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 Abstract 
Toxoplasmosis is a widespread parasitic disease caused by Toxoplasma gondii, an obligate 

intracellular protozoa belonging to the phylum Apicomplexa. Toxoplasmosis is a major public 

health problem, infecting one-third of humans worldwide. Due to the fact that no effective 

vaccine is currently available and treatment is based on drugs for which resistance is 

emerging, there is an urgent need to discover novel drug targets that are exploitable for the 

design of new therapeutics against the pathogen. 

A recent proteomic analysis of partially sporulated oocysts of T. gondii showed that oocysts 

have a greater capability of de novo amino acid biosynthesis, shedding light on several stage-

specific proteins whose functional profile is in accord with the oocyst need to resist various 

environmental stresses [1]. Herein, we focused our attention on two enzymes belonging to 

these putative oocyst/sporozoite-specific protein group: the ornithine aminotransferase (OAT) 

and the cystathionine γ-lyase (CGL). OAT is involved in the polyamine metabolism and 

catalyzes the reversible conversion of L-ornithine (L-orn) into glutamate-5-semialdehyde and 

glutamate, while CGL catalyzes the cleavage of L-cystathionine (L-cth) to L-cysteine (L-cys), 

α-ketobutyrate and ammonia in the reverse transsulfuration pathway. Despite the central 

metabolic roles of these enzymes, the functionality of none of them has so far been 

investigated. Herein, a biochemical characterization of OAT and CGL from T. gondii has been 

performed, in order to expand the very limited knowledge about the polyamine and cysteine 

metabolism of the parasite and to explore the possible use of these enzymes as novel drug 

targets against toxoplasmosis. 

Analysis of spectral and kinetic properties of TgOAT revealed that the enzyme is largely 

similar to OATs from other species regarding its general transamination mechanism and 

spectral properties of PLP; however, it does not possess a specific ornithine aminotransferase 

activity, but exhibits both N-acetylornithine (AcOrn) and γ-aminobutyric acid (GABA) 

transaminase activity, highlighting its possible role both in arginine and GABA metabolism in 

vivo. The presence of Val79 in the active site of TgOAT in place of Tyr, as in its human 

counterpart, provides the necessary room to accommodate AcOrn and GABA, resembling the 

active site arrangement of GABA transaminases. Moreover, mutation of Val79 to Tyr resulted 

in a change of substrate preference between GABA, AcOrn and L-orn, suggesting a key role 

of Val79 in defining substrate specificity. 

The purified TgCGL is a functional enzyme which splits L-cth almost exclusively at the CγS 

bond to yield L-cys. This finding likely implies that the reverse transsulfuration pathway is 

operative in the parasite. The enzyme displays only marginal reactivity toward L-cys, which is 
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also a mixed-type inhibitor of TgCGL activity, therefore indicating a tight regulation of 

cysteine intracellular levels in the parasite. Structure-guided homology modelling revealed 

two striking amino acid differences between human and TgCGL active sites (Glu59 and 

Ser340 in human to Ser77 and Asn360 in toxoplasma). Mutation of these two residues to the 

corresponding residues in human revealed their importance in modulating both substrate and 

reaction specificity of the parasitic enzyme. 

Altogether our findings could be considered as a first step toward exploring the possible use 

of TgOAT and TgCGL as an anti-toxoplasmosis drug targets.  
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AcOAT N-acetylornithine aminotransferase 

AcOrn N-acetylornithine 

ADC Arginine decarboxylase 

AdoMet S-adenosylmethionine 

AdoMetDC S-Adenosylmethionine decarboxylase 

BCA β-chloro-L-alanine 

CBL Cystathionine β-lyase 

CBS Cystathionine β-synthase 
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CGS Cystathionine γ-synthase 

CS Cysteine synthase 

dcAdoMet Decarboxylated S-adenosylmethionine 

DSC Differential scanning calorimetry 

DTNB 5,5′-dithiobis-(2-nitrobenzoic acid) 

DTT DL-Dithiothreitol 

EDTA Ethylenediaminetetraacetic acid 

GABA γ-aminobutyric acid 

GABA-AT γ-aminobutyric acid aminotransferase 

GOX Glutamate oxidase 

IPTG Isopropyl β-D-1-thiogalactopyranoside 

ITC Isothermal titration calorimetry 

L-cth L-cystathionine 

L-cys L-cysteine 

LDH lactate dehydrogenase 

L-hcys L- homocysteine 

L-orn L-ornithine 

MBP buffer MOPS, bicine, proline buffer 

NADH β-Nicotinamide adenine di nucleotide 
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OAT Ornithine aminotransferase 
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P5C ∆
1-pyrroline-5- carboxylate 
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PAG DL-proparglyglycine 

PAO Polyamine oxidase 

PDB Protein Data Bank 

PLP Pyridoxal 5’-phosphate 

PMP Pyridoxamine 5′-phosphate 

POSP Putative oocyst/sporozoite-specific protein 

SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SEC Size exclusion chromatography 

SHMT Hydroxymethyltransferase 

SPDS Spermidine synthase 

SPMS Spermine synthase 

SSAT Spermidine/spermine N-acetyltransferase 

Trx Thioredoxin 

UV Ultraviolet 

UV-Vis Ultraviolet-Visible 

wt wild-type 

α-KG α-ketoglutarate 
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The main topic of this Ph.D. thesis is the biochemical characterization of ornithine 

aminotransferase (Chapter 2) and cystathionine γ-lyase (Chapter 3) from Toxoplasma gondii. 

For each enzyme, a brief introduction on the metabolism in which the enzyme is involved and 

known features of the enzyme is given. 

The following sections will give an overview on basic features of Toxoplasma gondii and the 

general mechanism of action of PLP-dependent enzymes. 
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1. Toxoplasma gondii, the causative agent of toxoplasmosis 

Toxoplasma gondii is an obligate intracellular protozoa that belongs to the phylum 

Apicomplexa, precisely to the coccidian subclass. As all the apicomplexa parasites, T. gondii 

possesses a unique organelle called the apicoplast. The apicoplast has a secondary 

endosymbiotic origin and is essential for the survival of the parasite. However, the specific 

functions of this organelle are not fully clarified. Thanks to the genome projects underway for 

T. gondii and Plasmodium falciparum, it is known that the apicoplast is involved in the fatty 

acid biosynthesis and in the synthesis of isopentenyl diphosphate (IPP), a precursor of 

isoprenoids. Moreover, subsequent data showed that the apicoplast of these parasites makes 

iron sulfur complexes and cooperates with the mitochondrion in the synthesis of haem [2]. 

T. gondii has a complex life cycle consisting of different phases of sexual and asexual 

reproduction and uses felidae and warm-blooded vertebrates, i.e., mammals and birds, as final 

or intermediate hosts, respectively. 

There are three infective stages of T. gondii: a rapidly dividing invasive tachyzoite, a slowly 

dividing bradyzoite contained in tissue cysts, and an environmental stage, the sporozoite, 

contained in oocysts [3]. 

Oocysts are produced during the parasite’s sexual cycle that occurs in the intestine of 

definitive host. Oocysts are excreted through cat feces in the environment, where sporulation 

takes place and sporozoites become infective. Upon oral uptake of sporulated oocysts by new 

hosts, sporozoites transform to tachyzoites that actively penetrate all nucleated cells and 

replicate rapidly by repeated endodyogeny. The tachyzoite form causes tissue destruction and 

is therefore responsible for clinical manifestations of the disease. The consequent immune-

response of the host is accompanied by the formation of tissue cysts in which bradyzoites 

multiply slowly by endodyogeny. Tissue cysts are the terminal life-cycle stage in the 

intermediate hosts and are found in the retina, brain, skeletal and heart muscles. Bradyzoites 

could persist inside cysts for the life of the host or they could be released from cysts, 

transform back into tachyzoites that reinvade host cells. If ingested by a definitive host the 

bradyzoites proliferate in epithelial cells of the small intestine. After this asexual 

multiplication, the sexual phase of the life cycle is restored (Figure 1)[4,5]. 
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Figure 1. The complex life cycle of Toxoplasma gondii [6]. 

 

During the developmental transition of these three phases, T. gondii modifies its metabolism, 

and morphology, to adapt to the environmental changes during its life cycle. Regarding the 

energy metabolism, significant differences were found between bradyzoites and tachyzoites. 

Bradyzoites lack a functional TCA (tricarboxylic acid) cycle and respiratory chain. Pyruvate 

kinase and lactate dehydrogenase (LDH) activities are higher in bradyzoites, suggesting that 

lactate production is the major metabolic pathway for energy generation during latency. In 

contrast, tachyzoites use both mitochondrial oxidative phosphorylation and glycolysis to 

generate ATP [7]. The parasite expresses different stage-specific isoforms of some enzymes 

in order to adjust glycolysis fluxes to accommodate proliferation or dormancy. T. gondii 

possesses two isoenzymes of LDH, LDH1 and LDH2, which are respectively tachyzoite- and 

bradyzoite-specific [7]. Moreover, two stage-specific enolase (ENO) have been described. In 

vitro analysis revealed that the tachyzoite-specific ENO2 has a higher specific activity at Vmax 

and a lower denaturation temperature than those of the bradyzoite-specific ENO1. These 

enzymatic properties are in agreement with the metabolic and physiological needs of the 

parasite during differentiation [8]. 

Due to the difficulty in producing and working with oocysts, the sporozoite is the less 

biochemically characterized among the infectious stages of T. gondii. Recent proteomic 

analysis revealed that the metabolic proteins of freshly sporulated sporozoites may be more 
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similar to tachyzoites than to bradyzoites. Indeed, the ENO2 and LDH1 isoforms, that 

predominate in tachyzoites, were detected in oocysts [9]. Moreover, T. gondii oocysts were 

found to possess all the enzymes of both glycolytic and TCA cycle, differing from tachyzoites 

for the expression of isoenzymes of citrate synthase and phosphoenolpyruvate carboxykinase 

[1]. 

It is known that in T. gondii the TCA cycle is not coupled to glycolysis, as the pyruvate 

dehydrogenase complex is specifically localized to the apicoplast and not to the 

mitochondrion [10]. Proteomic data suggested that oocysts generate mitochondrial acetyl-

CoA, necessary to feed the TCA cycle, through the β-oxidation of fatty acids and the 

degradation of branched amino acids. Alternatively, intracellular tachyzoites presumably use 

the enzyme acetyl-CoA synthetase (TGME49_066640), which could produce acetyl-CoA 

from the acetate scavenged from host cell mitochondria, to fuel the TCA cycle [1]. 

Other interesting stage-specific differences were found in amylopectin metabolism and amino 

acid metabolism [1]. T. gondii stores glucose in cytoplasmic granules of amylopectin, found 

to be more abundant in oocysts and bradyzoites than tachizoytes [11]. Oocysts uniquely 

express a 4-α-glucanotransferase, resulting in an increase of amylopectin debranching and 

glucose mobilization. This feature is in agreement with the additional demand of energy 

typical of the oocyst’s sporulation process. 

Regarding amino acid metabolism, oocysts specifically express enzymes with a key role in the 

synthesis of 6 non essential amino acids, i.e., proline, alanine, threonine, cysteine, lysine and 

tyrosine, underlying the capability of oocysts to adapt to the nutrient-poor extracellular 

environment. 

 

2. Toxoplasmosis. 

Toxoplasmosis is a zoonotic disease of medical and veterinary importance with worldwide 

distribution [12]. Seroprevalence varies widely between different countries (from 10 to 80%) 

and often within a given country. As for animals, seroprevalence in human is affected by 

many factors, like climatic and anthropogenic factors, including dietary, social or cultural 

habits, quality of water and sanitation coverage [3, 4]. 

There are essentially two ways of transmission: the vertical and the horizontal transmission. 

The vertical or congenital transmission occurs during pregnancy, when the tachyzoites might 

cross the placenta and infect fetus. Congenital toxoplasmosis may cause abortion, neonatal 

death, or fetal abnormalities [12]. The horizontal transmission of T. gondii may occurs 

through the infection by one of the three life-cycle stages of the parasite, i.e. oocysts, tissue 
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cysts or tachyzoites. Tachyzoites, which are very sensitive to environmental conditions, can 

be transmitted by transplantation of organs or by consumption of unpasteurized milk. In 

general, the majority of horizontal transmissions is caused by ingestion of one of the two 

persistent stages of T. gondii, i.e. tissue cysts in infected meat and oocysts in food or water 

contaminated with cat faece. In particular, sporulated oocysts are a significant source of 

infection for intermediate hosts, as they are very resistant to environmental conditions. They 

are distributed through wind, rain, or harvested feeds and they remain infectious in moist soil 

or sand more than a year. Sporulated oocysts also are highly impermeable and, therefore, are 

also very resistant to disinfectants [5]. 

In immunocompetent individuals, T. gondii infection is asymptomatic in more than 80% of 

cases. On the other hand, toxoplasmosis is always life threatening in immunocompromised 

patients. Clinical manifestations include serious encephalitis, mental status changes, seizures, 

motor deficits, sensory abnormalities, speech abnormalities, hemiparesis and neuropsychiatric 

findings [3, 12]. 

Drug treatment is usually not necessary in asymptomatic hosts, except in children younger 

than 5 years. The most effective treatment for acute cases of toxoplasmosis is the combination 

of pyrimethamine and sulfadiazine, which have a synergic action and target two different 

enzymes along the folate synthesis pathway. In congenital toxoplasmosis, spiramycin is used 

either alone, in order to prevent fetal infection, or combined with sulfadiazine and 

pyrimethamine when there is substantive evidence of fetal infection. Other current therapies 

include the use of clindamycin, atovaquone or azithromycin [12]. 

However, these regimens are inadequate for the treatment of toxoplasmosis for a variety of 

reasons. First of all, they only control the proliferative tachyzoite stage and are unable to 

eliminate the cyst stage of the parasite. Then, the combination of these drug result to be toxic 

and have significant side effects, including hypersensitivity, bone marrow suppression, and 

teratogenic effects. Moreover, these treatments are no selective for toxoplasmosis therapy as 

they were used in the treatment of other apicomplexan disease prior to being repurposed [13]. 

All these motives, in addition to the emerging of parasite drug resistance, suggest that a better 

understanding of unique T. gondii developmental physiology, metabolism, molecular structure 

and virulence is required to facilitate the design of novel inhibitors against parasite. 
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3. Pyridoxal 5’-phosphate enzymes 

Pyridoxal 5’-phosphate (PLP) enzymes are characterized by their involvement in different 

metabolic pathways due to their ability to catalyze a wide repertoire of reactions. Almost all 

PLP-dependent enzymes are associated with biochemical pathways that involve amino acids, 

but they also play key roles in the replenishment of one-carbon units, synthesis and 

degradation of biogenic amines, synthesis of tetrapyrrolic compounds and metabolism of 

amino-sugars [14]. 

Despite the variety of catalyzed transformations by the PLP-enzymes, the mechanisms of 

reaction share several common features. In all PLP-dependent enzymes acting on amino acid 

substrates, the cofactor is covalently bound to the ε-amino group of an active-site lysine 

residue through an imine linkage, forming the so-called internal aldimine. Through 

transimination, the ε-amino group of the lysine residue is exchanged with the α-amino group 

of the amino acid substrate to form the planar external aldimine. Both types of aldimines react 

reversibly with primary amines in a transaldimination reaction, with formation of a geminal 

diamine intermediate, allowing either binding of substrates or release of products (Scheme 1). 

 

 
Scheme 1. Structures of internal aldimine, the geminal diamine and the external aldimine (adapted 
from [15]). 

 

The external aldimine is the common central intermediate for all PLP-catalyzed reactions with 

amino acids. The cleavage of one of the three bonds at Cα gives rise to the quinonoid 

intermediates; the net negative charge arising from the heterolytic cleavage of sigma bonds is 

delocalized by the extensive conjugation of the π-electrons of the pyridine ring of the 

cofactor, that acts as an electron silk [15]. 

An important factor for the reaction specificity is the orientation of the bonds at Cα of the 

substrate moiety in the external aldimine adduct. Dunathan [16] pointed out that the bond in 

the substrate amino acid to be broken by a PLP-dependent enzyme should lie in a plane 

perpendicular to the plane of the cofactor-imine π system. This would minimize the transition 
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state energy by allowing maximum σ-π overlap between the breaking bond and the ring-imine 

π system. It could also provide the geometry closest to that of the planar quinonoid 

intermediate to be formed, thus minimizing molecular motion in the approach to the transition 

state. 

PLP-catalyzed reactions may be classified as reactions proceeding through (Figure 2): 

� Deprotonation: dissociation of the α-hydrogen from the Schiff base leads to a 

quinonoid-carbanionic intermediate that can react in several ways: i) racemisation, 

reprotonation at Cα but without stereospecificity (e.g. alanine racemase); ii) 

transamination, protonation of C4’ of PLP to form a ketimine intermediate that 

undergoes hydrolysis to pyridoxamine phosphate (PMP) and an α-oxo acid (e.g. 

aspartate aminotransferase); or iii) β- (or γ-) elimination and replacement, when a good 

leaving group is present in the β (or γ) position of the amino acid it can be eliminated 

(e.g. tryptophanase and tryptophan synthase). 

� Elimination of CO2: loss of the carboxyl group from external aldimine that most 

commonly leads to the protonation at the original site of decarboxylation followed by 

breakup of the Schiff base (e.g. glutamic acid decarboxylase). 

� Side chain cleavage: Schiff base side chains undergo aldol cleavage. Conversely, a 

side chain can be added by β condensation. The best known enzyme of this group is 

serine hydroxymethyltransferase. 

 
Figure 2. A schematic view of the different reaction types catalyzed by PLP-dependent enzymes 
that act on amino acids [17]. 

 

Due to their common mechanistic features, PLP-dependent enzyme often catalyze different 

chemical reactions, showing ‘catalytic promiscuity’. This feature may have played a 



20 

fundamental role in divergent evolution and diversification of catalytic properties. Ancestral 

enzymes were probably able to catalyze several reactions, but gene duplication and 

evolutionary pressure may have worked to modify enzymes’ active sites so as to confer 

narrower substrate and reaction specificity [18]. 

Initially, PLP-dependent enzymes have been classified into five distinct structural groups 

[19], which presumably correspond to five independent evolutionary lineages originated very 

early in the evolution (before the three biological kingdoms diverged) from different protein 

ancestors [20]. These families have been named from their more representative enzyme. The 

aspartate aminotransferase family corresponds to fold type I and contains the majority of 

structurally determined PLP-dependent enzymes, consisting of aminotransferases, 

decarboxylases as well as of enzymes that catalyze α,β- and α,γ-eliminations. Its members are 

catalytically active as homodimers, although they may assemble into higher order complexes, 

and their active site lies at on the dimer interface. The tryptophan synthase β-subunit family 

corresponds to the fold type II and differ from those of fold Type I in that the active sites are 

composed entirely of residues from one monomer, with additional regulatory domains. The 

bacterial alanine racemase family corresponds to the fold type III. These enzymes are obligate 

dimers, as each monomer contributes residues to both active sites. In enzymes of the D-amino 

acid aminotransferase family, fold type IV, the cofactor binds with its re side facing the 

protein rather than the active-site pocket as in the fold-type I family, accounting for the 

difference in stereochemistry of the products in the D-amino acid reaction. The enzymes of 

fold type V, e.g. glycogen phosphorylase, are mechanistically distinct in utilizing the cofactor 

phosphate group for catalysis. Subsequently, two more groups were identified by Percudani 

and Perracchi, fold type VI and fold type VII that are represented by D-lysine 5,6-

aminomutase and lysine 2,3-aminomutase respectively, and contains enzymes whose 

structures are unlike all other PLP-dependent enzymes [17]. 

 

4. PLP-dependent enzymes as drug targets. 

A consequence of their widespread metabolic distribution is that a number of these enzymes 

are current drug targets. For example, inhibitors of L-DOPA (L-3,4-dihydroxyphenylalanine) 

decarboxylase are used in the treatment of Parkinson’s disease [21], alanine racemase has 

been identified as antibacterial drug target [22] and inhibitors of γ-aminobutyric acid 

aminotransferase (GABA-AT) are used in the treatment of epilepsy [23]. 

PLP-dependent enzymes are also intimately involved in the metabolic pathways of protozoa 

[24]. However, so far only serine hydroxymethyltransferase (SHMT) and ornithine 
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decarboxylase (ODC) have been targeted to develop clinically useful anti-protozoan drugs. 

Therefore, future studies are required to explore the potential of the other enzymes as anti-

protozoan drug targets. 

Recent analysis for PLP-dependent enzymes suggests three types of emergent drug targets: (1) 

enzymes that are present only in pathogens; (2) enzymes common to both humans and 

pathogens that possess different properties, allowing to discriminate each other; (3) enzymes 

related to a specialized parasitic life style (distinct host cells or particular life cycle phase). 

All these groups of enzymes identify targets that may be of interest in the development and 

design of species-specific therapeutics [24, 25]. 

Regarding the third group of drug targets, a recent proteomic analysis of partially sporulated 

oocysts of T. gondii identified a subset of proteins specifically expressed at the 

oocyst/sporozoite stage of the parasite. Among these putative oocyst/sporozoite-specific 

proteins (POSPs), four PLP-dependent enzymes were found. In particular, the oocyst resulted 

to differ from the tachyzoite for the expression of ornithine aminotransferase (OAT, 

TGME49_069110), an enzyme that takes part in the synthesis of proline and polyamine 

metabolism. The POPS subset also included three enzymes involved in the biosynthesis of 

cysteine: cystathionine β-synthase (CBS, TGME49_059180), cystathionine γ-lyase (CGL, 

TGME49_112930) and cysteine synthase (CS, TGME49_078910). This analysis provided 

proteomic evidence that the capability of de novo amino acid biosynthesis is modulated 

between oocysts and tachyzoites, with oocysts showing a greater persistence than tachyzoites. 

This feature is in accordance with the adaptation of T. gondii oocysts to the nutrient-poor and 

stressing extracellular environment. 
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5. Aims 

This thesis aims to give a detailed biochemical description of two enzymes from T. gondii, the 

ornithine aminotransferase (TgOAT) and the cystathionine γ-lyase (TgCGL), in order to 

expand the very limited knowledge about the polyamine and cysteine metabolism of the 

parasite and to explore the possible use of these enzymes as novel drug targets against 

toxoplasmosis. 

We overexpressed the proteins in E. coli and we isolated the recombinant enzyme as His-

tagged proteins. The kinetic parameters of main and secondary activities were evaluated by 

steady state and pre-steady state analysis. In particular, pre-steady state analysis has been 

performed in collaboration with Prof. Mariarita Bertoldi from University of Verona. 

Moreover, we analyzed oligomeric state, ligand-induced spectral transitions and protein 

stability through an array of biochemical and biophysical techniques, such as UV-Vis and 

fluorescence spectroscopy, circular dichroism spectroscopy, size exclusion chromatography, 

limited proteolysis and differential scanning calorimetry. After a preliminary biochemical 

characterization, mutagenesis studies were performed to identify the key residues in the active 

sites that are responsible for reaction and substrate specificity. 

Collaboration with Dr. Alessandro Paiardini, researcher at Sapienza University of Rome, was 

established in order to perform molecular modelling analysis to understand at a molecular 

level the structure/function relationship, substrate binding and catalytic mechanism of the 

enzymes.  
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Unique substrate specificity of ornithine aminotransferase from 

Toxoplasma gondii 
 

Abstract 

Toxoplasma gondii is a protozoan parasite of medical and veterinary relevance responsible for 

toxoplasmosis in humans. As an efficacious vaccine remains a challenge, chemotherapy is 

still the most effective way to combat the disease. In search for novel druggable targets, 

herein we performed a thorough characterization of the putative PLP-dependent enzyme 

TgOAT. We overexpressed the protein in E. coli and analyzed its molecular and kinetic 

properties by UV-Vis absorbance, fluorescence, and CD spectroscopy, in addition to kinetic 

studies of both the steady state and pre-steady state. TgOAT is largely similar to OATs from 

other species regarding its general transamination mechanism and spectral properties of PLP; 

however, it does not show a specific ornithine aminotransferase activity as its homologs, but 

exhibits both AcOrn and GABA transaminase activity in vitro, suggesting a role in both 

arginine and GABA metabolism in vivo. The presence of Val79 in the active site of TgOAT in 

place of Tyr, as in its human counterpart, provides the necessary room to accommodate 

AcOrn and GABA, resembling the active site arrangement of GABA transaminases. 

Moreover, mutation of Val79 to Tyr results in a change of substrate preference between 

GABA, AcOrn and L-orn, suggesting a key role of Val79 in defining substrate specificity. 

The findings that TgOAT possesses parasite-specific structural features as well as differs in 

substrate specificity from its human homolog make it an attractive target for 

antitoxoplasmosis inhibitor design that can be exploited for chemotherapeutic intervention. 

 

 

 

 

This work was published in the Biochemical Journal (2017) DOI: 10.1042/BCJ20161021 
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1. INTRODUCTION 

 

1.1 Polyamine metabolism 

Polyamines are aliphatic hydrocarbon chains with one or more amine groups. Their positive 

charge at physiological pH enables their interaction with polyanionic molecules such as DNA, 

RNA, phospholipid head groups in cell membrane or cell wall components. Due to their 

variety in terms of molecular structure, valence and prevalence, polyamines undertake 

different roles in the cells such as survival, growth, gene expression, stress response, cell 

differentiation and parasidic activity [26]. 

In Eukariota the biosynthesis of polyamines typically starts with the conversion of arginine to 

ornithine by arginase and the subsequent decarboxylation of ornithine by ODC to form 

putrescine. S-Adenosylmethionine decarboxylase (AdoMetDC) produces decarboxylated S-

adenosylmethionine (dcAdoMet) which, then gives its aminopropyl group to putrescine for 

spermidine and spermine synthesis. Spermidine synthase (SPDS) and spermine synthase 

(SPMS), respectively, catalyse the latter two reactions. An alternative biosynthetic pathway 

that characterized Bacteria and plants is the arginine decarboxylase (ADC) pathway. ADC 

converts arginine into agmatine, which is consequently converted into putrescine by 

agmantinase (Figure 3). 

 

 
 

Figure 3. Reactions and enzymes involved in polyamine metabolism. MTA, methylthioadenosine. 
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The polyamine metabolism is highly divergent among Protozoa. In Trypanosoma brucei and 

Leishmania parasites, putrescine and spermidine are synthesized by ODC, AdoMetDC and 

SPDS. Differently, Trypanosoma cruzi lacks ODC, but does express both AdoMetDC and 

SPDS, implying that once putrescine is transported into the parasite, it can be converted into 

spermidine and spermine by the promiscuous activity of SPDS [27]. Moreover, published data 

have shown that Cryptosporidium parvum has a plant-like pathway that utilizes ADC [28], 

whereas in P. falciparum ODC and AdoMetDC enzymes were components of a bifunctional 

protein [29]. 

Interference with polyamine metabolism has been successfully exploited in the clinical 

treatment of West African sleeping sickness originated by Trypanosoma brucei gambiense by 

using α- difluoromethylornithine (DFMO, Eflornithine), a derivative of ornithine that can 

irreversibly inactivate ODC [30–32]. Furthermore, AdoMetDC, and SPDS have been 

chemically validated as a drug target in the major protozoan parasites and many specific 

irreversible inhibitors have been synthetized [27, 33–36]. These results prompted the idea that 

polyamine metabolism may be an important drug target also in other protozoan parasites 

responsible for global diseases, including T. gondii. 

Recent studies suggest that toxoplasma lacks a forward-directed polyamine biosynthestic 

pathway. Indeed, it is devoid of the activity of two essential enzymes for polyamine 

metabolism such as ODC and ADC, and therefore is auxotrophic for polyamines [37, 38]. T. 

gondii has previously been shown to have a high affinity putrescine transporter, 

demonstrating the ability to scavenge host-derived putrescine [39]. This protozoan synthesizes 

polyamines by a retroconversion pathway from spermidine to spermine and putrescine via 

spermidine/spermine N-acetyltransferase (SSAT) and polyamine oxidase (PAO) [38]. Even if 

polyamine metabolism has not been deeply investigated in T. gondii, it is known that the 

parasite, as Plasmodium, possesses the polyamine-related PLP-enzyme OAT which is 

involved in ornithine homeostasis, control of polyamine levels and synthesis, and mitosis. 

 

1.2 Ornithine aminotransferase 

OAT (E.C. 2.6.1.13) is a strongly conserved enzyme found in almost all eukaryotic 

organisms, from protozoans to humans, and from fungi to higher plants. 

OAT, like every PLP-dependent transaminase, operates via a “ping-pong” mechanism that 

requires two half reactions to complete one catalytic cycle of transamination. In the first part 

of the reaction, L-orn binds to the pyridoxal form of the holo-enzyme (OAT–PLP) with the 

formation of L-glutamate-γ-semialdehyde, which then cyclizes spontaneously to ∆1-pyrroline-
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5- carboxylate (P5C), yielding the pyridoxamine form of the enzyme (OAT–PMP). The 

second half-transamination proceeds through the reaction of α-ketoglutarate (α-KG) with 

OAT–PMP to reform OAT–PLP and release L-glutamate (see Scheme 2). P5C is further 

converted into proline. 

 

 
 

Scheme 2. Overview of the two half-transamination reactions catalysed by OAT. 

 

The human OAT is synthesized as a 49 kDa precursor in the cytosol and it is then imported 

into mitochondria where it reaches the functional conformation upon removal of an N-

terminal mitochondrial targeting sequence (residues 1–25) producing a ~45 kDa mature 

protein [40]. In the PDB databank, six crystal structures of this enzyme, both ligand-free [41] 

and in complex with different substrate analogues [42, 43], are present. These 

crystallographic studies showed that the human enzyme assume an hexameric assembly 

consisting of three homodimers hold together principally by electrostatic interactions. The 

dimer belongs to the fold type I class of PLP-enzymes and it was suggested that it could 

represent the functional unit of the enzyme [41]. In the active site, the PLP cofactor is fixed at 

the interface between subunits and forms an internal aldimine via a Schiff base bond with the 

catalytic Lys. 

Crystal structures of human OAT complexed with inhibitors elucidate the exact mechanism 

for the specific ω-transaminase reaction of the enzyme: the α-carboxylate of L-orn is bound 

by R180 with the non-reacting α-amino group held between the OH groups of Y55 and Y85, 

while R413 interacts with E235 in order to arrange the δ-amino group of L-orn for 

transimination. In particular, the glutamate residue is important for neutralizing the positive 

charge of the R413 through a salt bridge during the first half-reaction, when there is an 
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determinant of specificity towards L-orn with respect to GABA [44]. Notably, Tyr85 in 

human OAT is replaced by isoleucine in GABA-AT. 

Sequence alignment of OAT from different organisms indicated that both of these tyrosines 

are highly conserved. However Tyr85 (human OAT numbering) is substituted by Val79 in 

TgOAT (Figure 5). Thus, a further aim of this study was to determine the contribution of 

Val79 to the specificity of the TgOAT enzyme by mutating the valine residue to tyrosine. 

 
T. gondii          ----------MATKSDGSASAAAEGGARKTNIEAYRDGLKLKTEEDFFACDRQYVCQNYA 50 
H. sapiens         MFSKLAHLQRFAVLSRGVHSSVA----SATSVATKKTVQGPPTSDDIFEREYKYGAHNYH 56 
P. falciparum      ----------------------------------MDFVKELKSSQDYMNNELTYGAHNYD 26 
P. vivax           ----------------------------------MDFIKELKSSQDYMNNELTYGAHNYD 26 
P. sativum         ----MAATRQVQCLMRRV-----CRGTRTF--AVATQSNASSSSQTIIDKEHQHSAHNYH 49 
S. cerevisiae      ------------------------------------MSEATLSSKQTIEWENKYSAHNYH 24 
B. brevis          ----------------------------------------MSKTNVVIEQTEKFGAHNYH 20 
                                                             . .  :     . .:**  
 
T. gondii          PVPVVISKGKGARVWDINGNEYYDFLAGVSSLSQGHCHPRVIAALCRQAERLTLTLRAFG 110 
H. sapiens         PLPVALERGKGIYLWDVEGRKYFDFLSSYSAVNQGHCHPKIVNALKSQVDKLTLTSRAFY 116 
P. falciparum      PIPVVLKRGKGVFVYDIEDRRYYDFLSAYSSVNQGHCHPDILNAMINQAKKLTICSRAFF 86 
P. vivax           PIPVVLKRGSGVFVYDIEDRRYYDFLSAYSSVNQGHCHPNILNAMINQAKKLTICSRAFF 86 
P. sativum         PLPIVFAHAKGSSVWDPEGNKYIDFLSGYSAVNQGHCHPKILKALHDQADRLTVSSRAFY 109 
S. cerevisiae      PLPVVFHKAKGAHVWDPEGKLYLDFLSAYSAVNQGHCHPHIIKALTEQAQTLTLSSRAFH 84 
B. brevis          PLPIVISKAEGVWVHDPEGNKYLDMLSAYSALNQGHRHPRIIQALKDQADKVTLTSRAFY 80 
                   *:*:.: :..*  : * :.. * *:*:. *::.*** ** :: *:  *.. :*:  ***  
 
T. gondii          NDVTGPACRFMAEMFGYDRVLLMNTGAEAGESALKIARKWAYEVKEIPPDSAKVILCNNN 170 
H. sapiens         NNVLGEYEEYITKLFNYHKVLPMNTGVEAGETACKLARKWGYTVKGIQKYKAKIVFAAGN 176 
P. falciparum      SDSLGVCERYLTNLFGYDKVLMMNTGAEASETAYKLCRKWGYEVKKIPENSAKIIVCNNN 146 
P. vivax           SDSLGVCERYLTTLFGYDKVLMMNTGAEANETAYKMCRKWGYEVKKIPENEAKIIVCNNN 146 
P. sativum         NDRFPVFAEYLTALFGYDMVLPMNTGAEGVETALKLARKWGYEKKKIPNDEALIVSCCGC 169 
S. cerevisiae      NDVYAQFAKFVTEFFGFETVLPMNTGAEAVETALKLARRWGYMKKNIPQDKAIILGAEGN 144 
B. brevis          NDQLGEFYEKLSAVTGKEMILPMNTGAEAVETALKAVRRWAYDVKKVPENQAEIIVCEGN 140 
                   .:      . :: . . . :* ****.*. *:* *  *:*.*  * :   .* :: . .  
 
T. gondii          YWGRTITACSSSTTFD-CYNNFGPFTPGF------ELIDYDDVGALEEALKD---PNVAA 220 
H. sapiens         FWGRTLSAISSSTDPT-SYDGFGPFMPGF------DIIPYNDLPALERALQD---PNVAA 226 
P. falciparum      FSGRTLGCVSASTDKK-CKNNFGPFVPNF------LKVPYDDLEALEKELQD---PNVCA 196 
P. vivax           FSGRTLGCVSASTDRK-CKNNFGPFVPNF------LKVPYDDLEALEVELQD---PNVCA 196 
P. sativum         FNGRTLGVISMSCDNE-ATRGFGPLMPGH------LKVDFGDAEAIERIF-KEKGDRVAA 221 
S. cerevisiae      FHGRTFGAISLSTDYEDSKLHFGPFVPNVASGHSVHKIRYGHAEDFVPILESPEGKNVAA 204 
B. brevis          FHGRTVTVTSFSSAEE-YRRGFGPFTPGF------KIIPYGDIEALKQAI-T---PNTAA 189 
                   : ***.   * *         ***: *.         : :..   :   :      ...* 
 
T. gondii          FFVEPIQGEGGVNVPKPGYLKRAHELCRSKNVLLIVDEIQTGLCRTGRLLAADH--DEVH 278 
H. sapiens         FMVEPIQGEAGVVVPDPGYLMGVRELCTRHQVLFIADEIQTGLARTGRWLAVDY--ENVR 284 
P. falciparum      FIVEPVQGEAGVIVPSDSYFPGVASLCKKYNVLFVADEVQTGLGRTGKLLCTHH--YGVK 254 
P. vivax           FVVEPIQGEAGVILPSDGYFKGVEALCKKYNVLFVADEVQTGLGRTGKLLCTYH--YGVR 254 
P. sativum         FILEPIQGEAGVVIPPDGYLKAVRDLCSKYNVLMIADEIQTGLARTGKMLACDW--EDVR 279 
S. cerevisiae      IILEPIQGEAGIVVPPADYFPKVSALCRKHNVLLIVDEIQTGIGRTGELLCYDHYKAEAK 264 
B. brevis          FMLEPIQGEAGIIIPQEGFLKQAQEVCKANNVLLVSDEIQTGFGRTGKMFASDW--ENVV 247 
                   :.:**:***.*: :*  .::  .  :*   :**:: **:***: ***. :.       .  
 
T. gondii          PDILLLGKSLSAGVVPISAVMGRADVMDVLKPGTHGSTFGGNPLACAVAVEALTVLKDEK 338 
H. sapiens         PDIVLLGKALSGGLYPVSAVLCDDDIMLTIKPGEHGSTYGGNPLGCRVAIAALEVLEEEN 344 
P. falciparum      PDVILLGKALSGGHYPISAILANDDVMLVLKPGEHGSTYGGNPLAAAICVEALKVLINEK 314 
P. vivax           PDVILLGKALSGGHYPISAILANNDVMLVLKPGEHGSTYGGNPLAAAICVESLNVLINEK 314 
P. sativum         PDVVILGKALGGGILPVSAVLADKDVMLCIKPGQHGSTFGGNPLASAVAIAALEVIKEER 339 
S. cerevisiae      PDIVLLGKALSGGVLPVSCVLSSHDIMSCFTPGSHGSTFGGNPLASRVAIAALEVIRDEK 324 
B. brevis          PDMYIMGKALGGGVFPISAVAADKEILSVFEPGSHGSTFGGNPLGCAVAVAAMDVLADEG 307 
                   **: ::**:*..*  *:*.:    :::  : ** ****:*****.. :.: :: *: :*  
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T. gondii          LADRAERLGAQFRDCLRRELYGKVPWIKEIRGRGLLNAVEVDS-D--AIDPNDVVMKLKE 395 
H. sapiens         LAENADKLGIILRNELMK--LP-SDVVTAVRGKGLLNAIVIKETK--DWDAWKVCLRLRD 399 
P. falciparum      LCENADKLGAPFLQNLKEQLKD-SKVVREVRGKGLLCAIEFKN-D--LVNVWDICLKFKE 370 
P. vivax           LSENADRLGGPFLKALKEELKD-SKIVREVRGRGLLCAIEFRN-D--IINVWDICLKFKE 370 
P. sativum         LTERSTKLGGELLGLLHKIQKKHPEHVKEVRGKGLFIGVELNSESLSPVSGFELSEKLKE 399 
S. cerevisiae      LCQRAAQLGSSFIAQLKALQAKSNGIISEVRGMGLLTAIVIDPSKANGKTAWDLCLLMKD 384 
B. brevis          LVQRSLEMGAYFMEKLKE---INNPIIKEIRGRGLFIGLELTTAA------RPYCEKLKE 358 
                   * :.: .:*  :   *          :  :** **: .: .                ::: 
 
T. gondii          NGILSKPTRGRVMRFIPPLVITDEEHRDATTRIIKSFLAVEEERKK-------------- 441 
H. sapiens         NGLLAKPTHGDIIRFAPPLVIKEDELRESIEIINKTILSF-------------------- 439 
P. falciparum      NGLITRSVHDKTVRLTPPLCITKEQLDECTEIIVKTVKFFDDNL---------------- 414 
P. vivax           NGLITRSVHDKTIRLTPPLCITKEQLDECLEIISKTVKYFDDRL---------------- 414 
P. sativum         RGVLAKSTHDTIIRFTPPLCISADEIQQGSKALAEVLEIDLPLLKKTKPKDAVPLAGPSP 459 
S. cerevisiae      HGLLAKPTHDHIIRLAPPLVISEEDLQTGVETIAKCIDLL-------------------- 424 
B. brevis          LGLLCKETHETTIRFAPPLVISKEDLDWAIDRIKQVLHVTE------------------- 399 
                    *:: : .:   :*: *** *. ::       : : .                        
 
T. gondii          ---------- 441 
H. sapiens         ---------- 439 
P. falciparum      ---------- 414 
P. vivax           ---------- 414 
P. sativum         CDRCGRLVYG 469 
S. cerevisiae      ---------- 424 
B. brevis          ---------- 399 
 

Figure 5. Sequence alignment of OAT from different organisms. Black shading indicates the PLP-binding 
lysine. Gray shading indicates Tyr55 (human OAT numbering) which is conserved in OATs. The target residue 
for mutational analysis is highlighted in yellow. The OATs used in this alignment (NCBI accession number) are 
XP_002365604.1, T. gondii ME49; AAA59959.1, H. sapiens; AAA16481.1, P. falciparum; EDL46384.1, P. 
vivax; ABZ10818.1, P. sativum; ONH76070.1, S. cerevisiae; WP_012685950.1, B. brevis. All sequence 
alignments were carried out using the Clustal OMEGA program. 
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2. EXPERIMENTAL 

 

2.1 Materials 

PLP, L-Ornithine, γ-Aminobutyric acid, α-Ketoglutaric acid, Nα-Acetyl-L-ornithine, β-

Chloro-L-alanine, L-Glutamate Oxidase, o-Dianisidine, Peroxidase, L-Lactic Dehydrogenase, 

IPTG, and NADH were purchased from Sigma. 

 

2.2 Protein production 

The complete cDNA of TgOAT (accession number: XM_002365563) in pUC57 vector was 

obtained from Genscript Corporation with a tag of six His at the C-terminal. The gene was 

subcloned into the expression vector pET21a, which was used for the heterologous expression 

of TgOAT in E. coli BL21(DE3) Codon plus cells. After growing cell cultures at 37°C to an 

absorbance at 600 nm of 0.6, expression was induced with 0.5 mM IPTG at 24°C for 20 h. 

Cell were then harvested by centrifugation, resuspended in 20 mM sodium phosphate pH 8, 

300 mM sodium chloride and 1X protease inhibitor EDTA free and lysed by sonication. After 

centrifugation for 30 min at 30,000×g, the supernatant was loaded onto an Ni-affinity column 

equilibrated with 20 mM sodium phosphate at pH 8, 300 mM sodium chloride, and 10 mM 

imidazole. The imidazole concentration was increased to 500 mM in a linear gradient and 

soluble TgOAT eluted between 100 and 200 mM imidazole. The fractions containing TgOAT 

were pooled and, after addition of 100 µM PLP, were concentrated. Elution imidazole and 

unbound PLP were removed by extensive washing with 20 mM sodium phosphate buffer, pH 

8, using Vivaspin concentrators (Sartorius). 

The concentration of monomer was calculated with the extinction coefficient ε280 nm = 40255 

M -1 cm-1 (http://web.expasy.org/protparam/). PLP content in the holo-enzyme was calculated 

by addition of 0.1 M NaOH and using ε388 nm = 6600 M-1 cm-1. The yield from a standard 

purification was approximately 45 mg/L culture. 

Generation of the N-terminally truncated TgOAT variant, without the first 16 residues, was 

performed by PCR (Polymerase chain reaction) amplification using the pET21a-TgOAT 

construct (forward primer 5’-CATATGGCTAGGAAAACGAACATTGAAGCTTACC-3’; 

reverse primer 5’-GGATCCTCAGTGGTGGTGGTGGTGGTGTTTTTTG-3’). The resulting 

DNA fragment was inserted into pET21a at the NdeI/BamHI sites and used to transform the 

E. coli strain BL21(DE3) Codon Plus. 

Generation of V79Y, C179S, C187S, and the double mutant C179S C187S TgOAT was 

carried out by site specific mutagenesis on the N-terminally truncated pET21a-TgOAT 
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construct using the QuikChange® site-directed mutagenesis kit (Agilent Technologies). The 

sequence of the mutated plasmid was verified by DNA sequence analysis. 

Expression and purification of all variants were carried out as described for full length wild-

type TgOAT. The yield from a one-litre purification was approximately 50 mg for the N-

terminally truncated form and 35 mg for other mutants. 

The PLP- and PMP-form of the variants were prepared incubating the enzyme with α-KG and 

L-orn, respectively, for 20 min at room temperature and washing the excess substrates using 

Vivaspin concentrators (Sartorius). The complete conversion in the two forms was then 

monitored by an absorption spectrum. 

The coding sequence for thioredoxin from T. gondii (TgTrx, accession number: 

XM_002370147) was cloned as C-terminal 6xHis-fusion construct in E. coli expression vector 

pET11 using NdeI and BamHI restriction sites. Protein expression was carried out by growing 

freshly transformed E. coli BL21(DE3) cells in LB (Luria-Bertani) medium at 37°C to an OD 

of 0.6 at 600 nm; after induction with 0.5 mM IPTG, cells were grown for 4 hours, harvested 

by centrifugation, resuspended in extraction buffer (20 mM sodium phosphate pH 8, 300 mM 

sodium chloride, and 10 mM imidazole and 1X protease inhibitor EDTA free), and lysed by 

sonication. The cell debris was removed by centrifugation (35,000 ×g for 20min) and the 

supernatant was loaded onto an Ni-affinity column equilibrated with 20 mM sodium 

phosphate at pH 8, 300 mM sodium chloride and 10 mM imidazole. The imidazole 

concentration was increased stepwise, first to 70 mM to remove nonspecifically bounded 

proteins, and then to 500 mM to elute the enzyme. Monomer concentration was determined 

from the calculated extinction coefficient (�280nm = 8543 M−1 cm−1; 

http://web.expasy.org/protparam/). The yield from a standard purification was approximately 

20 mg/L culture. 

TgTrx was reduced trough incubation with fresh made DTT solution (1 mM) for 2 h at RT. 

Excess DTT was removed by extensive washing with 20 mM Hepes pH 8, using Vivaspin 

concentrators. To prepare oxidized forms, the proteins were reacted with freshly prepared 

H2O2 (1.1 molar equivalent) for 15 min at room temperature [45]. 

 

2.3 Size exclusion chromatography (SEC) 

The oligomeric state of TgOAT was investigated by size exclusion chromatography using 

Superdex 200 HR 10/300 GL column. Protein elution was performed at a flow of 0.5 ml/min 

in 50 mM sodium phosphate pH 8.5, 150 mM sodium chloride. The calibration curve of the 

column was obtained following the protocol in [46]. 
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2.4 Determination of equilibrium dissociation constant of PLP for TgOAT and V79Y 

variants 

The apo-proteins were obtained by purification from E. coli without addition of PLP. The 

apo-form showed no absorbance between 320 - 500 nm. The holo-enzyme was easily 

reconstituted by the addition of exogenous PLP to the apo-protein. 

The KD
PLP was obtained by monitoring the change of intrinsic fluorescence of the apo-protein 

(1µM) in the presence of increasing concentrations of PLP (0.01-10 µM) in 50 mM Bis-Tris 

propane pH 8, at 25 °C. The KD
PLP value was calculated using the following eq: 

� = ����
�� + 
� +	�
	 −����� + 
� +	�
	�� − 4��
��

2��
							�1� 

where �� and 
� are the concentrations of TgOAT dimer and PLP respectively, �
	 is the 

equilibrium dissociation constant, Y is the fluorescence change at the PLP concentration 
�, 

while ���� is the fluorescence change at saturating PLP concentrations. 

 

2.5 Steady state analysis 

Transaminase activity of TgOAT was detected via (i) the GOX-coupled assay and (ii) the 

ninhydrin assay following the procedures described in [47] and [48], respectively. Briefly, in 

the GOX-assay a reaction mixture containing L-orn, 5 mM α-KG (or 2 mM for V79Y), 50 µM 

PLP, 1 µM TgOAT and 50 mM Hepes pH 8 was incubated at 37 °C for 7 min. After addition 

of 14 mM phosphoric acid followed by incubation at 90°C for 2 minutes to stop the reaction, 

the mixture was centrifuged. 

Then, the mixture was incubated for 90 min at 37 °C in the presence of GOX (0.015 units), 

0.75 mM o-dianisidine, and peroxidase (2.25 units). After addition of sulfuric acid (3.36 mM), 

absorbance was measured at 530 nm. A standard curve was prepared with known 

concentrations of L-glutamate (10-500 µM) supplemented in the reaction mixture, in the 

presence of 50 µM PLP, 5 mM α-KG, and 14 mM phosphoric acid (Appendix, Figure A1). 

The determination of Km and vmax of the substrates was performed varying the concentration 

of one substrate and keeping the other at a constant concentration value. 

In the ninhydrin assay TgOAT was added to an assay reaction mixture containing 50 mM 

Hepes pH 8, pyruvate or oxaloacetate as substrate, 50 mM L-orn, 0.05 mM PLP, and 

incubated for 30 min at 37 °C. Then, 0.6 M HCl and 0.26% (wt/vol) ninhydrin were added to 

stop the reaction and the samples were heated for 5 min at 100 °C. After resuspending the 

pellet in 1.5 ml 99% ethanol, the absorbance was measured at 510 nm. 
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The β-lyase activity of TgOAT towards BCA was detected as described previously [49] by 

monitoring pyruvate formation via NADH-dependent lactate dehydrogenase. 

The Michaelis-Menten equation was used in modelling of data and determination of kinetic 

parameters of TgOAT activity. 

For α-KG, data were fit to a non-hyperbolic curve that considers substrate inhibition: 

�
��
=

����
1 + ��� �⁄ � + �� ��⁄ �

					�2�		 

where � is the reaction rate, �� is the total enzyme concentration, �� is the Michaelis-Menten 

constant, � is the substrate concentration, ���� is the rate constant, and �� is inhibition 

constant. 

The inhibition mode of putrescine and spermidine with respect to L-orn was determined from 

Lineweaver Burk plot. The Ki value was calculated from the secondary plot [50]. 

The kinetic experiments were carried out at least in triplicate, and reported values represent 

means ± S.E.M of two or more independent determinations using different batches of protein 

that were purified separately. Data fitting was carried out with OriginPro8 (OriginLab). 

 

2.6 Pre-steady state analysis 

The reaction of TgOAT-PLP (10 µM) or TgOAT-PMP (10 µM) with various concentrations of 

L-orn (1-100 mM) or α-KG (0.1- 10 mM) were performed in 20 mM sodium phosphate buffer, 

pH 8 at 12°C in 200 µl. In both reactions, 500 absorbance spectra were collected between 

250-550 nm on a J&M Tidas 16256 diode array detector (Molecular Kinetics) using a 

BioLogic SFM300 instrument, with a dead-time of 3.6 ms at a flow rate of 12 mL/s. The 

determination of rate constants was performed by following changes at 416 or 331 nm using 

the non-linear regression equation 

 � =	 ! +	∆ �#$%&' 				�3� 

where At is the absorbance at time t, A∞ is the final absorbance, ∆A is the amplitude of the 

phase, kobs is the measured observed rate constant. Global fitting of the absorbance spectra 

were performed using SpecFit, and single wavelength increases or decreases were analyzed 

with Biokine 4.01 (Biologic) software. 

 

2.7 Spectroscopic measurements 

Absorption spectra were collected with a Jasco-V560 UV-Vis spectrophotometer (Easton, 

Maryland, USA), using 20 µM enzyme in a buffer solution containing 50 mM Bis-Tris 

propane pH 8. 
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CD spectra were carried out on a Jasco J-710 spectropolarimeter (Easton, Maryland, USA) at 

25 °C in 20 mM sodium phosphate pH 8. Protein concentration was ~ 30 µM in a cuvette with 

a path length of 1 cm. Spectra were recorded as described in [51]. 

Fluorescence emission spectra were obtained with a Jasco FP8200 spectrofluorometer 

(Easton, Maryland, USA) at a protein concentration varying from 1 to 10 µM in 50 mM Bis-

Tris propane pH 8 at 25 °C upon tryptophans excitation at 280 nm or upon cofactor excitation 

at 331 or 415 nm. Spectra of blanks were subtracted from each spectrum of samples 

containing protein. 

 

2.8 Molecular modelling studies 

The crystal structure of TgOAT in its internal aldimine form (PDB ID code 4ZLV) was used 

to generate the V79Y form of the enzyme, using the “mutagenesis” tool of PyMol [52], 

followed by energy minimization with the BIOPOLYMER package from InsightII (V.2000, 

MSI, Los Angeles), as already described [53]. 

The Dundee PRODRG2 Server [54] was employed to build the energy minimized three-

dimensional structures of the PLP-GABA, PLP-L-Orn and PLP-AcOrn external aldimines 

complexes, which were then docked into the active site of wild-type and V79Y form of 

TgOAT, using the template-based molecular docking approach of Molegro Virtual Docker 

(MVD) software (®CLCbio). The flexible torsions of external aldimines were automatically 

distinguished by MVD, and then checked manually in terms of consistency. A search space of 

15 Å radius was used for docking, which was centred on the active site. The internal aldimine 

form of PLP , as present in 4ZLV, was used as the pharmacophoric group for docking based 

on the template. If an atom of the ligand matched a group definition, a weighted score 

depending on its distance to the centers of the group was given. A grid-based MolDock score 

(resolution 0.30 Å) was utilized as a scoring function, while MolDock SE was used for the 

docking algorithm [55]. A total of 10 runs were used for each ligand. Similar poses (RMSD ≤ 

1.0 Å) were clustered, and the one with the best score was considered to be representative. 

The remaining docking parameters were fixed at default values. Following docking, energy 

optimization of hydrogen bonds was carried out. 

 

2.9 Isothermal titration calorimetry (ITC) 

All ITC experiments were performed on a TA Instrument Nano-ITC (New Castle, Delaware, 

USA). TgTrx binding to TgOAT was evaluated by titrating 2 µl of 2 mM TgTrx solution into 

the reaction cell (200 µL) containing 150 µM protein dissolved in 20 mM sodium phosphate 
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buffer, pH 8 at 25 °C. Prior to each titration Trx and OAT solutions were equilibrated to 25 

°C and degassed. The baseline from a buffer blank titration was subtracted from the raw data. 
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3.2 Spectral properties of recombinant TgOAT 

Native purified holo-TgOAT binds 2 mol of PLP per dimer and shows, in addition to the band 

of aromatic amino acids centred at 278 nm, a major absorption band centred at 416 nm and a 

modest band at about 331 nm, which did not change in pH range 6.0 - 9.0. The 416 nm band is 

characteristic of the ketoenamine form of the internal aldimine between the active site lysine 

286 and PLP, while the 331 nm band can likely be ascribed to a modest amount of the 

enolimine tautomer and/or to traces of PMP bound to the enzyme (Figure 7A) [57–60]. 

Several observations are consistent with the E-PMP presence. First of all, distinct 

preparations of TgOAT show a slight variable ratio of 331/416 nm absorbance (data not 

shown). Moreover, addition of a keto-acid substrate such as α-KG to the enzyme causes a 

modest decrease of 331 nm absorbance and an increase of the 416-nm absorbance band, in 

line with the conversion of E-PMP to E-PLP when a keto-acid substrate is present (Figure 

5A). Thus, the absorbance at 331 nm is mainly due to the PMP form of the cofactor which is 

likely produced by conversion from E. coli of some endogenous amino acid to a keto acid. 

The same behavior has been observed for other transaminases, such as serine–glyoxylate 

aminotransferase from Hyphomicrobium methylovorum [61], and aminotransferase NikK from 

Streptomyces tendae [62]. 

The CD spectrum of holo-TgOAT shows a positive dichroic band at 423 nm and a modest 

signal around 340 nm (Figure 7B). Moreover, the enzyme displays positive dichroic bands 

between 260 and 290 nm, indicating the asymmetry of aromatic amino acids within the active 

site. 

The fluorescence emission spectrum of holo-TgOAT, recorded for excitation at 280 nm, 

exhibits a pronounced peak at 338 associated to direct emission from Trp residues, and a 

much lower intensity emission band around 510 nm that can be attributed to emission from 

PLP, as a result of an energy-transfer process from the excited Trp residues to the 

ketoenamine tautomer of the internal Schiff base [63, 64] (Figure 7C). Direct excitation of the 

holo-enzyme at 331 or 416 nm gives a weak emission at about 384 and 528 nm, respectively 

(data not shown). 

The emission spectrum of apo-TgOAT, upon excitation at 280 nm, displays a peak centered at 

343 nm, with a 5 nm red-shift and a quantum yield ~60% higher compared to the holo-enzyme 

(Figure 7C). The apo-enzyme has no residual activity and does not exhibit absorbance bands 

in the visible region (Figure 7C, inset). Titration of apo-TgOAT with PLP resulted in a 

quenching of intrinsic fluorescence and yielded a KD
PLP value for the enzyme of 60 ± 3 nM 

(Figure 7D). 
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Figure 7. Spectroscopic features of TgOAT. (A) Absorption spectra of 20 µM TgOAT alone (solid 
line) and after addition of 1 mM α-KG (dashed line) in 50 mM Bis-Tris propane pH 8. (B) 
Dichroic spectra of TgOAT 30 µM in 20 mM sodium phosphate pH 8. (C) Intrinsic fluorescence 
emission spectra (excitation was at 280 nm) of apo-protein (solid line) and holo-enzyme (dashed 
line) in 50 mM Bis-Tris-propane pH 8.Inset: Absorption spectra of apo-TgOAT just after 
purification (solid line) and holo-TgOAT after saturation with PLP (dashed line) in 20 mM sodium 
phosphate pH 8. (D) Titration of the apo-TgOAT (0.5 µM enzyme dimer) at PLP concentration 
from 0.01 to 10 µM. The fluorescence emission variations were determined after excitation at 280 
nm. 
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3.3 Steady state kinetic studies 

The enzyme showed a temperature optimum for L-orn transamination at 46 °C (Figure 8A) 

and a relatively high thermal stability, with T50 value of ~65 °C (Figure 8B). The rate constant 

of TgOAT at various pH resulted in a maximum activity at pH 8.0. 

 
Figure 8. Kinetic properties of recombinant TgOAT. (A) Measurement of temperature optimum 
for L-orn transamination; TgOAT activity was examined from 10 to 75 °C in 50 mM Hepes buffer, 
pH 8.0. (B) Thermostability of TgOAT measured as residual activity following incubation of the 
enzyme at temperatures from 20 °C to 90°C for 10 min. 

 

The kinetic parameters for transaminase reaction of TgOAT towards L-orn, under saturation 

with α-KG, were compared with those for other organisms and reported in Table 1. TgOAT 

had similar Km value (~ 7 mM) for L-orn to those of the other organisms. However, when the 

kcat of TgOAT (~2 s-1) is compared with that of other OATs, it was significantly lower than 

that reported for the human (~ 74 s-1) and Plasmodium (~ 10 s-1) enzymes [48]. 

 

Table 1. Summary for kinetic parameters for L-orn transamination of TgOAT and OATs  from 
other organisms. 

Organism 
Specific activity  
(µmol mg-1 min-1) 

kcat (s
-1) Km (mM) 

kcat/Km  
(M -1s-1) 

T  
(°C)  

pH  References 

T.gondiia  2.6 ± 0.5 2.1 ± 0.1 6.9 ± 0.3 304 37 8 Present work 

H.sapiens b 33.5 ± 4.2 73.7 11.7 ± 2.6 6300 37 7.4 [48] 

P.falciparumb 2.0±0.7 (4.6±0.8)d 9.8 1.6 ± 0.1 6100 37 7.4 [48] 

Pisum sativumc 3.6  4.3 15  287 37 8 [65] 
a Kinetic parameters of T. gondii were determined by GOX-assay [47]. 
b Kinetic parameters of P. falciparum and human OATs were determined by ninhydrin assay [66]. 
c Kinetic parameters of pea OAT were determined with 2-aminobenzaldehyde method [67]. 
d When measured directly after purification. 
 

Notably, when compared to the human enzyme, TgOAT showed a broad substrate specificity 

as in addition to L-orn it also readily accepted GABA and AcOrn as an amino group donor 

(Table 2). Based on kcat/Km values, GABA serves as a better substrate that AcOrn and L-orn 
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for TgOAT (Appendix, Figure A2). While the kcat of the enzyme toward GABA (2.9 s-1) was 

similar to that for L-orn, the Km was ~6-fold higher. Moreover, comparison of relevant kcat/Km 

constants towards AcOrn and L-orn demonstrated that the enzyme had a two-fold preference 

for AcOrn due to a 2.2-fold increase in kcat value. Interestingly, TgOAT can also act on D-orn, 

even if with low catalytic efficiency. 

 

Table 2. Steady-state kinetic parameters of wild-type and V79Y variant of  TgOAT at 37°C 

Substrate Co-substrate kcat (s
-1) Km (mM) kcat/Km (M -1s-1) K i (mM) 

Wild-type      

GABA α-KG 2.91 ± 0.03 1.32 ± 0.02 2204 ± 56 ̶ 
AcOrn α-KG 4.6 ± 0.3 7.4 ± 0.4 622 ± 74 ̶ 
L-orn α-KG 2.1 ± 0.1 6.9 ± 0.3 304 ± 28 ̶ 
D-orn α-KG 0.42 ± 0.05 4.2 ±0.5 1000 ± 23 ̶ 
α-KG L-orn 2.51 ± 0.01 0.31 ± 0.03 8161 ± 815 17 ± 3 

V79Y       

L-orn α-KG 0.21 ± 0.01 3.9 ± 0.1 53 ± 4 ̶ 
GABA α-KG 0.82 ± 0.04 18 ± 4 46 ± 12 ̶ 
AcOrn α-KG 2.5 ± 0.1 496 ± 80 5 ± 1 ̶ 
α-KG L-orn 0.41 ± 0.02 0.056 ± 0.004 7321 ± 880 20 ± 3 

 

Under saturation with L-orn, the amino group acceptor α-KG provided a kcat and Km values of 

2.51 ± 0.01 s-1 and 0.31 ± 0.03 mM, respectively, and showed substrate inhibition with Ki 

value of 17 ± 3 mM. Pyruvate and oxaloacetate do not appear to be adequate amino group 

acceptors. Their relative efficiency compared to α-KG in the reaction with L-orn was 

negligible, scarcely reaching 1% (data not shown). Even though the diamine putrescine and 

the polyamine spermidine were unproductive amino group donors, they were examined as 

inhibitor compounds of the enzyme. 

Spermidine and putrescine act as non-competitive inhibitors with Ki values of 24 ± 4 mM and 

93 ± 5 mM, respectively (Figure 9). 
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Table 3. Steady-state and pre-steady-state kinetic parameters of TgOAT at 12°C 
Transamination half-reaction kinetic parameters 

 Substrate kmax (s
-1) Km

app (mM) kmax/ Km
app 

(M -1s-1) 
Wild-type     

TgOAT-PLP  L-orn 
0.67 ± 0.05a 

0.72 ± 0.09b 

7 ± 1a 

7 ± 2b 

96 ± 16a 
103 ± 42b 

TgOAT-PMP  α-KG 103 ± 5 4.5 ± 0.5 22900 ± 3656 
V79Y     
TgOAT-PLP  L-orn --c --c --c 
TgOAT-PMP α-KG 1.23± 0.05 0.027 ± 0.007 45555 ± 13662 

Steady-state kinetic parameters at 12°C 
Substrate Co-substrate kcat (s

-1) Km (mM) kcat/Km (M -1s-1) 
Wild-type     
L-orn α-KG 0.7 ± 0.1 15 ± 2 46 ± 13 
α-KG L-orn 1.2 ± 0.2 0.32 ± 0.01 3750 ± 742 
V79Y     
L-orn α-KG 0.08 ± 0.01 16 ± 1 5 ± 1 
α-KG L-orn 0.11 ± 0.02 0.030 ± 0.001 3667 ± 789 
ameasured as 416 nm decrease;  
bmeasured as 331 nm increase;  
ckon = 7.3·10-4 ± 3·10-5 s-1mM-1, koff = 0.027 ± 0.002 s-1, Kd = 37 ± 2 mM at 416 nm and kon = 
7.4·10-4 ± 3·10-5 s-1mM-1, koff = 0.032 ± 0.002 s-1, Kd = 43 ± 2 mM at 331 nm. 
 

3.6 Reaction of TgOAT with β-chloro-L-alanine 

As β-elimination is a side reaction common to transaminases, we examined the lyase activity 

of TgOAT with β-chloro-L-alanine (BCA), a substrate with a good β-leaving group. 

We collected spectra as a function of time upon addition of 50 mM BCA to 20 µM TgOAT, 

which caused a decrease of the absorption band at 416 nm and a broad increase in absorbance 

at wavelengths shorter than 350 nm (likely due to the pyruvate product), while the 416 band 

returned to the initial protein signal (Figure 13). The kinetic parameters determined for 

pyruvate production resulted in a kcat of 0.51 ± 0.03 s−1 and a Km of 24 ± 4 mM with a 

catalytic efficiency ~14-fold lower than that for L-orn transamination. Based on the 

knowledge that some aminotransferases become covalently inactivated by product(s) of β-

elimination (syncatalytic inactivation) [68, 69], the residual L-orn transamination activity of 

TgOAT was determined following reaction with BCA. The activity was not reduced, 

indicating that the enzyme was not inactivated as a result of β-lyase reaction. Thus, it is 

unlikely that this reaction would have any biological meaning. 
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Figure 13. Spectral changes after addition of BCA to TgOAT. Absorption spectra of 10 µM 
TgOAT alone (solid line), and after addition of 50 mM BCA (dotted line) immediately (line 1) and 
after 5, 10, 15, 20, 25, and 30 min (line 7). 

 

3.7 V79Y variant 

To assess the contribution of the Val79 in determining TgOAT substrate specificity, we 

produced the TgOAT V79Y variant and analysed its spectroscopic and kinetic properties. The 

V79Y variant binds 2 mol of PLP per dimer, and exhibits absorbance, dichroic, and 

fluorescence features identical to those of TgOAT both alone and in the presence of 

substrates. The KD
PLP values for V79Y variant was found to be 270 ± 20 nM, which is 4.5-

fold higher than that of wild-type enzyme. 

The steady-state kinetic parameters of V79Y are listed in Table 2. The V79Y mutation led to 

a small decrease in kcat for GABA (3.7-fold) and for AcOrn (1.8-fold). This loss was 

accompanied by a 15-fold and 70-fold increase in Km for GABA and AcOrn, respectively. By 

contrast, kcat decreased 8-fold for L-orn, although Km was reduced by 1.8-fold. The net result 

was a general decrease of the enzyme catalytic efficiency which is significant toward GABA 

(50-fold) and AcOrn (125-fold) compared to that of L-orn (6-fold). 

In addition, the V79Y mutation led to a 8-fold decrease in kcat for α-KG which is, however, 

countered by a 6-fold decrease in Km, such that kcat/Km is reduced only 1.3-fold. 

Of interest, when tested for β-elimination reaction, the protein variant showed the same 

behaviour as wild-type in terms of both kinetic parameters (kcat 0.89 ± 0.01 s-1, Km 28 ± 2 

mM) and spectroscopic changes, which would indicate that the substitution of Val79 with Tyr 

does not affect β-elimination reaction. 

The half-reactions of V79Y with L-orn and α-KG were analyzed to understand the influence, 

if any, of the mutation with respect to the transamination catalytic mechanism. Rapid-

scanning stopped-flow spectra/analyses of V79Y-PLP in the presence of L-orn or of V79Y-

PMP in the presence of α-KG presented in both cases, a behaviour similar to that of the wild-
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3.8 Molecular modelling 

In the attempt to rationalize from a structural standpoint the unique substrate preference of 

TgOAT, we modelled the external aldimine of wild-type and the V79Y variant of TgOAT in 

complex with L-orn, AcOrn and GABA by docking means, starting from the crystal structure 

of TgOAT in its internal aldimine form (PDB ID code 4ZLV). 

The predicted binding modes of L-orn in wild-type and V79Y TgOAT are shown in Figures 

16A and 16B, respectively. With the δ-amino group of the substrate covalently bound to PLP, 

the carboxylate group is predicted to form an ion-pair with Arg174, similarly to what 

observed in the crystal structure of human OAT in complex with the substrate analogue 5-

FMOrn (PDB ID code 2OAT) [43]. Another interaction involving the carboxylate moiety is 

represented by a hydrogen bond with the hydroxyl group of Tyr171. Finally, the carboxylate 

is bridged to the phosphate group of PLP through Tyr171 and a water molecule. Another Tyr 

residue of the active site, namely Tyr49, is predicted to interact with the amino group of L-

orn. The presence of a third Tyr in the active site, as observed in the V79Y, is predicted to 

further stabilize L-orn in the active site, through: i) van der Walls interactions between the 

aliphatic tail of L-orn and the aromatic ring of Tyr; ii) a hydrogen bond between the α-amino 

group of L-orn and the hydroxyl group of Tyr. 

Modelling of AcOrn in wild-type and V79Y forms of TgOAT suggests that the N-acetyl group 

of ornithine could be well accommodated in the pocket of the wild-type, but not as well in the 

variant, due to the potential steric hindrance with the Tyr residue (Figures 16C and 16D). 

GABA is predicted to bind to wild-type TgOAT in two equally stable conformations, in which 

its carboxylic group can be oriented toward Arg174 or Arg409, respectively (Figure 16E). In 

the latter case, the presence of the less bulky Val79 in place of a Tyr residue, as observed in 

mammalian OATs (e.g., Tyr85 in human OAT) permits the formation of an additional ion-pair 

interaction between Arg409 and GABA, in addition to the GABA-Arg174 interaction. This is 

also possible thanks to the “switching” of Arg409 between Glu229 and GABA. On the other 

hand, the steric occupancy of a Tyr residue, as observed in V79Y (Figure 16F), greatly limits 

the conformational freedom of GABA and Arg409, potentially resulting in an unfavourable 

entropy loss upon binding. Therefore, as already pointed out [44], Val79 is a major 

determinant of specificity toward GABA versus L-orn. 
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Figure 16. Modelling of the external aldimine of wild-type and the V79Y variant of TgOAT in 
complex with L-orn (A-B), AcOrn (C-D) and GABA (E-F). The external aldimines are shown as 
pink sticks. Residues described in text are labelled in single-letter code. Potential favourable and 
unfavourable interactions are depicted as pink and red dashes, respectively. 
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3.9 Regulation of TgOAT activity by reduced TgTrx 

Recently, OAT from P. falciparum (PfOAT) has been shown to be positive regulated by Trx 

which is able to drastically enhance the activity of the parasitic enzyme. In particular, site-

directed mutagenesis and functional analysis revealed that the interaction between PfOAT and 

Trx is mediated by two cysteine residues, Cys154 and Cys163, that are localized in the 

substrate binding loop [48]. 

Sequence alignment and structural comparison between PfOAT and TgOAT revealed that 

TgOAT also possesses two cysteine residues (Cys179 and Cys187) that are closed enough to 

form a disulfide bond and that are located in the loop involved in the substrate binding 

(Figure 17). 

 
Figure 17. Dimeric structure of TgOAT. PLP is shown in orange, while Cys179 and Cys187 are 
labeled in blue. The substrate binding loop is shown in blue. Molecular graphics images were 
produced using VMD (Visual Molecular Dynamics). 

 

Therefore, we decided to study whether also TgOAT activity could be regulated by TgTrx. 

Recombinant TgTrx was purified as a His-tagged protein to greater than 98% purity as 

confirmed by SDS-PAGE; the size of the protein, calculated with a molecular size marker, 

was about 13 kDa that corresponds well to the molecular mass elucidated from the sequence 

information (12858 Da). 

The effect of different concentration of reduced TgTrx was tested on the transaminase activity 

of TgOAT in the presence of saturating L-orn and α-KG as substrates. Five-min incubation of 

TgOAT with TgTrx in the assay buffer was necessary. We reduced TgTrx and oxidized 
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TgOAT as described in the experimental section. Importantly, oxidation treatment did not 

affect TgOAT activity. 

Interestingly, reduced TgTrx increased the activity of TgOAT in a concentration-dependent 

manner (Figure 18). However, the increase was significantly lower compared to that observed 

in PfOAT for which a 10-fold increase in enzyme activity in the presence of reduced Trx was 

found. Notably, Trx did not cause any change in TgOAT activity when GABA or AcOrn 

where used as substrates (Figure 18). 

 
Figure 18. Representative curve of oxidized TgOAT in the presence of reduced TgTrx. Different 
concentrations of reduced Trx were added to the assay system under substrates saturation. 

 

To analyze the specificity of this putative Trx regulation, we next tested the effect of oxidized 

TgTrx on TgOAT. As shown in figure 19, oxidized TgTrx was able to increase TgOAT 

activity even if to a lesser extent (~ 8 %) compared to reduced TgTrx (~ 25 %). The finding 

that the activity of TgOAT increased in the presence of TgTrx, independently from the redox 

state of the redoxin, raises the question if the in vitro observed Trx regulation of TgOAT 

might be relevant under in vivo physiological condition and if this regulation could be 

independent of the Trx redox state. 
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disulfide reaction, i.e., the typical mechanism of the control exerted by Trx over the activity 

of its target proteins (Figura 21). 

 

 
Figure 21. Representative curve of the activity of TgOAT cysteine mutant in the presence of 
TgTrx. Different concentrations of reduced TgTrx were added to the assay system under saturating 
condition of L-orn and α-KG. 

 

Despite its importance in cellular redox homeostasis, the precise mechanism by which Trx 

recognizes target proteins, especially in the absence of any apparent signature binding 

sequence or motif, remains unknown. Recent studies revealed that the binding of Trx to its 

target does not depend on the redox-state of Trx as Trx recognizes the oxidized form of its 

target proteins with exquisite selectivity, compared with their reduced counterparts [45]. 

Therefore to gain deeper insight into Trx-TgOAT recognition modulating factors, the 

interaction between reduced and oxidized TgTrx and oxidized TgOAT variants was 

investigated also by ITC. Nevertheless, we did not determine the thermodynamic parameters 

of this putative binding because ITC measurements did not show a binding trend. 

Altogether, our findings afford new insight into Trx-TgOAT recognition, which could be 

critical to understanding the enzyme function in normal metabolism. However, further studies 

will be necessary to verify the in vitro and in vivo interaction of the two proteins. 
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4. DISCUSSION 

 

UV-Vis absorbance, fluorescence, and CD analysis indicate that TgOAT is largely similar to 

OATs from other species in term of spectral properties of PLP and mechanism of 

transamination in which the cofactor shuttles between PMP and PLP forms through two 

coupled half-reactions [76, 77]. 

However, the present work shows that TgOAT does not possess a specific ornithine 

aminotransferase activity, as suggested by the published genome of T.gondii 

(http://toxodb.org/toxo/) [78] but exhibits both AcOrn and GABA transaminase activity. 

Indeed, first of all GABA serves as a better substrate than L-orn for TgOAT. This property is 

peculiar to OAT from T. gondii as GABA is an ineffective amino group donor in OATs from 

other organisms such as H. sapiens [44], P. sativum [65], P. falciparum [79], and Bacillus 

brevis [80]. Furthermore, in addition to GABA, TgOAT utilizes AcOrn with higher efficiency 

than L-orn. This is another characteristic feature of TgOAT as no activity is detected for 

human, rat [81], or B. brevis OAT towards AcOrn [80], while P. falciparum OAT [79] and 

pea OAT [65] have a relative conversion rate for AcOrn that is significantly lower than that 

for L-orn. Modeling of L-orn, AcOrn, and GABA in complex with TgOAT provides a clear 

rationale for these unique features. The presence of Val79 of TgOAT in place of Tyr, as 

observed in mammalian homologs, provides the necessary room to accommodate AcOrn, and 

GABA in two equally stable conformations, resembling the active site arrangement of other 

GABA transaminases [23]. Interestingly, a recent work, which identifies a set of 13 amino 

acids in the active site within the ornithine transaminase-like family that could define 

substrate or reaction specificity [82], showed that TgOAT possesses higher sequence 

similarity, with respect to these “active site fingerprints”, to AcOAT than to OAT. OAT is 

highly specific to L-orn, while AcOAT accepts both L-orn and AcOrn [83, 84]. T. gondii OAT 

accepts both L-orn and AcOrn, with even higher efficiency towards AcOrn. 

In light of our findings, TgOAT should more properly be considered as an enzyme with 

potential AcOrn and GABA transaminase function in the parasite cell, rather than an ornithine 

aminotransferase as annotated. The identification of an unanticipated functional GABA shunt 

in T. gondii tachyzoites by metabolite profiling studies [85] supported the possibility that 

TgOAT could have a role as GABA-transaminase in GABA-shunt. Notably, MacRae et al 

[85] suggests the presence in T. gondii of all the genes of GABA shunt, even a gene of 

glutamate transaminase, the second enzyme in the GABA shunt, which has putatively 

annotated as ornithine transaminase. Thus it is likely that TgOAT has a dual AcOrn 
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aminotransferase/GABA aminotransferase activity in vitro playing a role in both arginine and 

GABA metabolism in vivo. In line with this, the genome database for the genus Toxoplasma 

[78] results in both GABA-AT and AcOAT as missing enzymes. Broad specificity is a 

common property of aminotransferases and the extent of these enzymes promiscuity is not 

completely understood in any organism. In this respect, TgOAT resembles the E.coli ArgD 

enzyme, which has dual N-acetylornithine aminotransferase/N-succinyldiaminopimelate 

aminotransferase activity, with a function in both arginine and lysine biosynthesis [83]. 

Due to the possible involvement of TgOAT into two crucial amino acid metabolisms, the 

enzyme could represent a strong candidate for inhibitor design. 

In this regard, we assessed the role of the active site residue Val79 of TgOAT, which is 

replaced by Tyr85 in human OAT, as structural differences between the two enzymes could 

account for inhibitor binding. Tyr85 of human OAT is presumed to be an essential 

determinant in distinguishing OAT from GABA-AT catalysis [44]. Change of Tyr85 to Ile72, 

as found in GABA-AT, converted the human enzyme, which has a 3200-fold preference for L-

orn, to an enzyme with a 5-fold preference for GABA [44]. Exchange toward the human 

residue in TgOAT was accompanied with a general decrease of catalytic efficiency of T. 

gondii enzyme towards all substrates. Nevertheless, it was possible to notice an inversion in 

the substrate preference with L-orn becoming the preferred substrate. The effect of the V79Y 

mutation occurs mainly via Km, showing a clear impact on substrate affinity by the mutation, 

especially towards AcOrn. The presence of Tyr79 in the substituted enzyme provides an 

additional anchor site of L-orn, while partially hampering, by steric hindrance, the binding of 

AcOrn (Figure 16B-D). 

Determination of the pre-steady state kinetic parameters of the half-transamination reactions 

of wild-type and V79Y and their comparison to steady state values measured at the same 

temperature allowed us to reach some interesting considerations. First, while for the wild-type 

protein ketimine formation should be suggested as rate limiting in the L-orn half-reaction, for 

V79Y the rate of ketamine formation does not exhibit saturation and, therefore, the rate 

limiting step of the reaction has changed. On the contrary, the mutation does not affect the 

other half-reaction, from α-KG to L-glutamate, suggesting that for both protein variants 

external aldimine hydrolysis is rate limiting rather than its formation. Thus, pre-steady state 

and steady state kinetic data confirm the hypothesis that mutation impacts L-orn 

binding/processing more than α-KG half transamination. 

In conclusion, our in vitro data demonstrate that TgOAT shows both AcOrn and GABA 

transaminase activities, highlighting its possible alternative role both in arginine and GABA 
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metabolism in vivo. The findings that TgOAT is likely involved into two important amino 

acid metabolisms and is significantly distinct from the well-characterized human enzyme with 

respect to substrate specificity could be considered as a first step towards exploring the 

possible use of TgOAT as an anti-toxoplasmosis drug target. 
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 The transsulfuration enzyme cystathionine γ-lyase is functional 

in Toxoplasma gondii 

 

Abstract 

Sulfur-containing amino acids play a central role in a variety of cellular functions in many 

organisms, therefore investigation of the enzymes involved in their metabolic pathways is of 

great interest. The protozoan parasite T. gondii includes the genes encoding enzymes of the 

reverse transsulfuration pathway, cystathionine β-synthase and CGL (previously annotated as 

cystathionine β-lyase) as well as the gene for the cysteine synthase involved in the de novo 

synthesis of L-cys. However, the functionality of none of these enzymes has so far been 

investigated. 

Herein, TgCGL has been cloned, expressed and physiochemically and enzymatically 

characterized. We showed that TgCGL is a functional enzyme, which specifically catalyzes 

the cleavage at the CγS bond of cystathionine. This finding likely implies that the reverse 

transsulfuration pathway is operative in the parasite. The enzyme displays only marginal 

reactivity toward L-cysteine, which is also a mixed-type inhibitor of TgCGL activity, 

therefore indicating a tight regulation of cysteine intracellular levels in the parasite. 

Moreover, by employing structure-guided homology modelling we identified two main 

differences between the active sites of human and parasite enzymes: Glu59 and Ser340 in 

human to Ser77 and Asn360 in toxoplasma. Mutation of Asn360 to Ser revealed the 

importance of this residue in modulating the specificity of the parasitic enzyme for the 

catalysis of α,γ- versus α,β-elimination, suggesting a role in enforcing the appropriate binding 

conformation of the pseudo-symmetric L-cth substrate within the active site. Replacement of 

Ser77 by Glu completely abolished activity toward L-cth. Due to the presence of Tyr71, 

which is missing in human CGL, the side-chain of Glu77 is forced to occupy the same cleft of 

L-cth, likely interfering with its binding. 

Our data, indicating that TgCGL exhibits notable differences with the human counterpart, 

might have far-reaching implications for the use of TgCGL as anti-toxoplasmosis drug target. 
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1. INTRODUCTION 

 

1.1 Sulfur-containing amino acids metabolism 

Sulfur-containing amino acids cysteine and methionine and their metabolic intermediates play 

essential roles in virtually all living organisms from bacteria to higher eukaryotes. 

Due to the unique properties of sulfur and thiol, cysteine plays a relevant role in stability, 

structure, catalytic activity, and regulation of numerous proteins. Cysteine also takes part in 

the synthesis of glutathione, which plays a key role in protection from oxidative stress. 

Methionine is also a significance constituent of proteins and its oxidation and reduction in a 

protein are involved in the regulation of enzymatic activities. Moreover, methionine plays 

various roles through its activated intermediate S-adenosylmethionine (AdoMet) [86]. Despite 

the biological significance of the ubiquitous sulfur-containing amino acids, the distribution of 

their metabolic pathways is extremely diverse among organisms. Indeed, genome-wide and 

functional analyses of enzymes involved in the sulfur metabolic pathways have showed 

notable heterogeneity among protozoan parasites and between parasites and their mammalian 

hosts. Thus, the enzymes involved in sulfur-containing amino acids metabolic pathways are 

interesting drug targets. 

Bacteria, fungi and plants possess the forward transsulfuration pathway, which is involved in 

the formation of methionine from cysteine. The enzymes implicated in these reactions are the 

cystathionine γ-synthase (CGS, EC 2.5.1.48), which converts cysteine and O-

succinylhomoserine in cystathionine and succinate, and cystathionine β-lyase (CBL EC 

4.4.1.8), which catalyzes an α,β-elimination of cystathionine to produce homocysteine and 

pyruvate. These organisms are also capable of de novo production of cysteine by sulfur 

assimilation. This pathway is catalyzed by two steps, initiated by serine acetyltransferase 

(SAT, EC 2.3.1.30) to form O-acetylserine (OAS) from L-serine and acetyl-coenzyme A. 

Subsequently, OAS reacts with sulfide to produce cysteine in an alanyl-transfer reaction 

catalyzed by cysteine synthase (CS, OAS thiolyase, EC 2.5.1.47) (Figure 22). 

In mammals, cysteine is synthesized from methionine via cystathionine by the so-called 

reverse transsulfuration pathway. This pathway is considered to be the unique route for 

cysteine synthesis in vertebrates and involves two PLP-dependent enzymes, cystathionine β-

synthase (CBS, EC 4.2.1.22), which synthesizes cystathionine from homocysteine and serine 

via a β-replacement reaction, and CGL (EC 4.4.1.1), which catalyzes the hydrolysis of 

cystathionine via an α,γ- elimination reaction, to yield cysteine, α-ketobutyrate, and ammonia 

(Figure 22) [87]. 
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Figure 22. Sulfur-containing amino acid metabolism. CBS, cystathionine β-synthase; CBL, 
cystathionine β-lyase; CGS, cystathionine γ-synthase; CGL, cystathionine γ-lyase; CS, cysteine 
synthase; SAT, serine acetyltransferase; OSHS, O-succinylhomoserine. 

 

Parasitic protozoa are characterized by remarkable differences in the above described 

transsulfuration pathways. For example, it has been demonstrated that Entamoeba histolytica 

lacks genes encoding enzymes of the transsulfuration pathway in both directions [88], Giardia 

duodenalis, Trichomonas vaginalis, P. falciparum and C. parvum lack both CBS and CGL of 

the reverse transsulfuration pathway [86, 89, 90]. In T. cruzi the enzymes CBS, CS and CGL 

have been identified and characterized [91, 92], thus indicating that in this pathogen cysteine 

could be produced by the de novo synthesis processes as well as by the reverse 

transsulfuration pathway. 

The presence of genes for the enzymes CBS (TGME49_059180), CGL (TGME49_112930), 

and CS (TGME49_078910) in the genome of the intracellular protozoan parasite T. gondii 

raises the possibility that this parasite possesses both the reverse transsulfuration and the 

assimilatory cysteine biosynthetic pathways. However, although sequence analysis is an 

invaluable tool for unraveling the function of a gene product, further enzymatic and 

biochemical characterization of the encoded protein is necessary to unequivocally identify its 

function and properties. Moreover, since the main transsulfuration enzymes belong to the 

same so-called fold-type I of PLP-dependent enzymes [93], gene function prediction and gene 
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nomenclature assignment based only on phylogenetics and sequence alignment are often 

complicated [94]. 

 

1.2 Cystathionine γ-lyase 

CGL catalyzes the γ-cleavage of cystathionine to yield cysteine, α-ketobutyrate, and 

ammonia. This enzyme is present in actinobacteria, fungi, and mammals. CGLs are 

homotetramers and carry one PLP cofactor per monomer covalently bound through a Schiff 

base to an active-site lysine. 

A molecular mechanism was deduced on the basis of the structural similarity to the E. coli 

CBL active site (Scheme 3). In the first step, substrate binds to the active-site PLP cofactor by 

formation of a Schiff base. α-Proton abstraction by the active-site lysine residue, followed by 

reprotonation at C4’ leads to the reversible formation of a ketamine intermediate. This species 

subsequently undergoes β-proton abstraction by the same lysine which is responsible for the 

proton transfer from Cα to C4’ of the cofactor and the subsequent deprotonation of Cβ to 

initiate the γ-cleavage [95]. 

 
Scheme 3. Reaction scheme for CGL up to the point of the release of cysteine [95]. 

 

Human CGL displays an interesting substrate specificity with clear preference of C–S over S–

S bond breakage: L-cys and L-cystine are converted orders of magnitudes more slowly than 

the natural substrate L-cth. The yeast enzyme attacks the C–β–S bond of L-cystine or L-cys. 

In humans, L-cth is split almost exclusively in a CGL-specific manner, whereas the yeast 

enzyme harbors pronounced CBL activity. A CGL enzyme from Lactococcus lactis was 

reported to consist of at least six identical subunits and have a broad substrate specificity and 

relatively low specific activity toward L-cth compared to bacterial CGL. The reaction 
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specificity seems context-dependent, such that the reaction catalyzed in vivo depends on the 

substrate supplied. 

Despite the high degree of conservation of CGL among different organisms, inspection of 

human and T. gondii active sites overlays by structure-guided homology modelling identified 

two striking amino acid differences (Glu59 and Ser340 in human to Ser77 and Asn360 in 

toxoplasma). 

In particular, sequence alignment of CGL from different organisms resulted in the presence of 

conserved acidic Glu or Asp residue at position 59 and Ser residue at position 340 in all 

organisms except protozoa, e.g. trypanosomes in general, Lehismania major, and T. gondii, in 

which a serine and an asparagine residues respectively were found (Figure 23).  

Herein, we have cloned, expressed in E. coli, and characterized the putative CGL from T. 

gondii (TgCGL) with the aim to expand the very limited knowledge about the transsulfuration 

and cysteine biosynthesis routes in this pathogen and to explore the potential of TgCGL as 

anti-toxoplasmosis drug target. 

Furthermore, in order to in-depth understand the structure–function relationships that control 

substrate and reaction specificity, which is a necessary step to develop novel therapeutics, we 

substituted the non-conserved serine and asparagine residues of TgCGL to glutamate and 

serine residues respectively, as found in human enzyme, and we examined their influence on 

enzyme function. 
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T.gondii          MASKQNDKDGAVRRDASFECGVKAGDWLPGFTPREETVYVHGGVEPDP-LTGAILPPIYQ 59 
L.major           MSSQ---------QHLVSDFTAGSGSWLPQSQ-GFDTLQVHAGVRPDP-VTGAILTPIYQ 49 
T.cruzi           MSSQ---------KHLVSDFTEGSGSWQDQTY-GFDTVLVHGGVKPDP-VTGAVLTPVYQ 49 
T.grayi           MSGA---------QHLFADFSEGSGSWQPQAQ-GFETLLVHGGVKPDP-VTGAILTPVYQ 49 
H.Sapiens         ----------------MQEKDASSQGFLPHFQ-HFATQAIHVGQDPEQWTSRAVVPPISL 43 
S.Cerevisiae      ----------------MTL---------QESD-KFATKAIHAGEHVD--VHGSVIEPISL 32 
C.albicans        ----------------MTI-------ESSTNY-SFGTKAIHAGAPLDP-STGAVIEPISL 35 
                                                      *  :* *   :     ::: *:   
 

T.gondii          NTTFVQESVENYLSKGFSYSRTSNPTVLSLEKKIAEIEGGFGACCFATGMAATVTIFSAF 119 
L.major           STTFVQESINSYQAKGYSYTRSANPTVAVLEQKLCALENGSYCTVYNTGMAATTTAISSF 109 
T.cruzi           STTFVQESIGKYQSKGYSYTRCANPTVSVLERKLCAIENGDYATVYSTGMSATTTAISSF 109 
T.grayi           STTFVQESIERYQAKGYSYTRSANPTVSALEEKLCAIEHGEYATVYSTGMSATTTAISSF 109 
H.Sapiens         STTFKQGAPGQ-HSG-FEYSRSGNPTRNCLEKAVAALDGAKYCLAFASGLAATVTITH-L 100 
S.Cerevisiae      STTFKQSSPAN-PIGTYEYSRSQNPNRENLERAVAALENAQYGLAFSSGSATTATILQ-S 90 
C.albicans        STTFAQSEPSK-PLGIYEYSRSSNPNRDNFEIAVAALESAKYAIALSSGSATTALVIQ-S 93 
                   *** *          :.*:*  **.   :*  :. :: .       :* ::*        
 

T.gondii          LAPGDHCLVTNCSYGGTNRCARLHFSKYNIDFEFIDFRDPTNVEKAIRPQTKVVFSESPC 179 
L.major           MNAGDHAILTNCCYGGTNRACRVFFSRLGMEFTFVDMRDPQNVIDSIKPNTKLVISETPA 169 
T.cruzi           MSAGDHAIITDCSYGGTNRACRVFFPRFGMEFTFVDMRDLKNVEAAIKPNTKLVFSETPA 169 
T.grayi           MSAGDHAIVTECSYGGTNRACRVFFTRLGMSFTFVDMRDVKNVEAAIKPNTKLVISESPA 169 
H.Sapiens         LKAGDQIICMDDVYGGTNRYFRQVASEFGLKISFVDCSKIKLLEAAITPETKLVWIETPT 160 
S.Cerevisiae      LPQGSHAVSIGDVYGGTHRYFTKVANAHGVETSFTNDLLN-DLPQLIKENTKLVWIETPT 149 
C.albicans        LPINSHIVSSGDVYGGTHRYFTKVANTHGVEAQFVGNLVE-DLQGALRENTRLVWLETPS 152 
                  :  ... :     ****:*         .:.  * .      :   :  :*::*  *:*  
 

T.gondii          NPTLYLADIEAISQICKEK------KVLHVCDSTFATPYMMRPLDLGADIVVQSTTKYYD 233 
L.major           NPTLILIDVAAVSKICKER------GIVHMCDNTFATAYIMRPLDHGADVTLISTTKYVD 223 
T.cruzi           NPTLTLTDLTELSKLCKAK------GLIHVCDNTFATAFIMRPLDLGADVTLISTTKFVD 223 
T.grayi           NPTLTLTDIDALSSLCKAK------GIIHMCDNTFATAFIMRPLDHGADVTLISTTKFVD 223 
H.Sapiens         NPTQKVIDIEGCAHIVHKH-----GDIILVVDNTFMSPYFQRPLALGADISMYSATKYMN 215 
S.Cerevisiae      NPTLKVTDIQKVADLIKKHA--AGQDVILVVDNTFLSPYISNPLNFGADIVVHSATKYIN 207 
C.albicans        NPTLQVTDIAKVKSILVDHEAKTGNKVLLAVDNTFLSPYLSNPLTHGADVVVHSVTKYIN 212 
                  **:  : *:         :       ::   *.** : :: .**  ***: : *.**: : 
 

T.gondii          GHNCTLGGAVISSTKEIHDKVFFLRNVMGNIMSAQTAFYTLLTLKTLPIRVEKQSANAQK 293 
L.major           GHDMTVGGALVTNSKELDAKVRLTQNILGNVMSPQVAFLQLQTVKTMSLRVTKQSHNAQK 283 
T.cruzi           GHNMTVGGALVTKRKDLDEKVRLTQNILGNAMSPFVAYLQLQTVKTMSLRVAKQSENAQK 283 
T.grayi           GHNMTVGGALVTKSKELDGKVRLTQNILGNCMSPFVAFLQLQTVKTMSLRISRQSENAQK 283 
H.Sapiens         GHSDVVMGLVSVNCESLHNRLRFLQNSLGAVPSPIDCYLCNRGLKTLHVRMEKHFKNGMA 275 
S.Cerevisiae      GHSDVVLGVLATNNKPLYERLQFLQNAIGAIPSPFDAWLTHRGLKTLHLRVRQAALSANK 267 
C.albicans        GHSDVVMGVLATNDSQLHERFRFLQNAIGSIPSPFDSWLAHRGLKTLHLRVRQASNSAQR 272 
                  *:. .: * :  . . :  :. : :* :*   *   .:     :**: :*: :   ..   
 

T.gondii          IAEFLSKH-HKVEHVIYPGIPSFPQKELALKQHK-NVHGGMLAFEVKGGTEAGIRMMNHV 351 
L.major           IAEFLETH-RAVDRVVYPGLASHPQKELADRQHRNNLHGGMLWFEVKGGTAAGRRLMDTV 342 
T.cruzi           VAEFLETH-PAVEKVMYPGLKSFPQKALADRQHLNNNHGGMLWFEVKGGTAAGRKLMDTV 342 
T.grayi           VAEFLETH-PAVERVMYPGLKSFPQKALADRQHANNLHGGMLWFEVRGGTAAGRRLMDTV 342 
H.Sapiens         VAQFLESN-PWVEKVIYPGLPSHPQHELVKRQCTG--CTGMVTFYIKGTLQHAEIFL-KN 331 
S.Cerevisiae      IAEFLAADKENVVAVNYPGLKTHPNYDVVLKQHRDALGGGMISFRIKGGAEAASKFA-SS 326 
C.albicans        IAEYLSQH-SAVLKVNYPGLKSHRNHDVVLRQQRDGLGGGMISFRIAGGAKGAAVFT-SS 330 
                  :*.:*  .   *  * ***: :. :  :. :*       **: * : *    .  :     
 

T.gondii          PRPWSLCENLGACESIITCPAVFTHANMLREDRLKVGITDGFIRVSVGIEDVNDLIDGLD 411 
L.major           PRPWSLCENLGASESIITCPSVMTHANMTSEDRMKVGITDGFVRVSCGIEDVDDLIAALK 402 
T.cruzi           QRPWSLCENLGAAESIITCPSVMTHANMTKEDRLKVGITDGFVRVSCGIEEAKDLITALK 402 
T.grayi           QRPWSLCENLGATESIITCPSVMTHANMTTEDRMKVGITDGFVRVSCGIEDAADLISALK 402 
H.Sapiens         LKLFTLAESLGGFESLAELPAIMTHASVLKNDRDVLGISDTLIRLSVGLEDEEDLLEDLD 391 
S.Cerevisiae      TRLFTLAESLGGIESLLEVPAVMTHGGIPKEAREASGVFDDLVRISVGIEDTDDLLEDIK 386 
C.albicans        TKLFTLAESLGGIESLIEVPAIMTHGGIPKEEREANGVYDDLVRVSVGIEDTEDLLKDIE 390 
                   : ::*.*.**. **:   *:::**..:  . *   *: * ::*:* *:*:  **:  :. 
 

T.gondii          YALSKA-------- 417 
L.major           VAMDALV------- 409 
T.cruzi           TALDAL-------- 408 
T.grayi           AALDALGK------ 410 
H.Sapiens         QALKAAHPPSGSHS 405 
S.Cerevisiae      QALKQATN------ 394 
C.albicans        QALQKAASV----- 399 
                   *:.           
 

Figure 23. Sequence alignment of CGL from different organisms. Black shading indicates the PLP-binding lysine and the 
tyrosine involved in aromatic stacking interaction with PLP pyridine ring. Gray shading indicates Glu339 (hCGL 
numbering) which is conserved in 100% CGLs. The target residue for mutational analysis is highlighted in yellow. The 
CGLs used in this alignment (NCBI accession number) are XP_002364505.1, T. gondii ME49; XP_003722717.1, L. major; 
EKG03141.1, T. cruzi; XP_009313447.1, T. grayi; NP_666065.1, Homo sapiens; NP_009390.1, S. cerevisiae; 
XP_716241.1, Candida albicans. All sequence alignments were carried out using the Clustal OMEGA program. 
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2. EXPERIMENTAL PROCEDURES 

 

2.1 Protein production 

The complete cDNA of TgCGL (accession number: XM_002364464) in pMA-T vector was 

obtained from Invitrogen Corporation with a tag of six His at the N-terminal. The gene was 

cloned into the vector pET21a for the expression in E. coli Rosetta (DE3) cells. Cell cultures 

were grown at 37°C to an absorbance at 600 nm of 0.6. The expression of TgCGL was 

induced with 0.5 mM IPTG at 24°C for 20 h. Vitamin B6 (0.1 g/L) was added to the cell 

culture during induction in order to favour the proper protein folding and increase the protein 

stability. Cells were isolated by centrifugation, resuspended in 20 mM sodium phosphate pH 

8, 150 mM NaCl buffer containing 1X protease inhibitor EDTA free, and lysed by sonication. 

Cell debris were removed by centrifugation (30000 xg for 15 min) and 1% streptomycin was 

added to supernatant to remove nucleic acid contamination. After centrifugation the 

supernatant was loaded onto an Ni-affinity column previously equilibrated with 20 mM 

sodium phosphate at pH 8, 150 mM NaCl, 0.1 mM DTT and 10 mM imidazole. The 

concentration of imidazole was increased stepwise, first to 80 mM to remove no specifically 

bound proteins, and then to 500 mM to elute the enzyme. Soluble TgCGL eluted between 200 

and 250 mM imidazole. After addition of 100 µM PLP, the fraction containing TgCGL were 

concentrated and washed with 20 mM sodium phosphate buffer pH 8, 0.1 mM DTT using 

Vivaspin concentrators (Sartorius) to remove imidazole and unbound PLP. 

The extinction coefficient was used to calculate the monomer concentration of the purified 

protein (ε280nm = 30745 M−1 cm−1; http://web.expasy.org/protparam/). The PLP content of the 

holo-enzyme was determined by addition of 0.1 M NaOH and using ε388nm = 6600 M−1 cm−1 as 

described [96]. 

The S77E, S77A and N360S TgCGL variants was produced by site specific mutagenesis on 

the pET21a-TgCGL construct using the QuikChange® site-directed mutagenesis kit (Agilent 

Technologies). The mutated sequences were confirmed by DNA sequence analysis. 

Expression and purification of the S77E, S77A and N360S variants were performed as 

described for wild-type TgCGL. The yield from a one-liter purification was approximately 20 

mg for all enzyme variants. 

 

2.2 Size exclusion chromatography (SEC) 

Gel filtration chromatography (Superdex 200 HR 10⁄300 GL) was used to analyze the 

oligomeric state of TgCGL. Chromatography was performed using 50 mM sodium phosphate 
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buffer pH 8.5, 150 mM NaCl, 0.1 mM DTT. The calibration curve was obtained as described 

[46]. In order to investigate the quaternary structure stability, the protein was incubated with 

increased concentration of urea (0 - 5.5 M) for 1 h, and loaded on the gel filtration column 

previously equilibrated with the specific urea concentration. The percentage of tetrameric 

protein was measured by integration of the area under the curve (absorbance at 280 nm) using 

the Evaluation module of Unicorn 7.0.2 software. The data were fit by sigmoidal curves and 

the concentration of urea at which 50% of TgCGL is tetrameric (Cm) was determined. 

 

2.3 Apo-proteins preparation 

Apo-proteins were obtained following the protocol in [94, 97]. The apo-proteins showed no 

absorption peak at 421 nm and no residual activity. The equilibrium dissociation constant for 

PLP (KD
PLP) was obtained by measuring the fluorescence emission at 330 nm upon excitation 

at 280 nm in the presence of PLP ranging from 0.05 to 40 µM at 25 °C in 50 mM Bis-Tris 

propane pH 8 at apo-proteins concentration of 1 µM. The values of fluorescence intensity at 

330 nm were plotted as a function of PLP concentration and fit to a non-linear binding 

equation to obtain the dissociation constant KD. 

 

2.4 Limited proteolysis 

Fifty micrograms of holo- and apo-TgCGL were digested with trypsin (1:200 w/w) in 50 mM 

Tris-HCl pH 7.5 at 25 °C. At various time intervals (0, 1, 5, 10, 20, 40, 60 and 120 min), 8µl 

aliquots were taken for electrophoretic analysis. The digestion reaction was ended by boiling 

the sample for 5 min and adding reducing Laemmli buffer. After staining the gel with 

Coomassie blue, the bands intensities analysis was performed as described [98]. 

 

2.5 Differential scanning calorimetry 

Differential scanning calorimetry (DSC) experiments were conducted using a TA Instrument 

Nano-DSC (New Castle, Delaware, USA). TgCGL samples of 50-100 µM were dissolved in 

in 20 mM sodium phosphate pH 8, and were heated from 10 °C to 120 °C at a scan rate of 

1°C/min. All the samples were degassed prior to analysis. 

 

2.6 Enzyme activity assays 

Enzyme activity was determined using a Jasco-V560 UV-Vis spectrophotometer (Easton, 

Maryland, USA) via two spectrophotometric assays: the reaction of 5,5′-dithiobis-(2-

nitrobenzoic acid) (DTNB) with the free thiol of the product (ε412 = 13600 M−1 s−1), and by 
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monitoring the pyruvate formation with the coupling enzyme NADH-dependent lactate 

dehydrogenase (LDH) (ε340 = 6200 M−1 cm−1), as described [49]. All enzymatic assays were 

carried out at 37°C in 50 MOPS, bicine, proline (MBP) buffer pH 9 in the presence of 20 µM 

PLP. Reactions were initiated by the addition of the enzyme at a final concentration of  1, 5 or 

10 µM, depending on the activity of the enzyme variant. A background reading was recorded 

before initiation of the reaction by the addition of TgCGL. 

Data were fitted to the Michaelis–Menten equation to obtain values of kcat and Km . For site-

directed variants for which saturation was not observed, kcat/Km values were obtained by 

linear regression, based on the assumption that Km ≫ [substrate]. The L-cys hydrolysis data 

were fitted to equation (5), which modifies the Michaelis-Menten equation taking into account 

the Ki term for substrate inhibition by L-cysteine [99]: 

�

�
�

����

1 	
HI		

J
		

J

HK

						�5�															 

where E is the total enzyme concentration, kcat the rate constant, S the substrate concentration, 

Km the apparent Michaelis-Menten constant and Ki the dissociation constant. 

To evaluate the effect of temperature on α,γ-lyase activity, the enzyme was incubated for 10 

min at temperatures between 20 °C and 90 °C, cooled on ice for 5 min, and the residual 

enzymatic activity was determined as described above. 

 

2.7 Inhibition assays 

The inhibitory activity of L-cys was evaluated through LDH assay and was expressed as the 

inhibitor concentration required for 50% inhibition of the α,β-eliminase activity (IC50). The 

IC50 value was measured by a plot of percent activity versus log of L-cys concentration. 

The kinetic parameters of α,β-eliminase inhibition by L-cys were evaluated by the 

Lineweaver–Burk plots and its secondary plots. The double-reciprocal plots were constructed 

with enzyme reaction initial velocity (V) versus substrate (S) concentration in the absence 

(control) or presence of L-cys at different concentrations. The type of inhibition, Km and Vmax 

values were determined from the plots. Slopes and Y-intercepts of these reciprocal plots were 

also replotted against the inhibitor concentration, respectively [100]. Data analysis was 

performed by OriginLab software. 

Inactivation of TgCGL by DL-proparglyglycine (PAG) was evaluated by reacting 5 mM L-cth 

with TgCGL (2 µM), pre-incubated with different concentration of the inhibitor for 15 min at 

room temperature. Reactions were monitor through DTNB assay. Residual activity, remaining 

after 15 min incubation, was plotted against the relative concentration of PAG. 
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2.8 Spectroscopic measurement 

Absorption measurements were performed on a Jasco-V560 UV-Vis spectrophotometer 

(Easton, Maryland, USA) in a buffer solution containing 50 MBP buffer pH 9, at protein 

concentration of 12 µM. 

In order to evaluate the the equilibrium dissociation constant for TgCGL-L-cys complex 

formation (Kapp), absorption spectra of TgCGL were recorded upon addition of different L-

cysteine concentrations: 0, 0.04, 0.1, 0.15, 0.16, 0.2, 0.3, 0.4, 0.5, 0.8, 1, 2, and 3 mM. The 

plots of the absorbance changes at 335 and 421 nm against the L-cys concentration could be 

fitted to a hyperbolic relationship such as equation (6) : 

∆ �
∆LIMN∗��PQ�R�SR�

HMTTU��PQ�R�SR�
  (6) 

where ∆A and ∆Amax are the absorption changes at given and infinite L-cys concentrations 

respectively, and Kapp the equilibrium dissociation constant for TgCGL-L-cys complex 

formation. 

 

2.9 Statistical analysis 

Each experiment was performed at least in triplicate and reported values are representative of 

two or more independent determinations using different batches of protein that were purified 

separately. Data were analyzed using Origin 8.0 (OriginLab Corporation, Northampton, MA) 

and expressed as mean ± standard error. 

 

2.10 Thin layer chromatography 

Amino acid standards (1 mg/mL) were prepared in 20 mM sodium phosphate buffer, pH 8.0. 

These solutions were spotted, 1 µL at a time, on chromatographic plates, comprised of a 0.1-

mm thick layer of silica gel on an aluminum support, and developed with a mobile phase of n-

propanol/water (70:30, v/v), for a distance of 13 cm. TLC plates were subsequently dried, 

sprayed with a solution of 2 mg/mL ninhydrin in ethanol and dried, prior to heating for 5 min 

at 100°C. 

 

2.11 Molecular modelling studies 

The crystal structure of Methionine γ-lyase from Citrobacter Freundii in its internal aldimine 

form (PDB ID code 5E4Z) and human cystathionase (Cystathionine γ-lyase) in complex with 

PAG (PDB ID code 3COG) were used as a starting point to generate the model of the wt, 

N360S and S77E TgCGL enzyme, using the “homology modeling” tool of PyMod 2.0, 
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followed by energy minimization with the BIOPOLYMER package from InsightII (V.2000, 

MSI, Los Angeles), as already described [53, 101]. 

The Dundee PRODRG2 Server [54] was used to build the energy minimized three-

dimensional structures of the PLP-Cystathionine and PLP-PAG external aldimines complexes, 

which were then docked into the active site of wt form of TgCGL, using the template-based 

molecular docking approach of Molegro Virtual Docker (MVD) software (CLCbio®). 

Flexible torsions of the external aldimines were automatically detected by MVD, and 

manually checked for consistency. A search space of 15 Å radius, centered on the active site 

cavity, was used for docking. The PLP in its internal aldimine form, as found in 3COG, was 

taken as pharmacophoric group for template-based docking. In the latter, if an atom of the 

ligand matches a group definition, it is rewarded by using a weighted score that depends on its 

distance to the group centers. The grid-based MolDock score with a grid resolution of 0.30 Å 

was used as scoring function and MolDock SE was used as docking algorithm [55]. For each 

ligand, ten runs were defined. Similar poses (RMSD ≤ 1.0 Å) were clustered, and the best 

scoring one was taken as representative. Other docking parameters were fixed at their default 

values. After docking, energy optimization of hydrogen bonds was performed. 
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nm led to a single emission peak with a maximum at ~500 nm, thus further confirming the 

assignment of the 421 absorbance band to the ketoenamine tautomer (data not shown). 

The emission spectrum of the apo-TgCGL following excitation at 280 nm had an emission 

band at 331 nm with an intensity approximately 1.5-fold greater than that of holoenzyme, as a 

consequence of the quenching of the emission fluorescence due to the bound PLP in the holo-

form (Figure 25B). The dissociation constant (KD) for the binding of PLP to TgCGL was 

measured by titrating apo-TgCGL with increasing amounts of PLP and following the 

fluorescence signal upon excitation at 280 nm. This analysis yielded a KD value for the 

TgCGL–PLP complex of 0.17 ± 0.04 µM. 

 

Figure 25. Spectral properties of TgCGL. (A) Absorption spectrum of purified TgCGL recorded 
on a solution containing 12 µM protein in 50 mM MBP buffer pH 9. (B) Fluorescence spectra 
(excitation was at 280 nm) of holo-TgCGL (dotted line) and apo-TgCGL (solid line) in 20 mM 
Bis-Tris-propane pH 8.3, at a concentration of 1 µM. 

 

Limited trypsin proteolysis experiments on the holo- and apo-forms of TgCGL provided 

evidence for a protective effect of PLP. After 10 minutes of reaction, the 70% of apo-protein 

was already digested by protease; by contrast, after the same time, a 40% decrease in the 46 

kDa-band intensity of holo-protein was observed. In the holo-state TgCGL was stable to 

proteolysis for more than 120 min. (Figures 26A and 26B).  

Moreover, the holo-enzyme exhibited a higher thermal stability (Tm of about 71°C at pH 8.0) 

compared to the apo-protein (Tm value at about 55 °C) as observed by DSC (Figures 26C and 

26D).  

A B 



 
Figure 
TgCGL (B) after incubation of TgCGL with trypsin 1:200 (w/w) for 0, 1, 5, 10, 20, 40, 60 and
min, respectively. The intensity of the untreated with trypsin TgCGL band (lane 0 min) was 
assumed as 100%. The arrow indicates the untreated 46 kDa band. Lane M represents a molecular 
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The L-cth hydrolysis activity of the TgCGL was measured with both the DTNB and LDH 

assays. Indeed, the DTNB-based assay does not distinguish between the products of L-cth 

hydrolysis, which are L-homocysteine (L-hcys) and L-cys for the β- and γ-elimination 

reactions, respectively. Therefore, we employed also the LDH assay to monitor the formation 

of L-pyruvate product by specific L-cth α,β-elimination. Determination of L-cth hydrolysis 

via DTNB assay at pH 9 resulted in kcat and Km values of 2.0 ± 0.1 s-1 and 0.9 ± 0.1 mM, 

respectively, whereas a negligible activity was detected via LDH-coupled assay (the enzyme 

specific activity was < 0.4% compared to that measured by DTNB assay). Thus, TgCGL 

resulted highly specific for α,γ-elimination of L-cth, like in T. cruzi [92] and in human [102], 

[103], where L-cth is split almost exclusively in a CGL-specific manner, whereas the yeast 

enzyme harbors pronounced CBL activity [104]. 

Besides its role in the conversion of L-cth into L-cys, we found that TgCGL can also utilize 

djenkolic acid (Appendix, Figure A3), and amino-ethyl-L-cysteine, to a lesser extent (kcat 

0.037 ± 0.001 s-1 and Km 1.3 ± 0.1 mM), via an α,β-elimination reaction (Table 4). L-cys 

served as a very poor substrate with a maximum velocity only 1 % of the value with the 

natural substrate L-cth. Substrate inhibition was also observed (kcat 0.024 ± 0.001 s-1, Km 0.7 ± 

0.2 mM and Ki 0.17 ± 0.02 mM). 

 

Table 4. Steady-state kinetic parameters of TgCGL variants a at pH 9 and 37°C 

 Assay kcat 
b(s-1) Km b(mM) kcat/ Km 

(mM -1s-1) 
Hydrolysis  of L-cystathionine    
wt DTNB 2.0 ± 0.1 0.9 ± 0.1 2.2 ± 0.4 
N360S DTNB 0.24 ± 0.02 6.1 ± 1.2 0.04 ± 0.01 
 LDH 0.08 ± 0.01 1.1 ± 0.1 0.07 ± 0.02 
S77A DTNB 0.7 ± 0.1 2.4 ± 0.3 0.29 ± 0.08 
S77E LDH/DTNB n.d.b n.d. b - 
    
Hydrolysis  of djenkolic acid    
wt LDH 0.24 ± 0.01 0.51 ± 0.01 0.47 ± 0.03 
N360S LDH 0.19  ± 0.01 0.86 ± 0.03 0.22 ± 0.02 
S77E LDH n.s.c n.s. c 0.0022 ± 0.0006 
S77A LDH 0.22 ± 0.02 1.5 ± 0.2 0.15 ± 0.03 

a TgCGL at 1, 5 or 10 µM was used, depending on the activity of the specific enzyme variant.  
b not detected. 
c The notation n.s. indicates that S77E does not display saturation kinetics within the 
solubility limit of the djenkolic acid substrate, such that kcat/Km was determined via linear 
regression with the assumption that Km ≫ [djenkolic acid].  
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Moreover, L-cys showed an inhibitory effect when assessed via LDH assay on djenkolic acid 

β-elimination by TgCGL. Plot of percentage inhibition versus log of L-cys concentration 

resulted in an IC50 value of 0.27 ± 0.05 mM (Figure 28A). We next estimated the Ki for L-cys 

by measuring the dependence of the initial velocity on djenkolic acid concentration (from 0.1 

to 12 mM). (Appendix, Figure A4). The data were analyzed in double reciprocal (Lineweaver-

Burk) plot and were interpolated by four straight lines resulting in a common intersection 

point in the second quadrant characteristic of mixed-type inhibition (Figure 28B). kcat value 

decreases from 0.24 (no-inhibitor) to 0.12 s-1 and Km value increases from 0.53 to 1.19 mM 

with increasing concentration of L-cys. Secondary plots of the slope and Y-intercept values, 

obtained from each line in the primary Lineweaver-Burk plot versus L-cys concentrations 

(Figure 28C), allowed extrapolation of enzyme inhibitor dissociation constants Ki (the 

enzyme inhibitor (EI) constant) and Ki’ (the enzyme substrate complex (ESI) constant), 

respectively. The smaller value of Ki (160 ± 30 µM) than Ki′ (370 ± 50 µM) indicates that L-

cys binds with higher affinity to the free enzyme in comparison with the enzyme-substrate 

complex. 

The availability of large amounts of the recombinant protein allowed us to analyze directly 

the interaction between TgCGL and L-cys by collecting absorption spectra. Upon addition of 

L-cys to TgCGL we observed an immediate decrease in the absorption at 421 nm (Figure 

28D). Such decrease was concomitant with the appearance of a new maximum at 335 nm, 

which is characteristic of a thiazolidine adduct between L-cys and the PLP cofactor [105]. 

Indeed, it is well known that L-cys, in addition to the general ability to work as substrate for 

most CGL enzymes [102, 104], may bind to the aldehyde group PLP cofactor to form 

thiazolidine [106]. The recording of the spectra obtained for increasing concentrations of L-

cys (Figure 28D) showed an isosbestic point at 370 nm, indicating the presence of only two 

species in the mixture, free TgCGL and L-cys-complexed enzyme. The plots of the 

absorbance changes at 335 and 421 nm against the L-cys concentration (Figure 28D inset), 

fitted to equation (6), yielded Kapp values of 306 ± 41 µM and 273 ± 52 µM, respectively. The 

average value for Kapp (290 µM) is consistent with those determined from the enzyme-

inactivation data. 
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Figure 28. Inhibition of TgCGL β-eliminase activity by L-cys. (A) Representative profile of IC50 
determination. The enzymatic activity of TgCGL was related to the activity in the absence of 
inhibitor (100%). The in vitro  inhibition of enzyme by L-cys was performed in the presence of 6 
mM djenkolic acid substrate via LDH assay. (B) Lineweaver-Burk plot analysis of the kinetics of 
TgCGL inhibition exerted by L-cys. (C) Slope and Y-intercept values from primary Lineweaver-
Burk plot (panel B) versus L-cys concentrations; Ki, and Ki’ were obtained as the absolute values 
of the concentration-axis intercepts of slope and Y-intercept plots, respectively. (D) Absorption 
spectra of 12 µM TgCGL upon addition of the following L-cys concentrations: 0, 0.04, 0.1, 0.15, 
0.16, 0.2, 0.3, 0.4, 0.5, 0.8, 1, 2, and 3 mM. Inset. Absorbance changes at 335 (solid circle) and 
421 nm (open square) plotted against L-cys concentration. 
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We also analyzed the behavior of TgCGL in the presence of PAG as it is the most widely used 

in vivo inhibitor of H2S production by human CGL. The irreversible inactivation of human 

CGL by PAG has been well described [102, 103, 107]. We found that PAG inhibited also 

TgCGL. Because of the rapidity of the inactivation (PAG inactivated the enzyme faster than 

the manual mixing time for the samples), we measured the residual activity after a 15-min 

incubation of TgCGL with increasing concentrations of PAG (Figure 29). The very fast 

inactivation of TgCGL by PAG was not surprising, since the same behaviour was observed 

for human CGL [102, 103]. Notably, enzymatic activity of TgCGL could not be recovered by 

extensive dialysis, therefore confirming the irreversible inhibition. 

 
Figure 29. Residual activity of TgCGL after incubation with PAG. The inhibition of enzyme by 
PAG was measured in the presence of saturating concentrations of L-cth (5 mM) via the DTNB 
assay following pre-incubation with different concentration of the inhibitor for 15 min at room 
temperature. 
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3.4 Molecular modelling 

We modelled the external aldimine of the wt enzyme in complex with L-cth and PAG, starting 

from the homology-modelled tetramer structure of TgCGL (residues 35-417) in its internal 

aldimine state. To this end, we used the crystal structures of methionine γ-lyase from 

Citrobacter Freundii (PDB ID code 5E4Z; % identity ≈ 44.2) and human CGL in complex 

with PAG (PDB ID code 3COG; % identity ≈ 41.3) as structural templates. 

The predicted binding mode of L-cth in wt TgOAT is shown in Figure 30A. With the α-amino 

group of the substrate covalently bound to PLP, the carboxylate group of L-cth is well 

positioned to form an ion-pair with Arg395 and hydrogen-bonds with Asn180 and the N main-

chain atom of Asn360. These interactions are also well conserved in the crystal structure of 

human CGL (residues Arg375, Asn161, Ser340; PDB ID code 3COG), where a nitrate ion 

occupies approximately the same position of the carboxylate group of L-cth in the predicted 

docked model. Moreover, and similarly to what observed in the crystal structure of human 

CGL, the ζ-amino and ζ-carboxyl groups of L-cth are predicted to share with the carboxyl and 

amino moieties of PAG the same interactions with two arginine residues (i.e., Arg80 and 

Arg138 of TgCGL and Arg62 and Arg119 in human CGL) and a glutamic acid (i.e., Glu359 

of TgCGL and Glu339 in human CGL). Another interaction involving the ζ-amino moiety is 

represented by a water-bridged hydrogen bond with the hydroxyl group of Tyr71. The latter 

residue has no homologous counterpart in the human CGL, and its water-bridged hydrogen 

bond interaction with L-cth is replaced by the carboxyl group of human CGL Glu59.  

When comparing the modelled position of PLP- L-cth and its interacting residues into the 

active site of TgCGL with the corresponding residues in human and yeast CGL, one striking 

differences is the replacement of the conserved residues of Ser334/Ser340 and Glu48/Glu59 

(numbering refers to the yeast and human CGL, respectively) with Asn360 and Ser77 in 

TgCGL (Figure 30A). Therefore, we decided to exchange these two positions in TgCGL with 

the corresponding residues of human and yeast enzymes to test their effect on substrate and 

reaction specificity. 

We also modelled wt form of TgCGL in complex with PAG and the modelling reveals that 

this covalent inhibitor could act as already observed in the human enzyme (covalent bond 

with Tyr133), since the residues interacting with the inhibitor are all well conserved between 

human CGL and TgCGL (Figure 30B). 
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. Modelling of the external aldimine of wt TgCGL in complex with 
superposed to human CGL (PDB:3COG; transparent gray sticks).

The external aldimine is shown as pink sticks. Residues described in text are labeled in single
Potential favorable interactions are depicted as yellow. (B) The covalent bond between
sticks) and Tyr133 of TgCGL (cyan sticks) is shown superposed with the corresponding residues of 

CGL in complex with 
superposed to human CGL (PDB:3COG; transparent gray sticks).

The external aldimine is shown as pink sticks. Residues described in text are labeled in single
Potential favorable interactions are depicted as yellow. (B) The covalent bond between
sticks) and Tyr133 of TgCGL (cyan sticks) is shown superposed with the corresponding residues of 

CGL in complex with L-cth (A) and PAG (B)
superposed to human CGL (PDB:3COG; transparent gray sticks).

The external aldimine is shown as pink sticks. Residues described in text are labeled in single
Potential favorable interactions are depicted as yellow. (B) The covalent bond between
sticks) and Tyr133 of TgCGL (cyan sticks) is shown superposed with the corresponding residues of 

(A) and PAG (B)
superposed to human CGL (PDB:3COG; transparent gray sticks).

The external aldimine is shown as pink sticks. Residues described in text are labeled in single-letter code. 
Potential favorable interactions are depicted as yellow. (B) The covalent bond between PAG (purple 
sticks) and Tyr133 of TgCGL (cyan sticks) is shown superposed with the corresponding residues of 

(A) and PAG (B). (A) 
superposed to human CGL (PDB:3COG; transparent gray sticks). 

letter code. 
PAG (purple 

sticks) and Tyr133 of TgCGL (cyan sticks) is shown superposed with the corresponding residues of 
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3.5 N360S variant 

The absorbance spectrum of N360S showed a major peak at 421 nm, as the wt protein, and a 

minor peak at ~500 nm, which is not present in wt enzyme but it has been already seen in the 

human CGL protein preparations [102, 103, 108]. This 500 nm absorption band disappeared 

by reconstitution of TgCGL N360S with PLP following the generation of apo-protein (Figure 

31), therefore it is tentative to speculate that it could be ascribed to a quinonoid species 

formed by a bound amino acid that co-purifies with TgCGL. As for wt enzyme, the N360S 

variant binds ~1 mol of PLP/mol of monomer. 

 
Figure 31. UV–visible absorption spectra of TgCGL N360S variant. Spectra are for native enzyme 
after purification (solid line), apo-protein (dashed line), and reconstituted holoenzyme (dotted 
line). 

 

Substitution of N360 with Ser led to a ~56-fold decrease in catalytic efficiency for L-cth 

hydrolysis when analyzed via DTNB assay compared to the wt enzyme, and the change was 

influenced by matched ~10-fold decrease in kcat and ~7-fold increase in Km. Most importantly, 

α,β-cleavage of L-cth estimated via LDH-based assay was significantly increased (from 

negligible activity < 0.4% of that detected by DTNB assay in the wt enzyme to ~ 33% in 

N360S variant), and the Km for β-elimination of L-cth was reduced by ~ 6-fold compared to 

the one obtained by DTNB analysis (Table 4), suggesting that the binding of L-cth in a 

conformation suitable for α,β-elimination is favored. The α,β-hydrolysis of L-cth was also 

assayed at different pH and the optimum was at 9 (data not shown). 

Qualitative comparison of the reaction products with L-cth, L-hcys and L-cys standards via 

thin layer chromatography (TLC) analysis confirmed the production of both L-hcys and L-cys 

when L-cth was used as substrate for the N360S enzyme, thus confirming the ability of this 

variant to catalyze both α,β and α,γ-elimination toward L-cth (Figure 32). 



80 

 

Figure 32. Product analysis of the amino acid products of L-cth hydrolysis by wt and N360S 
variants TgCGL. Reaction products and amino acid standards were separated by TLC and 
derivatized with ninhydrin. Lane 1-3, amino acids standards. Lane 1: 1 mg/mL L-cth; lane 2: 1 
mg/mL L-cys; lane 3: 1 mg/mL L-hcys; lane 4: 5 mM L-cth + 100 µM wt TgCGL; lane 5: 5 mM 
L-cth + 100 µM N360S TgCGL; lane 6: 5 mM L-cth + 10 µM cystathionine β-lyase from 
Corynebacterium diphtheriae which catalyzes the β-elimination of L-cth to generate ammonia, 
pyruvate, and homocysteine. 

 

The replacement of Asn360 by Ser had no significant effect on α,β-elimination activity 

towards L-cys and djenkolic acid, since for these substrates the enzyme variant showed near 

wt kinetic parameters (Table 4). L-cys also inhibited TgCGL N360S with an IC50 of 0.43 ± 

0.02 mM (Figure 33A). Accordingly, the average Kapp for TgCGL N360S-L-cys complex 

formation determined from spectral analyses was 333 µM (Kapp of 335 ± 15 µM at 335 nm, 

Kapp of 331 ± 20 µM at 421 nm) (Figure 33B). 

 
Figure 33. Inhibition profiles of TgCGL N360S variant by L-cys. (A) Representative curve for 
IC50 determination. The enzymatic activity of TgCGL N360S variant was related to the activity in 
the absence of inhibitor (100%). The in vitro inhibition of enzyme by L-cys was performed in the 
presence of djenkolic acid substrate via LDH assay. (B) Absorbance changes at 335 (solid circle) 
and 421 nm (open square) plotted against L-cys concentration. 
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The modelled N360S enzyme in its external aldimine form in complex with the L-cth 

substrate bound in opposite orientation (in agreement with the distinct α,β versus α,γ-

elimination reaction specificity requirements) allowed us to rationalize the TgCGL N360S 

behavior. Notably, in the presence of N360, the binding of L-cth in a conformation suitable 

for α,β-elimination is partially hindered (see Figure 34A and compare with the orientation of 

L-cth shown in Figure 30A), due to the slight steric clash with the bulky S atom in position γ 

of L-cth. On the contrary, the N360S mutant is predicted to accommodate well both binding 

modes of L-cth (Figure 34B). Accordingly, the sulfur atom of the L-cth substrate was 

proposed to be an important determinant of the orientation of substrate binding and, therefore, 

reaction specificity in yeast CGL [95].  

 
 
Figure 34. Modelling of the external aldimine of PLP-L-cth in complex with wild-type TgCGL (A) 
and N360S mutant TgCGL (B). The external aldimine of PLP-L-cth is shown as pink sticks, and 
the surrounding residues as green sticks. Residues described in text are labeled in single-letter 
code. The Van der Waals radius of the Sγ atom of L-cth is shown as yellow dots. The Van der 
Waals radii of Nγ N360 and Oβ S360 are shown as blue and red dots, respectively. 
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3.6 S77E variant 

We found no difference in the absorption spectrum of S77E and in the stoichiometry of PLP-

bound (~1 mol of PLP per monomer) compared to wt enzyme. 

Notably, replacement of Ser77 by glutamate completely abolished activity toward L-cth. We 

made different attempts to determine enzymatic activity, including long incubation times, and 

increased substrate and enzyme concentrations, but none α,γ and α,β-elimination activities 

were detected. 

Also the α,β-elimination activity of S77E variant was also seriously compromised. Only by 

increasing enzyme concentration in the assay we were able to determine the steady-state 

kinetic parameters of S77E towards djenkolic acid and amino-ethyl-L-cysteine, which 

however showed a net decrease of S77E enzyme catalytic efficiency (by 214- and 90-fold for 

djenkolic acid and amino-ethyl-L-cysteine, respectively) compared to wt enzyme. 

The potential of the active-site residue S77 to influence L-cth hydrolysis was also explored 

via characterization of the S77A substitution. However, the near wt kinetic parameters for 

S77A variant did not support a direct and key role for this residue in catalysis (Table 4). 

When testing the L-cys inhibitory effect on djenkolic acid β-elimination by TgCGL S77E, we 

found a IC50 value of 0.55 ± 0.09 mM (Figure 35A). Moreover, a Kapp of 797 µM for TgCGL 

S77E-L-cys complex formation was determined from spectral analyses (Kapp of 677 ± 180 µM 

at 335 nm, Kapp of 874 ± 87 µM at 421 nm) (Figure 35B). 

 
Figure 35. Inhibition profiles of TgCGL S77E variant by L-cys. (A) Representative curve for IC50 
determination. The enzymatic activity of TgCGL S77E variant was related to the activity in the 
absence of inhibitor (100%). The in vitro inhibition of enzyme by L-cys was performed in the 
presence of djenkolic acid substrate via LDH assay. (B) Absorbance changes at 335 (solid circle) 
and 421 nm (open square) plotted against L-cys concentration. 
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Due to the presence of Tyr71, which is missing in human CGL, in the modelled S77E mutant 

the side-chain of Glu77 is unable to occupy the same position of the homologous Glu59 of 

human CGL, since this would cause a steric clash with Tyr71 (Figure 36). Instead, the side-

chain of Glu77 is forced to occupy the same cleft of L-cth, possibly interfering with its 

binding. The overall effect of the S77E mutation could affect also the stability of the 

quaternary structure of the enzyme, since this residue is placed on a loop making close 

contacts with two other monomers of TgCGL (Figure 36, inset window). 

 

 
 
Figure 36. Modelling of the external aldimine of wild-type (A) and the S77E mutant (B) of 
TgCGL in complex with L-cystathionine. The external aldimines are shown as pink sticks. 
Residues described in text are labelled in single-letter code. Potential favourable and unfavourable 
interactions are depicted as yellow (A) and red (B) dashes, respectively. The position of the loop 
hosting E77 relatively to the other chains (A=yellow; B=pink; C=cyan; D=blue) of the quaternary 
structure is shown in the inset of panel (B). 

  



84 

The effect of mutation on structure stability of TgCGL was probed by analyzing the thermal 

stability of the protein both in apo- and holo-state by DSC. The holo-S77E variant showed a 

Tm value of about 66°C at pH 8.0, therefore indicating that the single amino acid substitution 

is associated with a 5 °C decrease in the protein thermal stability (Figure 37A). In contrast, 

the thermogram of apo-S77E variant displayed a profile identical to that of apo-wt protein 

with Tm value of about 55 °C (data not shown). Moreover, we evaluated the quaternary 

structure stability of wt and S77E enzyme variants by chemical denaturation with urea. The 

loss of TgCGL quaternary structure was measured by monitoring changes in protein size on a 

gel filtration column as a function of changes in the concentration of urea. Figure 37B shows 

representative unfolding curves for the wt and S77E isoforms in urea. The data were fitted by 

sigmoidal dose-response curves with variable slope. The midpoint transition values (Cm) 

between tetramer/nontetramer were 2.9 ± 0.1 M and 2.4 ± 0.2 M for the wt and S77E variants, 

respectively. 

 
Figure 37. Effect of S77E mutation on thermal stability and quaternary structure of TgCGL. (A) 
Representative DSC thermograms of holo-S77E (solid line) and holo-wt (dashed line), 
respectively after baseline-correction. (B) Plot of percent tetrameric (% T) TgCGL wt (open 
square) and S77E (solid circle) as a function of the urea concentration. Inset: chromatograms of  
wt (solid line) and S77E (dotted line) TgCGL at 2.5 M urea.  
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4. DISCUSSION 

 

The present work shows that T. gondii possesses a functional CGL which specifically 

catalyzes the cleavage at the CγS bond of L-cth, producing L-cys, α-ketobutyrate and 

ammonia. This finding likely implies that the reverse transsulfuration pathway is operative in 

the parasite. Furthermore, TgCGL was shown to convert L-cys orders of magnitudes more 

slowly than the natural substrate L-cth. Cysteine is an inhibitor of TgCGL, which likely 

suggests that, at a physiological cysteine:cystathionine ratio, the parasitic enzyme might be 

inhibited. This would permit tight regulation of cysteine intracellular levels, preventing its 

intracellular accumulation. 

The enzymes of the γ-subfamily of fold-type I, especially CGS, CBL and CGL, represent and 

ideal model for the investigation of the structure-function relationship in terms of substrate 

and reaction specificity [109]. Some residues that are proposed to participate in substrate 

binding and catalysis are well conserved among these enzymes, even though these enzymes 

catalyze mechanistically distinct reactions. 

Due to the high degree of similarity between TgCGL and human CGL (e.g. 40% sequence 

identity) it constitutes a tremendous task to design inhibitors that can distinguish between the 

nearly superimposable active sites of CGL. However, by structure-guided homology 

modelling and mutational analysis, we identified the residues Asn360 and Ser77 of TgCGL as 

important for the reaction and substrate specificity of the parasitic enzyme. 

Mutation N360 to the corresponding residue in human (Ser) was found to influence the 

reaction preference of the parasitic enzyme, such that the N360S mutant harbors a significant 

L-cth β-lyase activity. It is an intriguing question what determines the reaction specificity for 

the catalysis of α,γ- versus α,β-elimination of the same substrate L-cth. 

It is known that both CBL and CGL catalyze the hydrolysis of L-cth, but split the substrate at 

β- and γ- positions, producing homocysteine and cysteine, respectively. The pseudo-

symmetric L-cth substrate, containing the equivalent of two Cα atoms, binds in opposite 

orientations in the active sites of CBL and CGL to allow β- versus γ-elimination [87]. 

Messerschmidt et al [95] suggested that the orientation of the L-cth in yCGL is partially due 

to its sulfur atom. Indeed, as demonstrated by our molecular modelling analysis, the 

substituted Ser allows a better accommodation of L-cth for the β-cleavage than wt, in which 

the Asn residue create steric obstruction. 

Furthermore, Messerschmidt et al [95, 110] predicted that the reaction specificity of the 

enzyme for the α,γ- elimination versus α,β- elimination would depend on a pair of residues 
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located in the substrate entrance region. These residues are very conserved among CGLs and 

corresponds to a pair of glutamate residues (E48-E333 in yeast CGL and E59-E339 in human 

CGL). CBL enzymes generally possess aromatic residues in those positions, that lead to more 

hydrophobicity in the active site. Replacement of C-term Glu in yeast and human CGL 

indicated that this residue plays a unique role in the reaction specificity. In particular, the 

replacement of Glu333 in yeast CGL indicated that this residue interacts with distal amino 

moiety of L-cth and plays a unique role in the substrate binding [104]. Moreover, in human 

CGL, substitution of Glu339 with a hydrophobic residue increased the α,β elimination 

reaction toward L-cys [111]. On the other hand, mutational analysis of Glu48 in yeast CGL 

suggested a role into active site architecture or substrate positioning, therefore subtly and not 

directly influencing reaction specificity. Replacement of the corresponding D45 of CGS from 

E.coli with alanine or asparagine also results in only 2–9-fold changes in kinetic parameters, 

but enables a minor transamination activity, suggesting a subtle role into active site 

architecture or substrate positioning [112]. Notably, the mutation S77E in TgCGL completely 

abolished the activity toward L-cth, probably due to a complete rearrangement of the active 

site that prevents the binding of L-cth. However, the analysis on S77A mutant showed that 

this is not a catalytic residue. Molecular modelling results demonstrated that the presence of 

Tyr71, which has no homolog in human CGL, forces the Glu77 of the S77E variant to occupy 

the same cleft of L-cth This finding reinforces the importance of the structural contest of 

parasitic and human enzymes in defining the architecture of the active sites. Moreover, the 

mutation has a significant impact on the structural stability of TgCGL, as demonstrated by 

DSC and SEC analysis, according to the fact that this residue is placed on a loop in close 

contact with two other monomers. 

These results provide support for the theory, proposed by Clausen [113], that the 

conformation and orientation of substrate(s) within the active site as well as the degree of 

freedom of rotation about the Cα–Cβ bond of the substrate covalently bound to the cofactor 

are determinants of reaction specificity among the enzymes of the γ-subfamily. 

Moreover, despite the high similarity of CGL enzymes among different organisms, there are 

subtle differences in active site architecture which have important implications for enzyme 

functionality. We must await data on the three-dimensional structure of TgCGL for a 

thorough interpretation of these differences.. 
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 General conclusions 
 

In this work we investigated the possible use of TgOAT and TgCGL as anti-toxoplasmosis 

drug targets and we contributed to gain knowledge about two metabolic pathways that are still 

poorly explored in T. gondii. However, our in vitro and in silico analysis could be considered 

only a first step toward the structure-based selective drug design development. First of all, the 

respective PLP-dependent host enzymes as well as the likely broad specificity of target 

inhibition have to be taken into account. In this regard, the effect of known inhibitors has to 

be investigated in order to provide new insights into the inhibition mechanism of the enzyme. 

Moreover, a virtual screening approach will lead to the rational design of more selective 

inhibitors that, subsequently, can be chemically synthesized and in vitro tested. Finally, future 

in vivo studies will be necessary to examine in depth the effective roles of these enzymes in 

the parasitic cell processes and infection. 
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 Appendix 
 

Figure A1 

Figure A1. GOX-coupled assay calibration curve. The straight line obtained is y = -0.0874 + 
0.00588x, in presence of L-glutamate, ranging from 10 to 500 µM, α-KG 5 mM, PLP 0.05 mM and 
phosphoric acid 14 mM. 

 

Figure A2 

Figure A2. Michaelis – Menten profiles of TgOAT. Representative curve of TgOAT activity 
towards L-orn (A) and GABA (B) in the presence of 5 mM α-KG, 50 µM PLP in 50 mM Hepes pH 
8 at 37 °C. 

  

A B 



89 

Figure A3 

Figure A3. Michaelis – Menten profiles of TgCGL wt. Representative curve of TgCGL activity 
towards L-cth (A) and djencolic acid (B) at 37°C in 50 MBP buffer pH 9 in the presence of 20 µM 
PLP. 

 

Figure A4 

Figure A4. Inhibitory effect of L-cys on TgCGL activity. The initial velocity of enzymatic 
reaction was measured as a function of djencolic acid concentration at 0 (○), 100 (◄), 300 (□) and 
500 (♦) µM of L-cys. 
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