracted for each target with 4, 8, 16, 24, 32, 64, 128,
256 number of vertices and three different pattern densities: 0.1 (sparse), 0.5
(medium dense), and ≈1 (dense). Figure 1 reports running times of the two
algorithms on the Erdös-Rényi dataset. Times are grouped by the number of
target vertices of the matching instances (Figure 1(a)). The majority of the RI
times are below the VF3 boxes and few outliers have comparable execution times
with VF3. The other three plots show running times on target graphs having
10k vertices. Both algorithms increase the time requirement by incrementing the
number of target vertices and the value of the density parameter p. RI shows
a lower dependence to these factors. For example, for the maximum value of p,
VF3 triples its average running time, while the time of RI is less affected. Times
for p > 0.2 were not reported since for graphs having 10k or 20k nodes, VF3
went in timeout the 100% of cases whereas RI only the 35%. The dependence of
both algorithms on the percentage of target labels is shown in Figure 1(c). The
variation in execution time of RI is less than that of VF3, and average times are
faster using RI. In general, as expected, the greater the number of distinct labels

Sub-Isomorphism comparisons 5

the less the time required, because fewer target vertices are compatible with the
pattern vertices.

Comparisons on the Barabási dataset. Genetic networks may show complex
topology, containing few hubs, i.e. vertices with a high number of interactions
compared to the rest of the network vertices. For example, in a metabolic net-
work, hubs are molecules like ATP or ADP, energy carriers involved in a large
number of chemical reactions. A model based on these characteristics reproduces
the observed stationary scale-free distributions similar to the Barabási-Albert
one. The network starts with m0 vertices. At each time step a new vertex is
added to the network whit m(≤ m0) links that connect it to existing vertices
in the network. The probability pi that a link of the new vertex connects to
an existing vertex i is proportional to the degree ki of i pi = ki∑

j
kj

; where the

sum is made over all existing vertices j. After t time steps, the Barabási-Albert
model generates a network with N = t+m0 vertices and m0 +mt links.

This dataset has 384 target graphs having 200, 500, 1,000, 5,000, 10,000,
20,000 vertices, different numbers of outgoing edges (1, 2, 3, 6) and different
numbers of labels in relation to the number of vertices (0.1%, 1%, 10%). 28,800
patterns were extracted by varying the number of vertices (4, 8, 24, 32, 64) and
density (0.1, 0.5, ≈1). Results are shown in figure 2. Times are grouped as in the
Figure 1. Running times are faster than in the previous dataset, thus in Figure
2(a) we report times in log scale. RI shows a general behavior faster than the
competitor and less dependence from the target features variability.

Due to space constraints, we don’t report and picture details on the Forest-
Fire model datasets. Briefly, the obtained results for the Forest-Fire model are
similar to those for the Barabási-Alber model, but, both algorithms have a few
more outliers. Figure 3 shows that RI generally outperforms VF3 on small,
medium and very large graphs. Charts show the number of times the tested
algorithms are faster than the competitor. They are built by taking into account
every combination of target and pattern graph on the three models, and the
amounts are expressed as a percentage of wins on the total tests. VF3 reaches
its maximum of wins the 8.6% instances on the Barabási-Alber model with 1k
target vertices.

4 Conclusion

Fast algorithms for subgraph isomorphism depend on a variety of heuristics,
some of which have become quite sophisticated. This paper has shown that a
simple approach that depends only on the pattern graph such as RI works better
especially for large, dense target graphs where the running time of the matching
becomes larger. This is of course a field of ongoing research.

References

1. Bonnici, V., Busato, F., Micale, G., Bombieri, N., Pulvirenti, A., Giugno, R.: Ap-
pagato: An approximate parallel and stochastic graph querying tool for biological

6 Aparo et al.

RI VF3

(a)

(b)

(c)

Fig. 1. Comparison of RI (red) and VF3 (green) on the Erdös-Rényi dataset. Execution
time is expressed in seconds. (a) Scalability of the algorithms on the size of the target
graph, the x-axis reports the number of vertices of the graph. (b) Scalability of the
algorithms as a function of the density of the target graph having 10k vertices. Here,
the x-axis the probability p of the Erdös-Rényi models. (c) Performance of the two
algorithms on the number of labels in the target graphs having 10k vertices, the labels
express the percentage with respect to the number of vertices.

Sub-Isomorphism comparisons 7

RI VF3

(a)

(b)

(c)

Fig. 2. Comparison of RI (red) and VF3 (green) on the Barabási-Albetr dataset. Ex-
ecution time is expressed in seconds. (a) Scalability of the algorithms on the size of
the target graph, the x-axis refers to the number of vertices of the graph. Times are
expressed in log scale. (b) Scalability of the algorithms on the density of the target
graph having 10k vertices, the x-axis the parameter m of the Barabási-Albert models.
(c) Performance of compared algorithms on the number of labels in the target graphs
having 10k vertices, the labels express the percentage w.r.t. the number of vertices.

8 Aparo et al.

RI VF3

Fig. 3. Number of times, expressed as percentages w.r.t. the total amount of tests,
that one algorithm (RI is red and VF3 is green) has been faster than the other. The
results are grouped by number of target vertices for the Erdös-Rényi, Barabási-Albert
and Forest Fire models, respectively from the left to the right.

networks. Bioinformatics 32(14) (2016) 2159–2166 Cited By :2.
2. Bonnici, V., Giugno, R.: On the variable ordering in subgraph isomorphism algo-

rithms. IEEE/ACM Transactions on Computational Biology and Bioinformatics
14(1) (Jan 2017) 193–203

3. Bonnici, V., Giugno, R., Pulvirenti, A., Shasha, D., Ferro, A.: A subgraph isomor-
phism algorithm and its application to biochemical data. BMC Bioinformatics 14
Suppl 7 (2013) S13

4. Carletti, V., Foggia, P., Saggese, A., Vento, M.: Challenging the time complex-
ity of exact subgraph isomorphism for huge and dense graphs with vf3. IEEE
Transactions on Pattern Analysis and Machine Intelligence PP(99) (2017) 1–1

5. Giugno, R., Bonnici, V., Bombieri, N., Pulvirenti, A., Ferro, A., Shasha, D.:
Grapes: A software for parallel searching on biological graphs targeting multi-core
architectures. PLoS ONE 8(10) (2013) Cited By :10.

6. Haralick, R.M., Elliott, G.L.: Increasing tree search efficiency for constraint satis-
faction problems. Artificial Intelligence 14(3) (1980) 263 – 313

7. McGregor, J.: Relational consistency algorithms and their application in finding
subgraph and graph isomorphisms. Information Sciences 19(3) (1979) 229 – 250

8. Micale, G., Giugno, R., Ferro, A., Mongiov̀ı, M., Shasha, D., Pulvirenti, A.: Fast
analytical methods for finding significant labeled graph motifs. Data Mining and
Knowledge Discovery (Nov 2017)

9. Michael, R.G., David, S.J.: Computers and intractability: a guide to the theory of
np-completeness. WH Free. Co., San Fr (1979) 90–91

10. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network
motifs: Simple building blocks of complex networks. Science 298(5594) (2002) 824–
827

11. Palsson, B., Zengler, K.: The challenges of integrating multi-omic data sets. Nature
Chemical Biology 6 (Oct 2010) 787 EP –

12. Solnon, C.: Alldifferent-based filtering for subgraph isomorphism. Artificial Intel-
ligence 174(12) (2010) 850 – 864

13. Ullmann, J.R.: Bit-vector algorithms for binary constraint satisfaction and sub-
graph isomorphism. J. Exp. Algorithmics 15 (February 2011) 1.6:1.1–1.6:1.64

