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Summary 
 

In recent years, it has become clear that metabolism critically influences the 

outcome of immune responses. Additionally, growing evidence suggest that 

changes in the metabolism of immune cells are associated with, and contribute to 

the pathogenesis of autoimmunity. Thus, the emerging field of 

immunometabolism may lead to the discovery of novel therapeutic targets for the 

treatment of autoimmune diseases. The involvement of aerobic glycolysis and 

other metabolic pathways in controlling the activation state of immune cells and 

the development of autoimmune diseases has been recently elucidated, but the 

effect of Coenzyme A (CoA) fueling in these pathologies never been studied thus 

far. 

 The aim of this study was to investigate the involvement of CoA synthase 

(CoASY), the enzyme that catalyzes the last two steps of CoA synthesis pathway, 

in the control of autoreactive myelin-specific T cell pathogenicity by using murine 

experimental autoimmune encephalomyelitis (EAE) as a model of autoimmune 

disease.  

By using metabolomics and proteomics approaches and functional in vitro 

assays, we investigated the pathogenic features of autoreactive proteolipid protein 

(PLP)139-151-specific effector T cells, which represent major players in the 

pathogenesis of EAE in SJL mice. 

Our metabolomics analysis showed that encephalitogenic (myelin-specific) T cells 

display reduced intracellular CoA synthesis, and increased levels of free fatty 

acids and glycolysis-, Krebs cycle- and pentose phosphate pathway-related 

metabolites, compared to resting T cells. We next investigated the immuno-

modulatory potential of the low molecular weight thiol pantethine, a CoA 

precursor, on the pathogenic features of encephalitogenic T cells and the impact 

of such immunomodulation on the development of EAE. CoA fueling, induced by 

pantethine treatment, reprogrammed autoreactive T cells, to a “resting-like state” 

leading to reduced glycolysis, blockade of pentose phosphate pathway, inhibition 

of nucleic acid synthesis, and significant alteration of lipid and protein content. 

The analysis of high throughput phosphoproteomics data revealed that pantethine 
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is able to affect crucial immune processes associated with the functionality and 

the pathogenicity of encephalitogenic T cells, such as cell activation and 

proliferation, cytokine production and cell migration. These observations were 

confirmed by functional in vitro assays showing that CoA fueling strongly 

affected encephalitogenic T cell functions by reducing their antigen-specific 

proliferative capacity, pro-inflammatory cytokine production and integrin-

dependent adhesion in vitro. By using a genetic approach, we confirmed that 

pantethine induced the metabolic reprogramming of encephalitogenic T cells by 

potentiating the CoA synthesis pathway. Indeed, small interfering RNA (siRNA)-

mediated silencing of CoASY led to a significant loss of the inhibitory effect 

induced by pantethine treatment on the proliferation rate of encephalitogenic T 

cells. Interestingly, the knockdown of CoASY in encephalitogenic T cells 

increased their proliferative capacity in absence of antigen stimulation, suggesting 

a key role of CoASY in the control of autoreactive T cell activation. 

Bioinformatics analysis using a systems biology approach revealed that CoASY, 

has a role in the regulation of immune-related signaling pathways such as 

mitogen-activated protein kinase (Mapk), Ras-related C3 botulinum toxin 

substrate 1 (Rac1) and mammalian target of rapamycin (mTOR) pathways. In 

light of these results, we finally tested the clinical potential of metabolic 

perturbation by pantethine in vivo. We found that pantethine treatment prevented 

the development of EAE by delaying the disease onset and reducing the clinical 

score. Furthermore, pantethine treatment started after disease onset significantly 

ameliorated disease course and severity. 

In conclusion, our data demonstrate a new role for the CoA synthesis 

pathway in the metabolic reprogramming of autoreactive T cell necessary for their 

pathogenic features, suggesting that CoA fueling may represent a novel 

therapeutic approach for the treatment of autoimmune diseases. 
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Riassunto 

 
Negli ultimi anni è diventato sempre più chiaro come il metabolismo influenzi 

fortemente l'esito della risposta immunitaria. Inoltre, sono sempre più evidenti le 

associazioni tra i cambiamenti nel metabolismo delle cellule immunitarie e 

la patogenesi dell'autoimmunità. Pertanto, il campo di studio dell’“immuno- 

metabolismo” potrebbe portare alla scoperta di nuovi bersagli terapeutici per il 

trattamento delle malattie autoimmuni. Mentre l’importanza di vie metaboliche 

come la glicolisi aerobica nell’attivazione delle cellule del sistema immunitario e 

nello sviluppo delle malattie autoimmuni è già recentemente dimostrata, il ruolo 

del metabolismo del coenzima A (CoA) non è mai stato direttamente studiato in 

tali patologie. 

              Lo scopo di questo studio è stato quello di indagare il 

coinvolgimento della CoA sintasi (CoASY), l'enzima che catalizza gli ultimi due 

passaggi della via di sintesi del CoA, nell’attivazione e nelle funzioni patogeniche 

delle cellule T autoreattive mielina-specifiche e nella patogenesi 

dell’encefalomielite sperimentale autoimmune murina (EAE), usata nel nostro 

studio come modello di malattia autoimmune. 

              Attraverso l’applicazione di metodiche come la metabolomica, la 

proteomica e vari saggi funzionali in vitro, abbiamo investigato le caratteristiche 

patogenetiche delle cellule T effettrici PLP139-151-specifiche, che rappresentano i 

principali attori nella patogenesi dell'EAE nei topi di ceppo SJL. 

L’analisi del profilo metabolico di tali cellule ha dimostrato che, rispetto alle 

cellule T resting, le cellule T encefalitogeniche (mielina-specifiche) presentano 

una riduzione della sintesi intracellulare di CoA ed un aumento nei livelli di acidi 

grassi e dei metaboliti relativi alla via della glicolisi, del ciclo di Krebs e 

del pentoso-fosfato. Alla luce di ciò, abbiamo studiato l'effetto immuno-

modulatore della pantetina, un tiolo a basso peso molecolare che agisce come 

precursore del CoA, sulle caratteristiche patogenetiche delle cellule 

T encefalitogeniche e l'impatto di tale immuno-modulazione sullo 

sviluppo dell'EAE. L’aumento di CoA, indotto dal trattamento con pantetina, ha 
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riprogrammato le cellule T auto-reattive, a uno "stato resting", riducendo la 

glicolisi, la via del pentoso fosfato, e la sintesi di acidi nucleici. Inoltre, abbiamo 

osservato alterazioni significative nel contenuto lipidico 

e proteico. L' analisi fosfoproteomica, ha rivelato che la pantetina è in grado di 

influenzare i processi immunitari necessari alla funzionalità e alla patogenicità 

delle cellule T encefalitogeniche, come l'attivazione e la proliferazione cellulare, 

la produzione di citochine pro-infiammatorie e la migrazione cellulare. Queste 

osservazioni sono state confermate da saggi funzionali in vitro che mostrano come 

l’aumento della sintesi di CoA riduce fortemente la capacità proliferativa 

antigene-specifica, la produzione di citochine pro-infiammatorie e l’adesione 

integrino-dipendente delle cellule T encefalitogeniche. Con un approccio 

genetico, abbiamo confermato che la riprogrammazione metabolica attuata dalla 

pantetina nelle cellule T encefalitogeniche, è dovuta ad un effettivo 

potenziamento della via di sintesi del CoA. Il silenziamento della CoASY ha 

infatti ridotto significativamente l'effetto inibitorio della pantetina sulla 

proliferazione delle cellule T encefalitogeniche. È interessante inoltre notare come 

la ridotta espressione della CoASY nelle cellule T encefalitogeniche abbia 

aumentato la loro capacità proliferativa in assenza di stimolazione antigenica, 

suggerendo un ruolo chiave della CoASY nel controllo dell'attivazione e delle 

funzioni delle cellule T autoreattive. L’analisi bioinformatica con un approccio di 

biologia dei sistemi ha rivelato che la CoASY può esercitare un ruolo diretto nella 

regolazione delle vie del segnale correlate alla risposta immunitaria, tra le quali, le 

vie di Mapk, Rac1 e mTOR. Alla luce del significativo effetto metabolico 

e immuno-modulatore in vitro del potenziamento del CoA nelle cellule 

T encefalitogeniche, abbiamo testato in vivo il potenziale clinico della pantetina in 

un modello di patologia autoimmune come l’EAE. Il trattamento con la pantetina 

in fase pre-clinica ha inibito lo sviluppo dell’EAE ritardando l'insorgenza della 

malattia e la sua severità. Inoltre, il trattamento con la pantetina, iniziato dopo 

l'insorgenza della malattia, è stato in grado di migliorarne il decorso clinico e 

ridurne significativamente la gravità. 

In conclusione, i nostri dati dimostrano un nuovo ruolo della via di sintesi 

del CoA nella riprogrammazione metabolica delle cellule T autoreattive 
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necessaria allo svolgimento delle loro funzioni patogenetiche, suggerendo che il 

potenziamento del metabolismo del CoA nei linfociti autoreattivi potrebbe 

rappresentare un nuovo bersaglio terapeutico per il trattamento di patologie 

autoimmuni. 
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Introduction 

 
1. Autoimmunity 

1.1 Introduction 

 The immune system continuously protects the human body from infectious 

diseases and tissue insults, avoiding excessive inflammatory reactions and 

damage. Multiple, non-redundant checkpoints are in place to prevent such 

potentially deleterious autoimmune responses while preserving protective 

immunity against foreign pathogens. Nevertheless, a large and growing segment 

of the population is developing autoimmune diseases. If mechanisms controlling 

this system fail, immune cells attack the body’s own tissue and autoimmune 

diseases such as rheumatoid arthritis (RA), multiple sclerosis (MS) or type 1 

diabetes (T1D) develop. The vast majority of autoimmune diseases develop as a 

consequence of complex mechanisms that depend on genetic, epigenetic, 

molecular, cellular, and environmental elements and result in alterations in many 

different immune checkpoints, and ultimately in the breakdown of immune 

tolerance. The consequences of this breakdown are harmful inflammatory 

responses in peripheral tissues driven by innate immunity and self-antigen-

specific pathogenic T and B cells.  

T cells play a central role in the regulation and initiation of these 

responses, and mechanisms such as central and peripheral tolerance are necessary 

to control autoreactive T cell activation. Central tolerance eliminates potentially 

autoreactive lymphocytes that develop in the thymus by subjecting thymocytes 

with high affinity for self-antigens to either clonal deletion (negative selection) or 

selection into the regulatory T (Treg) lineage. Many autoreactive T cells escape 

this checkpoint and can be found in the peripheral blood of healthy individuals; 

however, these self-reactive cells are not sufficient to induce autoimmunity due to 

additional controls by peripheral tolerance mechanisms (Reijonen et al., 2002; Su 

et al., 2013; Wucherpfennig et al., 1994; Zhang et al., 2008). Peripheral tolerance 

is achieved through T cell–intrinsic mechanisms that lead to clonal deletion, 

anergy, or immunological ignorance as well as extrinsic control by specialized 
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populations of suppressor cells that regulate potentially harmful responses of 

autoreactive T and B cells  (Bluestone, 2011; Bour-Jordan et al., 2011). 

 A growing body of work suggests that autoreactive T cells have unusual 

binding properties for their cognate major histocompatibility complex (MHC)-

peptide ligands. Autoreactive T cells with unusual T cell receptor (TCR) 

topologies may escape thymic deletion due to aberrant/reduced binding to the 

MHC that is insufficient to trigger apoptosis (Wucherpfennig et al., 2009). 

Structural analyses of TCRs from patients with MS and T1D have revealed this 

property of autoreactive TCRs specific for disease-related self-peptides, such as 

myelin basic protein and insulin (Bulek et al., 2012; Hahn et al., 2005). 

Classically, the immune response to an antigen, including self-antigens, is 

initiated when specialized antigen-presenting cells, such as dendritic cells (DCs), 

take up and process an antigen, become activated and present it to resting CD4+ T 

cells. T cells with a TCR specific for that antigen begin to proliferate and 

differentiate into particular T-helper cell subsets (e.g. Th1, Th2, Th17), which 

help to establish humoral as well as cellular immunity. Under healthy conditions, 

those pro-inflammatory T cells are counterbalanced by anti-inflammatory Foxp3+ 

Treg cells. Autoimmunity occurs when tolerance to self-antigens is broken. 

Particularly, a contribution of Th1 or Th17 cells to autoimmune pathology is 

widely accepted for diseases such as RA, MS and T1D. Importantly, Tregs are 

absolutely essential for maintaining peripheral tolerance as Treg depletion in 

newborn mice causes fatal generalized autoimmunity (Kim et al., 2007). 

 The prevalence of autoimmune disorders is currently estimated to be >5% 

worldwide, with a dramatic increase in the incidence during the last decade (Bach, 

2002). Importantly, this increase in autoimmune disease appearance generates 

significant socio-economic expenses. In Europe, the annual burden through 

treatment costs and early retirements is estimated to be >15 billion Euros (Freitag 

et al., 2016). For these reasons, a better understanding of the pathogenesis of 

autoimmune diseases is needed, which may lead to the development of new 

therapeutic strategies without severe adverse effects and covering the high 

percentage of non-responders to current drugs. 
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1.2 Multiple sclerosis and its animal model: experimental autoimmune 

encephalomyelitis 

 MS is one of the most common causes of neurological disability in young 

adults between the ages of 20 and 40 years. It is a chronic inflammatory 

autoimmune demyelinating disease of the central nervous system (CNS) 

characterized by inflammatory and degenerative changes in the brain and spinal 

cord (SC). MS is characterized by multifocal perivascular inflammatory 

infiltrates, predominantly lymphocytes and macrophages, which cause myelin 

breakdown and axonal degeneration. Pathogenesis of MS is also characterized by 

loss of the blood brain barrier (BBB) integrity and migration of autoreactive T-

cells and monocytes. The etiology of MS is still unknown, but there is strong 

evidence that genetic predisposition associated with environmental factors and 

autoimmunity plays a major role in disease pathogenesis. Progressive disability is 

caused by inflammation in areas of the white matter of the CNS, followed by 

destruction of myelin in the brain and SC. Clinical symptoms of MS include 

motor dysfunction, fatigue, tremor, nystagmus, acute paralysis, loss of 

coordination or balance, numbness, disturbances in speech and vision and 

cognitive impairment (Ortiz et al., 2014). The cause of the recurrent inflammation 

in MS is now generally accepted to be autoimmune in nature. Studies 

demonstrating the presence of inflammatory cells and their products in the brain 

lesions of MS patients, in addition to reports from animal models, has led to the 

generally accepted hypothesis that disease is mediated by pathogenic T cell 

responses against myelin antigens, followed by a broader neurodegenerative 

process (Compston and Coles, 2008). Leukocyte infiltration from peripheral 

circulation through the BBB causes the activation of microglia and astrocytes 

leading to the myelin sheath and the underlying axon damage. 

 The most widely used animal model of autoimmunity is EAE (Gold et al., 

2006; Zamvil and Steinman, 1990). Specifically, EAE represents the animal 

model of MS (Dendrou et al., 2015). EAE can be induced by immunization of 

susceptible experimental animal strains including primates and rodents with 

myelin autoantigens emulsified in complete Freund’s adjuvant (CFA) or by 

adoptive transfer of T cells specific for brain antigens (Ben-Nun et al., 1981). A 
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conceptual breakthrough, indeed, was achieved in the 1980s by the groups of 

Wekerle and Cohen, who showed that myelin-specific CD4+ T cell lines 

propagated in vitro could, upon adoptive transfer, induce demyelinating 

inflammation in the CNS parenchyma (Ben-Nun et al., 1981). This proved that 

EAE is induced by an autoimmune response to myelin antigens initiated by CD4+ 

T cells. Thus, EAE represents an invaluable tool to study the activation of 

autoreactive T cells in the peripheral immune compartment, their migration into 

the CNS and their reactivation, and subsequent inflammation in the target tissue 

(Figure 1). 

 The best characterized myelin-derived autoantigens are PLP, myelin basic 

protein (MBP), myelin oligodendrocyte glycoprotein (MOG), and myelin-

associated oligodendrocyte basic protein (MOBP) (Gold et al., 2006). Currently, 

the most common protocol for EAE induction is based on the injection of an 

encephalitogenic peptide, usually MOG35-55 or PLP139-151, which is emulsified in 

CFA containing mineral oil and Mycobacterium tuberculosis strain H37Ra, 

followed by injection of pertussis toxin. Depending on the immunization protocol 

and genetic background of the mouse strain, EAE can develop with an acute, 

chronic progressive or relapsing–remitting course (Steinman, 1999). Moreover, 

the main inducers of EAE, i.e. myelin antigen-specific T cells, also called 

encephalitogenic T cells, obtained from lymph nodes and spleens of mice 

immunized with myelin antigens (Piccio et al., 2002), can be studied in vitro by 

standard immunological techniques such as proliferation assays, adhesion assays, 

surface marker analysis by flow cytometry, gene silencing and by advanced high 

throughput “-omics” approaches such as metabolomics and proteomics (Hasin et 

al., 2017). 
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Figure 1.  CNS and lymph node activation of myelin-specific CD4+T cells. 
(Picture adapted from Miller et al., 2007)  

 

2. Immunometabolism 

2.1 Immunometabolism: a novel frontier in immunology 

 Immunometabolism bridges the historically independent disciplines of 

biochemistry and immunology, and represents a novel field of investigation that 

links immune cell activation and functions with the biochemical changes 

correlated with their intracellular metabolic state. The field of immunometabolism 

was firstly introduced in the early ‘80s, when pioneering studies demonstrated 

that inflammation plays a crucial role in the development of obesity and metabolic 

disorders. In obese individuals, metabolic tissues (adipose tissue and liver) are 

infiltrated by activated immune cells, which produce detrimental pro-

inflammatory mediators that impair glucose and lipid homeostasis. Interestingly, 

blocking inflammatory pathways (e.g. anti-TNF therapy) inhibits the generation 
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of correlated metabolic disorders (Hotamisligil, 2017). In the last two decades, 

many studies demonstrated that immune cells regulate the generation, strength, 

and duration of immune responses by fine-tuning their intracellular metabolic 

profile. 

The activation, growth and proliferation, engagement of effector functions, and 

return to homeostasis of immune cells are intimately linked and dependent on 

dynamic changes in cellular metabolism. The utilization of particular metabolic 

pathways is controlled on one level by growth factors and nutrient availability 

dictated by competition between other interacting cells and on another level by the 

exquisite balance of internal metabolites, reactive oxygen species (ROS), and 

reducing and oxidizing substrates. The study of immune cells, particularly 

lymphocytes and myeloid cells, has lent deep insight into how cells differentiate 

and coordinate their behaviors with metabolism under a wide array of settings. 

Activation of immune cells in response to infection is the result of the summation 

of antigen-induced gene-expression programs integrated with environmental 

signals. Both innate and adaptive immune cells increase their metabolic 

throughput upon stimulation, promoting energy generation and biosynthesis, 

while shifting the relative usage of metabolic pathways to support proliferation, 

effector molecule production, and differentiation (O’Neill and Pearce, 2016; 

MacIver et al., 2013; Pollizzi and Powell, 2014; Buck et al., 2015). Moreover, 

alteration of metabolic pathways in specific immune cell subsets can impair their 

activation, polarization and faith leading to a strong modulation of inflammatory 

responses. These metabolic pathways, although diverse in terms of their end 

products, are closely linked as a consequence of shared fuel inputs, and a reliance 

on products from one pathway to feed into alternative pathways as key synthetic 

precursors (reviewed in O’Neill et al., 2016). 

 

2.2 T cell metabolism 

 Immune cells have different metabolic requirements depending on diverse 

environmental cues, their activation and differentiation state (Buck et al., 2015; 

Lochner et al., 2015). In order to cope with their basic requirements for survival, 

resting leukocytes rely on the Krebs cycle and subsequent oxidative 
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phosphorylation (OXPHOS), yielding ATP and CO2. Furthermore, they generate 

energy by degrading lipids during fatty acid oxidation (FAO) (Michalek et al., 

2011) (Figure 2). Upon activation, immune cells change their metabolic profile. 

Specifically, in order to meet the enhanced demands subsequent to activation and 

upon differentiation of naїve T cells into effector lineages (e.g. Th1, Th2, Th17), 

T cells rely on the activation of mTOR. This serine-threonine kinase guides T cell 

differentiation and function (Waickman and Powell, 2012). mTOR integrates two 

signaling complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 

(mTORC2), that are composed of different regulatory subunits and possess 

distinct activation patterns. mTORC1 is induced after TCR-CD3/CD28-mediated 

stimulation of the phosphoinositide 3-kinase (PI3K)/AKT pathway. Activation of 

mTORC1 induces a metabolic switch in T cells in order to supply building blocks 

for cell proliferation and differentiation. T cells switch to glutaminolysis and 

aerobic glycolysis, the so-called Warburg effect characterize by glucose 

fermentation into lactate, a process that occurs despite the presence of sufficient 

oxygen to support mitochondrial OXPHOS (Rathmell et al., 2000; Roos and 

Loos, 1973). In order to provide lipids for the assembly of membranes, fatty acid 

synthesis (FAS) is increased with a respective decrease in FAO (Berod et al., 

2014) (Figure 2). Instead, memory T cells and Foxp3+ Tregs rely on 

mitochondrial FAO rather than employing FAS (Michalek et al., 2011) (Figure 

2). ROS such as superoxide, hydrogen peroxide or hydroxyl radicals are produced 

as a result of energy-generating pathways and it is important to maintain redox 

balance during all metabolic reactions occurring in the cell, that is, to keep 

balance between ROS and antioxidants being able to scavenge ROS (Nathan and 

Cunningham-Bussel, 2013). Maintaining redox balance is of particular 

importance since ROS are able to oxidize protein thiols and may therewith affect 

proper protein functioning. 
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Figure 2. Metabolic pathways match T cells’ functional demands. Schematic 
diagrams of metabolic pathways employed by T cells at different stages of 
activation and differentiation. Dominant pathways are indicated as red cascades. 
Blue arrows show pathways that are used at a steady level, and dashed arrows 
indicate pathways that might be utilized but are insufficiently investigated. (Left) 
Resting lymphocytes generate energy from glucose, fatty acids and amino acids. 
Most ATP is produced in mitochondria by fermentation of acetyl-CoA in the 
Krebs cycle (also known as tricarboxylic acid (TCA) cycle) and OXPHOS. 
(Middle) Effector lymphocytes (activated lymphocytes) swiftly and massively 
upregulate glycolysis and glutaminolysis, while keeping the TCA cycle low. 
These cells switch lipid metabolism from beta-oxidation towards FAS 
(lipogenesis). (Right) Memory lymphocytes mainly use beta-oxidation to support 
their energy needs. 3PG, 3-phosphoglycerate; FFA, free fatty acid; G-6-P, 
glucose-6-phosphate; NADPH, nicotinamide adenine dinucleotide phosphate; 
PPP, pentose phosphate pathway; R-5-P, ribose 5-phosphate. (Picture adapted 
from Yang et al., 2015). 
 

Recent studies demonstrated that interfering with metabolic checkpoints in T cells 

such as FAS prevents autoimmunity in a murine model of MS (Berod et al., 2014) 

demonstrating a link between immunometabolism and autoimmunity. This 

connection has important implications: (i) a particular T-cell response may be 

shaped by the presence of defined metabolic end products (Barbi et al., 2013) and 

(ii) understanding common alterations in metabolic pathways, irrespective of the 

underlying autoimmune disorder, opens up the possibilities for the identification 

of both novel biomarkers and therapeutic strategies (Yang et al., 2015). 

 As the details of how metabolic reprogramming regulates immune 

function are revealed, new potential targets for modulating immune responses 

have emerged (reviewed in (Patel and Powell, 2017). For example, the drug 
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rapamycin, an inhibitor of mTOR pathway (Figure 3), is able to slow down T cell 

proliferation (Sigal and Dumont, 1992) but also to promote Treg generation and T 

cell anergy (Battaglia et al., 2005; Powell et al., 1999). The small molecule 

inhibitor DON (6-Diazo-5-oxoL-norleucine), which is a glutamine antagonist, 

potently inhibits glutamine-dependent metabolism and T cell responses (Thomas 

et al., 2014) (Figure 3). Given the importance of increased glycolysis in the 

activation of effector T cells, the inhibitor of glycolysis 2-deoxy-glucose (Figure 

3) was found to markedly diminish disease in a model of EAE (Shi et al., 2011). 

The enhancement of pyruvate conversion to acetyl-CoA, by the inhibition of 

pyruvate dehydrogenase kinases (PDHK) with dichloroacetate (DCA) in mice 

(Figure 3), markedly diminished disease pathology in EAE, by a promotion of 

Treg generation with enhanced OXPHOS and by the inhibition of effector T cells 

by suppressing glycolysis (Gerriets et al., 2015). 

 To note, accumulating evidence suggests that, although manifesting in 

different clinical forms, some human autoimmune diseases display common 

alterations in metabolic pathways, key metabolites and metabolic byproducts such 

as ROS. Other examples for metabolic changes in autoimmune settings include 

modifications in amino acid and cholesterol levels or glucose catabolism (Freitag 

et al., 2016).  
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Figure 3. Targeting metabolism to regulate T cell function. In as much as T 
cell activation, differentiation and function is intimately linked to metabolism, 
targeting metabolism is emerging as a novel means of regulating T cell responses. 
Red highlights metabolic inhibitors that have been successfully employed to 
modulate T cell function. In blue are potential therapeutic targets based on the role 
of metabolic programs already well studied. (Picture adapted from Patel and 
Powell, 2017). 
 

2.3 CoA and its biosynthetic pathway 

2.3.1 CoA 

CoA is an essential, universally distributed, thiol-containing cofactor that 

works as the major acyl group carrier in all cells. This molecule is involved in 

hundreds of reactions and is required for the metabolism of fatty acids, 

carbohydrates, amino acids and ketone bodies. CoA is a major regulator of energy 

metabolism, although it is often overlooked. Acetyl-CoA in particular is 

strategically positioned at the crossroads of energy metabolism. Just like all the 

roads lead to Rome, both anabolic and catabolic pathways converge at the 

formation of this small molecule, yet acetyl-CoA maintains order by reinforcing 

the partition of pyruvate between synthesis and degradation through its 

differential regulation of pyruvate dehydrogenase and carboxylase. Traffic control 

beyond this metabolic junction is exerted by acetyl- and other acyl-CoAs through 

both allosteric and post-translational regulation. Acetyl-CoA, for example, is used 

to modify enzymes, transcription factors and chromatin covalently and reversibly 

to govern their activities (Cai et al., 2011; Lundby et al., 2012; Siudeja et al., 

2011). These ingenious mechanisms coordinate the expression and activity of a 

multitude of enzymes and processes with the energy state of the cell. Thus, CoA 

and a few other small molecules like NAD+ and ATP can act as global regulators 

of cellular metabolism both together with and independent from the action of key 

transcription factors. Consistent with these key functions, CoA levels are flexible 

in cells so that the available supply is sufficiently adaptive to metabolic challenge.  

In order for CoA to regulate such diverse cellular functions, its 

biosynthesis, CoA/CoA thioester ratio and degradation must be tightly regulated 

in different cellular compartments. There are several possibilities to consider for 

regulatory mechanisms, including (i) regulation of gene expression for the 

biosynthetic enzymes; (ii) post-translational modifications and activity regulation 
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of CoA biosynthetic enzymes; (iii) changes in the compartmentalization; (iv) 

metabolic flux of CoA and its thioester derivatives; and (v) degradation of CoA 

(Leonardi et al., 2005). 

 

2.3.2 CoA biosynthesis pathway 

 In all living organisms, CoA synthesis is initiated with pantothenate, which is 

more commonly known as vitamin B5. Plants, fungi and most bacteria can 

synthetize pantothenate de novo and only animals and some microbes need to 

obtain it from outside. CoA is synthesized in a five-step process that requires four 

molecules of ATP, one of pantothenate and one of cysteine. (Leonardi et al., 

2005):  

1. Pantothenate is phosphorylated to 4'-phosphopantothenate by the enzyme 

pantothenate kinase (PanK). This is the committed step in CoA 

biosynthesis and requires ATP. Moreover, this step has been shown to be 

rate-limiting in most organisms and subjected to feedback regulation by 

CoA itself or its derivatives (Rock et al., 2000). 

2. A cysteine is added to 4'-phosphopantothenate by the enzyme phospho-

pantothenoylcysteine synthetase (PPCS) to form 4'-phospho-N-

pantothenoylcysteine (PPC). This step is coupled with ATP hydrolysis. 

3. PPC is decarboxylated to 4'-phosphopantetheine by phosphor-

pantothenoylcysteine decarboxylase (PPCDC). 

4. 4'-phosphopantetheine is adenylated to form dephospho-CoA by 

the phosphopantetheine adenylyl transferase (PPAT) activity of the 

bifunctional enzyme CoASY. This step represents the second rate-limiting 

reactions in the pathway. 

5. Finally, dephospho-CoA is phosphorylated to CoA by the dephospho-CoA 

kinase (DPCK) activity of CoASY. This final step requires ATP. 

(All steps reviewed in Leonardi and Jackowski, 2007). 
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Figure 4. Schematic diagram of a universal pathway for CoA biosynthesis 
and its key players in mammals. The commitment step is the phosphorylation of 
pantothenate (vitamin B5) by Pank to 4’-phosphopantothenate. This is followed 
by condensation with cysteine catalyzed by PPCS and then decarboxylation to 
form 4’-phosphopantetheine by PPCDC. 4’-Phosphopantetheine is adenylated to 
dephospho-CoA by PPAT, then phosphorylated by DPCK at the 3’-hydroxy 
group of the ribose to form CoA. In mammals, the last two steps are catalyzed by 
a single bifunctional polypetide, CoASY. (Picture adapted from Martinez et al., 
2014). 
 
 

2.3.3 Regulation of CoA levels 

The levels of CoA and its thioesters derivatives are tightly regulated by 

various extracellular stimuli, including hormones of metabolic homeostasis, 

nutrients, intracellular metabolites and stress. It has long been known that fasting, 

glucagon and glucocorticoids, and treatment with lipid-lowering drugs can 

increase the total level of CoA (Berge et al., 1983; Horie et al., 1986; Kerbey et al., 

1977; Reibel et al., 1981; Smith and Savage, 1980). On the other hand, insulin, 
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glucose, fatty acids and pyruvate were shown to decrease the level of intracellular 

CoA (Berge et al., 1984; Robishaw et al., 1982). Change in the level of CoA were 

also reported in several pathologies, such as diabetes, Reye’s syndrome, cancer, 

vitamin B12 deficiency, cardiac hypertrophy and neurodegeneration with brain 

iron accumulation (Brass et al., 1990; Corkey et al., 1988; Dusi et al., 2014; 

Hörtnagel et al., 2003; Kerbey et al., 1977; McAllister et al., 1988; Reibel et al., 

1981, 1983; Zhou et al., 2001). The molecular mechanisms implicated in the 

regulation of intracellular level of CoA and the CoA/CoA derivatives ratio are not 

well understood. To date, most studies mainly focused on studying the regulation 

of the two rate-limiting enzymes in CoA biosynthesis, PanK and CoASY. 

From bacteria to mammalian cells, negative-feedback regulation of PanK, 

and hence CoA biosynthesis, by CoA, acetyl-CoA, acyl-CoA is a well-

documented fact (Begley et al., 2001; Dusi et al., 2014; Hörtnagel et al., 2003; 

Kleinkauf, 2000; Leonardi et al., 2005; Rock et al., 2000; Zhou et al., 2001). 

Taking into account that the intracellular levels of CoA/CoA derivatives levels are 

regulated by hormones, nutrients and intracellular metabolites, the research on the 

cross-talk between signal transduction pathways and CoA biosynthetic enzymes 

has been recently initiated. 

 

2.3.4 CoASY 

To date, mammalian CoASY was found to be in complex with different 

proteins implicated in diverse signaling pathway, including ribosomal protein 

serine 6 kinase 1 (RPS6K1) (Nemazanyy et al., 2004), p85! regulatory subunit of 

PI3K (phosphoinositide 3-kinase) (Breus et al., 2009), tyrosine phosphatase 

Shp2PTP (Src homology 2 domain-containing protein tyrosine phosphatase),  

tyrosine kinase Src (Breus et al., 2010), and ECD4 (enhancer of mRNA-

decapping protein 4) (Gudkova et al., 2012). Some of these interactions were 

shown to be modulated by serum starvation/activation and in response to stresses. 

On the other hand, the activity and function of CoASY was also found to be 

regulated by post-translational modifications. For example, tyrosine 

phosphorylation of CoASY by members of the Src tyrosine kinase family was 

shown to be required for its interaction with p85! regulatory subunit of PI3K 
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(Breus et al., 2009). Moreover, tyrosine dephosphorylation of CoASY by 

Shp2PTP in vitro results in the increase of its PPAT activity (Breus et al., 2010). 

The interaction of CoASY with ECD4, a central scaffold component of 

processing bodies, is regulated by growth factors and is affected by cellular 

stresses (Gudkova et al., 2012). EDC4 was also shown to strongly inhibit the 

dephospho-CoA kinase activity of CoASY in vitro (Gudkova et al., 2012).  

 The importance and mechanisms of these interactions are not well 

understood but might be important for the formation of a potential CoA 

biosynthetic complex. 

 

3. Systems biology and -omics approaches 

 Systems Biology is an inter disciplinary field that takes great advantage of 

network-based approaches to model and study complex biological processes 

(Ideker et al., 2001). Classic biology is, and historically was, focusing on single 

biological entities like, for instance, a protein. The innovative perspective that the 

systems biology approach proposes is the analysis of what happens when different 

actors play their role together, giving rise to complex systems. This goal is 

achieved by considering the set of all the interactions that take place between 

these objects in order to build and model a system. The system can finally be 

exploited by investigating (i) the role of each single actor and also, more 

interestingly, (ii) the emergent properties that arise because of their interactions. 

This is a new and very promising approach, which gives us the possibility to 

obtain a comprehensive view of complex biological systems like, for instance, an 

immune cell (Barabási and Oltvai, 2004). Systems biology is a mixture of very 

different techniques, skills and technologies and requires knowledge from very 

different fields (Figure 4). Genetics, genomics, proteomics, metabolomics and 

transcriptomics (-omics approaches) are current high throughput technologies that 

generate a very large amount of data (Hasin et al., 2017) (Figure 4). Mathematical 

skills are required to define and build the systems of interacting actors (Lango 

Allen et al., 2010; Li et al., 2002). Statistical techniques are used to investigate the 

data and to test the hypothesis and results (Figure 4). Finally, information 

technologies play a very important role since they allow managing the big amount 
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of data, to extract useful information through algorithms and to visualize models 

and results in a meaningful way and, especially, in a human-readable format. 

 

 
Figure 5. The systems biology flow. Reductionism, which has dominated 
biological research for over a century, has provided a wealth of knowledge about 
individual cellular components and their functions. Despite its enormous success, 
it is increasingly clear that a discrete biological function can only rarely be 
attributed to an individual molecule. Instead, most biological characteristics arise 
from complex interactions between the cell’s numerous constituents, such as 
proteins, DNA, RNA and metabolites. Therefore, a key challenge for biology in 
the twenty-first century is to understand the structure and the dynamics of the 
complex intercellular web of interactions that contribute to the structure and 
function of a living cell. The development of high-throughput data-collection 
techniques (-omics approaches), as epitomized by the widespread use of 
microarrays or mass spectrometry, allows for the simultaneous interrogation of 
the status of a cell’s components at any given time. In turn, new technology 
platforms, help to determine how and when these molecules interact with each 
other. Various types of interaction networks (including protein–protein 
interaction, metabolic, signaling and transcription-regulatory networks) emerge 
from the sum of these interactions and can be visualizes and analyzed thanks to 
bioinformatics computational software in order to generate new hypothesis, which 
can be studied in detail. (Integrated figure from Systems Biology Institute of 
Seattle: “systemsbiology.org/about/what-is-systems-biology/) 
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Bioinformatics and computational biology are the natural conjugations of the 

skills that are considered necessary to investigate all the complexity that comes 

from this amount of information. There are many different methodologies to 

exploit all the data produced by the modern -omics techniques and it is possible to 

find many software packages, web services and programming languages. There 

are also many biological databases that we can easily access to download protein 

structures, sequenced genomes, biological and disease networks, ontologies, 

standardized names and so on: STRING (Szklarczyk et al., 2017), GeneOntology 

(Ashburner et al., 2000) and Kegg (Kanehisa and Goto, 2000; Kanehisa et al., 

2014) are just very few examples. 

Systems biology represents the modern transition from a reductionist to a holistic 

view of biology. Reductionism is, and was, the main method used to address 

biological problems but things seem to be changing. Some scientists in the past 

and an increasing number of researchers today are considering biology as a set of 

interacting objects that should be considered together. In this sense, the holistic 

approach is (re)gaining more and more interest and an interdisciplinary 

knowledge that crosses different fields like, for instance, mathematics and 

biology, is becoming more and more important. 

 A very interesting, current, model that allows investigating biological 

systems properties takes advantage of graph theory. Networks, or graphs, are 

mathematical abstractions that could be used to model complex biological 

systems. Biological networks are composed by different kinds of actors that may 

be metabolites, genes, RNAs, and proteins (Alon, 2003) (Figure 5). From a 

mathematical perspective, networks, abstracted as graphs, are sets of objects that 

are used to describe interactions, called edges, between actors, called nodes. 

Formally a graph is defined as G = (E; V) where E is a set of edges and V the set 

of vertexes, i.e. the nodes. This simple notation is very useful to model complex, 

static biological processes where hundreds of genes, RNAs, proteins and 

metabolites interact together generating thousands of connections (Pastrello et al., 

2014) (Figure 5). This static representation gives us a frame of the cell. It is not 

able to take into account the time, which means that the interactions do not change 
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over time. But graphs can be used to represent dynamic processes. These dynamic 

models permit to describe a changing system and the kinetics that take place, for 

instance, inside a cell. Some of these models are (i) Petri-nets (Goss and Peccoud, 

1998), (ii) P-systems (Păun, 2000) and (iii) π-calculus models (Regev et al., 2001) 

just to cite few interesting methodologies in the field. 

 

 
Figure 6. Networks in cellular systems. Several types of interactome networks 
discussed are depicted. In a protein interaction network, nodes represent proteins 
and edges represent physical interactions. In a transcriptional regulatory network, 
nodes represent transcription factors (circular nodes) or putative DNA regulatory 
elements (diamond nodes); and edges represent physical binding between the two. 
In a disease network, nodes represent diseases, and edges represent gene 
mutations of which are associated with the linked diseases. In a virus-host 
network, nodes represent viral proteins (square nodes) or host proteins (round 
nodes), and edges represent physical interactions between the two. In a metabolic 
network, nodes represent enzymes, and edges represent metabolites that are 
products or substrates of the enzymes. The network depictions seem dense, but 
they represent only small portions of available interactome network maps, which 
themselves constitute only a few percent of the complete interactome within cells. 
(Picture adapted from (Vidal et al., 2011).  
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Materials and Methods 

 
Mice 

 8-10 weeks old SJL mice were purchased from Charles River 

Laboratories. The experiments were conducted following the principles of the 

NIH Guide for the Use and Care of Laboratory Animals and the European 

Community Council. 

 

Production of PLP139-151-specific encephalitogenic T cell lines 

 SJL mice were immunized subcutaneously (s.c.) with 300 µg of PLP139-151 

peptide (Genscript, USA) in 200 µl emulsion consisting of equal volumes of 

phosphate buffered saline (PBS) and CFA (from Difco Laboratories), 

supplemented with 1 mg/ml of Mycobacterium tuberculosis (strain H37Ra; Difco 

Laboratories). 10-12 days later, draining lymph nodes were removed and total 

cells were stimulated with 30 µg/ml of PLP139-151 peptide for 4 days in culture 

medium (RPMI 1640 supplemented with 1 mM Na pyruvate, 4 mM GlutaMAX-

I® supplement, 100 U/ml penicillin, 100 U/ml streptomycin, 10% v/v fetal bovine 

serum, and 5 µg/ml plasmocin). PLP139-151-specific encephalitogenic T cell lines 

were obtained by re-stimulation of these cultures every 14 days for at least 3 times 

in the presence of irradiated splenocytes as antigen presenting cells (APCs) with a 

proportion of 1:8, and 30 µg/ml of PLP139-151 peptide. 

 For our experiments, we considered: 

1) as actively-proliferating PLP139-151-specific encephalitogenic T cells, those 

collected from lines after 2 days post stimulation (dps);  

2) as low-proliferating PLP139-151-specific encephalitogenic T cells, those 

cells collected 10-12 dps. 

 

Pantethine preparation 

 D-pantethine (pantethine) was purchased from Sigma-Aldrich. For in vitro 

experiments, pantethine was dissolved in PBS to a final concentration of 100 µM 

and stored at -20°C before use. For in vivo experiments, pantethine was dissolved 
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in physiologic saline solution (0.9% NaCl in water solution) or PBS to a final 

concentration of 300 mg/ml and stored at -20°C before use.  

 

Metabolomics analysis 

 Resting CD4+ T cells were isolated from lymph nodes and spleens of naïve 

SJL mice by magnetic cell sorting (all reagents from Miltenyi Biotech), whereas 

actively-proliferating PLP139-151-specific encephalitogenic T cells were collected 

and washed twice with PBS. Cells were pelleted, and cell pellets were 

immediately frozen in liquid nitrogen and stored at -80°C. In some experiments, 

actively proliferating encephalitogenic T cells were washed with PBS, re-

suspended in fresh medium and treated with PBS or pantethine 1.0 mM for 6 

hours before freezing. 

 Metabolite identification and quantification in T cells were performed in 

outsourcing by Metabolon (http://www.metabolon.com/). Metabolon provided 

elaborated data via email as Excel data worksheet, including all raw data, average 

values, ratio values and a variety of statistical evaluations. The subsequent 

computational studies were performed on metabolites significantly modified 

between the different sample groups, as determined by Metabolon statistical 

analysis. 

 Heatmaps were built using Metaboanalyst 3.0, a comprehensive tool suite 

for metabolomics data analysis (http://www.metaboanalyst.ca/). Pathway, 

network and metabolism ontology analysis were performed using Cytoscape 

(Shannon et al., 2003) and the dedicated plugin MetScape (Karnovsky et al., 

2012). A global metabolic network was finally constructed from the network 

output of MetScape, composed by completely connected nodes, representing 

metabolites, which participate in the identified pathways. 

 

Phosphoproteomics and network analysis 

 Actively-proliferating PLP139-151-specific encephalitogenic T cells were 

washed twice with PBS, re-suspended in fresh medium and treated with PBS or 

pantethine 1.0 mM for 6 hours. After treatment, cells were washed and the cell 

pellet was immediately frozen in liquid nitrogen and stored at -80°C. 
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 Analysis of protein expression and phosphorylation levels was performed 

in outsourcing by Kinexus (http://www.kinexus.ca), using a Kinex™ KAM-850 

Antibody Microarray Kit. The Kinex™ Antibody Microarray Service monitored 

changes in the expression levels and phosphorylation states of signaling proteins 

with more than 850 antibodies, which includes approximately 517 pan-specific 

antibodies (for protein expression evaluation) and 337 phospho-site-specific 

antibodies (for phosphorylation states evaluation). For each antibody, the 

background-corrected raw intensity data were logarithmically transformed with 

base 2. Furthermore, Z scores were calculated by subtracting the overall average 

intensity of all spots within a sample from the raw intensity for each spot, and 

dividing it by the standard deviations (SD) of all of the measured intensities 

within each sample (Cheadle et al., 2003). Z ratios were further calculated by 

taking the difference between the averages of the observed protein Z scores and 

dividing by the SD of all of the differences for comparisons between actively 

proliferating PLP139-151-specific encephalitogenic T cell treated or not with 

pantethine.  A Z ratio of ±1.1 is inferred as significant and used for bioinformatics 

analysis. Significant proteins were used as a “bioinformatics probe” to build a 

protein-protein interaction (PPI) network from STRING, a database of known and 

predicted PPI (string-db.org;(Szklarczyk et al., 2017). The following parameters 

were set for the analysis: high confidence (0.700) and protein-protein interactions 

derived only from experiments, text mining and databases. 

 Network was imported in Cytoscape software for visualization and 

extraction of a completely connected sub-network. An enrichment analysis with 

DAVID Bioinformatics Tools for Gene Ontology Biological Process terms and 

PANTHER signaling pathways (Huang et al., 2009a, 2009b) was performed on 

protein of the sub-network. Only term with a P-value < 0.001 and False Discovery 

Rate (FDR) < 0.05 were considered. Significant terms were organized in a 

network using Enrichment Map, a Cytoscape plugin, where each term is a node 

and edges represent protein overlap between terms (Merico et al., 2010). 

 

In vitro proliferation assays with PLP139-151-specific encephalitogenic T cells 
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 In vitro proliferation assays were performed with actively and low 

proliferating PLP139-151-specific encephalitogenic T cells as follow: 

1) Actively-proliferating PLP139-151-specific encephalitogenic T cells were 

washed twice with PBS, re-suspended in fresh medium and treated with 

PBS or different concentration of pantethine (0.1 mM, 0.5 mM, 1.0 mM) 

for 6 hours. Cells were then washed and seeded 1.0 x 106/well in a 96 well 

plate. 1 µCi/well of [3H]-thymidine (3H-Tmd; Perkin-Elmer) were added 

to wells, and cells were left in culture for further 18 hours. 

2) Low-proliferating PLP139-151-specific T cells were washed twice with PBS 

and incubated for 16 hours with PBS or different concentrations of 

pantethine (0.1mM and 1.0mM). Cells were then washed and stimulated in 

96 well plate. Cells were seeded 3x105/well of PLP139-151-specific T cells 

with 1.2x106/well of APCs (ratio 1:4) and stimulated with different 

concentration of PLP139-151 peptide (10 µg/ml, 30 µg/ml or nothing). After 

6 hours, cells were pulsed with 1 µCi/well of 3H-Tmd and were left in 

culture for further 18 hours. 

After 18 hours, all samples were then harvested, supplemented with 3 ml of 

scintillation fluid (Ultima Gold from Perkin-Elmer) and 3H-Tmd incorporation by 

proliferating cells was measured with a b-counter (Perkin-Elmer). All experiments 

were performed in triplicate wells for each condition. 

 For each experiment, a 96 well plate was seeded for 3H-Tmd incorporation 

assay as explained before, and another identical one, but without 3H-Tmd, for 

supernatants collection and cell viability assay at the end of the proliferation 

assay. 

 

Bio-Plex assay for cytokines detection 

 Supernatants collected from in vitro proliferation assays were used for 

Milliplex cytokine assays (Merck Millipore), following manufacturer’s 

instructions. Briefly, anti-cytokine conjugated beads were plated in 96-well 

microtiter plates and then removed by vacuum filtration. Samples were then 

added, and the plate was incubated for 30 min by mixing at 300 rpm. Bio-Plex 

cytokine assays were sequentially incubated with the detection antibody and 
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streptavidin-PE; samples were then analyzed immediately by a Bioplex array-

system. Unknown cytokine concentrations were automatically calculated by Bio-

Plex software using a standard curve derived from a recombinant cytokine 

standard. All data were analyzed using PRISM software. 

 

In vitro adhesion assay on purified integrin ligands  

 Twelve-well glass slides were coated for 18h at 4°C with purified mouse 

Intercellular Cell Adhesion Molecule (ICAM)-1 or Vascular Cell Adhesion 

Molecule (VCAM)-1 (R&D Systems) 1 µg/ml in PBS, after which were blocked 

with FBS for 10 minutes at 37°C. PLP139-151-specific T cells, collected 8 dps, were 

pre-treated for 6 hours with increasing concentrations of pantethine (0.1 mM, 0.5 

mM, 1.0 mM). Cells were then suspended at 5x106/ml in standard adhesion 

buffer. 20 µl of cell suspension were added to the wells, and cells were left 

spontaneously adhere on VCAM-1 or ICAM-1 for 20 min at 37°C. After washing, 

adherent cells were fixed in glutaraldehyde 1.5% in PBS and counted by 

computer-assisted enumeration (Bolomini-Vittori et al., 2009). 

 

Silencing of CoASY expression in encephalitogenic T cells 

 Low-proliferating PLP139-151-specific T cells were transfected after 10-13 

days from the last in vitro antigen-stimulation. Cells were transfected using either 

4 µM of specific siRNAs against CoASY or 4 µM of siRNA scrambled as control. 

Both specific and scrambled siRNAs were purchased as a pool of 4 sequences 

composed by 19-nucleotides each (ON-TARGET® plus siRNA pool from 

Dharmacon). Transfection was performed with Amaxa's nucleofector technology 

(Amaxa, Germany) and Mouse T Cell Nucleofector® Kit (Lonza) according to the 

manufacturer's instructions. Briefly, cells were suspended in Nucleofector 

Solution to a final concentration of 6x106 cells/100µl. In Amaxa certified 

cuvettes, the cells were nucleofected by using the program X-001. Transfected 

cells were then transferred to 2 ml of pre-warmed medium in 12-wells plate and 

incubated at 37°C in 7% of CO2 until use for the proliferation assay as described 

below. The knockdown efficiency was evaluated by western blot analysis after 24 

hours and 48 hours post transfection.  
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CoASY quantification by Western blot analysis 

 Cells were lysed for 30 minutes in 1% Nonidet P-40 buffer, containing 

phosphatase inhibitors and complete protease inhibitor mixture (Roche). Cells 

lysates were centrifuged at 13000 rpm for 10 minutes at 4°C and Bradford assay 

(Bio-Rad) was used to estimate protein concentrations. Protein samples were 

dissolved in sample buffer and boiled for 5 min. Electrophoresis was performed 

with 7.5% polyacrylamide gels containing 0.1% SDS. Proteins were transferred to 

nitrocellulose membranes (GE Healthcare) under electrophoretic conditions (400 

mA, 1,5 h). Membranes were blocked in Tris-buffered saline with Tween solution 

(TBST) containing 3% bovine serum albumin (BSA) for 1 h at room temperature 

(RT). Blots were incubated overnight at 4°C with primary antibodies anti-CoASY 

(at 1:3000 dilution, ThermoFisher) and anti–β-actin (at 1:3000 dilution, Sigma-

Aldrich) in 1% BSA TBST. The following day, blots were rinsed in TBST for 3 

times, 10 min each, and incubated for 1 hour at room temperature with 

appropriate horseradish peroxidase-conjugated secondary antibodies (Amersham 

Biosciences). Signals were developed using enhanced chemiluminescence 

(Millipore), and images were captured using ImageQuant LAS 4000 instrument. 

 Densitometry analysis was performed using Quantity One software 

(Version 4.6.6, Bio-Rad). The average density is expressed in arbitrary units (Adj 

volume INT*mm2). 

 

In vitro proliferation assay with CoASY-silenced PLP139-151-specific T cells 

 Transfected PLP139-151-specific T cells were treated or not with 0.1 mM or 

0.2 mM of pantethine for 16 hours within 24 hours after transfection. Cells were 

then stimulated in 96 well plate with APCs and 30 µg/ml of PLP139-151 peptide. 

Subsequent steps of the proliferation assay were performed as described above for 

low-proliferation PLP139-151-specific T cells. 

 

Enrichment analysis of a PPI network centered on CoASY using a systems 

biology approach 
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The PPI network of CoASY was built and analyzed using Cytoscape 

software (Shannon et al., 2003) and dedicated plugins. The “Human Interactome” 

network (downloaded from “dp.univr.it/~laudanna/LCTST”) was imported in 

Cytoscape and used as a database network including only experimentally multi-

verified protein-protein binary interactions (more information at 

dp.univr.it/~laudanna/LCTST). A sub-network from the Human Interactome was 

extracted consisting of CoASY and its directly interacting proteins.   

Cytoscape plug-in JEPETTO (Winterhalter et al., 2014) was used to 

analyze the sub-network centered on CoASY by performing an enrichment 

analysis of the signaling pathways in which CoASY and its first interacting 

proteins were involved.  

 

EAE induction and in vivo treatment with pantethine 

 Relapsing-Remitting EAE (RR-EAE) was induced in 8-10 weeks old SJL 

mice, which were immunized with 300 µg of the PLP139-151 peptide in 200 

µl/mouse of emulsion as described above. Immunization was made with two s.c. 

injections of 50 µl emulsion in each flank and one of 100 µl in the lower back. 40 

ng/mouse of pertussis toxin were injected intravenously at the day of 

immunization and after 48 hours. To evaluate the clinical benefit of pantethine, 

mice were treated orally (per os, p.o.) with 30 mg/mouse/day of pantethine or 

with PBS (control animals). In the preventive setting, mice received daily 

administration of pantethine or corresponding volume of PBS starting 5 days post-

immunization. In the therapeutic protocol, pantethine or vehicle was administered 

p.o after the initial peak of the disease (day +18 post-immunization). In both 

preventive and therapeutic settings, mice were treated for 20 consecutive days. 

 Mice were checked for clinical symptoms daily and signs of EAE were 

translated into clinical score as follows: 0= no disease, 1= tail weakness; 2= 

paraparesis; 3= paraplegia; 4= paraplegia with forelimb weakness or paralysis; 5= 

moribund or dead animals. 

 

Statistics 



 35 

 Statistical analyses for metabolomics and phosphoproteomics studies were 

described above. For the experimental procedures, quantitative data are given as 

mean values ± standard deviation (SD) or standard error of the mean (S.E.M.). 

Statistical analyses were performed using GraphPad Prism 6 (GraphPad Software 

Inc., SanDiego, CA). Mann-Whitney U tests were performed to compare groups 

of unpaired, non-parametric values. Two-tailed paired t tests were used to 

compare different experimental conditions of paired, parametric values or 

Wilcoxon tests for paired, nonparametric values. A P-value of < 0.05 was 

considered significant. 
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Results 
 

Actively proliferating PLP139-151-specific T cells display a different metabolic 

profile compared to resting T lymphocytes 
Myelin-specific encephalitogenic T cells are major players in the 

development of EAE, the mouse model of human MS (Rangachari and Kuchroo, 

2013). In this project, we used these activated encephalitogenic T cells as a model 

of autoreactive disease-inducing T cells in CNS autoimmunity. We started our 

study by analyzing the metabolic profile of actively proliferating PLP139-151-

specific T cells, in comparison with CD4+ resting T lymphocytes. By performing 

metabolomics analysis in collaboration with Metabolon 

(http://www.metabolon.com/), we found that encephalitogenic T cells display a 

metabolic profile very different from resting T cells (Figure 7) (Pearce et al., 

2013).  

Glycolysis and Krebs cycle. Compared to PLP139-151-specific T cells, 

resting T cells showed higher levels of Krebs cycle intermediates, such as CoA, 

fumarate and malate, suggesting that resting T cells preferentially use OXPHOS 

for energy production (Figure 7, Table I). However, activated encephalitogenic T 

cells displayed increased levels of free glucose and glycogen-derived molecules, 

like maltopentaose, maltotetraose and maltotriose, suggesting higher glucose up-

take by proliferating T cells (Figure 7, Table I). Together with the presence of 

consistent amount of glycolysis intermediates, like glucose-6-phospate and 

fructose-6-phosphate (Figure 7, Table I), these data indicate that autoreactive T 

cells shift their metabolism to aerobic glycolysis during active proliferation. 

Moreover, the changes in the glycolytic pathways did not account for all 

metabolic differences between resting and activated encephalitogenic T cells.  

Pentose phosphate pathway (PPP). Intermediated of the PPP were also 

significantly increased in PLP139-151-specific T cells, compared to resting T cells 

(Figure 7). Also, PPP, nucleotide, lipid and amino acid building blocks were 

augmented (Table I) suggesting that proliferating T cells actively synthesize 

macromolecules in an anabolic metabolism necessary for cell growth and 

replication. Collectively, these data clearly indicate that, as previously reported, 
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actively proliferating myelin-specific encephalitogenic T cells undergo a 

metabolic reorganization known as Warburg effect, whereas resting T cells 

display a metabolic profile typical of resting, non-proliferating cells (Pearce and 

Pearce, 2013). 

 CoA biosynthesis. Interestingly, our global metabolomics network 

analysis suggested a downregulation of the CoA synthesis pathway in myelin-

specific encephalitogenic T cells compared to resting T cells. In actively 

proliferating PLP139-151-specific T cells, CoA synthesis pathway in the global 

metabolic network was characterized by a decrease in the pantothenate uptake, 

followed by an accumulation of 3’-dephospo-CoA and lower levels of free CoA 

(CoA-SH) (Figure 7, Table I). 

 

CoA fueling inhibits anabolic metabolism in PLP139-151-specific effector T 

cells 

Considering the downregulation of CoA synthesis pathway in actively 

proliferating encephalitogenic T cells compared to resting T cells, we 

hypothesized that CoA fueling could potentially alter the metabolic profile 

interfering with pathogenic functions of autoreactive T cells. To investigate such 

possibility, we used the low molecular weight thiol pantethine, the stable 

homodimeric form of pantetheine, which represents the metabolic precursor of 

CoA molecule (Figure 8). Pantethine was previously shown to increase CoA 

levels both in vitro and in vivo (Branca et al., 1984a; Rana et al., 2010). 

We firstly evaluated the whole impact of CoA fueling on PLP139-151-specific 

encephalitogenic T cell metabolic pathways by performing metabolomics analysis 

on pantethine-treated PLP139-151-specific T cells. We observed that 6h treatment of 

these cells with pantethine induced a consistent alteration in the intracellular 

content of at least 158 metabolites (Table I). 

By performing network analysis using a systems biology approach, all metabolites 

modified by the pantethine treatment were organized in a global metabolomics 

network. Overall, the network obtained allowed us to propose a model on the 

global mechanism of action of pantethine in T cells, which is described below. 
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 Glycolysis and Krebs cycle. The broad effect of CoA fueling affected the 

glycolysis pathway and reduced glucose uptake, as suggested by the 1.4-fold 

reduction of free glucose concentration (Figure 9, Table I). Moreover, the 

consistent reduction of glucose-6-phosphate, its precursor, mannose-6-phosphate, 

and other glycolysis metabolites such as fructose-6-phosphate and fructose 1,6-

diphosphate, confirmed our observations suggesting an inhibition in the glycolytic 

pathway induced by pantethine (Figure 9, Table I). 

 PPP. Importantly, the reduced availability of fructose 6-phosphate and 

fructose 1,6-diphosphate, which link glycolisis to the PPP, was accompanied by 

the reduction of metabolites arising from the non-oxidative phase of PPP, such as 

ribulose 5-phosphate (isobar with xylulose-5-phosphate), ribose 5-phosphate and 

sedoheptulose-7-phosphate (Figure 9, Table I). The block of PPP was also 

confirmed by an increase in the amount of the metabolite linking oxidative to non-

oxidative PPP phases: the 6-phosphogluconate (Sukhatme and Chan, 2012) 

(Figure 9, Table I). 

 FAO. Beyond glycolysis, resting and proliferating T cells differ in their 

use of FAO pathway for energy supply (MacIver et al., 2013). The changes in 

lipid metabolism observed after pantethine treatment were mainly correlated with 

an induction of membrane remodeling. In particular, pantethine increased the 

amount of the phospholipid precursor cytidine-5’-diphosphocholine and the major 

degradation product of choline-containing phospholipids: the 

glycerophosphorylcholine (GPC) (Figure 9, Table I). Interestingly, the increase 

in GPC content may be related to an increased synthesis of phosphatidylcholine 

(Baburina and Jackowski, 1999), which is a potent activator of both enzymatic 

activities of CoASY in vitro (Zhyvoloup et al., 2003). In accordance, the increase 

in phosphatidylcholine is correlated with a reduction in 3’dephospho-CoA after 

pantethine treatment in favor of an increased CoA synthesis and a consequent 

limitation of phospholipids availability due to the membranes assembling during 

proliferation. Moreover, we also found a reduction of 1-

palmitoylglycerophosphoethanolamine, suggesting a shift to FAS or an 

acceleration of FAO, leading to accumulation of glycerol phospholipids-

containing shorter chain fatty acids (Figure 9, Table I). 
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 Purine and pyrimidine metabolism. In proliferating cells, shift to aerobic 

glycolysis induced an anabolic metabolism essential for the synthesis of protein 

and nucleic acid building blocks necessary for cell growth and division (Vander 

Heiden et al., 2009). Our metabolomics analysis confirms a reduction of such 

pathways in encephalitogenic T cells after pantethine treatment. Indeed, we 

observed that several intermediates and end products of the purine and pyrimidine 

synthesis pathways were variably reduced by pantethine treatment, such as 

adenosine-3'-monophosphate (3'-AMP), adenosine-5'-diphosphoribose, 2'-

deoxyadenosine-3'-monophosphate, 2'-deoxyguanosine, 2'-deoxyinosine, 

xanthine, orotate and N-carbamoylaspartate (Figure 9, Table I), suggesting that 

pantethine, together with the inhibition of PPP, likely affected DNA and RNA 

synthesis. 

 Amino acids metabolism. Interestingly, the CoA fueling also impacted the 

metabolism of several amino acids, and, in particular, we observed a reduction in 

the levels of many free amino acids and correlated elevations in some dipeptides 

(Figure 9, Table I). These changes may be indicative of increased protein 

degradation/turnover due to changes in gene expression programs and/or greater 

use of amino acids to meet energy demands as a source of carbons. 

 Glutathione metabolism and oxidative stress. Overall, our data suggest an 

increase of the catabolic metabolism boosted by CoA fueling (with amino acids, 

fatty acids and carbohydrate as sources), possibly resulting in a general increase 

of OXPHOS. As highly oxidative processes, such as FAO and OXPHOS, may be 

associated with huge ROS production, the general increase in the catabolic 

metabolism after CoA fueling may cause intracellular oxidative stress. 

Glutathione is the most important intracellular antioxidant and serves as a redox 

buffer cycling between its reduced and oxidized (GSSG) forms, and thus the ratio 

between GSH and GSSG serves as an indicator of intracellular oxidative stress. 

We found that pantethine treatment increased the total glutathione levels in 

PLP139-151-specific encephalitogenic T cells (Figure 9, Table I). Although this 

aspect may suggest an antioxidant effect of pantethine, as previously 

demonstrated (Cornille et al., 2010), we observed a decrease in the ratio 

GSH/GSSG, which is an index of an increase in the intracellular oxidative stress 
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and ROS levels, probably due to an augmented oxidative metabolism. 

Interestingly, recent studies demonstrated that glutathione and ROS play a key 

role in the regulation of T cell proliferation, growth, and function (Nathan and 

Cunningham-Bussel, 2013). In particular, high level of intracellular ROS was 

demonstrated to inhibit mTOR pathway and the metabolic reprogramming of 

activated T cells (Mak et al., 2017). In addition, S-adenosylhomocysteine (SAH), 

a precursor for glutathione synthesis, and levels of 5-oxoproline, an intermediate 

produced when glutathione is degraded and recycled via the γ-glutamyl cycle, 

were also higher in autoreactive T cells (Figure 9, Table I). Taken together, these 

metabolic changes may confirm increased glutathione synthesis (Cornille et al., 

2010). As cysteine is required for CoA synthesis and is the rate-limiting 

biochemical molecule for glutathione synthesis, pantethine treatment and 

modulation of CoA metabolism could potentially contribute to the observed 

changes in glutathione metabolism. 

CoA biosynthesis. As expected, treatment with pantethine was associated 

with changes in CoA biosynthesis pathway, as suggested by the significant 

elevation (about 34-fold increase) in pantothenate, the primary precursor for CoA 

synthesis. Moreover, intracellular levels of the CoA precursor 3’dephospho-CoA 

were significantly reduced after pantethine treatment (Figure 9, Table I). Overall, 

the increase in pantothenate uptake and reduction in 3’dephospho-CoA level 

suggested a restoration of CoA synthesis pathway in myelin-specific T cells, 

which were reprogrammed towards a resting-like state. Unexpectedly, 

metabolomics analysis showed a reduction in free CoA level in pantethine treated 

cells after 6 hours of treatment. We hypothesize that the decreased level of CoA-

SH is due to higher consumption of CoA-SH in the numerous reactions in which 

this molecule is involved. In light of these data, we decided to further investigate 

the intracellular levels of CoA in pantethine treated myelin-specific 

encephalitogenic T cells by performing fluorometric in vitro assays (CoA 

Colorimetric/Fluorometric Assay Kit, Biovision). Unfortunately, results were not 

reproducible due to limited detection sensitivity of the kit. However, our data 

suggest that treatment of encephalitogenic T cells with pantethine led to rapid 

consumption and modulation of CoA metabolism, rather than a real increase in 
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the amount of CoA-SH (data not shown). In accordance with metabolomics data 

showing a decrease in CoA-SH level, we observed an increase in acyl-CoA 

molecules, suggesting that free CoA derived from a potentiated CoA synthesis 

pathway is rapidly metabolized in the numerous metabolic pathways, in which 

CoA is involved. Nevertheless, the data obtained by fluorometric analysis need to 

be confirmed by performing a more sensitive assay such as HPLC-MS (high 

performance liquid chromatography-mass spectrometry). 

 

Phosphoproteomics analysis elucidated the immuno-modulatory effect of 

CoA fueling in PLP139-151-specific T cells 

As CoA fueling with pantethine highly impacted the intracellular 

metabolic profile of encephalitogenic T cells, which shifted toward a resting-like 

state, we hypothesized that such metabolic reprogramming may have an immuno-

modulatory effect on PLP139-151-specific autoreactive T cells. To investigate the 

net effect of CoA fueling on encephalitogenic T cell functions, we performed 

phosphoproteomics analysis on actively proliferating PLP139-151-specific effector 

T cells treated or not with pantethine. 234 significant proteins were selected as 

bioinformatics probe components with a Z-ratio of ± 1.1 in terms of expression or 

phosphorylation differences between encephalitogenic T cells treated or not with 

pantethine (Table II). We used this probe to generate a protein-protein interaction 

network from the STRING database (Szklarczyk et al., 2017). The network was 

imported in Cytoscape and an entirely connected sub-network with 204 nodes was 

obtained. Gene Ontology Biological Process (GObp) terms and PANTHER 

pathways enrichment analysis was performed on the 204 nodes with DAVID 

Bioinformatic tool (Huang et al., 2009a, 2009b), and P-value<0.001 and False 

Discovery Rate (FDR)<0.05 were set as thresholds. Terms were finally organized 

in two networks using Enrichment Map plugin on Cytoscape: a network of 117 

nodes was obtained for the GObp enrichment analysis and a network of 24 nodes 

was obtained for PANTHER pathways (Figure 10). The bioinformatics analysis 

revealed that the majority of GO term referred to general biological processes 

related to intracellular signaling cascade, homeostatic processes, apoptosis, and 

immune-related biological processes such as cell proliferation, cell migration, 
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cytokine-mediated pathway, and Jak-Stat cascade (Figure 10). In addition, 

PANTHER pathways enrichment analysis revealed specific signaling pathways 

modified by pantethine treatment, related to GO biological processes identified, 

such as T cell activation, Ras, Jak/Stat, P38 Mapk, PI3 Kinase, integrin, toll 

receptor and cytokine-mediated pathways such as interferon-gamma and other 

interleukins (Figure 10). Collectively, data from this high throughput analysis 

suggest that CoA fueling has a strong immuno-modulatory effect on PLP139-151-

specific encephalitogenic T cells and may significantly affect their metabolism, 

activation, proliferation and pathogenic features.  

 

CoA fueling has immuno-modulatory effects on PLP139-151-specific T cells 

Data obtained by phosphoproteomics computational analysis suggested an 

effect of CoA fueling on intracellular signaling pathway related to the immune 

response, in particular, cell proliferation, cell adhesion and cytokine 

production. In light of these results, we next investigated the possible immuno-

modulatory effect of CoA fueling on the pathogenic features of encephalitogenic 

T cells. 

Pantethine treatment inhibits proliferation of T cells in vitro. We firstly 

analyzed the effect of pantethine on the antigen-induced proliferation of PLP139-

151-specific encephalitogenic T cells. We found that 6 h treatment with pantethine 

of actively-proliferating encephalitogenic T cells significantly reduced their 

proliferative capacity in a dose-dependent manner (Figure 11). The inhibition of 

pantethine on the proliferative capacity of actively-proliferating encephalitogenic 

T cells suggested that CoA fueling affects the active inflammation process, by 

reducing metabolic pathways and, consequently, signaling pathways essential for 

active proliferation. 

To evaluate the potential of preventive CoA fueling on T cell activation, we then 

tested the capacity of CoA potentiation to inhibit antigen-stimulation and 

activation of encephalitogenic T cells. We found that 16 hours pre-treatment with 

pantethine strongly inhibited antigen-specific T cell proliferation in a dose-

dependent manner (Figure 12). These data confirm that pantethine affects the 
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proliferation of pathogenic effector T cells, by limiting their re-stimulation by 

APCs in vitro. 

Pantethine treatment reduces pro-inflammatory cytokine production of 

T cells in vitro. Several pro-inflammatory cytokines produced by pathogenic T 

cells were identified to play a key role in both EAE and human MS development 

(Petermann and Korn, 2011). For this reason, we investigated the effect of 

pantethine pre-treatment on cytokine production by encephalitogenic T cells 

quantifying cytokine amounts in supernatants from proliferation assays. We found 

that the reduced T cell proliferation was accompanied by a strongly reduced pro-

inflammatory cytokine production by pantethine-treated T cells (Figure 13). In 

particular, pantethine reduced the production by encephalitogenic T cells of IL-6, 

IL-17, IFN-g, granulocyte macrophage colony-stimulating factor (GM-CSF) and 

TNF-a, which were shown to be essential for EAE development (Petermann and 

Korn, 2011) (Figure 13), confirming that pantethine blocks T cell activation in 

vitro. 

Pantethine treatment inhibits spontaneous T cell adhesion in vitro. The 

ability of encephalitogenic T cells to adhere on inflamed CNS pial venules and to 

migrate in the surrounding CNS parenchyma is a crucial event in the induction of 

inflammatory responses against neuronal myelin sheet (Piccio et al., 2002; 

Rangachari and Kuchroo, 2013; Rossi et al., 2011). It was previously shown that 

pantethine treatment down-regulates platelet hyper-adhesion in an animal model 

of cerebral malaria, suggesting that pantethine may impact cell adhesion to 

activated endothelium (Penet et al., 2008). Pantethine was also recently shown to 

affect resting T cells adhesion in vitro (van Gijsel-Bonnello et al., 2015). In order 

to test whether CoA fueling may modulate the adhesive capacity of autoreactive T 

cells, we investigated the effect of pantethine treatment on the integrin-dependent 

adhesion of encephalitogenic T cell on purified ICAM-1 and VCAM-1 in vitro. 

We found that pre-treatment with pantethine significantly reduced the 

spontaneous adhesion of encephalitogenic T cells on both integrin ligands in a 

dose-dependent manner when compared to untreated cells (Figure 14). These data 

suggest that pantethine can inhibit activated T cell adhesiveness by modulating 

integrin activation on autoreactive T cells. 
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Silencing of CoASY abolished pantethine inhibitory effect in PLP139-151-

specific T CoA fueling 

 CoASY is the enzyme that catalyzes the last two sequential steps of CoA 

synthesis, which represent a critical point for CoA production. In order to confirm 

that the metabolic reprogramming induced by pantethine in encephalitogenic T 

cells was due to CoA fueling, we performed proliferation assays after CoASY 

silencing in PLP139-151-specific T cells.  

PLP139-151-specific T cells were transfected with siRNA-CoASY using 

electroporation as described in methods. Post transfection western blot analysis 

confirmed 50% reduction in CoASY expression after 24h silencing, whereas 48h 

silencing was not effective (Figure 15). 

Therefore, within 24 hours post transfection we performed proliferation assays 

with siRNA-CoASY transfected PLP139-151-specifc T cells, analyzing the impact 

of pantethine treatment on their proliferative capacity. Scramble siRNA-

transfected cells were used as control condition. The results showed a significant 

reduction of the inhibitory effect of pantethine treatment on the proliferation rate 

of siRNA-CoASY transfected PLP139-151-specifc T cells, whereas control siRNA-

scramble transfected PLP139-151-specifc T cells were inhibited in their proliferative 

capacity by pantethine (Figure 16A). These data confirm that the inhibitory effect 

of pantethine on T cell proliferation was due to de novo CoA synthesis in treated 

cells. Interestingly, the proliferation assays showed that, in absence of pantethine 

treatment, siRNA-CoASY transfected PLP139-151-specifc T cells displayed an 

increased basal proliferation even in the absence of antigenic stimulation, 

compared to siRNA-scramble transfected T cells (Figure 16B), suggesting that 

CoA synthesis pathway can be modulated to regulate T cell activation and 

functions. 

 

CoASY– RPS6KB1 complex links cellular metabolism to immune related 

signaling pathways 

 Considering the results obtained from silencing experiments showing that 

the knockdown of CoASY in activated, but low-proliferating, encephalitogenic T 
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cells acted as a sort of activation input, we next studied the role of CoASY as a 

potential direct link between metabolic reprogramming and the pathogenic 

features of antigen-specific T cells. Previous studies on immunometabolism have 

demonstrated that metabolic enzymes have secondary tasks, distinct from their 

classical role (such as RNA binding and pathogen recognition), controlling many 

different aspects of immune cell activation, faith and function. Examples of such 

enzymes are glyceraldehyde 3-phosphate dehydrogenase (GAPDH), pyruvate 

kinase (PK), and hexokinase (HK) (Chang et al., 2013; Palsson-McDermott et al., 

2015; Wolf et al., 2016). Moreover, recent studies have showed that CoASY 

forms complexes with intracellular signaling proteins involved in the immune 

response, such as p85! regulatory subunit of PI3K (Breus et al., 2009), tyrosine 

phosphatase Shp2PTP,  tyrosine kinase Src (Breus et al., 2010), ECD4 (Gudkova 

et al., 2012) and RPS6K1 (Nemazanyy et al., 2004). This aspect was confirmed 

by our preliminary analysis with a systems biology approach on a PPI network 

built around CoASY. Indeed, in the bioinformatics analysis, RPS6KB1 resulted as 

the most important linker protein between CoASY and immune related signaling 

pathways. The data suggested that the direct interaction between CoASY and 

RPS6KB1 may have a role in the regulation of signaling pathways related to cell 

proliferation, cytokine production and cell motility through effects on Mapk, Rac1 

and mTOR pathways (Figure 17). The physical interaction between CoASY and 

RPS6KB1 has been demonstrated in HEK293 and MCF7 cell lines (Nemazanyy 

et al., 2004). In this study Nemazanyy et al. uncovered a potential link between 

mTor/S6K signaling pathway and energy metabolism through CoA and its 

thioester derivatives, but its physiological relevance needs to be further 

elucidated. 

Our hypothesis is that CoASY could be modulated during differentiation 

of encephalitogenic T cells and that pantethine treatment may potentiate CoASY 

activity, influencing its expression, phosphorylation level and formation of 

complexes with intracellular proteins, such as RPS6KB1. 

 

Pantethine inhibits EAE development and ameliorates clinical outcome in 

established EAE 
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 Recent data showed that administration of pantethine had beneficial 

effects in several animal models of neuroinflammation and neurodegeneration, 

such as cerebral malaria, Pank-associate neurodegeneration and Parkinson disease 

(Brunetti et al., 2014; Cornille et al., 2010; Penet et al., 2008; Rana et al., 2010). 

In light of the dramatic metabolic and immuno-modulatory properties of CoA 

fueling by pantethine treatment on PLP139-151-specific effector T cells in vitro, we 

evaluated immunomodulation by pantethine in vivo on the pathogenesis of EAE. 

We found that preventive treatment with pantethine reduced the incidence and 

strongly affected the severity of RR-EAE in SJL mice, with a drastic reduction of 

maximal clinical score as well as cumulative score compared to control animals 

(Figure 18, Table III). Importantly, the protective effect of pantethine was 

maintained even after the suspension of the treatment (Figure 18).  

Considering the potential translational impact of pantethine in humans, we next 

tested pantethine in a therapeutic setting, by treating SJL after the initial peak of 

disease. We found that therapeutic pantethine administration significantly 

ameliorated disease severity in RR-EAE, with reduced relapses and significantly 

lower cumulative score and mean maximum score after the beginning of the 

treatment (Figure 19, Table IV). These results demonstrated that pantethine 

treatment and CoA fueling has not only a protective effect on autoimmune disease 

development, but can also interfere with established disease mechanisms and 

ameliorates autoimmune disease progression. 
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Discussion 

 
A continuous increase in the incidence of autoimmune diseases is to be expected 

in the aging societies worldwide. Autoimmune disorders not only cause severe 

disability and chronic pain, but also lead to considerable socio-economic costs. 

Given that the current treatment options are not curative, have substantial side 

effects and a significant percentage of patient are non-responders, innovative 

therapeutics for the treatment of autoimmune pathologies are needed. 

 In recent years, it has become clear that metabolism critically influences the 

outcome of an immune response and that generation and activation state of 

different T cell subsets are controlled by the preferential engagement of distinct 

metabolic pathways (Lochner et al., 2015; O’Sullivan and Pearce, 2015). Growing 

evidence suggest that changes in the metabolism of immune cells are associated 

with their effector functions and contribute to the pathogenesis of autoimmunity. 

Additionally, although they affect different target organs, some autoimmune 

diseases share alterations in metabolic pathways, key metabolites or metabolic by-

products such as modifications in amino acid, ROS, cholesterol levels or glucose 

catabolism. Thus, the emerging field of immunometabolism may lead to the 

discovery of novel therapeutic targets for the treatment of multiple diseases. In 

this study, by using metabolomics, proteomics and functional approaches, we 

demonstrated that CoA synthesis pathway have a role in the regulation of the 

activation and the effector functions of autoreactive T cells, in particular myelin-

specific encephalitogenic T cells, which represent the major players in the 

pathogenesis of EAE, the animal model of MS.  

 In agreement with previous literature, our metabolomics analysis clearly 

demonstrated that myelin-specific encephalitogenic T cells shift their metabolism 

to aerobic glycolysis and anabolic metabolism when activated by antigen 

presentation. This metabolic change is known as “Warburg effect” and it is 

characterized by an increase in free fatty acids levels and several metabolites 

related to glycolysis, Krebs cycle and PPP, in immune cells in response to 

activating stimuli (Gerriets and Rathmell, 2012; MacIver et al., 2013; Pearce and 

Pearce, 2013; Pearce et al., 2013; Vander Heiden et al., 2009). Interestingly, we 
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also observed a reduced intracellular CoA synthesis correlated with a reduction in 

the uptake of pantothenate, which is the first metabolite of the CoA synthesis 

pathway, and an accumulation of 3’-dephospho-CoA, the direct precursor of CoA 

metabolized by the enzyme CoASY (Sibon and Strauss, 2016). Previous reports 

suggested a therapeutic potential for aerobic glycolysis inhibition in autoimmune 

disease development (Bian et al., 2009; Gerriets et al., 2015; Shi et al., 2011), but 

the modulation of CoA synthesis as a new therapeutic target for the treatment of 

inflammatory and autoimmune pathologies was never investigated so far. 

Therefore, in the present study we investigated the immuno-modulatory effect of 

metabolic treatment with the low molecular weight thiol pantethine, a CoA 

precursor, on autoreactive T cell activation and EAE development (Branca et al., 

1984a; Cighetti et al., 1987; Rana et al., 2010). 

 CoA is an indispensable metabolite for mammalian cells, as it is involved in 

more than 100 different biochemical reactions and about 4% of known enzymes 

use it as a cofactor (Leonardi et al., 2005). In this study we have shown that CoA 

fueling with pantethine induced a broad metabolic re-organization in proliferating 

autoreactive T cells, reprogramming them to a “resting-like state” characterized 

by reduced glycolytic rates, inhibition of PPP pathway and nucleic acid synthesis 

and reorganization of the lipid and protein content in treated cells. We thus 

hypothesized that metabolic reprogramming by pantethine may have an immuno-

modulatory effect on PLP139-151-specific autoreactive T cells. To further 

investigate the effect of CoA fueling on encephalitogenic T cell functions we 

performed a phosphoproteomics analysis, using a high throughput antibody 

microarray approach to evaluate the impact of pantethine on protein expression 

and phosphorylation levels in encephalitogenic T cells. Although many post-

transcriptional protein modifications are involved in intracellular signaling, 

phosphorylation of serine, threonine and tyrosine residues is the one most 

commonly used signaling mechanism in mammalian cells (Caenepeel et al., 2004; 

Manning et al., 2002). In the current study, we identify 234 proteins significantly 

modified by pantethine treatment in terms of phosphorylation and/or expression 

levels. The complex bioinformatics analysis we performed revealed that 

pantethine is able to affect crucial immune processes associated with the 
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functionality and the pathogenicity of encephalitogenic T cells, such as cell 

activation and proliferation, cytokine production, cell adhesion and migration. To 

note, the PPI network obtained from our bioinformatics analysis using a systems 

biology approach will be useful for future investigation to identify signaling 

pathways and specific targets affected by pantethine treatment. Importantly, in 

accordance with data from metabolomics and phosphoproteomics analysis, we 

experimentally confirmed that CoA fueling strongly affected the pathogenic 

features of PLP139-151-specific encephalitogenic T cells, by reducing their 

proliferative capacity and pro-inflammatory cytokine production following 

antigenic stimulation and their integrin-dependent adhesion in vitro. These results 

clearly indicate that our bioinformatics approach efficiently identified the key 

immune-related processes modified in encephalitogenic T cells, which return to a 

resting-like state after CoA fueling with pantethine. 

 The capacity of CoA fueling to reduce the activation and cytokine production 

in vitro in encephalitogenic T cells by reducing the glycolytic rate is in 

accordance with a previous report showing that engagement of aerobic glycolysis 

by activating T cells is crucial for their effector functions (Chang et al., 2013). 

However, Chang and colleagues demonstrated that this metabolic shift is not 

required for T cell proliferative capacity (Chang et al., 2013), whereas we 

demonstrated that pantethine treatment also reduced T cell proliferation. This 

result suggests that pantethine influences more metabolic or signaling pathways 

other than, or in addition to, its ability to reduce aerobic glycolysis. A possible 

explanation is the ability of pantethine to influence lipid plasma membrane in 

treated cells, by decreasing lipid rafts formation as previously reported (van 

Gijsel-Bonnello et al., 2015). Activation of T cells through the TCR is indeed 

dependent on its localization in cholesterol-rich lipid membrane rafts, which are 

essential for trans-membrane signaling (Horejsi and Hrdinka, 2014). Our 

preliminary results (not shown) confirm that pantethine, due to its ability to affect 

lipid synthesis and increase FAO, dissolved pre-formed lipid rafts in activated T 

cells, and potentially dislocate essential signaling proteins from the 

immunological synapse via modification of plasma membrane composition. 

Moreover, the capacity of CoA fueling to reduce integrin-dependent cell adhesion 
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may be related to the influence on integrin functionality, which may also depend 

on their localization into cholesterol-rich membrane lipid rafts on cell surface 

(Korade and Kenworthy, 2008). In this context, it has been previously 

demonstrated that cholesterol depletion inhibits adhesion on VCAM-1 and ICAM-

1 of activated T cells (Leitinger and Hogg, 2002). Thus, our data suggest that CoA 

fueling broadly impacts autoreactive T cell activation, beyond its ability to affect 

Warburg effect by a decrease in the glycolytic rate. 

 To confirm that the metabolic reprogramming of encephalitogenic T cells 

induced by pantethine was indeed due CoA fueling, we performed a siRNA-

mediated silencing of CoASY in encephalitogenic T cells. CoASY is the enzyme 

that catalyzes the last two sequential steps of the CoA synthesis pathway, which 

represents the only way for de novo CoA production in the cell (Sibon and 

Strauss, 2016). Proliferation assays showed that siRNA-CoASY-transfected 

encephalitogenic T cells were no more sensitive to pantethine treatment after 

antigenic stimulation, compared to scrambled siRNA-transfected cells, confirming 

that pantethine play its immuno-modulatory through an increase CoA synthesis. 

Interestingly, proliferation experiments also showed that the knockdown of 

CoASY acted as an activation input in low-proliferating encephalitogenic T cell. 

Indeed, in the absence of antigen stimulation, siRNA-CoASY transfected 

encephalitogenic T cells increased their basal proliferative capacity, indicating a 

key role for CoA synthesis in the control of autoreactive T cell activation and 

function. Based on our results, we also speculate the CoASY may act as a link 

between metabolic reprogramming and the pathogenic features of antigen-specific 

T cells. Indeed, it was recently reported that several metabolic enzymes might also 

have secondary tasks in the cytoplasm distinct from their classical role. Metabolic 

enzymes could modulate cellular processes such as RNA binding and pathogen 

recognition, which are essential for immune cell including activation, polarization 

and function. GAPDH, PK, and HK, are examples of enzyme which moonlighting 

functions, acting as RNA binding and pathogen recognition proteins, beyond their 

role enzymatic activity (Chang et al., 2013; Palsson-McDermott et al., 2015; Wolf 

et al., 2016). CoASY represents an essential regulator of cell energy metabolism 

due to its role in the production of CoA, but recent studies have also shown that 
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CoASY is able to form complexes with intracellular signaling protein involved in 

the immune response, such as RPS6KB1 (Nemazanyy et al., 2004). Interestingly, 

from our bioinformatics analysis on CoASY-centered PPI network, RPS6KB1 

resulted as the most important link protein between CoASY and immune related 

signaling pathways such as Mapk, Rac1 and mTOR pathways. CoASY may create 

a complex with RPS6KB1 through the interaction of their C-terminal region, in 

which CoASY has its catalytic domain necessary for CoA production. The 

formation of the complex could be one mechanism of regulation of downstream 

signaling pathways through a modulation of CoA production and vice versa. 

Based on that, our future goal will be to further investigate the role of CoASY-

RPS6KB1 complex in immune responses, in particular on the effector functions 

of autoreactive T cell and autoimmunity. Our hypothesis is that CoASY could be 

modulated during differentiation of encephalitogenic T cells and that pantethine 

treatment, by inducing potentiation of CoASY activity through CoA fueling, 

could influence the expression, phosphorylation level and formation of complexes 

with intracellular proteins, including RPS6KB1. To note, transcriptomics data on 

the GEO database (www.ncbi.nlm.nih.gov/gds) suggest that that CoASY is 

downregulated in the first hours (from 2 to 6 hours) of CD4+ T cell antigen-

stimulation. The later observation, in accordance with the increase in the 

proliferation rate of unstimulated PLP139-151-specific T cells after CoASY 

silencing, suggests that the transient downregulation of CoASY may trigger early 

T cell activation. This observation opens new opportunities for further studies on 

the role of CoASY in the control of autoreactive T cell activation and functions in 

autoimmune diseases, and CoASY agonists/antagonists may be developed to 

finely tune the metabolism and signaling pathways of autoreactive immune cells. 

The strong immuno-modulatory effect of pantethine on encephalitogenic T 

cells, together with recent data suggesting a potential therapeutic application of 

pantethine in CNS inflammatory diseases (Cornille et al., 2010; Penet et al., 2008; 

Rana et al., 2010), prompted us to investigate the impact of such 

immunomodulation in vivo, on the development of EAE, the animal model of MS. 

Our data indicated that preventive treatment with pantethine, during the 

preclinical phase, inhibited the development of EAE in PLP139-151-immunized 
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mice, suggesting that CoA fueling interferes with immune processes essential for 

disease onset. Most importantly, considering a possible therapeutic use for 

pantethine in human MS patients, therapeutic administration of pantethine after 

the first disease peak in mice with established EAE, strongly reduced the disease 

severity, suggesting that pantethine is also able to interfere with disease-

associated processes that lead to further worsening of the pathology. In other 

animal models of neurological diseases, pantethine was previously shown to have 

protective effects thanks to its antioxidant properties and ability to increase 

mitochondrial functions in damaged neurons (Brunetti et al., 2014; Cornille et al., 

2010; Rana et al., 2010). Our data showed that pantethine impacted glutathione 

metabolism in encephalitogenic T cells, suggesting that pantethine treatment may 

potentially have antioxidant effect and may induce neuroprotection in EAE mice. 

Moreover, in a mouse model of cerebral malaria, Penet and colleagues 

demonstrated a protective role for pantethine on BBB leakage (Penet et al., 2008), 

and these data are in agreement with our preliminary data showing a reduced BBB 

leakage in pantethine-treated EAE mice (data not shown). Thus, pantethine may 

not only reduce immune cell activation, but may have a broader protective impact 

in vivo in EAE mice. 

The use of pantethine to treat autoimmune and inflammatory pathologies 

may be rapidly translated to humans, as pantethine is used from early ‘70s as a 

lipid-lowering drug in hyperlypidemic patients, with any important side effects 

reported (Evans et al., 2014; Horváth and Vécsei, 2009; Rumberger et al., 2011). 

To note, as pantethine is administered orally in humans, mice were also treated 

per os by gavage in our study. One of the main drawbacks of the current MS 

therapy is the route administration, with the majority of drugs requiring 

intravenous, intramuscular or sub-cutaneous injections. Moreover, current 

therapies are still only partially effective and have high costs and risk of severe 

side effects, limiting their use for the treatment of the human disease  

(Wingerchuk and Carter, 2014). Therefore, oral pantethine-based therapy in 

human MS may ameliorate the lifestyle of MS patients, avoiding the invasive 

administration routes of current therapeutic approaches. 
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 As previously reported in other models (Cornille et al., 2010; Penet et al., 

2008), we observed that pantethine derivatives such as pantothenic acid (vitamin 

B5), cystamine and cysteamine did not display any beneficial effect in vivo in 

EAE mice (data not shown), suggesting that the entire pantethine molecule is 

necessary for an efficient immuno-modulation of the inflammatory response. 

Previous studies indicated that pantethine undergoes rapid hydrolysis in the small 

intestine, with rapid absorbance at this level (Wittwer et al., 1985), suggesting an 

effective use of this drug as a precursor of CoA in the liver (Branca et al., 1984b). 

Although this therapy has therapeutic potential, several limitations may exist, 

including incomplete data regarding bioavailability, pharmacokinetics, and ability 

of this compound to cross the BBB. In collaboration with a pharmaceutical 

company, we recently developed two novel molecular formulations of pantethine 

to increase the bioavailability and efficacy in the treatment of EAE (data not 

shown). The first formulation was designed to protect the molecule from gastric 

acidity and increase absorption in the first part of the intestine, whereas the second 

one was designed to release pantethine immediately in the stomach. We obtained 

very preliminary data showing that the first formulation is very efficient in the 

treatment of EAE (data not shown), paving the way for the potential therapeutic 

use of new pantethine formulations in autoimmune and inflammatory pathologies. 

Overall, the results obtained in our study suggest a crucial role for the 

CoA synthesis pathway in the control of autoreactive T cell activation and 

autoimmune disease development. Also, further studies will help to understand 

the role of CoASY in metabolic and protein-protein interaction networks during T 

cell activation, opening new avenues for the development of novel therapeutic 

approaches to finely modulate T cell activation and autoimmunity. 
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Figures and Tables 

 
Figures 1-6 are shown in the Introduction. 

 

 
Figure 7. Metabolomics analysis uncovered the metabolic reprogramming of 

actively-proliferating encephalitogenic T cells. CD4+ resting T cells or actively-

proliferating encephalitogenic T cells were analyzed in outsourcing for metabolic 

profile by Metabolon. Bioinformatics analysis was performed as described in 
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“Materials and methods”. (A) Volcano plot was obtained by plotting the log2 ratio 

of mean values for the 158 metabolites profiled in the metabolomics analysis (fold 

change of metabolite concentration in encephalitogenic T cells over resting T 

cells; see Table I), against the negative log10 of the P-value from the Student’s t-

test. Metabolite concentrations that changed significantly (P<0.05) are indicated 

in red if upregulated and green if downregulated. (B) Heatmap of 89 metabolites 

significantly differing between resting and encephalitogenic T cells as revealed by 

statistical analysis. (C) Results of the bioinformatics analysis performed with 

Metscape as described in “Materials and methods” section. A representative 

subnetwork of potentially important metabolites associated with metabolic 

reprogramming of actively-proliferating encephalitogenic T cells is shown. Red 

and green nodes represent higher and lower metabolite intracellular levels in 

actively-proliferating encephalitogenic T cells compared to resting T cells, 

respectively. Clusters of metabolites associated with specific metabolic pathways 

are depicted. 
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Figure 8. Chemical structure of the low-molecular weight thiol pantethine. 

Pantethine is the metabolically active form of pantothenic acid (commonly known 

as vitamin B5), and is made of two pantothenic acid molecules linked together by 

disulfide cystamine. Pantethine also represents the stable disulfate form of 

pantetheine, and is formed by two pantetheine molecules linked by a disulfide 

bridge. 
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Figure 9. Metabolomics analysis showed drastic metabolic reprograming in 

actively-proliferating encephalitogenic T cells as a consequence of CoA 

fueling induced by pantethine. Actively-proliferating encephalitogenic T cells 

were treated with pantethine 1.0 mM for 6 hours and analyzed in outsourcing for 

metabolic profile by Metabolon. Bioinformatics analysis was performed on raw 

data from Metabolon, as described in the “Materials and methods” section. (A) 

Volcano plot was obtained by plotting the log2 ratio of mean values for the 158 

biochemicals profiled in the metabolomics analysis (fold change of metabolite 

concentration in encephalitogenic T cells treated with pantethine over 
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encephalitogenic control T cells; see Table I), against the negative log10 of the P-

value from the Student’s t-test. Proteins that changed significantly (P<0.05) are 

indicated in red if upregulated and green if downregulated. (B) Heatmap of 48 

metabolites (P<0.05) significantly modified following CoA fueling with 

pantethine. (C) Results of the bioinformatics analysis performed with Metscape as 

described in “Materials and methods” section. A representative subnetwork of 

potentially important metabolites associated with the metabolic reprogramming of 

actively-proliferating encephalitogenic T cell induced by CoA fueling with 

pantethine. Red and green nodes represent higher and lower metabolites’ 

intracellular levels in actively-proliferating encephalitogenic T cells treated with 

pantethine compared to untreated cells, respectively.  [PTTH: pantethine]
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Figure 10. Phosphoproteomics study suggested an immuno-modulatory effect 

of pantethine on encephalitogenic T cells. Actively-proliferating 

encephalitogenic T cells were treated with pantethine 1.0 mM for 6 hours and 

analyzed in outsourcing for total protein expression and phosphorylation by 

Kinexus (see Table II for protein dataset). On raw data from Kinexus, a 

bioinformatics analysis was then performed as described in “Materials and 

methods” section. Network representation of Gene Ontology (GO) analysis (A) 

and PANTHER pathways analysis (B) on proteins modified by pantethine 

treatment are shown. Nodes represent terms and edges connect two terms that 

share at least a protein. Nodes with a specific color in the PANTHER pathways 

network are associated with terms of the GO network bearing the same color. 
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Figure 11. Pantethine inhibited actively-proliferating encephalitogenic T cell 

proliferation rate in vitro. Actively-proliferating encephalitogenic T cells were 

treated with pantethine 1.0 mM for 6 hours, washed, re-seeded and left to 

proliferate for further 18 hours. Pantethine treatment inhibits encephalitogenic T 

cell proliferative response in a dose-dependent manner, compared to control cells 

(*P<0.05). Data are the mean ± standard error of the mean (SEM) of three 

independent experiments performed in triplicate. [CTRL: control; PTTH: 

pantethine] 
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Figure 12. Pantethine inhibited encephalitogenic T cell proliferation after 

antigen-stimulation in vitro. PLP139-151-specific T cells were treated with PBS 

(control cells) or pantethine 0.1 or 1.0 mM for 16 hours before re-stimulation with 

different antigen (PLP139-151) concentrations, in the presence of irradiated 

splenocytes as APCs. Pantethine pre-treatment strongly inhibited encephalitogenic 

T cell proliferative response in a dose-dependent manner, when compared to 

control cells (*P<0.05 and **P<0.01 compared to the corresponding control 

condition). Data are the mean ± SEM of three independent experiments. [CTRL: 

control; PTTH: pantethine] 
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Figure 13. Pantethine inhibited pro-inflammatory cytokine production by 

encephalitogenic T cell proliferation. Supernatants from proliferation assays 

depicted in Figure 12 were collected, and cytokine content was evaluated with the 

Bio-plex system. Pantethine pre-treatment inhibited the production of IL-6, IL-17, 

GM-CSF, IFN-g and TNF-a by PLP139-151-specific T cell lines following in vitro 

re-stimulation (*P<0.05 and **P<0.01 compared to the corresponding control 

condition). Data are the mean ± standard deviation (SD) of one representative 

experiment performed in triplicate. [CTRL: control; PTTH: pantethine] 
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Figure 14. Pantethine reduced integrin-dependent encephalitogenic T cell 

adhesion in vitro. Activated PLP139-151-specific T cells were treated with PBS 

(control cells) or pantethine 0.1, 0.5 or 1.0 mM for 3 or 6 hours. Cells were then 

left spontaneously adhere on glass slides pre-coated with ICAM-1 of VCAM-1 1 

µg/ml. Pantethine inhibited integrin-mediated adhesion of encephalitogenic T 

cells in a dose-dependent manner (*P<0.05, **P<0.01 and ***P<0.001 compared 

to the corresponding control condition). Data are the mean ± SEM of three 

independent experiments. [CTRL: control; PTTH: pantethine] 
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Figure 15. Western blot demonstrating silencing of CoASY in our 

experimental setting. Low-proliferating PLP139-151-specific T cells were 

transfected with either siRNA against CoASY or siRNA-scramble as control, and 

the silencing was evaluated after 24 hours (24H) or 48 hours (48H) post 

transfection by western blot analysis. A) Relative quantification of the western 

blots band intensities. Values represent the mean ± SEM of three independent 

experiments (*P< 0.05 versus control). We observed that the knockdown 

efficiency of CoASY was around 50% after 24 hours, whereas it was not effective 

at 48 hours. B) Representative western-blot showing the reduction in CoASY 

expression 24H but not 48H post-transfection, compared to siRNA-scramble. ß-

actin was used as control housekeeping gene. 
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Figure 16. CoASY silencing reduced the inhibitory effect of pantethine on the 

proliferation of encephalitogenic T cells and increases basal proliferative 

capacity. Low-proliferating PLP139-151-specific T cells were transiently 

transfected with siRNA-CoASY or control scramble siRNA. A) Within 24 hours 

post transfection cells were treated with PBS (control cells) or pantethine 0.1 or 

0.2 mM for 16 hours before re-stimulation with PLP139-151 peptide, in the presence 

of irradiated splenocytes as APCs. Proliferation assay showed that siRNA-

CoASY-transfected cells were no more sensitive to pantethine treatment 

following antigen restimulation, compared to siRNA scramble-transfected cells 

(*P<0.05 compared to the corresponding control condition). B) The proliferation 

assays showed that transfection with a siRNA-CoASY increased the basal 

proliferation of unstimulated PLP139-151-specific T cells, compared to control 

siRNA-transfected cells (*P<0.05). 

Data are the mean ± SEM of three independent experiments. [CTRL: control; 

PTTH: pantethine]  
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Figure 17. CoASY – RPS6KB1 complex links metabolism to immune related 

signaling pathways.  We analyzed a PPI network centered on CoASY (left). The 

PPI network of CoASY was built using Cytoscape software and a network 

database of known and predicted PPI (see “Materials and methods” section). 

Then, with the Cytoscape plug-in JEPETTO we performed an enrichment analysis 

of the signaling pathways in which CoASY and its first interacting proteins were 

involved. From the bioinformatics analysis, RPS6KB1 (green node of the 

network) resulted as the most important linker protein of CoASY (orange node) 

with immune related signaling pathways (table on the right). Data obtained 

suggested that direct interaction between CoASY and RPS6KB1 may have a role 

in the regulation of signaling pathways related to cell proliferation (yellow), 

cytokine production (cyan), cell motility (magenta) mainly through effects on 

Mapk, Rac1 and MTOR pathways. 
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Figure 18. Preventive treatment with pantethine inhibited RR-EAE 

development in SJL mice. PLP139-151 EAE-immunized mice were treated per os 

with 30 mg/day of pantethine from day +5 post-immunization for 20 consecutive 

days (red line). PTTH treatment reduced incidence, maximal clinical score and 

cumulative score, compared to untreated animals (CTRL mice) (see also Table 

III for quantification; **P<0.01 compared to the CTRL animals). Data are the 

mean ± SEM of three independent experiments. [CTRL: control; PTTH: 

pantethine]  
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Figure 19. Therapeutic treatment with pantethine ameliorated established 

RR-EAE clinical course in SJL mice. PLP139-151 EAE-immunized mice were 

treated per os with 30 mg/day of pantethine from day +18 post-immunization 

(after the first disease relapse) for 20 consecutive days (red line). PTTH treatment 

reduced the number of relapses and the post-treatment cumulative score and mean 

maximum score, compared to untreated animals (control mice) (see also Table IV 

for quantification; ***P<0.001 compared to the control animals). Data are the 

mean ± SEM of two independent experiments. 

[CTRL: control; PTTH: pantethine] 
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Table I. Summary of metabolites affected by pantethine treatment in 

PLP139-151-specific encephalitogenic T cells. The table includes results of 

statistical tests with associated heat maps, P-values, and mean values from 

metabolomics analysis. The dataset below includes a total of 158 compounds of 

known identity (named biochemicals).  Following normalization to protein 

concentration, log transformation and imputation with minimum observed values 

for each compound (analysis provided by Metabolon), Welch’s two-sample t-test 

was used to identify biochemicals that differed significantly between experimental 

groups.  A summary of the numbers of biochemicals that achieved statistical 

significance (p≤0.05), as well as those approaching significance (0.05<P<0.10), is 

shown. 
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Heat map of statistically significant biochemicals profiled in this study.  Welch's Two-Sample t-Test 

Fold of Change  P-values Mean Values 

Super 
Pathway 

Sub Pathway Biochemical Name PLP 
Ctrl vs 
Resting 
Ctrl 

PLP 
PTTH 
6h vs 
PLP 
Ctrl 

PLP 
Ctrl 6h 
/ 
Resting 
Ctrl 6h 

PLP 
PTTH 
6h / 
PLP 
Ctrl 
6h 

Resting 
Ctrl 6h 

PLP 
Ctrl 
6h 

PLP 
PTTH 
6h 

Amino acid Glycine, serine and 
threonine metabolism 

glycine 0.13 0.71 0.025 0.011 9.033 1.166 0.828 

serine 0.70 0.76 0.961 0.040 1.756 1.234 0.934 

threonine 0.49 0.80 0.459 0.087 2.430 1.187 0.952 

Isobar: betaine aldehyde,  
N-methyldiethanolamine 

0.01 1.02 0.001 0.857 69.053 0.652 0.662 

Alanine and aspartate 
metabolism 

aspartate 0.04 0.89 0.005 0.162 26.901 1.180 1.055 

asparagine 0.29 1.03 0.047 0.776 3.529 1.029 1.062 
alanine 0.53 0.85 0.474 0.057 2.155 1.137 0.969 

N-carbamoylaspartate 4.35 0.43 0.000 0.002 0.157 0.683 0.296 

N-acetylaspartate (NAA) 1.81 0.73 0.112 0.165 0.692 1.251 0.916 

Glutamate metabolism glutamate 0.23 0.87 0.072 0.004 4.357 0.982 0.859 
glutamine 0.24 0.63 0.048 0.000 4.459 1.089 0.689 

 p  ≤ 0.05, fold of change ≥ 1.00 0.05 < p < 0.10, fold of change ≥ 1.00
 p  ≤ 0.05, fold of change < 1.00 0.05 < p  < 0.10, fold of change < 1.00

Comparison mean values significantly different: Comparison mean values approaching significance:
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Histidine metabolism histidine 0.44 0.72 0.433 0.005 2.591 1.139 0.819 

histamine 1.45 1.01 0.002 0.884 0.670 0.970 0.976 

Lysine metabolism lysine 1.12 0.75 0.434 0.017 1.019 1.144 0.863 

Phenylalanine & 
tyrosine metabolism 

phenylalanine 1.34 0.90 0.257 0.128 0.782 1.047 0.939 
tyrosine 1.21 0.84 0.338 0.002 0.938 1.136 0.957 

Tryptophan 
metabolism 

kynurenine 2.51 0.76 0.006 0.165 0.523 1.312 1.001 

tryptophan 0.80 0.82 0.925 0.078 1.363 1.090 0.896 

serotonin (5HT) 32.88 1.08 0.004 0.134 0.030 0.996 1.078 
Valine, leucine and 
isoleucine metabolism 

isoleucine 0.52 0.87 0.463 0.095 2.047 1.057 0.922 

leucine 0.75 0.80 0.867 0.006 1.517 1.142 0.911 

valine 0.95 0.80 0.622 0.001 1.230 1.165 0.933 

  hypotaurine 0.39 1.42 0.262 0.000 1.888 0.728 1.036 
taurine 0.21 1.02 0.099 0.640 3.731 0.772 0.789 

S-adenosylmethionine (SAM) 0.89 0.85 0.856 0.059 1.497 1.331 1.131 

S-adenosylhomocysteine (SAH) 0.83 1.70 0.688 0.002 0.910 0.753 1.279 

methionine 0.36 0.89 0.330 0.070 2.675 0.962 0.860 

Urea cycle; arginine-, 
proline-, metabolism 

asymmetric dimethylarginine (ADMA) 0.87 0.59 0.857 0.007 1.693 1.475 0.876 

arginine 0.46 0.89 0.412 0.024 2.176 1.007 0.895 

urea 0.28 1.00 0.003 0.995 3.457 0.953 0.951 

proline 0.36 0.78 0.287 0.005 3.356 1.199 0.934 

citrulline 2.63 1.01 0.071 0.871 0.686 1.803 1.813 
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trans-4-hydroxyproline 0.41 1.09 0.228 0.057 2.494 1.013 1.101 

Creatine metabolism creatine 0.51 0.85 0.534 0.071 2.237 1.134 0.965 

  spermine 0.29 1.11 0.056 0.227 3.173 0.925 1.023 

Guanidino and 
acetamido metabolism 

4-guanidinobutanoate 0.23 0.56 0.124 0.003 5.800 1.347 0.751 

Glutathione 
metabolism 

glutathione, reduced (GSH) 0.39 1.11 0.172 0.092 2.400 0.932 1.037 

5-oxoproline 0.04 1.54 0.012 0.019 14.484 0.596 0.918 

glutathione, oxidized (GSSG) 0.89 1.65 0.952 0.003 1.057 0.946 1.557 

    glycylleucine 7.85 1.23 0.000 0.145 0.126 0.989 1.219 
glycylphenylalanine 1.69 1.46 0.007 0.015 0.513 0.865 1.262 

alanylleucine 2.06 0.93 0.001 0.378 0.533 1.099 1.026 

alanylphenylalanine 1.96 0.92 0.003 0.384 0.516 1.009 0.924 

asparagylleucine 5.36 1.08 0.000 0.463 0.211 1.132 1.227 
alanyltyrosine 4.41 0.94 0.000 0.477 0.266 1.176 1.100 

aspartylphenylalanine 3.32 1.01 0.000 0.963 0.325 1.079 1.085 

alpha-glutamylglutamate 2.91 0.79 0.062 0.102 0.441 1.283 1.012 

glutamine-leucine 2.80 1.10 0.000 0.323 0.379 1.060 1.166 
leucylleucine 3.30 1.02 0.000 0.880 0.329 1.087 1.110 

threonylisoleucine 1.12 1.80 0.195 0.001 0.485 0.542 0.975 

threonylphenylalanine 3.99 0.88 0.000 0.148 0.277 1.107 0.970 

valylphenylalanine 2.96 0.94 0.000 0.546 0.394 1.168 1.097 
cysteinylglycine 0.39 0.96 0.080 0.806 2.545 1.002 0.966 

tyrosylvaline 1.52 1.44 0.056 0.053 0.568 0.863 1.242 
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arginylisoleucine 1.38 1.84 0.014 0.001 0.625 0.864 1.588 

arginylleucine 1.60 1.17 0.002 0.040 0.598 0.955 1.114 

arginylglutamate 1.75 1.45 0.005 0.014 0.506 0.886 1.283 

aspartylleucine 2.99 1.02 0.000 0.908 0.338 1.009 1.026 
histidylleucine 12.92 1.09 0.000 0.040 0.083 1.070 1.170 

isoleucylalanine 3.11 0.98 0.000 0.820 0.342 1.063 1.043 

isoleucylglutamine 2.81 1.02 0.001 0.890 0.383 1.074 1.090 

isoleucylphenylalanine 4.30 1.04 0.001 0.697 0.254 1.093 1.136 
isoleucylvaline 1.63 0.99 0.002 0.927 0.602 0.984 0.978 

leucylalanine 2.95 1.25 0.001 0.099 0.304 0.898 1.121 

leucylglycine 2.77 1.14 0.001 0.323 0.341 0.945 1.077 

lysylisoleucine 2.42 0.82 0.001 0.054 0.482 1.168 0.957 
lysylleucine 1.54 0.95 0.001 0.561 0.674 1.037 0.980 

phenylalanylleucine 2.47 0.97 0.003 0.854 0.439 1.087 1.057 

phenylalanylserine 1.50 1.92 0.067 0.011 0.427 0.641 1.231 

serylleucine 2.99 1.26 0.001 0.074 0.307 0.919 1.157 
serylphenyalanine 2.41 1.12 0.005 0.447 0.432 1.039 1.168 

threonylleucine 3.42 0.97 0.000 0.698 0.318 1.087 1.049 

tyrosylleucine 4.33 0.91 0.001 0.471 0.305 1.322 1.202 

tyrosylglycine 1.56 1.30 0.003 0.041 0.607 0.945 1.231 
alpha-glutamyltyrosine 2.45 1.02 0.052 0.871 0.451 1.104 1.125 

phenylalanylaspartate 1.81 1.24 0.009 0.162 0.512 0.925 1.149 

gamma-glutamyl gamma-glutamylglutamate 0.10 0.97 0.008 0.777 9.009 0.900 0.876 
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    N-acetylneuraminate 1.50 1.01 0.002 0.824 0.688 1.032 1.046 

Isobar: UDP-acetylglucosamine, UDP-
acetylgalactosamine 

0.22 0.98 0.040 0.871 3.943 0.886 0.871 

Fructose, mannose, 
galactose, starch, and 
sucrose metabolism 

6'-sialyllactose 2.31 1.27 0.082 0.340 0.418 0.964 1.226 
mannose-6-phosphate 3.56 0.66 0.047 0.034 0.408 1.451 0.955 

maltopentaose 2.67 1.06 0.001 0.539 0.394 1.052 1.112 

maltohexaose 2.45 1.14 0.000 0.125 0.405 0.992 1.129 

Oligosaccharide maltotetraose 2.92 1.08 0.001 0.440 0.361 1.055 1.138 
Glycolysis, 
gluconeogenesis, 
pyruvate metabolism 

glucose-6-phosphate (G6P) 3.48 0.75 0.030 0.137 0.411 1.432 1.071 

glucose 2.50 0.70 0.006 0.141 0.612 1.530 1.068 

fructose-6-phosphate 2.76 0.88 0.061 0.390 0.543 1.501 1.319 
Isobar: fructose 1,6-diphosphate, glucose 
1,6-diphosphate, myo-inositol 1,4 or 1,3-
diphosphate 

0.23 0.67 0.009 0.294 5.145 1.166 0.778 

lactate 0.68 0.87 0.920 0.089 1.704 1.156 1.006 

Nucleotide sugars, 
pentose metabolism 

6-phosphogluconate 0.13 1.89 0.008 0.000 6.768 0.868 1.641 

sedoheptulose-7-phosphate 5.45 0.48 0.067 0.253 0.193 1.052 0.510 

ribose 5-phosphate 0.95 0.95 0.689 0.722 1.221 1.162 1.103 

Isobar: ribulose 5-phosphate, 
xylulose 5-phosphate 

2.50 0.77 0.013 0.151 0.527 1.316 1.011 
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Nucleotide sugars UDP-glucose (isobar with UDP-galactose) 0.18 1.38 0.044 0.013 4.053 0.715 0.990 

Energy Krebs cycle citrate 0.69 0.86 0.953 0.203 1.436 0.998 0.854 

fumarate 0.25 0.78 0.059 0.146 2.957 0.740 0.579 
malate 0.21 0.86 0.030 0.214 4.678 0.985 0.842 

Oxidative 
phosphorylation 

phosphate 0.25 0.92 0.056 0.311 3.732 0.926 0.849 

    linolenate [alpha or gamma; (18:3n3 or 6)] 1.62 0.95 0.006 0.602 0.578 0.937 0.891 

Long chain fatty acid palmitoleate (16:1n7) 1.61 0.88 0.138 0.036 0.621 1.003 0.885 

eicosenoate (20:1n9 or 11) 0.24 0.93 0.084 0.336 3.250 0.777 0.719 

dihomo-linoleate (20:2n6) 0.28 0.86 0.052 0.434 3.444 0.974 0.839 

mead acid (20:3n9) 9.97 1.09 0.001 0.576 0.111 1.107 1.206 

arachidonate (20:4n6) 0.38 1.24 0.199 0.309 2.013 0.773 0.957 

docosadienoate (22:2n6) 0.26 1.11 0.075 0.009 2.921 0.766 0.854 

Fatty acid, amide stearamide 0.54 0.89 0.052 0.594 1.564 0.845 0.750 
Carnitine metabolism deoxycarnitine 0.08 1.13 0.012 0.157 9.738 0.818 0.921 

carnitine 0.03 0.74 0.004 0.002 45.822 1.209 0.900 

acetylcarnitine 0.08 0.99 0.011 0.948 11.002 0.855 0.848 

Glycerolipid 
metabolism 

choline phosphate 0.08 0.94 0.013 0.245 8.830 0.732 0.690 
phosphoethanolamine 0.13 0.87 0.013 0.051 8.056 1.037 0.906 

glycerophosphorylcholine (GPC) 0.39 1.32 0.174 0.002 1.999 0.775 1.023 
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cytidine 5'-diphosphocholine 0.14 1.28 0.016 0.034 5.592 0.801 1.026 

Inositol metabolism myo-inositol 0.09 0.80 0.001 0.443 9.997 0.881 0.703 

Lysolipid 1-palmitoylglycerophosphoethanolamine 0.15 0.73 0.055 0.039 6.398 0.965 0.703 

1-stearoylglycerophosphoethanolamine 0.22 0.91 0.071 0.112 4.214 0.911 0.825 

2’arachidonoylglycerophosphoethanolamine 0.19 1.26 0.068 0.554 3.554 0.673 0.846 

  lanosterol 2.29 1.15 0.053 0.435 0.338 0.776 0.891 

Nucleotide Purine metabolism, 
(hypo)xanthine/inosine 
containing 

xanthine 2.03 0.74 0.111 0.025 0.620 1.258 0.929 

hypoxanthine 0.20 0.85 0.109 0.056 4.722 0.967 0.822 

inosine 0.17 0.96 0.011 0.622 6.209 1.050 1.004 
2'-deoxyinosine 7.06 0.62 0.001 0.038 0.232 1.638 1.010 

inosine 5'-monophosphate (IMP) 0.04 0.81 0.000 0.441 21.126 0.799 0.647 

Purine metabolism, 
adenine containing 

adenine 0.72 1.01 0.552 0.995 1.630 1.172 1.182 

adenosine 0.13 1.00 0.027 0.980 7.011 0.912 0.916 

2'-deoxyadenosine 3'-monophosphate 4.89 0.86 0.001 0.350 0.268 1.311 1.124 

adenosine 3'-monophosphate (3'-AMP) 1.51 0.76 0.002 0.001 0.720 1.087 0.824 

adenosine 5'-monophosphate (AMP) 0.07 1.20 0.002 0.391 11.039 0.817 0.982 
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adenylosuccinate 0.15 0.72 0.071 0.130 6.951 1.069 0.768 

Purine metabolism, 
guanine containing 

guanine 0.04 0.67 0.012 0.260 27.046 1.065 0.714 

7-methylguanine 1.56 1.40 0.179 0.013 0.693 1.083 1.515 

guanosine 0.14 1.08 0.005 0.565 6.385 0.924 0.994 
2'-deoxyguanosine 2.96 0.60 0.007 0.047 0.534 1.583 0.942 

guanosine 5'- monophosphate (5'-GMP) 0.08 1.02 0.001 0.795 11.590 0.898 0.912 

Purine metabolism, 
urate metabolism 

urate 2.20 1.13 0.038 0.602 0.519 1.142 1.290 

Pyrimidine 
metabolism, cytidine 
containing 

cytidine 0.12 0.97 0.030 0.891 7.256 0.850 0.828 

cytidine 5'-monophosphate (5'-CMP) 0.21 1.28 0.027 0.091 3.829 0.801 1.028 

Pyrimidine 
metabolism, orotate 
containing 

orotate 6.36 0.45 0.000 0.020 0.155 0.984 0.445 

Pyrimidine 
metabolism, thymine 
containing 

thymidine 0.45 0.60 0.660 0.008 2.634 1.185 0.711 

Pyrimidine 
metabolism, uracil 
containing 

uracil 0.62 0.91 0.722 0.096 1.896 1.180 1.077 
uridine 0.03 0.77 0.026 0.109 27.247 0.945 0.729 

uridine monophosphate (5' or 3') 0.28 1.21 0.024 0.136 3.849 1.082 1.305 

Cofactors 
and 
vitamins 

Ascorbate and aldarate 
metabolism 

ascorbate (Vitamin C) 0.30 1.00 0.069   2.100 0.633 0.633 

Nicotinate and nicotinamide 0.24 0.80 0.139 0.074 4.476 1.078 0.858 
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nicotinamide 
metabolism 

adenosine 5'diphosphoribose 2.04 0.63 0.008 0.019 0.434 0.887 0.560 

Pantothenate and CoA 
metabolism 

pantothenate 0.14 32.88 0.030 0.000 0.358 0.051 1.674 

CoA 0.23 0.60 0.022 0.001 4.577 1.071 0.640 
3'-dephospho-CoA 3.40 0.75 0.012 0.001 0.445 1.511 1.127 

Riboflavin metabolism flavin adenine dinucleotide (FAD) 0.34 0.94 0.063 0.233 2.553 0.881 0.826 

Thiamine metabolism thiamin (Vitamin B1) 2.38 1.34 0.000 0.000 0.400 0.954 1.274 

Tocopherol 
metabolism 

alpha-tocopherol 0.96 2.16 0.784 0.026 0.474 0.456 0.984 

Xenobiotics Chemical glycerol 2-phosphate 2.07 0.91 0.066 0.257 0.495 1.026 0.933 

2-ethylhexanoate (isobar with 
2-propylpentanoate) 

0.13 1.20 0.014 0.358 5.018 0.652 0.785 

phenol red 0.62 1.18 0.257 0.147 1.177 0.730 0.858 
Drug penicillin G 0.44 0.90 0.189 0.075 1.826 0.798 0.719 

streptomycin 2.02 0.94 0.100 0.460 0.540 1.093 1.031 

Gentamycin 6.40 1.05 0.000 0.609 0.165 1.053 1.101 

Sugar, sugar 
substitute, starch 

erythritol 0.28 0.66 0.146 0.082 3.486 0.990 0.655 
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Table II. Analysis of phosphoproteomics data. “Pan-Specific” antibodies 

determine expression value, whereas the others account for specific 

phosphorylation site (e.g. Y1034, T183, S780; Y: tyrosine, T: threonine, S: 

serine). Z-score refers to the ratios of actively-proliferating PLP139-151-specific T 

cells treated with 1.0mM of pantethine versus control actively-proliferating 

PLP139-151-specific T cells treated with PBS. Green: downregulation; red: 

upregulation. 

NAME Z-Score TYPE NAME Z-Score TYPE 
AXL -7,53 Pan-specific CRYAB 8,40 Pan-specific 
CSNK2A1 -6,74 Pan-specific RB1 6,42 S780 
ATF2 -5,72 Pan-specific PAK1 6,06 Pan-specific 
CAMK4 -5,31 Pan-specific GRIN2B 5,44 Y1474 
MAPK10 -5,08 Pan-specific NFKBIB 4,53 Pan-specific 
CDK6 -5,03 Pan-specific TLK1 4,22 Pan-specific 
CASP4 -4,98 Pan-specific DNAJB1 4,12 Pan-specific 
BRCA1 -4,59 S1497 PPP6C 4,02 Pan-specific 
CAMKK1 -4,54 Pan-specific NLK 3,90 Pan-specific 
EEF2K -4,23 Pan-specific MAPK14 3,79 T180+Y182 
HMOX1 -4,15 Pan-specific MAP2K3 3,73 S218/S207 
BUB1 -4,12 Pan-specific DDR2 3,67 Pan-specific 
PLK2 -4,08 Pan-specific ZAP70 3,47 Y319/Y352 
CALR -3,89 Pan-specific AKT2 3,43 Pan-specific 
HIST1H1
A -3,81 

phospho CDK1 
sites PRKCH 3,40 Pan-specific 

YWHAZ -3,64 Pan-specific DUSP1 3,29 Pan-specific 
STK17B -3,62 Pan-specific GRIN1 3,20 S896 
AURKC -3,61 Pan-specific NTRK1 3,18 Pan-specific 
MAP3K5 -3,60 Pan-specific PTEN 3,17 Pan-specific 
PRKAA1 -3,34 T183 CCNA1 2,98 Pan-specific 
PRKDC -3,26 Pan-specific MAPK12 2,96 Pan-specific 
DAPK2 -3,18 Pan-specific PKN2 2,94 Pan-specific 
RIPK4 -3,14 Pan-specific RPS6KA1 2,91 S363/S369 
CANX -3,03 Pan-specific ARAF 2,89 Pan-specific 
ACACA -2,99 S80 SOD1 2,85 Pan-specific 
TNK2 -2,93 Pan-specific PPP2R2C 2,84 Pan-specific 
CAV2 -2,82 Pan-specific RAF1 2,84 S259 
CSNK1E -2,82 Pan-specific PRKCZ 2,83 T410/T412 
MAP2K4 -2,75 S257+T261 CDK8 2,75 Pan-specific 



 80 

PTPN6 -2,74 Pan-specific PTK2B 2,73 Pan-specific 
MAPK7 -2,68 Pan-specific VRK1 2,72 Pan-specific 
PDIA4 -2,45 Pan-specific TBK1 2,70 Pan-specific 
GNB2L1 -2,44 Pan-specific CDK5 2,62 Pan-specific 
PRKG1 -2,37 Pan-specific PPP1CB 2,57 Pan-specific 
MAP3K8 -2,36 Pan-specific MAP2K6 2,57 S207 
ST13 -2,32 Pan-specific TEK 2,48 Pan-specific 
CAMK2B -2,30 Pan-specific DAPK3 2,45 Pan-specific 
CDC25B -2,30 Pan-specific MAP3K7 2,45 Pan-specific 
H3F3B -2,23 T4 PDPK1 2,43 Pan-specific 
PRKACA -2,20 T198 AKT3 2,43 Pan-specific 
MAPK9 -2,19 Pan-specific STK33 2,39 Pan-specific 
Rac1 -2,13 Pan-specific SRC 2,39 Pan-specific 
RAD23B -2,10 Pan-specific STK4 2,37 Pan-specific 
PRKD1 -2,03 S910 RPS6KA5 2,37 S376 
TAOK3 -1,99 Pan-specific SPHK1 2,37 Pan-specific 
CASK -1,98 Pan-specific PRKAR2A 2,35 S99 
CASP6 -1,98 Pan-specific ROR2 2,32 Pan-specific 
CDC42 -1,96 Pan-specific PTPN11 2,28 S580 
HMOX2 -1,93 Pan-specific GSG2 2,16 Pan-specific 
HSPA4 -1,91 Pan-specific STRN3 2,15 Pan-specific 
PPP4C -1,89 Pan-specific AKT1 2,12 S473 
CAMK1D -1,87 Pan-specific PRKAB1 2,11 Pan-specific 
MARCKS -1,85 S159+S163 SPHK2 2,03 Pan-specific 
ADD1 -1,85 S726 PDGFRB 1,99 Y716 
HSPH1 -1,84 Pan-specific HSP90AA1 1,99 Pan-specific 
HSPA8 -1,75 Pan-specific RPS6KB1 1,98 T412 
GAP43 -1,72 S41 PRKCA 1,97 Pan-specific 
ICK -1,72 Pan-specific TP53 1,97 Pan-specific 
HSPA4L -1,71 Pan-specific STAT1 1,95 Pan-specific 
MAPK3 -1,71 Pan-specific SGK3 1,94 Pan-specific 
HSPA1A -1,69 Pan-specific MAP2K2 1,92 Pan-specific 
BMX -1,67 Pan-specific PIK3R4 1,91 Pan-specific 
CAMK2G -1,65 Pan-specific MKNK2 1,88 Pan-specific 
BAK1 -1,65 Pan-specific MAP3K1 1,86 Pan-specific 
CDC25C -1,64 Pan-specific MAP3K2 1,84 Pan-specific 
CAMK2D -1,63 Pan-specific PKN1 1,83 Pan-specific 
GSK3A -1,63 Pan-specific PDK2 1,81 Pan-specific 
PTPN1 -1,62 Pan-specific ROS1 1,78 Pan-specific 
ILK -1,60 Pan-specific SOD2 1,77 Pan-specific 
CAMK2A -1,58 T286 STAT6 1,76 Pan-specific 
CDKN3 -1,55 Pan-specific CDKN1A 1,74 Pan-specific 
CSE1L -1,55 Pan-specific MAP3K11 1,73 Pan-specific 
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JUN -1,52 S73 PPM1D 1,73 Pan-specific 
IGF1R -1,46 Pan-specific MYL12A 1,72 S19 
CSNK1G2 -1,46 Pan-specific PPP2R2A 1,71 Pan-specific 
NFKBIA -1,43 Pan-specific HSPD1 1,69 Pan-specific 
HSPB1 -1,43 S78 HSP90AB1 1,69 Pan-specific 
MAP2K1 -1,42 Pan-specific IRS1 1,69 Y1179 
PPP2CA -1,41 Pan-specific PTPN21 1,68 Pan-specific 
SYN1 -1,41 S9 EIF4E 1,66 S209 
BAD -1,40 S75 RAB5A 1,62 Pan-specific 
HSP90B1 -1,38 Pan-specific PACSIN1 1,62 Pan-specific 
CDK4 -1,37 Pan-specific P4HB 1,55 Pan-specific 
ABL1 -1,36 Pan-specific STAT3 1,53 Y705 
AURKA -1,34 Pan-specific CDKN1B 1,52 Pan-specific 
ANP32A -1,33 Pan-specific BCL2 1,52 Pan-specific 
NPM1 -1,32 T199 TPTE2 1,50 Pan-specific 
MAP2K5 -1,32 Pan-specific DIABLO 1,49 Pan-specific 
ARRB1 -1,31 Pan-specific EGFR 1,48 Y1092 
BCL2L1 -1,31 Pan-specific NEK2 1,45 Pan-specific 
IRAK2 -1,30 Pan-specific STK25 1,44 Pan-specific 
EIF4EBP1 -1,30 T45 FKBP4 1,43 Pan-specific 
SET -1,23 Pan-specific MAP3K4 1,43 Pan-specific 
AURKB -1,23 Pan-specific PRKCE 1,42 Pan-specific 
CASP7 -1,23 Pan-specific MYEF2 1,42 Pan-specific 
CHUK -1,23 Pan-specific KSR1 1,41 Pan-specific 
JAK1 -1,20 Pan-specific BTK 1,38 Pan-specific 
MAP4K5 -1,20 Pan-specific SMAD2 1,38 Pan-specific 
      MAPT 1,36 S739 
      PPP5C 1,34 Pan-specific 
      RPS6KA3 1,34 Pan-specific 
      TYK2 1,32 Pan-specific 
      CDKN2C 1,32 Pan-specific 
      PRKCG 1,31 T655 
      SOCS2 1,31 Pan-specific 
      STAT5A 1,30 Pan-specific 
      MYC 1,30 T58/S62 
      PPP2R5A 1,25 Pan-specific 
      CDK2 1,25 Pan-specific 
      MET 1,24 Pan-specific 
      PRKCD 1,24 Pan-specific 
      DOK2 1,21 Y139 
      PXN 1,20 Y118 
      ERBB2 1,01 Pan-specific 
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Table III. Clinical features of EAE mice treated with pantethine (preventive 
treatment). [dpi: days post immunization] 
 

 % Incidence 
Mean day of 
disease onset 

(dpi) 

Mean 
maximum 

clinical score 

Mean 
cumulative 

clinical score 

CTRL mice  100% 12.3 ± 3.1 2.7 ± 1.2 53.9 ± 44.4 

Pantethine-
treated 

mice  
66,7% 14.7 ± 3.3 1.3 ± 1.2a 16.5 ± 19.2b 

aP<0.005 compared to CTRL animals 
bP<0.007 compared to CTRL animals 

 

Table IV. Clinical features of EAE mice treated with PTTH (therapeutic 

treatment). 

 

Mean 
maximum 
score pre-
treatment 

Mean 
cumulative 
score pre-
treatment 

Mean 
maximum 
score post-
treatment 

Mean 
cumulative 
score post-
treatment 

CTRL mice  2.6 ±1.1 12.0 ± 7.1 2.9 ± 1.3 35.2 ± 16.2 

Pantethine-
treated 

mice  
2.4 ± 0.9 10.5 ± 6.2 1.3 ± 1.0a 14.9 ± 16.2b 

aP<0.003 compared to CTRL animals 
bP<0.0005 compared to CTRL animals 
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