
 

 
 

UNIVERSITA‟ DEGLI STUDI DI VERONA 
 

DIPARTIMENTO DI  

 

MEDICINA 

 

 

SCUOLA DI DOTTORATO DI 

 

SCIENZE DELLA VITA E DELLA SALUTE 

 

 

DOTTORATO DI RICERCA IN 

 

INFIAMMAZIONE, IMMUNITA’ E CANCRO 

 

 

 

XXX CICLO / 2014 

 

 

TITOLO DELLA TESI DI DOTTORATO 

 

Role of Neutrophils in the Imiquimod (IMQ)-induced mouse model of Psoriasis 

 

S.S.D. MED/04 

 

 

Coordinatore:   

Prof./ssa Constantin Gabriela 

 

    

 

Tutor:    

Dott./ssa  Scapini Patrizia 

   

       

 

 

  Dottorando:   

  Dott./ssa  Bevilacqua Dalila 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Quest’opera è stata rilasciata con licenza Creative Commons Attribuzione – non commerciale 

Non opere derivate 3.0 Italia . Per leggere una copia della licenza visita il sito web: 

http://creativecommons.org/licenses/by-nc-nd/3.0/it/ 

http://creativecommons.org/licenses/by-nc-nd/3.0/it/


Abstract 
 

 

Psoriasis is a chronic skin disease associated with deregulated interplays between 

immune cells and keratinocytes. Neutrophil accumulation in the skin is one of the 

histological features that characterize psoriasis. However, the role of neutrophils 

in psoriasis development remains poorly understood. In this study, we utilized the 

imiquimod (IMQ)-induced mouse model of psoriasis to elucidate the specific 

contribution of neutrophils to psoriasis development. We report that neutrophils 

act as negative modulators of disease propagation and exacerbation by inhibiting 

δ T cell effector functions via NADPH oxidase-mediated reactive oxygen species 

(ROS) production, as revealed by analysing disease development/progression in 

neutrophil-depleted mice. We also report that Syk functions as crucial molecule 

mediating neutrophil and δ T cell interactions. In support of the latter findings, 

we demonstrate that the selective impairment of Syk-dependent signalling in 

neutrophils only, is sufficient to reproduce the enhancement of skin inflammation 

and δ T cell infiltration observed in neutrophil-depleted mice. Overall, our 

findings add new insights into the specific contribution of neutrophils to disease 

progression in the IMQ-induced mouse model of psoriasis. Considering that, 

similarly to mouse psoriasis, the important role of IL-17 producing γδ T cells in 

human psoriasis has just started to emerge, it is likely that inhibitory crosstalk 

between neutrophils and γδ T cells may exist also in human psoriasis. Neutrophils 

may indeed act as unexpected negative players of disease development in specific 

types or clinical stages of human psoriasis. Consequently, also the utilization of 

therapeutic interventions targeted to inhibit neutrophil functions should be 

carefully evaluated. 

 

 

 

 



Sommario 
 

 

La psoriasi è un‟infiammazione cronica e recidivante della pelle, caratterizzata da 

un‟alterata interazione tra sistema immunitario e cheratinociti. Nonostante 

l‟infiltrazione dei granulociti neutrofili nella pelle sia una peculiarità della 

patologia psoriatica, il ruolo di queste cellule nella psoriasi non è ancora ben noto. 

In questa tesi, per studiare il ruolo dei neutrofili nella psoriasi abbiamo utilizzato 

un modello murino di psoriasi indotta dall‟applicazione topica di imiquimod 

(IMQ), insieme alla somministrazione di un anticorpo specifico per la deplezione 

dei neutrofili. I risultati ottenuti in questo studio, hanno mostrato che i neutrofili 

possono interferire con la progressione della patologia inibendo in maniera 

specifica i linfociti T γδ, principali mediatori di infiammazione in questo modello 

sperimentale di psoriasi. I dati da noi ottenuti dimostrano che i neutrofili 

inibiscono la proliferazione e la produzione di IL-17 da parte dei linfociti T γδ 

tramite la produzione di specie reattive dell'ossigeno (ROS), indotta 

dall'attivazione del complesso enzimatico NADPH ossidasi. Inoltre, abbiamo 

dimostrato che tale meccanismo inibitorio è contatto dipendente e richiede 

l‟interazione specifica neutrofilo-linfocita T γδ. Infine, abbiamo identificato la 

chinasi Syk quale molecola cruciale implicata nella modulazione di questa 

capacità dei neutrofili di inibire i linfociti T γδ. Infatti, l‟assenza specifica di Syk 

nei neutrofili è risultata sufficiente per riprodurre il fenotipo osservato con la 

deplezione completa dei neutrofili nel modello di psoriasi indotta da IMQ. 

L‟insieme dei dati ottenuti contribuiscono quindi alla comprensione del ruolo del 

neutrofilo nel modello murino di psoriasi indotta dall‟applicazione topica di 

imiquimod. Come per il modello murino, la possibile rilevanza patogenetica dei 

linfociti T γδ sta emergendo anche nella psoriasi umana. E‟ quindi ipotizzabile 

che interazioni inibitorie tra i neutrofili e i linfociti T γδ possano essere importanti 

anche nello sviluppo di psoriasi nell‟uomo. I neutrofili potrebbero infatti 

esercitare un inaspettato ruolo di modulazione negativa nell‟evoluzione 

dell‟infiammazione psoriatica. Conseguentemente, l‟utilizzo di terapie mirate 

all‟inibizione delle funzioni effettrici dei neutrofili nella psoriasi dovrebbe essere  

valutato con cautela.  
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1.  Introduction 

 

 

 

Psoriasis: general features  
 

1.1  Epidemiology 

Psoriasis is a common immune-mediated chronic skin disease that occurs in 

genetically predisposed individuals with an overall prevalence of 2% to 3% of the 

world's population (Christophers 2001). Psoriasis exhibits a bimodal distribution 

with a peak between 15 and 30 years and another between 50 and 60 years 

(Raychaudhuri & Gross 2000). Crucial traits of psoriasis, such as the high 

prevalence, chronicity, comorbidity and the resulting visible impact on physical 

appearance, make it a disorder with both a physical and psychological burden 

(Kimball et al. 2005). Individuals with psoriasis have indeed also an increased risk 

of developing other chronic and serious health diseases. These so-called comorbid 

diseases include psoriatic arthritis, the metabolic syndrome, cardiovascular 

disorders, as well as numerous other diseases such as anxiety/depression, non-

alcoholic fatty liver disease, Crohn‟s disease, or lymphoma (Griffiths & Barker 

2007; Nestle et al. 2009). 

 

1.2  Histological hallmarks  

Psoriasis is characterized by different clinical phenotypes and its classification is 

complex and it is therefore out of the scope of this thesis. Chronic plaque psoriasis 

(psoriasis vulgaris) is the most common form of the disease, accounting for about 

90% of cases (Boehncke & Schön 2015). Chronic plaque psoriasis typically 

manifests with sharply demarcated chronic erythematous plaques covered by 

silvery white scales, which most commonly appear on the elbows, knees, scalp, 

umbilicus, and lumbar area. Histopathological features of psoriatic skin include: 

epidermal achantosis (thickening of the viable epidermis layers do to an abnormal 

keratinocytes turnover), hyperkeratosis (thickened cornified layer), parakeratosis 
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(retention of nuclei in the stratum corneum) and exaggerated angiogenesis.    

There is also an inflammatory infiltrate within the skin layers consisting of         

T-lymphocytes, dendritic cells (DCs), macrophages, mast cells and neutrophils. 

The latter cells are responsible for the formation of subcorneal micro-abscesses, 

also referred to as Munro‟s microabscesses.  

 

1.3  Triggering factors 

Psoriasis is a chronic autoimmune skin disease, whose multifactorial pathogenesis 

is thought to result from a combination of genetic, environmental and 

immunologic factors (Deng et al. 2016).  

 

1.3.1  Genetic triggers 

The high concordance rates found in twins and families affected by psoriasis 

support the evidence for a strong genetic component in psoriatic disease (Bowcock 

2005). Initial linkage analysis of several affected families allowed the 

identification of at least 12 psoriasis-susceptibility (PSORS) loci (Pasić et al. 

2009). More recently, genome-wide association studies (GWAS) focused on these 

large genome regions unveiled susceptibility genes carrying single nucleotide 

polymorphisms (SNPs). A significant percentage of susceptibility genes is related 

to the immune system, spanning an array of functions that involve antigen 

presentation (HLA-Cw6, ERAP1, ERAP2, MICA), the IL-23 axis (IL12Bp40, 

IL23Ap19, IL23R, JAK2, TYK2), T-cell development and T-cells polarization 

(RUNX1, RUNX3, STAT3, TAGAP, IL4, IL13), innate immunity (CARD14,      

c-REL, TRAF3IP2, DDX58, IFIH1) and negative regulators of immune responses 

(TNIP1, TNFAIP3, NFKBIA, ZC3H12C, IL36RN, SOCS1) (Tsoi et al. 2012).  

 

1.3.2  Environmental triggers  

Genetics is only a part of the pathogenesis. Indeed, without certain environmental 

triggers, epigenetic modification and inflammatory responses, people with high 

genetic susceptibility may still fail to develop psoriasis, even though they are at 

significantly higher risk. Psoriasis is indeed known to be either triggered or 
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exacerbated also by non-specific exogenous factors, such as mild physical trauma 

(tattoos, sunburns, scratching) (Sagi & Trau 2011). Strong evidence also exists for 

psoriasis onset after tonsillar Streptococcus pyogenes infection (Gudjonsson et al. 

2003). The use of various drugs, such as lithium, β-blockers, antimalarial agents, 

non-steroidal anti-inflammatory drugs, and angiotensin-converting enzyme 

inhibitors, has also been associated with onset or worsening of disease in psoriatic 

patients (Basavaraj et al. 2010). In addition, a possible association between 

vaccination and the new onset and/or exacerbation of psoriasis has been reported 

recently (Gunes et al. 2015).  

 

1.3.3  Epigenetics in psoriasis 

Increasing data suggest an emerging role of epigenetics in psoriatic disease as a 

plausible link between environmental exposure and psoriasis development. In this 

context, methylation of genes involved in the modulation of cell proliferation and 

apoptosis, such as SHP-1 and p16 respectively, was found abnormal in patients 

with psoriasis compared to healthy controls (Chen et al. 2008), (Ruchusatsawat et al. 

2006). Abnormal expression of histone acetyltransferases (HATs) and histone 

deacetylases (HDACs) has also been observed in psoriatic skin samples (Tovar-

Castillo et al. 2007). Zhang P and colleagues demonstrated that hypoacetylation of 

histone H4 is observed in peripheral blood of psoriatic patients, and that the 

degree of hypoacetylation of histone H4 inversely correlates to disease severity 

(Zhang et al. 2011). Importantly, emerging evidence has indicated that HDAC 

inhibitors (HDAC-Is) can be used in the treatment of psoriasis (McLaughlin & La 

Thangue 2004). Another epigenetic mechanism found to play a role in the 

pathogenesis of psoriasis is RNA-associated silencing (Sonkoly et al. 2007).  

 

1.4  Pathogenesis 

In the past psoriasis was believed to be a disease primarily caused by intrinsic 

alterations of epidermal keratinocyte proliferation. Around 1980, however, several 

observations supported the central role of immune cells in the pathogenesis of 

psoriasis (Bos et al. 2005). Genetic data on human leukocyte (HLA) associations 

with psoriasis development, as well as data on the presence of oligoclonal T cells 
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in human psoriatic skin, further underline the importance of the immune system in 

psoriasis pathogenesis (Eberle et al. 2016). Loss of tolerance against putative                 

auto-antigens, including keratins, the antimicrobial peptide LL37, heat shock 

proteins and the melanocytic antigen ADAMTSL5-like protein 5 (ADAMTSL5), 

have also been recognized as an important factor contributing to disease 

pathogenesis (Besgen et al. 2010; Arakawa et al. 2015). For many years, psoriasis 

was considered a Th1-type disease in which IFN-γ and TNF were the predominant 

pathogenic driver cytokines. More recently, deregulated axis involving the 

overproduction of IL-23, and the consequent activation of IL-17 producing T cell 

subsets (T17), has instead emerged as the central immune pathway driving 

psoriasis development (Zaba et al. 2009). IL-23 expressed by inflammatory DCs 

drives Th17 development and expansion. In turn, Th17-driven IL-17A and IL-22 

act on keratinocytes to induce CC chemokine 20 (CCL20) and anti-microbial 

peptides production (Wilson et al. 2007) which sustains skin inflammation. This 

inflammatory loop is then amplified by the capability of keratinocyte-derived 

CCL20 to further recruit CCR6-bearing Th17 cells, which, in turn, further activate 

keratinocytes to produce CCL20 in a positive feedback manner (Chiricozzi et al. 

2011). The overproduction of other inflammatory cytokines, such as IL-1, IL-36, 

TNFα and IL-22, is also known to trigger pivotal pathogenic pathways in human 

psoriasis (Johnston et al. 2017; Johnston & Gudjonsson 2014) (Figure 1). 

 

 

 



11 
 

 

 

From Di Meglio et al, 2014 

 

Figure 1. Psoriasis immunopathogenesis. A pathogenic crosstalk between innate and 

adaptive immune cells sustained by pro-inflammatory mediators, underlies the 

deregulated immune response seen in psoriasis. The three main cellular players and their 

products are depicted in this diagram. Keratinocytes (KCs) produce key cytokines, while 

activated DCs present yet undefined antigens and secrete mediators leading to the 

differentiation and activation of IL-17-producing T cells (T, here representing both αβ 

and γδ T cells). T cells, in turn, secrete cytokines that activate KC aberrant differentiation 

program and induce the production of further pro-inflammatory mediators, especially 

chemokines (CXCL1, CXCL8) recruiting neutrophils (not shown) or other immune cells 

(CXCL9, CXCL10, CCL20), as well as other antimicrobial peptides (AMPs) (not 

shown). Critical pro-inflammatory molecules, effectively targeted by biologic drugs, are 

shown in red. 
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Among the cellular mediators, today there is a widely accepted consensus that 

psoriatic lesions originate as a result of a deregulated crosstalk between 

keratinocytes and resident cutaneous immune cell types belonging to both the 

adaptive and the innate branch of the immune system. However, despite the large 

experimental knowledge already existing on psoriasis pathogenesis, there is still 

an on-going debate on which is/are the immune cell type/s primarily involved in 

disease initiation and progression. What is now emerging is that psoriasis is a 

dynamic disease in which specific cell types can dominate over the others and 

sustain the mounting inflammation during the different phases of disease, 

including disease development, progression and maintenance. As anticipated 

above, the crucial role of DCs (Jariwala 2007) and T17 [including T helper 17 

(Th17) and, to a lower extent,  T cells] (Diani et al. 2015; Papotto et al. 2017) has 

been widely studied in psoriatic patients as well as in preclinical models of 

psoriasis (Cai et al. 2011; C. Wohn et al. 2013). By contrast, the role of myeloid cells 

in diseases pathogenesis (such as neutrophils, monocytes and macrophages), 

which are also known to infiltrate the psoriatic plaques and to display abnormal 

functions in psoriatic patients, is less well characterized (Deng et al. 2016; Coimbra 

et al. 2012; Schön et al. 2017). Focus of this thesis has been to better characterize the 

role of neutrophils in psoriasis pathogenesis. Particular attention has been 

dedicated to better understand the ability of these cells to modulate the IL-23\T17 

axis and  T cells (an innate-like T cell type of IL-17 producing T cells) during 

psoriasis development. 
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1.4.1  IL-23/IL-17A axis 

IL-23 is a heterodimer of a unique IL-23p19 and shared IL-12/23p40 chains 

produced by both resident dermal DCs and inflammatory mDCs, as well as 

macrophages in psoriasis (Zaba et al. 2009). A broad bunch of evidence suggests a 

pathogenic role for IL-23 in psoriasis. Indeed, expression of IL-23p19, IL-23p40 

and IL-23R is increased in psoriasis lesional skin (Tonel et al. 2010), along with an 

increased number of Th17 cells in the dermis (Lowes et al. 2008) and in the blood. 

Moreover intradermal injection of IL-23 in mouse skin resulted in erythema with 

psoriasis-like histological features (Chan et al. 2006). The clinical success of 

biologic drugs targeting IL-12/IL-23p40 confirms the importance of this cytokine 

and its associated pathways, in psoriasis. In fact, IL-23 represents a crucial 

mediator in psoriatic inflammation, driving the development of IL-17 and IL-22 

producing Th17 cells. Importantly, IL-23 along with its receptor and downstream 

transcription factor STAT3, are all genes that are associated with increased 

susceptibility to psoriasis development. Of note, activation of STAT3 and RORγδ, 

another Th17 characterizing transcription factor, is required for IL-17A and IL-

17F expression. Th17, which largely infiltrate psoriatic skin dermis in humans, 

represent an important source of IL-17A, IL-17F, and IL-22 (Ortega et al. 2009; Cai 

et al. 2011). IL-17A and IL-17F share high structural and functional homology and 

primarily activate KCs to produce leukocyte recruiting chemokines, AMPs and 

many inflammatory mediators. IL-17A/F can also mobilize neutrophils, working 

as a link between adaptive and innate immunity (Pelletier et al. 2010), and further 

create a self-sustaining loop through IL-17A induced production of CCL20 by 

KCs. Besides Th17 cells, IL-17A and/or IL-22 are produced by other cell types of 

immune cells identified in psoriatic skin, including innate lymphoid cells (ILCs)3 

and γδ T cells (Chien et al. 2014; Artis & Spits 2015). 

 

1.4.2  γδ T Cells 

γδ T cells account for approximately 3-5% of all lymphoid cells found in the 

secondary lymphoid tissue and the blood whereas they are highly enriched in 

different epithelial tissues, such us the intestinal mucosa, the skin and the 

reproductive tract. These cells represent, therefore, the first line of defence against 
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pathogens by providing a rapid cytokine response. γδ T cells are the first immune 

cells found in the fetus and provide immunity to new-borns prior to activation of 

the adaptive immune system (Sinkora et al. 2005). While αβ CD4
+
T cells mostly 

leave the thymus as 'naive' cells that differentiate upon activation in the 

periphery, γδ T lymphocytes are generated in the thymus from CD27
+
γδ-cell-

committed progenitor, and acquire their effector function during thymic 

development (Muñoz-Ruiz et al. 2017). After functional rearrangement and 

expression of the γ and δ-TCR chains, these cells become reprogrammed 

depending on the TCR signalling strength: strong agonists lead differentiation 

towards an IFN-γ -producing lineage, which can be identified on the basis of the 

expression of the co-stimulatory receptor CD27 (Haas et al. 2009). In contrast low 

TCR signalling leads to the development of IL-17-producing γδ T cells 

expressing RORγδ (Th17-lineage transcription factor) and other surface 

receptors including CD127 (IL7R) and CCR6 (Kisielow et al. 2008).  

Several chemokine receptors, cytokine receptors and pattern recognition receptors 

(PRRs) are expressed by γδ T cells and have been showed to be involved in their 

activation. Production of IL-23, IL-1 and IL-18 by activated DCs and 

macrophages promotes IL-17 production by γδ T cells (Sutton et al. 2009).  

Despite the fact that the activation of γδ T cells relies mainly on innate cytokines, 

it appears to be also regulated and „fine-tuned‟ by various accessory receptors 

such us programmed cell death protein 1 (PD-1), the B and T lymphocyte 

attenuator (BTLA) and the co-stimulatory receptor CD28 (Ribot et al. 2012). 

Mouse skin harbours distinct subsets of γδ T cells which differ according to the 

skin layer. In the epidermis there is a large number of γδ T cells which, do to their 

marked dendritic morphology, have been named dendritic epidermal T cells 

(DECT) (Havran & Jameson 2010). DECT express the canonical Vγ5Vδ1 TCR and 

participate in tissue surveillance and wound healing producing keratinocyte 

growth factors and IFN-γ  (Jameson et al. 2002). In the dermis, the Vγ4
+
 and Vγ6

+
 

T cells are the most represented subsets and are responsible for pathogenic 

inflammatory responses mediated by the production of IL-17 (O‟Brien & Born 

2015). Moreover dermal γδ T cells, but not epidermal γδ T cells, constitutively 

express CCR6 and RORγδ (Cai et al. 2011). Among dermal γδ T cells, resident 
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Vγ6
+
 cells are long-lived, self-renewing, mostly radio-resistant cells that require a 

source of fetal thymocytes for reconstitution. On the contrary, infiltrating Vγ4
+
 

cells migrate from the lymph nodes, are radiosensitive and can be reconstituted 

from bone marrow progenitors (Haas et al. 2012; Roark et al. 2007). Dermal γδ T 

cells have been shown to proliferate and secrete IL-17A, IL-17F and IL-22 when 

cultured in the presence of IL-23 and IL-1β (Cai et al. 2011; Gray et al. 2011). This 

pathogenic signature is critical for triggering the formation of psoriasiform 

plaques in mice, as genetic deletion of these cytokines substantially diminishes the 

disease severity in the imiquimod (IMQ)-induced mouse model of psoriasis (see 

IMQ mouse model below) (Pantelyushin et al. 2012). Furthermore, Cai Y. and 

colleagues showed that skin pathology was diminished in Tcrd
-/-

 (T-cell receptor 

delta chain knock-out) mice treated with IMQ as opposed to Tcra
-/- 

(T-cell 

receptor αβ knock-out) and wild-type mice, suggesting that dermal γδ T cells play 

a major role in driving the IMQ-induced skin inflammation (Cai et al. 2011). Using 

the same animal model, Ramirez-Valle F. and colleagues found an expansion of a 

population of Vγ4
+
 Vδ4

+
 T cells that was mostly responsible for IL-17 production.                     

IL-17 producing Vγ4
+
 Vδ4

+
 T cells were able to establish long-lived memory in 

the skin, persisting in the dermis for long periods of time after the initial 

stimulation with IMQ. Moreover, experienced Vγ4
+
 Vδ4

+
 T cells showed 

enhanced effector functions and mediated and exacerbated secondary 

inflammatory response (Ramírez-Valle et al. 2015; Hartwig et al. 2015).                            

The observation that mice bearing a mutation in the gene encoding Sox13, which 

fail to develop dermal Vγ4
+
 cells but can generate dermal Vγ6

+
 cells, had lower 

psoriasis-like dermatitis scores than those of Sox13
+/+

 mice upon IMQ treatment, 

further support the pathologic role of Vγ4
+
 Vδ4

+
 T cell population in psoriasis 

(Gray et al. 2013). As discussed above, IL-17 producing dermal γδ T cells have 

been extensively studied in murine models of psoriasis. In contrast to mouse skin, 

γδ T cells are rare in healthy human skin. In fact, approximately 2-9% of all 

dermal cells are γδ T cells (Ebert et al. 2006). Furthermore, the role of these cells in 

human skin, and especially their role in IL-17 signalling, remains poorly 

characterized. There are however few evidence for a novel Vγ9
+
Vδ2

+
 T cell 

subset, expressing cutaneous lymphocytes antigen CCR6, which was found to 
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accumulate in psoriatic skin and to be reduced into the circulation of patients.         

This mobilization of CCR6
+
Vγ9

+
Vδ2

+
 T cells observed in psoriatic patients 

associates with disease severity and is normalized after successful treatment of 

psoriasis (Laggner et al. 2011). 

 

1.4.3  Neutrophils 

Neutrophils are innate immune cells belonging to the family of 

polymorphonuclear leukocytes, that are well recognized as one of the major 

players during acute inflammation (Mantovani et al. 2011). They are typically the 

first leukocytes to be recruited to an inflammatory site and are capable of 

eliminating pathogens by multiple mechanisms. In the circulation, mature 

neutrophils have an average diameter of 7–10μm, their nucleus is segmented and 

their cytoplasm is enriched with granules and secretory vesicles (Mestas & Hughes 

2004). Mature neutrophils develop in the bone marrow from pluripotent 

hematopoietic stem cells (HSC) in a process called “granulopoiesis”. 

Granulopoiesis is strictly dependent on the effects of several colony stimulating 

factors (CSFs), among which granulocyte CSF (G-CSF) is the most important, 

and cytokines, such as IL-6, IL-23 and IL-17 (Bugl et al. 2012). The release of 

neutrophils from the bone marrow to the circulation and peripheral tissue 

contributes to the maintenance of neutrophil homeostasis and, as such, is a tightly 

regulated process. Indeed, in physiological conditions the peripheral neutrophil 

population is maintained within a constant number by balancing the production, 

release and clearance of neutrophils from the circulation. The process is controlled 

by granulocyte colony stimulating factor (G-CSF) (Lieschke et al. 1994), which is 

produced in response to IL-17A synthesized by T cell populations (γδ and natural 

killer T cells) involved in regulating neutrophil homeostasis (Ley et al. 2006). 

Release of IL-17A is, in turn, induced by IL-23 originating from tissue-resident 

macrophages and dendritic cells. During inflammation the number of neutrophils 

in the blood and tissues can increase up to 10-fold. With time the cells die by 

apoptosis and are removed by macrophages and dendritic cells.                                    

This process results in down-regulation of IL-23 synthesis by those cells and thus 

reduces G-CSF release (Stark et al. 2005). 
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Neutrophils were always considered short-lived cells with a half-life in the 

circulation of approximately 1.5 and 8 hours in mice and humans, respectively. 

Recent studies challenged this concept, proposing that under basal conditions the 

average circulatory lifespan of neutrophils is up to 12.5 hours for mouse cells and 

5.4 days for human neutrophils (Pillay et al. 2010). In this context, the notion that 

neutrophil longevity can increase several fold, both in vitro and in vivo, under 

inflammatory conditions has changed the view under which these cells have long 

been considered. Indeed, a longer lifespan may allow neutrophils to carry out 

more complex activities at the inflammatory sites, such as contributing to the 

resolution of inflammation or shaping adaptive immune responses. The classical 

view of neutrophils as “suicide” phagocytic cells capable only to release lytic 

enzymes and to produce reactive oxygen intermediates (ROI) with antimicrobial 

potential (Nathan 2006) has indeed been challenged by the demonstration that these 

cells can actually be induced to express several genes encoding key inflammatory 

mediators, including complement components, Fc receptors, chemokines and 

cytokines (Mantovani et al. 2011; Tecchio & Cassatella 2016).Thus, in response to 

different signals neutrophils express a vast and diverse repertoire of cytokines that 

are crucial to the role of neutrophils in innate and adaptive immune responses and 

to their role in defence and pathology. Accordingly, also the observation that 

neutrophils can infiltrate lymphoid organs, including spleen and lymph nodes, as 

well as the demonstration that neutrophils exhibit complex crosstalk with 

components of the innate and adaptive immune system (including DCs, T and B 

cells) (Scapini & Cassatella 2014) has renewed the interest in these cells within the 

immunology community. Importantly, locally activated neutrophils not only 

amplify the inflammatory process, but, surprisingly, can also actively participate 

in its resolution phase (Jones et al. 2016). In this context, relevant to this thesis, is 

the notion that the inflammatory environment can profoundly shape the functional 

status of neutrophils. Indeed, among the novel discoveries on neutrophil biology, 

concepts such as “neutrophil heterogeneity” and “neutrophil plasticity” have 

started to emerge, implying that, under pathological conditions, neutrophils may 

differentiate into discrete subsets defined by distinct phenotypic and functional 

profiles (Scapini et al. 2016; Silvestre-Roig et al. 2016). 
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Despite the fact that the origin and phenotype of the majority of these neutrophil 

subsets remain unclear, accumulating evidence supports the idea that these 

distinct neutrophil populations may play diverse, and even opposing roles in 

infection, inflammation and cancer immunology (Scapini et al. 2016; Silvestre-Roig 

et al. 2016). For instance, the controversial role of neutrophils in cancer 

pathogenesis is a subject of extensive investigation in the field. Indeed, evidence 

that neutrophils can display both immunosuppressive/pro-tumor and 

immunostimulatory/anti-tumor functions has been reported in both tumour-

bearing mice and in cancer patients (Shaul & Fridlender 2017; Liang & Ferrara 2016). 

In this context, it has been suggested that neutrophils can polarize from an N1 

pro-inflammatory and anti-tumoral phenotype, to an N2 anti-inflammatory and 

pro-tumoral phenotype (Granot & Jablonska 2015). Furthermore, it is now well 

established that myelopoiesis can be profoundly modified during inflammation 

and cancer, releasing altered mature myelocytes and myeloid-derived suppressor 

cells (MDSCs) that exert immunosuppressive and protumoral activity, mainly by 

inhibiting T cell functions (Moses & Brandau 2016; Scapini et al. 2016). Altogether, 

these novel aspects of neutrophil biology have shed a new light not only on the 

potential complex roles that neutrophils play during inflammation and immune 

responses, but also on the pathogenesis of several inflammatory disorders 

including infection, autoimmunity and cancer. In the context of psoriasis, as it will 

be described more in details in the aim of the study and in the discussion of this 

thesis, neutrophil accumulation in the skin is one of the histological features of 

this disease (Perera et al. 2012). In psoriatic skin, neutrophils initially infiltrate into 

the dermis at the early phase and later into the epidermis at the chronic phase. 

However, to date little is known about the pathogenic role of neutrophils in vivo, 

despite the fact that the role of IL-17 in neutrophil-mediated inflammation 

strongly suggests that neutrophils may also participate to psoriasis pathogenesis.  
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1.5  The imiquimod (IMQ) mouse model of psoriasis 

Research on the pathogenesis of psoriasis has been severely hampered by the lack 

of a naturally occurring disorder in laboratory animals that mimics the complex 

phenotype and pathogenesis of the human disease (Bocheńska et al. 2017). 

However, a mouse model of psoriasiform dermatitis caused by the repeated 

topical application of Aldara™ cream [containing the Toll-like receptor 7/8 

(TLR7/8) ligand IMQ (5%)] was described in 2009 (van der Fits et al. 2009). This 

model is currently broadly utilized to elucidate pathogenic mechanisms involved 

in psoriasis development as well as to evaluate possible new therapies for this 

disease. IMQ is a potent immune activator used for topical treatment of infections 

caused by Papilloma virus and other skin-associated abnormalities, including pre-

cancerous skin lesions (Beutner & Ferenczy 1997). IMQ treatment is known to 

exacerbate the disease in patient already affected by psoriasis, also at distant sites, 

suggesting a possible systemic effect of IMQ (Wu et al. 2004). The primary mode 

of action of IMQ in mice is through ligation of TLR7 that activates NF-κB 

signalling in a MyD88-dependent fashion (Hemmi et al. 2002) (Figure 2). 

However, IMQ has been shown to have pro-inflammatory actions independently 

from TLR7 ligation. In fact, IMQ is a ligand for adenosine receptor for which it 

may act as an antagonist leading to inflammation development (Schön et al. 2006). 

Independently of TLR7 and MyD88 signalling, IMQ may also activate the 

inflammasome in keratinocytes via the NALP3 pathway, leading to activation of 

caspase 1 and production of IL-1β and IL-18 (Kanneganti et al. 2006). Repeated 

applications of IMQ-containing cream rapidly induces skin inflammation in mice 

with remarkable pathological and histological resemblance to human psoriasis, 

including the development of skin erythema and scaling, epidermal thickening 

(acanthosis), altered keratinocyte differentiation, neoangiogenesis and skin 

infiltration of immune cells (van der Fits et al. 2009). Interestingly, the involvement 

of a deregulated IL-23/IL-17 axis and the overproduction of other inflammatory 

cytokines, such as IL-1, IL-36 and IL-22, that are known to trigger pivotal 

pathogenic pathways involved in human psoriasis, also appears to be mirrored in 

the IMQ-induced psoriasis (Flutter & Nestle 2013a; Tortola et al. 2012; Rabeony et al. 

2015). The murine cell populations that express high levels of TLR7 include 



20 
 

macrophages and DCs. IMQ-induced activation of Myd88 in these cells triggers 

the production of IL-23, which is required for the maximal T cell responses and 

inflammation (Costa et al. 2017; C. Wohn et al. 2013). Dermal γδ T cells are the 

major IL-17-producing cells in the skin in response to IL-23 stimulation, while 

conventional αβ T cells do not contribute to the development of psoriasis lesions 

in this model (Kalyan et al. 2014). Overall these observations indicate that IMQ-

induced psoriasis in mice closely resembles human psoriasis in terms of 

phenotypic skin changes and that lesion development is strictly dependent upon 

the IL-23/IL-17 axis (Cai et al. 2011; van der Fits et al. 2009). 

 

 

      

       From Flutter B and Nestle FO 2013 

    

Figure 2. Mechanisms of action of Aldara
TM

. Aldara
TM

 can activate immune responses 

via a number of different pathways including: (i) TLR7-dependent MyD88 pathway 

activation in immune cells, (ii) NALP3 activation of the inflammasome, by IMQ, (iii) 

antagonism of adenosine receptor signalling, (iv) direct activation of the inflammasome 

or MyD88 pathways through unknown receptors by the vehicle (v), imiquimod- or 

vehicle-driven cell death leading to the release of preformed IL-1α and cell debris. 
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2.  Aim of the study 

 

 

 

Neutrophils are the most abundant leukocytes in humans and play a major role in 

driving immune responses against most type of infections. Recently, it has 

become clear that the functions of neutrophils go far beyond the elimination of 

microorganisms and that these cells may contribute to the pathogenesis of 

numerous chronic inflammatory disorders (Kolaczkowska & Kubes 2013; Mócsai 

2013). In this context, despite the fact that the presence and infiltration of 

neutrophils into the epidermis is one of the hallmark histologic features of 

psoriasis (Perera et al. 2012), the role of these cells in disease pathogenesis remains 

poorly understood. The most credited hypothesis views neutrophils as the 

principal cell mediators in the IL-17-dependent pathophysiology of psoriasis, 

suggesting a pro-inflammatory role of neutrophils in this disease. However, data 

emerging from clinical evidence do not allow drawing definitive conclusions.  

Indeed, while some clinical evidence report that agranulocytosis  can improve the 

clinical outcome in patients with different subtype of psoriasis (Pai et al. 1999; 

Toichi et al. 2000), other clinical trials for therapeutic interventions aimed at 

interfering with neutrophil recruitment or functions into the inflammatory skin 

(e.g. anti-human CXCL8 Abs) were not successful (Bhushan et al. 2002; Schön et al. 

2017). Similar controversial results on the pathogenic role of neutrophils in 

psoriasis also emerge from studies in which preclinical models of this disease 

have been utilized (Schön et al. 2000; Singh et al. 2016; Sumida et al. 2014). 

This being said, to better elucidate the role of neutrophils in psoriasis 

development, I utilized the imiquimod (IMQ)-induced mouse model of psoriasis, 

which consists of the topical administration of Aldara ™ cream [containing the 

(TLR7/8) ligand IMQ (5%)] (Flutter & Nestle 2013b; Hawkes et al. 2016). While the 

crucial role of DCs and T cells (mostly γδ T cells) in the development of IMQ-

induced psoriasis has been elegantly demonstrated (Cai et al. 2011; Pantelyushin et 

al. 2012; Singh et al. 2016; Tortola et al. 2012; C. Wohn et al. 2013; Yoshiki et al. 2014), 

the role of neutrophils in this model remains unclear (Figure 3).  
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Indeed, neutrophil depletion resulted in a reduction of IMQ-induced psoriasis in 

one study (Sumida et al. 2014) or to not affect disease development in another study 

(Singh et al. 2016). Herein, by performing neutrophil depletion or utilizing mice 

carrying impairment in neutrophil functions, including p47phox 
-/- 

mice [lacking a 

cytosolic subunit of the phagocyte nicotinamide dinucleotide phosphate (NADPH) 

oxidase (Jackson et al. 1995)] and Syk
fl/fl

Mrp8-cre
+
 mice [carrying the specific 

deletion of the Syk kinase in neutrophils only (Elliott et al. 2011; Van Ziffle & 

Lowell 2009)], I uncovered a novel potential regulatory role of neutrophils in the 

IMQ-induced psoriasis.   
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From Becher B & Pantelyushin, 2014 

 

Figure 3. Initiation of psoriasis by γδ T cells. Several insults can directly activate DCs 

through pattern recognition receptors (PRRs) or indirectly through keratinocyte stress 

(release of IL-1, TNF-α and IL-36). Stress-sensing DCs can produce IL-23, which 

activates γδ T cells to make TNF-α, IL-17 and IL-22, representing an early event in 

psoriasis that is mediated by the innate immune response. IL-22 induces keratinocyte 

proliferation, and TNF-α and IL-17 activate DCs and keratinocytes, leading to 

upregulation of adhesion molecules by the skin epithelium, angiogenesis and chemokine 

production. IL-17–induced chemokines include CXCL1 and CXCL8 and are responsible 

for the recruitment of neutrophils. IL-17R engagement by keratinocytes also leads to local 

production of CCL20, which attracts more circulating CCR6
+
 γδ T cells. This escalates 

into a self-amplifying inflammatory loop that can also be mediated by the adaptive 

immune system.  

 

 

 

 

 



24 
 

3.  Materials and Methods 
 

 

 

3.1  Mice  

Syk
fl/fl 

and Syk
fl/fl

Mrp8-cre
+ 

mice, were previously described (Van Ziffle & Lowell 

2009), p47phox
−/−

 mice were a gift from Prof. Romani (University of Perugia) and 

were previously described (Jackson et al. 1995). Tcra
-/-

 mice were a gift from Prof. 

Constantin (University of Verona). C57BL/6 mice were purchased from The 

Jackson Laboratory (Bar Harbor, ME, USA). All mice used in this study were on 

a C57BL/6 background and kept in a specific pathogen-free facility. All mouse 

experiments were carried out in accordance with guidelines prescribed by the 

Ethics Committee for the usage of laboratory animals for research purposes at the 

University of Verona and by the Italian Ministry of Health. 

 

3.2  IMQ-induced psoriasis model 

For induction of psoriasis-like skin inflammation, mice at 8–12 wk of age were 

shaved on the back with an electric clipper 1 d prior to treatment and received a 

daily topical dose of 62,5 mg of commercially available IMQ cream (5%) (Aldara 

Cream™, Meda AB) or control cream (vaseline) on their shaved backs for 3 or 6 

consecutive days as previously described (van der Fits et al. 2009; Costa et al. 2017). 

On the fourth or seventh day, the animals were euthanized (Figure 4). Back skin 

was isolated and half was fixed in 10% formaldehyde for histopathology analysis 

while the other half was finely chopped and stored in RNAlater (Ambion) for 

quantitative real-time PCR (qRT-PCR) or digested, as described below, to achieve 

single-cell suspensions for flow cytometry analysis. 
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3.3  Neutrophil depletion 

Mice were injected intra-peritoneally (i.p.) with 300 μg of rat anti-mouse Ly6G 

Ab (clone 1A8; BioXcell) or isotype control Rat IgG2a (clone 2A3; BioXCell), 

dissolved in 300 μl phosphate-buffered saline (PBS) every other day from day 0 to 

day 6 (Figure 4). 

 

 

 

Figure 4. Neutrophil depletion in the IMQ-induced mouse model of psoriasis. 

 

 

3.4  Cell preparation and flow cytometry 

Skin tissue (2 cm X 2 cm) was cut from dorsal skin of the mouse. After removing 

subcutaneous tissue and collagen intensively with forceps, the skin was cut into 

small pieces and digested with 0,4 mg/ml Liberase TM (Roche Ltd.) and 0,5 

mg/ml DNase I (Sigma) in RPMI 1640 medium (Sigma) for 1 hour. Single cell 

suspension was obtained by shredding with gentle Macs Dissociator (Miltenyi 

Biotec) and filtering with 70 μm and 40 μm cell strainer in series. Lymph nodes 

were mechanically dissociated by two frosted microscope slides and passage 

through a 70 μM cell strainer to yield a single-cell solution. Cells were 

resuspended in phosphate buffered saline containing 2 % (vol/vol) fetal calf 

serum, 2 mM EDTA and maintained at 4°C. For flow cytometry, 1–2×10
6
 cells 

were stained. Non-specific binding was blocked by pre-incubation with 0.5 µg 

anti-CD16/32 (2.4G2, Biolegend) and 100 µg mouse IgG (Sigma). Surface 

staining was performed with the following anti-mouse Abs: Ly6G(1A8), TCRαβ 

http://www.google.it/aclk?sa=l&ai=DChcSEwiti-_qiOLRAhVJu-0KHU8ZAjsYABAB&sig=AOD64_0692DBd8tzFdfgPWuJAwWzKJ746w&adurl=&rct=j&q=
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(H57-597), CD62L (MEL-14), CD11b (M1/70), CD45 (30-F11), I-Ab 

(MHCII)(AF6-120.1), CD44 (IM7), TCR γ/δ (GL3) from Biolegends; Ly6C (AL-

21), CD11c (HL3), CD3 (145-2C11) and GR-1 (RB6-8C5), from BD Biosciences. 

After final wash, cells were resuspended in staining/wash buffer containing 1 

mg/ml propidium iodide (PI; Sigma-Aldrich) for viability staining according to 

the manufacturer‟s instructions. For intracellular cytokine staining, the cells were 

activated for 4 hours in phorbol 12-myristate 13-acetate (PMA; 50 ng/ml) and 

ionomycin (750 ng/ml) in the presence of brefeldin A (1 mg/ml). Thereafter, cells 

were surface-stained, washed, and then fixed and permeabilized using the 

eBioscience kit as previously described (Scapini et al. 2011). Intracellular staining 

was performed with anti-mouse IL-17A (TC11-18H10.1; eBioscience) or its 

relevant isotype control mAbs. Sample fluorescence was measured by a seven-

color MACSQuant Analyzer (Miltenyi Biotec), while data analysis was performed 

by using FlowJo software Version 8.8.6 (Tree Star, Ashland, OR, USA). 

 

3.5  Quantitative real-time PCR 

Real-time reverse transcription-PCR was performed, as previously described 

(Tamassia et al. 2014), using total RNA isolated from 30 mg of the skin by RNeasy 

Fibrous Tissue Mini Kit (QIAGEN) and utilizing the following gene-specific 

primer pairs (all purchased from Invitrogen) (Table 1). Data were calculated by 

Q-Gene software (http://www.gene) quantification.de/download.html) and 

expressed as mean normalized expression (MNE) units after RPL32 

normalization. 

 

3.6  Skin histology 

Dorsal skin samples (3 mm) were obtained by a transversal cut of the central skin 

area, fixed in 10% neutral buffered formalin and embedded in paraffin blocks by 

using a Tissue-Tek® Tissue Embedding Console System from Diapath (Bergamo, 

Italy). The paraffin blocks were cut into 3 µm thick cross-section and stained with 

hematoxylin and eosin following the standard procedure (immersion in Mayer‟s 

hematoxylin: 2 minutes; immersion in eosin: 3 min) by using a Leica 

Microsystem Autostainer XL ST5010 (Milano, Italy). Epidermal thickness was 

http://www.gene/


27 
 

determined by measuring the average interfollicular distance under the 

microscope in a blinded manner. Pictures were taken using Leica DFC 300FX 

Digital Color Camera on a Leica DM 6000 B microscope at a 100x magnification.  

 

3.7  Isolation of peritoneal neutrophils 

Peritoneal exudates were recovered 16 hours after i.p. injection of Bio-Gel® P 

Polyacrylamide Beads (Bio Rad). After a passage through a 70 μM cell strainer, 

cell suspensions were incubated with different mAbs as described in the flow 

cytometry section. CD11b
+
Ly6G

+ 
neutrophils were sorted using a FACS AriaTM 

II flow cytometer (Becton Dickinson) (> 99.0 % purity). Alternatively, 

neutrophils were purified using EasySep™ Mouse Neutrophil Enrichment Kit 

according to the manifacturer‟s instructions (>95% purity). Purified cells were 

suspended at proper concentration depending on the assay in RPMI 1640 medium 

supplemented with 10 % FBS, 1 % ultraglutammine and 1 % 

penicillin/streptomycin (BioWhittaker-Lonza), added to 96-well plates and 

cultured at 37˚C, 5 % CO2.    

 

3.8  Proliferation and IL-17A production by γδ T cells 

γδ T cells were isolated from single-cell suspensions of mouse spleen and lymph 

nodes from wild-type or Tcra
-/-

 mice, using the TCRγ/δ
+ 

T Cell Isolation Kit 

(Miltenyi Biotec) (> 85.5 % purity). Proliferation assay was performed in 96-well 

plates pre-coated (for 1 hour at 37˚C) with 10 µg ml
-1

 anti-CD3 mAbs [(G23-8, 

eBioscience). 1 x 10
5
 γδ T cells /well and 2 µg/ml anti-CD28 mAbs (B122, 

eBioscience) were then added to the plates (at 37˚C, 5 % CO2), in the presence of 

10 ng/mL IL-1β (eBioscience) plus 100 ng/mL IL-23 (eBioscience). After 24 

hours purified peritoneal neutrophils were added to the culture at the appropriate 

ratio. Following a 72 hour-incubation BrdU was added to the co-cultures for 

additional 4 hours; supernatants were then harvested for measurement of IL- 17A 

by using a specific ELISA kit (R&D Systems) while proliferation was determined 

by BrDU incorporation by ELISA (Cell proliferation ELISA, Roche), following 

the manufacturer‟s protocol. γδ T cell inhibition of proliferation is expressed as 

percentage of decrease of the absorbance value (at 450 nm: revealing the amount 

http://www.ebioscience.com/
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of BrdU incorporated in proliferating γδ T cells) of each experimental conditions 

over the absorbance value of anti-CD3/CD28-stimulated γδ T cells. 

 

3.9  Quantification of reactive oxygen species  

Oxidative stress detection was performed using the cellROX® Deep Red Flow 

Cytometry Assay Kit (Life Technology). 96-well plates were pre-coated (for 1 

hour at 37˚C) with 10 µg ml
-1

 anti-CD3 mAbs [(G23-8, eBioscience). 1 x 10
5
 γδ T 

cells/well and 2 µg/ml anti-CD28 mAbs (B122, eBioscience) were added  into the 

plates (at 37˚C, 5 % CO2), in the presence of 10 ng/mL IL-1β (eBioscience) plus 

100 ng/mL IL-23 (eBioscience). The day after purified peritoneal neutrophils 

were added to the culture at 1:1 γδ T cells-to-neutrophils ratio for 1,5 hours. Then 

cells were stained with the CellROX
®
 Deep Red reagent for additional 1.5 hours. 

Sample fluorescence was measured by a seven-colour MACSQuant Analyzer 

(Miltenyi Biotec), while data analysis was performed by using FlowJo software 

Version 8.8.6 (Tree Star, Ashland, OR, USA). 

 

3.10  Statistical analysis 

Data were expressed as the mean ± SD and analysed using GraphPad Prism 

Version 5 software (GraphPad Software, Inc.). The comparison of variables was 

performed using two-tailed Student t- test (for comparison between two groups) 

or a 1-way ANOVA with Bonferroni‟s post test (used for multiple comparisons), 

Dunnett‟s post-test (when multiple comparisons to control group were made).      

P-values of less than 0.05 were considered significant and symbols indicate 

significant increases: *
/#

, P <0.05; **
/##

, P ≤ 0.01; ***
/###

, P ≤ 0.001; 
****/####

, P ≤ 

0.0001. Graphs were elaborated using GraphPad Prism Version 5 software 

(GraphPad Software, Inc.). 
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Table 1. List of primer sequences used for RT-PCR 
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4.  Results 

 

 

 

Neutrophil depletion reduces the progression, but not the initiation, of skin 

inflammation and epidermal thickening in the IMQ-induced psoriasis.       

To investigate the specific contribution of neutrophils to the development of IMQ-

induced psoriasis, we performed neutrophil depletion by injecting anti-Ly6G 

(clone 1A8) Ab, or isotype control Ab, in mice treated with IMQ (or vaseline 

control cream), for 3 or 6 consecutive days as originally described by Van der Fits 

et al. (van der Fits et al. 2009). First, we confirmed that the anti-Ly6G-treatment 

successfully depleted neutrophils in lymph nodes and the skin of either vaseline or 

IMQ-treated mice after both 3 and 6 days of treatment (Figure 5).  
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Figure 5. anti-Ly6G antibody (αLy6G) efficiently depletes neutrophil infiltration in 

the lymph nodes and the skin of IMQ-treated mice. Dorsal skin of mice was topically 

treated with IMQ containing-cream (Aldara
®
) or vaseline, utilized as control cream, for 3 

or 6 consecutive days. To deplete neutrophils, mice were injected i.p. with anti-Ly6G 

antibody (αLy6G) or the isotype control (isotype Ab). (A) Draining lymph nodes were 

collected and analysed by flow cytometry. The total number of neutrophils 

(CD11b
+
Ly6C

int 
GR-1

high 
Ly6G

high
) is reported. (B) Total skin (2x2 cm) was digested and 

analysed by flow cytometry. The total number of neutrophils (CD11b
+
Ly6C

int 
GR-1

high 

Ly6G
high

) is reported. (C) Representative FACS plots showing the frequencies of 

CD11b
+
Ly6C

int 
GR-1

high 
Ly6G

high
 neutrophils in the lymph nodes of αLy6G- or isotype 

Ab- treated mice after treatment with IMQ, or vaseline, for 3 or 6 consecutive days. Data 

are pooled from 2 separate time course experiments and are expressed as means ± SD (n 

= 5 mice per time point). Statistical differences of IMQ-treated vs. vaseline-treated mice 

(#) and IMQ-treated vs. IMQ-treated mice following neutrophil depletion (*) are 

reported. #P ≤ 0.05; **P ≤ 0.01; ###/***P ≤ 0.001; ####/**** P ≤ 0.0001 by 1-way 

ANOVA with Bonferroni‟s post-test. 
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Interestingly, neutrophil depletion did not significantly affect epidermal 

thickening up to 3 days of IMQ treatment (Figure 6A). However, differently from 

what previously published (Singh et al. 2016; Sumida et al. 2014), we observed an 

unexpected significant increase of epidermal thickening in neutrophil-depleted 

mice, as compared to control mice, upon 6 days of IMQ treatment (Figure 6A, B). 

Consistently, the expression of skin-associated psoriatic genes by qRT-PCR, such 

as Lipocalin-2 (Lcn2) and S100 calcium binding protein A7/psoriasin (S100A7) 

was significantly higher in IMQ-treated mice receiving anti-Ly6G (clone 1A8) 

Ab, as compared to control isotype-treated mice (Figure 7). Strikingly, we also 

observed that, upon IMQ treatment, mice receiving anti-Ly6G Ab manifested a 

significantly increased expression of cytokines implicated in the IL-23/T17 axis, 

including IL-23, IL-22, IL-17, as compared to control isotype-treated mice 

(Figure 7). Neutrophil depletion, instead, did not significantly affect the 

expression of other inflammatory cytokines induced by IMQ treatment, such as 

IL-1, IL-36α and IL-1 (Figure 7).   

Overall, these data suggest a novel potential role for neutrophils as negative 

modulators of disease progression and of the IL-23/T17 axis in the IMQ-induced 

psoriasis. 
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Figure 6. Increased epidermal thickening in neutrophil-depleted mice in response to 

IMQ treatment. Dorsal skin of mice was topically treated with vaseline or IMQ-

containing cream (Aldara
®
) for 3 or 6 consecutive days. Mice were injected with the 

depleting antibody αLy6G or isotype control antibody (isotype Ab). (A) The height of 

epidermal hyperplasia was measured in interfollicular epidermis on H&E-stained slides 

by light microscopic evaluation. Data are pooled from 3 separate time course experiments 

and are expressed as means ± SD. Statistical differences of IMQ-treated vs. vaseline-

treated mice (#) and IMQ-treated vs. IMQ-treated mice following neutrophil depletion (*) 

are reported. **P ≤ 0.01; ####P ≤ 0.0001 by 1-way ANOVA with Bonferroni‟s post-test. 

(B) Representative H&E-staining of dorsal skin from mice injected with isotype Ab or 

αLy6G treated with vaseline or IMQ for 6 days. Original magnification, X100; original 

scale bars 40μm.  
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Figure 7. Gene-expression analysis of inflammatory molecules in the skin of IMQ-

treated control or neutrophil-depleted mice. The dorsal skin of mice was topically 

treated with IMQ-containing cream (Aldara
®
) or vaseline for 6 consecutive days. Mice 

were injected with the depleting antibody αLy6G or isotype control antibody (isotype 

Ab). Total skin RNA was extracted and reverse transcribed. mRNA expression of the 

indicated genes for IMQ-treated control or neutrophil-depleted mice is displayed as fold 

change of MNE units (after RPL32 normalisation) over vaseline-treated control. Data are 

pooled from 2 separate experiments and are expressed as means ± SD (n = 8-12 mice). 

Statistical differences of IMQ-treated vs. IMQ-treated mice following neutrophil 

depletion (*) are reported. ***P ≤ 0.001; ****P ≤ 0.0001 by  t test. 
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Neutrophil depletion increases the expansion and infiltration of γδ T cells in 

lymph nodes and skin of IMQ-treated mice.  

We then performed a careful characterization of the CD45
+
 cells infiltrating the 

draining lymph nodes and the skin of IMQ-treated mice receiving anti-Ly6G Ab 

or control isotype Ab by flow cytometry, utilizing the gating strategies previously 

described (Costa et al. 2017). Interestingly, after 6 days of IMQ treatment, we 

found strongly increased infiltration of γδ T cells in the draining lymph nodes of 

neutrophil-depleted mice, γδ T cells being the main pathological T cells in this 

mouse model of psoriasis (Cai et al. 2011; Pantelyushin et al. 2012) (Figure 8A, B-

left panel). Besides the total number, also the number of CD44
high

CD62L
low

 

effector γδ T cells and of IL-17-producing γδ T cells were significantly increased, 

indicating that not only the infiltration but also the activation of these cells was 

profoundly affected by neutrophil depletion (Figure 8B-right panel, C, D). No 

significant differences in the infiltration of αβ T cells (Figure 8E), 

monocytes/macrophages (Figure 8F) and DCs (Figure 8G) were instead found in 

the draining lymph nodes of anti-Ly6G-treated, as compared to control isotype-

treated mice. Notably, a strong expansion of dermal γδ TCR
low

 T cells was evident 

also in the skin of anti-Ly6G-treated, as compared to control isotype-treated mice 

after 6 days of IMQ treatment (Figure 9A, B). No significant differences in the 

infiltration of monocytes/macrophages (Figure 9C), DCs (Figure 9D) and 

TCR
+
αβ T cells (E) were instead found in the skin of anti-Ly6G-treated, as 

compared to control isotype-treated mice. It is worth to point out that, under our 

experimental conditions, γδ T cells and neutrophils infiltrated the lymph nodes 

and the skin of IMQ-treated mice with similar kinetics, being the infiltration of 

both cell types much more consistent after 6 rather than 3 days of IMQ-treatment 

(Figure 5A, B and figure 10A, B).  

Overall, these data point out at neutrophils as potential negative regulators of the 

infiltration and expansion of γδ T cells in the lymph nodes and skin of IMQ-

treated mice.  
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Figure 8. Infiltration of inflammatory cells in the draining lymph nodes of IMQ-

treated control or neutrophil-depleted mice. The dorsal skin of mice was topically 

treated with IMQ-containing cream (Aldara
®
) or vaseline, utilized as control cream, for 6 

consecutive days. Mice were injected with the depleting antibody αLy6G or isotype 

control antibody (isotype Ab). Draining lymph nodes were collected and analysed by 

flow cytometry. Panels report: the total number of neutrophils (Ly6C
int

 Ly6G
high 

GR-1
high

) 

(A), the number of total (left panel) and effector (CD44
high

CD62L
low

, right panel)
 
γδ TCR

+
 

cells (B), the number of IL-17A-producing γδ TCR
+
 cells (C), the frequencies of IL-17A-

producing γδ TCR
+
 cells (representative FACS plots) (D), the number of αβ TCR

+ 
T cells 

(E), the number of monocytes/Mϕ (CD11b
high

Ly6G
-
CD11c

low/-
MHCII

low/-
 cells plus 

CD11b
high

Ly6G
-
CD11c

low
/
-
MHCII

high
 cells) (F), and the number of DCs 

(CD11c
+/high

MHCII
high

) (G). Data are pooled from 3 separate experiments and are 

expressed as means ± SD (n = 14-15 mice). Statistical differences of IMQ-treated vs. 

vaseline-treated mice (#) and IMQ-treated vs. IMQ-treated mice following neutrophil 

depletion (*) are reported. #/*P ≤ 0.05; ##P ≤ 0.01; ###/***P ≤ 0.001 by 1-way ANOVA 

with Bonferroni‟s post-test. 
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Figure 9. The infiltration of γδ T cells is increased in the skin of neutrophil-depleted 

mice treated with IMQ. The dorsal skin of mice was topically treated with IMQ-

containing cream (Aldara
®
) or vaseline for 6 consecutive days. Mice were injected with 

the depleting antibody αLy6G or the isotype control antibody (isotype Ab). Total skin 

(2x2 cm) was digested and analysed by flow cytometry. Panels report: the total number of 

neutrophils (Ly6C
int

 GR-1
high 

Ly6G
high

) (A), dermal γδ TCR
low 

T cells (B), monocytes/Mϕ 

(CD11b
high

Ly6G
-
CD11c

low/-
MHCII

low/-
 cells plus CD11b

high
Ly6G

-
CD11c

low
/
-
MHCII

high
 

cells) (C), DCs (CD11c
+/high

MHCII
high

) (D) and αβ TCR
+ 

T cells (E). Data are pooled 

from 2 separate experiments and are expressed as means ± SD (n = 8-10 mice). Statistical 

differences of IMQ-treated vs. vaseline-treated mice (#) and IMQ-treated vs. IMQ-treated 

mice following neutrophil depletion (*) are reported. #/*P ≤ 0.05; ##P ≤ 0.01; ###P ≤ 

0.001; ####P ≤ 0.0001 by 1-way ANOVA with Bonferroni‟s post-test. 
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Figure 10. Skin infiltration of γδ T cells in the lymph nodes and skin of mice treated 

with IMQ for 3 and 6 days. Dorsal skin of mice was topically treated with vaseline or 

IMQ-containing cream (Aldara
®
) for 3 or 6 consecutive days. (A) Draining lymph nodes 

were collected and analysed by flow cytometry. The total number of γδ TCR
+
 cells is 

reported. (B) Total skin (2x2 cm) was digested and analysed by flow cytometry. The total 

number of dermal γδ TCR
low 

T cells is reported. Data are pooled from 2 separate time 

course experiments and are expressed as means ± SD (n = 5 mice). Statistical differences 

of IMQ-treated vs. vaseline-treated mice (#) and IMQ-treated mice after 3 days vs. IMQ-

treated mice after 6 days (*) are reported. #/*P ≤ 0.05; **P ≤ 0.01; #### P ≤ 0.0001 by 1-

way ANOVA with Bonferroni‟s post-test. 
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Neutrophils inhibit the proliferation and the production of IL-17 by γδ T 

cells via cell contact-dependent reactive oxygen species (ROS) production.  

Previous findings have highlighted the capacity of neutrophils to both positively 

and negatively modulate the effector functions of γδ T cells (Davey et al. 2014; 

Kalyan et al. 2014a; Sabbione, María L. Gabelloni, et al. 2014; Hassane et al. 2017). 

Therefore we investigated the effect of neutrophils on the proliferation and the 

production of IL-17 by γδ T cells stimulated with anti-CD3 Abs plus anti-CD28 

Abs in the presence of 100 ng/mL IL-23 and 10 ng/mL IL-1β, as previously 

described (Cai et al. 2011; Costa et al. 2017). As shown in Figure 11A, B, 

neutrophils inhibited both the proliferation and the production of IL-17 by 

activated γδ T cells. Given that the degree of this inhibitory effect was dependent 

on the ratio with T cells (Figure 11A, B), in all subsequent experiments we used 

the 5/1 neutrophil/T cell ratio, condition in which we obtained a strong and 

reproducible inhibition of γδ T cell functions by neutrophils. Similarly, to what 

published by Sabbione et al. (Sabbione, María L. Gabelloni, et al. 2014) with human 

neutrophils, we found that the addition of either catalase (a H2O2 scavenger) or of 

diphenyleneiodonium (DPI, a NADPH oxidase inhibitor) strongly reverted the 

immunosuppressive functions of mouse neutrophils on γδ T cells (Figure 11C, 

D), while other inhibitors, including pentoxyfilline (PTX, a degranulation 

inhibitor) or L-arginine [an arginase-1 (ARG1) inhibitor] were not effective 

(Figure 11C, D). Taken together, these data suggested that the inhibitory effects 

of neutrophils on γδ T cell functions in the IMQ-induced mouse model of 

psoriasis involves the production of ROS. In line with these observations, 

neutrophils isolated from p47
phox-/- 

mice were unable to effectively inhibit γδ T 

cells (Figure 12A). Furthermore, by performing a flow cytometric measurement 

of ROS production, we also observed that the production of ROS by wild-type 

(WT) neutrophils, but not by p47
phox-/- 

neutrophils, was strongly enhanced by the 

presence of γδ T cells in the culture (Figure 12B). Finally, in line with the fact 

that the inhibitory functions of different immunosuppressive neutrophil 

populations have been shown to occur through direct cell contact-dependent 

mechanisms (Choi et al. 2012; Marini et al. 2017; Pillay et al. 2012; Schmielau & Finn 

2001), we found that the capacity of neutrophils to inhibit  T cell proliferation 
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was significantly lower if neutrophils were separated from T cells by the use of 

transwells (Figure 12C).   

Overall, the results obtained so far show that neutrophils inhibit γδ T cell 

functions via a cell contact-dependent triggered ROS production. 

 

 

 

 

Figure 11. Neutrophils inhibit the proliferation and IL-17 production by γδ T cells 

via reactive oxygen species (ROS) production. (A, B) γδ T cells were stimulated with 

CD3/CD28, 100 ng/ml IL-23 plus 10 ng/ml IL-1β and cultured for 72h in the presence or 

absence of neutrophils at different ratios. (C, D) γδ T cells were stimulated with 

CD3/CD28, 100 ng/ml IL-23 plus 10 ng/ml IL-1β and cultured for 72h with neutrophils 

added at a 1 to 5 γδ T to neutrophil cell ratio, with or without inhibitors: catalase (1000 

U/ml), diphenyleneiodonium (DPI) (0,1 μM), L-arginine (200 μg/ml-1), pentoxifillin 

(PTX) (0,5 μM). The percentages of inhibition of proliferation, as measured by BrdU 

incorporation (A, C), or IL-17A production (B, D) by γδ T cells, are reported. Graph 

values indicate means ± SD from 2 to 3 independent experiments. Statistical differences 

of the effect of neutrophils in the presence or absence of inhibitors are reported. *P ≤ 

0.05; **P ≤ 0.01; ***P ≤ 0.001; ****P ≤ 0.0001 by 1-way ANOVA with Dunnett‟s post-

test. 
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Figure 12. Neutrophil-mediated inhibition of γδ T cell proliferation requires 

(NADPH) oxidase-dependent ROS production and direct cell-to-cell contacts. γδ T 

cells were stimulated with CD3/CD28, 100 ng/ml IL-23 plus 10 ng/ml IL-1β and cultured 

with neutrophils, from wild-type (WT) or p47
phox-/- 

mice. Neutrophils were added at a 1 to 

5 γδ T to neutrophil cell ratio for 72 hours (A, C) or at a 1 to 1 γδ T to neutrophil cell 

ratio for 3 hours (B). (A) Percentages of inhibition of γδ T cell proliferation by 

neutrophils from WT or p47
phox-/- 

mice as measured by BrdU incorporation.                    

(B) Representative FACS histogram plots depicting the Cell-RoX MFI of CD11b
+
Ly6G

+
 

neutrophils from WT or p47
phox-/- 

mice in the presence or absence of γδ T cells, as 

evaluated by FACS analysis. (C) Stimulated γδ T cells were cultured with neutrophils 

under direct contact or transwell conditions. The graph shows the percentages of 

inhibition of γδ T cell proliferation, as measured by BrdU incorporation. Graph values 

indicate means ± SD from 2 independent experiments. *P ≤ 0.05; **P ≤ 0.01, by  t test. 
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Syk signalling modulates the capacity of neutrophils to inhibit γδ T cell 

functions and disease progression in the IMQ-mouse model of psoriasis. 

Spleen tyrosine kinase (Syk), a member of non-receptor tyrosine kinases, 

transmits signals in neutrophils from a variety of immunoreceptors, including Fcγ 

receptors (FcγRs) (Futosi et al. 2013), adhesion molecules, such as β2 integrins 

(Mócsai et al. 2002) and P-Selectin glycoprotein ligand 1 (PSGL-1) (Stadtmann et al. 

2013). As a consequence, Syk 
-/-

 neutrophils display impaired effector functions, 

including  the production of ROS  and the release of granule contents, in response 

to several inflammatory stimuli (Futosi et al. 2013).   

Syk-based signalling in neutrophils alone was previously shown to be critical for 

appropriate host defence to Staphylococcus aureus (Van Ziffle & Lowell 2009) or 

the development of inflammatory arthritis (Elliott et al. 2011), suggesting the 

relevance of this signalling pathway in neutrophils during immune responses. 

Therefore, we decided to utilize mice carrying the specific deletion of Syk in 

neutrophils [Syk
fl/fl

Mrp8-cre
+ 

mice (Elliott et al. 2011; Van Ziffle & Lowell 2009)], 

available in our laboratory, as an experimental model to test whether the specific 

impairment of this signalling pathway in neutrophils was sufficient to affect the 

interactions of these cells with  T cells and IMQ-induced psoriasis. 

Consistently, Syk 
-/-

 neutrophils failed to produce ROS and to inhibit γδ T cells 

proliferation under our experimental conditions in vitro (Figure 13A, B). These 

data validated therefore Syk as crucial signalling molecule involved in the 

modulation of neutrophil capability to inhibit γδ T cell functions via a contact-

dependent ROS production.  
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

 

Figure 13. ROS-mediated inhibition of γδ T cell proliferation by neutrophils 

requires the activation of Syk-dependent signalling pathways. γδ T cells were 

stimulated with CD3/CD28, 100 ng/ml IL-23 plus 10 ng/ml IL-1β and cultured with 

neutrophils from Syk
fl/fl

 or Syk
fl/fl

Mrp8-cre
+
 mice at a 1 to 1 γδ T to neutrophil cell ratio for 

3 hours (A) or at a 1 to 5 γδ T to neutrophil cell ratio for 72h (B). (A) Representative 

FACS histogram plots depicting the CellROX MFI of CD11b
+
Ly6G

+
 neutrophils from 

Syk
fl/fl

 or Syk
fl/fl

Mrp8-cre
+
 mice in the presence or absence of γδ T cells , as evaluated by 

FACS analysis. (B) Percentages of inhibition of γδ T cell proliferation by neutrophils 

from Syk
fl/fl

 or Syk
fl/fl

Mrp8-cre
+
 mice, as measured by BrdU incorporation. Graph values 

indicate means ± SD from 2 independent experiments. *P ≤ 0.05 by  t test. 

 

 

 As far as IMQ-induced psoriasis experiments, we initially found that Syk
fl/fl

Mrp8-

cre
+ 

mice did not manifest, as compared to control Syk
fl/fl

 mice, a significant 

increase of epidermal thickness, after 6 days of IMQ-treatment (Figure 14A).  

Interestingly, however, similarly to neutrophil-depleted mice, Syk
fl/fl

Mrp8-cre
+
 

mice manifested, as compared to control Syk
fl/fl

 mice, an enhanced expression of 

skin-associated psoriatic genes, such as S100A7 and Lcn2, as well as a specific 

increase in the expression of cytokines implicated in the IL-23/T17 axis, including 

IL-23, IL-22, IL-17, after 6 days of IMQ treatment (Figure 14B). Furthermore, 

also the number of total and activated γδ T cells producing IL-17, but not of other 

cell types, was increased in the draining lymph nodes of Syk
fl/fl

Mrp8-cre
+
 mice, as 

compared to control mice, after 6 days of IMQ treatment (Figure 15). On a 

similar fashion, the number of dermal γδ T cells infiltrating into the skin of IMQ-

treated Syk
fl/fl

Mrp8-cre
+
 mice was significantly increased as compared to IMQ-

treated control mice (Figure 16A, B). It is noteworthy to remark that, in line with 

the fact that Syk is not directly involved in controlling neutrophil migration to the 
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inflammatory sites (Mócsai et al. 2002), we did not notice any significant difference 

in the capacity of Syk 
-/-

 neutrophils to infiltrate the lymph nodes and the skin in 

response to IMQ treatment (Figure 15A and Figure 16A). This observation, 

together with the fact that the deletion efficiency of the Mrp8-cre is only about 80-

90 % (Elliott et al. 2011), meaning that about 10 to 20% of circulating neutrophils 

are Syk
+/+

, can potentially explain why the specific neutrophil impairment present 

in Syk
fl/fl

Mrp8-cre
+
 mice was sufficient to reproduce only the increase in skin 

inflammation and γδ T cell infiltration, but not the overall increase in epidermal 

thickening observed in mice with a complete neutrophil depletion. Anyhow, data 

clearly suggests that Syk-dependent signalling pathways controlling neutrophil 

effector functions, but not neutrophil migration, are required for the neutrophil-

mediated inhibition of γδ T functions in vitro and in vivo.  
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

Figure 14. Epidermal thickening and gene-expression analysis of inflammatory 

molecules in the skin of IMQ-treated Syk
fl/fl

 and Syk
fl/fl

Mrp8-cre
+
 mice. The dorsal 

skin of control Syk
fl/fl

 and Syk
fl/fl

Mrp8-cre
+
 mice was topically treated with IMQ-

containing cream (Aldara
®
) or vaseline for 6 consecutive days. (A) The height of 

epidermal hyperplasia (epidermal thickening) was measured in interfollicular epidermis 

on H&E-stained slides by light microscopic evaluation. (B) Total skin RNA was 

extracted and reverse transcribed. mRNA expression of the indicated genes for IMQ-

treated Syk
fl/fl

 and Syk
fl/fl

Mrp8-cre
+
 mice is displayed as fold change of MNE units (after 

RPL32 normalisation) over vaseline-treated controls. Data are pooled from 2 separate 

experiments and are expressed as means ± SD (n = 11 mice). Statistical differences of 

IMQ-treated Syk
fl/fl

 or Syk
fl/fl

Mrp8-cre
+
 mice vs. vaseline-treated mice (#) and IMQ-

treated Syk
fl/fl

 vs. IMQ-treated Syk
fl/fl

Mrp8-cre
+
 mice (*) are reported. ####P ≤ 0.0001 by 

1-way ANOVA with Bonferroni‟s post-test. *P ≤ 0.05; ***P ≤ 0.001 by  t test. 
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Figure 15. Infiltration of inflammatory cells in the draining lymph nodes of IMQ-

treated Syk
fl/fl

 and Syk
fl/fl

Mrp8-cre
+
 mice. The dorsal skin of control Syk

fl/fl
 and 

Syk
fl/fl

Mrp8-cre
+
 mice was topically treated with IMQ-containing cream (Aldara

®
) or 

vaseline for 6 consecutive days. Draining lymph nodes were collected and analysed by 

flow cytometry. Panels report: the number of neutrophils (Ly6C
int

 GR-1
high

 Ly6G
high

) (A), 

the number of total (B) and effector (CD44
high 

CD62L
low

)
 
γδ TCR

+
 cells (C), the number 

of IL-17A-producing γδ TCR
+
 cells (D), the number of αβ TCR

+ 
T cells (E), the number 

of monocytes/Mϕ (CD11b
high

Ly6G
-
CD11c

low/-
MHCII

low/-
 cells plus CD11b

high
Ly6G

-

CD11c
low

/
-
MHCII

high
 cells (F), and the number of DCs (CD11c

+/high
MHCII

high
) (G). Data 

are pooled from 2 separate experiments and are expressed as means ± SD (n = 11 mice). 

Statistical differences of IMQ-treated Syk
fl/fl

 or Syk
fl/fl

Mrp8-cre
+
 vs. vaseline-treated mice 

(#) and IMQ-treated Syk
fl/fl

 vs. IMQ-treated Syk
fl/fl

Mrp8-cre
+
 mice (*) are reported. #/*P ≤ 

0.05; ##/**P ≤ 0.01; ###P ≤ 0.001; #### P ≤ 0.0001 by 1-way ANOVA with 

Bonferroni‟s post-test. 
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Figure 16. The infiltration of γδ T cells is increased in the skin of IMQ-treated 

Syk
fl/fl

Mrp8-cre
+
 mice. The dorsal skin of control Syk

fl/fl
 and Syk

fl/fl
Mrp8-cre

+
 mice was 

topically treated with IMQ-containing cream (Aldara
®
) or vaseline for 6 consecutive 

days. Total skin (2x2 cm) was digested and analysed by flow cytometry. Panels report: 

the total number of neutrophils (Ly6C
int

 GR-1
high 

Ly6G
high

) (A), dermal γδ TCR
low 

T cells 

(B). Data are pooled from 2 separated experiments and are expressed as means ± SD (n = 

6 mice). Statistical differences of IMQ-treated Syk
fl/fl

 or Syk
fl/fl

Mrp8-cre
+
 vs. vaseline-

treated mice (#) and IMQ-treated Syk
fl/fl

 vs. IMQ-treated Syk
fl/fl

Mrp8-cre
+
 mice (*) are 

reported. ##/**P ≤ 0.01; ####P ≤ 0.0001 by 1-way ANOVA with Bonferroni‟s post-test. 
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5.  Discussion 

 

 

 

Neutrophil accumulation in the skin is one of the histological features that 

characterize psoriasis (Boehncke & Schön 2015; Deng et al. 2016). However, the role 

of neutrophils in psoriasis development remains poorly understood. In this study, 

by utilizing the mouse model of IMQ-induced psoriasis, I uncover a novel role of 

neutrophils as negative regulators of disease propagation and exacerbation.          

In fact, neutrophil depletion resulted in an increased epidermal thickening 

accompanied by an increased inflammatory cell infiltration and cytokine/psoriatic 

gene expression. In particular, neutrophil depletion resulted in a profound 

exacerbation of the inflammation associated to the IL-23/T17 pathway. 

Interestingly, such an effect seemed to be mediated by the ability of neutrophils to 

inhibit, via NADPH oxidase-dependent ROS production, the proliferation and the 

production of IL-17 by γδ T cells, key effector components of psoriatic 

inflammation in this model. Finally, we demonstrated, for the first time, that Syk 

function as crucial signalling molecule mediating this inhibitory crosstalk between 

neutrophils and γδ T cells (Figure 17). Aim of future research is to identify the 

specific molecule/s involved in these cell-to-cell contact interactions between 

neutrophils and γδ T cells that is/are responsible of triggering Syk-dependent 

inhibitory functions in neutrophils. 
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Figure 17. The ability of neutrophils to inhibit the proliferation and IL-17 production by 

γδ T cells occurs via cell-contact and NADPH oxidase-dependent ROS production.      

We also propose Syk as important molecules involved in the modulation of this inhibitory 

pathway. 

 

 

Neutrophils, due to their ability to both promote and inhibit inflammatory and 

immune responses, seem to play a rather complex role in several inflammatory 

diseases (Scapini & Cassatella 2014; Scapini et al. 2016; Silvestre-Roig et al. 2016; 

Soehnlein et al. 2017). As far as psoriasis, the current hypothesis is that neutrophils 

play a pro-inflammatory role in disease pathogenesis (Schön et al. 2017). This 

assumption is mostly based on the fact that these cells are generally linked to the 

IL-23/T17-related inflammatory axis and that they have been proposed to sustain 

skin inflammation for example by producing NETs (Lin et al. 2011; Zabieglo et al. 

2015) and other inflammatory cytokines [including IL-17 and IL-22 (Dyring-

Andersen et al. 2017)] or by activating IL-36 family cytokines via the release of 

proteases (Henry et al. 2016). However, to date, compelling evidence of this 
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pathogenic role of neutrophils in psoriasis does not exist. For instance, neutrophils 

have been also proposed to play a regulatory role in psoriatic inflammation via the 

release of elastase and the consequent activation of the anti-inflammatory 

cytokine IL-36 receptor antagonist (Macleod et al. 2016), a negative modulator of 

psoriasis development (Macleod et al. 2016). Only few studies have actually 

attempted to clarify the pathogenic role of neutrophils in disease pathogenesis by 

utilizing different types of preclinical models (Schön et al. 2000; Singh et al. 2016; 

Sumida et al. 2014). In one study performed on flaky skin mice (fsn/fsn), a 

spontaneously developing psoriasis-like mouse model, neutrophils were proposed 

to be pro-inflammatory and to promote psoriasis development. However, these 

conclusions were drowned based on the effect of neutrophil depletion or blockage 

of infiltration into the skin by injections of anti-GR-1 Ab (clone RB6-8C5) or 

anti-αMβ2 (CD11b/CD18; clone M1/70) Ab, respectively (Schon et al., 2000). As 

these types of interventions affect also several other subsets of myeloid cells, 

including monocytes/macrophages and DCs which also play a pivotal role in 

psoriasis development (Costa et al. 2017; Singh et al. 2016; Tortola et al. 2012; 

Christian Wohn et al. 2013), it is difficult to draw definitive conclusions on the 

specific role of neutrophils in this model. Similar to our work, two other studies 

have instead attempted to perform neutrophil depletion by utilizing the more 

specific anti-Ly6G Ab (clone 1A8) in the IMQ-induced mouse model of psoriasis 

(Singh et al. 2016; Sumida et al. 2014). However, while we found a protective role of 

neutrophils in this experimental model, in the study by Sumida H et al. (Sumida et 

al. 2014) neutrophils were shown to contribute to psoriasis development and in the 

study by Singh, T. et al (Singh et al. 2016) neutrophils were instead shown to not 

affect disease development. The reasons for these controversial results can be 

likely attributed to the fact that several variations to the original protocol for IMQ-

induced psoriasis (e.g. Aldara dosage, treatment of back skin versus ears, total 

days of treatment) have been utilized across different laboratories. We choose to 

perform the mostly utilized protocol originally published by van der Fits, L. et al 

(application of 60 mg of Aldara cream on the shaved back for 6 days (van der Fits 

et al. 2009). On the contrary, in the study performed by Sumida, H. et al. (Sumida et 

al. 2014), psoriasis was induced by applying a lower dose (30 mg) of Aldara cream 
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on the shaved back for 6 days, and in the study by Singh, T. et al. (Singh et al. 

2016) by applying 25 mg of Aldara cream on the ears for 4 days. In this context, it 

is noteworthy to remark that in our experimental conditions we did not observe 

any effect of neutrophil depletion on epidermal thickening after 3 days of IMQ 

treatment, likely because at this time point the number of neutrophils infiltrating 

the lymph nodes and skin was much lower than the one observed after 6 days of 

IMQ treatment. It is therefore possible that the lower dose and/or shorter protocol 

of Aldara cream utilized in the study by Sumida, H. et al. and by Singh, T. et al. 

may have induced a suboptimal neutrophil activation and infiltration into the skin, 

as compared to the one induced by our experimental protocol, leading therefore to 

different outcome on disease development after neutrophil depletion. In support of 

this hypothesis is the fact that, differently from our study, in the paper by Sumida, 

H. et al. the authors report a pick of neutrophil infiltration at 3 days after Aldara 

treatment with almost no neutrophil infiltration after 6 days (Sumida et al. 2014). 

The different housing conditions of the animal facilities may have also influenced 

the controversial results among the three studies. However, we tend to exclude 

this possibility as neutrophil-depleted mice treated with our experimental protocol 

of IMQ-induced psoriasis and housed in a different animal facility (University of 

California, San Francisco, USA) displayed a similar enhancement of epidermal 

thickening after 6 days of IMQ treatment (C.A. and C.A.L. unpublished 

observation).  

Despite these limitations, likely intrinsic to the peculiar experimental model and 

conditions utilized, we believe that the important message emerging from our 

study is that neutrophils may acquire a regulatory role during psoriasis 

development throughout their preferential interactions with γδ T cells. In this 

context, controversial observations are emerging also on the crosstalk occurring 

between neutrophils and γδ T cells (Kalyan & Kabelitz 2014; Scapini & Cassatella 

2014). For example, human neutrophils were initially shown to stimulate γδ T 

cells (Davey et al. 2011), while more recent evidence suggests that neutrophils 

negatively modulate spontaneous and phosphoantigen-induced γδ T-cell 

activation (Sabbione, María L Gabelloni, et al. 2014) or contribute to the loss of 

peripheral blood Vγ9Vδ2 T cells observed after long-term or high-dose 
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administration of zoledronate (Kalyan et al. 2014b). In mice, neutrophils were 

initially shown to inhibit γδ T cell functions in a mouse model of C. neoformans 

infection (Wozniak et al. 2012), while a more recent paper revealed that neutrophils 

can actually sustain IL-17 production by γδ T cells in the lung via IL-1β secretion 

in a NLRP3-inflammasome dependent manner during the initial phase of 

pneumococcal infection (Hassane et al. 2017). Different mechanisms have also been 

reported to mediate the interactions between neutrophils and γδ T cells. For 

instance human neutrophils have been reported to both promote (Towstyka et al. 

2017) and inhibit (Fazio et al. 2014) γδ T functions via the release of serine 

proteases. Similarly to what reported by Sabbione et al. (Sabbione, María L 

Gabelloni, et al. 2014) using human neutrophils, we found that the inhibitory effect 

of murine neutrophils on γδ T cells is mediated via cell-contact depended NADPH 

oxidase activation and ROS release.  

γδ T cells are known to be particularly susceptible to oxidative stress (Marlin et al. 

2017). Interestingly, several evidence support a contribution of IL-17 in Chronic 

Granulomatous Disease (CGD) mediated hyper-inflammation (Rieber et al. 2012) 

and susceptibility to autoimmune diseases  (De Ravin et al. 2008). Despite the fact 

that these phenomena have been so far mostly linked to an expansion of Th17 

lymphocytes (Horváth et al. 2011), the possible contribution of γδ T cells is also 

starting to emerge. In this context, a strong response of IL-17 producing γδ T cells 

was reported in p47phox
-/-

 mice infected with A. fumigatus (Romani et al. 2008).  

Relevant to our study is also the observation that p47phox
-/-

 mice were reported to 

develop enhanced IMQ-induced psoriasis (Kim et al. 2014). Future studies should 

further characterize the specific role of neutrophil-mediated inhibition of γδ T cell 

functions in this phenomenon.     

Overall this study proposes that neutrophils, instead of being promoters of 

inflammation as generally believed, can actually act as important negative 

regulators of the IMQ-mediated model of psoriasis. Considering that psoriasis 

consists of several different clinical phenotypes,  each of them characterized by 

distinct balance between autoimmune and auto-inflammatory immune processes, 

it may be worth to further verify the effective role of neutrophils also in human 

psoriasis. Neutrophils may indeed act as unexpected negative players of disease 
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development in specific types or clinical stages of human psoriasis. Consequently, 

also the utilization of therapeutic interventions targeted to inhibit neutrophil 

functions should be carefully evaluated. In this context, similarly to mouse 

psoriasis, the important role IL-17 producing γδ T cells in human psoriasis has 

just started to emerge (Cai et al. 2011; Laggner et al. 2011), indicating that possible 

inhibitory crosstalk between neutrophils and γδ T cells may exist also in human 

psoriasis and play a potential role in the modulation of disease development.  
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6.  Additional studies 

 

 

 

During my PhD I also participated to the following studies: 
 

Role of MyD88 signaling in the imiquimod-induced mouse model of psoriasis: 

focus on innate myeloid cells. 
Costa S, Marini O, Bevilacqua D, DeFranco AL, Hou B, Lonardi S, Vermi W, Rodegher 

P, Panato A, Tagliaro F, Lowell CA, Cassatella MA, Girolomoni G, Scapini P. 

J Leukoc Biol. 2017 Sep;102(3):791-803. doi: 10.1189/jlb.3MA0217-054RR. Epub 2017 

Jun 22. 

 

Mature CD10
+
 and immature CD10

-
 neutrophils present in G-CSF-treated donors 

display opposite effects on T cells. 

Marini O, Costa S, Bevilacqua D, Calzetti F, Tamassia N, Spina C, De Sabata D, Tinazzi 

E, Lunardi C, Scupoli MT, Cavallini C, Zoratti E, Tinazzi I, Marchetta A, Vassanelli A, 

Cantini M, Gandini G, Ruzzenente A, Guglielmi A, Missale F, Vermi W, Tecchio C, 

Cassatella MA, Scapini P. 

Blood. 2017 Mar 9;129(10):1343-1356. doi: 10.1182/blood-2016-04-713206. Epub 2017 

Jan 4. 

. 
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