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ABSTRACT 

Mesenchymal Stromal Cells (MSC), firstly described by Friedenstein as bone 

marrow-derived non-hematopoietic adherent cells with the ability to form bone 

tissue in vitro (Friedenstein et al. 1966; 1968; 1974), are multipotent fibroblast-

like stem cells with three main features, as stated by the International Society of 

Cellular Therapy (ISCT) (Horwitz et al. 2005, Dominici et al. 2006 ): i) the ability 

to adhere to plastic, ii) the surface expression of CD73, CD90 and CD105 

molecules together with the lack of CD14, CD31, CD34, CD45 and HLA-DR; 

and iii) the ability to differentiate into adipocytes, osteoblasts and chondrocytes. 

MSC have been studied for their clinical application in regenerative medicine  and 

immune regulatory therapy in immune-related disorders (Horwitz et al. 2002; Le 

Blanc et al. 2005; Kuroda et al. 2007). 

Allogeneic Hematopoietic Stem-Cell Transplantation (Allo-HSCT) is an effective 

therapy for hematologic malignancies and inherited disorders of blood cells. The 

main complication is Graft-versus-Host Disease (GvHD), a donor T cell-mediated 

alloreactive inflammatory disease occurring in 20-70% of patients, depending on 

histocompatibility, with high mortality rate if steroid-refractory (Flowers et al. 

2011; Hahn et al. 2008; Lee et al. 2003; Lee et al. 2013). On the basis of clinical 

manifestations, GvHD can be classified in: i) classic acute GVHD (aGvHD); ii) 

late-onset aGvHD; iii) classic chronic GvHD (cGvHD); iv) overlap syndrome 

(Filipovich et al. 2005). Patients developing aGvHD are routinely treated with 

corticosteroids, which are effective only in 60-70% of cases, whilst 30–40% of 

patients achieve a partial response or relapse after corticosteroid withdrawal. 

Thus, second- and third line treatments are required, such as alternative 

immunosuppressive drugs, anti-lymphocyte serum, anti-inflammatory cytokine 

antibodies, or extracorporeal photopheresis. Several clinical studies have been 

performed using MSC as second- or third-line treatment, but standardized 

protocols are not available so far. Consequently, pre-clinical in vitro and in vivo 

studies are required to define a reproducible MSC-based therapeutic protocol for 

aGvHD. 
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In this study, we first developed an expansion protocol for human bone marrow 

derived-MSC (hBM-MSC) using two different supplements for culture media, i.e. 

fetal bovine serum (FBS) or human platelet lysate (hPL). Interestingly, hPL 

supplement was more effective than FBS in expanding MSC. Afterwards, we 

characterized MSC and confirmed their genome stability through karyotype 

analysis and real time-PCR. MSC were then assessed in vitro for their ability to 

acquire the anti-inflammatory phenotype necessary for avoiding immune rejection 

and modulating host immune effector cells. MSC priming with TNF-α and IFN-γ 

led to increased ability in preventing NK cell-mediated lysis. Moreover, using 

standardized proliferation assays, MSC displayed strong immune suppressive 

activity towards T, B and NK cells.  

We then obtained a reproducible xenogeneic mouse model of aGvHD that was 

used to assess in vivo the efficacy of hPL-expanded MSC-based immunotherapy 

with different schedules of MSC administration. 
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SOMMARIO 

Le cellule stromali mesenchimali (MSC), descritte per la prima volta da 

Friedenstein come cellule aderenti non emopoietiche derivanti da midollo osseo in 

grado di formare tessuto osseo in vitro (Friedenstein et al. 1966; 1968; 1974), 

sono cellule staminali multipotenti simil-fibroblastiche con tre diverse 

caratteristiche, come stabilito dalla Società Internazionale di Terapia Cellulare 

(ISCT) (Horwitz et al. 2005; Dominici et al. 2006): i) capacità di crescere aderenti 

alla plastica; ii) espressione delle molecole di superficie CD73, CD90 e CD105 in 

assenza di CD14, CD31, CD34, CD45 e HLA-DR; iii) capacità di differenziare in 

adipociti, osteoblasti e condrociti. Grazie alla loro plasticità, le MSC sono state 

oggetto di molti studi in medicina rigenerativa e immunoregolatoria nel campo 

delle malattie infiammatorie e autoimmuni (Horwitz et al. 2002; Le Blanc et al. 

2005; Kuroda et al. 2007).  

Il trapianto allogenico di cellule staminali ematopoietiche (Allo-HSCT) è una 

terapia efficace per alcune malattie ematologiche maligne e non. La principale 

complicanza dell’Allo-HSCT è la malattia da trapianto verso l’ospite (GvHD), 

una malattia infiammatoria causata dalle cellule T alloreattive del donatore che 

insorge nel 20-70% dei pazienti, a seconda del grado di istocompatibilità, e 

gravata da un’alta mortalità se resistente al trattamento con steroidi (Flowers et al. 

2011; Hahn et al. 2008; Lee et al. 2003; Lee et al. 2013). In base alle 

manifestazioni cliniche, si riconoscono 4 tipi di GvHD: i) GvHD acuta (aGvHD) 

classica; ii) aGvHD tardiva; iii) GvHD cronica (cGvHD) classica; iv) sindrome 

sovrapposta (Filipovich et al. 2005). I pazienti che sviluppano aGvHD sono 

trattati con corticosteroidi, efficaci nel 60-70% dei casi; infatti, il 30-40% dei 

pazienti mostra una risposta parziale o una ricaduta dopo la sospensione del 

trattamento. Pertanto sono necessari trattamenti di seconda e terza linea, con 

farmaci immunosoppressori non convenzionali, siero antilinfocitario, anticorpi 

monoclonali anti-citochine pro-infiammatorie, o fotoferesi extracorporea. 

Diversi studi clinici sono stati eseguiti utilizzando MSC come trattamento di 

seconda o terza linea, ma non ci sono ancora protocolli standardizzati. Di 
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conseguenza, sono necessari studi pre-clinici sia in vitro che in vivo per definire 

un protocollo terapeutico per aGvHD basato su MSC.  

In questo studio abbiamo sviluppato un protocollo di espansione per le MSC 

umane derivanti dal midollo osseo (hBM-MSC) utilizzando due diversi 

supplementi nel terreno di coltura: il siero bovino fetale (FBS) o il lisato 

piastrinico umano (hPL). hPL è risultato più efficiente rispetto a FBS 

nell’espandere le MSC. E’ stata fatta poi una caratterizzazione delle MSC, 

confermando la loro stabilità genomica attraverso analisi del cariotipo e PCR 

quantitativa. Le hBM-MSC sono state valutate per la loro capacità di acquisire in 

vitro il fenotipo anti-infiammatorio, resistendo al rigetto mediato dall’immunità 

innata e modulando le cellule immunitarie effettrici. Il trattamento con TNF-α e 

IFN-γ ha conferito alle hBM-MSC un’aumentata capacità nell’evitare la lisi 

mediata da cellule NK; inoltre, le hBM-MSC hanno mostrato una forte attività 

antiproliferativa nei confronti dei linfociti T, B e NK.   

Abbiamo infine sviluppato un modello murino xenogenico riproducibile di 

aGvHD, in cui abbiamo testato diverse modalità di somministrazione in vivo di 

hBM-MSC espanse in hPL. 
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1 INTRODUCTION 

 

1.1 GRAFT-VERSUS-HOST DISEASE (GvHD) 

 

GvHD Clinical Classification 

Allogeneic Hematopoietic Stem-Cell Transplantation (Allo-HSCT) is an effective 

therapy for hematologic malignancies and inherited disorders of blood cells. The 

main Allo-HSCT complication that can occur is Graft-versus-Host Disease 

(GvHD), a donor T cell-mediated alloreactive inflammatory disease characterized 

by 20-70% incidence, depending on histocompatibility degree, age of the 

recipient, and intensity of the conditioning regimen (Flowers et al. 2011; Hahn et 

al. 2008; Lee et al. 2003; Lee et al. 2013). Moreover, high mortality is associated 

to steroid-refractory GvHD (Jamani et al. 2013; Xhaard et al. 2012; Weisdorf et 

al. 1990; Arai et al. 2002). GvHD was initially classified as acute (aGvHD) or 

chronic (cGvHD), according to the onset time after Allo-HSCT (aGvHD <100 

days, cGvHD >100 days). However, first in the 2005, and then in 2014, the 

National Institutes of Health revised the classification of acute and chronic GvHD 

on distinctive features and introducing a new scoring system based on clinical 

outcomes: number of organs involved, severity, and functional disability (Pavletic 

& Vogelsang 2015; Filipovich et al. 2005). Clinical manifestations of aGvHD 

involve skin, gastrointestinal tract and liver, showing in particular maculopapular 

erythema, gastrointestinal symptoms (abdominal cramps and diarrhea) and 

cholestatic hepatitis. Since some of these features can be found also in cGvHD, 

aGvHD diagnosis is based on the presence of these outcomes with the absence of 

the distinctive cGvHD features (Vigorito et al. 2009; Filipovich et al. 2005). 

Differently from acute disease, cGvHD involves more target organs including 

mouth, female genitalia, musculoskeletal system and lungs. cGvHD is clinically 

characterized by lichen planus-like changes or hyperkeratotic plaques in the 

mouth; cicatricial conjunctivitis, dry and gritty eyes; lichen planus-like features or 

stenosis in female genitalia and other clinical outcomes in musculoskeletal system 

and lungs. Moreover, cGvHD shows peculiar clinical manifestations in target 

organs involved as well in aGvHD (skin, gastrointestinal tract and liver), for 
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example, poikiloderma, lichen planus-like eruption or lichen sclerosus-like 

lesions, depigmentation of skin and esophageal web, stricture, or concentric rings 

in the gastrointestinal tract. Nevertheless, some clinical outcomes are 

characteristic both of acute and chronic GvHD, such as anorexia, nausea, 

vomiting, diarrhea, weight loss and rising serum bilirubin concentration 

(Filipovich et al. 2005). Thus, based on the clinical manifestations described 

above, GvHD has been classified in 4 classes: i) classic acute GVHD ii) late onset 

acute GvHD iii) classic chronic GvHD and iv) overlap syndrome. The first class 

includes GvHD that occurs within 100 days of hematopoietic cell transplant and 

displays features of acute GvHD, whereas diagnostic and distinctive features of 

chronic GvHD are absent. The second class includes GvHD with the same 

characteristics of the first one occurring after 100 days from the transplant. The 

third class includes GvHD that shows diagnostic and distinctive features of 

chronic GvHD at any time, with no features of acute GvHD. Lastly, the fourth 

class includes cases of GvHD that occurs at any time and presents both acute and 

chronic features (Filipovich et al. 2005).  

 

Biological basis of GvHD 

GvHD has a genetic predisposition and many genes are thought to be involved in 

its onset, particularly the genetic system of the human major histocompatibility 

complex (MHC) located on chromosome 6. MHC region is composed of hundreds 

genes, among which the best known and characterized are those of Human 

Leukocyte Antigens (HLA) (Petersdorf 2013). The HLA region is located on the 

short arm of chromosome 6 and includes high polymorphic loci encoding for 

different peptides involved in the immune response as antigen presenting 

molecules. These molecules are classified in two distinct groups: HLA-class I 

antigens (HLA-A, HLA-B and HLA-C) and HLA-class II antigens (HLA-DP, 

HLA-DQ and HLA-DR).  
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Figure 1. Gene map of the human leukocyte antigen (HLA) region. (Figure from Expert 

Reviews in Molecular Medicine 2003, Vol.5, Cambridge University Press). The HLA region is 

located on chromosome 6p21.1 with Class II, III and I genes placed between the centromeric (Cen) 

and the telomeric (Tel) ends. 

 

Despite both complexes are involved in immune response, they show structural 

and functional differences. HLA-class I antigens are glycoproteins present on the 

surface of all nucleated cells as a complex of two polypeptide chains: the light 

chain and the heavy chain. The light chain is produced by the b2-microglobulin 

gene located on chromosome 15 and consists of the constant non-polymorphic 

region of the complex. B2-microglobulin (b2m) is a membrane protein that binds 

a non-covalent manner the heavy chain maintaining their structure. The heavy 

chain, composed by three α domains (α1, α2, and α3), a transmembrane segment 

and a short cytoplasmic tail, is encoded by HLA genes and represents the 

polymorphic region of the MHCI complex, for this reason held responsible of 

MHC variability (Bodmer 1987). HLA-class II complex is constituted by a α-

chain and a β-chain both composed of two domains (respectively α1, α2 and β1, 

β2), a connecting peptide followed by a transmembrane region and a cytoplasmic 

tail. In this case, all peptides are encoded by HLA genes and are expressed on the 

membrane of some specific antigen presenting immune cells (macrophages, 

dendritic and B cells) (Bodmer 1987).  
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Figure 2. Structures of MHC Class I (A) and Class II (B). (Figure adapted from Alberts et al. 

2008). Highlighted in this picture are the two globular domains forming the peptide binding region 

(PBR) and the two Ig-like domains, characteristic of class I and II MHC proteins. 

 

As mentioned before, the two complexes act in different ways on the triggering of 

immune cells response. HLA-class I complex binds self-proteins or exogenous 

proteins (such as viral protein) produced within the cell. MHC-I antigen 

presenting pathway begins with the intracellular degradation of target proteins 

followed by the consequent targeting by MHC-I proteins on the endoplasmic 

reticulum. The pathway continues with the migration through the Golgi apparatus, 

ending on the cellular surface where the antigen is presented to T CD8+ 

“cytotoxic” lymphocytes. On the contrary, HLA-class II complex is involved in 

the binding of exogenous protein deriving from the extracellular environment 

(such as bacteria) after endocytosis. These proteins are degraded by antigen 

presenting cells in the acidic endosome compartment, bound by MHC-II proteins 

and displayed at the cellular surface for the recognition by T CD4+ “helper” 

lymphocytes.  
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Figure 3. MHC I and MHC II antigen presenting pathways. (Figure from Qiagen website. © 

2009 QIAGEN, all rights reserved). Intracellular and extracellular antigens are processed into 

peptides, then bound by MHC I and II respectively and presented to CD8+ and CD4+ T cells. 
 

The activation of both MHC pathways, due to a mismatch in HLA proteins 

between hematopoietic stem cells from donor and recipient, leads to an immune 

response and represents the basis for GvHD onset. Thus, HLA haplotype 

evaluation before Allo-HSCT is a mandatory step to reduce the risk of GvHD. For 

instance, Allo-HSCT performed from a HLA-identical sibling (genetically 

identical) represents the best chance to reduce the risk of GvHD. However, even 

HLA-haploidentical siblings, related member or unrelated HLA-matched donor 

are viable alternatives, but in this cases the risk to develop GvHD is higher 

(Caillat-Zucman et al. 2004). Even though MHC antigens are strongly associated 

to the related risk to develop GvHD, also the minor histocompatibility antigens 
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(mHAs) seem to be involved (Dzierzak-Mietla et al. 2012; Chao 2004; Turpeinen 

et al. 2013). mHAs are immunogenic non-HLA related peptides derived from a 

non-immunogenic proteins, encoded by polymorphic genes. Following a change 

in the aminoacids sequence due to a polymorphism or gene deletion, these 

molecules can be bound by both MHC-I and MHC-II and displayed on cell 

membrane surface. Once recognized as non-self by T cells, immune response 

activation is triggered (Dzierzak-Mietla et al. 2012). The involvement of mHAs 

was firstly discovered thanks to experiments in which graft rejection and GvHD 

occurred in HLA-matched recipient (Goulmy et al. 1976; Goulmy et al. 1983; 

Goulmy et al. 1996). Nowadays, a lot of mHAs have been identified originating 

from both Y and autosomal chromosomes (Linscheid & Petroff 2013). For their 

implications on Allo-HSCT and GvHD incidence, current research is focused on 

identification of additional immunogenic non-MHC antigens. 

 

 

Acute GvHD Physiopathology 

For the occurrence of GvHD three conditions have to be satisfied: i) the graft must 

contain immunocompetent cells, ii) the recipient must express tissue antigens that 

are not present in the transplant donor iii) the recipient must be unable of 

mounting an effective response against the transplanted cells (Billingham 1966).  

In Allo-HSCT these requirements are fully satisfied, as patients receive a 

transplant with HSC and immunocompetent cells (mainly constituted by T cells) 

(first requirement); moreover, there is often a HLA-mismatch or mHAs mismatch 

between the donor and the recipient (second requirement); and finally, patients 

receive a myeloablative treatment with or without total body irradiation before the 

transplantation (third requirement). The characteristic phases of acute GvHD 

development have been largely described by Ferrara and colleagues (Ferrara et al. 

1996; Ferrara et al. 1999; Ferrara et al. 2003). Essentially, there are 3 phases: 

afferent, efferent and effector phase. The afferent phase starts because of the 

damaging of host tissues by conditioning regimen (chemo or radiotherapy), 

leading to host cell activation followed by the release of pro-inflammatory 

cytokines (TNF-alpha, IL-1, IL-6) and danger-associated molecular pattern 
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(DAMPs) or pathogen-associated molecular pattern (PAMPs) molecules (Xun et 

al. 1994; Nassereddine et al. 2017). This massive cytokine storm has effects on 

both the up-regulation of MHC and adhesion molecules and on the activation of 

host antigen presenting cells (APCs). Hence, this first phase occurs before the 

transplantation, while the second phase starts after the infusion of immune 

competent donor cells. The efferent phase is characterized by events occurring 

after the recognition of antigens displayed on host APCs membrane surface by T 

donor cells. However, it has been demonstrated that also donor APCs are involved 

in GvHD progression through a cross-priming of CD8+ T cells (Matte et al. 2004). 

The activation and expansion of CD4+ T cells occurs after the antigen recognition 

on MHC-II; on the contrary, the antigen presentation to CD8+ T cells is made by 

MHC-I. In this second phase, T CD4+ T cells proliferate and differentiate in T 

helper type 1 (Th1) thanks to the higher level of IL-12 than IL-4. A pivotal role is 

played by Th1 lymphocytes thanks to the production of IL-2 and IFN-γ (Krenger 

& Ferrara 1996). The pro-inflammatory cytokines IL-2 and IFN-γ are very 

important in the maintaining of GvHD progression exerting a positive feedback 

on Th1 cells, inducing CD8+ T cells to become effector cells and activating 

macrophages and NK cells (Hill & Ferrara 2000; Krenger & Ferrara 1996). The 

third phase or effector phase is characterized by the combined action of effector 

cells and cytokines, such as TNF-α and IL-1. The effector cells involved are not 

only CD8+ cytotoxic T cells, but also NK cells and macrophages. Macrophages 

are mostly important as first cell type involved in the production of TNF-α. Thus, 

host target cells destruction occurs, inducing apoptosis by cytotoxic T cells 

through perforin/granzyme B mechanism and Fas-Fas ligand interactions, and by 

the secreted cytokine TNF-α through the activation of TNF-receptor and caspase 

cascade (Jacobsohn & Vogelsang 2007). The ensemble of this amplified immune 

response results in a multi-organ failure. 
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Figure 4. The three-phase model of acute graft-versus-host disease pathogenesis. (Figure 

adapted from Ferrara et al. 2009). The onset of aGvHD is characterized by tissue damage due to 

conditioning regimen leading to host APC activation, with the consequent donor T cell activation 

and the involvement of cellular and inflammatory effectors. 

 

 

Acute GvHD Prevention and Therapy 

GvHD remains the second cause of death in Allo-HSCT patients, nevertheless 

new findings in immunology have led to novel conditioning regimens, availability 

of different stem cell sources and new advances in HLA-typing for donor 

selection (Nassereddine et al. 2017). Considering the possibility to develop 

moderate or severe aGvHD after Allo-HSCT and the risk that once GvHD occurs 

patients may not respond to the treatment, prophylaxis is mandatory. The 

incidence of GvHD is variable depending on the degree of HLA mismatch and the 

type of transplantation. However, Sullivan and colleagues have shown that GvHD 

incidence could increase up to 100% without prophylaxis (Sullivan et al. 1986). In 

aGvHD, prophylaxis involves donor T cell depletion or immunosuppression by 

pharmacologic strategies. Even though T cell depletion of donor transplant is 

possible, the risk of graft rejection or leukemic relapse is increased (Patterson et 
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al. 1986; Kernan et al. 1989; Blaise et al. 1993). For this reason, pharmacological 

immunosuppression is preferentially used. Methotrexate (MTX) is an antagonist 

molecule of folic acid and is involved in the inhibition of dihydrofolate reductase 

and therefore in purine synthesis pathway blockade. Thanks to this mechanism, 

MTX is used in GvHD prevention leading to T cell inhibition (Huang et al. 2005). 

Calcineurin inhibition is another mechanism to block T cell proliferation after 

transplantation. In fact, cyclosporine and tacrolimus are two pharmacological 

inhibitors used in GvHD prevention; in particular, a combination of cyclosporine 

or tacrolimus with low doses of methotrexate leads to a major prevention of 

aGvHD (Storb et al. 1986; Storb et al. 1987; Mrsic et al. 1990; Przepiorka et al. 

1996). Recently, a new approach of GvHD prophylaxis has been used, consisting 

in the administration of high dose of cyclophosphamide and resulting in an 

effective tolerance after transplantation (Luznik et al. 2008; Luznik & Fuchs 

2010; Raiola et al. 2013). Another strategy for GvHD prophylaxis employs 

monoclonal or polyclonal antibodies directed against T cells (Anti-thymocyte 

globulin (ATG)) or against interleukin receptors, such as IL-2 receptor (IL-2R). 

ATG molecule is directed against T cell receptors (i.e. CD3/TCR, CD152) 

inducing an in vivo depletion mainly through apoptosis (Mohty 2007). 

Randomized control trials, meta-analysis and scientific papers reveal the ability of 

ATG in reducing the incidence of grade 3-4 aGvHD. However, a retrospective 

trial published by the Centre for International Blood and Marrow Transplant 

Research (CIBMTR) showed no differences in aGvHD incidence after ATG 

treatment (Bacigalupo et al. 2001; Finke et al. 2009; Pidala et al. 2011; Kumar et 

al. 2012). Differently from ATGs, anti-interleukin receptor monoclonal antibodies, 

such as murine anti-IL-2 receptor, acts as antagonist. This therapy is based on the 

evidence that IL-2 is a T cell proliferation-inducing cytokine; thus, after IL-

2R/antagonist binding, IL-2 production is blocked and T cell proliferation is 

impaired. Some studies on this antibody shown an effectiveness on prevention of 

aGvHD (Anasetti et al. 1990; Anasetti et al. 1991; Chen et al. 2003). Usually, 

GvHD prophylaxis is lasted even up to 12 months after the Allo-HSCT, therefore 

in conjunction with treatments. The first line treatment involved glucosteroid such 

as metilprednisolone. This drug acts reducing the inflammatory response in 
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various ways: inhibiting the activation of T cells, inducing apoptosis and 

decreasing the inflammatory effects of pro-inflammatory cytokines. Nevertheless, 

organs toxicity and side effects were found (Oblon et al. 1992). To date, 

corticosteroid therapy remains the first-line treatment. Unfortunately, this therapy 

is successful only in 60-70% of aGvHD patients, whilst 30–40% of patients 

achieve a partial response or relapse after corticosteroid withdrawal. Thus, second 

or third-line treatments are required. Different strategies were used to find the best 

therapeutic agent against GvHD and some of these were already in use as 

prophylaxis. As described before, monoclonal antibodies, such as Inolimomab and 

Infliximab, are used in GvHD treatment, the first one directed against IL-2 

receptor, while the second one is an anti-TNFα agent. Another biopharmaceutical 

product that interferes with TNFα is the fusion protein Etanercept. A synergic 

effect in GvHD treatment has been found between Etanercept and 

metilprednisolone (Uberti et al. 2005; Levine et al. 2008). The use of Pentostatin, 

a nucleoside analogue, is an additional strategy that involves the accumulation of 

2-deoxyadenosine 5-triphosphate by adenosine deaminase inhibition leading to T 

cell death. Moreover, extracorporeal photopheresis (ECP), developed by Therakos 

Inc. (Westchester, PA, USA), has been proposed as GvHD treatment. ECP 

employs ultraviolet A (UVA) irradiation of autologous peripheral blood 

mononuclear cells (PBMCs) collected by leukapheresis and exposed to the 

photosensitizing drug 8-methoxypsoralen (8-MOP) (Foss et al. 2002). The 

photoactive buffy coat is subsequently re-infused into the patient. 8-MOP 

covalently binds and cross-links DNA of PBMCs upon exposure to UVA light 

irradiation, resulting in apoptosis. ECP presumably mediates its function by 

reducing T-cell response, not only inducing apoptosis, but also through 

phagocytosis of apoptotic lymphocytes by APCs, inducing these cells to produce 

anti-inflammatory cytokines and regulatory T cells (Hart et al. 2013). Thus, this 

procedure has been considered a potential tool in acute steroid refractory GvHD 

treatment (Greinix et al. 2006; Perfetti et al. 2008; Greinix et al. 2010). 

In the last decade, cell therapy has become as new strategy for aGvHD treatment. 

In particular, the use of regulatory T cells and mesenchymal stromal cells (MSC) 

 18 



has been associated to good results, but more studies are required to define the 

treatment schedule (Le Blanc et al. 2004; Brunstein et al. 2011). 
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1.2 MESENCHYMAL STROMAL CELLS (MSC) 

MSC discovery, localization and definition 

Mesenchymal Stromal Cells (MSC), firstly described by Friedenstein as bone 

marrow-derived non-hematopoietic adherent cells with the ability to form bone 

tissue in vitro (Friedenstein et al. 1966; 1968; 1974), are multipotent fibroblast-

like stem cells. MSC reside in bone marrow, particularly in the extracellular 

matrix that acts as a structural scaffold with other cell types (bone marrow stromal 

microenvironment) for the hematopoietic stem cells niche. MSC control the 

balance between the quiescent and proliferative state of Hematopoietic Stem Cells 

(HSC) by specific interactions and release of soluble factors. Despite the 

successful in vitro identification and isolation of MSC, the in vivo native MSC 

localization remains still unclear. Recent studies have shown that native MSC in 

bone marrow could be located in the vascular niche, among vascular smooth 

muscle cells, in contact with endothelial cells on the abluminal side of the 

marrow sinuses (Sacchetti et al. 2007; Pontikoglou et al. 2008). Nevertheless, 

the discovery in different organs of perivascular cells expressing mesenchymal 

markers and showing multipotent capacity, led to speculate that MSC can be 

pericytes or derive from these cells (Crisan et al. 2008) and, therefore, are 

ubiquitous in all tissues. 
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Figure 5. Bone Marrow microenvironment. © 2001 Terese Winslow (assisted by Lydia Kibiuk). 

Different connective tissue cells origin from a common stem cell population lying within the bone 

marrow.  

 

In fact, MSC can be isolated not only from adult bone marrow but from a lot of 

other tissues, both of fetal and adult origin, such as bone marrow, blood, lung, 

liver and spleen, adipose tissue, peripheral blood, synovial fluid, dental tissues, 

amniotic fluid and amniotic membrane, endometrium, limb bud, cord blood and 

Wharton's jelly (Wagner et al. 2005; Cai et al. 2010; Huang et al. 2009; Schüring 

et al. 2011; Morito et al. 2008; Wang et al. 2004; Jiao et al. 2012; Roufosse et al. 

2004; In ’t Anker et al. 2003). Considering the two peculiar characteristics of self-

renewal and multipotency, MSC have been classified as adult stem cells 

(Friedenstein et al. 1966; Friedenstein et al. 1974; Sacchetti et al. 2007). In the 

90’s, on the basis of their multi-lineage differentiation capacity, these cells were 

named Mesenchymal “Stem” Cells (MSC) (Caplan 1991; Pittenger 1999). 

However, this term caused confusion in the scientific community. Nevertheless, 

the plastic-adherence cell isolation method, largely used, leads to obtain a 

heterogeneous cell population, in which only few cells possess the specific 

properties linked to the term “stem” (i.e. multipotency and long term self-renewal 

in vivo). For these reasons, in 2005 the ISCT committee proposed to refer to this 
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isolated population with the more generic name of multipotent Mesenchymal 

Stromal Cells (MSC) (Horwitz et al. 2005).  

Furthermore, in 2006 the ISCT suggested the minimal criteria of MSC definition 

largely accepted until now. Thus, MSC possess three main characteristics: i) the 

ability to grow adherent to plastic, ii) the membrane surface expression of CD73, 

CD90 and CD105 molecules together with the lack of CD14, CD31, CD34, CD45 

and HLA-DR expression and iii) the ability to differentiate in adipocytes, 

osteoblasts and chondrocytes (Dominici et al. 2006). 

 
Figure 6. MSC phenotype and tissues origin. (Front. Physiol. Consuelo Merino González et al. 

2016). MSC could be identified both in fetal tissues (such as in the placenta, in the amniotic fluid, 

in the umbilical cord blood) and in adults, particularly in bone marrow and other different tissues 

(such as dermis, gingival and adipose tissue). 
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MSC immune modulatory properties 

In 2002, Bartholomew at al. firstly described the capability of allogeneic baboon 

MSC to influence immune responses in vitro and to prevent allogeneic skin graft 

rejection in vivo (Bartholomew et al. 2002). Since then, several studies were 

focused on understanding the immune modulatory property of MSC. In this 

regard, several works have shown MSC immunosuppressive property towards 

many immune cells (Di Trapani et al. 2013; Jiang et al. 2005; Benvenuto et al. 

2007; Corcione et al. 2006; Tse et al. 2003), even though MSC exert different 

functions depending on the microenvironment in which they reside. In particular, 

they can acquire a pro-inflammatory phenotype (MSC1) or an anti-inflammatory 

phenotype (MSC2) depending on inflammatory cytokine levels (Waterman et al. 

2010). Thus, MSC required a “licensing” or “priming” (pMSC) phenotype to 

exert their immune-modulatory activity; otherwise, at resting conditions (rMSC), 

they have anti-apoptotic and supporting properties (Krampera 2011). IFN-γ, 

TNFα, IL-1α and IL-1β are mainly involved in MSC inflammatory priming. 

However, TNFα, IL-1α and IL-1β seem to exert only a supportive role in MSC2 

polarization. In fact, the combination of IFN-γ with TNFα, IL-1α or IL-1β 

enhances MSC inhibitory effect. However, inhibiting singularly these three 

cytokines with blocking antibodies does not completely revert T cell inhibition 

(Ren et al. 2008). On the other hand, IFN-γ is the main mediator of MSC 

“licensing”, as anti-IFN-γ receptor blocking antibodies may revert completely 

MSC inhibitory effect on T cells (Krampera et al. 2006). In addition, Ren et al. 

have shown that MSC lacking in IFN-γ receptors were completely unable to 

inhibit T cells (Ren et al. 2008). However, as mentioned above, MSC polarization 

depends on inflammatory cytokine concentration; thus, the same pro-

inflammatory cytokine can play a dualistic role. Indeed, at low levels, IFN-γ 

triggers MSC to become pro-inflammatory and to behave as APC by inducing 

immune response (Stagg et al. 2006; Chan et al. 2006). Similarly, Toll-Like 

Receptors (TLRs) expressed by MSC play an important role in MSC1 or MSC2 

polarization. The activation of TLR3 and TLR-4 on MSC, due to the binding of 

their specific ligands, results in an impairment of the MSC immune modulatory 

activity by inhibiting Notch1-mediated T cell activation through Jagged1 
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downregulation (Liotta et al. 2008). However, when TLR3 and TLR4 are 

activated for a short time with low dose of ligands, opposite effects on MSC 

polarization have been shown. TLR4 priming led MSC to acquire a pro-

inflammatory phenotype by inducing the production of pro-inflammatory 

cytokines, such as IL-6, IL-8 and TGF-β. On the contrary, TLR3 priming led 

MSC to acquire the anti-inflammatory phenotype by producing IL-4, IL-1RA, 

IDO and PGE2 (Waterman et al. 2010). Furthermore, MSC immunophenotype is 

strongly modified by inflammatory cytokines; therefore, once MSC become 

MSC2, they overexpress on cellular surface MHC-class I, intercellular adhesion 

molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), 

programmed death ligand 1 (PD-L1), and show a de novo expression of MHC-II 

(Sheng et al. 2008; Ren et al. 2010; Chan et al. 2006). Thus, the acquisition of 

anti-inflammatory properties by MSC depends on the balance of opposite stimuli 

in the microenvironment that influences not only MSC functions, but also the 

immunophenotype (Krampera 2011). Even though the immune modulatory effect 

of MSC was largely demonstrated, the mechanisms wherewith they act is not 

completely understood.  Anti-inflammatory MSC act both by cell-to-cell contact 

and paracrine mechanisms. In particular, after the interaction between MSC and 

immune effector cells occurs, T and B cell proliferation is inhibited through PD-

L1, PD-L2 and programmed death-1 (PD-1) pathway activation (Augello et al. 

2005; Gu et al. 2013). Other studies have shown the involvement of the Fas-L/Fas 

pathway in the MSC immune-modulation. Indeed, MSC can induce activated T 

cell apoptosis through the interaction between Fas-L (express on MSC) and Fas 

receptor (express on T lymphocytes) (Mazar et al. 2009; Akiyama et al. 2012; Gu 

et al. 2013). After MSC2 polarization, MSC produce a large amount of soluble 

molecules that are involved in their immunosuppressive property (Shi et al. 2012) 

with differences between MSC deriving from different species (Ren et al. 2009; 

Ma et al. 2014). In mouse MSC, inducible NO synthase (iNOS) expression has 

been found after MSC “priming” (Ren et al. 2008). As a consequence, nitric oxide 

is produced by MSC at high concentrations, leading T cell apoptosis in vitro (Sato 

et al. 2007). Moreover, the inhibition of iNOS reverts benefits of MSC treatment 

on GvHD mouse model (Ren et al. 2008). However, this mechanism does not 
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occur in human pMSC. On the contrary, indoleamine 2, 3-dioxygenase (IDO) is 

involved in immune suppression of various immune cell populations only in 

primed human MSC. IDO is an enzyme that catalyses a rate-limiting step in the 

kynurenine pathway and is involved in tryptophan degradation into kynurenine, a 

metabolite with immune modulatory effects on T and NK cells (Frumento et al. 

2002; Meisel et al. 2004; Krampera et al. 2006). In particular, IDO acts by 

blocking T cell proliferation and inducing apoptosis by tryptophan deficit and 

kynurenine formation, involved in regulatory T cell induction (Mezrich et al. 

2010). Prostaglandin E2 (PGE2) is another anti-inflammatory molecule involved 

in MSC-mediated immune-modulation on different immune cells. PGE2 

production is enhanced in primed MSC and PGE2 synthesis blockade with 

specific inhibitors restores T cell proliferation (Aggarwal & Pittenger 2009). 

However, PGE2 is not a pivotal factor to suppress T cell proliferation and NK 

cells activity, but it acts in combination with IDO in human or iNOS and NO in 

mice (Spaggiari et al. 2008; Matysiak et al. 2011; Sato et al. 2007). MSC, through 

PGE2 secretion, make macrophages produce IL-10, an anti-inflammatory 

cytokine (Németh et al. 2009). Another molecule produced by both human and 

mouse MSC after inflammatory stimulation is TGF-β. This molecule is involved 

in the direct inhibition of peripheral blood lymphocytes, but also in the induction 

of FoxP3+ regulatory T cells, as demonstrated by both in vitro and in vivo 

experiments (Di Nicola et al. 2002; Nemeth et al. 2010; Yoshimura & Muto 

2011). In addition, Human Leukocyte Antigen-G (HLA-G) plays important roles 

in immune response modulation and graft rejection. A soluble isoform, HLA-G5, 

is secreted by activated MSC. HLA-G5 contributes to the suppression of T cell 

proliferation and NK cell activity, as shown by blocking experiments with 

neutralizing anti-HLA-G antibodies, and to FoxP3+ regulatory T cell induction 

(Selmani et al. 2008). Moreover, HLA-G5 plays a role in allograft acceptance 

(Lila et al. 2002; Le Rond et al. 2006). Lastly, MSC can also exert their immune 

modulatory effects in a paracrine way, though the production of extracellular 

vesicles (EVs), in particular microvesicles and exosomes, which may inhibit 

directly B, NK and indirectly T cell proliferation (Di Trapani et al. 2016). 
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Thus, due their immunological properties, MSC represent a potential therapeutic 

tool in different clinical applications (i.e. tissue would healing, regenerative 

medicine, inflammatory and autoimmune diseases, GvHD). 

 

 
Figure 7. Immune-modulatory action of activated MSC. (Figure from Zachar et al. J Inflamm 

Res. 2016). MSC display broad immune modulatory properties; in the picture, red arrows indicate 

stimulation, black arrows show suppression and blunt-ended arrows mean direct inhibition.  

 

 

MSC application in regenerative medicine 

MSC are defined as multipotent cells thanks to their ability to differentiate into 

different tissues of mesodermal origin, including osteocytes, chondrocytes, 

adipocytes, but also cardiomyocytes (Xu et al. 2004) and smooth and skeletal 

muscles (Dezawa 2005). However, the interest for MSC in regenerative medicine 

was boosted by some controversial evidence of in vitro pluripotency, including 

trans-differentiation into cells belonging to ectodermal and endodermal tissues, 

such as neurons (Tropel et al. 2006), hepatocytes (Schwartz et al. 2002) and 

insulin-producing cells (Xie et al. 2009). 
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Figure 8. The multipotential properties of MSC. (Figure from Uccelli et al. 2008 Nat Rev 

Immunol.). Mesenchymal stem cells in bone marrow cavity are capable to self-renew (curved 

arrow), to differentiate towards mesodermal lineages (straight arrows), and to transdifferentiate 

into ectodermal and endodermal lineages (dashed arrows). 

 

In the last decades, in vivo data have highlighted the potential use of MSC therapy 

in regenerative medicine. One of the most reliable MSC applications is bone 

regeneration; in particular, autologous or xenogeneic MSC have been used with a 

hydroxyl-apatite matrices to repair sheep, canine, rat and also human segmental 

bone defects (Bruder et al. 1998; Kon et al. 2000; Arinzeh et al. 2003; Quarto et 

al. 2001; Burastero et al. 2010). Another application in bone regeneration involves 

the treatment of the osteogenesis imperfecta (OI), due to genetic defects in 

collagen deposition (Otsuru et al. 2012). After 3 months from bone marrow cells 

infusion, 3 children with OI showed new dense bone formation with an increased 

total body bone mineral content that led to a reduced frequencies of bone fracture 

(Horwitz et al. 1999). Moreover, the same benefits on OI were observed with 

isolated allogeneic MSC (Horwitz et al. 2002). Cartilage repair was also 
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investigated: the main strategy adopted in the treatment of cartilage defects is 

based on tissue engineering to induce in situ differentiation of MSC in 

chondrocytes. Different studies were carried out on both small and large animals 

(rabbit, sheep, and horse). In 2004, a study suggested the possibility to repair 

articular cartilage defects by inducing in situ differentiation after transplantation 

of a beta-tricalcium phosphate (beta-TCP) bio-ceramic scaffold with autologous 

bone marrow MSC in a sheep model (Guo et al. 2004). Other studies were 

performed using different carriers for MSC, such as Hyaluronic Acid (HA) (Lee 

et al. 2007), poly-lactic-glycolic acid (PLGA) (Uematsu et al. 2005), fibrin 

(Dragoo et al. 2007) or collagen (Qi et al. 2012). Moreover, Dragoo et al. used 

MSC from adipose tissue instead of MSC derived from bone marrow (Dragoo et 

al. 2007). For knee osteoarthritis treatment, some clinical studies have been 

performed using autologous or allogeneic MSC both from adipose tissues and 

bone marrow (Centeno et al. 2008; Pak 2011; Vega et al. 2015). As far as cardiac 

regeneration after infarction is concerned, there is some evidence that MSC 

implanted into murine myocardium are capable of differentiating into 

cardiomyocytes and inducing angiogenesis, but this phenomenon is scarce and 

controversial (Toma et al. 2002). Animal studies showed improvements in cardiac 

function, but a few cardiomyocytes-differentiated MSC were evident inside the 

infarcted tissue and the main putative mechanism was the induction of 

angiogenesis through soluble factors (Orlic et al. 2001; Min et al. 2002; Miyahara 

et al. 2006). Based on these assumptions, clinical studies were carried out. In 

2004, 69 patients with acute myocardial infarction were treated with an 

autologous BMSC suspension containing 8 to 10 × 109 cells/ml (not ex-vivo 

expanded MSC). After a direct injection of this suspension into the infarcted 

tissue, no deaths occurred and several improvements in cardiac functions were 

observed (Chen et al. 2004). In the same year, Wollert et al. performed a 

randomized clinical study on 60 patients. In this study, the ability of autologous 

bone-marrow cells (again, not ex-vivo expanded MSC) to improve global left-

ventricular ejection fraction (LVEF) was assessed at 6 month-follow-up after 

intracoronary transfer. Evaluating the variation of global left-ventricular ejection 

fraction (LVEF) from baseline to 6 months, bone-marrow cells transfer seemed to 
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enhance left-ventricular systolic function in myocardial segments adjacent to the 

infarcted area. On the contrary, no significant changes were observed in the 

infarcted region compared to control group (Wollert et al. 2004). In 2017, a phase 

I/II randomized controlled trial (RIMECARD Trial) was in favour of the efficacy 

and safety of intravenous injection of umbilical cord MSC in the treatment of 

patients with heart failure (Bartolucci et al. 2017), but further studies are 

necessary to consider MSC as an effective strategy for heart function impairment. 

Evidence has been provided for MSC trans-differentiation into ectodermal 

lineages, such as neurons and Schwann-like cells (Safford et al. 2002; Anghileri et 

al. 2008; Datta et al. 2011; Tomita et al. 2013). Thus, a potential therapeutic 

application of MSC for brain injuries and neurological disorders has been 

suggested. Pre-clinical studies in mice and rats displayed the MSC capability to 

migrate, survive and improve functional recovery in brain or spinal cord injury 

(Kang et al. 2003; Naghdi et al. 2009; Pavlova et al. 2012). Another approach was 

used in Parkinson Disease (PD) and in amyotrophic lateral sclerosis (ALS) based 

on MSC differentiation into specific soluble factor-producing cells (i.e. 

neurotrophic factors (NTF)-MSC), thanks to genetic modifications (Barzilay et al. 

2009; Ratcliffe et al. 2013). They all are preliminary results that need to be 

confirmed. 

Lastly, MSC application in liver injuries and diabetes was investigated. Several 

studies have reported the possibility to induce the differentiation of MSC derived 

from different sources in functional hepatocyte-like cells (endodermal trans-

differentiation), in which the hepatocyte nuclear factor 4 alpha (HNF4α) has a 

pivotal role. Hepatocyte-like cells were transplanted into mice with acute liver 

injury, showing a regenerative supporting activity and prevention of injury 

progression (Stock et al. 2014). In the last few years, in vitro and in vivo MSC 

trans-differentiation in functional pancreatic cells was tested (Phadnis et al. 2011; 

Tang et al. 2012), leading to several studies to set up MSC-based cell therapies. A 

pre-clinical study performed on nude diabetic mice, transplanted with human 

insulin-producing cells derived from in vitro differentiation of MSC, has pointed 

out that these stem cells may control the diabetic status for 3 months (Gabr et al. 

2013). Moreover, nude mice with streptozotocin (STZ)-induced diabetes and 
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transplanted with insulin-producing cells obtained in vitro from MSC, showed 

improvement in glycemia levels (Xin et al. 2016). 

 

 

MSC application in neurodegenerative diseases, autoimmune diseases and 

GvHD 

MSC could be a therapeutic tool in several diseases involving immune system. As 

for neurodegenerative diseases, Alzheimer disease (AD) is one of the most 

common neurodegenerative diseases and it could represent a target for MSC 

based therapy. Indeed, MSC may modulate the inflammatory environment acting 

on different cells population in the brain. In particular, MSC regulate microglia-

dependent production of pro-inflammatory cytokines and Aβ-degrading enzymes, 

and induce regulatory T cells (Yang et al. 2013; Ma et al. 2013). In addition, MSC 

promotes amyloid plaque clearance and neuronal survival, enhancing cell 

autophagy pathway (Shin et al. 2014). Through the development of the 

experimental autoimmune encephalomyelitis mouse model, the therapeutic effect 

of MSC in multiple sclerosis (MS) has been evaluated (Zappia et al. 2005, 

Constantin et al. 2009; Constantinescu et al. 2011). MSC of both bone marrow 

and adipose origin ameliorate experimental autoimmune encephalomyelitis by 

decreasing B, T cells and macrophage infiltration in the central nervous system 

(CNS) and inducing T cell anergy (Zappia et al. 2005, Constantin et al. 2009; 

Constantinescu et al. 2011).  

Despite these interesting results in neurodegenerative diseases, systemic 

inflammatory and autoimmune diseases still represent the main MSC application 

fields. Rheumatoid arthritis (RA) is a T- and B-cell dependent autoimmune 

disease characterized by joint inflammation due to loss of immunological self-

tolerance. Different preclinical studies on mouse model of collagen-induced 

arthritis (CIA) have shown benefits after MSC treatment. MSC can improve CIA 

both if administrated at the time of arthritis induction (Day 0) and after 21 days, 

when CIA is boosted (Augello et al. 2007). However, it was reported that in 

adjuvant-induced and spontaneous arthritis model, MSC showed an effect only if 

injected before the onset of the disease (Papadopoulou et al. 2012) . Another 
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preclinical study has demonstrated that infusion of human MSC significantly 

ameliorates the severity of experimental arthritis (González et al. 2009). In this 

study, the beneficial effects of MSC involved the reduction of pro-inflammatory 

cytokines, such as IL-17, IFN-γ, IL-2, TNFα, RANTES and macrophage 

inflammatory protein-2, as well as the induction of anti-inflammatory cytokines, 

such as IL-10 and TGF-β (González et al. 2009). Moreover, the induction of 

regulatory T cells by MSC was involved in the improvement of CIA in mouse 

models (Augello et al. 2007; González et al. 2009). In a recent in vitro co-culture 

study, the production of pro-inflammatory cytokines by peripheral blood 

mononuclear cells isolated from patients with RA was inhibited by MSC 

(Baharlou et al. 2017).  

The efficacy of MSC transplantation was assessed also in patients with Systemic 

Lupus Erythematosus (SLE). Four SLE patients with glucocorticoid-refractory 

disease and treated with MSC displayed  improvement in terms of SLE disease 

activity index and renal function, leading to stable disease remission (Sun et al. 

2009). The efficacy of MSC was tested in inflammatory bowel diseases (IBD), 

such as ulcerative colitis (UC) and Crohn’s disease (CD), two progressively fatal 

diseases often without a curative treatment. A mouse model for IBD was obtained 

by administrating both dextran sodium sulfate (DSS) and 2, 4, 6-trinitrobenzene-

sulfonate acid (TNBS) (Chinnadurai et al. 2015). Thus, different studies have 

pointed out the efficacy of MSC in improving IBD in mice, showing a down-

regulation of pro-inflammatory cytokines and improving stool condition, weight 

gain and histopathology (Abdel Salam et al. 2014; He et al. 2012). The safety and 

the therapeutic effect of MSC in severe ulcerative colitis were also demonstrated 

in a clinical study, in which 34 patients were treated with MSC in addition to 

conventional treatment. Among this population, 30 patients had an improvement 

of the disease and no side effects were found in any of the 34 patients compared to 

control group (Hu et al. 2016). Moreover, several prospective, retrospective and 

clinical studies have revealed the potential application of MSC in ameliorating 

Crohn’s disease fistulas (Garcia-Olmo & Schwartz 2015).  

In 2004, the first successful use of MSC in severe aGvHD treatment was reported. 

Haplo-identical bone marrow-derived MSC were administrated twice in a 9-year 
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old patient with severe steroid-refractory aGvHD, resulting in a rapid and 

progressive improvement of the disease until 1 year after transplant (Le Blanc et 

al. 2004). Since then, several pre-clinical studies were performed in mouse 

models, with controversial results. The ability of mouse adipose tissue-derived 

MSC to control the disease progression was shown in a mouse model of GvHD 

(Yañez et al. 2006). In another mouse model of GvHD, human MSC were capable 

of attenuating T cell proliferation, reducing inflammation and improving mouse 

survival (Auletta et al. 2015). However, the evidence of efficacy of mouse MSC 

in inhibiting T cell proliferation in vitro was not always associated to GvHD 

prevention in mice (Sudres et al. 2006). MSC require the presence of IFN-γ to be 

effective in mice and IFN-γ-pre-activated MSC are more efficient in suppressing 

GvHD (Polchert et al. 2008). Using humanized a NSG mouse model, a single 

MSC injection at day 7 from allo-HSCT reduced liver and gut GvHD and 

increased mouse survival, while no beneficial effect was observed if MSC were 

administrated at day 0. However, MSC pre-treated with IFN-γ efficiently 

suppressed GvHD even if administrated at day 0 (Tobin et al. 2013). In 

NOD/SCID mice, human cord blood-derived MSC could prevent GvHD if 

administered in multiple doses at weekly intervals starting at day 0; however, they 

failed to prevent GvHD if administered in a single dose or at the onset of the 

disease (Tisato et al. 2007). Therefore, the timing of MSC administration 

represents a critical issue for MSC effectiveness.  

In 2008, a successful phase II clinical trial was published with 55 steroid-

refractory aGvHD patients treated with different doses of MSC. Of them, 27 

patients received one infusion, while 28 patients received two or more doses up to 

five: 39 of 55 patients responded to MSC treatment, 30 of them achieving 

complete response with a 2-year survival of 52% compared to controls (10%). No 

acute or late side effects were observed following MSC infusion (Le Blanc et al. 

2008). Other studies have shown the safety and efficacy of MSC treatment for 

steroid-refractory aGvHD in pediatric patients (Introna et al. 2014; Erbey et al. 

2016). A private company (Osiris therapeutic inc.) has recently developed a 

commercial MSC product (Prochymal®) for steroid refractory aGvHD treatment. 

In a compassionate use study, 12 children were treated with Prochymal®, 
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achieving an overall response rate of 100% with a 58% of complete remission and 

survival at 100 days (Prasad et al. 2011). In addition, in a phase II clinical trial, 32 

patients with grade II-IV GvHD were treated with Prochymal® in combination 

with corticosteroids. In this study, an overall response rate of 94% and a complete 

remission in 77% of patients were reported, revealing the efficacy of this therapy 

(Kebriaei et al. 2009). Nevertheless, in 2009 Osiris therapeutic inc. announced 

that a phase III trial with Prochymal® failed to achieve the primary endpoint. 

Other phase III trial are in progress, whose results will be crucial to have adequate 

cues for the clinical use of MSC to treat aGvHD patients. 
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1.3 MOUSE MODELS 

Humanized mouse model for GvHD 

The first studies on GvHD were carried out in mouse models leading to the 

characterization of the typical physiopathological stages of this immune disorder. 

As GvHD is based on MHC mismatch between recipient and donor, GvHD mouse 

models were obtained thanks to the transplantation of mismatched splenocytes or 

purified T cells to a sub-lethally irradiated murine host. The most commonly 

studied aGvHD mouse model was obtained using C57BL/6 mouse (H2b) donor 

lymphocytes transplanted into sub-lethally irradiated BALB/c mouse (H2d) 

(Schroeder & DiPersio 2011). The reproducibility of this murine aGvHD models 

was used for the development of a standardized and well-defined scoring system 

that allows to define the severity of aGvHD in mice (Tobin et al. 2013). However, 

there are some limiting factors associated with these murine models. First, the 

progression and the pathology of aGvHD are similar but not identical in mice and 

humans. Moreover, murine immunology is characterized by different immune 

cells subsets, lymphocyte differentiation, and MHC molecule and cytokine 

expression (Mestas & Hughes 2004). The mechanisms occurring in mouse cells 

and human cells are quite different. Thus, in mouse models, the efficacy of human 

cell therapies cannot be established. The possibility to use humanized mouse 

model of different diseases arose from the identification of scid (severe combined 

immunodeficiency) mutation in CB17 mice by Bosma in 1983. In the following 

years, scid mutation was further investigated by different groups leading to the 

discovery that scid gene encodes a trans-acting factor involved in Ig gene 

rearrangement re-joining event and that the mutation of this gene leads to a failure 

in V(D)J rearrangement, causing mature T and B cell lack (Schuler et al. 1986; 

Hendrickson et al. 1988; Lieber et al. 1988). In 1995, PRKDC (protein kinase, 

DNA activated, catalytic peptide) gene was identified as the human homologous 

of the mouse SCID gene and scid mutation in PRKDC gene was found also in 

mice (Kirchgessner et al. 1995; Miller et al. 1995). CB17scid model was suitable 

for studies on the engraftment of human lymphocytes and hematopoiesis because 

of the lack of mature murine T and B cells. However, there were still two major 
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problems, i.e. the low rate of engraftment and proliferation of human lymphocytes 

(Mosier et al. 1988; Lapidot et al. 1992) and the age-related development of some 

functional T and B cell clones (Bosma et al. 1988; Nonoyama et al. 1993). The 

persistence of innate immune system was responsible for the scarce human cell 

engraftment in scid model; consequently, new strains with deficiency in innate 

immune system were obtained. In 1980, Makino et al. discovered NOD (non-

obese diabetic) mouse strain. This strain spontaneously develops diabetes 

associated with a rapid weight loss (Makino et al. 1980). Thanks to the 

development of a stable NOD strain, its immunological background was studied. 

NOD mice strain displayed some immunity deficiencies, including a decrease of T 

cell number and, even more interestingly, a reduction in NK cells activity 

(Kataoka et al. 1983). These findings allowed to introduce scid mutation into 

NOD background to obtain an improved model for the study of human diseases. 

Thus, the NOD-scid mouse was developed by coupling CB17scid mice and NOD 

mice (Shultz et al. 1995). This strain is characterized by a lack of mature T and B 

cells, innate immunity defects, including NK cell activity deficiency, and a 

diabetes-free condition. Compared to CB17scid mice, only about 10% of NOD-

scid mice showed autologous lymphocyte recovery after 6 months (Shultz et al. 

1995); moreover, a higher engraftment of human lymphocytes was observed (up 

to 10 fold) (Greiner et al. 1998). NOD-SCID model had been considered the best 

model for the study of human diseases for several years. However, this model 

showed some pitfalls, such as the short lifespan (8 months) due to thymic 

lymphomas occurring in about 70% of mice, and the low engraftment of human 

lymphocytes probably due to residual NK cell activity (Prochazka et al. 1992; 

Shultz et al. 1995; Greiner et al. 1998). In 2002 NOD-scid IL-2rγnull mouse 

model was developed (Ito et al. 2002) obtained thanks to a mutation in the 

interleukin-2 receptor gamma chain (IL-2R gamma) discovered in X-linked severe 

combined immunodeficiency in humans (Noguchi et al. 1993). As IL-2R gamma 

chain is a common component of receptors for IL-2, IL-4, IL-7, IL-9, IL-15 and 

IL-21 and these interleukins are involved in T, B and NK cell development, the 

loss-of-function mutation in this gene leads to an impairment of lymphocyte 

development, especially T and NK cells (DiSanto et al. 1995; Sugamura et al. 
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1996; Kovanen & Leonard 2004). Thus, the introduction of IL-2rγnull mutation in 

NOD-scid mice led to a humanized mouse model devoid of T, B and NK cells. In 

2005, the administration of cord blood hCD34+ purified cells in NOD-scid IL-

2rγnull mice led to the development of a complete human immune system, 

demonstrating the suitability of this model for studying human immune system 

(Ishikawa et al. 2005). In the last few years, several laboratories have developed 

different immune deficient mouse strains based on IL-2rγ mutation. These models 

differ for mouse background and/or type of IL-2rγ mutation. In NOD-scid 

background there are two distinct humanized models according to IL-2rγ 

mutation, i.e. NSG and the NOG mouse models. NOG mice express a 

truncated/inactive form of the γ chain, whereas NSG mice do not express any γ 

chain (Koboziev et al. 2015); both are the most suitable humanized mouse models 

to perform pre-clinical studies for the treatment of GvHD (Ito et al. 2009; King et 

al. 2009; Ali et al. 2012). 
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1.4 HUMAN PLATELT-LYSATE AND FETAL BOVINE SERUM AS 

CULTURE SUPPLEMENT   

Human Platelet Lysate (hPL) vs. Fetal Bovine Serum (FBS) 

The use of animal serum-supplemented media for cell culture is a debated issue. 

Fetal bovine serum (FBS) is still the most common culture supplement worldwide 

since it was introduced for the first time in 1958. However, several concerns are 

associated to the use of FBS for scientific purpose. The ethical issue has the 

greatest impact, as FBS is obtained from blood of calf fetuses collected by 

syringing their hearts without any form of anesthesia, after slaughtering the 

pregnant cows (Jochems et al. 2002). Some procedural safeguards were adopted 

to avoid the risk of extracting blood from vital fetus (Van Der Valk et al. 2004), 

but they are not followed by some producers due to commercial interests. In 

addition, to satisfy the high FBS request, some producers may sophisticate serum 

composition by adding other substances, such as growth-promoting additives, 

bovine serum albumin and water (Van Der Valk et al. 2017). Two cases of FBS 

abuse or alteration were reported. The first case occurred in 1994, when about 

30,000 liters of New Zealand serum were sold despite the annual production of 

FBS was of about 15,000 liters (Hodgson 1995). The second was reported in 

2013, when the U.S. Food and Drug Administration (FDA) discovered 

approximately 280,000 liters of adulterated FBS (Gstraunthaler et al. 2014). For 

all these reasons, FBS composition is not always fully known and some major 

changes can be observed within different batches (Baker 2016). This content 

variability determines significant differences in cell culturing, thus hampering the 

definition of standardized protocols and affecting reliability of scientific data. 

FBS-mediated suppression of glycosaminoglycan and type II collagen production 

has been described in fibroblast-like-type-B synoviocytes, leading to the 

inhibition of TGF-β1-dependent chondrogenesis (Bilgen et al. 2007). In addition, 

human MSC cultured in FBS have a more differentiated transcription profile 

compared to MSC cultured in autologous human serum (Shahdadfar et al. 2005), 

as well as being a possible vehicle for mycoplasma, viral contaminant, endotoxins 

or prions and therefore representing a major problem for both in vitro cell 
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culturing and in vivo pre-clinical and clinical studies. In particular, the risk of 

unknown infections or adverse reactions due to FBS components is a significant 

concern for clinical application. Thus, xeno-free supplement for cell culture is 

more and more required in clinical trials to improve patient’s safety.  

Human platelet lysate (hPL) represents a potential candidate to replace FBS as 

supplement for cell culture. hPL is a blood product deriving from platelet 

concentrates (PC) that are typically used for transfusion purposes and are 

clinically tested for safety by specialized blood donation centers. Even though the 

ethical issue on animal use is completely fixed, the use of PC for cell culturing 

instead of human transfusion may rise some ethical concerns as well. However, 

PC are no more suitable for transfusion after 4-5 day at 22±2°C, so they can be 

used for hPL preparation. As 50-60% of PC stored units expire and have to be 

discarded, hPL could be easily available (Astori et al. 2016). An additional issue 

is represented by potential bacterial contamination of PC due to the storage at 

room temperature, in addition to the presence of blood-borne pathogens, such as 

viruses. Thanks to the modern viral diagnostic assays, the risk of most common 

virus transmission (i.e. HIV, HCV and HBV) is dramatically reduced (Busch et al. 

2005; Dodd 2007; Zou et al. 2012), even though other emerging viruses might be 

not detected. To this aim, different methods for viral inactivation of PC can be 

used. The first one is based on a photo-activation process leading to viral nucleic 

acid strand breakage (Ruane et al. 2004) or transcription and replication blockade 

(Klein 2005). The second method employs a solvent/detergent treatment that acts 

by destroying viruses envelop (Horowitz et al. 1992). As for bacteria and parasite 

contamination, they can be more easily removed during platelet lysate (PL) 

production by freeze-thaw step or by using 0,2 μm pore filters just before its 

addition to the culture medium.  

In 2005, the use of hPL for human MSC culture was suggested for the first time 

(Doucet et al. 2005). hPL is a supplement containing a wide variety of growth 

factors, i.e. PDGF-AA, -AB and -BB, TGF-β1 and -β2, EGF, VEGF, b-FGF, 

BDNF, and HGF (Shih & Burnouf 2015). TGF-β 1, 2 and 3 induce MSC 

proliferation and chondrogenic differentiation (van der Kraan et al. 2009; Ogawa 

et al. 2010; Weiss et al. 2010). Similarly, BMP-2, -4, -6 and -7 induce MSC 
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osteogenic differentiation in vitro and in vivo (Lou et al. 1999; Luu et al. 2007). In 

addition, FGF, EGF and VEGF promote MSC expansion and survival (Pons et al. 

2008). Although hPL is better characterized and enriched in growth factors as 

compared to FBS, its content differs in terms of cytokine levels amongst donors; 

consequently, hPL has the same concerns of FBS in terms of data reproducibility. 

However, this problem can be minimized by pooling PC from different donors, 

thus lowering batch-to-batch content variability (Fekete et al. 2012). Moreover, 

the presence of dedicated facilities for PC production and a broad characterization 

of hPL can help to standardize the methods for hPL production. Thus, hPL seems 

to be a suitable substitute of FBS, in terms of reproducibility and safety, for ex 

vivo MSC production for clinical purposes. 
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2 RATIONAL HYPOTHESIS AND AIMS 

 

The development of new treatments for steroid-refractory aGvHD represents one 

of the most important challenge to improve the efficacy of Allo-HSCT. MSC 

therapy is an emerging treatment for aGvHD, but safe and reproducible ex vivo 

MSC expansion protocols are required. Several MSC-based clinical studies have 

been performed, leading to controversial results due to the lack of standardized 

methods. Consequently, to define a reproducible MSC-based therapeutic protocol 

for aGvHD, further pre-clinical in vitro and in vivo studies are required.  

 

In this study, we have tried to reach several goals: 

- Developing an efficient human bone marrow MSC (hBM-MSC) ex vivo 

expansion protocol for clinical application, comparing FBS with hPL as 

culture supplement: 

- Demonstrating hBM-MSC phenotype and genome stability following ex 

vivo expansion in hPL;  

- Confirming the maintenance of hBM-MSC immunological properties 

following ex vivo expansion in hPL; 

- Developing a reproducible aGvHD xenogeneic mouse model suitable for 

pre-clinical studies; 

- Defining a hPL-expanded hBM-MSC-based immunotherapy for aGvHD. 
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3 MATERIALS AND METHODS 

 

3.1 HUMAN PLATELET LYSATE (HPL) PRODUCTION AND QUALITY 

CONTROL 

Platelet Rich Plasma (PRP) pool obtained from 15 healthy donors was stored at -

80°C for 16 hours. Afterwards, it was thawed in a water bath at 37°C for 2 hours 

to perform platelet lysis by thermal shock. hPL was obtained with two 

consecutive centrifugations at 4000 g for 20’ followed by a filtration with a 0,65 

μm filtration system (Macopharma). hPL obtained was stored at -20°C until use. 

All the steps were performed maintaining sterile condition. Levels of PDGF-AB 

and TGF-β were evaluated by ELISA assay following manufacturer’s instruction 

(R&D System) (Laboratorio di Terapie Cellulari Avanzate, Vicenza). 

 

3.2 CELL ISOLATION AND CULTURE  

3.2.1 Human Bone Marrow-Derived Mesenchymal Stromal Cells (hBM-

MSC) 

Human BM-MSC from 5 healthy donors were isolated and expanded, in parallel, 

with two different culture media: FBS-supplemented medium and hPL-

supplemented medium. The procedure of hBM-MSC isolation and expansion is 

illustrated below (Figure 9). Briefly, bone marrow samples from healthy donors 

were seeded in 5-layer flask (875 cm2) at mononuclear cells (MNC) density of 

50.000/cm2 using αMEM 5% hPL (hPL-BM-MSC) or αMEM 10% FBS (FBS-

BM-MSC) media. After 72 hours, cells were washed with PBS 1X and culture 

medium was replaced. Once confluence was reached, at day 12 ± 2, cells were 

harvested using Tryple Select 1X (Gibco) and re-seeded at a cellular density of 

4.000/cm2 in αMEM 8% hPL or αMEM 10% FBS. Afterwards, culture medium 

was replaced once (day 15 ± 2) until day 19 ± 2, when cells were harvested and 

frozen at -80°C using the appropriate freezing solution: 10% Human Albumin + 

10% DMSO + NaCl or 90% FBS + 10% DMSO for hPL-hBM-MSC and FBS-

hBM-MSC, respectively. After 24 hours, cells were transferred in liquid nitrogen 

for long term storage. At the end of P0 (day 12 ± 2) and P1 (day 19 ± 2), cellular 
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phenotype was evaluated by flow cytometry and Population Doubling (PD) was 

calculated, both in hPL and FBS expansion conditions. For in vitro and in vivo 

experiments hPL-BM-MSC and FBS-BM-MSC were thawed in a heated water 

bath set at 37°C; subsequently a pre-warmed thawing solution (10% Human 

Albumin + 0,6% ACD-A + NaCl or 40% RPMI + 60% FBS respectively) was 

slowly added to cell suspension. Finally, cells were centrifuged at 400 g for 5’ at 

room temperature and resuspended in the respective culture medium. hBM-MSC 

were used in the experiments from P2 to P5.  

 

 

Figure 9. FBS and HPL-expansion protocol for hBM-MSC. Schematic representation of the 

expansion protocols used for in vitro hBM-MSC expansion. 
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3.2.2 Peripheral Blood Mononuclear Cells And T, B, NK cell Isolation 

Peripheral Blood Mononuclear Cells (PBMC) were obtained from buffy coat 

through density gradient stratification: peripheral blood was diluted 1:2 with 

sterile PBS 1X and then it was carefully layered on to the top of the 

LymphoprepTM solution (StemCell Technologies) with a ratio of 4:3 (diluted 

blood: Lymphoprep™) in a 50 ml tube. Samples were centrifuged at 800 g for 30’ 

at room temperature in order to stratify the blood. After that, the middle white ring 

(PBMC) was collected in a new 50 ml tube and washed with PBS 1X. PBMC 

were washed two more time with PBS 1X by centrifugation at 400 g for 5’ at 

room temperature. In some experiments, sorted T, B or NK cells were used, so a 

negative selection using immune-magnetic beads was performed according to the 

manufacturer’s instructions (MACS cell separation columns and T, B, NK 

isolation kit Miltenyi Biotec). Before immunomagnetic separation, PBMC 

lymphocyte populations were characterized by cytofluorimetric analysis using 

anti-CD3-FITC, anti-CD16/56-PE, anti-CD45-PerCP, anti-CD19-APC, anti-CD4-

APC-H7 and anti-CD8-PECy7 (BD-bioscience). After the separation, sorted 

lymphocytes were assessed for purity using anti-CD3-FITC, anti-CD16/56-PE, 

anti-CD45-PerCP anti-CD19-APC, anti-CD4-APCH7 and anti-CD8-PECy7 (BD-

bioscience) and viability using TO-PRO-3-iodide (Life Technologies). PBMC and 

purified immune effector cells were frozen at -80°C in a freezing solution (90% 

FBS + 10% DMSO) and after 24 hours they were transferred in liquid nitrogen for 

long-term storage. For in vitro and in vivo experiments, PBMC and purified 

immune effector cells were thawed in a heated water bath set at 37°C, 

subsequently a thawing solution (40% RPMI + 60% FBS) was slowly added to 

the cells. Finally, cells were centrifuged at 400 g for 5’ at room temperature and 

re-suspended in the respective culture medium.  
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 3.2.3 Cell Culture Media - Summary 

 

3.2.4 Freezing and Thawing Solutions - Summary 

 

 

 

 

Cell Type Culture Medium Components 

hPL-hBM-MSC Minimum Essential Medium Eagle α-modification (αMEM) 
Human platelet lysate (5% or 8% v/v) 
Pen/Strep (1% v/v) 
L-Glutamine (1% v/v) 
Heparin (3UI/ml) 

FBS-hBM-MSC Minimum Essential Medium Eagle α-modification (αMEM) 
Heat Inactivated FBS (10% v/v) 
Pen/Strep (1% v/v) 
L-Glutamine (1% v/v) 

PBMC RPMI 1640 
Heat Inactivated FBS (10% v/v) 
Pen/Strep (1% v/v) 
L-Glutamine (1% v/v) 

T cells RPMI 1640 
Human Serum (10% v/v) 
Pen/Strep (1% v/v) 
L-Glutamine (1% v/v) 

B cells RPMI 1640 
Heat Inactivated FBS (10% v/v) 
Pen/Strep (1% v/v) 
L-Glutamine (1% v/v 

NK cells 
 

Iscove’s Modified Dulbecco’s Media (IMDM) 
Human Serum (10% v/v) 
Pen/Strep (1% v/v) 
L-Glutamine (1% v/v) 

Cell Type Freezing Solution Thawing Solution 

hPL-hBM-MSC 
NaCl solution (0,9 w/v) 
Human Albumin 200g/L (10% v/v) 
DMSO (10% v/v) 

NaCl solution (0,9 w/v) 
Human Albumin 200g/L (10% v/v) 
ACD-A (0,6% v/v) 

FBS-hBM-MSC FBS (90% v/v) 
DMSO (10% v/v) 

FBS (60% v/v) 
MEM α-modification (40% v/v) 

 
PBMC 
T cells 
B cells 
NK cells 
 

FBS (90% v/v) 
DMSO (10% v/v) 

FBS (60% v/v) 
RPMI 1640 (40% v/v) 
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3.3 MESENCHYMAL STROMAL CELL CHARACTERIZATION  

3.3.1 Total Cell Count, Population Doubling and Clonogenic Assay  

The total amount of hPL- or FBS-hBM-MSC obtained was evaluated at the end of 

the expansion protocol (day 19 ± 2). The clonogenic ability of hPL- and FBS-

hBM-MSC was evaluated culturing 100.000 cells at P0 for 14 days in T25 flask. 

Cumulative population doubling (cPD) was obtained by adding the population 

doubling calculated at the end of P0 and at the end of P1. PD was calculated using 

the following formula: 

 

𝑷𝑷𝑷𝑷 =
( 𝑙𝑙𝑙𝑙𝑙𝑙10 𝑛𝑛° 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 −  𝑙𝑙𝑙𝑙𝑙𝑙10 𝑛𝑛° 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 

𝑙𝑙𝑙𝑙𝑙𝑙102
 

 

 

3.3.2 MSC Integrity 

3.3.2.1 MSC Karyotypic Analysis 

hBM-MSC at P3 were seeded in amnio-dishes (Euroclone) at cellular density of 

1200/cm2 and incubated at 37°C, 5% CO2 for 24 hours. To block cells in 

metaphase, MSC were treated overnight with colcemid (10 µg/ml). Afterwards, 

cells were treated with a hypotonic solution (KCl 0.075M), fixed and stained with 

a solution of Quinacrine (100mg) in McIlvaine buffer (100ml) for Q-

Fluorescence-Quinacrine (QFQ) banding. Karyotype was analyzed by 

fluorescence microscopy by two genetists (Struttura Semplice Genetica Medica, 

AOUI, Verona). 

 

3.3.2.2 Real-Time Polymerase Chain Reaction (PCR) 

Poly(A) RNAs were isolated and reverse-transcripted from hBM-MSC using 

MultiMACS M96thermo Separator (Miltenyi Biotec) and MultiMACS cDNA 

synthesis kit (Miltenyi Biotec) following the manufacturer’s instructions. Then, 

10 ng of cDNA were analyzed by real-time PCR in a final volume of 25 μl using 

PowerUp SYBR Green Master Mix (Thermo Scientific) containing primers for 
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the amplification of P53, P21, c-myc and hTERT (0,2 μM). β-2M was used as 

housekeeping control (see all primers sequences in Table 2). PCR conditions 

were set as follow: 2’ at 50°C, 2’ at 95°C, followed by 50 cycles of 15 seconds at 

95°C and 15 seconds at 60°C. Real-time PCR assays were run on Cobas Z480 

instrument (Roche). Relative gene expression was calculated by the ΔCT method 

and normalized to housekeeping control genes. Absolute quantification was 

calculated by the ΔΔCT method. 

 

PCR Reaction Mix Final 
Concentration 

Volume 

Master mix (2X) 1X      12,5 μl 
FWD primers (10μM ) 
REV primers (10μM ) 

0,2 μM 
0,2 μM 

0,5 μl 
0,5 μl 

cDNA (10ng) 5 ng/μl 2    μl 
H2O  9,5 μl 

  25 μl 
Table 1. qRT-PCR reaction mix content. 

 

p53 FWD GTCTGGGCTTCTTGCATTCT 
REV  AATCAACCCACAGCTGCAC 

p21 FWD CTGGAGACTCTCAGGGTCGAAAA 
REV  TGTAGAGCGGGCCTTTGAGG 

c-Myc FWD CTCCTGGCAAAAGGTCAGAG 
REV  TCGGTTGTTGCTGATCTGTC 

hTERT FWD CAGGCTCTTTTTCTACCGGAAGA 
REV  AGTGCTGTCTGATTCCAATGCTT 

β-2M FWD TCTCGCTCCGTGGCCTTA 
REV  AATCTTTGGAGTACGCTGGATAGC 

Table 2. Summary of FWD and REV primers used in qRT-PCR. 

 

3.3.3 MSC Immunophenotyping 

MSC identity was checked according to the ISCT guidelines. Briefly, hBM-MSC 

were detached using Tryple Select 1X (Gibco) and washed with PBS. At least 

1x105 cells for each condition were labeled for 15’ at room temperature in the 

dark with fluorescent monoclonal antibodies or isotype control for endothelial and 

hematopoietic markers (IgG1κ-PE, CD14-PE, CD31-PE, CD34-PE and CD45-PE, 

BD-bioscience), immunological markers (HLA-ABC-PE and HLA-DR-PE, BD-
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bioscience) and MSC markers (CD73-PE, CD90-PE and CD105-PE, BD-

bioscience). To select only viable cells, the viability marker TO-PRO-3-iodide 

(Life Technologies) was added in all tubes. After incubation, cells were washed 

with PBS, centrifuged at 400 g for 5’ and analyzed by flow cytometry (BD 

FACSCanto™ II). Data collected were analyzed with FlowJo software. 
 

3.3.4 MSC Differentiation Assays  

3.3.4.1 Osteogenic Differentiation 

At the end of the expansion protocol, 50.000 cells/well of hPL- or FBS-BM-MSC 

were seeded in a 24-well plates in αMEM 2% FBS + 1% Glutamine. After 24 

hours, when 70% confluence was reached, the culture medium was removed and 

the StemMACS OsteoDiff Media (Miltenyi Biotec) was added. Until day 15, 

culture medium was replaced every 3-4 days. To assess the osteogenic 

differentiation, cells were stained with Alizarin Red. Briefly, cells were washed 

twice with PBS and then fixed with PFA 4% for 5’ at room temperature. 

Afterwards, cells were washed with H2O deionized and stained with Alizarin Red 

2% for 5’ at room temperature. Finally, calcium accumulation was evaluated by 

microscopy.  

 

3.3.4.2 Adipogenic Differentiation 

At the end of the expansion protocol, 50.000 cells/well of hPL- or FBS-hBM-

MSC were seeded in a 24-well plates in αMEM 10% FBS + 1% Glutamine. After 

24 hours, when 70% confluence was reached, the culture medium was removed 

and a medium containing a-MEM 10% FBS + 1% Glutamine + IBMX 100 μg/ml 

+ Dexamethasone DXM 1μM + Humulin R 10 μg/ml was added. Until day 15, 

culture medium was replaced every 3-4 days. To assess the adipogenic 

differentiation, cells were stained with Oil-Red-O. Briefly, cells were fixed with 

isopropanol 60% for 1’ at room temperature. Afterwards, cells were stained with 

Oil-Red-O for 10’ at room temperature. Lastly, cells were washed with 

isopropanol 60% and the presence of lipidic vacuoli was evaluated by 

microscopy.  
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3.4 MSC IMMUNOLOGICAL ASSAYS 

3.4.1 MSC Inflammatory Immunophenotyping 

hBM-MSC were stimulated (primed) or not (resting) with pro-inflammatory 

cytokines TNF-α (15 ng/ml) and IFN-γ (10 ng/ml) (R&D Systems) for 48 hours. 

Cells were detached and washed with PBS by centrifugation at 400 g for 5’. At 

least 1x105 hBM-MSC per condition were re-suspended with PBS in 5 ml 

polystyrene round-bottom tubes. Then, cells were stained for 15’ at room 

temperature with isotype controls (IgG1κ-PE, BD bioscience), (IgG1κ-PE, IgG2b-

PE and IgG2a-APC, Biolegend) or with the following monoclonal antibodies: 

CD54-PE, CD80-PE, CD86-PE, CD-106 PE, HLA-ABC-PE, HLA-DR-PE (BD-

bioscience), CD273-APC, CD-274-PE, CD279-PE (Biolegend). To select only 

viable cells during the analysis, the viability marker TO-PRO-3-iodide (Life 

Technologies) or Propidium Iodide (PI) was added to the tubes. To evaluate the 

viability of MSC, cells were stained with Annexin V-FITC and PI. After 

incubation, cells were washed with PBS, centrifuged at 400 g for 5’ and analyzed 

by flow cytometry (BD FACSCanto™ II). Data collected were analyzed with 

FlowJo software. 

 

3.4.2 MSC Immunogenicity 

The ability of MSC to elude the innate immune system was checked by 

cytotoxicity assay according to the manufacturer’s instructions (DELFIA® cell 

cytotoxicity kit, Perkin Elmer) using NK cells as effectors. Briefly, 1x106 NK 

cells/well were seeded and activated in a 24-well plate with rhIL-2 (100U/ml) for 

48 hours at 37°C. At day +2, hBM-MSC were labeled with BATDA for 30’ at 

37°C and then washed 3 times with PBS+HEPES 20 mM by centrifugation at 300 

g for 10’. Activated NK cells were co-cultured with BATDA-labeled MSC target 

cells in a V-bottom 96-well plate at the Effector (NK):Target (MSC) ratios of 1:1, 

5:1, 15:1, 25:1 at 37°C for 3h. After the incubation, 20 μl of supernatant were 

transferred in a flat-bottom 96 well plate and 200 μl of Europium solution were 

added. After 15’ of incubation in the dark, fluorescence was measured at 615 nm 

 48 



using VICTORTMX4. The specific MSC lysis was calculated with the following 

formula: 

𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 (𝑺𝑺𝑺𝑺) =
 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)  −  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)  −  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢)
𝑥𝑥 100 

 

3.4.3 CFSE Proliferation Assay 

To assess the ability of hBM-MSC to modulate the proliferation of Immune 

Effector Cells (IECs), co-cultures with purified lymphocytes were performed. 

IECs were labeled with carboxyfluorescein-succinimidyl-ester 5 µM (CFSE, Life 

Technologies) in pre-warmed PBS-BSA 0.1% and activated with the proper 

stimuli (see Table 3). Afterwards, the co-cultures with resting or primed MSC 

with purified T, B or NK cells at different MSC:IECs ratio (1:10, 1:1 and 1:1 

respectively) were set up. In some experiments, to assess the involvement of MSC 

soluble factors, the co-cultures were performed with Transwell plate system with 

a 0.4 μm pore size membrane (Corning) at the MSC:IECs ratio of 1:5 and 1:10. 

The IECs proliferation was evaluated after 4 days (for B cells) or 6 days (for T 

and NK cells) by flow cytometry FACSCantoTMII (BD bioscience). The 

percentage of relative proliferation was calculated using the following formula:  

 

 
 

 

 

IECs Stimuli Final Concentration  

T 
anti-CD3 0.5 µg/ml PeliCluster 

anti-CD28 0.5 µg/ml PeliCluster 

 
 

B 

CPG ODN 2.5 µg/ml InvivoGen 
CD40L 50 ng/ml R&D systems 
MAB 50  5 µg/ml R&D systems 

IL-2 20 U/ml Miltenyi Biotec 
FAB (IgG,IgM, IgA) 2 µg/ml Jackson Immunoresearch 

NK IL-2 100 U/ml Miltenyi Biotec 
Table 3. Summary of lymphocytes activating stimuli used in proliferation assays. 
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3.5 IN VIVO EXPERIMENTS 

3.5.1 Mice 

NOD.Cg-Prkdcscid Il2rgtm1Sug/JicTac (NOG) from 8- to 12-week-old female mice 

were purchase from Taconic Biosciences and housed in CIRSAL animal facility, 

University of Verona. Ethical approval for all work was granted from Italian 

Ministry of Health. 

 

3.5.2 aGvHD Humanized Mouse Model 

NOG mice were irradiated with a total dose of 1.2 Gy (TBI) as conditioning 

regimen before the intravenous injection of 1x106 cells/g of thawed human PBMC 

or PBS in control mice. All mice were monitored until the end of the experiments 

(30 days) evaluating the onset of aGvHD clinical symptoms (Table 4) and the 

mouse weight loss. Mice were ethically sacrificed when the loss of weight was 

over of 20% or at the cumulative clinical score of 6, or at the end of the 

experiment.  

 
Figure 10. Experimental plan for aGvHD induction and evaluation in NOG mice. 
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Clinical Score 0 0.5 1 1.5 2 
Posture Normal Slight 

hunching 
Moderate 
hunching 

but correct 
movement 

Strong 
hunching 

and slightly 
impaired 

movement 

Strong 
hunching and 

distinct 
impaired 

movement 
Activity Normal Less 

movement 
than normal, 

more easier to 
catch 

Very little 
movement 

 

Animal stay 
still but will 
move when 

touched 

Animal has 
no activity 
also when 
touched 

Fur Normal Slight 
ruffling on 
the neck 

Slight 
ruffling on 
the neck, 
belly and 

back 

Moderate 
ruffling all 

over the 
body 

Matted Fur  
and color 
changing 

(yellowing) 

Table 4. Clinical scoring system used for aGvHD onset evaluation in NOG mice. 

 

3.5.3 aGvHD Evaluation 

The disease was evaluated at cellular level assessing the percentage of circulating 

human CD45+ cells and human T cells in different target organs by flow 

cytometry. Moreover, tissues damaging and T cell infiltration were evaluated by 

immunohistochemistry and histological analysis. 

 

3.5.3.1 aGvHD Flow Cytometric Analysis 

Lung, liver, spleen and kidney were collected in gentleMACS tubes (Miltenyi 

Biotec) with PBS EDTA 1 mM and organs dissociation was obtained using 

gentleMACS Dissociator (Miltenyi Biotec). Bone marrow was collected washing 

mice femurs and tibiae with a 1 ml sterile syringe (26 G x 1/2” 0.45 x 12.7mm) 

containing PBS. Single cell suspension was obtained after dissociation by 

filtration with 40 μm cell strainer. Lastly, cells were counted and washed with 

PBS by centrifugation at 400 g for 5’. Peripheral blood was collected from mice 

retro-orbital vein in collection tube with heparin; 5x105 cells in 100 μl of blood or 

cell suspensions were transferred in 5 ml round bottom tube, stained and 

incubated for 15’ in the dark at room temperature with the following antibodies: 

anti-CD3-FITC, anti-CD56-PE, mouse anti-CD45-PerCP-Vio700 (Miltenyi 

Biotec), anti-CD19-APC, anti-CD4-APCH7, anti-CD8-PECy7, anti-HLA-DR-
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V450, anti-CD45-V500 (BD-bioscience). Afterwards, 2 ml of lysis solution 1X 

(Stock 10X: NH4Cl 44.3g, KHCO3 5g, 0.3g EDTA in dH2O) were added to the 

tubes and incubated for 20’ to eliminate red blood cells. Finally, cells were 

washed with PBS by centrifugation at 400 g for 5’, re-suspended and analyzed by 

flow cytometry FACSCantoTMII (BD bioscience). 
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3.5.3.2 aGvHD Histopathology and Immunohistochemistry 

Liver, lung, spleen, kidney, intestine and skin were collected and fixed in formalin 

(Mondial). Samples were embedded in liquid paraffin at 58-60°C followed by a 

solidification step. Slices of tissues were obtained with the microtome and then 

samples were treated with xylene to eliminate the paraffin and with sequential 

immersions in ethylic alcohol (from 100% to 70%) to rehydrate tissues. 

Afterwards, tissues were stained with hematoxylin/eosin and anti-CD3 to evaluate 

tissue damages and T cell infiltration. Then, relying on the scores reported in table 

5, two pathologists assigned the histopathological score. Images were taken using 

objective magnifications of 10X and 40X by optical microscope (Axio Observer 

Z.1, Zeiss) (Laboratorio di Anatomia e Istologia Patologica, AOUI, Verona). 

 
Organs Damage Score 

 
LUNG 

SPLEEN 
KIDNEY 

 
 

INFLAMMATION 

0 No infiltration 
1 Sporadic or <5% infiltration 
2 Mild infiltration of 5%-25% 
3 Moderate infiltration of 25%-50% 
4 Severe infiltration of >60% 

 
 
 
 
 
 
 
 
 
 

 
 

LIVER 

 
PORTAL 

INFILTRATE 

0 None 
1 Mild, some or all portal areas 
2 Moderate, some or all portal areas 
3 Moderate/marked, all portal areas 
4 Marked, all portal areas 

 
 

BILIARY DAMAGE 

0 Absent 
1 Minimal 
2 Mild and diffuse 
3 Moderate 
4 Severe with new small bile duct present in all portal area 

 
 
 
 

CENTRILOBULAR 
VEIN 

ENDOTHELIITIS 

0 Normal (occasional lymphocytes around portal triads are 
acceptable)    

1 Rare (1 to 2/0.5 cm) focal collections of mononuclear cells in 
parenchyma)  

2 Endotheliitis present in one vessel/0.5 cm (Sub-endothelial 
infiltrate of a depth at least 2 cells in 1 vessel)  

3 Endotheliitis present in >3 vessels/0.5 cm with the infiltrating 
depth >3 cells 

4 Endotheliitis as above present in virtually all vessels 
 

APOPTOSIS 
0 Absent 
1 Minimal (< 2 foci 10x) 
2 Moderate (2-4 foci 10x) 
3 Severe (> 5 foci 10x) 

 
SKIN 

 
INFLAMMATION 

0 None 
1 Focal infiltrates 
2 Widespread infiltrates 

 
SMALL 

INTESTINE 

 
 

INFLAMMATION 

0 None 
1 Mild 
2 Moderate 
3 Severe without ulceration 
4 Severe, with ulceration 

Table 5 Histopathological scoring system used to define aGvHD severity in mouse organs. 
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3.5.4 aGvHD Treatment with hBM-MSC 

hPL-BM-MSC were cultured until passages 3 or 4, detached with Tryple, counted 

and re-suspended in PBS. aGvHD NOG mice were treated with intravenous 

injections of 1 or 2 x 106 cells/mouse of resting or primed hPL-BM-MSC, while 

control NOG mice were injected with PBS at different time point after the PBMC 

injection. All mice were monitored until the end of experiments (30 days) 

evaluating the onset of aGvHD clinical symptoms and their weight loss. The 

effect of treatments was evaluated as survival rate. Mice were ethically sacrificed 

when the loss of weight was over 20%, at the cumulative clinical score of 6, or at 

the end of the experiment. 

 

3.6 STATISTICAL ANALYSIS 

GraphPad Prism 5 software was used for statistical analysis. For nonparametric 

analysis, Mann-Whitney and Wilcoxon test were used. For parametric analysis, 

paired T test was used where applicable. Kaplan-Meier survival curves were 

established for each group and Mantel-Cox test was used. P-value is indicated 

when differences between two groups were statistically significant. 
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4 RESULTS 

 

4.1 MSC CHARACTERIZATION 

4.1.1 hPL ameliorates hBM-MSC expansion maintaining cell genome 

integrity 

Bone marrow from 5 healthy donors was expanded with 2 different expansion 

protocols using either FBS- (standard) or hPL-supplemented culture media. 

Before use, hPL was tested by ELISA assay for the content of PDGF-AB and 

TGF-β1 (Figure 11). At the end of cell expansion (day 19 ± 2), a higher number 

of cells were obtained in all the 5 donors with hPL-based medium compared to the 

FBS-based medium (Figure 12A). This effect was explained by the clonogenicity 

assay (Figure 12B) that showed the ability of hPL-hBM-MSC to form more 

colonies, suggesting a better efficiency of hPL-based medium in enhancing the 

adhesion and expansion of hBM-MSC. Moreover, the evaluation of cumulative 

population doubling revealed that hPL-hBM-MSC had more division cycles 

compared to FBS-hBM-MSC (Figure 12C). To exclude neoplastic transformation 

of cells during expansion, hBM-MSC karyotype was checked. At passage 3, FBS- 

or hPL-hBM-MSC were analyzed after a treatment with colchicine, showing a 

normal karyotype in all cases (Figure 13). In addition, the expression of a number 

of oncogenic genes (c-Myc, hTERT), onco-suppressor genes (p53) and cell cycle 

regulator genes (p21) was evaluated between passage 0 and passage 1 by 

quantitative real time PCR. A significant difference in gene expression was found 

for p53, but not for p21 and c-Myc in FBS-hBM-MSC. Nevertheless, p53 was 

never found down-regulated, thus excluding a situation favoring neoplastic 

transformation. Of note, no significant differences were found in p21, p53 and c-

Myc gene expression in hPL-hBM-MSC. In addition, hTERT expression was 

undetectable in all cases (Figure 14). 
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Figure 11. Growth factors levels in hPL. Five samples of different hPL pool were assessed for 

PDGF-AB and TGF-β content. A plasma pool sample was used as control. 

 

Figure 12. Evaluation of MSC expansion. A: The total amount of cells was evaluated at the end 

of expansion protocol (day 19 ± 2) in both hPL and FBS condition. Error bars represented mean ± 

SEM of five independent experiments. B: 100.000 hPL- or FBS-hBM-MSC were seeded at P0 in 

T25 flasks and the number of colonies was evaluated after 14 days. Error bars represented mean ± 

SEM of five independent experiments. C: The cumulative population doubling (cPD) was 

calculated adding the PD at the end of P0 and P1. Error bars represented mean ± SEM of five 

independent experiments. A-C Mann-Whitney test was used for statistical analysis **P<0.005; B 

paired t-test was used for statistical analysis ***P<0.0001.  

B 

C 

A 

 ***  
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Figure 13. MSC Karyotype. Representative images of karyotype asset of hBM-MSC donor 

expanded in FBS (left) or hPL (right). In all 5 hBM-MSC samples, chromosomes number was 

evaluated analyzing at least 30 metaphases after treatment with colchicine for 16 hours. 
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Figure 14. Oncogeneic and Onco-suppressor gene evaluations. The expression of p21, p53, c-

Myc and hTERT was evaluated by Real Time PCR at the end of P0 and P1. Data are expressed as 

fold change of the relative expression at P1 on the relative expression at P0. Error bars represent 

mean ± SEM of six independent experiments. Wilcoxon test was used for statistical analysis 

*P<0.05. 
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4.1.2 MSC identity is not affected by expansion protocol with hPL-

supplemented medium  

Cells were characterized according the ISCT guidelines. hPL- and FBS-hBM-

MSC were detached at the end of expansion and checked for hematopoietic, 

immunological and mesenchymal markers by flow cytometry. The lack of 

expression of CD14, CD31, CD34, CD45 and HLA-DR and the expression of 

CD73, CD90, CD105 and HLA-ABC demonstrated the typical mesenchymal 

phenotype (Figure 15). Noteworthy, hPL-BM-MSC showed a significant higher 

expression of mesenchymal markers (except for CD105) and HLA-ABC (MHC-

I). Furthermore, we also confirmed the mesodermal differentiation potential 

showing the ability of hBM-MSC to differentiate in adipocytes and osteoblasts 

(Figure 16). 

 

 

Figure 15. MSC immune phenotype. The expression of hematopoietic, immunological and 

mesenchymal markers was evaluated at the end of expansion (day 19 ± 2) by flow cytometry.        

Data are represented as relative median fluorescence intensity. Error bars represented mean ± SEM 

of ten independent experiments. Wilcoxon test was used for statistical analysis ***P≤0.001. 
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Figure 16. MSC differentiation. FBS- or hPL-hBM-MSC were seeded and cultured in standard culture medium (CTRL), in adipogenic medium (ADIPO) or in 

osteogenic medium (OSTEO) for 15 days.  For adipocytic differentiation detection, CTRL cells and ADIPO cells were stained with Oil-Red-O. For osteoblastic 

differentiation detection, CTRL cells and OSTEO cells were stained with Alizarin Red. For CTRL, images were taken at 2.5x magnification. For ADIPO 

differentiation at 2.5x and 20x magnification, for OSTEO differentiation 2.5x of magnification. 

 

 

 

OSTEO CTRL CTRL 

hPL-hBM-MSC 

FBS-hBM-MSC 

ADIPO 
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4.2 MSC IMMUNOLOGICAL ASSAYS 

4.2.1 hPL-hBM-MSC acquire the anti-inflammatory phenotype after 

treatment with IFN-γ and TNF-α 

MSC can exert their anti-inflammatory activity once they undergo the “licensing” 

or “priming” process that occurs when high levels of pro-inflammatory cytokines, 

such as IFN-γ, TNF-α or IL-1, are present in the microenvironment. Therefore, to 

evaluate whether hPL-hBM-MSC could acquire the anti-inflammatory phenotype, 

as previously described for FBS-hBM-MSC, we treated cells with IFN-γ and 

TNF-α. Overexpression of different cell markers was evaluated by flow cytometry 

after 48 hours. The increase of the adhesion molecules CD54 (I-CAM) and 

CD106 (V-CAM), the anti-inflammatory molecules CD273 (PD-L2) and CD274 

(PD-L1) and the immunological molecule HLA-DR (MHC-II) was observed in 

both cell types (Figure 17). Unexpectedly, hPL-hBM-MSC showed a higher 

expression of HLA-ABC (MHC-I) compared to FBS-hBM-MSC in primed 

condition. Moreover, similar MHC-I expression was observed in both resting 

hPL-hBM-MSC and primed FBS-hBM-MSC. 
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Figure 17. MSC priming. FBS-hBM-MSC and hPL-hBM-MSC were treated or not with IFN-γ 

(10 ng/ml) and TNF-α (15 ng/ml) for 48 hours. Evaluation of markers expression was performed 

by flow cytometry. Results are represented as fold change expression of specific marker compared 

to isotype control. Error bars represented mean ± SEM of 5 independent experiments. Wilcoxon 

test was used for statistical analysis P*<0.05 
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4.2.2 Primed-MSC are capable of eluding NK cell control 

The innate immune system plays a role in the immune surveillance recognizing 

exogenous agents and activating the immune response. Cell immunogenicity is 

one of the main issues in cell therapy, since allogeneic cells could be recognized 

and destroyed by patient’s immune system, especially NK cells, one of the main 

effector cells of the innate immune system. To measure this phenomenon, we used 

a NK cell-based cytotoxicity assay by co-culturing hBM-MSC with activated NK 

cells, thus finding that resting hBM-MSC had an intrinsic ability to resist to NK 

cell-mediated lysis. Pre-priming with IFN-γ and TNF-α further increased hBM-

MSC refractoriness to NK cell-mediated lysis (Figure 18A and 18B). No 

significant differences were found comparing primed FBS-hBM-MSC and hPL-

BM-MSC (Figure 18D). However, resting hPL-hBM-MSC showed a slightly 

higher ability to elude NK cell surveillance compared to resting FBS-hBM-MSC 

(Figure 18C).  
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Figure 18. MSC immunogenicity assay. A-B: hPL-hBM-MSC and FBS-hBM-MSC were treated 

or not with IFN-γ (10 ng/ml) and TNF-α (15 ng/ml) for 48 hours and incubated with pre-

stimulated NK cells (rhIL-2 100 U/ml) for 3 hours. C: comparison of resting hPL- and FBS-hBM-

MSC. D: comparison of primed hPL- and FBS-hBM-MSC. Data are represented as NK cell-
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specific lysis. Error bars represented mean ± SEM of 5 independent experiments. Wilcoxon test 

was used for statistical analysis P*<0.05. 

 

4.2.3 hPL-BM-MSC, similarly to FBS-hBM-MSC, suppress T, B and NK cell 

proliferation 

A proliferation assay was carried out to evaluate the ability of hPL- and FBS-

hBM-MSC to inhibit purified T, B and NK cell proliferation. We confirmed the 

natural ability of resting hBM-MSC to inhibit T and NK cells. On the other hand, 

resting hBM-MSC showed a trophic effect towards B cells. Moreover, we found 

that primed hBM-MSC had a higher inhibiting activity towards T and NK cells 

and acquired immune suppressive activity also towards B cells (Figure 19). The 

percentage of T cell inhibition by resting FBS-hBM-MSC and hPL-hBM-MSC 

was 75.7% and 81.1%, respectively, while by primed FBS-hBM-MSC and hPL-

hBM-MSC was 85.6% and 84.8%, respectively. The inhibition of B cells by 

primed hBM-MSC was very similar to that of T cells (83.7% and 85.2% for FBS-

hBM-MSC and hPL-hBM-MSC, respectively). Finally, NK cell inhibition by 

primed hBM-MSC was lower compared to T and B cells (79.9% and 59% for 

FBS-hBM-MSC and hPL-hBM-MSC, respectively) but significant. Therefore, 

hPL-expansion protocol did not affect hBM-MSC inhibitory functions. 
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Figure 19. hBM-MSC immune modulatory activity. Sorted T, B or NK cells were activated 

with proper stimuli and cultured alone or in presence of resting or primed hBM-MSC for 4 days (B 
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cells) or 6 days (T and NK cells) at the MSC:IEC ratio of 1:10 for T cells, and 1:1 for B and NK 

cells. Data are represented as percentage of relative proliferating cells. Error bars represented mean 

± SEM of 5 independent experiments. Wilcoxon test was used for statistical analysis P*<0.05. 

 

4.2.4 Soluble factors are involved in T cell immunosuppression  

We assessed the ability of soluble factors derived from resting or primed hBM-

MSC to inhibit T cells. Therefore, we performed co-cultures using Transwell® 

system to avoid cell-to-cell contact. We found that soluble factors are highly 

involved in hBM-MSC-mediated T cell immunosuppression. T cells were strongly 

inhibited at both resting and primed conditions at the 1:5 ratio (for FBS-hBM-

MSC: 76% and 80%, for hPL-hBM-MSC: 65% and 64%, respectively) and at the 

1:10 ratio (for FBS-hBM-MSC: 66% and 76%, for hPL-hBM-MSC: 43% and 

38%, respectively). In the latter case, hPL-hBM-MSC showed lower inhibitory 

activity towards T cells as compared to FBS-hBM-MSC (Figure 20). 

 

Figure 20. Soluble factor-mediated immune modulatory activity. Purified T, B or NK cells 

were activated with proper stimuli and cultured alone or in presence of resting or primed, FBS- or 

hPL-expanded, hBM-MSC for 4 days (B cells) or 6 days (T and NK cells) in a Transwell system 

at the E:T ratio of 1:5  and 1:10. Data are represented as percentage of relative proliferating cells. 

Error bars represented mean ± SEM of 5 independent experiments. Wilcoxon test was used for 

statistical analysis P*<0.05 
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4.3 XENOGENEIC aGvHD MOUSE MODEL 

4.3.1 Characterization of Peripheral Blood Mononuclear Cells for aGvHD 

Induction 

PBMC characterization was important to determine whether each PBMC batch 

was suitable for “in vivo” aGvHD induction. Thus, through flow cytometry we 

identified the composition of lymphocyte subsets of every PBMC batch as quality 

control assay before usage (Figure 21A). We found that at the end of purification 

protocol, PBMC were composed of 72-90% of T cells, 2-9% of B cells and 5-13% 

of NK cells (Figure 21B). Moreover, we checked CD4:CD8 ratio in T cell 

population, and we found about of 2:1 ratio as expected in healthy donors (Figure 

21C). The, we evaluated though CFSE proliferation assay the activation ability of 

thawed PMBC, particularly T cells (Figure 21D), and we found that all PBMC 

stimulated with αCD3 and αCD28 showed a proliferation rate over 90% (Figure 

21E).  
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Figure 21. PBMC characterization. A-B: Representative plots of PBMC composition in terms of 

T, B and NK cells. C: T, B and NK cells in isolated PBMC. Data are represented as percentage of 

cell populations. Error bars represented mean ± SEM of 5 independent experiments. D: 

Representative plot of T cell composition in terms of CD4+ and CD8+ T cells in isolated PBMC. 

E: Representative histograms of CFSE proliferation assay on PBMC. F: CFSE proliferation assay 

of unstimulated or CD3-CD28-stimulated PBMC. Data are represented as percentage of 

proliferating cells. Error bars represented mean ± SEM of 5 independent experiments. 
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4.3.2 Severe Systemic aGvHD Xenogeneic Mouse Model 

To obtain a reproducible aGvHD mouse model, NOG mice were sub-lethally 

irradiated with 1.2 Gy and intravenously injected with 1x106 PBMC. The 

percentage of weight loss was evaluated until day 30, taking into consideration 

that at the beginning a weight loss was observed in all mice due to the irradiation. 

The onset of aGvHD occurred at day 9, when mice started to lose weight more 

rapidly, whereas control mice gained weight and at the end of the experiment 

(Day 30) recovered completely their initial weight (Figure 22A). Death rate in 

PBMC-injected mice was 100% (Figure 22B). After death, different organs were 

analyzed, thus finding high degree of human lymphocyte infiltration in bone 

marrow, peripheral blood, kidney, lung, liver and spleen (Figure 22C). Amongst 

infiltrating human CD45+ cells in mouse tissues, the vast majority was 

represented by T cells in all organs (Figure 22D). Of note, a few B cells were 

found in the enlarged spleen of some PBMC-injected mice in comparison to 

control mice (1 cm and 1.4 cm size, respectively) (Figure 22E). To confirm the 

aGvHD onset, we evaluated tissue damages and T cell infiltration also through 

immunohistochemistry. Hematoxylin/Eosin (HE) and CD3 staining were 

performed on lung, liver, spleen, kidney, skin and small intestine (Figure 23 and 

24). We confirmed the broad infiltration in the main target organs and a slight 

infiltration in skin and small intestine. Finally, we scored aGvHD severity in 

mouse organs (Table 6) on the basis of the parameters described in Table 5 

(Materials & Methods). All these data confirmed the presence of a reproducible, 

systemic and severe aGvHD xenogeneic mouse model. 
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Figure 22. aGvHD mouse model. A: Weight change curves of aGvHD mice (PBMC) and control 

mice (PBS). B: Kaplan-Meier survival curves of aGvHD mice (PBMC) and control mice (PBS). 

Log-rank (Mantel-Cox) test was used for statistical analysis P***<0.001. C: human infiltrating 

cells in different mouse target organs. Data are represented as percentage of human CD45+ cells 

on total CD45+ cells. Error bars represented mean ± SEM of 15 independent experiments. D: 

human infiltrating T cells in different mouse target organs. Data are represented as percentage of 

human CD3+ cells on human CD45+ cells. Error bars represented mean ± SEM of 15 independent 

experiments. E: Splenomegaly in aGvHD mice.    
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Figure 23.  Histopathological evaluation of mouse tissues. Tissues from aGvHD or control mice 

(lung (A), liver (B), spleen (C)) were fixed and stained with Hematoxylin and Eosin or anti-hCD3 

to evaluate tissue damage and T cell infiltrates. In figure B, black arrow A = Apoptosis, red arrow 

B = Biliary damage, arrow green P = Portal infiltrate and blue arrow E= Endotheliitis. 
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Figure 24. Histopathological evaluation of mouse tissues. Tissues from aGvHD or control mice 

(kidney (A), skin (B), small intestine (C)) were fixed and stained with Hematoxylin and Eosin or 

anti-hCD3 to evaluate tissue damage and T infiltrates. 
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LUNG LIVER SPLEEN KIDNEY SKIN SMALL 
INTESTINE 

 

INFLAMMATION INFLAMMATION BILIARY 
DAMAGE 

CENTROLOBULAR 
VEIN 

ENDOTHELIITIS 
APOPTOSIS INFLAMMATION INFLAMMATION INFLAMMATION INFLAMMATION 

A 2 3 3 1 3 2 3 1 1 
B 4 4 4 2 3 4 4 2 3 
C 0 0 0 0 0 0 0 0 0 
D 0 0 0 0 0 0 0 0 0 
E 1 1 0 0 0 2 0 0 1 
F 2 2 1 0 1 3 1 0 1 
G 1 1 1 0 0 3 1 0 0 
H 2 2 2 1 1 3 2 0 1 
I 4 3 3 3 3 3 3 1 2 
J 4 4 4 3 3 4 3 1 1 
K 3 3 2 3 1 2 1 1 1 
L 4 3 3 3 3 3 2 1 1 
M 3 3 2 2 3 3 3 1 1 

Table 6. Histopathological score of mouse organs. A, B, E, F, G, H, I, L and M: aGvHD mice; C and D: control mice. 
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4.3.3 hPL-hBM-MSC treatment of aGvHD mice has no significant effect on 

mouse survival  

Different schedules of treatments with hPL-hBM-MSC were tested in aGvHD 

mice, i.e. three administrations of 1x106 hPL-hBM-MSC and two different time 

points of administration (Day +2, +5, +7 vs. Day +5, + 7, +9). We did not find 

significant differences in mouse survival according to the administration 

schedules. Moreover, no differences were found in survival between aGvHD mice 

and hBM-MSC-treated mice (Figure 25A). Hypothesizing that 1x106 hBM-MSC 

dose was probably not enough for a therapeutic effect, we decided to increase the 

dose. Thus, 2x106 hPL-hBM-MSC were intravenously injected at Day +5, +7, +9.  

In this case, probably due to pulmonary embolism for high dose of MSC (data not 

shown), we had 50% of mouse mortality during the intravenous injection with 

resting hBM-MSC and 100% with primed hBM-MSC. To prevent this problem, 

we performed intraperitoneal injection of 1x106 resting or primed hBM-MSC for 

10 days (from day +1 to day +10 vs from day +7 to day +16). Again, no 

differences in mouse survival were found with this administration route (Figure 

25B and 25C). Finally, we used two different hBM-MSC doses (0.5x106 and 

2x106 hPL-hBM-MSC) and 4 administrations with larger time interval amongst 

injections (day +4, +8, +12, and +16). We found a slight, but not significant 

improvement of survival curve of hBM-MSC-treated aGvHD mice as compared 

to aGvHD mice (Figure 25D). None of the mice died of embolism, but a few 

mice survived until day +16 to conclude the hBM-MSC administration schedule.  
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Figure 25. hPL-hBM-MSC treatment of aGvHD mice. A: Kaplan-Meier survival curves of 

aGvHD mice treated or not with intravenous injection of 1x106 resting hBM-MSC at day +2, +5, 

+7 or day +5, + 7, +9 after PBMC injection (Day 0). B and C: Kaplan-Meier survival curves of 

aGvHD mice treated or not with intraperitoneal injection of 1x106 resting or primed hBM-MSC 

starting at day +1 up to day +10 or starting at day +7 up to day +16 after PBMC injection (Day 0). 

D: Kaplan-Meier survival curves of aGvHD mice treated or not with intravenous injection of 0.5 

or 2x106 resting MSC at day +4, +8, +12, +16 after PBMC injection (Day 0).  
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5 DISCUSSION AND CONCLUSIONS 

 

After Allo-HSCT, GvHD occurs in 20-70% patients. This donor T cell-mediated    

alloreactive inflammatory disease is depending on histocompatibility degree 

between donor and recipient and is characterized by high mortality in case of 

steroid-refractoriness (Flowers et al. 2011; Hahn et al. 2008; Lee et al. 2003; Lee 

et al. 2013). Thus, second- or third-line therapies are required when the first line 

corticosteroids treatment fails. For this purpose, MSC can represent a suitable tool 

for the treatment of inflammatory diseases, including GvHD, as suggested by the 

growing literature published on MSC biology starting from 2002 (Di Nicola et al. 

2002; Bartholomew et al. 2002; Le Blanc et al. 2004; Krampera et al. 2006; 

Augello et al. 2007; Ren et al. 2008; Di Trapani et al. 2016).  

Patient’s safety in the clinical setting of cell therapies is a major concern, so the 

use of xeno-free product is always preferred. Human platelet lysate (hPL) a is 

potential alternative to FBS as culture supplement for clinical grade-MSC 

expansion (Doucet et al. 2005).  

Here, we assessed the in vitro immunological properties and in vivo application of 

hBM-MSC in aGvHD, showing the safety and the advantages in using hPL-

expanded hBM-MSC. The cell number required for clinical application is a 

critical point. Indeed, the number of MSC necessary for a single patient in aGvHD 

cell therapy is very high and ranges from about 0.4 to 9x106 per kg body weight 

(Le Blanc et al. 2004; Kebriaei et al. 2009; Dominici et al. 2006; Le Blanc et al. 

2008; Introna et al. 2014; Erbey et al. 2016). In addition, more than one MSC 

infusion is usually required. Our results showed that the hBM-MSC expansion 

protocol adopted led to a greater number of cells when using the hPL-

supplemented medium as compared to the FBS-supplemented medium. Indeed, 

hPL contains several growth factors, such as PDGF-AA, -AB and -BB, TGF-β1 

and -β2, EGF, VEGF, b-FGF, and HFG that support MSC proliferation (Pons et 

al. 2008; Shih & Burnouf 2015; Astori et al. 2016). In addition, we showed that 

hPL-hBM-MSC possess a greater adhesion capability to the culture flasks at the 

first seeding (P0) as well as proliferation rate than FBS-hBM-MSC. Although a 

higher proliferation rate correlates with a more rapid cell senescence, we found 
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that at the end of culture the genome integrity was maintained, both in terms of 

karyotype and cell cycle-related gene expression. Moreover, no evidence of cell 

senescence, in terms of transcriptional profile and in vitro functional properties, 

was observed. According to the ISCT minimal criteria for MSC definition, the 

isolated hBM-MSC population was characterized with standardized methods. In 

fact, the achievement of a homogeneous MSC population is essential for clinical 

application.  Thus, the ability to differentiate into adipocytes and osteocytes and 

the expression of specific cell markers confirmed the MSC identity of the isolated 

cell populations. Our results were in line with the ISCT criteria, showing the 

presence of the MSC markers (CD73, CD90 and CD105), the absence of 

hematopoietic markers (CD14, CD31, CD34, CD45) and the capability of 

adipogenic and osteogenic differentiation in vitro (Dominici et al. 2006). 

Moreover, we showed that hPL increased significantly the presence of CD73 and 

CD90 molecules on hBM-MSC as compared to FBS. These findings suggest that 

hBM-MSC expanded in hPL may have a stronger immature phenotype, as CD90 

modulation correlates with the enhancement of osteogenic and adipogenic 

differentiation in vitro (Moraes et al. 2016). In addition, hPL-hBM-MSC may 

exert a major immune modulatory activity, as the inhibition of CD73 expression 

on MSC restores T cell proliferation in a co-culture system and reverts their 

therapeutic effect on experimental autoimmune uveitis (EAU) (Chen et al. 2016); 

consequently, the use of hPL-hBM-MSC for clinical application in inflammatory 

diseases could have some advantages.  

However, several mechanisms are involved in MSC immune suppression, and the 

acquisition of the anti-inflammatory phenotype (MSC2) is mandatory to exert 

immune modulatory functions (Krampera 2011). It is well known that IFN-γ and 

TNF-α play a role in MSC2 differentiation. We found, after the treatment with 

IFN-γ and TNF-α, the overexpression on hBM-MSC of CD54 (I-CAM), CD106 

(V-CAM), MHC-I (HLA-ABC), MHC-II (HLA-DR), CD274 (PD-L1) and 

CD273 (PD-L2) molecules, thus suggesting the acquisition of MSC2 phenotype 

(Menard et al. 2013; Di Trapani et al. 2013; Ren et al. 2010; Chan et al. 2006; 

Sheng et al. 2008). In addition, we reported the over-expression of PD-L2 in 

primed hBM-MSC; the function of this molecule in the PD-L/PD1-pathway is still 
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unclear, but it could act as inhibitory molecule towards immune effector cells 

(Davies et al. 2017). 

Several studies have highlighted the inhibitory effect of MSC on different 

immune effector cells, but many literature data are still contradictory. In our 

study, we used standardized protocols (Menard et al. 2013) to quantify the 

immune suppressive ability of hPL- and FBS-expanded hBM-MSC towards 

human lymphocytes, both at resting and inflammatory-primed conditions. We 

found that primed hBM-MSC efficiently inhibited T, B and NK cell proliferation. 

By contrast, resting hBM-MSC efficiently inhibited T cells and less significantly 

NK cells, but they were unable to suppress B cell proliferation for the lacking 

production of IFN-γ that plays a pivotal role in the MSC acquisition of immune-

suppressive properties (Krampera et al. 2006; Ren et al. 2008). As B cells are not 

IFN-γ-producing cells, differently from T and NK cells, they were not inhibited 

by resting hBM-MSC that, in turn, displayed a supporting role towards B cell 

survival and proliferation, as previously shown (Krampera 2011). As human MSC 

exert their immune modulatory activity mainly through paracrine effects, we 

performed the CFSE-based proliferation assay on T cells in a Transwell system 

to prevent cell-to-cell contact. Thus, we confirmed the involvement of soluble 

factors in hPL-hBM-MSC immune suppressive mechanism, as previously shown 

for FBS-hBM-MSC (Di Trapani et al. 2016).  

The ability of NK cells to recognize foreign antigens, thus hampering allogeneic 

cell therapies, is mainly based on MHC-I levels present on target cell surface. NK 

cells activate the immune response and exert their cytotoxic action towards cells 

that do not express or express MHC-I at low levels (i.e. virus-infected cells or 

tumour cells) (Moretta et al. 1996). hBM-MSC showed a low immunogenicity 

towards NK cells, especially after IFN-γ/TNF-α-mediated priming. Interestingly, 

resting hPL-hBM-MSC had a slightly better ability to elude NK cell-mediated 

lysis as compared to resting FBS-hBM-MSC, probably due to the higher level of 

HLA-ABC expression by resting hPL-hBM-MSC. This hypothesis is supported 

by the ability of MHC-I molecules to interact with the inhibitory KIRs on NK 

cells (Vély et al. 1996; Lanier 1997; Long 2008). 
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To achieve a clinical protocol for GvHD treatment, pre-clinical studies in mouse 

models are required. Several studies were performed on mouse background 

leading to the current knowledge on MSC functions. However, significant 

differences were found in GvHD pathology and progression between mouse and 

human settings. Moreover, different mechanisms occur during the interaction 

amongst murine cells, murine and human cells or human cells (Mestas & Hughes 

2004). Thus, to translate pre-clinical evidence into clinical practice, the use of 

humanized mouse models is mandatory. Here, we developed a severe aGvHD 

model in xenogeneic mice through the injection of human PBMC. In our model, 

differently from other humanized models, aGvHD appears earlier and is rapidly 

lethal; thus, in a 30 day-experiment the effect of MSC can be reproducibly 

evaluated. Unfortunately, we found that hPL-hBM-MSC do not ameliorate 

aGvHD symptoms: we tested different treatment schedules, but only in one of 

these a slight, but not significant improvement of mouse survival could be 

achieved. These findings are in line with other studies in which MSC could 

efficiently inhibit T cells in vitro, but failed to suppress aGvHD in vivo (Badillo et 

al. 2008; Sudres et al. 2006). As reported in literature (Lee et al. 2009; Kim et al. 

2014; Saat et al. 2016), lung entrapment of intravenously injected MSC could be 

the main explanation for the inefficacy of MSC treatment, preventing MSC from 

reaching target organs. Although human MSC exert their anti-inflammatory 

activity mainly through soluble factors, the short lifespan of MSC after the 

injection could hamper any beneficial effects (Lee et al. 2009; Kim et al. 2014; 

Saat et al. 2016). Moreover, at the time of injection, the level of pro-inflammatory 

cytokines (i.e. IFN-γ) could not be sufficient to prime injected human MSC. In a 

previous study, the use of IFN-γ-primed murine MSC for aGvHD treatment had 

beneficial effects (Polchert et al. 2008). In our study, on the other hand, the 

administration of primed hPL-hBM-MSC was associated to high mortality rate 

following injection. Therefore, our mouse model, very efficient in determining 

aGvHD in a reproducible manner, still needs some improvements to assess the 

efficacy of hPL-hBM-MSC administration to prevent and control aGvHD onset 

and gravity.  
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In conclusion, our work pointed out that the clinical use of hPL as supplement for 

hBM-MSC cultures have several advantages not only for patient’s safety, 

avoiding heterologous compounds, but also in terms of cell production efficiency 

and maintenance of hBM-MSC phenotype and functions. Furthermore, the 

development of a reproducible xenogeneic mouse model of severe aGvHD may 

be useful for additional pre-clinical studies involving hPL-hBM-MSC or MSC of 

different tissue origin. Our group is currently testing both other MSC 

administration schedules to improve the pre-clinical in vivo model and alternative 

approaches to infuse biologically active molecules capable of modulating the 

functions of the immune effector cells involved in aGvHD onset and progression. 

In particular, as human MSC exert their effects mainly through paracrine 

mechanisms (Di Trapani et al. 2016), we are currently testing the use of primed 

hBM-MSC-derived extracellular vesicles (EVs) instead of whole MSC. This 

approach could have several significant advantages in terms of prompt availability 

for clinical use (previous production and cryopreservation of primed EVs), precise 

quantification of the biological efficacy (EV dose expressed as functional units) 

and reproducibility of the results (depending on the administered EV dose and not 

on proliferation capability of infused MSC).  For all these reasons, hPL-hBM-

MSC-derived EVs could represent a potential therapeutic tool for aGvHD that 

could be tested with our preclinical xenogenic mouse model. 
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