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Abstract

Recent work on Conditional Simple Temporal Networks (CSTNs) has introduced
the problem of checking the dynamic consistency (DC) property for the case
where the reaction of an execution strategy to observations is bounded below
by some fixed ε > 0. This paper shows how the ε-DC-checking problem can
be easily reduced to the standard DC-checking problem for CSTNs. Given any
CSTN S with k observation time-points, the paper defines a new CSTN S0 that
is the same as S, except that it includes k new observation time-points. For each
observation time-point P ? in S that observes some proposition p, the time-point
P? in S0 is demoted from an observation time-point to an ordinary time-point;
and the job of observing p is taken over by a new observation time-point P0?
that is constrained to occur exactly ε after P?. The paper proves that S is
ε-DC if and only if S0 is DC; and shows that the application of the ε-DC-
checking constraint-propagation rules to S is equivalent to the application of the
corresponding DC-checking constraint-propagation rules to S0. Two versions
of these results are presented, depending on whether a dynamic strategy for S0
can react instantaneously or only after some arbitrarily small, positive delay.
Finally, the paper demonstrates empirically that the performance of building S0
and DC-checking it is even better than ε-DC-checking the original instance S.



1 Overview

A Conditional Simple Temporal Network (CSTN) is a data structure for reasoning
about time in domains where some constraints may apply only in certain scenarios.
For example, a patient who tests positive for a certain disease may need to receive
care more urgently than someone who tests negative. Conditions in a CSTN are
represented by propositional letters whose truth values are not controlled, but
instead observed in real time. Just as doing a blood test generates a positive or
negative result that is only learned in real time, the execution of an observation
time-point in a CSTN generates a truth value for its corresponding propositional
letter. An execution strategy for a CSTN specifies when the time-points will be
executed. A strategy can be dynamic in that its decisions can react to information
from past observations. A CSTN is said to be dynamically consistent (DC) if
it admits a dynamic strategy that guarantees the satisfaction of all relevant
constraints no matter which outcomes are observed during execution.

Different varieties of the DC property have been defined that differ in how
reactive a dynamic strategy can be. Originally, Tsamardinos et al. [1] stipulated
that a strategy can react to an observation after any arbitrarily small, but positive
delay. Comin et al. [2] defined ε-DC, which assumes that a strategy’s reaction
time is bounded below by some ε > 0. Finally, Cairo et al. [3] defined π-DC,
which allows a strategy to react instantaneously (i.e., after zero delay). To avoid
an undesirable form of circular dependence among simultaneous observations, a
π-dynamic strategy must specify an order-of-dependence among simultaneous
observations.

Although several approaches to DC-checking algorithms have been presented
to address the different flavors of DC [1, 4, 5, 2], the approach based on the
propagation of labeled constraints is the only one that has been demonstrated to
be practical [6, 7]. By making slight changes to the constraint-propagation rules,
different versions of that algorithm have been used to solve the DC-checking,
ε-DC-checking, and π-DC-checking problems.

This paper shows how the ε-DC-checking problem can be easily reduced
to the standard DC-checking problem for CSTNs. Given any instance of the
ε-DC-checking problem for some CSTN S that has k observation time-points,
the reduction to the DC-checking problem is obtained by creating a new CSTN
S0 that is the same as S except that it includes k new observation time-points.
In particular, for each observation time-point P? in S that is associated with a
propositional letter p, the time-point P? in S0 is demoted from an observation
time-point to an ordinary time-point; and the job of observing p is taken over by
a new observation time-point P0? that is constrained to occur exactly ε after P ?.
The paper proves that S is ε-DC if and only if S0 is DC; and shows that the
application of the ε-DC-checking constraint-propagation rules to S is equivalent
to the application of the corresponding DC-checking constraint-propagation rules
to S0. Two versions of these results are presented. In the first version, the
reaction times ρ of an ε-dynamic strategy for S must satisfy ρ > ε > 0, and
the corresponding reaction times ρ0 for a dynamic strategy for S0 must satisfy
ρ0 > 0. In the second version, the reaction times of an ε-dynamic strategy for S
need only satisfy ρ ≥ ε > 0, while the corresponding π-dynamic strategy for S0
can react instantaneously to observations (i.e., ρ0 ≥ 0). The paper also offers
an empirically comparison of the performance of building S0 and DC-checking
it with respect to the performance of ε-DC-checking the original instance S
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Figure 1: A sample CSTN

demostrating a practical equivalent performance on instances coming from the
business application domain.

2 Background

Dechter et al. [8] introduced Simple Temporal Networks (STNs) to facilitate
representing and reasoning about temporal constraints. An STN comprises
real-valued variables, called time-points, and binary difference constraints on
those variables. Typically, an STN includes a special time-point, Z, whose value
is fixed at zero. A consistent STN is one that has a solution as a constraint
satisfaction problem.

Tsamardinos et al. [1] presented CSTNs, which augment STNs to include
observation time-points and their associated propositional letters. In a CSTN,
the execution of an observation time-point P? generates a truth value for its
associated propositional letter p. In addition, each time-point in a CSTN can
be labeled by a conjunction of propositional literals that specifies the scenarios
in which that time-point must be executed. Tsamardinos et al. noted that for
any reasonable CSTN, the propositional labels on its time-points must satisfy
certain properties. Hunsberger et al. [9, 10] later extended these properties to
accommodate labels on constraints. Together, their properties formalized the
notion of a well-defined CSTN. Recently, Cairo et al. [11] showed that for any
well-defined CSTN, no loss of generality results from subsequently removing the
labels from its time-points. Therefore, this paper restricts attention to CSTNs
whose time-points do not have any propositional labels, what Cairo et al. [11]
called streamlined CSTNs. Since streamlined CSTNs are necessarily well defined,
and the applicability conditions of the constraint-propagation rules become
simpler when there are no labels on time-points, the following presentation
benefits dramatically from the restriction to streamlined CSTNs.

Fig. 1 shows a sample CSTN in its graphical form, where the nodes represent
time-points, and the directed edges represent binary difference constraints. In
the figure, Z is fixed at 0; and P? and Q? are observation time-points whose
execution generates truth values for p and q, respectively. The edge from U to
Q? being labeled by p¬q indicates that it applies only in scenarios where p is
true and q is false. The dashed edges with shaded labels are generated by the
DC-checking algorithm [6], to be discussed later on.

2.1 Streamlined CSTNs

The following definitions are from Hunsberger et al. [6], except that propositional
labels appear only on constraints. Henceforth, the term CSTN shall refer to
streamlined CSTNs.
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Definition 1 (Labels). Given a set P of propositional letters:

• a label is a (possibly empty) conjunction of (positive or negative) literals
from P. The empty label is notated �.

• for any label `, and any p ∈ P, if ` |= p or ` |= ¬p, then we say that p
appears in `.

• for any labels `1 and `2, if `1 |= `2 then `1 is said to entail `2. If `1 ∧ `2 is
satisfiable, `1 and `2 are called consistent.

• the label universe of P, denoted by P∗, is the set of all consistent labels
whose literals are drawn from P.

Definition 2 (CSTN). A Conditional Simple Temporal Network (CSTN) is a
tuple, 〈T ,P, C,OT ,O〉, where:

• T is a finite set of real-valued time-points (i.e., variables);

• P is a finite set of propositional letters (or propositions);

• C is a set of labeled constraints, each having the form, (Y − X ≤ δ, `),
where X,Y ∈ T , δ ∈ R, and ` ∈ P∗;

• OT ⊆ T is a set of observation time-points (OTPs); and

• O : P → OT is a bijection that associates a unique observation time-point
to each propositional letter.

In a CSTN graph, O(p) (i.e., the observation time-point associated with p) may
be denoted by P ?; and each labeled constraint, (Y −X ≤ δ, `), is represented by
an arrow from X to Y annotated by the labeled value, 〈δ, `〉. Since any time-points
X and Y may participate in multiple constraints of the form, (Y −X ≤ δi, `i),
the corresponding edge from X to Y may have multiple labeled values of the
form, 〈δi, `i〉.
Definition 3 (Scenario). A scenario over a set P of propositional letters is a
function, s : P → {true, false}, that assigns a truth value to each letter in P.
Any such function also provides the truth value for any label ` ∈ P∗, denoted by
s(`). The set of all scenarios over P is denoted by I.

Definition 4 (Schedule). A schedule for a set of time-points T is a mapping,
ψ : T → R. The set of all schedules over T is denoted by Ψ.

The projection of a CSTN onto a scenario, s, is the STN obtained by restricting
attention to the constraints whose labels are true under s (i.e., must be satisfied
in scenario s).

Definition 5 (Projection). Let S = 〈T ,P, C,OT ,O〉 be any CSTN, and s any
scenario over P . The projection of S onto s—notated S(s)—is the STN, (T , C+s ),
where:

C+s = {(Y − X ≤ δ) | for some `, (Y − X ≤ δ, `) ∈ Cand s(`) = true}

Definition 6 (Execution Strategy). An execution strategy for a CSTN S =
〈T ,P, C,OT ,O〉 is a mapping, σ : I → Ψ, from scenarios to schedules. The
execution time for the time-point X in the schedule σ(s) is denoted by [σ(s)]X .

Definition 7 (Viable Strategy). An execution strategy σ for a CSTN S is viable
if for each scenario s, the schedule σ(s) is a solution to the projection S(s).
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Figure 2: The reduction S0 corresponding to S from Fig. 1

3 CSTN Reduction

This paper presents two related sets of results. Each set of results involves
reducing a form of ε-DC checking to a form of standard DC checking (one of which
involves instantaneous reaction). In each case, a given CSTN S is transformed
(or reduced) to a related CSTN S0 such that the form of ε-DC checking for S is
equivalent to the corresponding form of standard DC checking for S0. Although
there are two different versions of this result, the translation/reduction from S
to S0 is the same. And, since it is a very basic translation, it is presented first.

Definition 8 (Reduction CSTN, S0). Let S be any CSTN and ε > 0 arbitrary.
The reduction of S is the CSTN S0 that is the same as S except that for each
observation time-point P? in S, and its associated propositional letter p:

• P? is demoted from an observation time-point in S to an ordinary time-
point in S0;

• S0 contains a new observation time-point P0? that is associated with the
letter p in S0; and

• the constraint, (P0? = P? + ε,�), is contained in S0.1

Fig. 2 shows the reduction S0 that corresponds to the CSTN S from Fig. 1.
Note that in any given instance, the value of ε will be fixed, and known (e.g.,
ε = 3).

4 Dynamic Strategies and Dynamic Consistency

The truth values of propositions in a CSTN are not known in advance, but a
dynamic execution strategy can react to observations in real time. This paper
addresses the following four flavors of dynamic strategy that differ in how reactive
the strategy can be, ordered from most reactive to least reactive.

Type Reaction Time, ρ

π-dynamic ρ ≥ 0
dynamic ρ > 0
ε-dynamic ρ ≥ ε > 0
ε̂-dynamic ρ > ε > 0

1The constraint, P0? = P? + ε, abbreviates the pair of constraints, P0? − P? ≤ ε and
P?− P0? ≤ −ε.
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A π-dynamic strategy can react instantaneously to observations, but must specify
an order of dependence among simultaneous observations [3]. The reaction
times for a (standard) dynamic strategy can be arbitrarily small, but must be
positive [1]. The reaction times for an ε-dynamic strategy must be greater than
or equal to some fixed ε > 0 [2]. The reaction times for an ε̂-dynamic strategy
must be greater than some fixed ε > 0. Since a CSTN is DC if and only if it
has a viable and dynamic execution strategy, each distinct version of dynamic
strategy gives rise to a distinct version of dynamic consistency: DC, π-DC, ε-DC,
and ε̂-DC, respectively.

The paper will show that the ε̂-DC-checking problem can be reduced to DC
checking; and the ε-DC-checking problem can be reduced to π-DC checking.

5 Reducing ε̂-DC Checking to DC Checking

The following sections recall the relevant definitions for DC and ε̂-DC.

5.1 (Standard) Dynamic Strategies and (Standard) DC

(Standard) dynamic strategies were first defined by Tsamardinos et al. [1]. For
convenience, the following definitions are in the form given by Hunsberger et
al. [6]. A history at time t comprises the truth values of all propositions that
were observed before time t.

Definition 9 (History). Let S = 〈T ,P, C,OT ,O〉 be any CSTN, s any scenario,
σ any execution strategy for S, and t any real number. The history of t in the
scenario s, for the strategy σ—notated Hist(t, s, σ)—is the set of observations
made before time t according to the schedule σ(s):

Hist(t, s, σ) = {(p, s(p)) | P? ∈ OT and [σ(s)]P? < t}

Definition 10 (Dynamic Strategy). An execution strategy σ for a CSTN
S = 〈T ,P, C,OT ,O〉 is called dynamic if for any scenarios s1 and s2, and any
time-point X:

let: t = [σ(s1)]X
if: Hist(t, s1, σ) = Hist(t, s2, σ)
then: [σ(s2)]X = t.

In other words, if a (standard) dynamic strategy σ executes X at time t in
scenario s1, and the schedules σ(s1) and σ(s2) have the same history of past
observations, then σ must also execute X at time t in s2. That is, execution
decisions can only depend on past observations, even if arbitrarily recent.

5.2 ε̂-Dynamic Strategies and ε̂-DC

ε̂-dynamic consistency has not been presented in the literature. It differs only
slightly from ε-DC, defined later on.

Definition 11 (ε̂-History). Let S = 〈T ,P, C,OT ,O〉 be any CSTN, s any
scenario, σ any execution strategy for S, t any real number, and ε > 0. The
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ε̂-history of t in the scenario s, for the strategy σ, notated ε̂Hist(t, s, σ), is the
set of observations made before t− ε according to σ(s):

ε̂Hist(t, s, σ) = {(p, s(p)) | P? ∈ OT and [σ(s)]P? < t− ε}

Definition 12 (ε̂-Dynamic Execution Strategy ). Let ε > 0. An execution
strategy σ is called ε̂-dynamic if for any scenarios s1 and s2, and any time-point
X:

let: t = [σ(s1)]X
if: ε̂Hist(t, s1, σ) = ε̂Hist(t, s2, σ)
then: [σ(s2)]X = t.

Definition 13 (ε̂-DC). Let ε > 0. A CSTN is ε̂-dynamically consistent if it has
a viable and ε̂-dynamic execution strategy.

Theorem 1. Let S = 〈T ,P, C,OT ,O〉 be any CSTN; let ε > 0 be arbitrary;
and let S0 = 〈T0,P, C0,OT 0,O0〉 be the reduction of S. Then S is ε̂-DC if and
only if S0 is DC.

Proof. (⇒). Suppose that S is ε̂-DC. Then there exists an ε̂-dynamic and viable
strategy σ for S. Define a strategy σ0 for the reduction S0, as follows. For any
scenario s:

For each X ∈ T : let [σ0(s)]X = [σ(s)]X .
For each P0? ∈ OT 0: let [σ0(s)]P0? = [σ(s)]P? + ε.

Clearly, σ0 is viable for S0. Suppose that it is not dynamic. Then for some
scenarios s1 and s2, and time-point X ∈ T0, Hist(t, s1, σ0) = Hist(t, s2, σ0), but
[σ0(s2)]X 6= t, where t = [σ0(s1)]X . With no loss of generality, assume that t is
minimal for this circumstance. Next:

• ε̂Hist(t, s2, σ)
= {(p, s2(p)) | P? ∈ OT and [σ(s2)]P? < t− ε}
= {(p, s2(p)) | P0? ∈ OT 0 and [σ0(s2)]P0? < t}
= Hist(t, s2, σ0)
= Hist(t, s1, σ0)
= {(p, s1(p)) | P0? ∈ OT 0 and [σ0(s1)]P0? < t}
= {(p, s1(p)) | P? ∈ OT and [σ(s1)]P? < t− ε}
= ε̂Hist(t, s1, σ). (†)

Now, if X ∈ T , then [σ(s1)]X = [σ0(s1)]X = t, but [σ(s2)]X = [σ0(s2)]X 6= t,
which, given that the relevant ε̂-histories are equal, contradicts that σ is ε̂-
dynamic. Therefore, X 6∈ T ; thus, X must be some R0? ∈ OT 0, where
[σ(s1)]R? = [σ0(s1)]R0? − ε = t − ε 6= [σ0(s2)]R0? − ε = [σ(s2)]R?. Thus, the
schedules σ(s1) and σ(s2) are different. Consider those schedules, each annotated
with the relevant observations as they occur. Let t∗ ≤ t− ε be the earliest time
at which the annotated schedules differ. There are two ways they can differ at
t∗.

Case 1: Both schedules execute some observation time-point Q? at t∗, but
with different results (i.e., s1(q) 6= s2(q)). If t∗ < t− ε, it would contradict that
ε̂Hist(t, s1, σ) = ε̂Hist(t, s2, σ). Therefore, t∗ = t− ε.

Now, the definition of t∗ ensures that ε̂Hist(t∗, s1, σ) = ε̂Hist(t∗, s2, σ). But
then [σ(s1)]R? 6= [σ(s2)]R?, shown earlier, contradicts that σ is ε̂-dynamic.
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Case 2: One of the schedules executes some time-point Y at t∗ while the
other schedule executes Y at some later time: [σ(si)]Y = t∗ < [σ(sj)]Y , where
{si, sj} = {s1, s2}. But this, together with ε̂Hist(t∗, s1, σ) = ε̂Hist(t∗, s2, σ),
contradicts that σ is ε̂-dynamic.

(⇐). Suppose that S0 is DC. Then there exists a viable and dynamic strategy
σ0 for S0. Let σ be the strategy for S such that for each scenario s, and each
time-point X ∈ T , [σ(s)]X = [σ0(s)]X . Clearly, σ is viable for S. Suppose that it
is not ε̂-dynamic. Then for some scenarios s1 and s2, and some time-point X ∈ T ,
ε̂Hist(t, s1, σ) = ε̂Hist(t, s2, σ), where t = [σ(s1)]X , but [σ(s2)]X 6= t. Arguing
similarly to (†) above, it follows that Hist(t, s1, σ0) = Hist(t, s2, σ0). And since
X ∈ T , [σ0(s1)]X = [σ(s1)]X = t 6= [σ(s2)]X = [σ0(s2)]X , contradicting that σ0
is dynamic.

6 Reducing ε-DC Checking to π-DC Checking

This section uses the same reduction of S to S0 to reduce the problem of ε-DC
checking to that of π-DC checking.

6.1 ε-Dynamic Execution Strategy and ε-DC

The semantics for ε-DC is the same as that for ε̂-DC, except that an ε-History
records the observations at or before time t− ε, instead of strictly before t− ε.

Definition 14 (ε-History). Let S = 〈T ,P, C,OT ,O〉 be any CSTN, s any
scenario, σ any execution strategy for S, t any real number, and ε > 0. The
ε-history of t in the scenario s, for the strategy σ, notated εHist(t, s, σ), is the
set of observations made at or before t− ε according to σ(s):

εHist(t, s, σ) = {(p, s(p)) | P? ∈ OT & [σ(s)]P? ≤ t− ε}

Definition 15 (ε-Dynamic Execution Strategy). Let ε > 0. An execution
strategy σ called ε-dynamic if for any scenarios s1 and s2, and any time-point
X:

let: t = [σ(s1)]X
if: εHist(t, s1, σ) = εHist(t, s2, σ)
then: [σ(s2)]X = t.

Definition 16 (ε-DC). Let ε > 0. A CSTN is ε-dynamically consistent if it has
a viable and ε-dynamic execution strategy.

6.2 π-Dynamic Execution Strategy and π-DC

This section summarizes the π-DC semantics introduced by Cairo et al. [3] that
allows a dynamic strategy to react instantaneously to observations, but requires
an order of dependence among simultaneous observations.

Definition 17 (Order of dependence). For any scenario s, let (P1?, . . . , Pk?)
be an arbitrarily chosen ordering of the observation time-points in OT , where
k = |OT |. An order of dependence for the time-points in OT is any permutation
π over (1, 2, . . . , k); and for each P? ∈ OT , π(P?) ∈ {1, 2, ..., k} denotes the
(integer) position of P? in the order determined by π. In addition, it is convenient
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to set π(X) =∞ for any non-observation time-point X. Finally, let Πk denote
the set of all permutations over (1, 2, . . . , k).

Definition 18 (π-Execution Strategy). Given any CSTN S = 〈T ,P, C,OT ,O〉,
a π-execution strategy for S is a mapping, σ : I → (Ψ×Πk), where k = |OT |,
such that for each scenario s, σ(s) is a pair (ψ, π) such that ψ : T → R is a
schedule for the time-points in T ; and π ∈ Πk is a permutation that determines
an order of dependence among the time-points in OT . For convenience, for any
time-point X, [σ(s)]X shall denote the execution time of X (i.e., ψ(X)); for
any observation time-point P?, [σ(s)]πP? shall denote the position of P? in the
order of dependence (i.e., π(P?)); and for any non-observation time-point X,
[σ(s)]πX =∞. Finally, a π-dynamic strategy must be coherent: for any scenario
s, and any P?, Q? ∈ OT , [σ(s)]P? < [σ(s)]Q? implies [σ(s)]πP? < [σ(s)]πQ? (i.e.,
if σ(s) schedules P? before Q?, then σ(s) orders P? before Q?).

Definition 19 (Viability). The π-execution strategy σ = (ψ, π) is called viable
for the CSTN S if for each scenario s, the schedule ψ(s) is a solution to the
projection S(s).

Definition 20 (π-History). Let σ be any π-execution strategy for some CSTN
S = 〈T ,P, C,OT ,O〉, s any scenario, t any real number, and d ∈ {1, 2, . . . , |OT |}∪
{∞} any integer position (or infinity). The π-history of (t, d) for the scenario s
and strategy σ—denoted by πHist(t, d, s, σ)—is the set

{(p, s(p)) | P? ∈ OT , [σ(s)]P? ≤ t and π(P?) < d}.

Thus, the π-history specifies the truth values of each proposition p that is
observed before time t in the schedule ψ, or observed at time t if its corresponding
observation time-point P? is ordered before position d by the permutation π.

The following definition of a π-dynamic strategy is equivalent to that given
by Cairo et al. [3, 12].

Definition 21 (π-Dynamic Strategy). A π-execution strategy, σ, for a CSTNU
is called π-dynamic if for every pair of scenarios, s1 and s2, and every time-point
X ∈ T :

let: t = [σ(s1)]X , and d = [σ(s1)]πX .
if: πHist(t, d, s1, σ) = πHist(t, d, s2, σ)
then: [σ(s2)]X = t and [σ(s2)]πX = d.

Thus, if X is some observation time-point P ? that, in the scenario s1, σ executes
at time t and position d, and the histories, πHist(t, d, s1, σ) and πHist(t, d, s2, σ),
are the same, then in the scenario s2, σ must execute P? at the same time t,
and in the same position d. The requirement for a non-observation time-point
X is weaker because executing X at time t does not generate any information;
therefore, it can be presumed to be ordered after any observation time-points
that are executed at that same time.

Definition 22 (π-Dynamic Consistency). A CSTNU, S, is π-dynamically con-
sistent (π-DC) if there exists a π-execution strategy for S that is both viable
and π-dynamic.

Theorem 2. Let S = 〈T ,P, C,OT ,O〉 be any CSTN; let ε > 0 be arbitrary;
and let S0 = 〈T0, C0,OT 0,O0,P〉 be the reduction of S. Then S is ε-DC if and
only if S0 is π-DC.
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Proof. (⇒). Suppose that S is ε-DC. Then there exists an ε-dynamic and
viable strategy σ for S. Define a strategy σ0 for S0 exactly as in the proof
of Theorem 1. Clearly, σ0 is viable for S0. Suppose that it is not π-dynamic.
Then for some scenarios s1 and s2, and time-point X ∈ T0, πHist(t, d, s1, σ0) =
πHist(t, d, s2, σ0), but [σ0(s2)]X 6= t, where t = [σ0(s1)]X and d = [σ0(s1)]πX .
With no loss of generality, assume that t is minimal for this circumstance and
that, for that t, d is minimal.

Case 1: X ∈ T (i.e., X 6∈ OT 0). Hence, d =∞ and:

• εHist(t, s2, σ)
= {(p, s2(p)) | P? ∈ OT and [σ(s2)]P? ≤ t− ε}
= {(p, s2(p)) | P0? ∈ OT 0 and [σ0(s2)]P0? ≤ t}
= πHist(t,∞, s2, σ0) = πHist(t, d, s2, σ0)
= πHist(t, d, s1, σ0) = πHist(t,∞, s1, σ0)
= {(p, s1(p)) | P0? ∈ OT 0 and [σ0(s1)]P0? ≤ t}
= {(p, s1(p)) | P? ∈ OT and [σ(s1)]P? ≤ t− ε}
= εHist(t, s1, σ).

But then [σ(s2)]X = [σ0(s2)]X 6= [σ0(s1)]X = [σ(s1)]X contradicts that σ is
ε-dynamic.

Case 2: X is some R0? ∈ OT 0. Now [σ(s2)]R? = [σ0(s2)]R0? − ε 6= t− ε =
[σ0(s1)]R0? − ε = [σ(s1)]R?. Thus, the schedules for σ(s1) and σ(s2) differ at
t − ε. Let t∗ ≤ t − ε be the first time at which these schedules, annotated by
their observations, differ. There are two possibilities.

Case 2a: Both execute Q? at t∗, but s1(q) 6= s2(q). But then σ0(s1) and
σ0(s2) both execute Q0? at t∗ + ε with different results. Now, if t∗ < t− ε, then
t∗ + ε < t, which would contradict that πHist(t, d, s1, σ0) = πHist(t, d, s2, σ0).
Thus, t∗ = t. But, by construction, εHist(t∗, s1, σ) = εHist(t∗, s2, σ) which,
given that [σ(s1)]R? 6= [σ(s2)]R?, contradicts that σ is ε-dynamic.

Case 2b: One of the schedules executes some time-point Y at t∗, while
the other schedule executes Y at some later time: [σ(si)]Y = t∗ < [σ(sj)]Y ,
where {si, sj} = {s1, s2}. But, given that εHist(t∗, s1, σ) = εHist(t∗, s2, σ), this
contradicts that σ is ε-dynamic.

(⇐). Suppose S0 is π-DC. Then there is a strategy σ0 that is π-dynamic
and valid for S0. For each scenario s and X ∈ T , let [σ(s)]X = [σ0(s)]X .
Clearly, σ is valid for S. Suppose it is not ε-DC. Then for some scenarios s1
and s2, and some X ∈ T , εHist(t, s1, σ) = εHist(t, s2, σ), but [σ(s2)]X 6= t,
where t = [σ(s1)]X . Since X ∈ T , d = [σ(s1)]πX = ∞ and, as shown ear-
lier, πHist(t,∞, s1, σ0) = εHist(t, s1, σ) and πHist(t,∞, s2, σ0) = εHist(t, s2, σ).
Then [σ0(s2)]X = [σ(s2)]X 6= t contradicts that σ0 is π-dynamic.

7 The IR-DC- and ε-DC-Checking Algorithms

This section summarizes two versions of the constraint-propagation algorithm due
to Hunsberger et al. [6]. The first version, called the IR-DC-checking algorithm
(IR for instantaneous reaction), solves the π-DC-checking problem; the second,
called the ε-DC-checking algorithm, solves the ε-DC-checking problem. Both
work using only three constraint-propagation rules: The original algorithm used
six rules, but in [12] authors showed that three rules are sufficient.

9



LP(X,u, α,W, v, β): X W Z
〈u, α〉 〈v, β〉

〈u+ v, αβ〉

qR0(P?, w, α, p̃): P? Z
〈w,αp̃〉
〈w,α〉

qR∗3(P?, w, α, v, β, p̃, Y ): P? Z Y
〈w,α〉 〈v, βp̃〉

〈m,α ? β〉

X,Y,W ∈ T ; P? ∈ OT ; and Z is the zero time-point. LP
applies if αβ ∈ P∗; qR0 and qR∗

3 apply only if w < 0. In qR0
and qR∗

3, p̃ ∈ {p,¬p, ?p}; p does not appear in α or β (in any
form); α ? β is defined in the text; and m = max{v, w}.

LP(X, 3, pqr,W, 4, rs¬t): X W Z
〈3, pqr〉 〈4, rs¬t〉

〈7, pqrs¬t〉

qR0(P?,−9, qr, ?p): P? Z
〈−9, (?p)qr〉
〈−9, qr〉

qR∗3(P?,−7,¬q¬r,−9, ?q,¬p, Y ): P? Z Y
〈−7,¬q¬r〉 〈−9,¬p(?q)〉

〈−7, (?q)¬r〉

Table 1: Constraint propagation rules for IR-DC Checking (above) and instances
of their application (below)

This section then proves that applying the rules for the ε-DC-checking
algorithm to the CSTN S is equivalent to applying the rules for the IR-DC-
checking algorithm to the corresponding reduced CSTN S0.

7.1 The IR-DC-Checking Algorithm

Table 1 lists the three constraint propagation rules used by the IR-DC-checking
algorithm. Note that the qR∗3 rule can generate a new kind of propositional label,
called a q-label; and the qR0 and qR∗3 rules can each be applied to q-labeled
edges. Below, q-literals and q-labels are summarized, along with the ? operator
that extends conjunction to q-labels.

Whereas a constraint labeled by p must hold in all scenarios in which p is
true, a constraint labeled by the q-literal ?p need only hold as long as the truth
value of p is unknown (i.e., as long as P? has not been executed).

Definition 23 (Q-literals, q-labels).

• A q-literal is a literal of the form ?p, where p ∈ P.

• For convenience, if p ∈ P , then p̃, p̃1 or p̃2 may be used to denote arbitrary
elements of {p,¬p, ?p}.

• A q-label is a conjunction of literals and/or q-literals.

• Q∗ denotes the set of all q-labels.

For example, p(?q)¬r and (?p)(?q)(?r) are both q-labels.
The ? operator extends ordinary conjunction to accommodate q-labels. Intu-

itively, if C1 is labeled by p, and C2 is labeled by ¬p, then both constraints must
hold as long as the value of p is unknown, which is represented by p ? ¬p = ?p.
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Definition 24 (?). The operator, ? : Q∗ × Q∗ → Q?, is defined in two steps.
First, for any p ∈ P, p ? p = p and ¬p ? ¬p = ¬p; otherwise, p̃1 ? p̃2 = ?p. Next,
for any q-labels, `1, `2 ∈ Q∗, `1 ? `2 ∈ Q∗ denotes the conjunction obtained by
applying the ? operator in pairwise fashion to corresponding literals from `1 and
`2, as follows.

• If p̃1, p̃2 are literals in `1 and `2, respectively, then p̃1 ? p̃2 is contained in
the conjunction, `1 ? `2.

• If p̃ is in `1, but proposition p does not appear in `2, then p̃ is contained
in the conjunction, `1 ? `2.

• If p̃ is in `2, but proposition p does not appear in `1, then p̃ is contained
in the conjunction `1 ? `2.

For example: (p¬q(?r)) ? (q¬s) = p(?q)(?r)¬s.
The ε-DC-checking algorithm uses the same three rules, except that in the

qR∗3 rule, it uses m = max{v, w − ε}. For clarity, we shall refer to this version
of the qR∗3 rule as qRε

3; and {LP, qR0, qRε
3} shall be called the ε-DC-checking

rules.

Lemma 1. Let S be any CSTN, ε > 0, and S∗ the CSTN that results from
exhaustively applying the ε-DC-checking constraint-propagation rules to S. Let
S0 be the corresponding reduced CSTN for S; and let S∗0 be the CSTN that results
from exhaustively applying the IR-DC-checking rules to S0. Then S∗ and S∗0 are
equivalent in the following sense:

(1) Every constraint in S∗ is also in S∗0 .

(2) For each P0?, Q0? ∈ OT 0, X ∈ T \OT 0, δ ∈ R, and α ∈ Q∗:

(a) (P0?−X ≤ δ, α) ∈ S∗0⇒(P?−X ≤ δ − ε, α) ∈ S∗

(b) (X−P0? ≤ δ, α) ∈ S∗0⇒(X − P? ≤ δ + ε, α) ∈ S∗

(c) (P0?−Q0? ≤ δ, α) ∈ S∗0⇒(P?−Q? ≤ δ, α) ∈ S∗

Proof. (Part 1) Let Σ be some arbitrary sequence of applications of ε̂-DC-
checking rules to edges from S∗. Let (Y − X ≤ δ, α) in S∗ be the first edge
generated by that sequence that does not belong to S∗0 . Call that constraint C.
(Note that X and Y must be in T since C is in S∗.)

Case 1.1: The constraint C was generated by applying the LP rule to edges
in S∗ (e.g., as shown in Fig. 3a, where δ = u + v and α = βγ). But then,
by assumption, the pre-existing edges (from X to W to Y ) must also be in
S∗0 . Since the LP rule is also one of the DC-checking rules, the generated edge
(from X to Y ) must also be in S∗0 . But that edge represents the constraint C, a
contradiction.

Case 1.2: The constraint C was generated by the qR0 rule (e.g., as shown in
Fig. 3b). But then the pre-existing edge from P? to Z must be in S∗0 ; and so is
the edge from P0? to P?, as shown in Fig. 3c. Applying the LP rule to these
edges, followed by the qR0 rule, then yields the shaded labeled values for the
edge from P0? to Z in S∗0 , as shown in Fig. 3c. Next, applying the LP rule to
the edges from P? to P0? to Z, as shown in Fig. 3d, generates the edge from P?
to Z for S∗0 . But that edge represents the constraint C, a contradiction.
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(a)

X W Y
〈u, β〉 〈v, γ〉

LP: 〈u+ v, βγ〉

(b)
P? Z

〈δ, αp̃〉
qR0: 〈δ, α〉

(c)

P0? P? Z
−ε 〈δ, αp̃〉

LP: 〈δ − ε, αp̃〉
qR0: 〈δ − ε, α〉

(d)

P? P0? Z
〈δ − ε, α〉ε

LP: 〈δ, α〉

(e)
P? Z Y

〈w, β〉 〈v, γp̃〉
qRε

3: 〈max{v, w − ε}, β ? γ〉

(f)
P0? P? Z Y

−ε 〈w, β〉

LP: 〈w − ε, β〉

〈v, γp̃〉
qR∗

3 : 〈max{v, w − ε}, β ? γ〉

(g)

X Y P0?
〈u, β〉 〈v, γ〉

LP: 〈u+ v, β ? γ〉

(h)

X Y P?
〈u, β〉 〈v − ε, γ〉

LP: 〈u+ v − ε, β ? γ〉

(i)
P0? Z

〈δ, αp̃〉
qR0: 〈δ, α〉

(j)
P? Z

〈δ + ε, αp̃〉
qR0: 〈δ + ε, α〉

(k)
Q0? Z P0?

〈u, β〉 〈v, γq̃〉
qR∗

3 : 〈δ, α〉

(l)
Q? Z P?

〈u+ ε, β〉 〈v + ε, γq̃〉
qRε

3: 〈δ + ε, α〉

(m)

Q0? W P0?
〈u, β〉 〈v, γ〉

LP: 〈δ, α〉

(n)

Q? W P?
〈u+ ε, β〉 〈v − ε, γ〉

LP: 〈δ, α〉

Figure 3: Constraint propagations for the proof of Lemma 1

Case 1.3: The constraint C was generated by the qRε
3 rule (e.g., as shown

in Fig. 3e, where m = max{v, w − ε} and α = β ? γ). But then the pre-existing
edges (from P0? to P ? to Z) must be in S∗0 , which allows the LP rule to generate
the edge from P0? to Z in S∗0 , shown in Fig. 3f, and then the qR∗3 rule to generate
the shaded value for the edge from Y to Z in S∗0 , which represents the constraint
C, a contradiction.

(Part 2) Let Σ0 be some arbitrary sequence of recursive applications of
DC-checking rules to edges from S∗0 . Let K in S∗0 be the first edge generated by
that sequence that does not have a corresponding edge in S∗ according to (2a),
(2b) and (2c) in the statement of the lemma.

Case 2a: K has the form (P0?−X ≤ δ, α). Given that P0? 6≡ Z, K can only
have been generated by an application of the LP rule to edges in S∗0 , as shown
in Fig. 3g, where δ = u+ v and α = β ? γ. By assumption, the pre-existing edge
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from Y to P0? in S∗0 must have a corresponding edge from Y to P? in S∗, as
shown in Fig. 3h, which enables the LP rule to then be used to generate the
edge from X to P? in S∗, also shown in Fig. 3h. But that is the edge in S∗
that corresponds to K, a contradiction. (The preceding argument assumed that
Y ∈ T ; however, the case where Y is some Q0? ∈ OT 0 is even easier.)

Case 2b.1: K has the form (X − P0? ≤ δ, α) and was generated by applying
the LP rule to edges in S∗0 . This case is similar to Case 2a, but focusing on the
lefthand side of the LP rule instead of the right.

Case 2b.2: K has the form (Z− P0? ≤ δ, α) and was generated by applying
the qR0 rule to edges in S∗0 , as shown in Fig. 3i. But then the pre-existing edge
from P0? to Z has a corresponding edge in S∗ from P? to Z, leading to the
propagation in Fig. 3j, which generates the edge in S∗ that corresponds to K, a
contradiction.

Case 2b.3: K has the form (Z− P0? ≤ δ, α) and was generated by applying
the qR∗3 rule to edges in S∗0 , as shown in Fig. 3k, where δ = max{u, v} and
α = β ? γ. By assumption, the pre-existing edges from Q0? to Z, and from P0?
to Z in S0 have corresponding edges from Q? to Z, and from P? to Z in S∗, as
shown in Fig. 3l, leading to the generated edge from P? to Z, which corresponds
to K, a contradiction.

Case 3: K has the form (P0? − Q0? ≤ δ, α). Since P0? 6≡ Z, then K must
have been generated by an application of the LP rule. Fig. 3m illustrates the
case where the intermediate time-point W is not in OT 0, where δ = u+ v and
α = βγ. By assumption, the pre-existing edges from Q0? to W to P0? have
corresponding edges from Q? to W to P? in S∗, leading to the propagation in
Fig. 3n, where the edge from Q? to P? that corresponds to K, a contradiction.
The case where W ∈ OT 0 is handled similarly.

A similar set of six constraint-propagation rules has been proposed for solving
the (standard) DC-checking problem [7]. However, that DC-checking algorithm
has not been proven to be complete. Therefore, we do not address it here. No
algorithm for solving the ε̂-DC-checking problem has been presented.

8 Empirical Evaluation

This section compares the performances of an implementation of ε-DC-checking
algorithm [7], ε-DC-Ch, and an implementation IR-DC-checking algorithm (that
solves the π-DC-checking problem), S0IR-DC-Ch, applied to the reduced CSTN
S0. Both the implementations were obtained from Posenato [13]. Algorithms
and procedures for this evaluation were implemented in Java and executed on a
JVM 8 in a Linux machine with two AMD Opteron 4334 CPUs and 64GB of
RAM. Both implementations were tested on instances of the four benchmarks
from Hunsberger and Posenato [7]. Each benchmark has at least 60 DC and 60
non-DC CSTNs, obtained from random workflow schemata generated by the
ATAPIS toolset [14]. The numbers of activites (N) and observations (|P|) were
varied, as shown in Fig. 4. Since non-DC networks were regularly solved one
to two orders of magnitude faster than similarly sized DC ones, the rest of this
section focuses on DC networks.

Fig. 4 displays the average execution times of the two algorithms over all
four benchmarks. Each data point represents the average of the execution times
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Figure 4: Execution time vs. number of time-points n

for instances of the given size. We extended the benchmarks, adding up to 50
DC instances, to generate tight error bars, each representing a 95% confidence
interval.

The results demostrate that, while ε-DC-Ch algorithm has a clear better
performance in Benchmark 1, the performance difference changes as the size
of the instances increases. The main reason for such behavior is that in small
instances the addition of new nodes has a significant impact on the number of
to-do propagations, while such impact is less important when the number of
nodes increases—as in Benchmark 4. Experiments have shown that it is possible
to adopt S0IR-DC-Ch algorithm instead of ε-DC-Ch algorithm without practical
loss of performances.

9 Conclusions

This paper presented a reduction of the ε̂-DC-checking problem to the (standard)
DC-checking problem for CSTNs, and a reduction of the ε-DC-checking problem
to the π-DC-checking problem. It also showed that the constraint-propagation
rules for the IR-DC-checking algorithm (that solves the π-DC-checking problem)
are equivalent to the rules for the ε-DC-checking algorithm. As a result, the paper
showed that the ε-DC-checking problem for CSTNs can be easily represented
within the standard CSTN framework.
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