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Abstract. For the numerical solution of time-dependent partial differential equations, a class of
meshfree exponential integrators is proposed. These methods are of particular interest in situations
where the solution of the differential equation concentrates on a small part of the computational
domain which may vary in time. For the space discretization, radial basis functions with compact
support are suggested. The reasons for this choice are the stability and robustness of the resulting
interpolation procedure. The time integration is performed with an exponential Rosenbrock method.
The required matrix functions are computed by Newton interpolation based on Leja points. The
proposed integrators are fully adaptive in space and time. Numerical examples that illustrate the
robustness and the good stability properties of the method are included.
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1. Introduction. In this paper we are concerned with the numerical solution of
(nonlinear) time-dependent partial differential equations (PDEs). We are particularly
interested in situations where the essential support of the solution is small and varying
in time. By the essential support of a function we mean the closure of the set of points
for which the magnitude of the function is greater than some prescribed threshold
value. The essential support is called small if its size is small in comparison with the
spatial domain of interest. We always assume that the solution is sufficiently smooth
in time and space, and that its essential support is bounded away from the borders
of the domain of interest. A typical example of such a function is a Gaussian pulse in
the plane. We emphasize that the domain of interest does not need to be bounded,
in principle.

In the above situation, classical space discretizations based on a fixed grid or
mesh are computationally inefficient, in general. In order to keep the number of
degrees of freedom small, one should rather consider an adaptive mesh where the
majority of discretization points is contained in the essential support of the solution.
In the last few decades, new approximation methods were developed that do not
even require a mesh. Among these so-called meshfree (or meshless) methods, we
mention the approaches based on moving least squares or on radial basis functions
(RBFs). The latter are particularly suited for computations with high-dimensional
data, for problems involving moving fronts such as traveling waves, and for multiscale
resolution. A great advantage of meshfree methods lies in their flexibility to add or
delete discretization points. Compactly supported radial basis functions (CSRBFs)
were developed around 1995 in a series of papers by Schaback, Wendland, and Wu;
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A432 M. CALIARI, A. OSTERMANN, AND S. RAINER

see [27, 33, 37]. They are of particular interest for our purpose, because of their good
stability properties and their computational efficiency.

For the time integration of differential equations, there exists a large number of
efficient integrators. For stiff problems resulting from space discretizations of PDEs
and, in particular, for problems with dominating advection, exponential integrators
have turned out to be reliable and efficient; see [8, 9, 16, 31]. Therefore, we will focus
on these methods here. We emphasize, however, that the ideas developed in this
paper are likewise applicable to other time integration schemes, as well as to other
spatial discretizations.

Both employed discretization techniques, space discretizations based on (com-
pactly supported) RBFs and exponential integrators for time integration, are well
understood on their own. Their combination, however, has not been investigated in
detail yet. In this paper we construct a fully adaptive meshfree exponential integrator
based on an efficient error control in space and time.

The outline of this paper is as follows. We start in section 2 with the general
description of a meshfree integrator. In section 3 we give a brief introduction to RBF
interpolation and we introduce compactly supported RBFs in more detail. In the last
part of this section we answer the question how the RBF approach can be applied to
the numerical solution of PDEs.

Section 4 is devoted to the time integration of PDEs using exponential integra-
tors. The main focus will be on exponential Rosenbrock integrators, since they are
well suited for the solution of nonlinear time-dependent PDEs. For the numerical com-
putation of the arising operator functions, the Leja point method will be employed.
A special adaptation for problems with dominating advection part will be discussed
there as well. This approach combines very well with the RBF discretization.

In section 5, we give further details on the particular meshfree integrator that
we propose. The employed strategy for finding appropriate interpolation and check
points is discussed, and the combination of exponential integrators with the RBF
approach is elaborated. Section 6 is devoted to numerical experiments that illustrate
the stability and robustness of the introduced method. We test our method on a
two-dimensional pure advection equation, the Molenkamp–Crowley test, and on a
three-dimensional extension of it. This example models the flow around a center.
Further, we apply the integrator to an advection-reaction-diffusion problem in two
dimensions. For these illustrations, we have implemented an experimental code in
MATLAB which can be downloaded from MathWorks.1

2. The concept of a meshfree integrator. Throughout this paper, we con-
sider a time-dependent PDE of the form

(2.1)
∂

∂t
u(t, ξ) = F

(
t, ξ, u(t, ξ),

∂

∂ξ
u(t, ξ), . . .

)
, t ∈ [t0, T ], ξ ∈ Ω ⊂ R

d,

subject to appropriate initial and boundary conditions. For its numerical solution,
we propose a meshfree integrator that provides a numerical solution at discrete times
t0 < t1 < t2 < · · · < tN = T . This numerical approximation at time tn will be
denoted henceforth by un(ξ).

A time step of a meshfree integrator consists of three parts: a procedure that dis-
cretizes a given function (the initial value), a method that integrates this discretization
in time over a given time interval, and, finally, a procedure that reconstructs the so-
lution from the fully discrete result. Moreover, it is vital to provide the possibility to

1http://www.mathworks.com/matlabcentral
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MESHFREE EXPONENTIAL INTEGRATORS A433

Table 1

Principle of a meshfree integrator.

Repeat % time stepping loop
∗ Choose a set of candidate interpolation points.
Repeat % residual subsampling

∗ Interpolate the current solution with respect to the actual set of candidate
interpolation points.

∗ Check error and add/remove points using the thresholds θr, θc.
∗ Update the set of candidate interpolation points.

Until the set of candidate interpolation points remains fixed.
∗ Take the set of candidate interpolation points as the set of inter-

polation points for the time step.
Repeat % carry out a single time step

∗ Compute the check points.
∗ Evaluate the current solution at the set of integration points.
∗ Perform the time step and control the error.
∗ If necessary, add new interpolation points using the monitor function and θr.

Until the set of interpolation points remains fixed.
∗ Accept time step and new solution.

Until the final time T is reached.

control the error both in time and in space. Before describing the full time step in de-
tail, we discuss its single building blocks. The algorithm stated in Table 1 summarizes
the whole concept.

2.1. Space discretization. As we are interested in problems whose solutions
have a strongly localized essential support varying in time, we need a highly adaptive
space discretization. For this reason, we propose a discretization based on interpola-
tion. Let w : Ω ⊂ Rd → R be a given function. For an appropriate set of interpolation
points X = {xi} ⊂ Ω and suitable basis functions {Φi}, we replace w(ξ) by its
interpolant

(2.2) p(ξ) =
m∑
j=1

λjΦj(ξ), p(xi) = w(xi), i = 1, . . . ,m.

Here λi denote the corresponding coefficients which are determined from the interpo-
lation conditions p(xi) = w(xi), i = 1, . . . ,m. The interpolation error

max
ξ∈Ω

|w(ξ) − p(ξ)|

is the spatial discretization error with respect to the given set of interpolation points
and basis functions. Note that the interpolant p(ξ) can easily be reconstructed from
its discrete values p(xi) at the interpolation points. The spatial discretization error
is controlled by the choice of the interpolation points.

2.2. Residual subsampling method. Efficient meshfree methods need a smart
procedure for adding and deleting interpolation points. For this purpose, we use the
standard residual subsampling method, based on the ideas presented in [11]. This
method is used to determine a suitable set of interpolation points to efficiently repre-
sent a given function w(ξ). This is achieved as follows.

Together with a set of candidate interpolation points we consider a set of check
points. Every candidate interpolation point requires at least one check point. In
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A434 M. CALIARI, A. OSTERMANN, AND S. RAINER

addition we make use of a monitor function θ that gives us information about the
error at each check point. Starting from the set of candidate interpolation points, we
compute an interpolant p(ξ) of w(ξ) and evaluate it at the check points. If the value
of the monitor function at a check point is greater than a refining threshold θr, that
point is added to the candidate interpolation point set (refinement procedure). On
the other hand, if θ(y) is smaller than a coarsening threshold θc for all check points y
associated to a candidate interpolation point, this point is removed from the candidate
interpolation point set (coarsening procedure). Note that θc < θr. If the actual set
of candidate interpolation points has changed during this procedure, we update the
check point set, interpolate again, and iterate this procedure until no more points are
added or removed. The final set of candidate interpolation points forms the set of
interpolation points.

The initial set of candidate interpolation points is derived from the predicted
essential support. A simple choice can be a coarse grid containing the essential support
of w. In the present situation of a differential equation, the candidate interpolation
points can be predicted from the interpolation points used at previous time steps. The
subsampling method should eventually provide a reasonable set of interpolation points
which appropriately reflects the behavior of the solution of the differential equation
from step to step.

2.3. Time integration. We are now in position to describe the integration step
which computes the numerical solution un+1(ξ) at time tn+1 starting from un(ξ) at
time tn. Given un(ξ), we determine an appropriate set of interpolation points Xn

by the residual subsampling method. Let Yn denote the corresponding set of check
points, and let ũn(ξ) be the interpolant of un(ξ) with respect to the points Xn.

In order to perform the time step, we consider a set of integration points X̄n.
For the sake of simplicity we take X̄n = Xn ∪ Yn, which is the union of the current
interpolation and check points. Note, however, that this choice introduces a natural
restriction on the length of the time step Δtn = tn+1 − tn, since the support of the
solution from time tn to time tn+1 has to be covered by the set X̄n itself.

Discretizing the differential equation at these points results in a stiff system of
ordinary differential equations

(2.3) v′(t) = FX̄n

(
t, v(t)

)
, v(tn) =

[
un,Xn , un,Yn

]T
.

Here, the vectors un,Xn and un,Yn contain the function values ũn(x) for x ∈ Xn and
x ∈ Yn, respectively (for a concrete discretization based on RBFs, we refer the reader
to section 3.2). Integrating this system with step size Δtn results in a numerical
approximation at time tn+1 = tn +Δtn, denoted by

vn+1 =
[
un+1,Xn , un+1,Yn

]T ≈ v(tn+1).

After performing the time step, the local time error is estimated in a standard way as
described, e.g., in [14, sect. II.4]. If this error is less than a given tolerance, the time
step size is accepted. Otherwise, the step is repeated with a smaller step size.

In order to estimate the spatial error, the discrete solution un+1,Xn corresponding
to the point set Xn is interpolated. The resulting function un+1(ξ) is then evaluated
at the check points and compared to the results that are provided directly by the
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MESHFREE EXPONENTIAL INTEGRATORS A435

integrator, namely the values un+1,Yn . The monitor function θ is thus given by

θ(y) = |un+1(y)− [un+1,Yn ]y |, y ∈ Yn.

Each check point y ∈ Yn, which fails the criterion θ(y) ≤ θr, is added to the set of
interpolation points. If this set has changed, then the corresponding set of check points
is updated and the time step is repeated with these new sets. The whole procedure
is iterated, until no more interpolation points are added. Finally, the corresponding
numerical solution un+1(ξ) is accepted as numerical approximation to the solution
u(tn+1, ξ). This iterative procedure is proposed to ensure that enough interpolation
points are used during the time step where the essential support of the solution might
change.

3. RBF interpolation. Interpolation in arbitrary dimension on an arbitrary
set of collocation points is a challenging task. In this section, we briefly describe the
idea of using radial basis functions (RBFs) to face this problem. For a more detailed
discussion on RBFs and their properties, we refer the reader to [5, 6, 12, 36].

Let X = {x1, . . . , xm} ⊂ Ω ⊂ Rd be a given set of pairwise distinct interpolation
points, let v = [v1, . . . , vm]T be a corresponding vector of data, and let Φ : Rd → R

be a radial function, i.e., Φ(ξ) = φ(‖ξ‖) for some φ : R+ → R. We set Φj(ξ) =
Φ(ξ − xj) = φ (‖ξ − xj‖) and look for an interpolant p of the form

p(ξ) =

m∑
j=1

λjΦj(ξ), ξ ∈ R
d.

The coefficients λ = [λ1, . . . , λm]T are chosen such that p interpolates the given data

p(xi) = vi, i = 1, . . . ,m.

Finding the coefficients is equivalent to solving the linear system Aλ = v with the
symmetric matrix A with entries Aij = φ (‖xi − xj‖), i, j = 1, . . . ,m. Depending on
the particular choice of the radial basis function, this matrix will be positive definite
and sparse.

Since the point set X will vary in our applications from step to step, we will use
a slightly different notation henceforth. The vector of the coefficients will be denoted
by [λx]x∈X and the summation over the set X will be rewritten as

∑
x∈X . In this

notation the interpolant has the form

(3.1) p(ξ) =
∑
x∈X

λxΦx(ξ), Φx(ξ) = Φ(ξ − x).

In the past 30 years several classes of basis function were proposed. One class is
of particular interest for our purpose, namely the class of compactly supported RBFs,
because it leads to a sparse and symmetric positive definite interpolation matrix A.
Although this class has inferior convergence properties, it is numerically more stable
(see, for instance, [36]), the solution of the linear system is not as time consuming, and
it is more flexible for approximating solutions changing shape during time evolution.
Therefore our main attention will be on compactly supported RBFs. Note, however,
that the ideas presented here are valid for other types of basis functions as well.

D
ow

nl
oa

de
d 

06
/0

7/
13

 to
 1

36
.1

59
.2

35
.2

23
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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3.1. Compactly supported RBFs. Within the class of compactly supported
RBFs, we concentrate on Wendland’s functions Φd,k; see [33]. In space dimension d
they are defined by

Φd,k(ξ) = φd,k(‖ξ‖), 0 ≤ k ≤ d,

where

φd,k = βIkφ�d/2�+k+1, φ�(r) = (1− r)�+, (Iφ)(r) =

∫ 1

r

tφ(t)dt.

Here 	μ
 denotes the largest integer less than or equal to μ ∈ R. The scaling factor β
is usually chosen such that φd,k(0) = 1. Some examples are listed in Table 2.

We summarize some important properties of CSRBFs which will be useful for the
next sections. For more details, we refer the reader to [35, 38]. First note that the
function Φd,k is 2k times continuously differentiable and strictly positive definite on
Rs, s ≤ d. This means that the corresponding interpolation matrix is positive definite,
independent of the choice of the interpolation points. We are interested in local error
estimates for the interpolant. For this purpose we define the local fill distance of the
interpolation points x ∈ X near a given point y ∈ Ω by

(3.2) hρ(y) = max
ξ∈Bρ(y)

min
x∈X

‖ξ − x‖2, ρ > 0.

Let f be a given function and p its interpolant, computed by CSRBFs. Then the local
interpolation error at the point y is bounded by

(3.3) |f(y)− p(y)| ≤ Chk+1/2
ρ (y)

for hρ(y) sufficiently small. The constant C depends, in particular, on an appropriate
Sobolev norm of f . This estimate tells us that the interpolation error will become
locally smaller if we decrease the fill distance around the point y. Still we have to
keep stability in mind. The stability of the interpolation process is determined by the
condition number of the corresponding interpolation matrix A. This number can be
bounded in terms of the separation distance

(3.4) qX = min
xi,xj∈X

{
1

2
‖xi − xj‖2 : xi �= xj

}
,

namely by

(3.5) cond2A ≤ Cq−d−2k−1
X .

The bounds (3.3) and (3.5) are crucial in order to select adequate interpolation points.
In section 5.1 we will treat in more detail the question of selecting the points.

Table 2

Wendlands’s CSRBF Φd,k for various choices of d and k.

d φd,k(r) Smoothness of Φd,k

1 φ1,0(r) = (1− r)+ C0

φ1,1(r) = (1− r)3+(3r + 1) C2

3 φ3,0(r) = (1− r)2+ C0

φ3,1(r) = (1− r)4+(4r + 1) C2

φ3,2(r) = (1− r)6+(35r2 + 18r + 3) C4

φ3,3(r) = (1− r)8+(32r3 + 25r2 + 8r + 1) C6
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3.2. RBF discretizations of differential equations. The idea of using RBFs
for discretizing time-invariant PDEs dates back to [20, 21]. Later the idea was ex-
tended to time-dependent PDEs, e.g., in [1, 2, 26]. The concept is similar to the
pseudospectral approach. We explain the basic ideas first with the help of a simple
example. Consider the semilinear differential equation

(3.6)
∂

∂t
u(t, ξ) = Lu(t, ξ) + f

(
ξ, u(t, ξ)

)
, u(tn, ξ) = ũn(ξ),

which has to be integrated from tn to tn+1 = tn +Δtn for a given initial value ũn(ξ).
Here L denotes a spatial differential operator whose coefficients do not depend on t.
For example, L could be a second-order differential operator with variable coefficients.
We show how to discretize this problem on a set X̄ of integration points.

To this aim, we replace u(t, ξ), ξ ∈ Rd by its interpolant p(t, ξ) =
∑

x∈X̄ λxΦx(ξ)
and approximate Lu(t, ξ) by

Lp(t, ξ) = L
∑
x∈X̄

λxΦx(ξ) =
∑
x∈X̄

λx

(
LΦx

)
(ξ).

Here, the coefficients λ are the solution of the linear system Āλ = u(t, ·)|X̄ . Note that
the function φ has to be chosen in such a way that LΦx is well defined. In particular,
Φ has to possess sufficiently many derivatives.

From the above considerations, we get the representation

Lp(t, ξ) =
∑
x∈X̄

[
Ā−1u(t, ·)|X̄

]
x

(
LΦx

)
(ξ).

Using the fact that u(t, ξ) = p(t, ξ) for all ξ ∈ X̄, we can rewrite this as

(3.7) Lp(t, ·)|X̄ = ĀLĀ
−1p(t, ·)|X̄

with ĀL = {LΦx(ξ)}ξ,x∈X̄ . Note that the arising matrices can be computed once and
for all if the set of integration points X̄ remains fixed during the time integration.
The nonlinearity f is discretized as

fX̄
(
p(t, ·)|X̄

)
=

[
f
(
x, p(t, x)

)]
x∈X̄

.

By the proposed RBF discretization, the PDE (3.6) thus becomes a stiff system of
ordinary differential equations

v′(t) = ĀLĀ
−1v(t) + fX̄

(
v(t)

)
, v(tn) = ũn(·)|X̄ .

Note that the above procedure corresponds to discretizing the advection term

∂

∂ξ

(
a(ξ)u(t, ξ)

)
=

∂a

∂ξ
(ξ)u(t, ξ) + a(ξ)

∂u

∂ξ
(t, ξ)

by restricting the function

∂a

∂ξ

∑
x∈X̄

λxΦx + a
∑
x∈X̄

λx
∂Φx

∂ξ
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to the points in X̄. The advection term can also be discretized in conservative form as

∂

∂x

(
a(x)u(t, x)

) ≈ ∑
x∈X̄

λ̃x
∂

∂x
Φx(·)

∣∣∣
X̄
,

where the coefficients λ̃ are now defined by Āλ̃ = a(·)u(t, ·)|X̄ . This discretization is
particularly useful for mass conservation schemes.

In general, our space discretization at time tn gives the nonlinear system

(3.8) v′(t) = FX̄(t, v(t)), v(tn) = ũn(·)|X̄ .

In the next section, we discuss an appropriate time discretization of this system of
ordinary differential equations.

4. Exponential integrators for time-dependent evolution equations. For
the time discretization of the nonlinear initial value problem

(4.1) v′(t) = G
(
t, v(t)

)
, v(t0) = v0,

we consider a particular class of exponential integrators, namely exponential Rosen-
brock methods; see [8, 17] and the review article [16].

Rosenbrock methods are based on a continuous linearization of the vector field
along the numerical solution. For a given approximation vn ≈ v(tn), we linearize (4.1)
in the following way:

v′(t) = Jnv(t) + knt+ gn
(
t, v(t)

)
,(4.2a)

Jn =
∂G

∂u
(tn, vn), kn =

∂G

∂t
(tn, vn), gn(t, v) = G(t, v)− Jnv − knt(4.2b)

with gn denoting the nonlinear remainder.
Let v(tn+1) denote the exact solution of (4.2) at tn+1 = tn + Δtn with initial

value v(tn) = vn. Using the variation-of-constants formula, it can be represented as

(4.3)

v(tn+1) = eΔtnJnvn +Δtnϕ1(ΔtnJn)tnkn +Δt2nϕ2(ΔtnJn)kn

+

∫ Δtn

0

e(Δtn−τ)Jng
(
tn + τ, v(tn + τ)

)
dτ

with the entire functions

(4.4) ϕk(z) =

∫ 1

0

e(1−θ)z θk−1

(k − 1)!
dθ, k ≥ 1.

These functions satisfy ϕk(0) = 1/k! and the recurrence relation

(4.5) ϕ0(z) = ez, ϕk+1(z) =
ϕk(z)− ϕk(0)

z
, k ≥ 0.

Replacing g
(
tn + τ, v(tn + τ)

)
in (4.3) by g(tn, vn) defines a second-order numerical

scheme, the well-known exponential Rosenbrock–Euler method

(4.6) vn+1 = vn +Δtnϕ1(ΔtnJn)G(tn, vn) + Δt2nϕ2(ΔtnJn)kn.
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This scheme is explicit and thus computationally attractive. For autonomous prob-
lems where kn = 0, it requires only one evaluation of a matrix function per step.

Higher-order exponential Rosenbrock methods for the numerical solution of (4.1)
have the general format

Vni = vn +Δtnciϕ1(ciΔtnJn)G(tn, vn)

+ Δt2nc
2
iϕ2(ciΔtnJn)kn +Δtn

i−1∑
j=2

aij(ΔtnJn)Dnj ,(4.7a)

vn+1 = vn +Δtnϕ1(ΔtnJn)G(tn, vn)

+ Δt2nϕ2(ΔtnJn)kn +Δtn

s∑
i=2

bi(ΔtnJn)Dni,(4.7b)

where Dni = gn(tn + ciΔtn, Vni) − gn(tn, vn). Without further mentioning, we will
assume that the methods fulfill c1 = 0 and consequently Vn1 = un. Note that the
vectors Dni are expected to be small in norm, since

∂gn
∂u

(tn, vn) = 0,
∂gn
∂t

(tn, vn) = 0.

Each stage of (4.7) consists of a perturbed exponential Rosenbrock–Euler step (4.6)
and these additional corrections can be cheaply computed.

For our numerical experiments below, we consider the third-order exponential
Rosenbrock method with s = 2 stages and coefficients c2 = 1 and b2(z) = ϕ3(z). The
method thus takes the form

(4.8)
Vn2 = vn +Δtnϕ1(ΔtnJn)G(tn, vn) + Δt2nϕ2(ΔtnJn)kn,

vn+1 = Vn2 +Δtnϕ3(ΔtnJn)
(
gn(tn +Δtn, Vn2)− gn(tn, vn)

)
.

Note that the stage Vn2 is just an exponential Rosenbrock–Euler step and thus a
second-order approximation. Consequently, the difference

(4.9) vn+1 − Vn2 = Δtnϕ3(ΔtnJn)
(
gn(tn +Δtn, Vn2)− gn(tn, vn)

)
can be used as an error estimate; see [8]. The resulting embedded method will be
called exprb32. The convergence properties of this method were analyzed in [16].

4.1. Newton interpolation at Leja points. In order to compute ϕk(ΔtJ)w,
we use the real Leja points method which is based on Newton’s interpolation formula
for the scalar function ϕk(Δtz) at a sequence of Leja points {zi}. This method was first
proposed in [9] for evaluating ϕ1. It possesses very attractive computational features.
Note that the analysis given in [9] extends to other ϕ-functions in a straightforward
way (see [7, 8]). So far the method has been used mainly for matrices J discretizing
operators with a moderate advection part: here we extend it to operators with a
strong advection part or even to pure advection operators.

The starting point is a cheap estimate of a rectangle containing the spectrum of
the operator J . Following [28], it can be obtained by computing the largest eigenvalues
in magnitude of the symmetric part and the skew-symmetric part of the operator J
separately. It is worth noting that only a rough estimate of the spectrum is necessary
(see [9]), which can be obtained at a low computational cost. For the problems we
have in mind, J is a real operator and its smallest eigenvalue in magnitude is simply

D
ow

nl
oa

de
d 

06
/0

7/
13

 to
 1

36
.1

59
.2

35
.2

23
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A440 M. CALIARI, A. OSTERMANN, AND S. RAINER

estimated by 0. Therefore, the estimate of the spectrum results in a rectangle with
vertices (−a,−ib), (0,−ib), (0, ib), (−a, ib), a, b ≥ 0.

We distinguish the cases a ≥ b and a < b. The first case, corresponding to
moderate advection, is treated with a sequence of standard (real) Leja points {zi} on
the interval D = [−a, 0] and is well described in [7, 8, 9].

In the second case, a < b, corresponding to strong advection, standard Leja points
on the domain D = {z ∈ C : Re z = −a/2, Im z ∈ [−b, b]} would require complex
arithmetic. We prefer considering conjugate pairs of Leja points instead. They are
defined by z0 = −a/2 and

zm ∈ argmax
z∈D

m−1∏
i=0

|z − zi|, zm+1 = zm for m odd.

Let c = −a/2 and γ = b/2. The polynomial pm(ΔtJ)w of degree m in the Newton
form which approximates ϕk(ΔtJ)w can be written in real arithmetic (see [30]) as

(4.10a)

pm(ΔtJ)w = pm−2(ΔtJ)w + (Re dm−1)rm−2 + dmqm, m > 0 even,

rm =
(
(J − cI)/γ

)
qm +

(
Im ξm−1

)2
rm−2,

qm =
(
(J − cI)/γ

)
rm−2,

where

(4.10b) p0(ΔtJ)w = d0w, r0 =
(
(J − cI)/γ

)
w,

and {di}mi=0 are the divided differences (real if i even) of the function ϕk

(
Δt(c+ γξ)

)
at the conjugate pairs of Leja points {ξi}, ξ0 = 0, of the reference domain i[−2, 2].
For the implementation of (4.10) it is sufficient to use three vectors p = pm, r = rm,
and q = qm and to update them in each iteration. Moreover, a convenient estimate
of the interpolation error is given by

(4.11)
‖em‖ = ‖pm+2(ΔtJ)w − pm(ΔtJ)w‖ = ‖(Re dm+1)rm + dm+2qm+2‖

≈ ‖pm(ΔtJ)w − ϕk(ΔtJ)w‖.
The attractive computational features of the method are clear: there is no Krylov

subspace to store and the complexity of the recurrences (4.10a) is linear in m, whereas
the long-term recurrence in the standard Krylov method is quadratic in m for non-
symmetric operators ΔtJ ; see, e.g., [4, 13, 15]. Moreover, the computations can be
made in real arithmetic, and it is not necessary to solve real or complex linear systems
with the operator J , as in rational Krylov approximations [25, 32] or Carathéodory–
Fejér and contour integrals approximations [29]. Finally, the real Leja points method
is very well structured for a parallel implementation, as shown in [3, 23] for the ϕ1-
function. When the expected degree m for convergence is too large, the original time
step Δt has to be split into a certain number of substeps, say �, and the approximation
of ϕk(ΔtJ)w is recovered from ϕk(τΔtJ)w with τ = 1/�.

5. Meshfree exponential integrators. We are now in position to combine the
meshfree approximation based on compactly supported RBFs with time integration
based on exponential integrators. The resulting method will be an efficient and reliable
integrator for certain classes of PDEs that possess solutions with a well-localized
essential support. For the space discretization, we have chosen Wendland’s function
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Fig. 1. Example of interpolation points (dots) and check points (crosses). The check points are
the centers of the circumcircles of the Delaunay triangulation based on the interpolation points.

φ3,2 of Table 2. This function is four times continuously differentiable and can be
used for problems in space dimensions 1, 2, and 3.

In order to obtain a robust method, we need an elaborated strategy to select the
corresponding sets of interpolation and check points introduced in section 2, as well
as a strategy to accept or reject time steps. In fact, standard techniques for time step
rejection do not take into account the spatial error which, in the standard method of
lines with a fixed grid or mesh discretization, is introduced at the beginning of the
integration and later often ignored. Henceforth, we denote by Tol the user-supplied
tolerance that will be used in the error control.

5.1. Selection of interpolation and check points. The flexibility of RBFs
allows the use of an arbitrary set of distinct interpolation points in principle. However,
in order to obtain an accurate and robust method, the sets have to be chosen with
care. In particular, the bounds for the interpolation error (3.3) and the condition
number (3.5) should be kept as small as possible.

In order to interpolate a given smooth function w : Rd → R, we start from a set
of candidate interpolation points. There are various possibilities for defining such a
set. In our application, w is the numerical solution of problem (2.1) at time tn. For
the initial value (n = 0), the set of candidate interpolation points will just consist of a
coarse grid containing the essential support of w. In the general case, when stepping
from tn to tn+1 we already know an appropriate set of interpolation points from the
previous step. This set, transported by the advection term of (2.1), defines a set of
candidate interpolation points.

The candidate set is then adapted to the given interpolant w using the residual
subsampling method as described in section 2. The threshold values are chosen as

θr = Tol, θc = 10−3
Tol.

While the choice of the refining threshold θr is just the interpretation of the user-
prescribed tolerance Tol, the coarsening threshold θc must be chosen considerably
smaller in order to avoid unwanted iterations in the subsampling method. In order to
generate the set of check points, we compute a Delaunay triangulation of the interpo-
lation points and choose the centers of the circumspheres of the resulting simplices,
the so-called Voronoi points, as check points; see Figure 1. The reason for this choice
is twofold. The Delaunay triangulation has the property that no further interpolation
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points are contained in the interior of the circumspheres. Therefore, their centers are
points of local maxima for the distance

(5.1) d(ξ,X) = min
x∈X

‖ξ − x‖2

to the interpolation point set X . This means that they maximize the error bound
(3.3). Second, if a refinement is needed, adding a point of such a check point set to
the interpolation point set minimizes the growth of the condition number bound (3.5)
for the interpolation matrix.

Note that adding or removing an interpolation point affects a Delaunay triangu-
lation only locally. Hence, after updating the interpolation point set, the computation
of the check points has constant complexity.

5.2. Performing the time step. We next describe how a step with the expo-
nential integrator is carried out. Let X̄n denote the integration points at time tn. For
these points, we consider an RBF discretization of (2.1), as detailed in subsection 3.2.
This results in a stiff system of ordinary differential equations

(5.2) v′(t) = FX̄n
(t, v(t)), v(tn) = [un,Xn , un,Yn ]

T.

In order to apply an exponential integrator of Rosenbrock type, we have to compute
the Fréchet derivative Jn of FX̄n

(
t, v(t)

)
at (tn, un,Xn , un,Yn).

With this derivative at hand we can approximate the expressions ϕk(ΔtnJn)v by
Newton interpolation, as described in section 4.1. Since the (symmetric) interpolation
matrix AX̄n

does not change during the step from time tn to time tn+1, it has to be
factorized only once per time step. When carrying out the Newton interpolation at
Leja points, we have to compute many times the application of the operator Jn to a
function w(ξ), which is obtained from a vector of discrete values by RBF interpolation.
For this aim, it is vital that the RBF interpolation has good stability properties. This
is the main reason why we have chosen compactly supported RBFs. Moreover, as
the corresponding interpolation matrix AX̄n

is positive definite and sparse, it can be
factorized in a stable and efficient way.

The time step Δtn is chosen in a standard way, based on the local error esti-
mate (4.9); see [14, sect. II.4]. If the estimated error is less than a prescribed tem-
poral tolerance θt, the time step size is accepted, otherwise it is rejected. Numerical
experiments in [8] indicate that θt should be smaller than Tol. In our experiments,
we have chosen

θt = 10−1
Tol.

All the procedures and considerations mentioned above yield the meshfree exponential
integrator scheme summarized in Table 3.

5.3. Computational costs. In order to analyze the computational costs of our
method, we consider separately the two main ingredients, space and time discretiza-
tion on the one hand and the coupling of them on the other.

For the RBF approximation, three basic operations are of interest: the compu-
tation of the interpolant of a function, the evaluation of the interpolant at a given
set of points, and the approximation of a linear operator applied to a certain func-
tion. The computation of the interpolation coefficients λx in (3.1) requires the solu-
tion of a sparse linear system with a symmetric positive definite matrix with entries
Aij = φ(‖xi−xj‖), i, j = 1, . . . ,m. To this purpose, we use the direct sparse Cholesky
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Table 3

Meshfree exponential integrator.

Let n = 0.
Repeat

∗ Given un(ξ), the current approximation of the exact solution u(tn, ξ), and the
set of candidate interpolation points, apply the residual subsampling to find an
appropriate set of interpolation points Xn.

∗ Define a new approximation ũn(ξ) by

ũn(ξ) =
∑

x∈Xn

λxΦx(ξ),

where AXnλ = un(·)|Xn .
Repeat

∗ Compute the set of check points Yn and define the set of integration points
X̄n = Xn ∪ Yn.

∗ Evaluate ũn(·)|Xn = un,Xn and ũn(·)|Yn = un,Yn .
∗ Discretize the right-hand side of the differential equation with respect to X̄n

to obtain

v′(t) = FX̄n

(
t, v(t)

)
, v(tn) = [un,Xn , un,Yn ]

T.

∗ Integrate this initial value problem to tn+1 = tn+Δtn to obtain a numerical
approximation [un+1,Xn , un+1,Yn ] ≈ v(tn+1).

∗ Check the local integration error and repeat the step if the error is larger
than θt.

∗ Interpolate the values un+1,Xn with respect to the points Xn to get

un+1(ξ) =
∑

x∈Xn

λx(un+1,Xn )Φx(ξ).

∗ Estimate the interpolation error at the check points, i.e., set

θ(y) =
∥∥∥un+1(y)−

[
un+1,Yn

]
y

∥∥∥ , y ∈ Yn.

∗ Add those check points where the error is too large to the set of interpolation
points.

Until the set of interpolation points remains fixed.
∗ Set n = n+ 1 and accept un+1(ξ) as numerical solution at time tn+1.

Until tn = T .

method. In our experiments the fraction of nonzero elements turned out to be about
20%. The evaluation at a certain point ξ requires a linear combination of m shifted
basis functions Φx(ξ); see (3.1). The approximation of a linear operator applied to a
function at the set of integration points X̄ requires the computation of the right-hand
side of (3.7). In order to make it possible to apply the operator to different func-
tions defined on the same set X̄, we compute the sparse Cholesky factors of Ā and
evaluate (3.7) using sparse backward substitutions.

The main cost for performing a time step from tn to tn+1 by an exponential inte-
grator is the computation of the action of the ϕk functions. Any iterative polynomial
method, such as the real Leja points method, requires successive applications of the
linear operator Jn (see (4.2)). In practice, as seen above, each application is a sparse
backward substitution followed by a sparse matrix-vector product, since the set X̄n

remains unchanged during the calculation of ϕk. The number of iterations for the
approximation of the action of ϕk(ΔtnJn) depends roughly linearly on the stiffness
of ΔtnJn.
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In addition, our integrator needs to compute a set of check points and update
interpolation points at each time step. The calculation of the check points requires a
Delaunay triangulation which requires O(

m� d
2 	
)
operations (see, e.g., [18]), where m

is the number of interpolation points. Here μ� denotes the smallest integer greater
than or equal to μ ∈ R. Therefore, the number of check points is asymptotically
O(

m� d
2 	
)
. Since our set of integration points consists of the union of interpolation

and check points, we have O(m+m� d
2 	) integration points. This means that the cost

of a Delaunay triangulation is asymptotically the same as a single sparse matrix-vector
multiplication with the matrix ĀL. Although, as already mentioned, this choice for the
set of check points seems to be optimal with respect to the minimization of the local
error bound and the control of the growth of the condition number of the interpolation
matrix, the memory requirements can be quite large, especially in higher dimensions.
A possibility of reducing the storage requirements is to use different strategies for
computing check points. For example, nonoverlapping boxes (see [11]) introduce only
N · 2d check points at most, where N denotes the number of interpolation points.
However, we find the Delaunay triangulation to be more flexible; moreover, it is
already efficiently implemented for arbitrary dimensions.

We note that the costs involved in the RBF approximation are the same for any
method based on this type of spatial discretization. When combined with an expo-
nential integrator, the most expensive part is the application of the linear operator,
which has to be done several times in order to approximate the ϕk functions. How-
ever, even implicit methods require several applications of the linear operator when
an iterative method is chosen to solve the arising linear systems. Moreover, implicit
methods usually require good preconditioners, which have to be recomputed after
each time step, since the interpolation points change. On the other hand, standard
explicit methods may have severe restrictions on the time step length when applied to
stiff problems, and thus the number of applications of the linear operator can become
very high as well.

6. Numerical experiments in MATLAB. In this section we perform some
numerical tests that demonstrate the strength of meshfree exponential integrators.
For this purpose, we have implemented a meshfree integrator in MATLAB as detailed
in Table 3. This code is available at MathWorks. Interpolation in space is carried out
with the Wendland function φ3,2, scaled in such a way that its support is [−1/2, 1/2].
For the evolution in time we use the exponential integrator exprb32 with the standard
step size selection as described in [14, sect. II.4]. Newton interpolation at Leja points
is used for the approximation of the operator functions. The estimate of the spectrum
is computed with the command eigs in MATLAB (which is based on ARPACK [22]),
applied to the symmetric part and to the square of the skew-symmetric part of the
operator with the argument SIGMA set to LM. In order to keep the computational costs
low, a small maximum number of iterations and a quite large tolerance are used.

We present two examples, a pure advection problem and a reaction-diffusion-
advection problem. In both examples, the solution has a small essential support.
The errors are measured by comparing the numerical approximation with the exact
solution in a discrete L∞ norm on a fixed grid of size 50× 50.

6.1. The Molenkamp–Crowley test. As a first example we consider a pure
advection problem, the Molenkamp–Crowley test [10, 24]. This is a standard two-
dimensional (2D) test problem in meteorology that models the flow around a center.
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The describing differential equation is

(6.1)
∂

∂t
u(t, x) +

∂

∂x1

(
a1(x)u(t, x)

)
+

∂

∂x2

(
a2(x)u(t, x)

)
= 0, −2 ≤ x1, x2 ≤ 2,

with velocity field

a1(x1, x2) = 2πx2, a2(x1, x2) = −2πx1

as in [19, Chap. IV]. The velocity field defines a rotation of period one around the
origin. As an initial value we have chosen a Gaussian pulse

(6.2) u(0, x1, x2) = exp
(−10(x1 − 0.2)2 − 10(x2 − 0.2)2

)
with center (0.2, 0.2). The shape of the resulting solution does not change for 0 ≤ t ≤
T , just the position of the pulse varies during the time evolution.

Further, we consider a three-dimensional (3D) version of (6.1) on the domain
−2 ≤ x1, x2, x3 ≤ 2 with coefficients

a1(x1, x2, x3) = 2πx2, a2(x1, x2, x3) = −2πx1 a3(x1, x2, x3) = 0

and initial value

(6.3) u(0, x1, x2, x3) = exp
(−10(x1 − 0.2)2 − 10(x2 − 0.2)2 − 10(x3 − 0.2)2

)
.

As (6.1) is a linear problem, it is integrated in time exactly by an exponential
integrator. Thus any error occurring during computation comes from the discretiza-
tion in space. The absence of diffusion might cause numerical instabilities. Usually
flux-corrected schemes and special treatment of outflow boundary conditions are used
in order to avoid severe oscillations. In any case, since the essential support of the
solution is quite small with respect to the computational domain, local spatial re-
finements are suggested (see [19]). The Molenkamp–Crowley test, in particular its
long-time integration, is considered as a difficult test problem.

In a first experiment we show that the spatial error estimate works as desired. For
a given local tolerance in space, we integrate both problems up to T = 1 and compare
the difference to the exact solution, i.e., the initial value. As already mentioned,
exponential integrators can integrate linear problems with arbitrarily large time steps.
However, since the essential support of the solution for the time step Δtn = tn+1− tn
has to be covered by the integration point set X̄n, a meshfree integrator should not
take too large time steps. For this reason we restrict the step size Δtn = Δt to
10−2 for this experiment. The achieved results are displayed in Figure 2. The left
figure clearly shows that the error estimate in space performs as desired. The right
figure displays the number of required interpolation points as a function of the given
tolerance Tol. The figure shows that the error is proportional to N−3 in the 2D case
and to N−6.5/3 in the 3D example, where N is the average number of interpolation
points.

To show that the computation remains stable during time evolution, we perform
a long-time integration. We integrate (6.1) up to T = 100, which means that the pulse
performs 100 turns around the origin, with a spatial tolerance of Tol = 10−5. Again
we restrict the step size to Δt = 10−2. As we allow in each time step an interpolation
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Fig. 2. Error versus tolerance (left) and average number of interpolation points (right) at
T = 1 for the meshfree exponential integrator, when applied to the Molenkamp–Crowley test. The
blue squares mark the results for the 2D problem, the red circles for the 3D problem, obtained for
the prescribed tolerances Tol = 2−j , for j = 6, . . . , 22, in two dimensions and j = 6, . . . , 16 in three
dimensions. The blue line in the right figure has slope −1/3 and the red one has slope −3/6.5.
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Fig. 3. Interpolation error (left) and number of interpolation points (right) for the meshfree
exponential integrator for the long-time integration of the Molenkamp–Crowley test. We computed
100 turns of the pulse around the origin with a prescribed interpolation tolerance of 10−5 for each
step. The time step size was chosen to be 10−2.

error of size Tol, we have to expect a final error of Tol · T/Δt = 10−1 in the worst
case. It is important, however, that no oscillations occur during the time evolution.

In Figure 3 the results for the meshfree exponential integrator are displayed. As
expected the error increases linearly with the final time T , as can be seen in the
left figure. The right figure shows the number of interpolation points for every time
step. The number of required interpolation points remains almost constant along the
integration. This is also expected for this numerical experiment since the solution does
not change its shape. Finally, the time evolution of the error is displayed in Figure 4
for different times. One can see that the essential support of the error remains small
and that no oscillations occur.

We summarize that the meshfree exponential integrator behaves very satisfac-
torily for the Molenkamp–Crowley test. It meets all the requirements we are inter-
ested in.

D
ow

nl
oa

de
d 

06
/0

7/
13

 to
 1

36
.1

59
.2

35
.2

23
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MESHFREE EXPONENTIAL INTEGRATORS A447

 

 
t=0

−2 −1 0 1 2
−2

−1

0

1

2

1

3

5

x 10
−6

 

 
t=10

−2 −1 0 1 2
−2

−1

0

1

2

0

1

2

x 10
−3

 

 
t=30

−2 −1 0 1 2
−2

−1

0

1

2

0

1

3

5

x 10
−3

 

 
t=50

−2 −1 0 1 2
−2

−1

0

1

2

0

2

4

6

x 10
−3

 

 
t=80

−2 −1 0 1 2
−2

−1

0

1

2

0

2

6

10

x 10
−3

 

 
t=100

−2 −1 0 1 2
−2

−1

0

1

2

0

0.004

0.008

0.012

Fig. 4. Time evolution of the error of the meshfree exponential integrator when applied to the
Molenkamp–Crowley test. The figures show the error after 0, 10, 30, 50, 80, and 100 turns of the
pulse around the origin for a prescribed interpolation tolerance of 10−5. The time step size was
chosen to be 10−2.

6.2. An advection-reaction-diffusion problem. In order to test the tem-
poral error control of our meshfree integrator, we consider a semilinear advection-
reaction-diffusion problem. The problem is given by the following differential equation:

(6.4)
∂

∂t
u(t, x) = ε�u(t, x)− α∇u(t, x) + ρ u(t, x)

(
u(t, x)− 1/2

)(
1− u(t, x)
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Fig. 5. Error versus tolerance (left), number of interpolation points and number of time steps
(right) at T = 0.1 for the meshfree exponential integrator when applied to (6.4). The symbols mark
the results, obtained for the prescribed tolerances Tol = 4−j , j = 5, . . . , 9.

with ε = 5 · 10−2, α = −6, and ρ = 70. The computational domain and the initial
solution are the same as in the previous subsection. The interpretation of the differ-
ent terms of the equation is the following. The equation, supplied with homogeneous
Neumann boundary conditions, has the three equilibria u = 0, u = 1/2, and u = 1.
Both equilibria u = 0 and u = 1 are asymptotically stable, and the third one is unsta-
ble. The reaction term thus locally pulls values that are above 1/2 to 1, and values
below 1/2 to 0. Considering just this term would eventually result in a discontinu-
ous solution. The diffusion term now smooths the solution and the advection part
transports it forward in time along the negative direction of the main diagonal. We
perform three numerical experiments.

We start with an accuracy test. For prescribed tolerances Tol we integrate
problem (6.4) up to T = 0.1 and determine the final error in the discrete maximum
norm on an equidistant 50 × 50 grid. The threshold θr is chosen equal to Tol, the
tolerance for the time integration θt is taken 10 times smaller. Since the problem
contains a nonlinear part, the final error is composed of both errors. We also note
that this time there is no need for an a priori step size restriction; we can simply
use the built in step size selection of the embedded exponential Rosenbrock method
expr32. The results are shown in Figure 5. The left figure displays the final error.
One can see that the error is always below the anticipated error, which is θt times the
number of required steps. In order to take larger time steps in this experiment one
has to use higher order methods. The right figure contains the number of time steps
and the number of interpolation points for a prescribed tolerance. The results show
that the method is third-order in time, which we expect, since we use a Rosenbrock
method of order three. The spatial order of convergence is better than predicted
by (3.3), since the solution has enough regularity on the boundary; see [34, Thm. 7].

An important property of an adaptive integrator is that the error estimates in
time and space do not influence each other. This means that if we take a small
tolerance in time and a large one in space, we should see the spatial error and vice
versa. Figure 6 displays the results of an experiment, where we integrate problem
(6.4) up to T = 0.1 for different choices of the two tolerances. In the left figure we
computed the average error per step for a prescribed tolerance θt and various spatial
tolerances θr. In the right figure the opposite is shown: the spatial tolerance is kept
fixed, whereas the integration tolerance is varied.
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Fig. 6. Average error per step for fixed choices of temporal tolerance and various choices of
spatial tolerance (left), average error per step for fixed choices of spatial tolerance and various choices
of temporal tolerance (right) for (6.4) when integrated up to T = 0.1 with our meshfree exponential
integrator. The different symbols mark the results for the tolerances 10−j , j = 2, . . . , 6, in time and
space, respectively.

Both figures show that keeping one tolerance fixed and decreasing the other leads
to a saturation of the error. We note that taking a prescribed tolerance in space gives
a smaller average error per step than the desired tolerance. We also observed this
in other experiments. The reason is that the adaptive error control in space is not
a smooth process. Adding a point can decrease the error by orders of magnitudes,
hence it is possible that adding one single point to the set of interpolation points leads
to an interpolation error that is much smaller than the prescribed tolerance.

Finally, we plot a typical development of the set of interpolation points for (6.4).
For this purpose we integrate (6.4) up to T = 0.25 with a prescribed tolerance of
5 · 4−5. The results are displayed in Figure 7. In the beginning the convex hull of
the interpolation points increases due to the diffusion term. Then, the point density
is increased in the region where the slope of the function becomes steep. After some
time an equilibrium between reaction and diffusion is reached. Therefore, the shape of
the solution no longer changes and the number of interpolation points should remain
constant. As the equation is nonlinear, the time integration error will influence the
interpolation process, and the number of interpolation points will therefore slightly
vary in time.

7. Summary. In this paper we described the concept of a general meshfree expo-
nential integrator. In particular we focused on advection dominated time-dependent
PDEs, where the essential support of the solution moves in time. We used a residual
subsampling procedure in order to find appropriate interpolation points for the spa-
tial discretization. To keep the number of interpolation points small we used further
information about the solution to predict the position of the essential support for
the next time step. Time integration was performed with an exponential Rosenbrock
method of order three. The integrator is particularly designed for situations where
the computational domain is much larger than the essential support of the solution.
In such situations a standard finite difference discretization would be prohibitively
memory consuming. We showed that our integrator behaves very well with respect to
stability and reliability. All numerical experiments were implemented in MATLAB.
Note, however, that several parts of our integrator, e.g., the efficient implementation
of the Leja points method on graphics processing units, are still a work in progress.
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Fig. 7. Evolution of the interpolation point set for the meshfree exponential integrator when
applied to (6.4). The figures show the interpolation point set at times t = 0, 0.06, 0.11, 0.13, 0.19,
and 0.25, respectively. The tolerance was chosen to be Tol = 4−5.

D
ow

nl
oa

de
d 

06
/0

7/
13

 to
 1

36
.1

59
.2

35
.2

23
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MESHFREE EXPONENTIAL INTEGRATORS A451

REFERENCES

[1] J. Behrens and A. Iske, Grid-free adaptive semi-Lagrangian advection using radial basis
functions, Comput. Math. Appl., 43 (2002), pp. 319–327.
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